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 Abstract 

Road facilitates invasive plant species' early establishment and spread, which can 

impact ecosystem services and cause economic loss. Monitoring invasive species 

populations along the road is important in roadside integrated vegetation management 

(IVM). A roadside weedy and invasive species map can assist in developing species 

population models and designing proper weed management strategies. However, the 

traditional road survey requires unrealistic human labor and time to map invasive 

species at large scales. A novel weed mapping system was developed to retrieve 

species location data by integrating Google Street View (GSV) imagery and object 

detection based on deep learning algorithms. The target species of this feasibility study 

was johnsongrass (Sorghum halepense). We trained the detection network, You Only 

Look Once (YOLOv2), with 911 johnsongrass roadside images retrieved from Google 

Street View. YOLOv2 is a fast and accurate deep neural network. The trained detection 

model could detect johnsongrass in GSV images, and output bounding boxes with the 

target species' confidence scores. The trained model was then applied to a large image 

dataset of ~270,000 images along 135,000 km of roads in California, Oregon, 

Washington, and Nevada. The network detected 2,031 new johnsongrass records along 

roads in these four states, and the location of each image was used to create a map of 

the johnsongrass population. Our current deep learning model has 85% recall, 73.9% 

precision, and 77.5% overall accuracy on the testing dataset, which included 2,040 

images. The model also has a 30% false positive rate (FPR). Work is in progress to 

reduce the FPR. Using our novel AI-based method, the estimated cost of the weed 

survey in four states is $3,570, while the traditional road surveys with cars at the same 
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scale will cost at least $63,558 without considering associated risks, such as car 

accidents. Besides that, traditional road surveys require six months, but the automated 

weed survey only requires a few days with a trained detection network. The automated 

mapping scheme can apply to other weedy and invasive species, and it is possible to 

map this weed (and others) on a much larger scale, which is the focus of our future 

work. 

Key words: Google Street View, deep learning, weed survey, Sorghum halepense, 

integrated vegetation management, IVM, invasive species, roadside weed management 
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 1. Introduction 

1.1. Roadside Weed Species 

     Since the 1930s, the growth of road transportation has exploded in the United 

States, and about 83% of the land in the United States is within one kilometer of any 

type of road (Riitters & Wickham, 2003; Taaffe et al., 1996, pp. 115-116). Road 

infrastructure facilitates economic growth and human-social interaction; however, it is 

also well-known that roads facilitate invasive and weedy plant dispersal (Jodoin et al., 

2008; Ansong & Pickering, 2013). In most cases, roads act as barriers and filters to 

block most wildlife species’ movement because of the frequent and intense 

disturbances; however, roads also act as habitats and conduits for invasive and weedy 

species adapted to the disturbances (Ree et al., 2015, p. 6). Plants along the roads 

usually raise safety concerns, such as blocking traffic and affecting drivers’ vision. 

Additionally, massive road networks have now become a part of the ecosystem. Since 

roads connect both natural landscapes and agricultural fields, roadside vegetation 

management is important to minimize the impacts of invasive and weedy species on 

those ecosystems. 

 In 2021, a study demonstrated that invasive species, including plants and 

animals, cost North America $1.26 trillion from 1960 to 2017 and $26 billion annually in 

the 2010s (Crystal-Ornelas et al., 2021). In 2008, according to the survey by California 

Invasive Species Council, the economic impact of invasive plant species was estimated 

at $82 million annually (California Invasive Plant Council, 2017). In addition to the 

economic impact and safety concerns, invasive and weedy plants can cause ecological 

damages to the ecosystem, including reduction of species biodiversity, changes in 
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wildfire regime, and water pollution (Das & Duarah, 2013; Gelbard & Belnap, 2003). A 

changing fire regime can affect local species and human society to a large extent, so 

managing roadside invasive species is inevitable and necessary. For example, Bromus 

tectorum and Andropogon gayanu can increase fire intensity and frequency by adding 

more fuel load to the ecosystem (Brooks et al., 2004).  

 In general, a successful plant species establishment consists of several factors. 

Reichard & Hamilton (1997) suggested that weedy traits, especially reproductive traits, 

are the most dominant factors in determining a successful invasion of an ecosystem. In 

contrast, Parendes & Jones (2000) argued that environmental factors (nutrient 

availability and disturbance) or human interferences also partially explained the invasive 

species’ distribution and dispersal. In the case of roadside habitats, human activities 

and the environment are also as prominent as weedy traits. The frequent disturbances 

along the road, including road maintenance and building, create long-lasting bare soil 

for species colonization. Parendes & Jones (2000) reported that locations with intensive 

disturbances and adequate resources (e.g., sunlight exposure and nutrients) have 

higher frequencies of exotic plant species. Frequent and intense disturbances can 

change soil chemical and physical properties. Mills et al. (2021) measured and 

examined the soil properties in two segments from two different highways in Nebraska. 

The data indicated that roadside soil contained high sodium concentration and high soil 

compaction, which inhibited the growth of native vegetation (Mills et al., 2021). A meta-

analysis demonstrated that invasive species have higher plasticity than co-occurring 

native species under many environmental stresses (Davidson et al., 2011). Besides 

disturbances, water resources are another factor that increases the invasibility of 
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roadside environments. Roads are considered water collectors and rainfall storage. The 

surface of roads is designed to have a few degrees of incline to drain excess water 

during rainfall, and there will be a slide slope with more incline and a ditch to collect the 

water (Bohemen & Janssen van de Laak, 2003). A study measured the soil moisture of 

the ditch along forest roads in 36 samples, averaging 53.5% (Neher et al., 2013). 

Adequate water resources along the road provide a suitable environment and resources 

for seed germination and early seedling growth for invasive species. After the early 

establishment and the naturalized species overcoming different stresses to produce 

seeds, the rapid spread of the reproductive offspring makes the species invasive 

(Richardson et al., 2000).  

Human-assisted dispersal potentially creates a longer-range spread than the 

dispersal mechanisms related to species' reproductive traits. According to Mortensen et 

al. (2009), human activities are the main facilitators of the weedy and invasive species 

spread, and their study indicated that paved roads could spread more weeds than 

forests and wetlands. Specifically, vehicles are the spreading vectors of long-distance 

dispersal (LDD) for weedy and invasive species. The traditional species dispersal model 

described LDD as a rare event; most cases are seed dispersal by animals 

(epizoochory), where weed seeds are adhesive to animal fur and travel along with 

seasonal migration (Loebach & Anderson, 2018). However, Nathan (2003) proposed 

that human-mediated LDD has become the most important mechanism of LDD in plants 

and animals, which is a challenge for future LDD prediction. According to Baker (1974), 

no specific weedy traits or natural dispersal mechanism to help invasive species 

overcome the large-scale geographical barrier. Nevertheless, human-assisted dispersal 
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can potentially transfer seeds over 100 km away from the parent plants. The 100 km 

was an approximated cut-off to classify plants as alien species in the model proposed 

by Richardson et al. (2000). A study in Germany collected seeds from roadside verges, 

and their results indicated that nearly 30% of the species collected were by LDD and 

some species they identified are highly invasive in other countries (von der Lippe & 

Kowarik, 2007). Seeds dispersed by vehicles share common characteristics that might 

facilitate car-borne dispersal. Zwaenepoel et al. (2006) provided another perspective by 

collecting seed samples from mud attached to the car; the results suggested that car-

borne floras were pioneer species with small and light seeds. Other traits like large seed 

production and the ability to reproduce vegetatively are also reported in many studies 

(Ansong & Pickering, 2013). Also, a systematic review summarized that about 626 

species in 75 families had been identified from cars, and Poaceae is the most frequent 

family (28%), followed by Asteraceae (13%) and Fabaceae (7%) (Ansong & Pickering, 

2013).  

 The spread of invasive and weedy species along the road in the real world could 

be more significant than what has been reported in scientific studies. The large-scale 

spread of Microstegium vimineum was reported by observation; however, according to a 

model prediction, the species spread only by natural dispersal is limited (Rauschert et 

al., 2009). The contrasting results support that human-assisted dispersal leads to an 

increasing spread rate, and more resources and efforts should be put to roadside 

vegetation management.  

 Roadside vegetation management is on a large scale, and the local government 

is the primary agent for management. For example, in California, the California 
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Department of Transportation (Caltrans) manages the vegetation along California state 

highways, and develops projects to protect motorists, cyclists, and potential wildfire 

spread along the roads (California Department of Transportation, n.d.).  Compared to 

agricultural weed management, roadside vegetation management has limited tools. The 

most common practice is mowing, but it requires multiple applications in a short period; 

therefore, mowing is expensive and ineffective since only the foliar part of the plant is 

damaged (Hyman & Vary, 1999). Herbicide application is used with mowing as the 

Integrated Vegetation Management (IVM). Chemical control could be effective under 

roadside conditions. For example, herbicide trials conducted in six different regions of 

Indiana demonstrated that herbicide application could effectively control broadleaf 

species for more than one year and grasses for months (Herold et al., 2014). Herbicides 

can significantly lower the cost, but the increasing herbicide-resistant population is 

another potential concern for roadside weed management (Bagavathiannan & 

Norsworthy, 2016). IVM program is important to manage roadside invasive species, and 

similar to Integrated Weed Management, early detection and monitoring are also main 

components in IVM. The first step in studying and analyzing the ecological aspect of a 

specific invasive or weedy species is to conduct a species survey and map the 

population distribution. 

 

1.2. Methods to Create Species Map  

A species distribution map is a common approach for evaluating the extent of 

plant invasion and provides a baseline for the informed allocation of resources and 

efforts. Botanists usually conduct field surveys to collect plant species, including weedy 
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species. The benefit of this detailed survey is the high accuracy of the species 

identification and location data, but a detailed survey requires enormous resources. For 

example, a county-level survey of 3000 km required 35 months, and the researcher had 

to travel by car, on foot, or even by boat (Abella et al., 2008). A typical 3000 km survey 

is considered small-scale but still time-consuming, labor-intensive, and requires 

equipment like a vehicle and an accurate GPS positioning system. A field survey is 

reasonable for species local population examination and species-environment 

interaction analysis.  

 A car survey can be rapid by applying different sampling or examination 

methods. According to Shuster et al. (2005), a car survey has a similar probability of 

finding Alliaria petiolata compared to a survey on foot but requiring four times fewer 

person-hours. The car survey can involve transects or random sampling sites along the 

roads base on land uses, soil types, rainfall, and vegetation types (Milton & Dean, 1998; 

Shuster et al., 2005; Ohadi et al., 2018). The data collected from the car survey can be 

used to build a model to understand the relationship between species distribution and 

environmental factors. A car survey could yield consistent results when various factors 

are examined in the experimental design. For instance, the traveling speed can vary for 

different types of roads. For highways, the driver must drive above the minimum speed 

so that a higher speed can result in lower identification accuracy. Observation accuracy 

is another factor that affects data consistency. Catry et al. (2015) conducted accuracy 

tests to evaluate the potential human errors. However, it is challenging to include 

human error rates in the species distribution maps, and in most cases, the human errors 

in the car survey are unaccountable (Milton & Dean, 1998; Shuster et al., 2005). A 
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standard methodology for roadside species surveys should be established to yield 

consistent and comparable data.  

 Some studies do not include all road types in the car survey to save time and 

reduce costs. For example, Catry et al. (2015) excluded the highway or freeway 

because they believed that the roadsides of the freeway are well-managed and there 

will be less possibility of having invasive species populations. A survey for all roads in a 

state will take an unrealistic time to complete, and the cost of traveling will be 

expensive. For example, California has about 622,000 km of roads, and it will take 

about 780 days if a driver drives 800 km per day (Federal Highway Administration, n.d.). 

Thus, government agencies will hesitate to conduct surveys because of limited funding 

and resources. However, roadside vegetation assessment can help identify the level of 

invasion and the potential damage. A car survey is not cost-effective for accomplishing 

a quick assessment on a large scale. 

 Furthermore, a species map can be used in large-scale species dispersal models 

in which the input data are usually from global or regional databases. Kadmon et al. 

(2004) argued that since randomized surveys on a large scale are rare, those models 

often rely on incomplete databases with biased data, such as herbaria, natural 

museums, and user-uploaded entries. The unified database includes data collected 

from different observers, and we cannot estimate the potential human error if we rely on 

these databases to run the ecological models. As a result, we need a more systematic 

approach for large-scale species surveys.  
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1.3. Google Street View  

Google Street View (GSV) is a tool in Google Maps and Google Earth that allows 

users to interact with the panoramas along streets and roads in many countries. GSV 

and Google Earth are well-developed and well-maintained databases, and the imagery 

has been online for more than ten years. Google sends numerous data-collection 

vehicles on the roads, and those vehicles take 360-degree photos, e.g., by installing a 

rosette camera on the top of the car (Anguelov et al., 2010). According to Anguelov et 

al. (2010), this project aims to organize a large amount of information, and billions of 

users can have access to that information. GSV is well-known among ordinary users for 

educational and recreational activities, but now, these images can be used for 

ecological studies and vegetation management. For example, GSV was used to map 

the distribution of the Pine Processionary Moth (Thaumetopoea pityocampa), in an area 

of about 45,000 km2 (Rousselet et al., 2013). Their research suggested that this method 

can be effective if the target species are distinguishable in the GSV images. They also 

mentioned that the coverage area of GSV still needed to be completed back in 2013.  

In the past ten years, GSV has been used in several ecological studies. For 

example, according to Hardion et al. (2016), the integration of ground and aerial images 

could create a better species distribution map of giant cane (Arundo donax L.), a 

common grass species along the road, and the species distribution data produced 

better results in species distribution models compared to the traditional field survey. 

Additionally, two studies compared GSV and field surveys by car. Studies by Deus et al. 

(2016) and Kotowska et al. (2021) reported that the results produced by GSV resemble 

that produced by the field survey. The two studies surveyed different species of different 
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sizes (trees and flowering plants). The results indicated the versatility and high 

performance of the GSV database.  Although GSV is more cost-effective than car 

surveys, studies discussed above have used human observers for plant detection, 

which is tedious, time-consuming, and not feasible for large-scale mapping. 

Furthermore, most previous studies reported some common limitations of this 

imagery database. Most studies suggested seasonality and time differences among the 

GSV images. The images from different areas were taken in different years or seasons 

and at different times during the day (morning to evening), which could impact the 

presence and absence of the survey species or detectability of species within the GSV 

images (Rousselet et al., 2013; Hardion et al., 2016; Deus et al., 2016; Kotowska et al., 

2021). Deus et al. (2016) also reported that contrast, ambient light, and sharpness 

would affect the identification accuracy in some images. Another issue with GSV is that 

most species were undetectable in their seedling stage when they were small and did 

not develop distinguishable features (flowers, leaf shape, and plant structure) 

(Kotowska et al., 2021).  

GSV database has been successfully used as a cost-effective method in terms of 

time and resources, and this benefit can allow researchers to conduct a comparatively 

large-scale survey in a short period (Rousselet et al., 2013; Visser et al., 2013; Hardion 

et al., 2016; Deus et al., 2016; Kotowska et al., 2021).  

  

1.4. Computer Vision 

Artificial Intelligence (AI) is a powerful tool to automate tasks, providing insightful 

solutions for scientific studies in different fields. For example, image detection built with 
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deep learning algorithms can be used in plant species identification. Computer vision 

methods are successfully used in crop and weed classification to build robotic machines 

to conduct real-time weed detection in the field (Wang et al., 2019).  

Machine learning includes two main types: unsupervised and supervised 

learning. Unsupervised learning trains models with unlabeled data, while supervised 

learning requires labeled data, and most neural networks are examples of supervised 

learning algorithms (Géron, 2019). Artificial neural networks (ANN) are models built 

based on the nervous system of the living vertebrate (Fukushima, 1980). In recent 

years, neural networks have evolved into the convolutional neural network (CNN), which 

consists of multiple convolutional layers.  

Many studies have proven that CNNs can reach high accuracy in object 

detection in images (Dang et al., 2022; Dyrmann et al., 2016; Yan & Ryu, 2021). 

Dyrmann et al. (2016) trained a CNN model to classify young seedlings (2 to 10 days 

old) of 22 species with the average accuracy of 86.2% under controlled indoor 

conditions. For example, Sugar beet (Beta vulgaris), barley (Hordeum vulgare L.), and 

Thale Cress (Arabidopsis thaliana) could achieve 97% to 98% accuracy (Dyrmann et 

al., 2016). Dyrmann et al. (2017) tested another CNN model called DetectNet in 

overhead images from highly occluded cereal fields, and the model had a recall of 

46.3% and a precision of 86.6% for detecting the non-crop plants. The high-occluded 

fields resemble roadside environments where plants overlap each other.  

Another well-known fast-detection CNN model called You Only Look Once 

(YOLO) can be used to detect weeds in outdoor and natural light conditions. Dang et al. 

(2022) tested different versions of YOLO detectors on 12 weed classes at different 
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growth stages in cotton fields. The precisions of 12 weed classes ranged from 81.5% to 

98.28%, and the recalls ranged from 78.62% to 97.9% on the YOLOv3 detector (Dang 

et al., 2022). The examples above are all based on overhead images in crop fields, but 

only a few similar studies have been done under roadside conditions. One example of 

the roadside condition is a study that integrated GSV Imagery and a CNN network to 

map the distribution of different crops along the roads (e.g., alfalfa, almonds, corn) and 

achieved accuracy levels of 92% in California and 98% in Illinois (Yan & Ryu, 2021). 

Agronomic crops have distinct and uniform morphology, but for roadside invasive 

species, the high variation in plant morphology and the non-uniform backgrounds (e.g., 

different vegetation conditions) will lead to more significant detection errors.  

Previous studies and discussions supported that computer vision can replace 

human observers in species detection. However, we still need human observers to 

create a training dataset. Training, testing, and validation datasets are the essential 

components of a deep learning model, with the most time-consuming task being image 

labeling. A larger training dataset can increase model performance, but the size would 

determine the amount of labor for a single project. Abdulsalam & Aouf (2020) suggested 

that 1,000 images of a particular species are required to achieve high prediction 

accuracy. Yan & Ryu (2021) proposed that the training sizes would differ depending on 

the mapping species since they only used 400 training samples for corn, but the model 

could still perform with high accuracy. Compared to the traditional car survey, the AI-

based survey method can be conducted by non-experts once the image detection 

model is trained. GSV and image detection algorithms can perform large-scale weed 

mapping with low resource input. 
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1.5. Johnsongrass 

Johnsongrass is a common weed along the roads in the United States and is a 

good model plant for the AI-based survey method. It is native to the Mediterranean and 

North Africa and was introduced to the United States in the early 1800s (Oyer et al., 

1959; Bhatti et al., 1960). Johnsongrass is a perennial grass and can colonize and 

spread nearby landscapes through the underground rhizome system (Oyer et al., 1959). 

The mature plant can grow up to 2.5 meters in height, and the height of the mature plant 

can vary based on the local condition (Atwater et al., 2016; Klein & Smith, 2021). 

McWhorter (1961) reported that the reproductive stage of johnsongrass started around 

a month after seed emergence, and the maximum rhizome growth was about 60 meters 

in 5 months. The flowering part of johnsongrass is a diffuse panicle, which is the primary 

feature in the image identification process. The flowering head is orange and purple at 

the mature stage.  

Johnsongrass is a weedy relative of the cultivated sorghum (Sorghum bicolor), 

which compete for the same limiting resources, and the presence of johnsongrass will 

cause yield loss in sorghum or other crop fields (Hoffman & Buhler, 2002). Kansas and 

Texas are the top two states in cultivated sorghum production regarding planting 

acreage (NASS). As a weedy relative, johnsongrass is widespread in sorghum fields 

and along the roads around Nebraska, Kansas, and Texas (Ohadi et al., 2018; Werle 

Based on personal observation, johnsongrass is also widespread along the roads in 

other states such as California. Roadside populations can be mapped on a large scale 

with the integration of Google Street View Imagery and AI-based computer vision. In 
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addition to johnsongrass, this method can be applied to other weedy and invasive 

species. This project provided a workflow (Figure 1) to conduct an automated road 

survey of johnsongrass, examined the cost-effectiveness, and discussed the potential 

application of the johnsongrass population map. 

 

1.6. Objectives 

  Since roadside weeds can spread to commercial crop fields, and also may cause 

traffic hazards, large-scale weed distribution maps are needed as the primary tool for 

designing weed management strategies. The traditional weed survey methods cannot 

create a large-scale species map because of the time and cost limitations. The AI-

based object detection model can be an alternative method to car surveys. This study 

aimed to develop an automated AI-based virtual system to map weeds along roads in 

multiple states. Johnsongrass (Sorghum halepense) was used as the target species in 

the study. 

 The objectives of this project are: 

● Create a training dataset by labeling GSV images that contain johnsongrass. 

● Train a deep learning detection model of johnsongrass and map the distribution of the 

johnsongrass population along the roads. 

● Evaluate and compare the cost-effectiveness of the Al-based survey against the 

traditional car survey.  
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Figure 1. The overall workflow of the AI-based invasive species roadside survey. Images were retrieved from Google Street 
View and labeled in MATLAB 2021a. Map created with ArcGIS Pro Version 2.4.3 (Esri). Base map and road data retrieved 
from US Census Bureau: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-
file.2021.html#list-tab-AGZ2ZC2D5ZN46GFI00 
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 2. Materials and methods 

 
2.1. Training Dataset 

 Since the model input was Google Street View (GSV) images, creating a training 

sample dataset with images from GSV could achieve better predicting performance. 

Training samples were collected by retrieving images from GSV in Texas, Kansas, and 

California because johnsongrass is widespread in those states, as noted in the previous 

section (Section 1.5). We retrieved 70,000 images from GSV API to obtain about 1000 

images that include johnsongrass. Three parameters were specified when sending a 

request to GSV API, and the other parameters were set as default. The three 

parameters were latitude and longitude in the unit of decimal degree (e.g., 40.45, -

80.00) and the heading. The heading indicates the camera angle based on the true 

compass heading. Google uses the value 0 and 360 to represent the North, 90 to 

represent the East, 180 to represent the South, and 270 to represent the West (Figure 

Figure 2. Pictures from Google Street View can be retrieved from different angles for a single location along the road 
heading north and south. 
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2). The picture perpendicular to (i.e.,90 degrees on a road heading north and south) the 

direction of the road will give the best view of the roadside. For roads not heading north 

and south, the angle was adjusted based on the direction the vehicle was traveling. 

The images from GSV were grouped into a 1000-image folder, and each image 

was named by its location information (the value of latitude and longitude). MATLAB 

Image Processing Toolbox and Computer Vision Toolbox were used for the labeling 

process (The MathWorks, 2019). Inside the Computer Vision Toolbox, the Image 

Labeler was used to create annotated training data. This process aimed to identify the 

target species, johnsongrass, and draw a box around it. Johnsongrass identification was 

based on the red and orange flower heads and the tillers. When there was more than 

one individual johnsongrass in an image, multiple bounding boxes were drawn for each 

of them while ensuring that one bounding box only contained one individual, with no 

overlapping between boxes. 

 

2.2. YOLO Object Detector 

Many detection models based on neural networks have been introduced in the 

past ten years. Because the input was about 260,000 images (Figure 1), You Only Look 

Once (YOLO), a fast and accurate deep neural network, was applied in this project. 

YOLO is a real-time image detection model, and it can handle images at 45 frames per 

second in the base model and 155 frames per second in the smaller version of the 

network called Fast YOLO (Redmon et al., 2016). YOLO is a popular detection network, 

and it has been applied to many weedy and invasive species studies (Dang et al., 2022; 

Parico & Ahamed, 2020; Wang et al., 2022). In this project, the updated version of 
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YOLO was adopted, called YOLOv2, which improved performance and could process 

up to 91 frames per second when the input size is 288 ×	288 (Redmon & Farhadi, 

2017). In comparison, Faster R-CNN, another well-known deep learning model, can 

only process five frames per second in a deep detection model and 17 frames per 

second in a shallow model (Ren et al., 2017). Faster R-CNN applied the idea of the 

Region Proposal Network, which means dissecting the image into several rectangular 

proposals and generating many small boxes called anchor boxes with different widths 

and heights at the center of each rectangle (Ren et al., 2017). Instead of applying 

Region Proposal Network, YOLOv2 dissected the image into different grids and 

predicted the location of the bounding boxes by applying much fewer anchor boxes than 

Faster R-CNN (Redmon & Farhadi, 2017). The number of anchor boxes is the main 

factor for a faster computational speed.  

  ResNet50 (50 layers) was adopted as the feature extraction network and paired 

with the YOLOv2 detector (He et al., 2016). Recent neural networks often develop 

layers from 100 to 1000 or even more. He et al. (2016) denoted an input x and the 

output f(x) in a single neural network layer, and ResNet would take f(x) - x, the residual 

of the output, as the input for the following neural network layer. Minimizing the input in 

each layer will significantly improve the performance of a deep neural network. Zheng et 

al. (2019) denoted that ResNet50 has the best performance on the dataset CropDeep 

among seven different classification models (VGG 16, VGG19, SqueezeNet, Inception 

V4, DenseNet121, ResNet18, and ResNet50), and the average accuracy was 99.81. 

Abdulsalam & Aouf (2020) tested the integration of YOLOv2 and ResNet50, and the 

accuracy of detection and classification on Bluegrass, Chenopodium, and Cirsium was 
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99.5%, but the accuracy on Sedges was about 84%. These two studies suggested that 

ResNet50 might be the best model to classify weedy species in an image. Integrating 

YOLOv2 and ResNet50 could achieve large-scale weed detection along the road in a 

short time with high accuracy.  

 

2.3. Model Training 

 
The training dataset included 911 images with johnsongrass, where 75% of the 

images were used as the training dataset and 25% as the validation dataset. The input 

image size was 224 ×  224 × 3, which indicated the height and width of the image and 

three color bands, respectively. Different numbers of anchors were applied and 

compared to determine the anchor number that gives the highest Intersection over 

Union (IoU) value. IoU value is the area of overlap between predicted boxes and the 

labeled bounding box (ground truth). The number of anchor boxes was set at 12 in the 

training model as it provided the best IoU value. We adopted ResNet50 as the feature 

extraction network, and the activation function was "activiation_40-relu" in MATLAB 

Deep Learning Toolbox (The MathWorks, 2019). 

The size of the training samples is important in deep learning models, and data 

augmentation can significantly boost the training sample size. The data from Dang et al. 

(2022) proved that augmentation could improve the accuracy of the YOLO model in 

terms of metrics like recall and mean Average Precision (mAP). Data augmentation 

creates extra training samples by changing the image orientation, rotation, contrast, 

saturation, and hue. For example, as shown in Figure 3, four versions of the same 

image were created by randomly changing the contrast, hue, saturation, and brightness 
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in a set range and flipping the original image.  

 

 To train the model, we applied Adam, an optimization algorithm for the 

stochastic objective function, best known for its high computational efficiency and ease 

of use (Kingma & Ba, 2014). The model had a mini-batch size of 16 with a 0.001 initial 

learning rate and a maximum number of epochs of 30. Mini-batch size is the number of 

images we divide into a group to send to the learning model, and the initial learning rate 

is the step size for each iteration to reach the bottom of a loss function, while epoch 

indicates the number of cycles the learning model uses the whole set of training 

samples (Géron, 2019; Kingma & Ba, 2014). 

 

Figure 3. Examples of the augmented training datasets. (a) and (b) randomly changed the contrast, hue, saturation, 
and brightness of the original image. (c) and (d) randomly changed the contrast, hue, saturation, and brightness and 
flipped the original image. 
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2.4. Model Testing and Performance Evaluation 

The trained detection model was tested by applying the testing dataset, which 

included 2,040 GSV images. A human identification test was conducted on the testing 

dataset as well. The results from the detection model and human observers were 

compared. A confusion matrix was used to evaluate the model performance. The four 

values in the cells are True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN).  

The model was evaluated based on overall accuracy, precision, recall, and false 

positive rate (FPR), the standard evaluation metrics in model performance (Dang et al., 

2022; Parico & Ahamed, 2020; Wang et al., 2022). Precision is the percentage of true 

positives among all the detections, and recall is the percentage of true positives among 

all the ground-truth objects (Padilla et al., 2020). Accuracy is an overall measurement of 

the percentage of true positives and true negatives in the entire dataset (Story & 

Congalton, 1986). The formulas to calculate precision, recall, FPR, and accuracy are 

listed below (Padilla et al., 2020; Story & Congalton, 1986): 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	 !"#$	&'()*)+$(

(!"#$	&'()*)+$(	-	./0($	&'()*)+$()
                                                         (1) 

𝑅𝑒𝑐𝑎𝑙𝑙	 = 	 2345	6789:9;58
(2345	6789:9;58	-	<=>85	?5@=:9;58)

                                                              (2) 

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	 ./0($	&'()*)+$(
./0($	&'()*)+$(-!"#$	A$B/*)+$(

                                 (3) 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	 (!"#$	&'()*)+$(-!"#$	A$B/*)+$()
(!"#$	&'()*)+$(-./0($	&'()*)+$(-!"#$	A$B/*)+$(-./0($	A$B/*)+$()

   (4) 
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2.5. Weed Map 

After the training and validation processes, the final step was to create a 

johnsongrass map showing the populations along the roads in California, Oregon, 

Washington, and Nevada. First, the base road map (Figure 4a) was extracted from the 

US Census Bureau's Master Address File / Topologically Integrated Geographic 

Encoding and Referencing (MAF/TIGER) Database (US Census Bureau, 2021). In 

Figure 4a, the black lines are primary and secondary roads, and the total length of these 

roads across the study area is 135,000 km. 

A total of 320,000 sampling points along the roads were selected on the map 

(Figure 4b), and each sampling point was 500 m apart along the roads. Every point's 

geographical coordinate (latitude and longitude) was retrieved and saved. The location 

information of every single sample point was used to retrieve 269,489 images instead of 

320,000 through GSV API because GSV images are unavailable in some locations. The 

trained model detected the input images and outputted a bounding box with the 

probability score around the target if the target is present in the image. Finally, a map of 

the target species was created with ArcGIS Pro Version 2.4.3 (Esri) using the 

coordination data from the sampling points that had johnsongrass. 
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Figure 4. (a) The primary and secondary roads in California, Nevada, Oregon, and Washington in the United States. 
(b) Sampling points ,500 meters apart, used for image retrieval from GSV. Map created from ArcGIS Pro Version 
2.4.3 (Esri). Base map and road data retrieved from US Census Bureau: 
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.2021.html#list-tab-
AGZ2ZC2D5ZN46GFI00 
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 3. Results and Discussion 

3.1. Training results 

After training the model with the augmented training dataset, the original images 

were labeled with three items. For example, Figure 5 shows the red bounding box as 

human-labeled data (ground truth). The yellow box indicates the detections of 

johnsongrass with bounding boxes and the confidence scores. In this project, we set the 

threshold confidence score as 0.6, so any detection with a score greater than or equal 

to 0.6 will be identified as johnsongrass. For example, in Figure 5c, the scores of the 

two detected targets are 0.656 and 0.728, and the model identified them as 

johnsongrass, which is a true positive in the context of the confusion matrix.  

Dang et al. (2022) and Parico & Ahamed (2020) applied YOLO detection models 

with 0.5 thresholds on UAV or aerial image weed detections. The threshold value was 

Figure 5. Examples of detections of johnsongrass (Sorghum halepense) on Google Street View images by YOLO v2 
model in the validation process. Red boxes are human-labelled in original training dataset. Yellow boxes and the 
scores on top are the output of the detection model. 
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set to around 0.5 to account for human errors in the labeling process (Parico & Ahamed, 

2020). In our study, the threshold value was set to 0.6 to reduce the false positive 

errors.  

 

3.2. Model performance 

The performance of the YOLOv2 model in detecting johnsongrass in GSV 

images was tested using a total of 2,040 test images. Based on the threshold value of 

0.6 for presence (i.e., johnsongrass is present in the image), the confusion matrix 

shown in Table 1 was created. The YOLOv2 model achieved a recall value of 85% in 

the GSV testing dataset. Dang et al. (2022) reported similar recall values in their study 

which the average recall value of the YOLOv3 detection model on 12 different weed 

species was 87.93%. However, there is still about a 15% chance that johnsongrass 

could be undetected by our model when johnsongrass is present in the image. In the 

testing dataset, there were 153 images were classified as FN in the confusion matrix. 

FN in this project is the image that contained johnsongrass and was identified and 

labeled by human observers, but the model was not able to output the same result. 

Individuals that were at pre-flowering stage were not considered as FN since the 

training dataset only contained mature johnsongrass.  

The precision for the YOLOv2 model was 0.74, which is lower than the recall 

(Table 2). Both the precision and FPR include false positive detection in the calculation. 

FPR (0.3) implies that the model could wrongly detect other plant species as 

johnsongrass, with a 30% chance. Among the group of incorrect detection (FP + FN), 

FP had twice the number of images compared to FN in the test dataset (Table 1). Since 
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most studies in weed detection were conducted in the crop field, and their models were 

applied to distinguish weeds from the crop, the precision values were high and were 

about 85% to 95% (Dang et al., 2022; Wang et al., 2022). Yan & Ryu (2021) applied a 

CNN model on GSV images to detect roadside crop type, and the results denoted that 

most crops had detection precision above 90%, but only rice (Oryza sativa) had a 76% 

precision. The study also reported that the misclassification of rice was more frequent in 

low-resolution images or if the object was far away from the camera (Yan & Ryu, 2021). 

In our research, the quality of images and the distance between the target object and 

the camera might contribute to the high FP value. Future work will focus on decreasing 

the rate of FP in the image where johnsongrass is absent. More CNN models will be 

tested on the johnsongrass training database to compare the precision and accuracy of 

different models. More roads with high-resolution images from Google can help improve 

this survey method's accuracy.  

The overall accuracy of the YOLOv2 model was 77.5% for detecting 

johnsongrass in the GSV images. This index provided an overall evaluation based on 

total correct detection and the total number of test images. Ringland et al. (2019) and 

Yan & Ryu (2021) both conducted image detection models on GSV images to survey 

different types of crop production along the roads but with different CNN networks from 

our model. The accuracy of detecting general crops like alfalfa (Medicago sativa), 

almond (Prunus dulcis), corn (Zea Mays), and rice in the GSV images could reach 92% 

(Yan & Ryu, 2021). An explanation of high accuracy on crops is that major crops always 

have unique morphology or patterns because of domestication, row spacing, and field 

layout that might help to increase performance in computer vision. For roadside weedy 
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species like johnsongrass, morphological variations under different environmental 

conditions were reported in many studies, and the variation could lead to low precision 

and overall accuracy (Atwater et al., 2016; Klein & Smith, 2021).   

There were several challenges in the labeling process, and they can explain 

most of the incorrect detections. In some annotated training images, the target species 

were partially occluded by other objects, including other invasive species, traffic signs, 

and fences. In this case, we could only label either the flowering part or the basal part of 

johnsongrass. In this project, and for johnsongrass specifically, the panicle part of the 

plant would be labeled in most cases since we could not differentiate the basal part of 

johnsongrass from other grass species. The growing stages of the target species were 

another challenge in the labeling process. The juvenile stage of johnsongrass has no 

panicles and looks similar to many other grass species. Only the mature 

johnsongrasses were included in the training dataset, so the model was unlikely to 

detect individuals at their early vegetative stage.  

 
Table 1. Confusion matrix of YOLOv2 model on the testing dataset (n = 2,040). TP: True Positive, FP: False Positive, 
FN: False Negative, TN: True Negative 

  Predicted 

 
Confusion Matrix (n = 

2,040) 
Johnsongrass 

Present 
Johnsongrass 

Absent 

Actual Johnsongrass Present 867 (TP) 153 (FN) 
Johnsongrass Absent 306 (FP) 714 (TN) 

 
 
 
 
Table 2. Model Performance Metrics of YOLOv2 model on the testing dataset (n = 2,040). FPR: False Positive Rate. 

Total Number Recall Precision FPR 
Overall 
Accuracy 

2,040 85% 73.9% 30% 77.5% 
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3.3. Johnsongrass mapping 

 
 The trained model was applied to 269,489 images collected from Google Street 

View. In Figure 6, the red points denote the potential location of johnsongrass predicted 

by the model. The model identified a total of 2,031 images as having johnsongrass. The 

predicted distribution of johnsongrass suggested that johnsongrass is less widespread 

in Nevada than in the other states in this study. The location shown on this map is only 

the prediction. The johnsongrass individual might not be found in that location 

depending on the growing season since most images were taken 2 to 3 years ago. 

Deus et al. (2016) conducted a Google Street View study that surveyed E. 

globulus (Tasmanian blue gum), and their results mentioned that environmental 

stresses (e.g., frost) could lead to variability in species abundance in a short period, 

from one to two years.  

Recent studies and our results suggested that integrating GSV and a deep 

learning image detection model can map species on a much larger scale. Yan & Ryu 

(2021) integrated GSV and other deep learning algorithms and produced cropping 

system maps of Central Valley in California and the state of Illinois. Another roadside 

crop survey in Thailand covered 572 km of road and examined about 57,000 

panoramas (Ringland et al., 2019). Our study covered more areas (California, Oregon, 

Nevada, and Washington), longer roads (135,000 km), and more panoramas (269,489) 

than studies used a similar road survey method (Ringland et al., 2019; Yan & Ryu, 

2021). Future research will focus on the survey in other states in the US, and our goal is 

to survey all the roads in the US.   
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Figure 6. Johnsongrass distribution map (red dots) produced via deep learning model. Map created from ArcGIS Pro 
Version 2.4.3 (Esri). Base map and road data retrieved from US Census Bureau: 
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.2021.html#list-tab-
AGZ2ZC2D5ZN46GFI00 
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YOLO has been tested in many studies to detect multiple plant species in a 

single image (Dang et al., 2022; Ringland et al., 2019). Johnsongrass was the only 

detection target in this study, but other invasive species can be mapped by using our 

methods. A larger-scale species distribution map can be combined with environmental 

factors or land use to determine the conditions suitable for spreading the species. An 

example would be the habitat suitability model, which predicts how well species thrive 

and spread in a location given environmental conditions (Hirzel et al., 2006). According 

to Crall et al. (2013), even though the habitat suitability model is a key tool for invasive 

species risk management, the model requires location data on a large spatial scale. Our 

method can provide a more prominent presence/absence dataset than the traditional 

local dataset. Habitat suitability models based on a larger scale can yield a more robust 

conclusion. As noted, the sampling created by our method is a biased sampling of the 

environment under which the species can thrive as we only search for species along the 

roadside habitats.  

AI-based surveys can provide accurate location data to build and test invasive 

species dispersal models. The AI-based mapping approach can only detect roadside 

weedy species. A dispersal model can be applied based on the johnsongrass location 

map. A typical dispersal model requires two primary parameters, reproduction rate and 

spread distance, and then for parameterization and calibration, a multiple-time-step map 

is required (Adams et al., 2015). The johnsongrass map was created based on images 

from a different date. Even though most of the images were taken in recent years, like 

2020, a small portion was taken 8 or 10 years ago. Based on the API method to retrieve 

images from GSV, we cannot choose the date of the image from the exact location, but 
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Google will always return the latest image from the same location. As a result, we are 

unable to create multiple-time-step maps based on the AI-based method. Ringland et 

al. (2019) reported a similar limitation on Google API image acquisition. The multiple-

time-step may become available in the future by Google. The time and location of the 

GSV update are listed on their website 

(https://www.google.com/intl/en/streetview/). 

 

3.4. The cost-effective approach  

Expenses and estimated time for the car survey, the human-based GSV survey, 

and the AI-based GSV survey were calculated (Table 3). Expenses for the car survey 

were calculated based on the same scale (135,000 km) as the AI-based survey. The 

cost breakdown of the car survey was calculated based on regular domestic travel daily 

expenses. Vehicle rentals and gas estimation are US$ 9,408 and US$ 7,350, 

respectively, and the accommodation accounts for a more significant portion of the 

costs, i.e., US$ 25,200 (Table 3). The total travel time of a car survey per person 

requires 180 days, estimated based on a daily 750 km drive. Dues et al. (2016) 

conducted a 38-day car survey of 15,000 km of roads in Portugal, and a standard car 

survey would drive much less than 750 km per day. For the human- and AI-based GSV 

survey, US$1,890 is required for image purchase from Google, which is US$7 per 1000 

images (Table 3). Labor costs for all three types of surveys were calculated based on 

the minimum hourly wage in California and the total time spent on each method. In 

terms of cost, the AI-based GSV survey is 50% less than the human-based GSV 

survey, and the AI-based GSV survey is only 5.6% of the total cost of the car survey.  
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Compared to car surveys, GSV-based surveys did not require outdoor work and 

driving, so GSV-based detection can minimize potential worker risks (e.g., car accidents 

and health-related risks). Studies by Deus et al. (2016) and Kotowska et al. (2021) 

reported that the results produced by GSV resemble that produced by the field survey. 

Compared to the GSV survey by a human observer, the AI-based GSV survey had 

spent shorter time. Once the detection model is trained, the machine can work 24 hours 

per day, but on average, a human can process about 6000 ~ 8000 images per day 

based on our labeling experiences. A more detailed GSV survey might take more time. 

For example, a human-based GSV survey took 35 hours to examine 2,350 panoramas 

in Sicily, Italy, to assess invasive species abundance along the roads (Barone et al., 

2021).   

As noted, once the training dataset is created, the labor cost of the AI-based 

GSV surveys is fixed and will not increase as the number of images increases. 

However, the relation between labor cost and image number in the human-based 

surveys is linear. As the sampling scales increase, AI-based surveys will outcompete 

human-based surveys, and the comparison between these two surveys in Table 3 is 

underestimated. Then in terms of errors, the detection errors by the AI-based model 

could be consistent, quantified, and improved, while errors in car surveys and human-

based GSV surveys are unable to quantify and inconsistent. The AI-based method is 

much more cost-effective than the car survey and human-based GSV surveys for large-

scale species surveys.  

Because of the strong effects of climate changes, species' habitats and favorable 

environmental conditions can change rapidly, and the changing climate may accelerate 
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invasive species spread (Chai et al., 2016). Based on the AI-based species mapping 

method and the integration with other ecological models, we can predict the spread of 

invasive species and monitor the population closely. The prediction can then allow us to 

allocate our resources better to control the spread of invasive species.  

 

 
 
Table 3. Cost comparison between car survey, human-vision GSV survey and computer-vision AI-based survey for a 
135,000 km species road survey. 

  Expenses Amount (US 
dollars) 

Time Spent 
(days) 

Car Survey 

Vehicle Rentals 9,408 N/A 
Fuel 7,350 N/A 
Meals and Hotels 25,200 N/A 
Labor (Hourly 
Pay) 21,600 N/A 

Total 63,558 180 

GSV Virtual 
Survey 

Image Cost 
(269,489 images) 1,890 N/A 

Labor (Hourly 
Pay) 3,960 N/A 

Total 5,850 33 

AI-based 
Survey  

Image Cost 
(269,489 images) 1,890 N/A 

Labor (Hourly 
Pay) 1,680 N/A 

Total 3,570 14 
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 4. Conclusion 

 
 Our study developed a novel weed survey method integrating GSV and a deep 

learning model. The overall accuracy of johnsongrass detection in GSV panoramas 

could achieve 77.5% with an 85% recall and 73.9% precision. The recall could be 

improved by adding more training samples of johnsongrass in the early vegetative 

stage. However, young johnsongrass is difficult to identify by human as well, and the 

labor of labeling will increase. The precision could be improved by utilizing different 

CNN image detection models. Our trained model detected 2,031 images with 

johnsongrass presence out of 269,489 GSV images in California, Oregon, Washington, 

and Nevada. The locations of those 2,031 images were used to create a distribution 

map of johnsongrass along the major roads in these four states. We explained and gave 

examples of possible potential applications and further data analysis based on the 

johnsongrass map we created. We compared the cost of the car survey, human-based 

GSV survey, and AI-based GSV survey, and the result demonstrated that the AI-based 

GSV survey could spend much less time and money on larger-scale roadside species 

mapping. However, our method cannot retrieve images on a specific date for a single 

location as the current Google API always returns the latest images to us from their 

database. Our methods can be improved as the GSV database increase the size and 

provide more options for images from a single location but at different time. Overall, our 

work presented that an AI-based GSV survey can be cost-effective on roadside invasive 

species surveys. Future work will focus on expanding the scale of johnsongrass 

mapping, and our model will be applied to other invasive species to create more large-

scale distribution maps.      
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