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22
APPLICATIONS OF FUNCTIONAL 

MRI IN MEMORY RESEARCH

Joey Ka- Yee Essoe and Jesse Rissman

Since its introduction 25 years ago, functional magnetic resonance imaging (fMRI) has provided 
researchers with a powerful tool to characterize the brain mechanisms underlying many facets of 
human cognition. The goal of this chapter is to highlight the ways in which fMRI methods can 
be, and have been, harnessed to deepen the understanding of human memory. We acknowledge 
that fMRI —which measures local changes in blood oxygenation levels as induced by fluctuations 
in neural activity —is but one of many functional neuroimaging techniques available to cognitive 
neuroscientists. Complementary tools such as positron emission tomography (PET), electroenceph-
alography (EEG), and magnetoencephalography (MEG) have all been proven valuable in the quest 
to elucidate the neural correlates of memory formation, maintenance, and retrieval processes. How-
ever, in an effort to provide sufficient depth of coverage, we have chosen to focus exclusively on 
fMRI, which is currently the most widely used functional neuroimaging method. Our intention is 
to help readers with limited neuroimaging experience appreciate the important experimental design 
elements that one must consider when developing an fMRI study of memory, as well as the range 
of data analysis approaches that one can employ to gain insights into the contributions of individual 
brain regions and the functional interactions between regions. Please note that this area of research 
is replete with acronyms. We therefore list these acronyms in Table 22.1.

Experimental Design

Adapting a Cognitive Task Paradigm for the Scanner

The first major consideration when designing an fMRI study is how to structure the timing of task 
events to facilitate the measurement of brain activity associated with different cognitive processes 
of interest. We therefore begin by reviewing three commonly used experimental strategies for 
stimulus presentation: blocked, event- related, and mixed designs (Figure 22.1). Blocked designs 
examine the sustained blood- oxygen- level- dependent (BOLD) response across many successive trials 
of a given task, enabling between- task comparisons (e.g., encoding versus retrieval), whereas event- 
related designs examine the transient BOLD responses evoked during each trial, enabling compari-
sons between trial types (e.g., trials associated with remembered versus forgotten stimuli). Mixed 
designs incorporate a combination of both design characteristics, blocking trials of a given condition 
together for the examination of temporally sustained effects, while also allowing for analysis of trial- 
specific effects within individual task blocks.



Table 22.1 List of Acronyms

BOLD Blood- oxygen- level- dependent
DCM Dynamic causal modeling
EEG Electroencephalography
ERS Encoding- retrieval similarity
fMRI Functional magnetic resonance imaging
ITI Inter- trial interval
MEG Magnetoencephalography
MVPA Multi- voxel (or multivariate) pattern analysis
PET Positron emission tomography
PLS Partial least squares
PPI Psychophysiological interactions
RDM Representational dissimilarity matrix
ROI Region- of- interest
RSA Representational similarity analysis
SEM Structural equation modeling
WM Working memory

Figure 22.1  Stimulus presentation timing: In this example, the goal is to examine how the brain processes 
objects, scenes, and faces differently during encoding. This goal can be accomplished by any one of 
the three- stimulus presentation timing schema. The gray blocks represent baseline periods (which 
could involve resting fixation or an active baseline task), and the vertical bars represent the onsets of 
stimuli presentation (yellow for objects, purple for scenes, and red for faces). Regardless of design, 
the order of stimulus categories and/ or items would be randomized or counterbalanced across par-
ticipants. The blocked design (a) version of this experiment consists of multiple blocks, each com-
prised of 15 stimuli from the same category, with baseline blocks in between. The ITIs are fixed. In 
the event- related design (b) version, stimuli from all categories are intermixed and presented with 
jittered ITIs. The mixed design (c) version is the same as the blocked design, except with jittered, 
rather than fixed, ITIs to facilitate estimation of event- specific activity (e.g., to allow for analysis of 
subsequent memory effects or stimulus sub- categories, such as male/ female or natural/ manmade).
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The blocked design (a) version of this experiment consists of multiple blocks, each comprised 
of 15 stimuli from the same category, with baseline blocks in between. The ITIs are fixed. In the 
event- related design (b) version, stimuli from all categories are intermixed and presented with jit-
tered ITIs. The mixed design (c) version is the same as the blocked design, except with jittered, 
rather than fixed, ITIs to facilitate estimation of event- specific activity (e.g., to allow for analysis of 
subsequent memory effects or stimulus sub- categories, such as male/ female or natural/ manmade).

Blocked Designs

In blocked designs (Figure 22.1a), trials from a given task condition are grouped together and pre-
sented in a block (or epoch) typically lasting 12 to 60 s in duration. Over the course of the scanning 
session, participants will perform many such blocks of each task condition. Blocks of resting fixa-
tion are often interspersed between task blocks to allow the task- evoked BOLD signal to return to 
baseline level. The initial development of blocked designs for fMRI studies was heavily influenced 
by the design constraints associated with PET imaging, which lacks the temporal resolution to dis-
tinguish between brain signals evoked by closely spaced task events. Thus, the earliest fMRI studies 
of memory adopted blocked designs in an effort to compare the neural correlates associated with 
mnemonic processes that could be readily segregated into discrete task blocks, such as encoding ver-
sus retrieval (Gabrieli, Brewer, Desmond, & Glover, 1997), viewing of repeated versus novel images 
(Stern et al., 1996), and single- task versus dual- task working memory conditions (D’Esposito et al., 
1995). As researchers came to appreciate that fMRI scans were capable of resolving cognitive events 
at a faster timescale than PET, the use of blocked designs became increasingly supplanted with 
event- related designs. That said, blocked designs continue to offer some advantages. Most notably, 
it increases statistical power. This owes largely to the fact that blocked designs integrate BOLD sig-
nal across many successively acquired brain volumes, enhancing the signal- to- noise ratio. Blocked 
design experiments are also easy to implement, and the data can be analyzed using a relatively simple 
model. For these reasons, some memory researchers whose questions do not depend on the ability 
to differentiate brain responses associated with individual trials or component stages of a cognitive 
task continue to utilize blocked designs in their work. This is especially the case for the popular 
N- back working memory task paradigm, in which blocks of high- load trials (e.g., 3- back or 2- back 
judgments) are compared to blocks of low- load trials (e.g., 1- back judgments).

Event- Related Designs

The most prevalent experimental design in modern fMRI studies is the event- related design (Fig-
ure 22.1b), in which trials from different conditions are presented in an intermixed sequence, and 
activity estimates are statistically derived for each trial type. Event- related designs first emerged in 
the mid- 1990s (e.g., Buckner et al., 1996; Zarahn, Aguirre, & D’Esposito, 1997), inspired largely by 
the event- related averaging approaches that had long been employed in EEG event- related poten-
tial studies. A key innovation in event- related designs was the application of variable (or “jittered”) 
inter- trial- intervals (ITIs). Because the BOLD response evoked by a momentary task event will 
typically take 4–8 s to reach its peak amplitude and around 16–20 s to return to baseline, a portion of 
this response may overlap in time with that of the ensuing task event. By systematically varying the 
degree of temporal spacing between events (or trials) through the use of jitter, one can computation-
ally isolate (or “deconvolve”) the event- related response associated with each unique trial type. The 
ability to do so is premised on the assumption that BOLD signals evoked by successive trials should 
be additive in an approximately linear fashion (Buckner, 1998; Glover, 1999).

For memory researchers, event- related designs offered a host of additional advantages over blocked 
designs. For instance, researchers may retrospectively sort individual encoding trials according to 
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whether the stimuli are later remembered or forgotten (Brewer, Zhao, Desmond, Glover, & Gabri-
eli, 1998; Wagner et al., 1998). Likewise, individual retrieval trials may be categorized based on 
participants’ subjective reports (Henson, Rugg, Shallice, Josephs, & Dolan, 1999; Konishi, Wheeler, 
Donaldson, & Buckner, 2000). Event- related designs also facilitate the estimation of region-  and 
stimulus- specific hemodynamic response functions (i.e., the mapping between a brief burst of neural 
activity associated with an individual mental act and the slow rise and fall of BOLD signal that it 
evokes). That is, researchers may examine how the time course of BOLD activation within a given 
region varies across trial types (Miller & D’Esposito, 2012; Staresina, Cooper, & Henson, 2013) or 
brain regions (Druzgal & D’Esposito, 2003).

Mixed- Design

In the early 2000s, the mixed design (Figure 22.1c), or hybrid design, was introduced (Donaldson, 
Petersen, Ollinger, & Buckner, 2001) to allow researchers to simultaneously examine sustained and 
transient responses (for a review, see Petersen & Dubis, 2012). As the name denotes, the mixed 
design combines features of both event- related and blocked designs. Typically, trials of a given task 
condition are grouped together into blocks (e.g., semantic encoding condition and phonological 
encoding condition), whereas events within each block are presented with jittered spacing to allow 
for deconvolution of signals related to particular trial subtypes (e.g., subsequently remembered and 
forgotten stimuli). When modeling the effects in a mixed design, regressors can be included to 
estimate the magnitude of both transient responses (item- components) and sustained response (state- 
components). In this manner, mixed designs may reveal important brain activation characteristics 
that other designs may miss. For example, whereas many regions of prefrontal cortex show transient 
activations associated with retrieval success, some regions of frontopolar cortex fail to show tran-
sient engagement during individual trials, but rather show sustained activation throughout retrieval 
blocks that likely contributes to the maintenance of a retrieval- oriented attentional set (Velanova 
et al., 2003).

The Importance of Baseline

With fMRI, the raw signal intensity value for a particular region at a given moment in time is not 
a meaningful indicator of that region’s neural activity level. To draw conclusions about a region’s 
task- related activation, signals measured during the performance of one task must always be con-
trasted against those from another task, or against a baseline state. If a researcher is only interested in 
comparing the relative activity levels across two (or more) task conditions, then no baseline state is 
needed. But if one wishes to generate maps depicting brain activity for individual task conditions, 
then a baseline state is crucial. Traditionally, most fMRI studies have included periods of resting 
fixation as the baseline, either briefly interspersed between trials in the case of an event- related 
design, or as prolonged blocks of fixation in the case of a blocked design. However, despite the 
intuitive appeal of comparing task performance to wakeful rest, it has become increasingly clear that 
the brain is never truly at rest, and that the contents of participants’ naturally wandering thoughts 
could influence the so- called baseline activity measure.

The use of a resting baseline poses particular problems for memory studies. Even early PET stud-
ies noted the striking correspondence in brain activity between memory retrieval tasks and wakeful 
rest and suggested that rest is actually comprised of “a mixture of freely wandering past recollec-
tion, future plans, and other personal thoughts and experiences” (Andreasen et al., 1995). Stark 
and Squire (2001) drew further attention to this point by observing that fMRI studies of memory 
that used resting fixation as the baseline state were less likely to find task- related activity in the 
hippocampus than similarly structured experimental paradigms that used an active baseline task. By 
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keeping participants’ minds occupied between trials using a simple task (such as indicating whether 
periodically presented arrows are pointing left or right), an active baseline task can mitigate, if not 
entirely prevent, mind- wandering.

Practically speaking, an active baseline task should only engage cognitive mechanisms that are 
not of interest to the experiment. For example, in a verbal memory experiment, one might use an 
active baseline task that involves mathematical computations or perceptual changes such as moving 
dots. It is advisable that the active baseline tasks require participants to produce behavioral responses 
such as button presses to ensure engagement.

fMRI Analysis Approaches: Univariate Versus Multivariate

There are many approaches to fMRI data analysis, but they can be generally sorted into two distinct 
classes. Univariate analyses involve independent statistical tests that assess the level of brain activity in 
each brain “voxel” (the term for the 3- dimensional pixels of which MRI images are comprised), 
yielding statistical parametric maps of task- related activation or activity estimates within individual 
regions- of- interest (ROIs). Multivariate analyses involve running statistical tests that explicitly take 
advantage of the fact that activity levels are being measured throughout the entire brain virtually 
simultaneously —by exploiting the non- independence of these signals to characterize functional 
interactions between brain regions, or to extract the informational content of distributed brain activ-
ity patterns. Both classes of analysis can provide valuable insights into the neural underpinnings of 
cognition, but they answer fundamentally different research questions, so it is important to under-
stand the virtues and limitations of each approach.

Univariate Approach

Description

The univariate approach, which has long been the most prevalent in fMRI research, is designed 
to identify the functional specialization of individual brain regions by measuring how their mean 
BOLD activation level changes under different conditions, such as stimuli types or cognitive pro-
cessing demands. Univariate analyses can be used to generate whole- brain maps depicting the statis-
tical evidence for task- related effects at each brain voxel. These maps can be contrasted across task 
conditions, and then a statistical threshold can be applied (i.e., to exclude voxels that failed to reach 
significance) to reveal focal clusters of activation exhibiting reliable effects. For example, univari-
ate analyses can be used to localize brain areas specialized in face processing, such as the fusiform 
face area (FFA), or scene processing, such as the parahippocampal place area (PPA). Activity within 
these functionally defined ROIs can then be assessed during a memory task involving face and scene 
stimuli, which may provide insights into the effects of task goals, attentional control, and memory 
load on stimulus encoding and maintenance (e.g., Ranganath, DeGutis, & D’Esposito, 2004; Riss-
man, Gazzaley, & D’Esposito, 2009).

Implementation

Univariate fMRI analysis operates on the BOLD time- series data from each voxel using a general 
linear model framework. The experimenter specifies a design matrix, comprised of a set of predic-
tor variables structured to explain the observed variance within the time- series, in order to identify 
voxels that are sensitive to various components of the experimental task(s). The most important 
predictors include a model of the expected activity for each task condition, given the timing and 
duration of individual task events (or blocks), and the assumed hemodynamic response functions 
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that translate neural activity to BOLD signal. Other predictors may be entered to explain nuisance 
factors, such as activity fluctuations that might be correlated with subject head motion. The output 
of the analysis is a set of activity parameter estimates (betas) at each voxel, reflecting the amplitude 
of that voxel’s activation for each task condition. When applied to the whole brain (i.e., “mass- 
univariate” analysis), researchers can conduct voxel- wise brain mapping. This identifies voxels (or 
clusters of voxels) throughout the brain that show a significant activity increase for one condition 
(e.g., viewing faces) relative to another (e.g., viewing scenes). These analyses are initially performed 
on the data from individual subjects, and then random- effects statistical contrasts are conducted on 
the data from multiple subjects (typically 20 to 30 per study) to identify effects that are significant 
at the group level. Because thousands of statistical tests are conducted (one at each voxel) in a 
whole brain analysis, the maps must be corrected for multiple comparisons in order to control the 
familywise error rate. A variety of techniques have been proposed, but cluster- based thresholding 
procedures are the most common (Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994; Woo, 
Krishnan, & Wager, 2014). For a critical review of the general linear model approach to fMRI 
analysis and consideration of the viability of its underlying assumptions, the reader is referred to 
Monti (2011) and Poline and Brett (2012).

Researchers often supplement whole brain voxel- wise analyses with ROI- based analyses, which 
can more sensitively interrogate the signal properties in a specific region, or set of regions, wherein 
task- related effects are anticipated (Poldrack, 2007). Such ROI analyses can be particularly useful, 
for example, in high- resolution fMRI studies focused on characterizing memory- related effects 
within the small subfields of the hippocampus (Carr, Rissman, & Wagner, 2010; De Shetler & Riss-
man, 2017). ROI analyses typically involve several steps: (1) defining ROIs hypothesized to show 
an effect, (2) extracting the activity from all voxels within each region, (3) averaging across voxels 
within each ROI, and (4) conducting statistical analysis on the averaged data to identify which ROIs 
show reliable activity differences between conditions, or show activation levels that correlate with 
relevant behavioral variables of interest.

An important consideration for any ROI- based analysis is that the ROIs must be defined in 
a manner that is statistically independent from the tests of interest (Kriegeskorte, Simmons, Bell-
gowan, & Baker, 2009). In other words, if one is to test a hypothesis relating to the differential 
activation level of the ROI across task conditions, the ROI cannot be defined using a contrast 
that included one or more of these task conditions. Rather, it must be defined using data from 
an orthogonal contrast (e.g., from a separately acquired scanner run) or specified anatomically 
(e.g., from defining the boundaries of a region in each individual subject or at the group level using 
a spatially normalized anatomical atlas).

Applications

EPISODIC MEMORY ENCODING

The subsequent memory paradigm (Figure 22.2) is a popular approach to address an important question 
in learning and memory: “What happens in the brain during learning that leads some memories to 
be successfully formed and retained, while others are forgotten?” This calls for fMRI scans during 
encoding, and the data are then analyzed based on participants’ subsequent memory performance. 
This analytic approach is grounded in the difference due to memory effect, first documented in EEG 
event- related potential studies in the 1980s (Sanquist, Rohrbaugh, Syndulko, & Lindsley, 1980). 
Specifically, individual encoding trials are retrospectively labeled according to whether the par-
ticipant would later remember or forget the given stimulus, and brain activation associated with 
each trial type is then compared. The first two fMRI experiments of subsequent memory identi-
fied regions of prefrontal cortex and the medial temporal lobes that showed significantly elevated 
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Figure 22.2  The subsequent memory paradigm: The goal of this example is to examine the differences in 
encoding activity that subsequently lead to different memory outcomes. (a) Encoding phase: 
During fMRI scans, participants would be shown images using blocked, event- related, or mixed 
design. (b) Testing phase: Participants would be shown previously seen images along with 
unstudied foil images (foil prompts have been omitted from the illustration for visual simplic-
ity). (c) Analysis phase: Participants’ behavioral responses during the testing phase can be used, 
retroactively, to categorize each encoding trial according to its subsequent memory outcome. 
Event- related activity associated with subsequently remembered and forgotten items can be sepa-
rately estimated in each brain voxel, or within regions- of- interest. Time course plots can then be 
extracted to illustrate the mean hemodynamic response associated with each trial type.

BOLD signal during successfully encoded verbal stimuli (Wagner et al., 1998) and visual stimuli 
(Brewer et al., 1998). Many ensuing studies confirmed and expanded upon these initial findings, 
showing, for instance, that activity within different medial temporal lobe regions can predict if the 
contextual details associated with an item will be subsequently recollected, or whether the item 
will merely be recognized as familiar (Davachi, Mitchell, & Wagner, 2003). Other work has shown 
that reduced activation (or “deactivations”) in certain brain regions during encoding, such as those 
within the brain’s default mode network, can also be highly predictive of subsequent memory 



404

Joey Ka- Yee Essoe and Jesse Rissman

(Daselaar, Prince, & Cabeza, 2004). For a meta- analysis of fMRI studies of subsequent remembering 
and forgetting, see Kim (2011).

EPISODIC MEMORY RETRIEVAL

Neuroimaging data collected during retrieval allow us to examine brain activity related to retrieval 
success and fidelity (Rugg & Vilberg, 2013). In these experiments, researchers generally have sub-
jects perform a learning session and then collect fMRI data during a memory test. Depending 
on the goals of the experiment, the retention interval —the amount of time elapsed between the 
learning and testing sessions —varied from minutes (e.g., an encoding scan followed by a retrieval 
scan) to hours (e.g., encoding session conducted in a behavioral testing room before the retrieval 
scan) or months/ years (e.g., experiment involving multiple visits or probing memory for real- world 
autobiographical events). The neural correlates of retrieval success can be examined by presenting 
previously learned and novel material (usually words and/ or images) during a scan, and asking par-
ticipants to make memory judgments. These judgments require participants to distinguish old versus 
new items (e.g., Konishi et al., 2000), make remember versus know judgments (e.g., Eldridge, 
Knowlton, Furmanski, Bookheimer, & Engel, 2000), rate stimulus familiarity on a graded scale 
(e.g., Montaldi, Spencer, Roberts, & Mayes, 2006), report the recollection of contextual source 
details (e.g., Kahn, Davachi, & Wagner, 2004), determine whether an item is correctly paired with 
its learned associate (e.g., De Shetler & Rissman, 2017; Giovanello, Schnyer, & Verfaellie, 2004), 
or any combinations thereof. Thereafter, fMRI data can be analyzed based on the participant’s 
judgment or response, such as hits (studied items correctly identified as old), misses (studied items 
incorrectly identified as new), correct rejections (non- studied items correctly identified as new), and 
false alarms (non- studied items incorrectly identified as old). Furthermore, participant’s confidence 
ratings, familiarity strength ratings, or reports of source details can also be factored into the analysis. 
Retrieval success effects are typically defined by contrasting activity for hits against that of correct 
rejections or misses. Some researchers are interested in examining the putative activity differences 
between true and false memories, for instance, by comparing hits against false alarms (Cabeza, Rao, 
Wagner, Mayer, & Schacter, 2001; Okado & Stark, 2003; Slotnick & Schacter, 2004).

Researchers can isolate state- components (task- related sustained activities, or “brain modes”) and 
item- components (trial- evoked transient activities) by using mixed designs. To do this, experiment-
ers present trials in blocks, interleaved with resting or baseline blocks. Based on the task timing, 
item- components can be deconvolved from the data. Thereafter, the state- components —such as the 
retrieval state (Donaldson et al., 2001) and the encoding state (Otten, Henson, & Rugg, 2002) —can 
be computed by contrasting the task blocks with the resting/ baseline blocks.

WORKING MEMORY

Although some working memory (WM) task paradigms, such as the N- back, can be well accom-
modated by blocked designs, many WM tasks necessitate event- related designs. These paradigms 
typically feature temporally extended trials in which participants are first presented with one or more 
stimuli to encode, then tasked with holding this information in mind over a brief delay interval 
(usually 6 to 12 s), and finally probed to evaluate the accuracy of their memory. It is of great interest 
to researchers to examine the evolution of brain activity across the component phases of each trial: 
encoding, maintenance, and retrieval. One commonly used approach for modeling activity during 
these successive task phases involves constructing a general linear model with separate regressors 
whose onsets and offsets are temporally positioned to capture BOLD signal variance attributable to 
each task phase. Oftentimes researchers will position the onset of the maintenance phase regressor 
near the middle of the maintenance interval to avoid collinearity (i.e., shared variance) with the 
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regressors modeling the preceding encoding phase and ensuing retrieval phase (Postle, Zarahn, & 
D’Esposito, 2000; Zarahn et al., 1997). Occasionally multiple regressors will be used to model the 
early, middle, and late phases of the maintenance period (Linden et al., 2003). Estimation of the 
model parameters will yield separate beta map for each task condition combination (e.g., low load or 
high- load trials) and trial phase. These maps can then be contrasted across subjects to identify regions 
with significant effects of interest (e.g., elevated activities during delay periods for high-  relative to 
low- load trials).

Interrogation of effects within ROIs can also provide valuable insights. Researchers can do so 
by plotting either the beta estimates or mean BOLD activation time course within a given ROI 
for each condition (Linden et al., 2003; Rissman et al., 2009; Xu & Chun, 2006). As with episodic 
memory studies, fMRI activity from WM trials can also be sorted and analyzed as a function of 
participants’ behavioral performance, such as how activation levels during encoding and/ or main-
tenance phases would predict retrieval success (Curtis, Rao, & D’Esposito, 2004; Pessoa, Gutierrez, 
Bandettini, & Ungerleider, 2002).

REPETITION SUPPRESSION AND PRIMING EFFECTS

Another approach that has been utilized in many neuroimaging studies of memory is to look for 
evidence of repetition suppression in the BOLD signal. Repetition suppression is the reduction of 
neural responses after repeat exposure to the same stimuli. This phenomenon was initially observed 
in the firing rate of individual neurons (e.g., Lueschow, Miller, & Desimone, 1994), and research-
ers quickly found that activity reductions in response to repeated stimuli could also be observed 
with fMRI (e.g., Grill- Spector et al., 1999), even though each voxel represents the integrated 
activity level of hundreds of thousands of neurons. Repetition suppression has been interpreted to 
constitute a neural marker of priming —the increased processing efficiency that stimuli enjoy after 
repeated exposure (Henson, Shallice, & Dolan, 2000; Schacter & Buckner, 1998) or overlapping 
semantic representations (Rissman, Eliassen, & Blumstein, 2003). In the context of memory studies, 
behavioral priming effects have long been interpreted as expressions of implicit memory because the 
magnitude of behavioral facilitation for a repeated stimulus does not necessitate conscious aware-
ness of the fact that it was previously encountered (Tulving & Schacter, 1990). However, there 
is some evidence that fMRI repetition suppression effects can be predictive of both implicit and 
explicit memory. For instance, Turk- Browne, Yi, and Chun (2006) found that repetition suppres-
sion in visual brain areas was associated with both behavioral facilitation to repeated scene stimuli 
and participants’ subsequent recognition memory for these scenes. That said, others have reported 
dissociable neural signatures of priming and explicit memory (Schott et al., 2006), and it is likely 
that repetition suppression is not a monolithic construct but rather may reflect different underlying 
neural mechanisms depending on the specific brain region being queried and the demands of the 
task (Barron, Garvert, & Behrens, 2016; Grill- Spector, Henson, & Martin, 2006; Schacter, Wig, & 
Stevens, 2007).

Multivariate Approaches

Aided by advances in computing technology, computationally intensive multivariate analysis 
approaches have advanced in leaps and bounds over the past decades. Amongst multivariate analy-
ses, (1) functional connectivity analysis identifies networks of regions that show correlated BOLD signal 
fluctuations indicative of inter- regional communication; (2) effective connectivity analysis takes this a 
step further by modeling the directionality of information flow between regions; (3) multi- voxel pat-
tern analysis (MVPA) uses machine learning algorithms to decode spatial patterns of brain activity 
associated with different classes of stimuli or mental states; and (4) representational similarity analysis 
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(RSA) quantifies the degree of similarity (or dissimilarity) of brain activity patterns across trials or 
task conditions.

Connectivity Analysis

Whereas univariate analyses aim to establish functional segregation or localization (i.e., identifying 
brain regions “responsible” for certain cognitive processes), connectivity analyses seek to examine 
how multiple regions work together —or functional integration (Bassett & Sporns, 2017). Our focus 
will be on analyses aimed at measuring the degree of functional communication between regions 
based on examination of fMRI BOLD effects. This is distinct from structural connectivity analyses, 
which aim to characterize the anatomical connections (i.e., white matter pathways) that link discrete 
brain regions.

fMRI connectivity approaches are often categorized as analyses of either functional connectivity or 
effective connectivity. The former class of analyses seek to measure the statistical dependency of activa-
tions across different brain regions using techniques like correlation and regression, without regard 
to the directionality of this dependency. The latter class of analyses seeks to more explicitly model 
how brain regions interact, with an emphasis on characterizing how one region influences another. 
This is usually done by applying a series of theoretically informed models to the data and then iden-
tifying the model that best explains the data. In other words, functional connectivity tests whether 
the activity fluctuations observed in different brain regions are dependent in some way, whereas 
effective connectivity tries to explain the how they are dependent. For a review, commentary, and 
technical explanation of these approaches, see Friston (2011).

A note on terminology: An alternative categorization of connectivity analyses is “directed” versus 
“undirected.” This distinction, most often used in graph theory- based approaches, refers to whether 
inference was made about the directionality of the effect. Whereas most functional connectivity 
analyses do not infer directionality, notable exceptions exist and are sometimes called “directed 
functional connectivity” (Friston, Moran, & Seth, 2013), for example, those grounded in Granger 
causality (Roebroeck, Formisano, & Goebel, 2005).

Although the following section focuses on task- based connectivity analyses, connectivity meas-
ured during wakeful rest can also be relevant to investigations of memory. By indexing the intrinsic 
network dynamics of a person’s brain (as a trait characteristic), resting state connectivity levels can 
be highly predictive of individual differences in behavioral performance on WM tasks (e.g., Alavash, 
Doebler, Holling, Thiel, & Giessing, 2015; Stevens, Tappon, Garg, & Fair, 2012; Zou et al., 2013) 
or on long- term episodic memory tasks (e.g., Ferreira et al., 2013; Salami, Pudas, & Nyberg, 2014; 
Sheldon, Farb, Palombo, & Levine, 2016).

FUNCTIONAL CONNECTIVITY

In the memory literature, functional connectivity analyses have been used to test predictions about 
the role of inter- regional communication in a wide variety of mnemonic processes. Functional 
connectivity analyses often begin by the researchers identifying a “seed” ROI whose connectiv-
ity they are interested in examining and comparing across distinct task conditions. Various analysis 
procedures, several of which we describe below, can then be used to estimate the seed region’s con-
nectivity with every other voxel in the brain, yielding whole- brain maps of connectivity effects. If 
researchers have hypotheses about the functional interactions of a relatively small number of regions, 
they can compute the functional connectivity between each pair of regions and examine how these 
values change across task conditions. Finally, graph theoretical analysis techniques make it possible 
to analyze the functional connectivity properties of much larger- scale networks containing dozens, 
or even hundreds, of individual regions.



407

Functional MRI in Memory Research

PSYCHOPHYSIOLOGICAL INTERACTIONS

Description First introduced by Friston et al. (1997), psychophysiological interactions (PPI) analy-
sis measures task context- dependent functional connectivity. This analysis identifies voxels whose 
connectivity with the seed region changes when the task context changes (e.g., different task condi-
tions). In other words, psychophysiological interactions analysis examines how task conditions (the 
psychological factor) and seed region’s activity (the physiological factor) interact with one another 
to result in changes in other regions’ activity.

Implementation In short, this is done by creating a physiological vector, reflecting the mean activ-
ity of the seed ROI at each point in time, and a psychological vector indicating which time points 
belongs to the condition of interest (or indicating the contrast between two task conditions). Then an 
interaction vector can be generated by the element- by- element multiplication of the physiological 
and psychological vectors. All three vectors, along with any additional nuisance vectors (e.g., head 
movement parameters) can then be entered into a general linear model as regressors, and the result-
ing beta values for the interaction regressor can be interpreted as maps of regions exhibiting task- 
dependent connectivity with the seed. For a helpful tutorial on psychophysiological interactions 
analysis, see O’Reilly, Woolrich, Behrens, Smith, and Johansen- Berg (2012).

Applications As psychophysiological interactions analysis is a versatile and widely used functional 
connectivity technique, it has been applied to many areas of memory research. To give just a few 
examples, it has been used to evaluate (1) goal- dependent changes in parietal lobe connectivity 
based on whether participants are focused on word identity versus word order in a verbal WM 
task (Majerus et al., 2006), (2) changes in hippocampal connectivity during encoding as function 
of subsequent memory outcome and whether participants engage in shallow versus deep stimulus 
processing (Schott et al., 2013), (3) large- scale connectivity changes for cortical and hippocampal 
regions within the brain’s “core recollection network” during episodic retrieval predictive of suc-
cessful recollection (King, de Chastelaine, Elward, Wang, & Rugg, 2015), and (4) task- dependent 
reconfiguration of prefrontal connectivity with posterior regions as a function of whether partici-
pants were cued to engage in episodic retrieval, analogical reasoning, or visuo- spatial processing of 
word arrays (Westphal, Reggente, Ito, & Rissman, 2016).

BETA SERIES CORRELATION ANALYSIS

Description Rissman, Gazzaley, and D’Esposito (2004) introduced the beta series correlation approach 
as a method for measuring correlated fluctuations in trial- to- trial activity across regions. The method 
is especially well suited for obtaining separate estimates of the functional connectivity for each stage of 
a multi- stage cognitive task (such as the encoding, maintenance, and retrieval phases of a WM task).

Implementation In this approach, parameter estimates (beta values) from event- related fMRI data 
are first derived from a general linear model that models each stage of every trial with a separate 
regressor. The resulting betas are then binned based on task stage and/ or experimental conditions 
to form condition- specific beta series. Finally, correlations are computed between the beta series 
of the seed ROI and that of every other voxel in the brain, to yield a map of the seed’s functional 
connectivity for each condition. Regions whose beta series are correlated in a given condition are 
inferred to be functionally dependent under that condition, and conditions can be contrasted against 
one another (much like with psychophysiological interactions) to reveal task- dependent effects. The 
method can alternatively be implemented by computing the pairwise correlations between the beta 
series of a set of ROIs.
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Applications The beta series correlation method has made it possible for memory researchers to 
characterize how functional interactions between fronto- parietal regions and stimulus- selective 
sensory regions evolve over the course of a typical delayed recognition WM trial, such as one 
requiring the brief maintenance of a face stimulus (Gazzaley, Rissman, & D’Esposito, 2004). The 
method can also be useful for examining how connectivity levels increase or decrease between 
regions as function of (1) the number of stimuli that need to be maintained (Fiebach, Rissman, & 
D’Esposito, 2006; Rissman, Gazzaley, & D’Esposito, 2008), (2) the task- relevance of the stimuli 
(Gazzaley et al., 2007), (3) the ability to overcome irrelevant distractors (Clapp, Rubens, Sabhar-
wal, & Gazzaley, 2011), (4) dynamic changes in participants’ focus of attention during mainte-
nance (Nee & Jonides, 2014), and (5) the likelihood that participants will be able to subsequently 
remember the stimuli on a later test (Ranganath, Heller, Cohen, Brozinsky, & Rissman, 2005; 
Ritchey, Dolcos, & Cabeza, 2008).

PARTIAL LEAST SQUARES

Description Partial least squares (PLS) aims to characterize the covariance structure between two 
or more matrices of experimental variables, with the goal of deriving a set of orthogonal latent vari-
ables that optimally relate the original matrices using the fewest dimensions. First adopted as a func-
tional connectivity approach to examine across- subject covariance patterns in PET data (McIntosh, 
Bookstein, Haxby, & Grady, 1996), it has since been productively applied to event- related fMRI 
data, where it can take advantage of the higher- resolution temporal fluctuations that drive covari-
ance between brain networks (McIntosh, Chau, & Protzner, 2004).

Implementation The most commonly employed variant of partial least squares for fMRI studies 
is known as spatiotemporal partial least squares, which aims to relate the covariance in BOLD sig-
nal between brain voxels to aspects of the experimental design matrix, using an analytic procedure 
called singular value decomposition. Relative to seed- based psychophysiological interactions and 
beta series correlation (which separately assess the statistical dependency between the seed’s time- 
series and that of each individual voxel in the brain), partial least squares operates in a more classically 
multivariate manner and accounts for the observed covariance structure of the entire brain in a single 
step. In this sense, partial least squares is conceptually similar to other data- driven analysis methods 
like principal components analysis or independent components analysis, but it adds the important 
constraint that it only concerns itself with brain networks patterns that covary in some way with the 
experimental design matrix. Rather than requiring the specification of a priori contrasts between 
task conditions, the contrasts that explain the most variance in brain connectivity will emerge from 
internal model comparison. The researcher may then interpret the resulting latent variables, which 
typically indicate the relative weightings of each task condition (design scores) and the degree to 
which each voxel is a member of a network whose connectivity profile adheres to those weights 
(brain scores). An alternative variant of partial least squares, called seed partial least squares, can 
incorporate a seed ROI’s BOLD time- series as one of the input matrices to yield estimates of seed- 
specific connectivity effects. For a detailed review and tutorial of partial least squares applications for 
neuroimaging, see Krishnan, Williams, McIntosh, and Abdi (2011).

Applications Its ability to parse brain activities with multiple input matrices makes partial least 
squares a useful tool in discovering the functional properties of distinct brain networks, or for 
examining task- related functional connectivity changes within known brain networks. For instance, 
Spreng, Stevens, Chamberlain, Gilmore, and Schacter (2010) used partial least squares to show that 
depending on the participant’s current task goals, the brain’s “fronto- parietal control network” can 
flexibly adjust which other brain networks it communicates, such that it couples more strongly with 
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the default mode network (thought to be involved in internally focused mentation) during auto-
biographical planning, but couples more strongly with the dorsal attention network (thought to be 
involved in externally oriented attention) during visuo- spatial planning. Another study used partial 
least squares to showcase the striking overlap between the brain network associated with remem-
bering past events, and one associated with imagining future events (Addis, Pan, Vu, Laiser, & 
Schacter, 2009). Interestingly, the authors further fractionated this core network into dissociable 
sub- networks, and they showed that the posterior subnetwork (which included hippocampus, para-
hippocampal gyrus, and regions of visual cortex) was disproportionately engaged during retrospec-
tive event recall. A later partial least squares study found that the timing and spatial distribution of 
hippocampal connectivity during autobiographical event recall changed as a function of subjective 
vividness and temporal remoteness of the memories (Sheldon & Levine, 2013).

GRAPH ANALYSIS

Description Graph analysis of brain networks uses the mathematical principles of graph theory to 
treat the brain as a complex system composed of a large set of individual regions (referred to as vertices 
or nodes) linked together in some way by connections (referred to as edges). The structure, or topol-
ogy, of the network may be mathematically evaluated based on the observed connectivity matrix. 
This allows for the assessment of a vast array of global network properties such as modularity (reflect-
ing the tendency of a network’s nodes to cluster together into a set of close- nit communities called 
modules) and efficiency (reflecting the number of nodes that typically need to be traversed for any one 
node to communicate with another node), as well as local network properties that pertain to each 
individual node, such as degree (reflecting the number of connections that link that node to the rest 
of the network; nodes with a high degree are often considered to be hubs). Since its initial introduc-
tion as a tool for fMRI connectivity modeling (Salvador et al., 2005), graph analysis has become a 
widely used method for characterizing the human brain “connectome” during the resting state, and 
it has also begun to provide valuable insights into the ways that large- scale brain networks recon-
figure their connectivity properties during cognitive tasks. For recent reviews on graph analysis and 
its applications, the reader is referred to Sporns and Betzel (2016) and Bassett and Mattar (2017).

Implementation To run a graph analysis, the researcher must first decide on a set of nodes that 
adequately include all of the brain regions that one is interested in modeling (this could vary from 
dozens to hundreds of nodes). The central coordinates of these nodes are often defined based on 
an anatomical atlas or using a publically available functional parcellation (e.g., Power et al., 2011), 
and the BOLD time- series of each node is extracted. The connectivity between all pairs of nodes is 
then estimated for each task condition, and any connections of non- interest can be discarded (i.e., 
set to zero), as well as any connections whose functional connectivity strength falls below a specified 
threshold (this is needed to ensure sufficient sparsity). Suprathreshold connections can then either be 
binarized (i.e., set to one) or left as scalar values, and the graph properties of the network and its con-
stituent nodes can be estimated by a set of algorithms (e.g., using the Brain Connectivity Toolbox; 
Rubinov & Sporns, 2010) and statistically compared against a set of randomly weighted networks 
(Fornito, Zalesky, & Breakspear, 2013).

Applications Although the application of graph analysis to fMRI studies of memory is still in its 
early days, a number of interesting finding have already begun to emerge. For example, two large- 
scale networks —the fronto- parietal control network and default mode network —that do not typi-
cally interact with one another in a cooperative fashion have been found to strengthen their coupling 
with one another during episodic retrieval relative a pseudo- resting condition (Fornito, Harrison, 
Zalesky, & Simons, 2012) and relative to two other closely matched and comparably demanding 
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non- episodic memory tasks (Westphal, Wang, & Rissman, 2017). As a consequence of these net-
works working together, they exhibit a significantly less modularized organization during episodic 
retrieval, which is conducive to improved memory performance (Westphal et al., 2017). Related 
work using graph analysis has shown that successful retrieval (relative to forgetting) is associated with 
pronounced changes in the connectivity profile of the hippocampus, including an enhancement of 
its hub- like characteristics (Geib, Stanley, Dennis, Woldorff, & Cabeza, 2017; Schedlbauer, Copara, 
Watrous, & Ekstrom, 2014). Hippocampal communication efficiency with other brain networks 
during recollection has also been found to increase on trials where participants report that their recall 
is vivid relative to when they report it as dim (Geib, Stanley, Wing, Laurienti, & Cabeza, 2017).

EFFECTIVE CONNECTIVITY

Effective connectivity takes a somewhat more mechanistic approach to the characterization of inter- 
regional interactions. The researcher first must specify a circuit model indicating the putative con-
nections between a set of ROIs (or nodes). Then this model is applied to the observed data to test 
how a given region’s activities affect those of other regions and how this relationship changes across 
task conditions or performance (Stephan, Li, Iglesias, & Friston, 2015). The major challenge in 
modeling cause and effect relationships in neuroimaging data is that fMRI does not directly measure 
neuronal activity, but rather only measures an indirect and inherently noisy proxy of neuronal popu-
lation activity (BOLD signal). Therefore, noise modeling must be carefully handled. The most com-
mon approaches are structural equation modeling and dynamic causal modeling, and they address 
the noise issues in different ways. Structural equation modeling models the noise and state/ signal 
separately and operates on the covariance rather than directly on the data. Dynamic causal modeling 
includes a hemodynamic forward model to deduce the neuronal level response from the observed 
hemodynamic response. For a detailed comparison of these two techniques, see Penny, Stephan, 
Mechelli, and Friston (2004).

STRUCTURAL EQUATION MODELING

Description McIntosh and Gonzalez- Lima (1994) first applied structural equation modeling (SEM) 
to neuroimaging for PET data, and shortly afterward, Büchel and Friston (1997) adapted the method 
for use with fMRI data. In this approach experimenters first specify a set of ROIs (or nodes) and 
the connections between them (often determined from the neuroanatomical literature). Then the 
causal relations between these nodes are estimated within the constraints of the specified model. In 
fMRI research, the terms “path analysis” or “path model” are sometimes used synonymously with 
structural equation modeling; however, path analysis is a special case of structural equation modeling 
in which only observed variables are modeled and thus does not involve the estimation of latent 
variables (Schlosser, Wagner, & Sauer, 2006).

Implementation A structural equation model consists of two parts: the observed and model- implied 
covariance matrices. The observed covariance matrix is produced by (1) identifying the relevant nodes 
(typically a set of ROIs derived either from univariate analyses or from an anatomical atlas), (2) 
extracting the time- series data from these nodes (their BOLD signals across relevant time windows), 
and (3) computing the covariance matrices from the data across time or participants. The model- 
implied covariance matrix is produced by (1) creating a hypothesized functional path model, which 
consists of a system of linear equations, each representing a path (the relationship between two 
given nodes), and (2) determining the model- implied covariance matrix, that is, what the covari-
ance would be if the model is correct. When implementing structural equation models, path coef-
ficients are estimated by minimizing the difference between the observed matrices and the model- implied 
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matrices, and model fit is evaluated. When multiple models were being tested, model comparison is 
conducted. Thereafter, higher- level statistical analyses can be conducted, such as those comparing 
between conditions or groups.

Applications The use of structural equation modeling in fMRI data has declined in recent years, 
owing at least in part to its inefficiency in estimating connections that are bi- directional or recip-
rocal and its inability to incorporate precise temporal information (Friston, 2011; Schlosser et al., 
2006). Indeed, the senior author of the first paper to adopt structural equation modeling for fMRI 
data recently concluded that it is probably inappropriate for electrophysiology and fMRI data but 
remains useful for non- time- series data (Friston, 2011). However, structural equation modeling 
has yielded some intriguing findings regarding changing connectivity between prefrontal and 
parietal regions as a function of increasing verbal WM load (Honey et al., 2002). Other work has 
shown that the functioning of these fronto- parietal circuits during verbal WM is notably altered 
in patients with schizophrenia (Schlosser et al., 2003). And, a recent WM training study found 
that a strengthening of the path from left dorsolateral prefrontal cortex to the left inferior parietal 
lobule during training was correlated with improved verbal WM performance (Shen, Zhang, 
Yao, & Zhao, 2015).

DYNAMIC CAUSAL MODELING

Description Dynamic causal modeling (DCM) was first introduced by Friston, Harrison, and 
Penny (2003). Like structural equation modeling, this approach involves estimating experimentally 
induced changes in the directional flow of information processing between a set of nodes, but it 
also incorporates a sophisticated biophysical model of the relationship between neural activity and 
the BOLD response and uses Bayesian inversion to dynamically identify effective connectivity that 
would cause the observed data.

Implementation A dynamic causal model consists of three parts: input (deterministic sensory 
input/ stimuli), states (observed brain activity of various regions, times, and/ or conditions), and out-
put (behavioral response). Dynamic interactions are approximated between these states, yielding the 
following parameters: (1) one for how the input affected the states, or evoked responses; (2) one for 
how the states couple with one another, interpreted as effective connectivity; and (3) one for how 
the input affects the coupling, which is interpreted similarly as psychophysiological interactions.

Applications Because dynamic causal modeling requires a deterministic sensory input that is pre-
defined, it is most applicable to experiments using direct sensory stimuli to evoke the cognitive 
processes of interest (Schlosser et al., 2006). For example, Staresina, Cooper, and Henson (2013) 
presented participants with item or scene images to cue the retrieval of previously encoded item or 
scene paired associates (Figure 22.3). Using a simple 3- node dynamic causal model, they showed 
that the hippocampus bi- directionally waylays information between the perirhinal (PrC) and para-
hippocampal (PhC) cortices during memory retrieval in a directionally specific manner. Namely, 
when the cue was a scene and the retrieval target was an object, the parahippocampal cortex drives 
the activation of the perirhinal cortex by way of the hippocampus; however, when the cue was an 
object and the retrieval target was a scene, the direction of information flow within this circuit was 
reversed. Dynamic causal modeling has also been used to help researchers elucidate (1) the inter-
actions between multiple neural networks during autobiographical memory retrieval (St Jacques, 
Kragel, & Rubin, 2011), (2) the importance of connectivity between the hippocampus and the 
amygdala —modulated by the orbitofrontal cortex —during the retrieval of contextual information 
with emotional valence (A. P. Smith, Stephan, Rugg, & Dolan, 2006), and (3) the effects of WM 
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Figure 22.3  Effective Connectivity Analysis (Dynamic Causal Modeling): This example experiment is based on 
Staresina, Cooper, and Henson (2013), and panel C partially reproduces Figure 22.4 in that pub-
lication. The goal of this experiment is to characterize the flow of information within the medial 
temporal lobe during associative memory retrieval. (a) Participants first encode a set of associations 
between arbitrarily paired objects and scenes. (b) During scanning, participants are prompted with 
studied objects and scenes and instructed to covertly retrieve a visual image of the paired associate. 
Trials can be categorized based on whether an object cues retrieval of a scene (O- S) or a scene cues 
retrieval of an object (S- O), as well as whether participants reported remembering (R) or forgetting 
(F) the associate. (c) A 3- node dynamic causal model allows the evaluation of information flow 
between the object- selective perirhinal cortex (PrC), the scene- selective parahippocampal cortex 
(PhC), and the hippocampus. Models with various parameter settings can then be compared. In this 
example, the best- fitting model showed that recall success was associated with stronger connectiv-
ity from the PrC to the PhC (both directly, and via the hippocampus) during object- cued retrieval 
of scenes, whereas the reverse was true for scene- cued retrieval of objects.

load on the effective connectivity between fronto- parietal regions for numeric information (Ma 
et al., 2012) and verbal information (Dima, Jogia, & Frangou, 2014).

Distributed Pattern Analyses

As reviewed above, functional connectivity analyses constitute one important way that research-
ers have exploited the inherently multivariate nature of fMRI data to go beyond brain mapping 
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and draw inferences about the functional communication between brain regions. Another signifi-
cant way in which researchers have taken advantage of the multivariate nature of fMRI data is 
through the application of analytic techniques that emphasize the richness of the information rep-
resented within spatially distributed patterns of activity, rather than concentrating exclusively on 
peak regional effects. This distributed pattern analysis approach, which includes multi- voxel pattern 
analysis (MVPA) and representational similarity analysis (RSA), has become increasingly influential 
in the neuroimaging field and is especially useful for memory research (Rissman & Wagner, 2012). 
The conceptual distinction between MVPA and RSA is this: Although both operate on distributed 
patterns, MVPA is used to differentiate (decode) brain states based on the predictions of a classifier 
model, whereas RSA merely measures the similarities (or dissimilarities) between them.

MULTI- VOXEL PATTERN ANALYSIS

DESCRIPTION

Haxby and colleagues (2001) first introduced the MVPA approach (Figure 22.4). They demon-
strated that different categories of visual objects (e.g., faces, houses, shoes, chairs, cats, etc.) each 
evoked a distinctive pattern of fMRI BOLD activity in visual association regions of the ventral tem-
poral cortex. Haxby showed that it was possible to infer which category of object a participant was 
viewing simply by evaluating the similarity of the brain activity pattern to the characteristic “neural 
signature” of each visual category (in this sense, Haxby’s seminal paper can also be considered the 
first RSA study because the classification of brain patterns was based solely on the assessment of 
pattern similarity). Shortly thereafter, this general analysis approach was formalized using a pattern 
classification framework derived from machine learning (Cox & Savoy, 2003).

Since its inception, memory researchers have harnessed the power of MVPA in a number of crea-
tive ways to provide novel insights into the mechanisms of learning and remembering. This method 
is sometimes sensationalized as “mind reading” (K. Smith, 2013; Wardlaw et al., 2011). Although 
this is undeniably true in a limited and specific sense, the scope of this claim remains bounded by 
the fact that the classifiers must be provided with known, defined, and finite categories —at least for 
now. Should it be achievable, it would have implications beyond the field of cognitive sciences, to 
that of forensics and ethics. For a review and commentary on decoding and mind/ brain reading, 
and potential ethical issues that might arise, see Haynes and Rees (2006). For further discussion of 
methods, applications, and results interpretation, see Norman, Polyn, Detre, and Haxby (2006), 
Tong and Pratte (2012), and Chadwick, Bonnici, and Maguire (2012).

IMPLEMENTATION

Typically, MVPA begins with dividing the fMRI data into training versus testing patterns. Each “pat-
tern” is a vectorized representation of the BOLD activation levels across voxels within a particular 
region of the brain (or sometimes even across the entire brain) for a given time point or trial in the 
experiment. The experimenter must label each training pattern as an example of a particular class (i.e., 
trial type). These training patterns are then fed as inputs to a multivariate classifier algorithm, such as a 
support vector machine or regularized logistic regression, which formulates a model that can then be 
used to predict whether new patterns (i.e., test patterns that were not used in the classifier’s training) 
are more likely to be an example of one class or another. In the model, some voxels are weighted 
more strongly than others, owing to their differential value in informing the classifier’s predictions. For 
more stable results, this process is often repeated, each time with different subsets of the data used as 
the training and testing patterns, through a procedure known as cross- validation. Classification accu-
racy is often improved by reducing the number of voxels fed into the classifier (i.e., feature selection) 



Figure 22.4  Multi- voxel pattern analysis (MVPA): This example MVPA application illustrates a scenario 
where one wishes to train a classifier to distinguish the brain patterns associated with two visual 
categories (faces and scenes) based on fMRI data acquired during perception (encoding) of face 
and scene stimuli, and then test the classifier’s ability to predict which stimulus category par-
ticipants are bringing to mind during each retrieval trial based on the brain patterns evoked in 
response to an associative retrieval cue (e.g., a word or object that had previously been associated 
with a face or scene). (1) The classifier can either be trained and tested using the brain patterns 
within a specified region- of- interest (ROI), or whole brain searchlight MVPA can be conducted 
to map areas containing local voxel activity patterns that are reliably able to distinguish between 
the classes of stimuli. (2) The data are divided into training and testing sets (in this case based on 
encoding and retrieval, but in many applications it might be useful to divide the data based on runs 
using a leave- one- run- out cross- validation approach). Data within the training set are labeled trial 
by trial according to their class membership (e.g., face or scene), and the classifier then derives a 
high- dimensional decision boundaries for these classes. (3) After this, the withheld testing set trials 
would be submitted to the classifier without the labels. The classifier identifies each trial’s “place” 
in the decision space and outputs a classification (which category the classifier thinks that the trial 
belongs to). (4) Thereafter, the overall classification accuracy can be computed for this specific 
region or sphere. One can also evaluate the “classifier evidence” for individual predictions based 
on how far a given test pattern falls from the decision boundary. For instance, if face retrieval tends 
to be more vivid than scene retrieval, the classifier might show stronger evidence scores for face 
trials in the testing set. (5) This concludes an ROI- based analysis, whereas a searchlight analysis 
would store the classification result at the central voxel of the searchlight sphere and then move 
the sphere one voxel over and repeat the procedure until each voxel in the brain has served as the 
center of the searchlight sphere.
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because including noisy or uninformative features can impair the classifier’s ability to capture diagnostic 
patterns in the data. Although the multivariate nature of MVPA can make it difficult to interpret the 
contributions of individual voxels to classification performance, inspection of classification “impor-
tance maps” may provide clues into which voxels most strongly influence the classifier’s predictions. 
Researchers may also conduct classifications within different ROIs and compare classification accuracy 
to evaluate the informational content of each region. This procedure can be extended to map infor-
mational content throughout the entire brain through an approach known as searchlight analysis, which 
involves running thousands of separate classifiers, each trained and tested on only a small cluster of 
voxels (Etzel, Zacks, & Braver, 2013; Kriegeskorte, Goebel, & Bandettini, 2006).

APPLICATIONS

Cortical Reinstatement Many theories of memory posit that the act of retrieving a memory involves 
the partial reactivation —or reinstatement —of the cortical representations that were activated during 
the initial formation of that memory. Initial fMRI evidence suggestive of neural reinstatement came 
from univariate analyses demonstrating that many of the same stimulus- selective cortical regions that 
were active during the initial encoding of a memory appear to be reactivated during its retrieval 
(for review, see Danker & Anderson, 2010). The advent of MVPA allowed cortical reinstatement 
to be quantified with far more precision because researchers can train a classifier to learn the brain 
activity patterns associated with the stimulus encoding and then test the classifier on a set of retrieval 
trials to evaluate the degree to which the retrieval patterns matched the encoding patterns (Levy & 
Wagner, 2013).

In the first MVPA study of episodic memory, Polyn, Natu, Cohen, and Norman (2005) trained a 
classifier to differentiate the activity patterns associated with faces, objects, and scenes during encoding 
and found these encoding pattern were indeed reinstated during a free recall test. Furthermore, this 
reinstatement typically preceded participants’ behavioral responses by several seconds, suggesting that 
recall may be facilitated by the internal generation of effective retrieval cues. Later, Johnson, McDuff, 
Rugg, and Norman (2009) found that cortical reinstatement is not only apparent on trials in which 
participants report the subjective experience of contextual recollection, but that it also can be observed 
(albeit to a lesser degree) on trials in which participants only reported a sense of item familiarity. The 
authors argued that reinstatement in and of itself may not be sufficient for high- fidelity memory recall.

Gordon, Rissman, Kiani, and Wagner (2014) examined the relationship between encoding 
strength and cortical reinstatement. While in the scanner, participants encoded a set of descriptive 
adjectives, each arbitrarily paired with a cue to imagine a person or a scene associated with that 
adjective. Then, during the second half of the scanning session, they were again presented with 
each adjective and asked to recall whether they had previously imagined it with a person or scene 
(i.e., the source context). The MVPA classifier was trained to discriminate person versus scene 
imagery during a subset of the encoding trials, and it was then tested on the remaining encoding 
trials to yield trial- by- trial estimates of encoding strength. The trained classifier was also applied to 
the retrieval trials to provide estimates of cortical reinstatement. Encoding strength was found to 
predict both the probability that a trial’s source context would later be recalled and the magnitude 
of cortical reinstatement during retrieval.

Other work has shown that the lack of robust cortical reinstatement is also informative in cer-
tain experimental contexts. For instance, Kuhl, Rissman, Chun, and Wagner (2011) reasoned that 
low fidelity reinstatement of a target memory may be a marker of mnemonic competition during 
retrieval. They had participants learn a set of associations between individual words and images 
of either faces or scenes. For some of these words, participants were then tasked with learning a 
new paired associate (from the opposite category). When participants were later asked to recall 
the most recently learned image associate, the degree to which they reactivated the appropriate 
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category- selective cortical patterns was substantially diminished for targets that had a competitor. 
Moreover, the weaker the cortical reinstatement was for a target, the more likely its competitor 
would be subsequently remembered. Interestingly, as decoding become more ambiguous (inter-
preted as increased competition between the two retrieved memories), fronto- parietal regions 
become more engaged, putatively to help resolve the competition.

Decoding Mnemonic States In addition to classifying between trial conditions, MVPA can also be 
used to decode mnemonic states. For example, Quamme, Weiss, and Norman (2010) used MVPA 
to identify the right supramarginal gyrus to be involved in supporting the maintenance of an inter-
nally directed attentional state that prepares the mind to make a recollection, or the “listening for 
recollection” state. More recently, Richter, Chanales, and Kuhl (2016) used cross- subject MVPA to 
successfully decode between an encoding state, a retrieval state, and integration state (conducive to 
building a link between a new item and an already- learned paired- associate). They found that these 
three states could be robustly discriminated from the underlying brain activity patterns, and that 
the degree to which participants’ brains were in an integration state during learning could predict 
behavioral expressions of successful memory integration. Furthermore, the trained classifier could 
reliably decode specific instances of spontaneous memory integration in an independent sample of 
subjects.

In a related line of work, Rissman, Greely, and Wagner (2010) reported that MVPA classi-
fiers could achieve remarkably accurate decoding of participants’ subjective retrieval states, such as 
whether a given face was experienced as old or new, and whether recognition was associated with 
vivid recollection, or a strong versus weak sense of familiarity. In contrast to this robust classification 
of subjective states, the ability to decode if a particular face had actually been previously experienced 
was rather limited, as was decoding of faces’ old/ new status when recognition was assessed implicitly 
rather than explicitly.

Going beyond a standard laboratory- based paradigm, Rissman, Chow, Reggente, and Wagner 
(2016) examined decoding of memories for real- world events from the participants’ own lives. Par-
ticipants wore digital cameras for three weeks, then image sequences captured by their cameras were 
shown during a scan, along with those from other participants, and participants judged their level 
of memory for each event. The results showed near- perfect classification between correctly recog-
nized versus correctly rejected events, regardless of retention interval (the temporal remoteness of 
the event). In addition to successfully differentiating recollection from familiarity as well as different 
levels of subjective memory strength, they found dissociable brain maps for these mnemonic states. 
Interestingly, when they applied the classifier that they had trained on the data from their earlier 
laboratory- based face memory experiment to the data from the autobiographical event memory 
experiment, decoding performance remained robust, suggesting that these mnemonic retrieval states 
are relatively stable across participants, experimental paradigms, retention intervals, and stimulus 
types.

Reading Out the Contents of Working Memory Much as theories of episodic memory emphasize 
the importance of reactivation of encoding- related activity patterns, theories of WM emphasize the 
persistent activation of cortical patterns representing the to- be- maintained content (Lee & Baker, 
2016; Postle, 2016). Given that MVPA methods are well suited for quantifying the representation 
of stimulus- specific activity patterns over time, researchers have used MVPA to “read out” the 
WM contents. For example, Harrison and Tong (2009) trained a classifier model to discriminate 
the BOLD activity patterns in visual cortex associated with distinct orientation gratings. They then 
applied this classifier to fMRI data from a WM task in which participants were shown two distinct 
orientation gratings on each trial and then cued to hold one of these gratings in memory across 
an 11- s delay period, after which they judged whether a probe grating matched the one held in 
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memory. The fMRI analyses showed that even though BOLD signal levels in the visual cortex 
dropped dramatically after stimulus encoding, the classifier accurately decoded the orientation of 
the grating held in memory based on delay period activity patterns in visual areas V1 to V4. Ser-
ences et al. (2009) conducted a similar experiment, except that they used orientation gratings on 
colored backgrounds, and participants were cued to maintain either the orientation or the color. 
Their MVPA analysis showed that the maintenance period only contained diagnostic information 
about the relevant dimension, and most robustly in area V1. That is, when orientation information 
is maintained, the classifier can decode between the orientations, but not the colors, and vice versa. 
These two experiments supported the sensory recruitment hypothesis of WM by demonstrating 
that BOLD activity patterns during WM maintenance resemble those evoked during bottom- up 
perception. This suggests that neural patterns that support online sensory processing are also active 
during WM maintenance of the same stimuli, rather than transferring the processing to a separate 
WM buffer.

Later studies showed that visual WM content could be decoded beyond V1 to V4. Christophel, 
Hebart, and Haynes (2012) found that fMRI activity patterns within posterior parietal cortex con-
tained sufficient information to allow a classifier to decode between colorful abstract stimuli, whereas 
patterns within frontal cortex did not. Results like these support a fronto- parietal network model of 
visual WM, in which parietal regions contribute to the maintenance of visual WM feature informa-
tion, whereas frontal regions exert top- down control for accessing the stored contents. However, 
the evidence for this model is mixed, with some studies failing to show reliable WM decoding in 
parietal cortex (Riggall & Postle, 2012) and others reporting reliable decoding throughout visual, 
frontal, and parietal cortices (Ester, Sprague, & Serences, 2015).

REPRESENTATIONAL SIMILARITY ANALYSIS

DESCRIPTION

Although RSA has its roots in the early fMRI pattern analysis work of Haxby and colleagues (2001), 
the RSA approach was formally introduced by Kriegeskorte, Mur, and Bandettini (2008) and has 
since become a popular alternative to, or complement of, classifier- based MVPA. Rather than 
attempting to decode mental states, the goal of RSA is merely to characterize the similarity struc-
ture of a set of brain activity patterns. Researchers will typically use RSA to evaluate how pattern 
similarity within specific regions changes as a function of stimulus characteristics, task conditions, or 
behavioral performance. RSA can also provide a valuable tool to test how well brain activity patterns 
adhere to the predictions of various computational models.

IMPLEMENTATION

Much like MVPA, RSA begins by extracting the BOLD activity patterns within a given ROI for 
each trial of the experiment, but instead of training a classifier model, these patterns are simply cor-
related with one another to yield a matrix of pattern similarity values. These similarity values may 
then be summarized for trial pairs within and across individual trial types or task conditions. Often-
times, the values in this matrix are all subtracted from 1 to create a representational dissimilarity matrix 
(RDM) reflecting the distinctiveness of BOLD patterns. Individual cells of the RDM may then 
be statistically contrasted against each other (e.g., to evaluate whether a region shows significantly 
greater dissimilarity between trials of different conditions than for trials of the same condition), or 
the entire RDM may be compared to an RDM derived based on participants’ behavior (e.g., sub-
jective stimulus similarity ratings) or a theoretical/ computational model. Although RSA procedures 
are typically applied within individual ROIs, the technique may also be applied to characterize 
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local pattern similarity throughout the brain using a searchlight mapping procedure. For a step- by- 
step conceptual tutorial to RSA, see Kriegeskorte et al. (2008), and for further details pertaining to 
implementation, see Nili et al. (2014).

APPLICATIONS

Memory Encoding During learning, individual stimuli are often re- studied several times, and there 
has been debate about whether encoding should be facilitated or hindered by representing each 
stimulus in a similar fashion upon repeated encounters. Xue et al. (2010) applied an RSA approach 
to quantify the neural similarity across multiple encounters of a given stimulus, and they found that 
several prefrontal, parietal, and visual association areas showed heightened similarity for stimuli that 
later went on to be remembered versus those that were later forgotten. In a related study, LaRocque 
et al. (2013) examine the roles of medial temporal lobes regions and reported that subsequent mem-
ory could be predicted by the degree to which perirhinal cortex and parahippocampal cortex activ-
ity patterns were more similar and the degree to which hippocampal patterns were more dissimilar. 
These findings supported the notion that the hippocampus is responsible for pattern separation (dif-
ferentiating the neural representations of similar stimuli to ensure their distinctiveness in memory), 
whereas perirhinal cortex and parahippocampal cortex encode highly overlapping representations 
of similar stimuli. Favila, Chanales, and Kuhl (2016) expanded upon these findings by demonstrat-
ing that lower representational overlap in the hippocampus is conducive to subsequent learning by 
virtue of preventing interference between similar memories. The degree of hippocampal pattern 
similarity/ dissimilarity between events has also been found to predict participants’ later judgments 
of the events’ temporal proximity to one another (Ezzyat & Davachi, 2014).

MEMORY RETRIEVAL

Whereas most MVPA- based analyses of episodic retrieval have assessed the accuracy with which 
category- specific or context- specific activation patterns could be decoded (i.e., by training the clas-
sifier to differentiate broad classes of trials), RSA methods have shown promise in their ability to 
capture event- specific pattern similarity effects. For instance, Kuhl and Chun (2014) measured the 
pattern similarity between activity patterns evoked during a cued recall task (in which participants 
recalled a target image in response to a word associate) and those that evoked during a visual recog-
nition task. Although these two trial types contained no perceptual information in common, fMRI 
patterns within a number of regions —most notably the angular gyrus —showed greater similarity 
for trials that required retrieval of the same exemplar than those that involved retrieval of different 
exemplars. RSA approaches have also been useful for querying the degree to which a region’s activ-
ity patterns are influenced by the spatiotemporal relationships between retrieved memories. Deuker, 
Bellmund, Schröder, and Doeller (2016) reported that the pattern similarity in the hippocampus 
across retrieval trials scales with temporal and spatial distance of objects encoded in a virtual city. 
Along the same line of inquiry, but using real- world, personal episodic memories (cued by photo-
graphs of the participant’s own life- logged images), Nielson et al. (2015) reported that the anterior 
hippocampus pattern similarity across retrieval trials scaled with both temporal and spatial distance 
of the event being retrieved.

ENCODING- RETRIEVAL SIMILARITY

In similar fashion to MVPA studies of cortical reactivation, RSA techniques can provide a powerful 
means to index the degree to which activity patterns observed during retrieval mimic those observed 
during encoding (Figure 22.5). But as an advantage over a classifier- based MVPA approach, which 



419

Functional MRI in Memory Research

Figure 22.5  Representational Similarity Analysis: Encoding- Retrieval Similarity (ERS): This example builds 
upon the subsequent memory example experiment (Figure 22.2), with testing phase fMRI data 
collection. The goal of this example analysis is to examine, within a given ROI, whether the 
degree of similarity between encoding- related and retrieval- related activity is greater for items 
that were successfully remembered. In this analysis, the images are categorized based on whether 
they were subsequently remembered or forgotten. (1) Then a correlation (r) is computed between 
the encoding and retrieval activation pattern for each stimulus. (2) After the pairwise dissimilarity 
(1 —r) is computed for each stimulus, a representational dissimilarity matrix can be used to plot the 
results, and relevant cells of this matrix can be contrasted to evaluate whether encoding- retrieval 
similarity (ERS) differs significantly as a function of memory outcome.

operates on categories of stimuli, RSA can measure the encoding- retrieval similarity (ERS) of indi-
vidual items. For example, Wing, Ritchey, and Cabeza (2015) conducted an fMRI experiment in 
which participants first encoded a large set of scene stimuli with verbal labels. During the retrieval 
period, participants were to covertly retrieve the scene cued by the labels and report the quality of 
the recall. Later they underwent a recognition test with the learned scenes against three exemplars. 
This design allowed the researchers to measure the relationship between ERS and recognition 
outcome for individual scenes (item level) and for all scenes (set level). They found that success-
ful recognition scaled with occipito- temporal ERS at the item level, but not set level, whereas 
ventrolateral prefrontal ERS showed recognition- predictive effects at both levels. Using a similar 
design, Danker, Tompary, and Davachi (2016) found that cortical ERS correlates with univariate 
hippocampal activation during encoding for a given item. In another experiment that used high- 
resolution fMRI to measure ERS within medial temporal lobes and hippocampal subfields, Tom-
pary, Duncan, and Davachi (2016) found evidence that individual episodic memories are reinstated 
within the CA1 subfield of the hippocampus as well as in the perirhinal cortex. Participants with 
better overall memory performance also showed more pronounced modulation of ERS during suc-
cessful remembering at the level of individual trials. The important link between ERS and retrieval 
success was also observed by Mack and Preston (2016), who found that hippocampal and perirhinal 
cortex ERS predicted the speed of participants’ memory- based decisions.
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EFFECTS OF RETRIEVAL PRACTICE ON SUBSEQUENT MEMORY

Similar to ERS, Bird, Keidel, Ing, Horner, and Burgess (2015) examined the pattern similarity 
between encoding and covert retrieval practice, using video clips as memoranda. One week later, 
they tested participants’ memory for the details of the videos. They found that pattern similar-
ity between encoding and retrieval practice in the posterior cingulate cortex predicted long- term 
retention of complex information. Retrieval practice can also adversely impact competing mem-
ory. Using an event- specific RSA approach, Wimber, Alink, Charest, Kriegeskorte, and Anderson 
(2015) found that the repeated retrieval of a given target memory suppresses the specific cortical pat-
terns of its competitors. Strikingly, not only did this pattern suppression predict subsequent forget-
ting of the competitor, but it also correlated with univariate activation of prefrontal regions known 
for resolving retrieval competition.

Conclusion

Over the past couple of decades, fMRI has proven to be a powerful and versatile tool for learning 
and memory research. Exciting new developments lead us to predict that fMRI will continue to 
increase in usefulness in the foreseeable future (Poldrack & Farah, 2015). First, computing technol-
ogy continues to grow cheaper and more powerful, enabling increasingly sophisticated analyses. 
Second, ultra- high field MRI scanners (7T or more) are becoming increasingly available, improv-
ing spatial resolution and signal- to- noise ratio. For memory researchers, high field scanning has 
allowed for the unprecedented isolation of BOLD effects within the thin laminar structures of the 
hippocampus and entorhinal cortex (Maass et al., 2014). Third, advances in multi- channel head 
coil technology and MRI pulse sequences have facilitated parallel imaging approaches that allow 
multiple slices to be acquired simultaneously (Feinberg & Setsompop, 2013). This vastly improves 
temporal resolution with which the BOLD signal can be sampled, improving the estimation of 
event- related time courses and the robustness of functional and effective connectivity analyses. 
Fourth, with the Human Connectome Project (Van Essen et al., 2013) nearing completion, and the 
broader open data movement gathering momentum, many data sets (including many incorporating 
memory tasks), connectivity maps, and fully documented toolboxes and scripts (for visualization, 
preprocessing, and analyses) have become accessible to all researchers (Milham, 2012; Nichols et al., 
2017). This affords novices access to fMRI data as a learning tool and experts the ability to widen 
their skillsets and make new discoveries. Most importantly, it increases the accountability and thus 
integrity in the scientific field in general (Poldrack et al., 2017).

In addition to these developments, fMRI researchers are becoming increasingly adept at applying 
advanced machine learning techniques to fMRI data. Two notable examples are the use of gen-
erative models and the real- time decoding of fMRI data for neurofeedback- based reinforcement. 
Generative models (a.k.a. forward encoding models), which characterize the tuning of individual 
voxels to specific perceptual or semantic features, have the potential to predict the multi- voxel 
activity patterns that should be associated with any potential stimulus (Naselaris, Kay, Nishimoto, & 
Gallant, 2011). These models have provided exquisite characterization of abstract semantic concepts 
(Huth, de Heer, Griffiths, Theunissen, & Gallant, 2016) and can even facilitate the reconstruction 
of images or movies of what a participant is currently viewing (Nishimoto et al., 2011) or imagining 
(Naselaris, Olman, Stansbury, Ugurbil, & Gallant, 2015) in the scanner. It is not hard to envision 
ways that such generative models could be productively applied to provide deeper insights into the 
nature of cortical memory representations. Neurofeedback reinforcement involves the real- time analysis 
of fMRI data as they are acquired —often with the use of MVPA- based classification. This can be a 
powerful tool for so- called closed- loop brain training (Sitaram et al., 2017), including enhancement 
of attentional control (deBettencourt, Cohen, Lee, Norman, & Turk- Browne, 2015), perceptual 
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learning (Shibata, Watanabe, Sasaki, & Kawato, 2011), and perhaps most remarkably, fear extinc-
tion learning without forcing participants to consciously confront fear- evoking stimuli (Koizumi 
et al., 2016). We expect that this recent marriage of real- time fMRI analysis and MVPA decoding 
techniques will continue to spur new advances in cognitive neuroscience and potentially also novel 
avenues of treatment for a range of neurological/ psychiatric disorders. In sum, we feel that this is 
an exciting time for neuroimaging research, and we hope that our chapter has provided a helpful 
overview of the various experimental design and data analysis procedures available to researchers to 
study the neural mechanisms of learning and memory.
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