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Billions  of households worldwide cook using biomass fires and suffer from the toxic

smoke emitted into their homes. Laboratory studies of wood-burning cookstoves demonstrate

that secondary air injection can greatly reduce the emission of harmful air pollution, but these

experimental advancements are not easily translated into practical cookstove designs that can be

widely adopted. In this study, we use a modular cookstove platform to experimentally quantify

the  practical  secondary  air  injection  design  requirements  (e.g.,  flow  rate,  pressure,  and

temperature) to reduce mass emissions of particulate matter (PM), carbon monoxide (CO), and

black carbon (BC) by at least 90% relative to a traditional cooking fire. Over the course of 111

experimental trials, we illuminate the physical mechanisms that drive emission reductions, and

outline  fundamental  design  principles  to  optimize  cookstove  performance.  Using  the

experimental data, we demonstrate that low-cost (<$10) fans and blowers are available to drive

the  secondary  flow,  and can  be  independently  powered  using  an  inexpensive  thermoelectric

generator mounted nearby. Furthermore, size-resolved PM measurements show that secondary

air  injection  inhibits  particle  growth,  but  the  total  number  of  particles  generated  remains
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relatively unaffected. We discuss the potential impacts for human health and investigate methods

to mitigate the PM formation mechanisms that persist. 

Keywords: biomass cookstove; household energy; air pollution; design; combustion
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1. Introduction 

Over  2  billion  people  cook  using  solid  biomass  fuels,  such  as  wood  and  dung.1,2

Typically,  households  rely  on  traditional  biomass  cookstoves  that  are  highly  inefficient  and

polluting.3,4 When these cookstoves are used in poorly ventilated homes, indoor concentrations of

harmful pollutants, such as particulate matter (PM) and carbon monoxide (CO), can be up to 100

times higher than levels recommended by the World Health Organization (WHO).5-7

 As a result, chronic exposure to indoor air pollution from solid biomass cookstoves is a

leading environmental health risk, causing nearly 2 million premature deaths annually.8,9 

Some biomass cookstoves are designed to reduce unwanted emissions by using a small

fan or blower to inject secondary air into the combustion chamber.10-14 When properly injected,

the jets of secondary air increase the turbulent mixing and residence time of gas-phase fuel in the

combustion  zone,  while  providing  oxygen  directly  to  fuel-rich  regions.15-21 As  a  result,  fuel

oxidation  is  more  complete,  fewer  harmful  pollutants  are  emitted,  and thermal  efficiency  is

enhanced.14,15 However,  secondary  air  is  typically  much  cooler  than  the  exhaust  gases  and

improper injection can result in lower combustion temperatures that limit fuel oxidation and heat

transfer  to  the thermal  load (e.g.  a cooking pot).19-23 For example,  Jetter  et  al.  evaluated the

performance of several secondary air injection cookstoves and showed that half do not reduce

PM or CO mass emissions relative to a three stone fire (TSF).10 

Studies have shown that many secondary air injection design parameters, such as the flow

rate and geometry, must be carefully considered and validated in order to significantly reduce

unwanted emissions from biomass combustion appliances.15,16,19-21,23-25 However, current studies

do not usually consider the critical operational parameters needed to appropriately size the core
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components of a practical, stand-alone cookstove. For example, no information is provided on

the positive pressure required to drive the secondary air injection flow, although this information

is  required  to  select  fans  or  blowers.  Consequently,  emission  reductions  achieved  in  the

laboratory are not easily translated into cookstove designs that can be manufactured, distributed,

and adopted on a large scale.

In this  study, we use an experimental  cookstove platform to investigate  the practical

secondary air injection design requirements for reducing the mass emission of air pollutants from

unprocessed  wood combustion  by  one order  of  magnitude.  We conducted  111 experimental

trials,  systematically  varying  critical  secondary  air  injection  parameters  (e.g.  flow  rate  and

location) to identify a design configuration that emits 90% less CO, PM, and (BC) than a TSF,

and also improves thermal efficiency. We targeted mass emission reductions of at  least 90%

because indoor pollution concentrations from traditional biomass cooking easily exceed health

guidelines by 10 times or more.3,6,7,26 Throughout the experimental optimization, we recorded the

secondary air injection flow rate, pressure and temperature to evaluate whether the performance

improvements are practically achievable using inexpensive, off-the-shelf components that can be

powered independently (e.g., small fans powered by a thermoelectric generator). Furthermore,

we  use  size-resolved  PM  measurements  to  investigate  the  underlying  physical  mechanisms

contributing to the reduction of total PM mass emissions and identify particle size ranges where

further emission reductions are needed. 

2. Materials and Methods

2.1 Modular Air Injection Cookstove Design: Version 2 (MOD2)
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The MOD2 stove, presented in Figure 1, is a continuously fed, wood-burning cookstove

that enables critical secondary air injection parameters to be modulated easily and repeatably.

The  MOD2 stove is  the  second design  iteration  of  the  modular  (MOD) stove  described by

Caubel et al.,20 and therefore shares the same general design architecture and accommodates the

same cast-aluminum Darfuri cooking pot. The MOD2 stove has a cylindrical firebox, 15 cm (6

inch) in diameter, with an open fuel feed at the front. Primary air enters the firebox through the

open fuel feed, and adjustable openings below the grate. Above the firebox, a conical chimney

reduces to a 6.4-cm (2.5-inch) diameter throat located directly below the pot. An integrated air

manifold surrounds the firebox and conical chimney assembly (Figure 1(c)). Secondary air is

supplied to a port at the back of the manifold and is injected into the firebox through orifices

drilled  into  the  conical  chimney.  The  conical  chimney  is  removable,  such that  different  air

injection patterns can easily be drilled, installed, and tested (Figure 1(b)). The pot’s height above

the chimney throat is controlled using adjustable supports. The stove also incorporates a steel

skirt that closely surrounds the pot to enhance the rate of heat transfer from the exhaust gases.

F i r e b o x
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S e c o n d a r y  A i r
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Figure 1. (a) The MOD2 stove with cast-aluminum Darfuri pot; (b) Removable conical chimney,

into which secondary air injection patterns are drilled; (c) Cross-sectional view of the MOD2

stove showing the firebox, conical chimney, secondary air manifold, secondary air flow path, and

other design features. Air injection holes are enlarged (out of scale) for clarity. 

Previous research on the MOD stove (version 1) demonstrated that higher secondary air

injection  velocities  improved stove performance,  but  excessive secondary flow quenched the

combustion.20 The velocity of the secondary air jets decreases rapidly after injection into the

firebox. For the 1.59-mm (0.0625-inch) diameter secondary air injection orifices used throughout

the MOD stove (version 1) study, the average jet velocity diminishes by 90% over a normal

distance of just 4 cm,27,28 or less than half of the distance required to reach the center of the MOD

stove’s firebox. To ensure that secondary air  jets  better  reach the flames,  the MOD2 stove’s

firebox and conical chimney diameters are approximately 15% smaller than in the MOD stove.

By reducing the distance from the orifices to the combustion zone, the velocity of the air jets is

higher when they reach the flames, thereby promoting turbulent mixing and oxygen injection at

lower  secondary  flow  rates  that  do  not  prohibitively  cool  the  combustion.  MOD2  stove

dimensions were not reduced further, as a 15-cm firebox was deemed to be the smallest size that

allows easy feeding and tending of the firewood. Additional details regarding the MOD2 stove

design are provided in the SI. 

2.2 Experimental Set-Up and Stove Testing Procedure

The MOD2 stove was developed at Lawrence Berkeley National Laboratory’s (LBNL)

cookstove testing facility. The experimental setup and testing procedure for the MOD2 stove are
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the same as that described by Caubel et al. for the MOD stove (version 1),20 and a brief overview

is provided here. During testing, emissions from the MOD2 stove are completely captured using

a steel hood, and exhausted outdoors using a steel ducting system and blowers. Air pollution

instruments  sample  the  duct  flow  and  provide  emission  concentration  measurements  every

second  (1  Hz).  A  California  Analytical  Instruments  600  Series  gas  analyzer  measures  the

volumetric concentrations (ppmv) of CO, carbon dioxide (CO2), and oxygen (O2). The total mass

of PM2.5 (PM with aerodynamic diameter ≤ 2.5 μm) emitted during the test phase is measured

gravimetrically. A suite of real-time PM instruments sample emissions from the duct using a

secondary diluter. A TSI 3091 Fast Mobility Particle Sizer (FMPS) and a TSI 3321 Aerodynamic

Particle Sizer (APS) together provide size-resolved particle number concentration measurements

from 5 to 2500 nm, while a Magee Scientific AE-22 Aethalometer provides black carbon (BC)

mass concentration measurements.  All instruments were calibrated according to manufacturer

recommendations, as described by Caubel et al.20 

The MOD2 stove was tested using the cold start, high power phase of the Water Boiling

Test (WBT) 4.2.3 as pollutant emissions are usually highest during this phase of stove use.20,29,30

 For each test, the MOD2 stove was initially at ambient temperature (“cold”), and a new

fire was lit in a cold fuel bed (kindling). The stove was fueled with Douglas Fir wood cut into

uniform 25 x 25 x 152-mm (1 x 1 x 6-inch) pieces and allowed to dry to 7-9% moisture content

on a wet basis. Wood pieces were fed into the combustion chamber lengthwise, with one end

slightly protruding from the open feed. The fuel feed rate was controlled to maintain a constant

firepower setting of ~5 kW (monitored using real-time CO2 concentration measurements from the

exhaust duct)  while bringing 5 L of cold water  to a temperature of 99°C, the nominal  local

boiling point. Secondary air came from a compressed air cylinder. The standard volumetric flow
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rate (SLPM) of secondary air was measured using a rotameter, and adjusted using a valve. The

secondary air flow was initiated ~2 min after fuel ignition, once the kindling was observed to be

fully  lit,  and  was  held  constant  throughout  the  remainder  of  the  test.  The  secondary  air

temperature was monitored every second (1 Hz) using a thermocouple installed inside the stove

manifold (Figure 1(c)). Manifold pressures were measured with a digital manometer through a

dedicated tap.

2.3 Parametric Testing Procedure 

Four MOD2 stove design parameters were systematically varied over a total of 111 tests:

(1) secondary air injection pattern (2) secondary air injection flow rate (3) primary air intake, and

(4)  pot  height.  The  first  52  tests  were  conducted  to  constrain  the  parametric  space.  Two

promising air injection patterns were identified during these preliminary tests, shown in Figure

A4 (a total of 7 patterns were tested). Pattern 1 consisted of two concentric rows, each with three

orifices evenly spaced around the circumference of the conical  chimney. The bottom row of

orifices was located just above the firebox, while the top was directly below the throat. Pattern 2

was identical, except that the bottom row had six evenly spaced orifices, rather than three. All air

injection orifices had a diameter of 1.59 mm (0.0625 inch). The primary air intake (the size of the

inlet area under the grate) and pot height were also set during the preliminary tests, according to

the experimental procedures and results provided in the SI. 

For the remaining 59 parametric tests, the primary air intake was set to the fully open

position and the pot height was held at 25 mm (except for the first 13 tests, when the pot was set

2 to 5 mm lower). Using these settings, both air injection patterns were tested at six secondary air

flow rate settings ranging from 14 to 50 SLPM (0.5 to 1.75 SCFM), for a total of 12 parametric

configurations.  Four to eight replicate  tests  were conducted at each configuration (except for
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Pattern 2 at 50 SLPM, with only 2 tests). When calculating configuration-average performance

and  emission  metrics  using  this  number  of  replicate  tests,  corresponding  two-sided  90%

confidence intervals were most often < 20% (± 10%) of the configuration-average values. This

level of statistical confidence was deemed sufficient to enable meaningful comparisons. During

testing, we discovered that the stove’s air manifold leaked at the juncture between the removable

conical  chimney and the  stove body (Figure  A2).  However,  the  leakage  was  consistent  and

replicable,  and  so  the  secondary  flow actually  injected  into  the  firebox  could  be  accurately

calculated (see the procedure outlined in the SI). The calculations show that 27% to 39% of the

total secondary flow was injected through the holes in the conical chimney, while the remainder

leaked through the faulty manifold juncture, away from the firebox and combustion process. All

results are presented in terms of the standard flow rate (SLPM) of air injected into the firebox,

ranging from 5.5 to 14 SLPM, rather than the total flow into the manifold. 

2.4 Data Analysis and Performance Metrics 

All stove performance and emission metric calculations are presented in section S-1.4 of

the  SI.  Emission factors  are normalized  by the  average thermal  power delivered  to  the pot,

known as cooking power (kWd). All data are presented with 90% confidence intervals calculated

using Student’s t-distribution.31,32 The MOD2 stove’s performance and emissions are compared

to those of the MOD stove (version 1) and a TSF, both tested using the same experimental

procedure,  fuel,  cooking  pot,  and  firepower  setting  (~5  kW).20,21 All  size-resolved  particle

emission measurements from the TSI 3321 APS are converted from aerodynamic to electrical

mobility diameter, and combined with measurements from the TSI 3091 FMPS according to the

methods outlined in Appendix A.  
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For both air injection patterns, the manifold pressure was measured at each secondary

flow rate setting while the stove was cold, as described in Appendix A. Using real-time manifold

temperature measurements and Equation 1 below, stove manifold pressures during each test were

extrapolated from the corresponding pressure measurement recorded while the stove was cold.

ΔP (t )=Δ PSTP (
ρSTP

ρ ( t ) )=
Δ PSTP ρSTP (T man ( t )+273 ) Rair

Pman
(1)

ΔP(t) (Pa) is the manifold gauge pressure at sample time ‘t’,  ΔPSTP (Pa) is the manifold gauge

pressure  measured  at  ambient  conditions  (show in  Figure  A6),  ρSTP is  the  density  of  air  at

standard conditions (1.225 kg/m3),  Tman(t) (°C) is the air temperature in the manifold at sample

time ‘t’, Rair is the ideal gas constant for air (287 J/Kg K), and Pman is the absolute pressure in the

manifold (roughly equal to the local ambient pressure, 97150 Pa). Average manifold pressures

represent the mean of all one-second values calculated over the length of the cold start test. 

3. Results and Discussion 

3.1 Stove Performance and Emissions: Air Injection Pattern and Flow Rate  

For  both  air  injection  patterns,  Figure  2 shows  that  the  MOD2 stove’s  thermal  and

emissions performance improve significantly as the secondary flow rate increases from 5.3 to 8.5

SLPM. Since firepower was held constant throughout testing, the average stoichiometric flow of

air into the combustion reaction is ~70 SLPM for all design configurations (Figure B4), and the

total flow of air through the stove may be 2-5 times higher than this stoichiometric value, as the

wood combustion draws excess primary air.24,33,34 Over this range of secondary flow rates, which

account for 7.5 to 12% of the average stoichiometric air flow, CO, PM2.5,, and BC emissions drop

by 55% to  75%, while  combustion  efficiency  rises  from 95% to 98%. These  improvements
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demonstrate that unprocessed wood combustion is highly sensitive to small changes in secondary

flow (relative to the total combustion flow), as higher air jet velocities provide more turbulent

mixing and oxygen in the combustion zone.18 The improvement of combustion conditions also

translates to gains in thermal efficiency, which increases from 29% to 32% over this range. 
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Figure 2. MOD2 stove performance, emissions, and operational metrics during high-power cold

start testing, presented as function of secondary air injection pattern and flow rate: (a) Firepower

(kW);  (b)  Carbon  Monoxide  (CO)  emissions  (g/kWd);  (c)  Ratio  of  the secondary  to

stoichiometric  flow  rate  of  air;  (d)  Thermal  efficiency  (%);  (e)  Particulate  matter  (PM2.5)

emissions (mg/kWd); (f) Average manifold pressure (Pa); (g) Combustion efficiency (%); (h)

Black Carbon (BC) to total PM2.5 ratio; (i) Average manifold temperature (°C).  Bars represent

the mean of replicate test data collected for each stove configuration, while error bars represent

the corresponding 90% confidence interval.
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For secondary flow rates above 8.5 SLPM, thermal efficiency remains constant around

31%. At these settings, the secondary flow represents 12 to 18% of the average stoichiometric

flow of air  and is much colder than the exhaust gases.  The average manifold temperature is

roughly 250 °C for all  configurations,  while  exhaust  temperatures  from biomass  combustion

typically exceed 850 °C.16,24 Although the secondary air represents a small fraction of the total air

flow into the stove, it may be sufficient at these settings ( > 8.5 SLPM) to cool the exhaust gases

appreciably, thereby limiting the rate of heat transfer to the pot. Other biomass cookstove studies

show that exhaust temperatures drop with increased secondary flow.16,22,35 

Some of the fire’s thermal power output is also used to heat the secondary air in the

manifold.  Since  average  secondary  air  temperatures  remain  approximately  constant  for  all

configurations, more heat from the fire is necessarily transferred to the manifold as secondary

flow increases. However, Figure B4 shows that less than 0.1 kW is lost to heating the secondary

air at all flow rates, which is small compared to the average thermal power delivered to the pot

(~1.4 kW).  Therefore,  secondary flow does  not  need to  be constrained to  maintain  high  air

injection temperatures or prevent the diversion of output heat from the pot to the secondary air

manifold, though some restraint is required to prevent excessive cooling of the exhaust gases. 

Although  thermal  performance  gains  diminish  with  secondary  flow  rates  above  8.5

SLPM, CO,  PM2.5,  and  BC emissions  generally  decrease  steadily  throughout  the  parametric

range  (Figure  2 and  Figure  B4),  thereby  suggesting  that  combustion  temperatures  remain

sufficiently elevated to oxidize harmful pollutants, and higher air injection velocities continue to

enhance mixing of the air and gas-phase fuel. Correspondingly, combustion efficiency increases

from 98 to 99% as secondary flow rate increases above 8.5 SLPM, representing a further ~50%

reduction  in  the  fraction  of  carbon  emitted  as  a  product  of  incomplete  combustion  (CO).
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However, average emissions of CO and PM2.5 from Pattern 2 increase slightly at a flow rate of 14

SLPM.  While  only  two  tests  were  conducted  in  this  configuration,  the  results  suggest  that

secondary flow rates above 12 SLPM through Pattern 2 may quench the flames,  and reduce

combustion zone temperatures below the 850 °C required to oxidize CO and many of the volatile

organic species that form PM.16,18,22 However, BC emissions continue to decrease in this stove

configuration, as the oxidation temperature of BC is much lower (~350 °C) than that of CO and

other pollutants,36,37 and higher air injection velocities inhibit the formation of fuel-rich flame

zones where BC is formed.38,39 

Emission reductions are not solely dependent on higher secondary air injection velocities

to enhance the combustion process. At each flow rate setting, the average injection velocity is

roughly 1.5 times greater through Pattern 1 than Pattern 2 (Figure B4), and yet Figure 2 shows

that Pattern 2 generally outperforms Pattern 1. This trend suggests that the addition of air jets

near the fuel bed promotes more effective turbulent mixing in the combustion zone, despite the

drop in injection velocity. In this way, wood combustion is also highly sensitive to the number of

secondary air injection orifices and their location relative to the fuel bed, and this sensitivity can

be exploited  to  enhance stove performance.  For  example,  Figure 2 shows that  the  manifold

pressure at  each flow rate  setting  is  1.9 to 2.3 times lower for  Pattern 2 than for Pattern  1

(theoretically,  the manifold pressure should be 2.25 times lower, as the air injection area 1.5

times  greater).  As  a  result,  greater  performance  improvements  are  possible  using  lower

secondary flow rates and pressures that can be more easily provided by the miniature fans and

blowers typically found in improved cookstoves. 

Figure 2 shows that a secondary flow rate of 12 SLPM through Pattern 2 minimizes the

MOD2 stove’s  CO and PM2.5 emissions,  while  maximizing combustion  efficiency.  Although
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thermal efficiency and BC emissions improve slightly (≤10% relative change) at other flow rate

settings,  this  configuration  likely  provides  an  optimal  balance  between  reducing  harmful

emissions and improving thermal performance. In this configuration, the MOD2 stove emits 90%

less CO, PM2.5, and BC than a TSF (on average), and thermal efficiency increases from 23±1% to

31±1% (Table S1). 

While the MOD2 stove can be optimized to reduce biomass smoke emissions by roughly

one order of magnitude (relative to a TSF), the ratio of BC to total PM2.5 emissions ranges from

0.4  to  0.6 throughout  the  parametric  range,  which  is  higher  than  that  typically  reported  for

biomass  cookstoves,  both traditional  and improved.  25,26,40,41 Initially,  we suspected  that  these

unusually  elevated  BC emission  measurements  might  be  the  result  of  instrumentation  error,

although the Aethalometer was calibrated by the manufacturer prior to both experimental testing

phases. Using calibration factors from the manufacturer and fundamental equations, we correctly

replicated the instrument’s BC concentration outputs from the underlying optical absorption and

sample  flow  rate  measurements.  During  this  validation  process,  we  did  not  uncover  any

indication that the instrument was operating incorrectly. Taken at face value, the high proportion

of BC detected in the MOD2 stove emissions indicates that  incomplete oxidation conditions

persist.17,25,42 However, BC is readily oxidized, and can be mitigated through improvements in the

combustion process.43 Therefore, it is important to identify the physical mechanisms responsible

for these BC emissions such that they can be actively targeted in future designs. 

The BioLite™ HomeStove™ is a wood-burning cookstove similar to the MOD2 stove

that emits ~80% less PM2.5  than the TSF presented here, and also has elevated BC/PM2.5 ratios

(>0.7).11 These results  suggest  that  rocket-style  cookstoves  with secondary air  injection  may

oxidize most PM-forming species, but BC generation somehow persists. A likely explanation for
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these persistent BC emissions is that the water-filled cooking pot is quenching flames protruding

from the  chimney  throat.44 When the  MOD2 stove was operated  without  a  pot  skirt  during

preliminary  tests,  Figures  B1  and  B4  show that  PM2.5  emissions  were  comparable,  but  BC

emissions  were 2 to  3 times lower.  Therefore,  the  BC/PM2.5 ratio  was significantly  reduced

(<0.25), though thermal efficiency also suffered without  the pot skirt  (< 29%). The pot skirt

restricts the exhaust flow to enhance heat transfer, but the resultantly higher exhaust velocities

entrain more flames through the chimney throat, where fuel-rich zones quench against the pot

and emit BC. These results motivate further investigations that focus on preventing flame contact

with the pot to reduce BC emissions while maintaining high thermal efficiency. 

Compared to the MOD stove (version 1), the MOD2 stove achieves similar emission

reductions at half the secondary air injection flow rate. Furthermore, when the secondary flow

rate was set 25% higher than the optimal setting, PM2.5 and CO emissions from the MOD stove

more than doubled.20 MOD2 stove emissions, on the other hand, increase only slightly (<40%)

when the flow rate rises by ~17%, from 12 SLPM to 14 SLPM. Together, these trends illustrate

that the MOD2 stove’s smaller firebox and chimney dimensions allow the secondary air jets to

be more effective at lower flow rates, penetrating further into the firebox to enable significant

emission  reductions  while  preventing  excessive  cooling  or  quenching  of  the  combustion.

Additionally,  the  lower  secondary  flow rates  likely  contribute  to  the  MOD2 stove’s  higher

thermal efficiency, as cooling of the exhaust flow diminishes. 

Together,  the experimental results demonstrate that the secondary air injection pattern

and  flow  rate  must  be  optimized  to  maximize  the  effective  jet  velocity  but  prevent  flame

quenching. Design compromises are also sometimes required to enhance both the stove’s thermal

and emissions performance. In this case, adding a pot skirt to the MOD2 stove enhanced thermal
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efficiency but also increased the BC/PM2.5 ratio. Since the MOD2 stove still achieves significant

(90±10%) BC mass emission reductions relative to a TSF, the elevated BC/PM2.5 ratio may be

justified by the increase in thermal efficiency afforded. Having identified the optimal  MOD2

stove design configuration and established the underlying physical mechanisms responsible for

the performance improvements, it is important to determine whether these experimental results

can be translated into a practical cookstove design that households can afford and adopt. 

3.2 Secondary Air Injection Design Requirements: Flow, Pressure and Power 

The MOD2 stove receives pressurized air from a cylinder, such that the secondary flow

can be adjusted accurately and consistently over the course of many experimental trials, but this

approach is clearly not practical or economical for typical household applications. Instead, many

commercial  biomass cookstoves  rely on a small  axial  fan or  centrifugal  blower to  drive the

secondary flow, often drawing electrical power from a thermoelectric generator (TEG).11,14 TEGs

convert  heat  from  the  biomass  combustion  directly  to  electricity,  thereby  providing  an

independent,  reliable,  and convenient source of power at little cost (often < $10/W of power

generated).45-48 TEG modules mounted to biomass cookstoves have been shown to generate as

much as 10 W of electrical power, although an output of 1 to 5 W is more typical.45,47-49 There are

also  some  biomass  cookstoves  powered  by  solar  panels  or  simple  wall  chargers,  but  these

alternatives  are  often  less  desirable,  as  they  depend  on  operational  factors  external  to  the

cookstove (such as sufficient insolation). 

Figure 2 shows that MOD2 performance is optimal when injecting a secondary flow rate

of 12 SLPM through Pattern 2. In this configuration, an average manifold pressure of ~200 Pa is

required.  As  the  stove  heats  up  during  normal  use,  higher  manifold  pressure  is  required  to
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maintain a constant mass flow of secondary air through the injection pattern. Air is injected into

the  MOD  stove  at  room  temperature  (~25  to  30  °C)  throughout,  but  reaches  manifold

temperatures of 300 to 400 °C during the cold start test (Figure 5). The density of air at these

elevated temperatures is around half that of the air initially flowing into the manifold, and so the

volumetric  flow  rate  passing  through  the  injection  pattern  effectively  doubles,  as  does  the

manifold pressure required.  Consequently, when sizing a fan or blower to drive secondary air

injection in a biomass cookstove, it is important to consider the manifold pressure required at

typical operating conditions, rather than when the stove is cold (at ambient temperature). In this

study, we defined the operating temperature as the average secondary air  temperature  in the

manifold during the cold start, and therefore we also present the average manifold pressure. 

Figure 3 provides the maximum (static) pressure, maximum (free) flow rate, and rated

electrical  power  consumption  of  1,135  miniature  fans  and  blowers  stocked  by  Digi-Key

Electronics®, a major electronic parts supplier.50 This dataset is provided in Appendix B5. All

available models costing < $10 (when ordering 1000 units) are presented, as the minimization of

manufacturing costs is crucial to the development of affordable cookstoves. To reflect the MOD2

stove’s operational requirements, reference lines are provided at a static pressure of 200 Pa and

rated electrical power of 5 W (the maximum power typically output by a stove-mounted TEG

module). The devices must operate near static conditions, or at a flow rate below ~10% of the

maximum value specified by the manufacturer (measured with no flow resistance), to generate

the  maximum pressures  presented  in  Figure  3.  The  MOD2 stove  requires  12  SLPM in  the

optimal configuration, so the free flow rate should be at least ~100 LPM for the fan or blower to

operate  near  static  conditions.  This  target  is  based  on  a  rough  approximation  of  actual

performance,  so fans and blowers with a free flow rating ranging from 100 to 200 LPM (at
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standard conditions) are represented using yellow markers (Figure 3) to indicate that some may

not  satisfy the 12 SLPM requirement  under operational  conditions.  Green markers  represent

devices that are nearly certain to meet or exceed the stove’s secondary flow rate requirement,

while  red markers indicate devices unlikely to meet the requirements. Since secondary air  is

drawn into the stove from the environment near standard conditions, the rated volumetric flow

rate  (LPM)  is  analogous  to  the  stove’s  mass  flow  rate  (SLPM)  requirements,  identified

experimentally. It should also be noted that the rated power consumption is often measured at

free flow conditions, and though this may not be exactly representative of power consumption at

the requisite operating conditions (which will likely be larger as flow resistance is applied), it

provides a valid estimate. 

Suitable Fans/Blowers
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Figure  3.  Static  pressure,  free  flow  rate,  and  rated  electrical  power  consumption  of  1,135

miniature axial fans and centrifugal blowers that are stocked by Digi-Key Electronics ® and cost

< $10 per unit  (when ordering 1000 units).50 Fans and blowers that meet the MOD2 stove’s
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operational  requirements  (in  the  optimal  design  configuration)  are  indicated.  Marker  colors

represent the devices’ ability to operate near static flow conditions while providing the stove’s

required flow rate (12 SLPM). 

Only 23 (~2%) of the 1,135 fans and blowers presented in  Figure 3 meet the MOD2

stove’s  static  pressure  (>200  Pa),  free  flow  (>100  SLPM),  and  electrical  power  (<5  W)

requirements.  Miniature fans and blowers are typically  designed for cooling electronics,  and

therefore provide high air flow rates at low pressures – over 70% of the devices shown in Figure

3 generate maximum flow rates > 100 LPM using < 5 W of power, but at static pressures < 100

Pa. However, the MOD2 stove requires relatively low flow rates of air, driven through small

orifices that generate high velocity air jets in the combustion chamber, but require high input

pressures. 

The small proportion of suitable fans and blowers illustrates the importance of carefully

characterizing  the  cookstove’s  operational  requirements.  Using  only  knowledge  of  the  air

injection flow rate, as is usually provided in existing experimental studies, it is straightforward to

select a fan or blower that meets the flow requirement, but provides insufficient positive pressure.

Similarly, without manifold temperature measurements, it would be difficult to discern that the

cookstove’s  volumetric  flow rate  and  manifold  pressure  requirements  double  during  normal

operation. This analysis suggests that poorly performing cookstoves with secondary air injection

may suffer from the implementation of inadequate fans and blowers, as operational guidelines

are lacking. 
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 Of  the  23  viable  devices  identified,  Figure  3 shows that  suitable  blowers  generally

require  less  power  than  axial  fans,  as  they  are  better  suited  to  high  pressure,  low  flow

applications. Overall,  Figure 3 illustrates that low-cost fans and blowers are currently available

to achieve effective and practical secondary air injection in wood-burning cookstoves, but they

must be carefully chosen and evaluated, as the vast majority are not intended to meet the flow,

pressure, and electrical power consumption conditions required. 

3.3 Room for Improvement: Start Up and Ultrafine Particle Emissions 

Health guidelines from the WHO, United States Environmental Protection Agency (US

EPA), and other organizations generally recommend maximum PM2.5 pollution levels in terms of

mass  concentration  (e.g.,  μg/m3).  By  this  measure,  the  MOD2 stove  should  alleviate  health

impacts from biomass combustion, as it reduces PM2.5 mass emissions by an order of magnitude

relative to a traditional TSF. However,  Figure 4 shows that the vast majority (>80%) of PM2.5

emissions from the MOD2 stove consist of ultrafine particles (UFP) with a diameter < 100 nm,

which may be particularly harmful to human respiratory health, as their small size enables deeper

penetration into the lungs.51-54 Consequently, it is important not only to reduce the mass of PM

generated, but also the number of UFPs emitted and potentially inhaled. 

Secondary  air  injection  does  not  significantly  reduce  the  total  number  of  particles

generated by biomass combustion, but instead shifts the PM size distribution towards smaller,

less massive particles.20,21,55,56 As the secondary flow rate increases from 7.2 to 12 SLPM, Figure

4 shows that the total number of particles emitted from 5 to 2500 nm remains relatively steady,

ranging  from  5.5×1014 to  6.9×1014 particles/kWd.  Total  PM2.5 volume,  on  the  other  hand,
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decreases over the range of secondary flow rates presented, as particle size diminishes. Given

that PM2.5 density remains nearly constant (Figure B4), the particle volume measurements are

directly  proportional  to  particle  mass,  and therefore  closely  mirror  the  PM2.5 mass  emission

measurements shown in Figure 2.      
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Figure 4. (a) Total PM2.5 number and (b) volume emissions from the MOD2 stove over the cold

start (normalized by cooking power), as a function of particle diameter and secondary flow rate

through air  injection  Pattern 2.  (c)  Portion of  the total  number,  and (d)  volume of  particles

emitted in each particle diameter range: 5 to 20 nm, 20 to 100 nm, and 100 to 2500 nm.  Each bar

represents  the mean of replicate  test  data  collected  for each stove configuration.  Confidence

intervals are omitted here for clarity, and instead provided in Figure B5. 

22

415

416

417

418

419

420

421

422

423

424

425



Figure  4 shows  that  secondary  air  injection  inhibits  particle  growth,  but  does  not

significantly  reduce  particle  formation.  Particles  form  either  through  nucleation,  as  volatile

organic and inorganic compounds emitted during wood pyrolysis cool in the exhaust, or through

soot  (BC)  generation  in  the  flame.15,39,43,57 Typically,  these  primary  particles  grow  through

agglomeration and condensation of volatile compounds. Figure 2 shows that CO and PM2.5 mass

reductions closely mirror one another as secondary flow rate increases, likely because CO and

many-PM forming volatile organic compounds (e.g. PAH) oxidize under similar conditions.41,42,58

The portion of PM in the nucleation mode (5 to 20 nm) increases from 20 to 60% as secondary

air flow through Pattern 2 increases, likely because particles no longer grow by condensation as

volatile  organic  gas  emissions  diminish.  While  number  emissions  of  these  small  particles

increase markedly, they account for less than 2% of the total PM volume, and therefore have

little effect on the total mass emitted. Figure B9 provides the size distribution of particle number

emissions,  and  shows  a  distinct  peak  at  a  particle  diameter  of  ~12  nm that  increases  with

secondary flow rate. 

In  the  absence  of  volatile  organic  gases  in  the  exhaust,  inorganic  and  BC particles

generally grow to sizes <100 nm through agglomeration.38,42,44,59 Figure 4 shows that the fraction

of total particle number emissions in the UFP range (5 to 100 nm) grows from 80 to 97% as

secondary flow increases, and accounts for 20 to 40% of the PM volume generated. As the size

distribution shifts towards smaller particles, the fraction of particles in the accumulation mode

(100 to 2500 nm) correspondingly decreases from 20 to 3% over the parametric range presented,

but still  accounts for most (60 to 80%) of the emitted volume. Particles in the accumulation

mode form as some growth pathways persist, such the condensation of gases in cool regions of

the exhaust flow or agglomeration of particles under turbulent mixing conditions. Throughout the
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parametric range, nearly all (>> 99.9%) particles emitted are smaller than 1000 nm (6). Larger

particles (>1000 nm) account for 0.2 to 0.7% of the total particle volume, and likely consist of fly

ash generated in the fuel bed and entrained in the exhaust flow.39 

Total particle number emissions are lowest for a secondary flow rate of 10 SLPM (Figure

4), suggesting that this configuration may provide the optimal balance of turbulent mixing and

high  combustion  temperatures  to  inhibit  particle  formation.  However,  total  PM2.5 volume

generation continues to decrease at higher flow rates, as particle size diminishes. Furthermore,

PM2.5 number emissions increases sharply from 12 to 14 SLPM, again indicating that excessive

secondary flow in this configuration quenches the combustion zone,17 thereby promoting more

PM nucleation. However, total PM2.5 volume changes little, as PM emissions in the accumulation

mode remain relatively constant. Together, these trends demonstrate that PM2.5 mass emission

reductions can be achieved while simultaneously generating more UFPs. 

 When the secondary air flow rate is sufficient, the particle size distribution increasingly

shifts  towards  smaller,  less  massive particles  as  the stove,  fuel,  and exhaust  gases  warm up

during the cold start test.60 The injection of hotter secondary air at higher velocities also likely

contributes  to  the  shift  towards  smaller  particle  emissions,  as  injection  velocity  increases

proportionally with manifold temperature (Equation A5). When the secondary flow rate setting

through  Pattern  2  increases,  Figure  5 shows  that  particle  volume  generation  is  increasingly

attenuated over the first 18 minutes of the cold start test, although the number of emitted particles

accumulates steadily for all configurations. The PM2.5 number and volume accumulation rates

reflect the secondary flow dependence illustrated in  Figure 4. Manifold temperatures rise more

rapidly at  higher flow rate  settings (Figure 5(c)),  thereby hastening the inhibition of particle

growth. For flow rates ≥ 10 SLPM, the count median diameter (CMD) of particle emissions
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decreases from around 60 nm to 20 nm over the first 18 minutes of the cold start (Figure B10),

and so most of the particle volume is emitted during start up. At the optimal secondary flow rate

setting  of  12 SLPM, half  of  total  volume emissions  are emitted  within  the first  ~7 minutes

following ignition,  representing only ~30% of the total  test  length (in this  configuration,  the

average time to boil  is  24±2 min).  Consequently,  if  further  PM mass reductions  are sought,

methods should be developed to enhance combustion conditions during start up. 
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Figure 5.  (a) Accumulation of PM2.5 number and (b) volume emissions from the MOD2 stove

over the first 18 minutes of the cold start test. (c) Temperature of secondary air in the MOD2

stove  manifold  over  the  same  period.  Each  line  represents  the  mean  of  replicate  test

measurements collected at each of the six secondary flow settings (using air injection Pattern 2).

Confidence intervals are omitted here for clarity, and instead provided in Figures B7 and B8 for

all secondary flow rate settings. All data presented is block-averaged on a 20-sec time base. 

Although volume emissions are attenuated over time, the number of particles continues to

accumulate steadily for all  configurations, and the CMD is less < 80 nm throughout (Figure

B10), well within the ultrafine range that is of particular concern for human health. As a result, it

is  important  that  future research  efforts  investigate  methods for  inhibiting  particle  formation

entirely, rather than simply limiting particle growth. For example, methods of restricting the fuel

bed temperature could be devised to limit the volatilization of inorganic compounds that nucleate

into incombustible particles.15 

4. Conclusion 

While  further  improvements  are  needed  to  reduce  UFP  emissions,  the  MOD2 stove

generally illustrates that secondary air injection is a practical and effective method for reducing

mass emissions of PM2.5, CO, and BC from wood combustion. Crucially, we show that emission

reductions are achievable using inexpensive hardware that is currently on the market, and can be

driven independently using a TEG or other low-cost power source. Stove performance is highly

sensitive to secondary air injection design parameters, and so it is important that new designs be

validated  and  optimized  experimentally.  The  experimental  results  presented  here  illustrate
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important  design principles  that  will  help to  inform the  development  of clean,  efficient,  and

practical  cookstoves  that  better  mitigate  harmful  air  pollution  exposure  in  the  billions  of

households that depend on solid biomass for their daily cooking needs.
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ABBREVIATIONS

APS, Aerodynamic Particle Sizer; BC, Black Carbon; CAI, California Analytical Instruments;

CO2,  Carbon  Dioxide;  CO,  Carbon  Monoxide;  FMPS,  Fast  Mobility  Particle  Sizer;  kWd,

kilowatt  of thermal power delivered to the cooking pot; LBNL, Lawrence Berkeley National

Laboratory;  MOD,  Modular  Air  Injection  Stove:  Version  1;  MOD2,  Modular  Air  Injection

Stove:  Version  2;  PAH,  Polycyclic  Aromatic  Hydrocarbon;  PM,  Particulate  Matter;  PM2.5,

Particulate Matter with an aerodynamic diameter ≤ 2.5 μm; ppmv, parts per million by volume;

TEG,  Thermoelectric  Generator;  TSF,  Three  Stone  Fire;  UFP,  Ultrafine  Particle;  US  EPA,

United  States  Environmental  Protection  Agency;  WBT,  Water  Boiling  Test;  WHO,  World

Health Organization.
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Appendix A. Materials and Methods

A.1 Modular Air Injection Cookstove Design: Version 2 (MOD2)

The  MOD2  stove  is  a  wood-burning  cookstove  that  enables  the  experimental

optimization  of  secondary  air  injection  design  parameters.  Figure  A1 and  Figure  A2 below

provide  a  rear  and top  view of  the  MOD2 stove,  respectively,  showing the  location  of  the

secondary air supply line, thermocouples, and manifold pressure port. Figure A2 also shows the

junctures at the top of the manifold that leaked during testing. The outer juncture was sealed with

a high-temperature graphite gasket (Figure A3(b)), but the thin top plate warped over extended

use and thermal cycling (Figure A3(a)), resulting in leakage. Figure A1 shows that secondary air

is injected into the manifold through a removable access port, which can be easily modified to

accommodate a small electric fan or blower in future studies. 

Figure A1. Rear view of the MOD2 stove, showing the secondary air inlet, thermocouples (TC),

and manifold pressure port.

47

918

919

920

921

922

923

924

925

926

927

928

929

930

931



Figure A2. Top view of the MOD2 stove, showing the secondary air inlet, thermocouples (TC),

manifold pressure port, and the leaky manifold junctures. The pot skirt and pot supports were

removed so as to expose the top of the manifold assembly. 

Figure A3. (a) Top of the manifold assembly, showing the thermocouple and pressure port that

extend into the manifold. (b) High temperature graphite gasket, used to seal the outer juncture

between the top of the manifold assembly and the stove body.

A.2 Preliminary Testing Procedure  

Over the course of 52 preliminary tests, a total of 7 injection patterns were evaluated at

secondary flow rates ranging from 14 to 43 SLPM (the total flow into the stove manifold). For all
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patterns, the air injection orifices had a diameter of 1.59 mm (0.0625 in). Primary air flow was

controlled using adjustable intakes located under the grate. During the first 8 tests, a constant

firepower setting of 4 to 5 kW was difficult to maintain and the combustion efficiency was low,

thereby indicating that the stove lacked primary air.  Consequently,  the adjustable air  intakes

below the grate were fully opened, and when this did not prove sufficient, the stove was also

elevated on three bricks, such that primary air could flow more freely through the grate and into

the bottom of the firebox. The stove was operated in this configuration for the remaining 44 trials

of the preliminary testing phase. 

In order to modulate the height of the pot above the chimney throat, 2.5-mm (0.10-inch)

thick washers were added under the three bolts that serve as pot supports. For 17 of the first 18

tests, the stove was operated with two washers stacked under the pot support. However, as the air

injection flow rate and pattern were modulated to reduce emissions, thermal efficiency tended to

suffer. As a result, the supports were reduced to a single washer for all remaining trials, in an

effort  to  maximize  heat  transfer  to  the  pot.  The  stove  was  not  fitted  with  a  pot  skirt  or

thermocouples  during  preliminary  testing,  and  so  no  secondary  air  temperature  data  were

collected.

A.3 Parametric Testing Procedure  

Using the data collected during the preliminary testing phase, two promising air injection

patterns were identified for further parametric testing (as outlined in Appendix B.1).  Pattern 1

consisted  of  two  concentric  rows,  each  with  three  orifices  evenly  spaced  around  the

circumference of the conical chimney. The bottom row of orifices were located ~6.4 mm (0.25

inch) above the juncture of the conical chimney and firebox, while the top row was located ~25

49

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964



mm (1.0 inch) below the throat. The orifices in each row were offset, such that orifices in the top

row were exactly above the midpoint between two orifices in the bottom row. Pattern 2 was

identical to Pattern 1, except that the bottom row had six evenly spaced orifices, rather than

three. The two rows in Pattern 2 were vertically aligned, such that orifices in the top row were

directly above every other orifice in the bottom row. Both patterns are shown in Figure A4. 

During the first 13 parametric tests, the height of the pot above the chimney throat was

incrementally increased from ~1.59 to 2.5 cm (~ 0.625 to 1.0 inch) to reduce the impingement of

flames on the bottom of the pot, but was not increased past this set point so as to enhance thermal

performance (larger gaps between the pot and skirt diminish convective heat transfer from the

exhaust gases). For the remaining 47 trials, the pot height was held constant at 2.5 cm (1.0 inch)

using three washers stacked under each of the bolt supports. Throughout the parametric testing

phase, the primary air intake was set to the fully open position. Due to fears that the stove may

have tipped over when elevated on three refractory bricks, 11 of the 59 parametric tests were

conducted with the stove placed on a piece of sheet metal. However, the stove did not seem more

stable in this configuration, and so all other tests were conducted using the three bricks for the

sake of consistency.  

6.4 mm 
(0.25 inch) 

3 holes/row 

3 holes/row 

(1) 
25.4 mm 
(1 inch) 

6 holes/row 

3 holes/row 

(2) 

SIDE 

TOP 
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Figure A4. Schematic  representation  of  the  two injection  patterns  (Pattern  1 and Pattern  2)

identified during preliminary testing, and evaluated through parametric testing. All air injection

orifices have a diameter of 1.59 mm (0.0625 inch). Schematic is not drawn to scale. 

A.4 Manifold Leakage Correction 

The MOD2 stove’s integrated manifold had some faulty juncture seals (Figure A2), and

so a portion of the secondary air systematically leaked to the environment, rather than flowing

through the orifices in the injection pattern and into the combustion chamber (firebox). While the

stove was cold, the manifold was completely sealed using hot glue (Figure A5) to calculate the

portion of the secondary flow injected through the orifices. For the two air injection patterns

identified during preliminary testing,  Figure A6 shows the manifold pressure at secondary flow

rates ranging from 14 to 57 SLPM, with the manifold both in the normal operating configuration

(leaking) and fully sealed using hot glue. Manifold pressure measurements were collected with

the stove at ambient conditions throughout. Figure A6 shows that for both air injection patterns,

the manifold pressure was much greater once the junctures were sealed with hot glue.

Figure A5. Top of the manifold assembly, sealed with hot glue. 
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Figure A6. Manifold pressure as a function of secondary air flow rate for two injection patterns,

with the manifold in both the normal operating configuration (leaking) and fully sealed using hot

glue.  

With the stove manifold completely sealed and all the secondary air passing through the

injection pattern, it was possible to use the corresponding pressure and flow rate measurements

to calculate the coefficient of discharge (Cd) through the orifices using Equation A1, 

Cd=(
4 Q

Nπ D2 )√
ρSTP

2∆ P (A1)

where Q is the standard volumetric flow rate of secondary air (SLPM), ρSTP is the density of air at

standard  conditions  (1.225 kg/m3),  ΔP is  the  gauge pressure  in  the  manifold  (Pa),  N is  the

number  of  orifices  in  the  injection  pattern,  and  D is  the  orifice  diameter  (1.59  mm).61 The

standard volumetric flow rate of secondary air into the manifold was measured with a rotameter

(SLPM), and so must correspondingly be converted to mass flow rate using the density of air at

standard  conditions.  Figure  A7 below shows the  coefficient  of  discharge  calculated  at  each

parametric  setting  (with  the  manifold  fully  sealed).  The  coefficient  of  discharge  remains

relatively constant throughout, ranging from 0.82 to 0.88, and has an average value of 0.846 ±
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0.008 (mean of Cd at all parametric configurations ± 90% confidence interval). This value of

discharge coefficient agrees closely with that derived in other experimental studies of turbulent

air discharge through small orifices. 62,63 
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Figure  A7. Coefficient  of  discharge  (Cd)  calculated  at  each  parametric  configuration,  using

pressure and flow rate measurements collected with the MOD2 stove manifold fully sealed, such

that all the secondary air passes through orifices in each of the two injection patterns presented. 

Using the  average  coefficient  of  discharge  calculated  above  (0.846 ±  0.008)  and the

manifold  pressure  measurements  collected  in  the  normal  operating  configuration  (with  the

leakage), it was possible to determine the standard volumetric flow rate of secondary air passing

through each injection pattern as follows, 

Q=(C d Nπ D2

4 )√
2 ∆ P
ρair

.( A 2)

For each combination of secondary flow rate (the total  flow into the manifold) and injection

pattern,  Figure A8 and Figure A9 show the standard volumetric flow rate (SLPM) and fraction

(%) of secondary air injected into the firebox, respectively. The flow rate of injected air increased

linearly with total secondary flow, and was generally consistent between the two patterns at each
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setting. As total secondary flow increased, the fraction of injected air initially decreased from

39% to  27%,  presumably  because  higher  manifold  pressures  pushed  against  the  top  of  the

manifold assembly and expanded the cracks through which air is leaking. However, the leakage

stabilized for flow rates > 40 SLPM, as the cracks could expand no further. 

Using these calculations, it was possible to present the stove performance results in terms

of the standard volumetric flow injected through the patterns, rather than the total secondary flow

into the manifold. Since secondary air leaked mostly through the outer juncture at the top of the

manifold assembly, away from the firebox, it was unlikely that the leakage significantly impacted

the stove’s combustion performance. However, it should be acknowledged that the leakage of

cold secondary air near the pot of water (the thermal load) may have hampered heat transfer from

the hot exhaust flow, and potentially restricted the stove’s thermal performance. Future iterations

of the MOD stove should rectify the leakages, and manifold pressure measurements should be

collected in real time throughout testing (as was done for temperature). 
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Figure A8. Standard volumetric flow rate of air injected through the orifices in each injection

pattern,  calculated  using  Equation  A2,  as  a  function  of  total  secondary  flow  rate  into  the

manifold.  
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Figure A9. Fraction of the total secondary flow rate injected through the orifices in each air

injection pattern.  

A.5 Data Analysis and Performance Metrics 

Performance metrics,  such as  firepower,  equivalent  dry mass of fuel  consumed,  and 

thermal efficiency are calculated for each test using the methods provided in the WBT Protocol

4.2.3.29

 Emission factors are calculated according to the methods outlined by Caubel et al.,20 and

some additional methods are presented below. The total mass of gaseous emissions emitted (CO,

CO2) or consumed (O2) is calculated using Equation A3 below, 

mgas=∑
t=0

t=t f 106× MW (C ¿¿gas ( t )−Cgas ,bkg)Q duct(t)Pamb Δt
R(T duct( t)+273)

( A 3)¿

where mgas (g) is the total mass of gaseous emissions, t is the time step, tf is the duration of the

cold start test (sec),  Cgas is the volumetric gas concentration (ppmv),  Cgas,bkg is the background

gas concentration (ppmv),  MW is the molecular weight of the gas species (g/mol),  Qduct is the

duct flow rate (m3/sec),  Pamb is the ambient pressure (97150 Pa at the laboratory’s altitude of

~300 m MSL), Δt is the sampling period (1 sec), R is the ideal gas constant (8.314 J/ (mol K)),
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and  Tduct is  the temperature in the duct (°C).  The background levels of each gas species are

calculated by taking the average of concentration measurements collected for 1 min prior to the

start  of  the  test  phase  (ignition  of  the  kindling),  while  the  system is  sampling  ambient  air.

Background concentrations of PM2.5 and BC are always assumed to be exactly 0 μg/m3. 

The average standard volumetric  flow rate  of  air  stoichiometrically  consumed by the

combustion (Qstoich, SLPM) is calculated using Equation A4 below, 

Qstoich=
4.76 mO 2

(MW air / MW O2
)

ρSTP ttb ( A 4)

where mO2 is the total mass of O2 consumed over the cold start (g, calculated using Equation A3),

MWair is the molecular of air (28.97 g/mol), MWO2 is the molecular mass of O2 (32.0 g/mol), and

ttb is the time to boil (min). Throughout the cold start test, the air injection velocity (v, m/s) is

calculated at every time step (t) using Equation A5, 

v ( t )=
4 ρSTP Q

ρ ( t ) πN D2 =
4 ρSTP Q (T man ( t )+273 ) Rair

Pman πN D2 (A5)

where ρ is the density of air in the manifold (kg/m3), Tman is the air temperature in the manifold

(°C),  Rair is the ideal gas constant for air (287 J/Kg K), and Pman is the absolute pressure in the

manifold (roughly equal to the local ambient pressure, 97150 Pa). Similarly, the manifold gauge

pressure  (ΔP,  Pa)  is  calculated  using  Equation  1.  The  average  secondary  air  velocity  and

manifold pressure are evaluated using one-second values calculated over the length of the cold

start air. The average rate of heat transferred to the secondary air in the manifold (Hman, kW) is

calculated using, 

Hman= ρSTP Q(C p(T man ,avg−T ¿ , avg)+
1
2 (4 ρSTP Q Rair )

2 ((
(T man , avg+273)
Pamb(Nπ D2

) )
2

−(
(T ¿, avg+273)

Pman(π D¿

2
) )

2

))( A 6)
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where Cp is the specific heat of air (1.055 KJ/Kg K), Din is the secondary air inlet diameter (4.6

mm), and Tman,avg and Tin,avg are the average secondary air temperatures in the manifold and inlet

(°C), respectively, over the length of the test.64 

Multiple  tests  were conducted for each parametric  stove design configuration (unique

combination of secondary air injection pattern and flow rate), and the first and third quartiles (Q1

and Q3) were calculated for each replicate set of results. Outliers in each replicate set are defined

as, 

Q 1−1.5 IQR>outlier>Q 3+1.5 IQR( A 7)

where IQR is the interquartile range (= Q3 – Q1).65 Outliers are removed from the replicate set

according  to  this  criterion,  and  for  each  stove  design  configuration,  the  mean  and  90%

confidence interval of the remaining measurements (or calculated metrics) is evaluated. 

Using size-resolved particle  emission measurements  from the  TSI 3321  APS and  TSI

3091 FMPS, particle density was iteratively calculated to be 1.90 ± 0.05 g/cm3 (mean of particle

density calculated for all 59 parametric stove tests ± 90% confidence interval) according to the

methods presented by Caubel et al.20 This density value agrees closely with that calculated by

other researchers.66,67 APS measurements are converted from aerodynamic to electrical mobility

diameter using the calculated particle density,68  and combined with FMPS measurements. FMPS

measurements span from 6 to 340 nm, while APS measurements span from 393 to 2500 nm. The

last three bins of the FMPS measurement span (from 393 to 524 nm) were discarded. 
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Appendix B: Supplemental Results and Discussion

B.1 Preliminary Testing Results 

Testing results from all preliminary trials are provided on the first sheet of the data file

entitled ‘MOD2_test_results.xlsx’. The data file provides the performance and emissions metrics

calculated  for  each  individual  test,  and  catalogs  all  parametric  stove  design  configurations

evaluated.  In the data file, metrics highlighted in red represent outlier  values not used in the

calculation of configuration-average metrics (at most, only one outlier was ever removed from

each set of replicate metric values). For this test phase, a total of 4 individual data points were

removed  from  the  replicate  sets  of  measurements  or  output  metrics. Manifold  pressure

measurements were only collected with air injection patterns 1 and 2, and so some operational

metrics are unavailable for the remaining patterns (e.g. the calculated portion of secondary flow

rate of air injected through the orifices into the firebox). 

Figure  B1 summarizes  the  thermal  and  emissions  performance  of  each  air  injection

pattern evaluated during the preliminary testing phase. For each air injection pattern, average

metrics are provided for the secondary flow rate setting with the most replicate trials, shown in

Figure B1(c) (please note that this represents the total secondary flow into the manifold, not the

calculated portion of the flow actually injected through the orifices). Injection patterns were not

systematically evaluated for a static set of secondary flow rates to reduce the total number of

preliminary trials. For example, patterns were initially evaluated at secondary flow rates ranging

from 18.9  to  23.5  SLPM, but  it  became  evident  that  more  secondary  flow was  required  to

achieve meaningful  emissions reductions,  and so later  trials  range from 28.3 to 42.5 SLPM.

Although this approach reduces the comparability of the results, it allows the parametric space to

be constrained rapidly prior to more methodical testing. 
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Figure B1.  MOD2 stove performance,  emissions,  and operational  metrics during high-power

cold start testing (preliminary tests), presented for each air injection pattern at single secondary

flow rate setting: (a) Firepower (kW); (b) CO emissions (g/KWd); (c) Total secondary flow rate

into  the  manifold  (SLPM);  (d)  Thermal  Efficiency  (%);  (e)  PM2.5 emissions  (mg/KWd);  (f)

Stoichiometric flow rate of air into the combustion (SLPM); (g) Combustion Efficiency (%); (h)

BC emissions (mg/KWd); (i) Cooking Power (KWd). Bars represent the mean of replicate test

data collected for each stove configuration, while error bars represent the corresponding 90%

confidence interval. Only 1 test was conducted for some configurations (Patterns 3 and 4), and so

confidence intervals are not shown.

Patterns 3 and 4 only had injection orifices in the bottom row (closest to the fuel bed).

Visible mixing of the flame was minimal and the air jets seemed to impinge directly onto the fuel
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bed. As a result, these patterns had very high BC emissions (Figure B1(h)) and were abandoned

after  a  single  experimental  trial.  Similarly,  Pattern  7  was  not  considered  for  further  testing

because of elevated emissions. Pattern 7 has twelve air injection orifices, and so further testing at

higher flow rates was not pursued as we sought to achieve higher air injection velocities and

promote more turbulent mixing (with this aim in mind, all other injection patterns have ≤ 9 air

injection orifices). Patterns 5 and 6 approach order-of-magnitude emissions reductions relative to

the  TSF,  but  thermal  efficiency  is  low (~25%).  Further  emissions  reductions  would  require

higher  secondary  flow  rates,  which  in  turn  would  likely  reduce  the  thermal  efficiency  to

unacceptable levels (the thermal efficiency of the TSF is ~23%). As a result, Patterns 5 and 6

were not considered for further evaluation. 

Pattern 1 was chosen for the parametric testing phase, as it had the lowest CO, PM 2.5, and

BC mass emissions and maintained high thermal efficiency (~28%). Pattern 2 is nearly identical

to  Pattern  1,  with  only  three  additional  orifices  in  the  bottom row of  the  injection  pattern.

Although  Pattern  2  has  higher  emissions  than  Pattern  1,  it  also  achieves  higher  thermal

efficiencies (~29%). Pattern 2 was chosen for the parametric testing phase so that the results

could  be compared to  those from Pattern  1,  and to  illuminate  whether  the placement  of  air

injection  holes  leads  to  a  trade-off  between  maximizing  thermal  efficiency  and  minimizing

harmful  pollutant  emissions.  The  configuration-average  data  presented  in  Figure  B1 is

enumerated  on  the  first  sheet  of  the  data  file  entitled  ‘MOD2_test_summary.xlsx’,  and  the

number of replicate tests conducted for each configuration is provided. 

 Figure B2 and Figure B3 below summarize all the preliminary testing results collected

with air injection patterns 1 and 2. For Pattern 1, 5 to 8 replicate tests were conducted at four

flow rate settings, ranging from 7.2 to 12 SLPM. Only 1 or 2 tests were conduced at each of five
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flow rate settings using Pattern 2, and so the corresponding confidence intervals are large or non-

existent.  When  comparing  results  from the  preliminary  and  parametric  testing  phases,  only

results collected with Pattern 1 should be considered, as insufficient trials were conducted with

Pattern 2. Since thermocouples were not installed during preliminary testing, some temperature

dependent  parameters  are omitted,  such as  average air  injection  velocity.  The configuration-

average data presented in Figure B2 and Figure B3 is enumerated on the first sheet of the data

file entitled ‘MOD2_test_summary.xlsx’, and the number of replicate tests conducted for each

configuration is provided.
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Figure B2.  MOD2 stove performance,  emissions,  and operational  metrics during high-power

cold start testing (preliminary tests), presented as function of secondary air injection flow rate
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and pattern: (a) Firepower (kW); (b) CO emissions (g/KWd); (c) Thermal Efficiency (%); (d)

PM2.5 emissions (mg/KWd); (e) Combustion Efficiency (%); (f) BC emissions (mg/KWd);. Bars

represent the mean of replicate test data collected for each stove configuration, while error bars

represent  the  corresponding  90%  confidence  interval.  Only  1  test  was  conducted  for  some

configurations (Pattern 2), and so confidence intervals are not shown. 
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Figure B3.  MOD2 stove operational metrics during high-power cold start testing (preliminary

tests), presented as function of secondary air injection flow rate and pattern: (a) Stoichiometric

flow rate of air into the combustion (SLPM); (b) Ratio of the secondary to stoichiometric flow

rate of air; (c) Cooking Power (KWd); (d) BC emissions (mg/KWd). Bars represent the mean of

replicate  test  data  collected  for  each  stove  configuration,  while  error  bars  represent  the

corresponding  90% confidence  interval.  Only  1  test  was  conducted  for  some configurations

(Pattern 2), and so confidence intervals are not shown. 
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B.2 Parametric Testing Results 

During  parametric  testing,  two  air  injection  patterns  were  evaluated  at  six  flow rate

settings. Testing results from all parametric trials are provided on the second sheet of the data file

entitled ‘MOD2_test_results.xlsx’. In the data file, metrics highlighted in red represent outlier

values not used in the calculation of configuration-average metrics (at most, only one outlier was

ever  removed  from each  set  of  replicate  metric  values).  For  this  test  phase,  a  total  of  10

individual data points were removed from the replicate sets of measurements or output metrics.

In addition to Figure 2 in the manuscript, Figure B4 summarizes the stove’s performance at all

twelve parametric design configurations. The configuration-average data presented in Figure 2

and  Figure  B4 are  enumerated  on  the  second  sheet  of  the  data  file  entitled

‘MOD2_test_summary.xlsx’, and the number of replicate tests conducted for each configuration

is provided. 
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Figure B4.  MOD2 stove performance,  emissions, and operational metrics during high-power

cold  start  testing,  presented  as  function  of  secondary air  injection  flow rate  and pattern:  (a)
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Cooking Power (kWd); (b) Average secondary air injection velocity (m/s); (c) Stoichiometric

flow rate of air into the combustion (SLPM); (d) Average rate of heat transfer to secondary air in

the manifold (kW); (e) Black carbon (BC) emissions (mg/kWd); (f) PM2.5 density (g/cm3). Bars

represent the mean of replicate test data collected for each stove configuration, while error bars

represent  the  corresponding  90% confidence  interval.  Error  bars  necessarily  are  omitted  for

metrics calculated from a single data point. 

B.3 Optimal MOD2 Stove and TSF Comparison 

Table B1 below summarizes the performance of the MOD2 using secondary air injection

Pattern 2 at a flow rate of 12 SLPM, and compares it to a traditional three stone fire (TSF).

Testing results  for the TSF are provided by Rapp et al.,  and were collected using the same

experimental set up and methods as that used during MOD2 stove testing.21 

  TSF MOD2 Difference (%)
Number of Tests 10 4 N/A
Firepower (kW) 5.3 (0.4) 4.7 (0.2) -11 (8)

Time to boil (min) 31 (3) 24 (2) -20 (10)
Cooking Power (kW) 1.22 (0.08) 1.48 (0.08) 21 (9)

Thermal Efficiency (%) 23 (1) 31 (1) 34 (6)
Combustion Efficiency (%) 95.9 (0.3) 98.95 (0.07) 3.2 (0.3)

CO (g/kWd) 18 (3) 1.7 (0.3) -90 (20)
PM2.5 (mg/kWd) 1200 (200) 90 (20) -90 (20)

BC (mg/kWd) 550 (40) 54 (6) -90 (10)

Table B1.  Performance and emissions metrics for a traditional three-stone fire (TSF) and the

MOD2 stove in the optimal configuration (air injection Pattern 2 at 12 SLPM). The mean and

90% confidence interval (in parentheses) are provided for each metric, and the corresponding
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number of replicate tests is indicated for each stove. The table also provides the percent change

in MOD2 performance relative to the TSF.  

B.4 PM2.5 Generation: Additional Plots and Results 

Size-resolved PM measurements were collected during parametric testing of air injection

Pattern 2. For each secondary flow rate setting, Figure B5 presents the mean and 90% confidence

interval  of  PM2.5  emission  metrics  from  each  set  of  replicate  cold  start  tests.  The  metrics

presented  in  Figure  B5 are  identical  to  that  shown  in  Figure  4  except  that  the  emission

contributions from each particle size range have been rearranged such that confidence intervals

can be displayed clearly.  Figure B6 presents  the  same PM2.5 emission measurements  as  that

shown in Figure 4 and Figure B5, but for three different size bins: 5 to 100 nm, 100 to 1000 nm,

and 1000 to 2500 nm. This plot illustrates the emission of particles ranging from 100 to 1000 nm

in diameter,  which is not discernible in the other figures provided.  Figure B7 and  Figure B8

present the same time-resolved PM2.5 accumulation measurements as that shown in Figure 5, but

the data from the six parametric design configurations is split up over two Figures, such that 90%

confidence intervals are clearly discernible. Only 2 tests were conducted at a secondary flow rate

of 14 SLPM, and so the corresponding 90% confidence intervals are much larger than that shown

at other secondary flow settings, for which 4 to 8 replicate tests were conducted. 
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Figure B5.  (a) Total PM2.5 number and (b) volume emissions from the MOD2 stove over the

cold start (normalized by cooking power), as a function of particle diameter and secondary air

flow rate through injection Pattern 2. (c) Portion of the total number, and (b) volume of particles

emitted in each particle diameter range: 5 to 20 nm, 20 to 100 nm, and 100 to 2500 nm. Each bar

represents the mean of replicate test data collected for each stove configuration, and error bars

represent the corresponding 90% confidence interval. 
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Figure B6.  (a) Total PM2.5 number and (b) volume emissions from the MOD2 stove over the

cold start (normalized by cooking power), as a function of particle diameter and secondary air

flow rate through injection Pattern 2. (c) Portion of the total number, and (b) volume of particles

emitted in each particle diameter range: 5 to 100 nm, 1000 to 1000 nm, and 1000 to 2500 nm.

Each bar represents the mean of replicate test data collected for each stove configuration, and

error bars represent the corresponding 90% confidence interval. 
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Figure B7. (a) Accumulation of PM2.5 number and (b) volume emissions from the MOD2 stove

over the first 18 minute of the cold start. (c) Temperature of secondary air in the MOD2 stove

manifold  over  the  same  time  period.  Each  bold  line  represents  the  mean  of  replicate  test

measurements collected at secondary flow settings of 5.3, 8.5, and 12 SLPM (using air injection

Pattern 2), while shaded areas represent the corresponding 90% confidence interval.  All  data

presented is block-averaged on a 20-sec time base. 

68

1248

1249

1250

1251

1252

1253

1254



0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

C
um

ul
at

iv
e 

 P
M

2.
5

 N
um

be
r 

(#
)

1 0 1 5

7 . 2  S L P M
1 0  S L P M
1 4  S L P M

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
0 . 0

0 . 1

0 . 1

0 . 2

0 . 2

0 . 3

C
um

ul
at

iv
e 

 P
M

2.
5

 V
ol

um
e 

(c
m

3 )

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8
T i m e  ( m i n )

0 . 0

1 . 0

2 . 0

3 . 0

4 . 0

5 . 0

M
an

ifo
ld

 T
em

p.
 (

°C
)

1 0 2

(a)

(b)

(c)

Figure B8. (a) Accumulation of PM2.5 number and (b) volume emissions from the MOD2 stove

over the first 18 minutes of the cold start. (c) Temperature of secondary air in the MOD2 stove

manifold  over  the  same  time  period.  Each  bold  line  represents  the  mean  of  replicate  test

measurements collected at secondary flow settings of 7.2, 10, and 14 SLPM (using air injection

Pattern 2), while shaded areas represent the corresponding 90% confidence interval.  All  data

presented are block-averaged on a 20-sec time base. 
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For each secondary flow rate setting, Figure B9 provides the size distributions of the total

PM2.5  number and volume emitted by the MOD2 stove during the cold start.  Figure B10 shows

the count median diameter (CMD) and volume median diameter (VMD) of PM2.5 emissions over

the first 18 minutes of the cold start. Figure B11 and Figure B12 present the same time-resolved

median particle diameter data as that shown in Figure B10, but include the corresponding 90%

confidence intervals at each stove configuration. 
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Figure B9. Size-resolved distribution of total particle number or volume emitted during the cold

start,  normalized by the average cooking power,  for each secondary flow rate  setting (using

injection Pattern 2): (a) FMPS particle number distribution; (b) APS particle number distribution;

(c) FMPS particle volume distribution; (d) APS particle volume distribution. 
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Figure B10. (a) Count median diameter and (b) count volume diameter of PM2.5 emissions from

the MOD2 stove over the first 18 minutes of the cold start.  Each line represents the mean of

replicate  test  measurements  collected  at  each  of  the  six  secondary  flow rate  settings  (using

injection Pattern 2). Confidence are omitted here for clarity, and instead provided in Figure B11

and Figure B12 for all secondary flow rate settings. All data presented are block-averaged on a

20-sec time base. 
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Figure B11. (a) Count median diameter and (b) count volume diameter of PM2.5 emissions from

the MOD2 stove over the first 18 minutes of the cold start. Each bold line represents the mean of

replicate test measurements collected at secondary flow rate settings of 5.3, 8.5, and 12 SLPM

(using air injection Pattern 2), while shaded areas represent the corresponding 90% confidence

interval. All data presented are block-averaged on a 20-sec time base. 
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Figure B12. (a) Count median diameter and (b) count volume diameter of PM2.5 emissions from

the MOD2 stove over the first 18 minutes of the cold start. Each bold line represents the mean of

replicate test measurements collected at secondary flow settings of 7.2, 10, and 14 SLPM (using

air injection Pattern 2), while shaded areas represent the corresponding 90% confidence interval.

All data presented are block-averaged on a 20-sec time base.  

B.5 Fan and Blowers Analysis 

On September 21, 2018, performance ratings and pricing information were downloaded from the

Digi-Key Electronics ® website for 2,273 fans and blowers.50 All devices costing more than $10

per unit (at an order quantity of 1000 units), rated for >10 W of electrical power consumption, or

missing  a  classification  (blower  vs.  fan)  were  removed  from the  set,  leaving  1,135 devices

remaining  for  analysis.  The  static  pressure,  free  flow  rate,  and  rated  electrical  power
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consumption of these 1,135 miniature axial fans and centrifugal blowers is depicted on Figure 3.

This data is also provided in the attached Excel file entitled ‘Fans_and_Blowers.xlsx’, along with

the corresponding model number, pricing, and other relevant information for each device. 
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