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Abstract: Accurate drought forecasting is necessary for effective agricultural and water resource
management and for early risk warning. Various machine learning models have been developed for
drought forecasting. This work developed and tested a fusion-based ensemble model, namely, the
stacking (ST) model, that integrates extreme gradient boosting (XGBoost), random forecast (RF), and
light gradient boosting machine (LightGBM) for drought forecasting. Additionally, the ST model
employs the SHapley Additive exPlanations (SHAP) algorithm to interpret the relationship between
variables and forecasting results. Multi-source data that encompass meteorological, vegetation,
anthropogenic, landcover, climate teleconnection patterns, and topological characteristics were
incorporated in the proposed ST model. The ST model forecasts the one-month lead standardized
precipitation evapotranspiration index (SPEI) at a 12 month scale. The proposed ST model was
applied and tested in the German federal states of Brandenburg and Berlin. The results show that the
ST model outperformed the reference persistence model, XGBboost, RF, and LightGBM, achieving an
average coefficient of determination (R2) value of 0.845 in each month in 2018. The spatiotemporal
Moran’s I method indicates that the ST model captures non-stationarity in modeling the statistical
association between predictors and the meteorological drought index and outperforms the other
three models (i.e., XGBoost, RF, and LightGBM). Global sensitivity analysis indicates that the ST
model is influenced by a combination of environmental variables, with the most sensitive being
the preceding drought indices. The accuracy and versatility of the ST model indicate that this is a
promising approach for forecasting drought and other environmental phenomena.

Keywords: meteorological drought; stacking model; drought forecasting; explainable; model
sensitivity analysis

1. Introduction

Drought is a natural hazard and occurs in almost all regions of the world [1]. In Europe,
severe droughts cause losses to agriculture, society, and ecosystems with profound impacts
on crop production, the energy sector, and water supply [2–4]. In view of the drought
threat, a suitable drought forecasting system is needed. Drought forecasting plays a key
role in providing drought early warning to mitigate its impacts and to improve drought
management [1].

Drought is a complex phenomenon and is among the least understood natural hazards
due to its multiple causing mechanisms and contributing factors [5,6]. Drought phenom-
ena can be categorized as meteorological, agricultural, hydrological, and socio-economic
drought based on their duration and effects. Drought indices have been developed that
quantify single or multiple droughts affecting variables in a standardized or threshold-
based manner. The meteorological anomalies, land surface processes, and human activities
interact and shape the development and evolution of drought [7]. These interactions are
nonlinear and non-stationary, which complicates our understanding of drought estima-
tion [8–10]. Machine learning (ML) has proven effective in dealing and solving many types
of nonlinear problems. ML allows for complex mathematical calculations on mega data
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(e.g., large datasets such as long-time series satellite products including millions of grid
points) [11,12]. The use of machine learning approaches with open-access satellite products
facilitates drought forecasting from the regional to the global scale [8,13–15].

Multi-model fusion-based models are a promising ML method that can capture non-
linear processes. Alizadeh and Nikoo [8] argued that fusion-based ML models are more
efficient than individual ML models in dealing with drought-related non-stationarities.
Stacking (ST) is a hierarchical fusion framework integrating the strengths of individual
estimation models [16], and it is a member of the family of ensemble learning methods
(i.e., bagging, boosting, and stacking). Generally, the performance of an ensemble model
exceeds that of a single learner. Compared with boosting and bagging, ST takes advan-
tage of the characteristics of multiple base learners to achieve better predictive accuracy
and stability than any of the individual models. The hierarchical fusion framework has
been recently applied in several fields, such as PM 2.5 estimation [17], agriculture yield
prediction [9], and landslide susceptibility mapping [18].

The ST model features a black-box structure, which does not reveal the underlying
physical processes [19]. The black-box nature may complicate the quantification of model
uncertainties [20]. On the other hand, a model-sensitive analysis is helpful in quantifying
model uncertainties by evaluating the relative importance of input factors on model output.
In practice, that means all uncertain variables, mathematical functions, and boundary
conditions are allowed to vary to evaluate changes in model prediction [21–23].

Early drought detection is fundamental to proactive decision making and disaster
preparedness. This work developed a fusion-based one-month lead meteorological drought
forecast model that incorporates multi-source features from satellite images and data
products. The standardized precipitation evapotranspiration index (SPEI) was applied
to capture drought characteristics in the study area [24,25]. The developed ST model
integrates three algorithms, namely, extreme gradient boosting (XGBoost), random forest
(RF), and light gradient boosting machine (LightGBM) to forecast the SPEI at the time
scale of 12 months (SPEI-12). The ST model receives climate teleconnection pattern indices,
extreme climate indices, hydroclimatic conditions, vegetation coverage, and anthropogenic
factors as forcing data. The sensitivity of the ST drought model is then analyzed using
variance-based global sensitivity analysis (GSA). The ST model was applied and tested
in the German federal states of Brandenburg and Berlin. This paper’s modeling method
is useful in disaster prevention, such as meteorological drought early warning. It helps
users understand the key determinants driving the meteorological drought forecast using
an explainable ML algorithm.

Section 2 presents an overview of the study area and the used datasets. The ST model
is described in Section 3, followed by a model sensitivity analysis in Section 4. The results
are presented in Section 5. Future research directions are discussed in Section 6, followed
by conclusions in Section 7.

2. Study Area and Methodology
2.1. The Study Area

This work’s methodology was applied to forecast meteorological drought severity
in Berlin-Brandenburg, Germany (Figure 1). Berlin-Brandenburg is located in the North
German lowlands with flat topography and consists mainly of agricultural land (49%),
forestry land (35%), water bodies (3.5%), and urban areas (9%). Berlin itself consists of 18%
forest, 4% agriculture, and 70% settlements and roads [20].
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Figure 1. (a) The MCD12Q1 landcover classifications (Year 2018) in Brandenburg and Berlin; (b) the
location of Brandenburg (black outline) and Berlin (red outline) (Source: Global Aviation Data
management (GADM), version 4.1).

Berlin-Brandenburg is one of the warmest and driest regions in Germany, and thus it
is particularly vulnerable to droughts. The long-term (1961–1990) average annual precipita-
tion is less than 600 mm, and the average air temperature is near 8 ◦C to 10 ◦C [26]. In recent
decades, the mean annual temperature in the region has increased by about 1 ◦C, exceeding
the global temperature trend of 0.7 ◦C [27]. Previous studies indicate that evapotranspi-
ration exceeds annual precipitation, and that the water balance in Berlin-Brandenburg is
negative [26]. Regional climate simulations show a shift in precipitation patterns for the
next decades with extremely dry summers and rising temperatures [28].
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2.2. Datasets

Predictors include variables describing hydroclimatic, large-scale teleconnection pat-
terns, as well as vegetation, terrain, anthropogenic, landcover, and historical drought
indices. Several hydroclimatic datasets related to soil moisture, evapotranspiration, surface
runoff, and terrestrial water storage were included in this study as predictors to measure
the land surface response to drought conditions. Large-scale teleconnection indices were
also included because drought is known to be related to large-scale atmospheric circulation
and sea surface temperature conditions. Vegetation datasets were used to depict the growth
conditions of vegetation in response to drought. Terrain variables provide location infor-
mation to capture spatial variations in drought. Moreover, human activities and land use
characteristics can impact drought occurrence and persistence through influences on water
resource management, climate, and ecosystem dynamics. Finally, historical drought indices
were applied to capture serial autocorrelation because drought is an inherently persistent
phenomenon. These data provide a comprehensive interpretation of drought from different
perspectives. Gridded data are used to reduce biases from irregularly distributed gauge
stations and to account for the spatiotemporal variability of drought-related variables such
as precipitation [13,29]. This study implemented gridded datasets from January 2001 to
December 2018 for model training, validation, and testing to achieve available and con-
sistent predictors. It should be noted that the calculation of the SPEI-N (N = 1, 2, . . ., 12)
with different timescales covers the period 1989–2018, employing 30 years of data records
to capture climate variability, long-term trends, and statistical significance in assessing
drought conditions. All the selected datasets were of high quality and had a resolution
of around 1 km to reduce bias caused by upscaling and downscaling [30–33]. Datasets
that differed from the target resolution were interpolated to 1 km by bilinear interpolation.
Moreover, the datasets applied in this study were intentionally restricted to those that are
regularly updated so that our model can also be adapted to make predictions for future
drought. The variables and metrics evaluated in this study are listed in Table 1.

Table 1. Descriptions of whole datasets.

Category Variables and Metrics Abbreviation Unit Period Explanation and Indication

Hydroclimate
characteristics

Terrestrial water storage TWS cm 2001–2018
V windspeed at 10 m VW m/s 2001–2018
U windspeed at 10 m UW m/s 2001–2018

Surface runoff SR m 2001–2018
Surface latent heat flux SLHF J/m2 2001–2018

Surface pressure SP Pa 2001–2018

Total evaporation EVP m of water
equivalent 2001–2018

Humidity RH % 2001–2018
Soil moisture SM % 2001–2018

Mean area temperature AT ◦C 2001–2018
Precipitation P mm 2001–2018

Extreme climate
indices

Heavy precipitation days R10 days/month 2001–2018 Count of days when
precipitation ≥ 10 mm

Very heavy precipitation
days R20 days/month 2001–2018 Count of days when

precipitation ≥ 20 mm

Consecutive dry days CDD days/month 2001–2018 Maximum consecutive days
with precipitation ≤ 1 mm

Consecutive wet days CWD days/month 2001–2018
Maximum consecutive wet
days with precipitation >

1 mm
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Table 1. Cont.

Category Variables and Metrics Abbreviation Unit Period Explanation and Indication

Large-scale
teleconnection

patterns

Pacific decadal oscillation PDO / 2001–2018
Atlantic multidecadal

oscillation AMO / 2001–2018

North Atlantic oscillation NAO / 2001–2018
South oscillation index SOI / 2001–2018

Trans-Niño index TNI / 2001–2018

Niño-based index

Niño 1 + 2

/ 2001–2018
Niño 3
Niño 4

Niño 3.4

Vegetation
characteristics

Normalized difference
vegetation index NDVI / 2001–2018 (NIR − R)/(NIR + R)

Enhanced vegetation index EVI / 2001–2018 2.5 × (NIR − R)/(NIR + 6.0
× R − 7.5 × B + 1)

Leaf area index LAI / 2001–2018

Terrain
characteristic

Latitude LAT / 2001–2018
Longitude LON / 2001–2018

Slope SLO ◦ 2001–2018
Altitude ALT m 2001–2018

Anthropogenic
characteristics

Night light index NL / 2001–2018
Population POP / 2001–2018

Landcover
characteristics

Shannon’s diversity index SHDI / 2001–2018 −∑m
i=1(Pi × ln Pi)

Shannon’s evenness index SHEI / 2001–2018 −∑m
i=1(Pi ×ln Pi)

ln m
Percentage of landscape PLANDn % 2001–2018 ∑n

j=1 aij

A × (100)

Time
characteristics

Season S, A, W / 2001–2018 One hot encoding
Month-of-year T / 2001–2018

Historical
drought index

Standardized precipitation
evapotranspiration index SPEI-Nt−1 / 2001–2018

Note: All dataset sources are listed in Table S1. NIR, R, and B represent the near-infrared, infrared, and blue
laser bands, respectively. Pi denotes the proportion of the landscape occupied by patch class i. and m, aij, and A,
denote the number of patch classes, the area (m2) of patch ij, and the total landscape area (m2), respectively. N is a
timescale (N = 1, 2, 3. . ., 12).

2.2.1. Hydroclimate Datasets

Terrestrial water storage (TWS) observations were provided by the Gravity Recovery
and Climate Experiment (GRACE) mission on a global scale. GRACE has been applied in
drought investigations [13,34]. This study used the TWS data derived from the gridded
GRACE Release-06 mascon product at the 25 km spatial resolution for the comprehensive
monitoring of changes in the total volume of water stored in a region [35].

Meteorological drought is a weather-dependent phenomenon. Therefore, wind speed
(v component of 10 m wind, and u component of 10 m wind), surface runoff, surface latent
heat flux, surface pressure, and total evaporation from the fifth generation of the European
Centre for the Medium-Range Weather Predicts (ECMWF) Atmospheric Reanalyzes of the
Global Climate (ERA5 land reanalysis) dataset were also included as predictors. Further-
more, relative humidity, surface soil moisture, mean air temperature, and precipitation
data were obtained from the climate data source of the German Weather Service (DWD).

2.2.2. Extreme Climate Dataset

Sun et al. [36] argued that some extreme climate indices have a close connection with
droughts. Extreme indicators have been widely used to analyze extreme events in different
regions of Europe [37,38]. Four climate indices were selected in this work, which are
commonly used to describe drought in previous studies [39,40]. Extreme climate indices
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are herein calculated based on the DWD’s daily grid precipitation dataset, including heavy
precipitation days (R10), very heavy precipitation days (R20), consecutive dry days (CDD),
and consecutive wet days (CWD). The definition of each index is found in Karl et al. [41].

2.2.3. Large-Scale Teleconnection Patterns

Large-scale teleconnection patterns are known to be important driving factors for
drought occurrence and are often used as predictors [1,42–44]. Linking drought occurrence
to teleconnection patterns is useful for understanding how drought characteristics change
in response to changes in atmospheric circulation [45]. Nine teleconnection pattern indices
were selected based on previous studies in North Germany and Europe [40,46]. This work
used them to represent climate anomalies (see Table 1). Detailed descriptions of those
indexes can be found in Abdelkader and Yerdelen [47].

2.2.4. Vegetation and Terrain Datasets

Precipitation deficits reduce the photosynthetic capacity, which in turn changes the
absorption of solar radiation in photosynthetically active wavelengths by plants [48].
Vegetation indexes (VI) are widely and successfully applied in meteorological drought
predictions due to the change in greenness that reflects the influence of precipitation deficit
on vegetation [49]. Three VIs were used in this study: the normalized difference vegetation
index (NDVI), the enhanced vegetation index (EVI), and the leaf area index (LAI). The
NDVI and EVI are derived from the MOD13A3 product, which provides monthly values at
a 1 km spatial resolution. The EVI is a modified NDVI that improves sensitivity over high
biomass regions and reduces the soil background effects and atmospheric influence [50].
The LAI is a critical variable in photosynthesis and precipitation interception processes [51].
It was acquired from the NOAA Climate Data Record of Advanced Very High-Resolution
Radiometer Surface Reflectance (AVHRRSR).

Terrain features (latitude, longitude, slope, and altitude) are derived from the Shuttle
Radar Topography Mission Digital Elevation Model.

2.2.5. Anthropogenic Datasets

Anthropogenic activities are likely to shape meteorological conditions [52].
Anthropogenically-induced climate change can exacerbate heatwaves and increase water
demand, thereby aggravating droughts [53]. Human activity can be well assessed from
anthropogenic light pollution [54]. The Night Light (NL) dataset and population data have
been used in drought monitoring [55,56]. This study applied the NL dataset from the Har-
vard Dataverse to infer human activity [57]. This dataset is complemented by population
distribution data (POP) from the LandScanTM High-Resolution Global Population Dataset.

2.2.6. Landcover Datasets

The land cover change influences the occurrence of precipitation and drought [58].
Land cover data involved in this study were acquired from the MCD12Q1 product with a
500 m resolution. The data comprised seventeen types of land cover (see Figure 1a). The
landscape indices were used to quantify the spatial heterogeneity of land cover, geographi-
cal areas, or landscapes composed of interacting patches of vegetation or green space stands,
or habitat types [59]. A total of 19 landscape indexes were derived in this work with the
Fragstats V4.2.1 software representing the change characteristics of land cover [60], including
Shannon’s diversity index, Shannon’s evenness index, and 17 landscape percentages.

2.2.7. Time Characteristics

Temporal information was included as a predictor to account for seasonal and trend
effects. The four seasons were encoded through applying one-hot encoding [61], which
represents the information in binary format, e.g., spring (March–May) as (0, 0, 0), sum-
mer (June–August) as (1, 0, 0), autumn (September–November) as (0, 1, 0), and winter
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(December–February) as (0, 0, 1). The month-of-year information was also used as a
time characteristic.

2.2.8. The Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI quantifies the meteorological drought at multiple time scales [62]. It is
a widely used standardized meteorological drought index that uses precipitation and
potential evapotranspiration to determine the onset, duration, and magnitude of drought
conditions with respect to normal conditions [63]. The use of the SPEI is particularly
effective in drought forecasting whenever precipitation deficits and temperature anomalies
have shaped past and recent drought periods, such as is the case in Germany [28,64].

The SPEI is herein calculated at the 1 km spatial scale, following the methodology
described by Vicente-Serrano et al. [62]. Here, the calculation of the SPEI-N (N = 1, 2, . . .,
12) with different timescales is based on 30 years of data records (1989–2018) to ensure
statistical robustness and reliability in quantifying the severity of drought. Its value ranges
between −3 and +3 and can be categorized into several categories based on the drought
severity degree [65] (see Table 2).

Table 2. Drought categories based on SPEI values.

Categories SPEI

Extremely dry SPEI ≤ −2.0
Severely dry −2.0 < SPEI ≤ −1.5
Moderately dry −1.5 < SPEI ≤ −1.0
Mildly dry −1.0 < SPEI < −0.5
Non-dry SPEI ≥ −0.5

Historical drought indices were included as predictors. Autocorrelation, a commonly
used measure of persistence, has been widely recognized in the literature [66,67]. The
incorporation of SPEI-Nt−1 and SPEI-12t−1 as predictors is grounded in their capability to
capture the temporal patterns and autocorrelation inherent in historical drought indices. As
the lag time increases, the correlation tends to decrease [68], reflecting the evolving dynam-
ics of drought characteristics over time. This work took into account the autocorrelation of
drought characteristics and introduced several timescale SPEI-N variables as predictors.
The inclusion of SPEI-Nt−1 and SPEI-12t−1 enabled us to explore distinct characteristics in
detecting drought trends and periodicities associated with different timescales.

3. The Forecasting Model

The modeling framework consists of four tasks: (i) preprocessing, (ii) developing
and implementing the ST model, (iii) developing and implementing the SHAP algorithm,
and (iv) a sensitivity analysis (see Figure 2). The four tasks are described in detail in the
following sections.

3.1. Preprocessing

Preprocessing selects the relevant variables from a pool of potential data sources. The
variables without normalization are then used as input to the so-called base learners (a type
of machine learning algorithm). The three best-performing ones on validation datasets are
selected from the model pool, which then serves as the first layer of the ST model.
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3.2. Machine Learning-Based Stacking Model

The ST model is an ensemble modeling approach that combines multiple machine
learning algorithms [69], and it consists of two processing layers (Figure 2). The first layer
contains several base learners. From this pool of potential base-learner algorithms, those
that show good performance in the training phase are considered further. Specifically,
during the training phase, which involves training and validation sets, the selection of base
learners is based on the validation set. It is common to use no more than three base learners
in ST models to achieve a good balance between accuracy and computational efficiency [16].
This study selected three base learners initially to construct the ST model’s first layer, and
their various combinations were further verified. The three base learners, XGBoost, RF,
and LightGBM, are popular models in drought and precipitation forecasting [70,71]. The
XGBoost regression algorithm is a scalable ensemble-tree algorithm based on the improved
gradient boosting decision tree (GBDT). The LightGBM regression algorithm achieves a
high level of accuracy, and it processes faster than XGBoost. RF is an algorithm that forms
part of the Bagging method in ensemble learning. An in-depth description of the XGBoost,
LightGBM, and RF methods is presented by Chen and Guestrin, [72], Ke et al., [73], and
Breiman, [74], respectively. The selected base learners build the first layer of the ST model.
The training data are split into k folds, and k−1 folds are used to train the base learners.
The first layer models are next applied to the remaining fold that was not used for the base
model fitting. The test data are directly fed into the three well-trained base models. The
predictions generated by three base models are then averaged, and the resulting average
values serve as the input for a linear regression model (LR) to minimize the probability of
overfitting during training (the second layer) [75]. Specifically, the second layer of the ST
model is a meta-model that relies solely on the output results of the first layer.
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3.3. Hyperparameter Optimization

Hyperparameters such as learning rate and batch size must be optimized in most
ML algorithms [76]. Hyperparameter optimization is the process of selecting the best
combination of hyperparameters for each independent base learner of the ST model to
achieve their optimal performance on the training and validation datasets. The optimal
hyperparameters are identified by combining the Opetuna and GridSearchCV approaches.
Opetuna first ranks the significant hyperparameters based on the data characteristic [77].
Next, the optimal set of parameters is selected by the GridSearchCV algorithm [78]. In this
study, the data were split 70% vs. 30% into a training and validation dataset (2001–2017)
and a test dataset (2018) for hyperparameter optimization. The test dataset is only used to
test the predictive power and generalization ability of the model. GridSearchCV conducts
cross-validation on the training dataset to optimize hyperparameters, retraining each base
learner model using the entire training period with the optimized parameters. Subsequently,
here, we calculated the results for the validation set using the retrained base model. The
optimal parameters are then used in all three selected base learners to construct the ST
model.

3.4. Model Interpretation

The black-box character of many ML models hinders our capacity to understand
the physical processes underlying the phenomena under investigation. Previous studies
have used variable-importance diagrams to reveal the most and least important predictor
variables [79]. However, this approach cannot explain the contribution of second-order
effects (interaction) on a given model outcome. Dikshit and Pradhan [80] overcame this
problem by implementing the SHAP method to improve the model’s interpretation with
respect to spatial drought forecasting [80,81]. The SHAP method calculates the marginal
contribution of each predictor to the forecast [82,83]. The average contribution of a predictor
instance among all possible coalitions is given by the SHAP value. The SHAP value
fairly distributes the contribution of predictors to the final prediction. The SHAP method
provides multiple AI model explainers, including the Kernel Explainer, the Deep Explainer,
the Tree Explainer, and the Gradient Explainer. A detailed explanation about different
explainers and their corresponding plots with different uses is found in Zhang et al. [71]
and Molnar [84]. The Tree Explainer was applied in this work to the outputs of the three
base models. The Kernel Explainer was applied in the ST mode [85]. Three main types of
interpretation can be conducted using the relevant explainer, namely, (i) the Summary plot;
(ii) the Dependence plot; and (iii) the Force plot. The details of all plots can be found in
Molnar [84]. The summary and force plots are two typical visualization figures focused on
understanding the model’s decision process under drought conditions [80].

This study evaluated the ST model performance under different drought severities
using the SHAP summary plot and force plot. The summary plot explains the relative
importance of each variable on the model outcome. A SHAP force plot has three key
characteristics (Figure 3). The first is the output value, which is the forecast value of a
specific instance. The second is the base value: the average predicted value of the test
dataset. The third is the color: variables marked in red color increase the magnitude of the
model output, whereas those in blue color decrease the magnitude of the model output.
The force plot shown in Figure 3 for illustrative purposes consists of a horizontal bar for
four variables (SPEI-11t−1, month-of-year (T), SPEI-12t−1, and precipitation (P)). The force
plot displayed in Figure 3 serves as a visual aid to facilitate understanding the marginal
contribution of predictors to model output (i.e., forecasts) but does not explore the meaning
of variables. The length of the bar represents the magnitude of the variables’ contributions
to the model output. Longer bars in the SHAP force plot indicate the greater contribution
of a variable to the model output. The SPEI-11t−1 has the longest bar among the variables,
followed by T. The impact of SPEI-12t−1 and P is comparatively lower. The plot also shows
the base value and the output value. The model output value (f(x) = −2.09, see Figure 3)
is shown at the top of the plot, with the base value of −2.153 shown as a gray horizontal
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line. The horizontal axis in this visualization represents a small interval of the output and
base values. The difference between the base value and the output value can be explained
by the contributions of the individual variables. The red color indicates that the feature or
variable increases the model output, while the blue color indicates that the feature decreases
the model output. The SHAP algorithm is applied to improve the model’s transparency
by determining the contribution of higher-order interactions to drought forecasting in
Section 5.6.
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3.5. Model Evaluation

The selection of base models from base pools and the accuracy of the SPEI prediction
are assessed by the coefficient of determination (R2), the mean absolute deviation (MAE),
and the root mean square error (RMSE). The best model and prediction results are compre-
hensive based on a higher R2, lower RMSE, and MAE. The model is further compared with
a persistence model (PTM) [86]. The PTM is often used as a reference for model evaluation,
assuming the current SPEI at the time t will persist to the next month SPEI at the time t + 1
(see Equation (1)).

SPEIt+1 = SPEIt (1)

All SPEI values less than zero are classified as a drought in the assessment of drought
occurrence [65]. The fraction of the number of grid points with SPEI < 0 in area i (n0i) to the
total number of grid cells Nt provides a measure to calculate the drought area DA (%).

DA =
∑N

i=1 noi

Nt
(2)

Multicollinearity [66] between the predictor variables is reduced by using the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC). The smaller the
AIC and BIC values, the better the feature selection.

The prediction model’s capacity to deal with spatial and temporal non-stationarity
issues is evaluated using an extended Moran’s I [9,87] which is a spatiotemporal auto-
correlation index modified from the classical Moran’s I [88]. A positive value of Moran’s
I represents a clustered pattern (i.e., positive correlation), a negative value represents a
dispersed pattern (i.e., negative correlation), and a zero value represents a random pat-
tern [89]. A value of the spatiotemporal Moran’s I close to 0 means that model predictions
can capture spatial and temporal variations.

4. Model Sensitivity Analysis

This work applied Sobol’ method, which is a variance-based global sensitivity analysis
(GSA) method to evaluate the different sources of uncertainty of predictors by decomposing
the variance of the model output [23]. Contrary to more traditional SA methods, the Sobol’
method varies all input uncertainties simultaneously, which is required for nonadditive
models [21,22,90].

The Sobol’ method commonly includes two measures for each parameter: the first-
order index, which represents the contribution of a parameter to the response variance
without interaction, and the total-order index, which represents the total contribution of
a parameter to the response variance, including interaction effects. Saltelli’s extension of
the Sobol’ sequence-based numerical procedures is applied in this study to generate input
parameter sets for Sobol’ sensitivity analysis. More details about the GSA theory and Sobol’
method can be found in Sauter and Venema [22], and Saltelli et al. [23,91].
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5. Results

Drought forecasting involves five tasks: (i) the choice of predictands (drought in-
dex); (ii) predictor selection; (iii) model selection; (iv) assessing and examining the model
outcomes; and (v) model sensitivity analysis [2,92].

5.1. Predictand Selection

The SPEI-12 meteorological drought index was selected as the target variable of the
ST model in this study. The selection of the target timescale of the SPEI-N index depends
on the study area. Previous authors have reported that the SPEI-N of longer timescales
(12 month time scales, SPEI-12) is more accurately predicted than the SPEI-N of shorter
time scales [80,93].

5.2. Selection of Important Predictors

If two or more predictors are highly correlated only the predictor with the highest
correlation with the predictand is considered. This is done to reduce data redundancy and
model complexity. Previous drought index values were also included to exploit temporal
coherence [1,94]. Furthermore, multicollinearity was tested with the AIC and BIC values
(Table S2).

Table 3 summarizes the eight selected predictors identified for the SPEI-12 from
68 predictor variables. The selection is conducted on training datasets. Eight time-series
variables were selected as model predictors, which are three hydroclimatic factors, two
extreme climate indices, two preceding drought indices, and the month-of-year. The
selection standard of the preceding drought indices is shown in Table S3. It should be
noted that SPEI-11t−1 is not a variant of the SPEI-12t−1 index. They describe the drought
characteristics by considering different time windows. There were 7,857,530 × 8 valid
training and validation data records (Years 2001–2017) available for model training once
data preprocessing was implemented. Figure 4 displays the final model structure. It is a
one-month lead drought forecasting model.

Table 3. Descriptions of selected variables.

Category Selected Variables at t − 1 Abbreviation Correlation with SPEI-12t

Hydroclimate
characteristics

Surface runoff SRt−1 0.253
Soil moisture SMt−1 0.365
Precipitation Pt−1 0.248

Extreme climate indices Heavy precipitation days R10t−1 0.213
Very heavy precipitation days R20t−1 0.158

Historical
drought index

Standardized precipitation
evapotranspiration index

SPEI-11t−1 0.227
SPEI-12t−1 0.141

Time characteristics Month-of-year Tt−1 /
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5.3. Model Performance and Comparison

XGBoost, RF, and LightGBM were chosen from the base learner pool to serve as the
first layers of the ST model. The initial selection of these three potential base models was
based on their default parameter settings without involving hyperparameter tuning. The
selection standard was based on their higher average R2 and smaller average RMSE (refer
to Table S4) on the validation datasets. The forecast performance of the developed ST
model was compared to three base models (XGBoost, RF, and LightGBM) and was also
compared to the reference PTM model. The comparison was conducted for each month of
the test year, 2018. The results are presented in Table 4. The stacking model exhibited the
best performance among all models, with the highest average R2 (0.845) and the smallest
average RMSE (0.025) (Table 4). In particular, compared to the PTM model, the ST model
demonstrated a significant improvement in prediction accuracy. The ST model’s accuracy
in summer was slightly lower compared to other seasons. This may have been due to rapid
weather changes that usually occur in summer in the study region. A paired sample t-test
was conducted between ST and each of the three base models and the PTM model in order
to evaluate differences among the models’ results. The p-values of the t-test were below
0.05, except when compared with the PTM model (see Table 5), indicating that the accuracy
improvement of ST was statistically significant. However, statistical metrics analyzed the
variation between the forecasted and observed index values without considering the correct
identification of drought and non-drought events. Therefore, the performance of the ST
model, three base models, and PTM model with respect to the DA index was evaluated,
with the results being listed in Table 6. The ST performed well compared with the reference
PTM model, particularly in the summer season. The overall forecasting accuracy of ST was
the best among all models, with an average DA (drought area) of 51.60%, and its forecasts
were closest to the actual DA (52.24%).

Table 4. Test accuracies of the drought-forecasting models with a one-month lead in year 2018, ST vs.
three base models; ST vs. persistence model.

Month

XGBoost RF LightGBM Stacking

One Month Lead (t + 1)

R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE

1 0.841 0.167 0.036 0.866 0.151 0.031 0.872 0.146 0.029 0.906 0.120 0.022
2 0.899 0.122 0.028 0.958 0.079 0.012 0.896 0.136 0.029 0.959 0.080 0.011
3 0.941 0.087 0.014 0.913 0.130 0.021 0.955 0.085 0.011 0.956 0.086 0.011
4 0.864 0.121 0.024 0.940 0.079 0.011 0.903 0.107 0.017 0.955 0.071 0.008
5 0.917 0.093 0.014 0.911 0.096 0.014 0.903 0.100 0.016 0.922 0.090 0.013
6 0.798 0.140 0.033 0.732 0.165 0.044 0.705 0.178 0.048 0.800 0.137 0.033
7 0.572 0.235 0.086 0.598 0.229 0.081 0.598 0.236 0.081 0.616 0.224 0.078
8 0.706 0.163 0.049 0.651 0.207 0.058 0.733 0.171 0.045 0.769 0.156 0.039
9 0.820 0.130 0.027 0.787 0.141 0.033 0.761 0.153 0.036 0.836 0.125 0.025

10 0.739 0.152 0.030 0.694 0.163 0.035 0.736 0.157 0.030 0.756 0.150 0.028
11 0.805 0.093 0.014 0.834 0.083 0.012 0.830 0.086 0.012 0.849 0.082 0.011
12 0.793 0.104 0.016 0.775 0.107 0.018 0.729 0.114 0.021 0.812 0.100 0.015

Ave 0.808 0.134 0.031 0.805 0.136 0.031 0.802 0.139 0.031 0.845 0.118 0.025
Std 0.097 0.040 0.019 0.113 0.048 0.021 0.102 0.042 0.019 0.098 0.042 0.019

Month

PTM ST

One Month Lead (t + 1)

R2 MAE RMSE R2 MAE RMSE

1 0 0.429 6.051 0.906 0.120 0.022
2 0.964 0.079 0.100 0.959 0.080 0.011
3 0.880 0.160 0.172 0.956 0.086 0.011
4 0.561 0.264 0.281 0.955 0.071 0.008
5 0.844 0.131 0.160 0.922 0.090 0.013
6 −2.423 0.713 0.752 0.800 0.137 0.033
7 −4.801 1.065 1.092 0.616 0.224 0.078
8 −2.186 0.708 0.746 0.769 0.156 0.039
9 0.471 0.267 0.287 0.836 0.125 0.025

10 −0.736 0.438 0.447 0.756 0.150 0.028
11 0.681 0.122 0.150 0.849 0.082 0.011
12 0.928 0.062 0.075 0.812 0.100 0.015

Ave −0.401 0.370 0.859 0.845 0.118 0.025
Std 1.746 0.301 1.595 0.098 0.042 0.019

Note: In each test month, the highest R2, lowest MAE, and RMSEvalues are listed in bold.
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Table 5. Results from the paired sample t-test between the R2 of ST, three base models, and the
PTM model.

Model T p-Value

XGBoost vs. ST −4.476 0.001
LightGBM vs. ST −4.929 0.000

RF vs. ST −4.250 0.001
PTM vs. ST −2.484 0.030

Table 6. DA of the drought-forecasting models with a one-month lead in year 2018.

Month XGBoost
(%)

RF
(%)

LightGBM
(%)

Stacking
(%)

PTM
(%)

Observation
(%)

1 0.013 0.016 0.016 0.008 0.503 0.752
2 0.142 0.047 0.013 0.078 0.752 2.068
3 1.595 0.836 1.510 0.689 2.068 0.661
4 0.041 0.021 0.010 0.026 0.661 1.235
5 0.555 0.503 0.150 0.849 1.235 1.003
6 19.392 16.813 10.798 20.624 1.003 25.164
7 97.011 97.075 95.495 97.271 25.164 96.211
8 99.910 99.559 99.812 99.737 89.211 99.790
9 99.997 100 100 100 99.791 99.993
10 100 100 99.995 99.995 99.993 99.995
11 99.995 99.995 99.995 99.995 99.995 100
12 100 100 100 100 100 99.995

Ave 51.554 51.239 50.650 51.606 43.365 52.239
Std 48.198 48.402 48.661 48.197 46.538 47.527

Note: In each test month, the highest DA values are listed in bold.

This work resorted to a quantile–quantile plot (Q-Q plot) to assess the performance of
the observed and forecasted SPEI-12 index corresponding to the ST model and the three
base machine learning (ML) models across 12 test months, specifically focusing on extreme
values (Figure 5). If the two distributions (reference and forecasted) being compared are
similar, the blue points in the Q-Q plot will approximately lie on the identity line y = x
(depicted in red). The best fitting was observed with the ST model. It is notable that the
areas with extreme and severe drought were underestimated due to the limited number
of extreme and severe drought samples in the training dataset. The underestimation was
most pronounced for LightGBM among the three base models (Figure 5C).
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5.4. The Spatial Pattern of the Predicted Drought Index

Figure 6 depicts the spatial patterns of the forecasted and observed drought indices.
All models predicted the spatial structure of SPEI-12 well. However, a closer look revealed
some shortcomings in all models. For example, the models tended to underestimate the
intensity of severe drought events in the western and southwestern regions.



Remote Sens. 2024, 16, 828 15 of 25

Remote Sens. 2024, 16, x FOR PEER REVIEW 16 of 26 
 

 

5.4. The Spatial Pattern of the Predicted Drought Index  
Figure 6 depicts the spatial patterns of the forecasted and observed drought indices. 

All models predicted the spatial structure of SPEI-12 well. However, a closer look revealed 
some shortcomings in all models. For example, the models tended to underestimate the 
intensity of severe drought events in the western and southwestern regions.  

 

 

Figure 6. Cont.



Remote Sens. 2024, 16, 828 16 of 25Remote Sens. 2024, 16, x FOR PEER REVIEW 17 of 26 

Figure 6. Spatial patterns of the forecasted SPEI-12. Calculated with (A) Xgboost, (B) RF, (C) 
LightGBM, (D) ST, and (E) observed SPEI-12 for the 12 test months from (1) January 2018 through 
(12) December 2018.

The boxplot of the differences between the forecasted and observed (referred to as 
prediction error) values is shown in Figure 7. The lower and upper edges of the box rep-
resent the 25th and 75th percentiles, and the horizontal line in the box denotes the median. 
Compared with three base learners, the median of the prediction errors for the ST model 
(indicated by the blue boxes) was closer to zero, suggesting reasonably accurate overall 
predictions. In addition, the length of the ST model’s box (interquartile range, IQR) was 
smaller in most test months, which indicated a consistent dispersion of prediction errors. 

The spatiotemporal autocorrelation Moran’s I index, described in Section 3.5, was 
applied to analyze the spatiotemporal patterns of forecasting errors derived from the four 
models. In the ideal case, the models’ forecasting differences should be randomly distrib-
uted within the study area where the spatial non-stationarity is fully captured by the mod-
els [9,95]. This analysis aimed to investigate whether the spatial non-stationarity was fully 
captured in the models’ results. The average error was calculated in the 19 districts of 
Brandenburg and Berlin in each of the 12 test months to compare the spatiotemporal pat-
terns and the degree of spatiotemporal aggregation. The spatial weighting matrix was 
generated using the inverse square distance between any two districts and is row stand-
ardized. The final spatiotemporal Moran’s I forecasting errors are listed in Table 7. The 
spatiotemporal Moran’s I values were close to 0, and the p-values were lower than 0.05, 
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Figure 6. Spatial patterns of the forecasted SPEI-12. Calculated with (A) Xgboost, (B) RF, (C) Light-
GBM, (D) ST, and (E) observed SPEI-12 for the 12 test months from (1) January 2018 through (12)
December 2018.

The boxplot of the differences between the forecasted and observed (referred to as
prediction error) values is shown in Figure 7. The lower and upper edges of the box
represent the 25th and 75th percentiles, and the horizontal line in the box denotes the
median. Compared with three base learners, the median of the prediction errors for
the ST model (indicated by the blue boxes) was closer to zero, suggesting reasonably
accurate overall predictions. In addition, the length of the ST model’s box (interquartile
range, IQR) was smaller in most test months, which indicated a consistent dispersion of
prediction errors.

The spatiotemporal autocorrelation Moran’s I index, described in Section 3.5, was
applied to analyze the spatiotemporal patterns of forecasting errors derived from the
four models. In the ideal case, the models’ forecasting differences should be randomly
distributed within the study area where the spatial non-stationarity is fully captured by the
models [9,95]. This analysis aimed to investigate whether the spatial non-stationarity was
fully captured in the models’ results. The average error was calculated in the 19 districts
of Brandenburg and Berlin in each of the 12 test months to compare the spatiotemporal
patterns and the degree of spatiotemporal aggregation. The spatial weighting matrix
was generated using the inverse square distance between any two districts and is row
standardized. The final spatiotemporal Moran’s I forecasting errors are listed in Table 7.
The spatiotemporal Moran’s I values were close to 0, and the p-values were lower than
0.05, indicating that the prediction errors of four models in the 12 test months only had
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very slight spatiotemporal clusters. The degree of error aggregation of ST was the lowest
(0.0058) among the four models.
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Table 7. Spatiotemporal Moran’s I value of the forecasting errors calculated with ST, RF, XGBoost,
and LightGBM.

Model Spatiotemporal Moran’s I p-Value

ST 0.0058 <0.001
RF 0.0069 <0.001

XGBoost 0.0074 <0.001
LightGBM 0.0080 <0.001

5.5. Model Sensitivity

The ST model’s sensitivity pattern was analyzed based on the variance-based Sobol’
GSA approach described in Section 4, where the Si indices measure the individual contri-
butions of predictors to the output variance (ST), while St indices include all interaction
effects. These two indices were calculated and averaged over the ST model in each testing
month. Figure 8 shows Sobol’ sensitivity analysis results. It can be observed that the St
indices were generally larger than the Si indices, suggesting the presence of higher-order
interactions. From these results, it follows that SPEI-11t−1, SM, SPEI-12t−1, and P may
be designated as sensitive variables since the model output is mainly influenced by the
uncertainty of these factors in all seasons.
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Figure 8. Plot of the total-order and first-order sensitivity derived from the trained ST model in the
12 test months.

Overall, the sensitivity analysis demonstrated that the performance of the ST model is
most influenced by the SPEI-11t−1 drought indices, soil moisture, SPEI-12t−1, and precipi-
tation as input variables.

5.6. Model Interpretation under Different Drought Severity Scenarios

The SHAP algorithm was applied to determine the contribution of higher-order inter-
actions to drought forecasting. The meaning of the SHAP plot is described in Section 3.4.
SHAP provides local interpretability by enabling us to identify the impact of each predictor
on SPEI-12 prediction results for different drought conditions.

The ST model consists of a two-layer structure, where the prediction results from
the first layer serve as input for the meta-model in the second layer. The SHAP algo-
rithm for the ST model was applied to the meta-model. Figure 9 presents the results of
force plots for five drought scenarios for the combined SHAP value over 12 test months:
(a) overall performance, (b) extremely dry, (c) severely dry, (d) moderately dry, (e) mildly
dry, and (f) non-drought. The detailed categorization of drought scenarios is listed in
Table 1. Figure 9a shows that the preceding drought indices and soil moisture (SM) in-
creased the model output, whereas the other variables slightly decreased the model output.
Figure 9b–e depicts different drought conditions, and it was seen that the preceding SPEI-
11t−1 increased the model output, whereas month-of-year (T) decreased the model output.
SM and precipitation (P) either increased or decreased the model output based on drought
severity. The case of non-drought conditions (Figure 9f) also shows the importance of
the preceding SPEI-11t−1 in increasing the model output; T, surface runoff (SR), and P in
decreasing the model output. Overall, the preceding SPEI-11t−1 was the most influencing
factor for all drought severity conditions. The final predictors of the ST model were derived
from the outputs of the base learns in its first layer. Therefore, the overall predictor impor-
tance (summary plot) was based on the combined results of three base learners depicted in
Figure 10A and the entire ST model (Figure 10B) for the purpose of validating the SHAP
results. Although the ST model had a two-layer structure, the summary plot of the ST
model was similar to the combination of the outputs from the three base learners in the first
layer (see Figure 10A,B). The preceding drought indices were identified as the important
features by both summary plots. In comparison with the base learners, the meta-model
(second layer of the ST model) did not introduce a significant bias in the SHAP analysis.
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6. Discussion

The ST model could be improved by stacking the drought classification and regression.
That is, drought severity could be classified into different categories. Then, the regression
model could be used for predicting sub-categories. Also, the time variable is usually
included as a parallel factor, and the grid datasets themselves have potential location
information. The ST model also relies on the autonomous learning ability of ML models to
take into account the effect of spatial and temporal information. This approach has been
demonstrated to improve the forecasting skill of ML models, but it neglects the fact that
spatiotemporal information does not directly affect drought severity when applying ML
models. Rather, spatiotemporal information affects drought severity through other factors
attached to spatiotemporal location. Thus, a more effective representation of spatiotemporal
information must be explored in drought modeling. This work applied the SHAP algorithm
in the proposed two-layer structured ST model to explain the importance of variables in
forecasting drought. This paper’s purpose was to validate whether the second layer,
serving as the meta-model, introduces significant errors to the SHAP analysis due to the
added model structure. The SHAP analysis results of the combined three-base model
(first layer of the ST model) were compared with those of the entire ST model. The result
demonstrated that the meta-model of the second layer did not introduce significant errors
in the SHAP algorithm. It is important to exercise caution when using SHAP analysis
with complex model structures (e.g., multi-layers). The stability of SHAP analysis with
different model structures is a worthy topic for future research. Moreover, the structure of
the ST model can be further optimized by incorporating wavelet decomposition, which is
effective for capturing data interconnection in the frequency domain. This paper’s model
performs short-term forecasts successfully; yet, extending the short-term (within 3 months)
to medium- and long-term prediction is possible and could be explored by adding physical
constraints. One potential change in future drought forecasting is to use the root zone soil
moisture (RZSM) index to replace the SPEI index. The RZSM index can directly reflect
regional soil moisture conditions and describe drought conditions. The wide acceptability
of the ST model must be further tested with respect to a variety of drought conditions and
drought indices at larger spatial scales.

In addition to the findings herein reported, we conducted a comparative analysis with
the results presented by Mehr et al. [96] and with those reported by Mardian et al [97].
This paper’s model enables comprehensive monitoring of drought impacts in many areas
across federal states lacking ground support at a 1 km spatial resolution in comparison
with Mehr et al.’s [96] meteorological drought forecast model based on gauge stations. This
paper’s ML model explains the contribution of variables in driving meteorological drought
by breaking its black box structure. This paper’s ST model integrates the strengths of
XGBoost, LightGBM, and RF models when compared with Mardian et al. ’s [97] individual
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XGBoost models. This study further explored the uncertainty errors of the SHAP algorithm
introduced by different model structures.

7. Conclusions

Accurate drought forecasting is important for drought early warning and helps man-
age the risks associated with it. This study proposes a fusion-based ST model for one-month
lead SPEI-12 drought index forecasting at 1 km spatial resolution. ML models are capable of
solving complex non-linear problems but are weak in the interpretation of the underlying
processes. However, the developed model can tackle the non-stationarity and underly-
ing understanding by identifying the relationship between predictors and meteorological
drought index. Specifically, 68 variables extracted from satellite products were evaluated in
this study. Precipitation, soil moisture, surface runoff, heavy precipitation days, very heavy
precipitation days, month-of-year time characteristics, and precedent drought indices were
selected as predictor variables.

Climate teleconnection pattern indices were evaluated in this study, leading to the
result that strong teleconnection is not observed between large-scale climate patterns
and metrological drought in Berlin-Brandenburg. The performance of the developed ST
model was compared with those of three base models (XGBoost, RF, and LightGBM) and
a classic persistence model. The ST model performed best among the models, with an
average R2 value of 0.845 for the 12 test months. The spatiotemporal clustering analysis of
prediction errors was further quantified based on the spatiotemporal Moran’s I. The error
patterns analysis further showed that ST can effectively model non-stationarity in drought
forecasting. The ST model can be applied to drought mapping with a relatively high spatial
resolution, i.e., 1 km × 1 km.

The complex interconnection between predictors and drought is identified with the
SHAP algorithm under five drought severity conditions, thus improving the understanding
of the processes captured by the ST model. Moreover, model sensitivity analysis is impor-
tant in practical applications (e.g., rain-fed farming systems) of the model; however, few
studies include them in drought modeling. Furthermore, the model sensitivity is diagnosed
with a variance-based GSA method. SHAP and GSA methods have demonstrated that the
performance of the ST model is most strongly influenced by precipitation, soil moisture,
and preceding drought indices, particularly SPEI-11t−1 input variables.

This study’s methodology and results provide a valuable reference for drought early
warning, assisting resource policymakers, as well as agricultural and water resource man-
agers, in mitigating the impacts of droughts on agriculture, water supply, and ecosystems.
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