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A Segment Based Approach to Secondary Structure Prediction
by

Bruce Ira Cohen

Abstract

An outstanding problem in molecular biology is the "protein chain folding" prob

lem. One ultimate goal is to predict the three dimensional structure (the tertiary struc

ture) of a protein from the amino acid sequence (the primary structure). An intermediate

problem is to go from primary structure to secondary structure, identifying helix and/or

strand subsequences within the amino acid sequence. Secondary structure provides a low

resolution representation of protein structure. This thesis addresses using computers to

make and evaluate secondary structure predictions.

Pattern based secondary structure prediction, which is used to mark turns, is

reviewed in Chapter 2. Chapter 3 introduces a new language (A Language for the Pred

iction of Protein Substructures [ALPPS]) which allows an investigator to divide a protein

sequence into segments and explore segments with both patterns and metapattern (pat

terns of patterns) in a hierarchal manner. Chapters 4 and 5 explore the problem of scor

ing secondary structure predictions on O■ o class proteins. Standard residue based scoring

and enhancements are described in Chapter 4. A proposal for feature based scoring is

introduced in Chapter 5. The intent of feature based scoring is to evaluate a prediction as

an approximation of the "known" secondary structure. An application of ALPPS

development on O■ o class proteins and testing using some of the scoring ideas is

presented in Chapter 6.

4– */º
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Chapter 1

Introduction

The computer has become an integral tool for many molecular biologists. Like the

microscope, the computer allows scientists to "see" new vistas which were previously

inaccessible. Computational biology is becoming recognized as an important discipline.

Molecular biologists and biochemists who devote most of their time to more traditional

laboratory work can benefit from computational results.

The area of protein structure prediction offers an example of the potential benefits

of computational biology. Two groups, one based at Scripps and the other in Germany,

were independently studying peptides, seeking potential epitopes which would produce

immunization against foot-and-mouth disease virus (FMDV). Both groups based their

work on the observation that FMDV viral protein 1 (VP1) has some immunizing activity.

The primary sequence of VP1 was known from DNA sequencing. The Scripps group

synthesized 7 peptides with sequences corresponding to 7 subsequences of the primary

structure of VP1 and tested the antibody responses in rabbits and guinea pigs. They

determined that the peptide corresponding to residues 141-160 elicit high levels of

antibody (Bittle et al., 1982).

Unlike the Scripps group which tested 7 different peptides, the German group used

computational biology to select only one, and reached a similar result with a peptide

corresponding to residues 144-159 (Pfaff et al., 1982). They reasoned that the antibody

combining site would be on a stable section of the surface of VP1. Noting that helices

have local hydrogen bonds which provide stability, they attempted to use secondary

structure prediction methods on the primary sequence of VP1 to look for helices. To



meet the requirement that the epitope be on the surface, they limited the potential peptide

to predicted helices with well separated hydrophilic and hydrophobic sides. Only one

amphipathic helix was predicted, and subsequently the peptide based on this subsequence

produced the immune response.

As demonstrated in the FMDV work, secondary structure prediction can be a valu

able tool. Secondary structure prediction is also used as a step in various methods of

generating tertiary structure predictions (Cohen and Kuntz, 1989; Crawford, Niermann,

and Kirschner, 1987).

The widespread use of protein structure prediction to reduce (not replace) time

spent in wet labs has yet to arrive. Protein structure prediction is still primarily in the

hands of scientists who are developing rather than only using prediction techniques."

Schulz (1988) (as well as others) observes that secondary structure prediction has a lim

ited success rate when simply looking at local sequence information. The inclusion of

long-range information is necessary to improve secondary structure prediction. Work

remains to be done in improving prediction techniques in this area and then making them

available to a larger user community.

This thesis addresses the problem of improving secondary structure prediction for

globular proteins. Segment based secondary structure prediction offers a new approach

to predicting secondary structure features and new evaluation methods which are based

on features rather than residue counts.

The goal of secondary structure prediction is to take a sequence composed from an

* In the FMDV example, computational biologists, W. Kabsch and C. Sander are ack
nowledged collaborators in the prediction of antigenic sites.



alphabet of 20 amino acids and "read" this character string to be a "paragraph" composed

of super-secondary structure "sentences." In turn, the sentences are composed of "words"

in the form of strands, helices, and turns. We have a Rosetta Stone — the Brookhaven

Protein Databank (PDB) (Bernstein et al., 1977) — which contains about 200 examples

of protein paragraphs. Secondary structure prediction methods are developed by study

ing some examples from the PDB and then testing the methods on proteins which were

not included in the original development set. It should be noted that some secondary

structure prediction methods are based on a purely statistical evaluation of PDB exam

ples, while others (including the work in this thesis) are grounded upon biophysical prin

ciples.

In deciphering the Hieroglyphics of the Rosetta Stone, Champollion began by

finding the proper names which allowed a mapping between the phonetics of many

Hieroglyphic characters and corresponding Greek characters. The recognition that oval

rings (cartouches) encircled the proper names facilitated the phonetics mapping (Budge,

1950). The positions of the proper names within sentences also contributed to determin

ing the grammar. This bootstrap approach began with a partial solution to the problem.

Then the added clues from the partial solution contributed to a more complete under

standing of Hieroglyphics and the ancient Egyptian language.

Similarly, a bootstrap procedure can be used in secondary structure prediction.

Local sequence patterns combined with some longer range information derived from the

tertiary structure class (o/o, o/3, 3/3, Levitt and Chothia, 1976) gives accurate predic

tions of turns — places between regular secondary structure feature (i.e., 3-strands and

O-helices). Chapter 2 reviews this work and describes the use of augmented regular



expressions to express sequence patterns.

Our segment based approach builds on the success of the turn predictions. An

attempt is made to consider segments in terms of the local secondary structure. For

example, assuming that all turns have been marked at one or more residues within the

turn, the segment composed of residues running between two turn markings (residues

which have been marked as turn residues), should contain one or no regular secondary

structure feature. The size of these segments will vary, but they make sense as logical

units of a protein sequence. Other methods use subsequences (e.g., windows in neural

net methods), but these are not meaningful in terms of the underlying putative secondary

structure. As detailed in Chapter 3, different types of segments are used to construct a

secondary structure prediction. A Language for the Prediction of Protein Substructures

(ALPPS) is introduced which allows investigators to:

O specify different types of segments,
O explore and characterize segments with both local sequence

patterns and metapattern (patterns of patterns), and
O look at patterns of characterized segments,

all in a hierarchal manner.

In evaluating secondary structure predictions, comparisons have generally been

made based on four tallies (true positive, true negative, false positive, false negative) for

each residue in the sequence. As demonstrated in Chapter 4, this type of evaluation does

not necessarily portray the degree to which a prediction approximates the observed

secondary structure. The helices of 20 o■ o proteins from the PDB are determined by 3

assignment methods and helix predictions are obtained from 4 prediction methods. By

representing secondary structures in juxtaposed feature diagrams — scaled boxes and

lines representing helices and turns — differences between predictions and assignments



based on known tertiary structure can be observed. Chapter 4 also gives some insight

into the differences between the results of applying different secondary structure assign

ment methods to the same O■ o protein.

Chapter 5 continues the theme of evaluating secondary structure predictions by

looking at predictions as approximations of the "known" structure. For feature based

scoring, we must first define "acceptable approximation" in the context of the intended

use of the prediction. After reviewing one existing attempt at feature based scoring, a

proposal is sketched for a method, pseudo-string edit distance, which looks at the types

of changes (e.g., insert a turn into the D helix) which would transform an abstraction of

the prediction into an abstraction (of the same resolution) of the observed secondary

Structure.

The integration of concepts contained in the previous chapters find application in

Chapter 6. A complete cycle of segment based helix analysis and prediction on O■ o pro

teins is presented. The chapter shows that the segment based approach achieves better

results than earlier prediction methods (Chou-Fasman, GOR), but the results are gen

erally not as good as recent neural net results. On the other hand, the segment based

approach needs to be seen as an overall philosophy which contributes to advancing the

value of secondary structure prediction. This and future directions are included in the

concluding Chapter 7.



A note on organization: Two of the chapters (2 and 3) are manuscripts of published

[or in press] articles and are reprinted with permission of the respective publishers.” A

third chapter (6) is essentially the manuscript of a paper which is being submitted for

publication. Taken as parts of this thesis, these three chapters contain some redundant

material which is necessary to allow them to stand as independent works. References for

all chapters are integrated in one list after Chapter 7. Two appendices list Common LISP

code for the def-alpps macro, which implements the features of ALPPS, and for the trim

ming variation of residue based scoring introduced in Chapter 4. A final appendix con

tains the ALPPS and PLANS patterns used to produce the results of Chapter 6.

* Chapter 2 will appear as
Bruce I. Cohen, Scott R. Presnell, and Fred E. Cohen; Pattern Based Approaches to Protein
Structure Prediction; Methods in Enzymology (1991) 202, (in press).

Chapter 3 appears as part of
Bruce I. Cohen, Scott R. Presnell, Macdonald Morris, Robert Langridge, and Fred E. Cohen; Pat
tern Recognition and Protein Structure Prediction in Proceedings of the 24th Hawaii Interna
tional Conference on System Sciences (1991) pp 574-584.

A slightly different version of Chapter 6 will be submitted to Biochemistry as
Scott R. Presnell, Bruce I. Cohen, and Fred E. Cohen; A Segment Based Approach to Protein
Secondary Structure Prediction.



Chapter 2

Pattern Based Approaches to Protein Structure Prediction?

2.1. Introduction

In the appropriate milieu, polypeptide chains spontaneously assemble into unique

tertiary structures guided by their amino acid sequence (Anfinsen et al., 1961). While

numerous experiments suggest the existence of a folding code, explicit specification of

sequence based folding rules has proven difficult (Schultz, 1988). The goal of our

research is to develop a set of sequence-structure correlates that can be used to predict

secondary structure from protein primary sequence. This chapter begins by discussing a

series of principles which form a foundation for structure prediction. Next we sketch an

algorithm for finding turns and describe some of the requirements for a pattern language

which facilitates the identification of sequence-structure correlates. We will then present

the pattern language itself and finally offer examples of patterns which can be used to

recognize turns or loops and ot-helices.

A pattern language must allow for the specification of exact residue-by-residue

matches and simultaneously offer flexibility and generalizability. We have developed a

convenient computer interface for the development of patterns that recognize protein

sub-structures. While efforts to completely automate the development of reliable

sequence-structure correlates have failed in our hands, we believe that structural princi

ples can be translated by an individual into a pattern formalism and that refinement of

f C 1991 Academic Press. Reprinted, with permission, from:
Bruce I. Cohen, Scott R. Presnell, and Fred E. Cohen; Pattern Based Approaches to Protein
Structure Prediction; Methods in Enzymology (1991) 202, (in press).



these initial patterns can lead to useful algorithms for predicting secondary structure.

2.2. Theory and Methods

2.2.1. Definitions

There are a number of different approachs to assigning secondary structure to pro

teins of known three dimensional structure. Although crystallographers' assignments are

readily available in Protein Databank files (Bernstein et al., 1977), they are subjective. A

researcher looking at the structure on a computer graphics screen might reasonably make

an alternative assignment. Attempts have been made to devise algorithms (e.g., Levitt

and Greer, 1977; Kabsch and Sander 1983; Richards and Kundrot, 1988) which would

provide objective assignments based on:

e distribution of backbone dihedral angles;
• hydrogen bonding patterns; and/or
e interatomic distances of 0-carbons.

Each of these methods have strengths and weaknesses. An algorithm that does well in

assigning ot-helices may not do as well for 3-structure. For example, hydrogen bonding

patterns tend to underassign fl-structure when compared to many subjective assessments.

Backbone dihedral angles () and V give very local information which may not be

sufficient to adequately define actual (as opposed to ideal) secondary structure. The point

here is not to champion any one algorithm, but rather to underscore the importance of

examining the underlying secondary structure assignment when evaluating the results of

secondary structure predictions.

A fundamental assumption in this work is that the structural class (o■ o,0/3, 5/3) of

the protein in question is known (Levitt and Chothia, 1976). Some clues for accurate



secondary structure prediction (e.g., link length) are dependent upon structural class

(Cohen et al., 1986). Currently, experimental data (e.g., circular dichroism, Manavalan

and Johnson, 1983), compositional analysis (Sheridan et al., 1985), and/or homology

with known structures can yield some structural class information. In the worst case,

results from the three (o■ o,0/3, 5/3) secondary structure predictions could be used to

guide inclusion in one of the three classes.

The protein domains of known tertiary structure are used both as sources for the

development of hypothetical sequence-structure correlates and as specimens to examine

for potential correlates and as sequences for testing the theories. To eliminate potential

bias, a clear division is made between sequences used to develop sequence-structure

correlates, and sequences used for testing. Generally applicable sequence-structure

correlates might be discovered without this separation, but it also possible for candidate

sequence-structure correlates to appear very strong in the development environment and

yet prove to be of no value outside of the development sequences. The development set

is studied exhaustively and aids in the creation and refinement of sequence patterns. The

test set is sequestered from the investigator's view and evaluated only in a blind manner

to test the generality of concepts proposed through an analysis of the development set.

Although the alphabet of amino acids which make up the protein sequences contain

20 characters, there are many ways to group similar amino acids for the purpose of

exploring sequence-structure correlates (Schulz and Schirmer, 1979; Smith and Smith,

1990; Karlin et al., 1989). Examples (e.g., groupings by hydrophobicity, charge, or size)

can be found in the case of helical core recognition. The pattern language must be able

to accommodate such groupings.
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2.2.2. Turn Prediction

Typically, turns” are solvent accessible, evenly distributed through the sequence and

dominated by hydrophilic residues. Rose has shown that the total number of turns in a

globular protein varies linearly with the molecular weight of the chain (Rose, 1978). We

have refined this relationship by focusing on isolated protein domains and separating the

structural subclasses (e.g., o/o, O/3, 5/3).

Consider a simplified model of a domain of a globular protein as a chain subtended

by a spherical boundary following a path from one side to the other and back again (see

Figure 2-1). The radius of the bounding sphere is

r=(3x110n/0602x4mv)”
where 110 is the average molecular weight of an amino acid, n is the number of residues,

and V is the partial specific volume (0.75g/cm3) (Cohen et al., 1986). The solvent acces

sible turns should occupy most of the volume within 4A of the boundary. In this model,

the length of the sequences linking the turns are a function of the number of residues in a

domain. Average domain size varies from protein class to class. These are complied in

Table II-1. Since the link length varies as the 1/3 power of the domain size, extreme pre

cision is not required. The separation between consecutive turns can then be calculated

from this information and the pitch associated with ot-helices and 3-strands. Since the

secondary structure composition in O■ 3 proteins is approximately 1/3 3-strand and 2/3

O-helix, a weighted average pitch is used. Protein class imparts a clear distinction in

locating turns in this formalism. For example, a weakly hydrophilic region might be

labeled a turn in a 3/3 protein, whereas this same sequence in an O■ o protein could be

* We define turns as segments of the polypeptide chain which join secondary structure units.
fl-turns and irregular coiled regions are unified under this heading.
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Hydrophobic
Core

Figure 2-1: Turns and Hydrophobic Core

A globular protein is represented by a chain (bold line) traversing a sphere.
The solvent accessible turns occupy most of the volume within 4A of the
boundary. Weak turn sequence patterns (e.g., areas with some hydrophilic
residues) may be good turn indicators when they are appropriately spaced from
strong turn sequence patterns (areas dominated by hydrophilic residues).

assigned to a part of an o-helix.

2.2.3. Hierarchical Organization

Several physical principles are used to guide the development of patterns for locat

ing turns. These include: local maxima in hydrophilicity; putative secondary structure

identification and avoidance; special backbone dihedral angle restrictions on proline; and

weakly hydrophilic regions appropriately spaced from well-defined turns. This also
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Table II-1: Domain Size and Link Length

Class Domain Radius Pitch Link
Size (Å) (Ä/residue) Length

(residues) (residues)

OJO. 150 20.6 1.5 22f
o/3 200 22.7 2.25 16
B/3 100 18.0 3.0 9

f In the current set of patterns a link length of 26 residues is used.

suggests a natural hierarchy of patterns reflecting the relative merits of each concept.

Turn prediction algorithms developed previously (Lewis, Momany, and Scheraga,

1971; Kuntz, 1972; Chou and Fasman, 1974; Chou and Fasman, 1977; Garnier,

Osguthorpe, and Robson, 1978) have relied ultimately on the calculation of one local

parameter to specify turn likelihood. A cutoff is applied to sort turns from non-turns.

Unfortunately, no one cutoff value is adequate. Typically, there exists a cutoff value that

partitions turns from non-turns which is specific (few false positives) but not sensitive

(many false negatives) and a second cutoff value which is sensitive but not

specific (Cohen and Kuntz, 1989). The observation of Kabsch and Sander (Kabsch and

Sander, 1984) that sequentially identical pentapeptides adopt dramatically different con

formations in different proteins demonstrates that local sequence information alone is not

sufficient for determining structure. To overcome this problem, we have combined the

local sequence features with their global spacing to improve turn prediction accuracy. In

practice, "strong" turns are located and neighboring sections of the chain are masked
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from further consideration. The extent of the mask varies with protein class.

2.2.4. Pattern Language

The language used to specify sequence patterns is called PLANS, Pattern Language

for Amino and Nucleic acidS (Abarbanel, 1984). As the name implies, this language

could be used for investigating nucleic acid sequences (e.g., RNA secondary structure

prediction).

The simplest patterns associate a label with a particular sequence. For example,

aspartyl-protease-site could be the label associated with the sequence aspartic acid,

threonine, glycine (Pearl and Taylor, 1987).

aspartyl-protease-site: "DTG"
The aspartyl protease site could be generalized through the use of a logical OR

represented symbolically with square brackets [].

asp-site: "DITS]G"
Here, serine may replace threonine in the sequence.

More general patterns are created through the concept of regular

expressions (Lewis and Papadimitriou, 1981); a concept used in grep, a UNIX (Ritchie

and Thompson, 1974) pattern matching utility. PLANS expressions are composed of

sequences (e.g., "DTG"), ORs (e.g., "[TS]"), and quasi-closures (repetition e.g.,

"S"%1,3% - meaning 1, 2, or 3 serines). In addition to regular expressions, PLANS

allows complex patterns to be built from less complex patterns using logical operations

(and, or, not). The pattern asp-site-complex demonstrates the use of a boolean operation

on two simple patterns. Note that asp-site and asp-site-complex are functionally
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equivalent.

asp-site-complex: "DTG" OR "DSG"

In addition to the usual one letter code for amino acids, other special characters are

used and summarized in Table II-2. A particularly useful special character is "..’, which

represents any residue. Thus

charge-pair: "[DE]...[KR]"

would identify a pair of oppositely charged residues spaced by four along the sequence.

This pattern is based on the concept of a stabilizing charge pair in an o-helix (Kim and

Baldwin, 1984). The pattern

charge-pair-2: "[DE]...[KR]",
which has a spacing of only three residues, represents the same biophysical concept. The

pattern

gen-charge-pair: charge-pair OR charge-pair-2
is a generalization which could also be specified using the repeat notation,

gen-charge-pair-repeat: "[DE].%2,3%[KR]".
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Table II-2: Symbols used in pattern specifications

Special
Symbol Meaning

A. beginning of sequence

$ end of sequence

sk ZERO or more repeats of the proceeding symbol,
equivalent to %0,”

%n,m?6 between n and m repeats of previous symbol or
pattern specification; m may be '*' to
indicate n or more repetitions

[ ] logical OR of symbols in brackets, as in [ABC)

-
"through", used in [...] to indicate a range of
values, e.a. [A-CG-K] means [ABCGHIJK).

{m,u) spreading of previous symbol that hits at position i,
to all sites between i-º-m and i-Fu.

() used for grouping of characters for repetitions or
logical combinations of pattern expressions
involving AND, OR, or NOT.

group group(N.patspec) finds contiguous matches of 'patspec’
at least N in length. For example, group(5,"A") finds
5 or more contiguous A's.

density density(op,N,D,pat-spec) finds regions where op
(one of >, <, a, "- or <>, <=, >=) operator on N of D matches
for pat-spec is found. For example, density(>,2,5,"[AT]") finds
areas of length at least 5 continuing 2 or more out of 5, "A" or
"T" matches.
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Every pattern has associated markers pointing to those locations where the pattern

succeeds in matching part of a sequence. Although the matching subsequence may be

necessarily greater than one residue (e.g., any subsequence which matches aspartyl

protease-site must be three residues long), the PLANS marker is placed by default on the

first and only the first residue.

ºr

. . . SYDTGC . . .

Markers can be manipulated by the spreading feature. By attaching (x,y) to a pattern,

marks are placed on all residues from n+x through n+y when the pattern first matches at

position n. Thus

aspartyl-protease-site-spread: "DTG"{0,2}
will be marked:

+ ºr ºr

. . . SYDTGC . . .

since the mark is to be spread one to include an additional two residues after the starting

point. The term pattern match refers to the placement of the marks.

Complex patterns are built from other patterns using logical operators which use

these marks. Logical operators allow the requirement of more than one pattern match at

a given site (AND), at least one match at a given site (OR), or the absence of a match

(NOT). For example, a helix could be specified as

helix: (hydrophobic-patch AND NOT many-pro)
where hydrophobic-patch is a complex pattern identifying amphipathic sequences having

periodicity consistent with helical geometry, and many-pro represents two or more pro

lines within a window of eight residues. This pattern,
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many-pro: density(>=,2,8,"P"){0,8},
also demonstrates the density operator. Any one of six relational operators (i.e., --, -,

>, <, H, '-) can be used with the density operator. In this way, simple patterns based on

biophysical principles can be used to rapidly assemble a hierarchical list of complex

statements about the location of substructures in protein sequences.

2.2.5. Ot-helices

Continuing with a hierarchical approach, turn prediction forms a starting point for

predicting ot-helices and 5-strands. They serve as markers which tokenize a sequence

into segments or blocks containing at most one unit of secondary structure. In this

chapter we restrict our attention to o-helices in all helical proteins. In this regime, the

challenge is to distinguish blocks which contain o-helices from those including aperiodic

StructureS.

Previous attempts at predicting the location of 0-helices along a sequence have

treated helices as homogeneous entities. Some attempts have been made to exploit the

amphipathicity of helices (Gribskov, McLachlan, and Eisenberg, 1987; Schiffer and

Edmundson, 1967). Others have distinguished the middle of the helix from its

ends (Chou and Fasman, 1978; Argos and Palau, 1982; Richardson and Richardson,

1988). We set out to link these concepts in an attempt to improve predictive accuracy

(see Figure 2-2).

of-helices are commonly observed in globular proteins. Typically, the backbone

dihedral angles cluster around () = -47°, W = -57° producing backbone C=O(i) to N

H(i+4) hydrogen bonds with 3.6 residues per turn and a pitch of 1.5 Å per residue. Dis
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Figure 2-2: Helix Components
A helix can be considered as a helical core sandwiched between an N- and C
cap. Each component has a set of characterizing patterns. For example, the
helix core commonly contains a hydrophobic patch (pattern H1) and/or a
charge pair (pattern charge-pair).

tortions are observed including bifurcated backbone hydrogen bonds (Parry, 1982), bends

in the helix axis (Barlow and Thornton, 1988), and changes in periodicity near the helix

boundaries (i.e., 31 0 helix formation) (Schellman, 1980; Kabsch and Sander, 1983a).

The packing of 0-helices creates a seamless interface with geometric properties dictated

by the periodicity and bulk of the o-helix. These may be seen in continuous repeats in

fibrous proteins (e.g., tropomysin (McLachlan and Stewart, 1975; Parry, 1982)) or in a

variety of arrangements in globular proteins (Chothia, Levitt, and Richardson, 1977;
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Richmond and Richards, 1978). Typically, the helix-helix interface is dominated by

hydrophobic residues which cluster with a predictable distribution along the

chain (Chothia, Levitt, and Richardson, 1977; Richmond and Richards, 1978; Cohen,

Sternberg, and Taylor, 1982). The hydrophobic packing interface is often complemented

by a hydrophilic region on the opposite side of the helix. This amphipathic arrangement

depends upon the specific location of the helix within the folded protein. While most

helices contribute residues to the solvent interface and hydrophobic core, some are

almost completely buried (e.g., the J helix, residues 222-244, in thymidylate synthase

from Lactobacillus casei (Hardy et al., 1987)). In these less common cases, amphipathi

city is neither expected nor observed.

Regular expression patterns have been constructed to recognize hydrophobic resi

dues clustering in a manner compatible with ot-helices. One such expression is

H1: @..@@..?
where (): [AVILMCKFWY].

Additional patterns which reflect the plausible alternative arrangements of hydrophobic

and hydrophilic residues which reflect the concepts embodied in HI have been con

structed. Composite patterns can be developed which recognize sequences containing

hydrophobic patches and hydrophilic stripes juxtaposed in a manner consistent with an

amphiphilic O-helix.

The identification of sequences which cap the N- and C-terminal ends of 0-helices

has been a subject of recent interest in the literature (Argos and Palau, 1982; Richardson

and Richardson, 1988; Presta and Rose, 1988). It is clear from this work that the intrinsic

conformational properties of certain amino acids are well suited to the geometry of helix

termination. Some residue biases have been attributed to the helix macrodipole which



20

creates the equivalent of +1/2e at the N-terminus and -1/2e at the C-terminus of the helix

axis (Hol, Duijnen, and Berendsen, 1979). Unfortunately, these residue tendencies are

not specific for the caps of 0-helices. However, in the appropriate sequence and structure

context, residue capping tendencies are relevant. For example, the N-terminal cap of an

of-helix tends to be in phase with the hydrophobic face of the helix. Thus, the N-cap is

usually pointing inward toward the rest of the molecule creating a smooth segue between

a particular helix and its predecessor. In practice, this takes the form

NZ; (GDNST][DEKPNQRS].46.4
where glycine, aspartate, asparagine, serine, and threonine are useful N-cap residues and

aspartate, glutamine, lysine, proline, asparagine, glutamine, arginine, and serine disrupt

the hydrophobic patch.

C-caps can be defined by analogy to N-caps. For example,

CZ: @..@@..[DEKPNQRS][GKNH]
describes a helix C-cap. Glycine and asparagine can adopt backbone dihedral angles

which favor left handed ot-helices thereby breaking the usual helical periodicity. Lysine

and histidine can interact with the negative pole of the helix dipole when the side chain

lies along the helix axis. This interaction requires a break in the helical repeat.

2.2.6. Implementation

The program Match (Abarbanel, 1984), written in the C programming language, is

available on request from the authors. Once installed, users do not need to be concerned

about the underlying intricacies of the software, only the concepts of the pattern match

ing language.
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The computer language LISP is used as a development tool for building both pattern

matching languages and user environments for developing sequence structure correlates.

LISP is available in both interpreted and compiled versions which offer different balance

points in the trade-off between run-time speed and ease of program changes. Working in

a UNIX environment also allows stable, mature portions of the software to be transferred

to the C computer language, and linked to the underlying LISP system.

In addition to being easily modified in an interpreted environment, LISP's list data

structure readily lends itself to modelling residue sequences and secondary structure

assignment sequences. Object constructions available in Common LISP are used to build

instances which house sequences and PLANS matches for a set of proteins and an associ

ated set of patterns. A mouse and window based application, Match-Point, is being

developed on Sun workstations as an interactive software tool for exploring potential

structure sequence correlates.

2.3. Results and Discussion

2.3.1. Turn Predictions

The o/o turn patterns are compiled in Table II-3. The 5% decrease in prediction

accuracy from the development set (89%) to the test set (84%) suggests that the possibil

ity that some patterns recognize specific features of the development set instead of gen

eral principles of turn formation. An example of turns located along a protein sequence

is shown in Figure 2-3. The prediction accuracy was based on the total number of turns

correctly predicted. Multiple identifications of a single continuous turn had no impact on
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Pattern Symbols: Assignment Symbols:
S— TU a 9 or a 8 :**■ - Helix
0- a 9 Strong Turn
#- a 8 Weak Turn plus Link Length
! - a 7 Weak Turn
&– a 3 Strong Turn- 4 Philics
*— a 2 No phobics
(- a 1 Gly Ala Helical Mask

Sequence Name: 1cpv
AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIDQDKSGFIEEDEL

< RRSN > < NX < ºx. <º
$ $ $ $ $

Q 6
# {} {}
t ! ! ! ! ! ! ! ! ! ! !

& & & &
* +

(
AFAGVLNDADIAAALEACKAADSFNHKAFFAKVGLTSKSADDVKKAFAIIDQDKSGFIEEDEL

Figure 2-3: Marking Turns

The final turn pattern, TU, and its constituent subpatterns are demonstrated.
Notice the cascade from the subpatterns to the final pattern.

the prediction score. Correctly identified turns (true positives) and overpredictions (false

positives) are presented in Table II-4.

The turn algorithm has been applied to Interleukin-2 (IL-2, Cohen et al., 1986a)

and Human Growth Hormone (HGH, Cohen and Kuntz, 1987) sequences prior to the

elucidation of their crystal structures (Brandhuber et al., 1987; Abdel-Meguid et al.,

1987). In IL-2, all turns were correctly located. In HGH, turns were predicted which

consistently shortened the crystallographically observed O■ o-helices by 4 to 8 residues.

For IL-2, the domain contains 132 residues while HGH contains 191 amino acids. We
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Table II-3: Turns Patterns for OVO, Class Proteins

Name Pattern
;;; COmment

g1 "[ACFIKLMTVWY][ADEHKNQRST]%2,2■ AG][ADEHKNQRST]%2,2
[ACFIKLMTVWY]"{4,4}

;;; Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)

g2 "[ACFIKLMTVWY]%2,2(ADEGHKNQRST][ADEHKNQRST][AG)
[ADEHKNQRST]%2,2.[ACFIKLMTVWY]"{5,5}

;;; Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)

g3 "[ACFIKLMTVWY].[ADEHKNQRST]%2,2(AG)
[ADEHKNQRST]%2,2(ACFIKLMTVWY]%2,2"{5,5)

;;; Cluster of Hydrophobics bounded by hydrophilics (helix-helix interactions)

IIla (density(>=,3,9,"A")){5,5}
;;; Too many alanines in one area - bad helix-helix interactions

ga (density(>=,2,9,"G")){5,5}
;;; Too many glycines in one area - bad helix-helix interactions

gS ((gl or g2 or g3) and (not ma) and (not ga))
;: A Gly-Ala type helical site without too many Alas

al (gs)
; Primary mask for helical secondary structure

a2 (density(=,0,5,alpha_strong_phobic)){2,2}
;;; Strong turn denoted by the absence of strong hydrophobic residues

a3 (density(=,4,4,alpha_philic)){1,1}
; Strong Turn of four hydrophilic residues in sequence

HP ("[VLIAWYKFCT][VLAIWKYFCT]PIVLAIWYFCT]"{2,2} and
(not density(>=,1,5, "[NQRS]")){1,1})

;:; Potential situation of a proline in helical (hydrophobic) region

a 5 ("P"{-1,-1}
and (not a 3(-13,0})
and (not HP(-1,-1}))

;:; Turn denoted by a proline that is not in a hydrophobic environment
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Table II-3 (Continued): Turns Patterns for O■ o. Class Proteins

Name Pattern
;;; COmment

alpha_philic "[DEGKPNQRS]"
; Hydrophilic residues

alpha_strong_phobic "[ACFILMVW]"

ap

a 7

a8

a9

;;; Strong hydrophobic residues

(not density(>=,2,3,alpha_philic)){-1,-1}
;;; Regions unlikely to be good turns

((not ap(-1,1}) and (not al{-2,2}))
; Possible regions for weak turns, distant from the strongest turns

(group(7,a7)
and (not ab{-13,13}))

;:; Merged weak turns (up to seven hits) and no other turn indications

(group(7,a3) or group(7,a■ ))
; Grouped possible turn sites

(a8 or a9)
; Final consensus turn pattern

Table II-4: Results on Turn Predictions

Set True Overpredictions
Positives

Learning Set 42 (89%) 3 (6%)
47 turns from 8 o■ o proteins

Test Set 43 (84%) 4 (8%)
51 turns from 9 O■ o proteins
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initially assumed that the average domain size for O■ o proteins would be 150 amino

acids. This effectively limited the length of HGH helices to at most 22 residues. Follow

ing the calculation described in Table II-1, an o■ o domain of 191 amino acids should

contain 25 residue helices; the average length of a o-helix in HGH is indeed, 26 residues.

This suggests that it may be advantageous to recalculate the anticipated link length for a

sequence prior to making a secondary structure prediction.*

Within an error range of four residues, the strong turn patterns rarely generate false

turn indications. Therefore we can depend on these patterns as landmarks in a sequence.

However, the weaker turn prediction patterns are not as reliable an indicator of actual

turns. These patterns are more dependent on additional signals, such as the expected

periodic distance between turns (Table II-1). As a consequence, most of the over- or

under-predictions (false positives and false negatives) are a result of the noise in these

additional signals.

In a specific example of an overprediction (false positive), the first helix of 2CCy

(Cytochrome c prime from Rhodospirillum molischianum) is broken by the presence of a

weak turn indicator (Figure 2-4). The periodic distance used to mask erroneous weak

turn indications is 26 residues; 13 residues on either side of the current pattern. In this

particular instance, the weak turn indications come 15 residues from the nearest strong

turn indicator, hence, the pattern is accepted as an authentic turn.

As an example of an underprediction (false negative), the final turn of 21zm (Bac

teriophage T4 Lysozyme [E.C.3.2.1.17) residue 157) is not recognized by the existing

turn patterns. While there are indications of weak hydrophilicity near the position we

* In the current set of patterns a link length of 26 residues is used.
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Pattern Symbols: Assignment Symbols:
$– ap ºš tº:
^ - a 7
$– tu

Sequence Name: 2C cy—a
10 2O 3O

*■ ”< >
$$$ $$$$$. $$$$$$$$$. $ $

a w a a A. a a

$ S $
QSKPEDLLKLRQGLMQTLKSQWVPIAGFAAGKADL

Figure 2-4: Overpredicted Turn

The pattern aff, represented by *, denotes areas of weak hydrophilicity. The the
marked region in the center of the helix is sufficiently far from neighboring
turns to be predicted a turn.

would like to call a turn and that position is sufficiently distant from the last predicted

turn, the indications are below the level considered dependable for predicting a weak

turn.

2.3.2. Helix Identification

Preliminary results on the accuracy of pattern based prediction of helical features

are collected in Table II-5. The patterns used to predict helix core regions are well
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Table II-5: Helix Residue Results

Percent Accuracy
Development Set Test Set

Helix Core 87% 82%
N-Cap 75% 65%
C-Cap 74% 58%

defined, providing a predictive accuracy of 87% for the development set and 82% for the

test set. Again, the 5% decrease in prediction accuracy is expected and presumably indi

cates the recognition of specific features in the development set proteins instead of the

general principles of helix core formation. The majority of over-predictions (false posi

tives) for helix cores stem from a displacement or extension of the predicted helical core,

either beginning too soon, or ending too late in the sequence. Currently, it is difficult to

associate this character with a specific structure or sequence phenomenon. Helices

characterized by short runs are often under-reported (false negatives). Helices with a

strong hydrophilic character are also problematic. Prediction of the core region of these

kinds of helices is generally dependent on the the recognition of oppositely charged resi

due pairs in spatial proximity to one another (a "charge-pair"), and putative tertiary

helix-helix interaction sites (Cohen, Richmond, and Richards, 1979).

The predictive capability of the N- and C-cap patterns is about 10% lower than that

of the helix core patterns. The decrease in predictive accuracy from the development to

the test set for the cap patterns is currently greater (at 10% to 15%) than the decrease for

the turn or helix core prediction. This indicates a higher tendency for the capping pat

terns to recognize specific features in the development set proteins, rather than general
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Pattern Symbols: Assignment Symbols:

G - Nt <NNNNNNNNP – helix

Sequence Name: 1hds-b
80 90 100
LKGAFAQLSGLHCNKLHVNPQNFRLLGNVLAL

< NX. < N,
(3

Figure 2–5: Underpredicted Helix Cap

The left most helix shows a situation where a helix N-cap could not be predict
ed using the current set of patterns.

principles of the amino acid sequences that initiate and terminate helices. While there is

no structural feature that identifies over-prediction; under-prediction is characterized by

the lack of crucial residues in the amino acid sequence near the site of the N- or C-cap.

Typically, the capping patterns will have one of a class of residues commonly found at

the terminus of a helix. The N-cap positions in helices are often one of the residues G, N,

S, T, or D. The C-cap positions are usually G, K, H, or N. Further, proline is often a

constituent of C-cap areas of sequence, appearing one or two residues after the cap posi
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tion. If a helix does not begin or end with one of these residues (e.g., the N-terminal resi

due of the fifth helix in the 3 chain of hemoglobin, a phenylalanine, Figure 2-5), the

likelihood of a correctly predicted helix cap is low. This accounts for most of the under

prediction of this helical feature.

2.4. Conclusion

Pattern based secondary structure prediction appears to be useful. An algorithm to

predict the locations of turns in proteins as a function of protein class has been validated

on a set of proteins excluded from the information used in pattern development. Turn

prediction for protein structures solved subsequently reenforces the statistical validity of

the development test set paradigm.

Turns form a useful division of the protein sequence into subsegments which con

tain no more than one piece of secondary structure. In the case of all helical proteins, it

appears possible to consistently recognize helical core sequences. The exact boundaries

of the helices have proved more problematic. Work is underway to provide a framework

for meta-patterns, patterns of PLANS patterns (e.g., a syntactic organization of N-cap,

helix core, C-cap patterns) which could enhance the prediction accuracy. Additionally,

studies on model helix systems (Hughson, Wright, and Baldwin, 1990; Bradley et al.,

1990) could help define the rules of helix initiation and termination.



Chapter 3

A Language for the Prediction of Protein Substructurest

3.1. Introduction

The rapid generation of DNA sequence data is creating an information explosion,

but the determination of protein structure from protein sequence information is not keep

ing pace. There are two primary reasons for this gap. First, protein structures are now

determined by laborious physical techniques. X-ray crystallography and nuclear mag

netic resonance spectroscopy (NMR) routinely yield 1-2 structures per month (Blundell

and Johnson, 1976; Wuthrich, 1986). This falls short of the sequencing rate by two to

three orders of magnitude. Second, not all proteins are amenable to structural characteri

zation by these physical techniques. X-ray crystallography requires crystals with diffrac

tion ordered out to near atomic resolution, suitable heavy atom derivatives to aid in the

solution of the phase problem, and three to five man years of work per protein. NMR

studies require proteins of relatively low molecular weight (currently 320 kD), high solu

bility, and one to three man years. To keep up with the sequence information, new com

putational schemes which relate protein sequence to structure must be developed.

The pioneering experiments of Anfinsen and co-workers suggest that a protein

sequence contains all of the information necessary to encode the three dimensional struc

ture of a water soluble globular protein (Anfinsen et al., 1961). Although the long term

goal of predicting three dimensional structure from a protein sequence remains an open

problem in molecular biology, the methods continue to advance. Improved secondary

f C 1991 IEEE. Reprinted, with permission, from:
Proceedings of the 24th Hawaii International Conference on System Sciences; Kauai, Hawaii,
Janury 1991; pp 574-584.
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structure prediction can serve as a stepping stone for structure generation (Cohen and

Kuntz, 1989). A concept of "structural homology," which can define relationships

between proteins that lack strong sequence homology, is beginning to develop.

This paper addresses a pattern matching approach to secondary structure prediction.

The work presented here is not intended to be a treatise on the linguistics of sequences.

Other authors have covered this topic in greater detail (Searls, 1990). Instead, this work

builds on previous efforts that used regular expression patterns to facilitate the

identification of sequence-structure correlates (see Cohen et al., 1986; Cohen, Presnell,

and Cohen, 1991 [reprinted here as Chapter 2]) the work discussed below takes a

segment-oriented approach to secondary structure prediction. This chapter introduces the

details of a new specification language, A Language for the Prediction of Protein Sub

structures (ALPPS).

3.2. A Language for the Prediction of Protein Substructures

This section will discuss a specification language” called ALPPS, A Language for

the Prediction of Protein Substructures. The vocabulary of ALPPS is designed to mimic

a hierarchal view of protein structure. Although the terms reflect descriptions of protein

substructures, the names are free of the targeted substructure. This allows an abstract

view of the problem which may be valuable in preventing premature commitments to one

potential structural assignment. For example, we speak of regions, and not putative

helices. On the other hand, a region can be thought of as a segment which may approxi

* The term specification language is used here because specification is relevant to both people
and computers. A goal of the language design is to provide a means for discussing a segment
Oriented approach among people in the protein research community. Additionally, the language
serves as a description for computer aided analysis of protein sequences.
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mate a piece of regular secondary structure. Each type of segment has a potential

correspondence to some form of protein substructure. Each definition below will include

that potential correspondence.

A segment is an arbitrary subdivision of a residue sequence. A block is the basic

type of ALPPS segment. It is anticipated that a block generally will contain at most one

piece of secondary structure, but this is not necessarily the case. A preliminary partition

ing of a residue sequence into blocks, may produce blocks which ultimately should be

split or merged in order to better meet the goal of one piece of secondary structure per

block. A frame is a set of contiguous blocks.

A region is a segment, fully contained in a block, which may actually approximate a

protein substructure. Each block can contain at most one region. A target - e.g., "helix" -

is attached to each region definition. It is possible that this target merely eliminates some

substructure - e.g., "non-turn." Region targets are used to develop a detailed secondary

structure prediction.

Blocks and regions can be hidden. This means that they will not be considered for

further processing until they are exposed. Initially, all blocks are exposed, but there may

be a reason to hide certain blocks. For example, regions which emit strong "structural

signals" can be masked to allow the reception of weaker signals from other blocks.

A final construction in the ALPPS hierarchy, frame, is discussed later in the section

on future work. The hierarchy is:

• frame- a set of contiguous blocks
• block- the basic ALPPS segment
• region- the part of a block which may

approximate a protein substructure
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3.2.1. ALPPS Language Description

ALPPS is written in Common Lisp (Steele, 1984) and the notation has a Lisp feel.

The Common Lisp use of keyword (rather than positional) arguments has been adopted.

Anything written after a semi-colon is a comment.

The specification of residue level patterns is done with PLANS (Abarbanel, 1984), a

pattern matching language that was developed and used successfully for identifying turns

by this research group. PLANS patterns are used to initially partition a sequence into

blocks, and can be used to characterize blocks. Regions can also be bracketed by

PLANS patterns.

An ALPPS pattern may look like this:

(def-alpps example-name (pat "TU")
(hide-all-blocks) ; this is a comment
(expose-blocks:pat "ch-pr")

A Common Lisp macro, def-alpps, is used to define an ALPPS pattern. In this example

example-name is the name of the ALPPS pattern. It is originally based on the PLANS

pattern, "TU". After the two working block-lists (a "full block-list" and a "visible block

list") are created, hide-all-blocks will remove all blocks from the visible block-list. The

full block-list holds all blocks, visible or hidden. The expose-blocks function will sup

plement the visible block list with any hidden blocks which contain the "ch-pr" PLANS

pattern. A more detailed pattern with an explanation of ALPPS processing will be given

later.
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SampleSequence:4321B2468c3642D13579E97531
Goal:Lettersdividethisalphanumericsequenceintoblocks.Blockswith
a

subsequencedensewithoddnumbersareworthexploring.Withinthese
blocks,weareinterested
in
regionswhichbeginwith
alownumberandendwith
a
highnumber.

PLANSPatterns
Pattern
S
Comment

-
anyuppercase
,A [13579] [5-9]

$ [0–4]>

(density(>=,3,4,0ad))
96atleast
3of4
residuesareodd

StepVisibleSequenceandSymbolsComment

4321B2468C8642D13579E97531
|

OriginalSequence ----
alphamarkings

(def-alppsexample(pat"alpha")

B2.468CD13579EVisibleBlocks
4321BC8642DE97531

(hide-all-blocks)

AllBlocksarehidden

(expose-blocks
pat"manyodd")

D13579EBlockswithmanyodd
E97531patternareexposed

(make-regions:start-pat
"low"

:end-pat"high"D13579Elowandhigh :symbol"["))E97531markingson

>>$$$$$$:->visibleBlocks D13579EfinalvisibleBlocks
E97531and

[[[[[Region

Figure3-1:AnExample
ofALPPSProcessing
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3.2.2. An Example of ALPPS Processing

Figure 3-1 is an example of ALPPS processing on an arbitrary sequence. This

sequence is used to focus on the processing and not on any particular protein substruc

ture.

ALPPS begins with a partitioning of the sequence into blocks. A PLANS pattern

(alpha) marks the block boundaries. At this point, blocks are visible. Since the PLANS

pattern anything, can be found in all blocks, the visible block list is empty after the hide

blocks function. Blocks of potential interest are then revealed by the expose-blocks func

tion. Finally regions are defined within these visible blocks.

3.23. PLANS Patterns and Segment Boundaries

Having looked at an example, a more detailed discussion of ALPPS will examine

each of the functions and some of the issues involved in providing options for the func

tions. How should segments be defined with respect to PLANS matches? Should the

sequences fed to PLANS extend beyond a segment boundary? These related questions

need to be considered in defining the semantics of ALPPS.

The initial use of PLANS in an ALPPS procedure comes during the partitioning of a

sequence into blocks. One option in this partitioning is a tolerance, the number of resi

dues on either side of the PLANS mark which go with the opposite block. The tolerance

is an overlap. For example (using PLANS patterns on Figure 3-1) with this sequence:

4321B2468C8653D13579E97531
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(def-alpps no-tol (pat "alpha"))
yields

B2.468C D13579E
4321B C8653D E97531.

While

(def-alpps tol-1 (-pat "alpha":tol 1))
yields

1B2 4 68C8 3D13579E9
4321B2 8C8653D1 9E97531.

One reason for the tolerance is that block boundaries, like the boundaries of protein

secondary structure, may be fuzzy. Predicted turns may actually fall within a couple of

residues of the beginning or end of a piece of secondary structure. Refinement of the

boundary may come later. The current implementation of ALPPS has a minimum block

overlap of one residue.

The second question is not as straightforward. PLANS patterns are used to charac

terize blocks and define regions within blocks. When applying PLANS patterns to a

block, should residues which fall before or after a block boundary be examined? Con

sider the ALPPS procedures in Figure 3-2. Assuming that block boundaries cannot be

crossed for purposes of evaluating PLANS patterns on blocks, three blocks are exposed

in ALPPS procedure tol-1 while only two are exposed in no-tol. The difference being

that with the tolerated residues, the PLANS pattern is able to find more matches. In the

third procedure, no-tol-crossing, the blocks do not include any tolerated residues, but

because residues in adjacent blocks can be considered, the resulting exposed blocks are

the same three as in tol-1.

Note that the PLANS match markings in no-tol-crossing are not identical to those in

tol-1. This is important because it implies that the tolerance number alone would not be

a way to control the boundary crossing. Moreover, one can imagine situations where
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blocks should be defined with no tolerance (high confidence in turn placements) and

PLANS patterns should look beyond block boundaries (amino terminus hydrophobic face

alignment). In order to meet this need, the crossing flag (:crossing) can be turned on.

One final option for partitioning sequences into blocks is the minimum block size

G=rmin-size). This number gives a minimum number of residues for each block.
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(def-alpps tol-1 (-pat "alpha":tol 1)
(hide-all-blocks)
(expose-blocks:pat "manyodd"))

3D13579E9
$$$$$

8C8653D1 9E97531.
% $$$$

(def-alpps no-tol (pat "alpha")
(hide-all-blocks)
(expose-blocks pat "manyodd"))

D13579E
$$$$

E97531.
$$$

(def-alpps no-tol-crossing (;pat "alpha"
:crossing t)

(hide-all-blocks)
(expose-blocks pat "manyodd"))

D13579E
$$$$$$$

C8653D E97531.
$$$ $$$

Figure 3-2: Boundary Crossings
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3-2.4. Segment Manipulation Functions

The following ALPPS functions are used to manipulate the visible block-list.

(hide-blocks :pat pat
:pat-count-min n
:crossing bool
:region-target target)

(hide-all-blocks)
(expose-blocks :pat pat

:pat-count-min n
:crossing bool
:region-target target)

(expose-all-blocks)

§

A hide-blocks removes blocks from future consideration until they are retrieved by

“expose-blocks. The expose-blocks function appends blocks to the visible block list.

IE locks can be hidden or exposed in two ways. If PLANS patterns are used, a minimum

Pattern count (:pat-count-min) and crossing flag (:crossing) - described in the previous

Subsection - are available to refine the specification. The two "all" variations, hide-all

*>Rºcks and expose-all-blocks are shorthand for specifying all blocks. An alternative

***ethod of specification involves using region targets (:region-target), a concept

**escribed in the subsection on regions.

Gsplit-blocks:pat pat)

This function will create two blocks out of one visible block which matches pat. The

**ew blocks are visible.

GCat-blocks:patl pat-1 :pat2 pat-2)

This function goes through the visible block-list and combines adjacent blocks that have

***r-1 in the left block, and pat-2 in the right block.



40

Each of these functions has an additional set of options which can be used to mani

pulate the use of PLANS patterns to characterize segments. The minimum pattern count

option (:pat-count-min) can be used to specify that more than one residue must be

marked as matching the given PLANS pattern before ALPPS will act on the segment.

For example,

Sequence:
4321B2 4 68C8653D13579E9842

(def-alpps no-tol (pat "alpha")
(hide-all-blocks)
(expose-blocks pat "odd"

:pat-count-min 3)
yields

D13579E.

While

Sequence:
4321B2 4 68C8653D13579E9842
(def-alpps no-tol (pat "alpha")

(hide-all-blocks)
(expose-blocks:pat "odd"))

yields
D13579E

4321B C8653D E9842.

One example of using this option would be in characterizing segments with a PLANS

pattern that tends to overpredict (false positives). By requiring multiple hits on the same

segment overprediction may be minimized.
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3.2.5. Region Definition Functions

(make-regions:start-pat pat
:end-pat pat
:mid-pat pat ; optional
:min-size n ; default 1
:crossing bool; default false
:color color ; optional
:target target); optional

This function walks through the visible block-list and builds regions in those blocks

that meet the criteria but do not already contain a defined region. Regions begin with

some starting pattern (:start-pat) and end with an ending pattern (:end-pat). A middle

pattern (:mid-pat) is optional as is a minimum number of residues (:min-size) contained

in a region. The crossing flag (:crossing) allows residues adjacent to the block boun

daries to be considered in the application of the PLANS patterns. The color flag (:color)

is used to generate label defined regions on PostScript output.

The target (:target) indicates the type of protein substructure which is suspected to

be found by this region specification. Targets play two important roles in ALPPS to make

a complete secondary structure prediction. They are used to make the final secondary

structure prediction annotations on a residue basis. They can also be used to characterize

blocks which work as a frame. Both of these roles will be discussed in more detail

below.

3.2.6. ALPPS Interpretations

ALPPS can be used with the following strategy illustrated in Figures 3-3-3-5.

Details on the patterns are given below in the section on O■ o proteins. The PLANS pat

tern TU, which identifies turn residues, partitions a protein sequence into blocks. In Fig

ure 3-3 ovals represent residues in a protein sequence. Those with solid black filling are

º
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annotated by the PLANS pattern TU - marking turns. Each double-headed arrow

represents the extent of a block. The target for a block is a segment which contains at

most one piece of regular secondary structure (i.e., a helix or strand). Figure 3-4 demon

strates the use of meta-patterns to focus on sub-structures. Finally, Figure 3-5 shows a

complete residue-level annotation. Each residue is represented by a vertical pair of ovals

with PLANS markings in the upper oval and secondary structure annotations below. In

this way, ALPPS meta-patterns provide the ability to apply a hierarchical prediction

framework on a sequence.

(?

yº

y
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| |

OOOOOOOOOOOOOOOOOOOOOOOO
PLANS Patterns

TU - turn

Figure 3-4: ALPPS Blocks

F T---" | -
| Hº- | <=
| | | | ||

shoesososoooooºooºoooohs
PLANS Patterns

TU - turn E HA - Helix Core
| Nt - N-Cap Ct - C-Cap

Regions and Meta-patterns

Nt-HA-Ct FE Nt-HA

Figure 3-5: ALPPS Regions
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Q963639963(30000000003369,3330

PLANS Patterns
TU - turn H HA - Helix Core

º, Nt - N-Cap Ct - C-Cap

Regions and Meta-patterns

É Nt-HA

Secondary Structure Annotation

-º-º-º-º-º: Helix 3 Coil

Figure 3-6: Secondary Structure Annotation

º



45

3.3. Discussion and Conclusion

3.3.1. Software Environment

ALPPS is currently running as part of a Lisp system called Match-Set. The user

interface, GNU Emacs (Stallman, 1986), is valuable for the software developer and

experienced users, but is difficult to learn for new users. An interactive, mouse and win

dow based system called Match-Point was built as a prototype for developing PLANS

patterns. There is a need to expand Match-Point from the prototype phase and introduce

the ALPPS capabilities contained or planned for Match-Set.

3.3.2. Future Work

There are at least two areas of future development planned for ALPPS itself —

frames and interpretations.

Making preliminary assignments within some segments can influence assignments

in other segments. For example, in an O■ 3 barrel, O. and 3 structure generally are found

in pairs. The concept of a frame needs to be more fully developed. A frame of four

blocks showing O-3-?-3 would lead to an expectation of finding a region with an O. char

acterization in the middle block. In this case, weaker helical signals might be accepted.

This type of computer-based reasoning is found in the use of "scripts" in natural language

processing (Allen, 1987).

The interpretation of a ALPPS hierarchy — region, block, frame — shown in Fig

ures 3-3-3-5 works well for annotating helices in o■ o proteins. Other interpretations of

the hierarchy may be better for different tasks. For example, rather than using turn mark

ings to partition a sequence into blocks, one could use helical core markings. Under this

~
*

* -
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**—-■ -l-s—-r-
(*) |im mº | ?-? | imt

T*-s—-■ º-T"-s—º-■ º"(B)

= | *-* | *-* | *-* | *-

Ø Helix

Turn

Figure 3-6: Hierarchy Interpretations

interpretation, turns might be the targets for regions. Figure 3-6 shows two interpreta

tions which ultimately yield the same annotation. Interpretation (A) is the one described

in Figures 3-3-3-5, while (B) is described in this paragraph.

º



Chapter 4

Scoring Secondary Structure Predictions on o■ o. Proteins

4.1. Introduction

Both users and developers of secondary structure prediction techniques need

methods for evaluating the quality of a given secondary structure prediction. For users,

this type of information is important for making a decision on which secondary structure

prediction technique to use and how much confidence should be placed on a prediction.

For developers, quality evaluations provide both a means for comparing different secon

dary structure prediction methods and a means for giving constructive feedback for

improvement. This last point is especially important to methods based on machine learn

ing. The general idea behind any evaluation or scoring scheme is to compare a predicted

secondary structure to an observed secondary structure based on the known tertiary struc

ture of a given protein.

After briefly reviewing the literature with respect to evaluating secondary structure

predictions, this chapter looks at scoring secondary structure predictions on a set of 20

o/o proteins. Predicted helices are collected from four methods (Chou-Fasman;

Garnier-Osguthorpe-Robson; neural nets; ALPPS). Three different secondary structure

assignments (Kabsch-Sander; Richards-Kundrot; PDB) are used for determining the

observed helices. In addition to comparing each of the four predictions to each of the

three assignments for all 20 proteins, the secondary structure assignments themselves are

compared to each other for a better understanding of how the assignments differ. A vari

ation on residue based scoring which discounts residues at or near the terminals of hel

ices (trimming) is introduced. The results of three scoring methods are reported. These

>
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results focus on the relationship between the scores and the concept that predictions

should be approximations to the observed secondary structures. One conclusion, that

there is a need for methods of evaluation which supplement residue-based scoring, is the

subject of the next chapter.

4.1.1. A Brief History of Evaluating Secondary Structure Predictions

Guzzo (1965) appears to be the first investigator to publish a secondary structure

prediction. After looking for sequence-structure correlations (helical or non-helical) in

the known structures of myoglobin and hemoglobin, Guzzo makes a prediction of the

secondary structure of lysozyme. The evaluation of the prediction is basically descrip

tive. In addition to a table listing the beginning and ending residues of each predicted

and observed helix, there is a figure similar to the feature diagrams (e.g., Figure 4-1) used

in this chapter. With only one prediction on one structure and no other predictions in the

literature at that time, Guzzo's descriptive evaluation is a reasonable approach.

A —# 3. &—º-H–*-ºs

B: —[T]-[THTH

Figure 4-1: Feature Diagrams

This figure shows two sample feature diagrams. These two state feature di
agrams use boxes to represent helices and lines to represent turns (non
helices). In diagram A, the number in the upper left hand corner of a given
box is the position of the first residue (N-cap) of the represented helix. Simi
larly, the number in the lower right hand corner is the position of the last resi
due (C-cap). Diagram B does not include explicit capping positions, but both
diagrams are drawn to scale.

º
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By 1971, several secondary structure prediction methods were brewing. In the

paper detailing their structure for cytochrome c, Dickerson et al. (1971) discuss about ten

methods for predicting helices applied to the cytochrome c sequence. A table shows

three observed helices (by residues numbers) and lists the predicted helices of 5 methods.

The discussion is qualitative (e.g., "a tendency to predict more helix than is actually

present"). Similarly, just before publishing his structure for adenyl kinase, Schulz sent

out the sequence to several groups working on secondary structure prediction. In a com

panion article in Nature, ten prediction methods are reported and compared (Schulz et

al., 1974). Here, Schulz includes residue counts of predicted right (true positives),

predicted wrong (false positives), and not predicted. No attempt is made to summarize

these residue tallies. The discussion includes counts of correctly identified helices.

“Two groups found nine, two groups found eight, and one group found seven
out of the 10 helices. Only one of these five groups predicted a wrong piece of
chain as being helical. The results in Fig. 1 indicate, however, that it is still
difficult to find the correct starting and termination point of a helix.”

Shortly after the publication of Dickerson's paper on cytochrome c, Lewis and

Scheraga (1971) revise their amino acid "helix-forming categories" secondary structure

prediction method and apply it to 11 proteins of known structure. In doing so, they intro

duce a pair of quality indices which summarize residue tallies — the overall percentage

of correctly predicted conformations and the percentage of correctly predicted helical

residues. They note that "it is essential to consider both measures of correctness" in

order to avoid the perfect score (percentage of correctly predicted helical residues) avail

able by simply guessing that an entire protein is helical. This problem of dismissing ran

dom guessing is discussed by Matthews (1975) in his report comparing over 10 secon

dary structure prediction methods on T4 lysozyme. He devotes significant space to using

A
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the correlation coefficient for summarizing the four tallies. Although Matthews only

looked at lysozyme, he does note that the lysozyme predictions are much less successful

than those presented in Schultz’ paper on adenylate kinase a year earlier.

Argos et al. (1976) use and compare five secondary structure prediction methods on

40 known structures. This comparison would move away from the possible bias of a

method doing particularly well on one structure, but not so well in general. Kabsch and

Sander (1983) evaluate three (then) widely used methods on 62 proteins of known struc

ture. They state that one important feature of their methodology is the use of an algo

rithm to achieve "objective and accurate assignment of secondary structure." Their

algorithm (Kabsch and Sander, 1983a) removes the subjective variations caused by using

the depositors’ (crystallographers) secondary structure assignments found in the

Brookhaven Protein Databank (PDB). Although the algorithm is objective, this chapter

questions the appropriateness of the accurate billing.

4.2. Methods & Theory

4.2.1. Standard Residue-Based Scoring

Predictions are compared to "observed" secondary structures of proteins whose 3

dimensional structure is known. The standard method makes comparisons on residue

by-residue basis (Schulz and Schirmer, 1979). Four totals — true positives, true nega

tives, false positives, false negatives — are tallied for each type of predicted structure

type — e.g., helix. In the example below, t represents a turn residue while A

represents an o-helix residue.

º
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observation: ttt AAAAAAAAAAAAttitt

prediction: tt AAAAAAtt/AAAAAAAtt

Here, the tallies are:

True Positives (P): 10
True Negatives (N): 4
False Positives (p): 3
False Negatives (n): 2

These four tallies can be summarized by a single number resulting from some arith

metic combination (see review in Chapter 6 of Schulz and Schirmer, 1979). While there

are many possible quality indices, including the seven in Schulz and Schirmer, this

chapter will only look at the two which are widely used in recent work.

4.2.1.1. Q — the Fraction of Correctly Predicted Residues

A commonly used quality index is the fraction of correctly predicted residues,

which Schultz and Schirmer call Q3 while others simply call it Q.

Q= TruePositives+TrueNegatives
TotalNumberResidues

OT

P+N

Q= P+N+p+n
(1)

This is the fraction of residues which are correctly predicted. A range of 0 to 100 percent

can be obtained when Q is converted to a percentage. Although other quality indices are

available, Q will be sufficient to examine issues involved in defining the known secon

dary structure of a protein.
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4.2.1.2. The Correlation Coefficient as a Scoring Measure

Another popular quality index is the correlation coefficient, C (Q7 in Shultz and

Schirmer):

- (PXN)–(pxn)
W(N+p)(N+n)(P+p)(P+n)

The correlation coefficient indicates how a given prediction differs from a random guess.

(2)

The range of C is -1 to 1. A score of 0 says that the prediction is essentially the same as a

random guess. Negative scores show a high proportion of false predictions while posi

tive scores show a better proportion of true predictions. Matthews (1975) is credited with

bringing the measure to secondary structure prediction, though the correlation coefficient

itself, has been know to statisticians for many years.

A potential problem with the correlation coefficient is the fact that it gives no credit

for correctly predicting the ratio of helix to coil residues. A random prediction can be

based on any preselected ratio of helix to coil residues. Consider the following:

Let R be number of helical residues and g, the predicted number of helical residues.

T=P+N+p+n, is the number of residues in the sequence. Then the expected values

for the four residue tallies are:

=Rx&
P=RX T

—rw8.
p=(T-R)x T

N-T-Rºº.
n-ºxºº.

In the cases where all assigned residues are [not] helical and all predicted residues

are [not] non-helical (i.e., R=T and R=0) the denominator is zero, and C is not
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defined. Otherwise, the denominator of C is always non-zero, so only the numerator

needs to be evaluated.

PXN= R×g×(T-R)×(T-g)
T2

_(T-R)×gXRX(T-,--Tºrº
-

R×gx(T-R)×(T-g)
-

T2
PxN-pxn=0.

Therefore the expected value of C is zero even if g=H.

4.2.2. Adjusting for Inexact Capping: Trimming

The difference between secondary structure assignment methods might relate to the

difficulty in assigning the terminals of helices. Though the cores of helices are generally

easy to assign, the ends—especially the exact capping residues are not." Figure 4-2

gives a notation system for discussing this issue.

—N=A=NONIN,
---

C2C1Coc=G=z-
Figure 4-2: Capping Notation

In this notation, the capping residue is noted by a zero subscript (i.e., No for
the first residue and Co for the last). The positive subscripts on helical resi
dues count the sequential distance from a given cap. Negative are used to
mark residues which are close to a capping residue, but outside a given helix.
In this example, the helical residues are in bold type.

Noting that the No and C0 residues are difficult to assign, it is reasonable to assume

that these residues are also difficult to predict. In tallying scoring counts, these residues

might be given discounted weights or even excluded from the tallies altogether. Given

* A demonstration of this assertion is provided in the results section of this chapter.
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that a secondary structure prediction provides a "low resolution" view of the protein's

structure, an exact residue-by-residue result is not always required.

The trimming technique removes the residues which cap helices in either the

assigned or predicted secondary structures. Figure 4–3 demonstrates the technique.

ttttaAAAAAAAAAAAAAAtttt AAAAAAAAAAAAAAttt

ttttitt AAAAAAAAAtttttttAAAAAAAAAAAAAAtttt

Standard 22 10
Method TP TN FP FN

1 7
Trimmed 18 10 0 4 .à

Figure 4-3: Sample of Trimming

This figure demonstrates trimming and shows the resulting changes in the scor
ing tallies and one representative (Q) quality index. In the feature diagrams,
lines represent turns while boxes represent helices. The first feature diagram
represents on observed secondary structure assignment while the second is a
prediction. The rows of character strings made up of A and t are alternative
representations of the assignment and prediction. Residues which are subject
to trimming are shown in bold when they cap the assigned helices and by an
underline when they cap the predicted helices. The trimming technique re
moves both types of capping residues from consideration in the tallies.

The examples in Figure 4–4 show how residue-based scoring is affected by trim

ming. Trimmed scores (in these examples, Q) can be higher, lower, or unchanged



55

—L TH
tRAAAAAAAttttt

—LIH
ttAAAAAAtttttt

A TN
F P : 4

6
O
O

1.00

—LTH
t?\AAAAAAAttttt

—LT-H
tttttttzAAAAAAt

(C TN
FN 6 5

# #
Q .29 .20

ID) TN

—L. H.
tAAAAAAAAttttt

E3 T N # ;
FN 3 2

Q .50 .50

---
tAAAAAAAAttttt

—Lal
tttitttttittàAAA

: i
Q .14 .20

Figure 4-4: Trimming Examples
Four situations are shown to demonstrate the effect of not counting capping
residues in tallies. In each example, the bottom feature diagram represents a
prediction while the top feature diagram represents the observed structure.
True positives (TP), true negatives (TN), false positives (FP), and false nega
tives (FP) are given as both standard tallies (first column) and trimmed tallies
(second column). Note that in example D, the trimmed tallies do not reflect
the pairing requirement which is described in the text. Example D is the
motivation for the pairing requirement.



56

depending on the relationship between the observed and predicted helices. The differ

ence between the standard Q score and the trimmed Q score (AQ) is positive when the

predicted helix comes close to matching the assigned helix. (See Figure 4-4 A.) A per

fect Q score (1.00) is unchanged by a trimming adjustment. A moderate match (Figure

4–4 B) results in little or no change, while a poor match (e.g., a one residue overlap as

seen in Figure 4-4C) results in a negative AQ. In the first three examples, the trimmed

scores preserve and perhaps enhance the relative ordering of predictions. Unfortunately,

the example D of Figure 4-4 shows a mismatch where AQ is positive. This suggests an

additional rule for trimming. Capping residues should be eliminated from scoring con

sideration only after the sets of observed and predicted helices are paired with a

minimum of 1 overlapping residue. This pairing is the same as the pairing used in

Taylor's structure percentage scoring (discussed below).

The trimming algorithm can also include a level of tolerance. For example, resi

dues at positions N_1, No, N1, C1, Co, and C_1 of both the predicted and observed hel

-

ices would be removed from consideration. Again, non-overlapping assigned and

predicted helices would result in unwarranted score improvements if a minimum overlap

rule is not included. This form is called extended trimming or trimmingt.

Various methods could be used to discount the predictions at the end of helices and

focus on the helix cores. For example, some function could be used to weight the tallies

from various residues around the No and C0 residues of both the observed and predicted

helices. This type of weighing was implemented by my colleague, Don Morris (Morris,

1990). The results appeared to be no better than the results of the more simplistic trim

ming technique. Trimming offers a way of emphasizing the correct prediction of well
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established helical residues in an easy and understandable manner.

4.2.3. Observed Secondary Structure of Proteins with Known Structures

Chapter 2 notes that assigning secondary structure to proteins of known tertiary

structure is not an easy task. Expert assignments are subjective and may differ between

experts. Algorithmic assignments do not always produce an assignment which is con

sistent with a consensus of subjective expert assignments.

One of the purposes of this chapter is to give a better portrait of the actual secon

dary structure assignment differences on O■ o proteins. For O■ o proteins the polypeptide

chain we consider only two conformational states: helix and turn. All forms of helical

structure (310, o, and it helix) are treated identically. Similarly, any region that intercon

nects regular secondary structure is considered a turn. Three assignment sets are used

this chapter. The Brookhaven Protein Databank (PDB) (Bernstein et al., 1977) assign

ments are generally available and serve as an example of subjective assignments. The

method devised by Kabsch & Sander (1983) is widely used. The assignments produced

by the more recent Richards & Kundrot (1988) algorithm appear to be closer to subjec

tive assessments of helical structure, while retaining the consistency of an objective algo

rithm.

4.2.4. Data Set of 20 O■ o. Proteins

The 20 o■ o proteins used in this scoring comparison are listed in Table IV-1. These

are the same 20 proteins which form the test and development sets described in Chapter

6.
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Table IV-1: Proteins Used for Scoring Comparisons
PDB Protein

156b Cytrochrome B562 (Lederer et al., 1981)
1cc5 Cytochrome C5 (Carter et al., 1985)
1ccr Cytochrome C (Ochi et al., 1983)
lecd Erythrocruorin (Steigemann and Weber, 1979)
1fdh Human Fetal Hemoglobin (gamma chain) (Frier and Perutz, 1977)
lhmg Hemerythrin (Stenkamp, Sieker, and Jensen, 1983)
lmbd Myoglobin (Phillips and Schoenborn, 1981)
2ccy Cytochrome C prime (Finzel et al., 1985)
2cts Citrate Synthase (Remington, Wiegand, and Huber, 1982)
2cyp Cytochrome c Peroxidase (Finzel, Poulos, and Kraut, 1984)
21h1 Leghemoglobin (Arutyunyan et al., 1980)
2lhb Hemoglobin V (Honzatko, Hendrickson, and Love, 1985)
2lzm T4 Lysozyme (Matthews, 1975)
2tmv Tobacco Mosaic Virus Coat Protein (Namba, Pattanayek, and Stubbs, 1989)
3c2c Cytochrome C2 (Bhatia, 1981)
3cln Calmodulin (Babu, Bugg, and Cook, 1988)
3cpv Parvalbumin B (Moews and Kretsinger, 1975)
3hhb Human Hemoglobin (alpha chain) (Fermi et al., 1984)
3icb Vitamin D-dependent Calcium-binding Protein (Szebenyi and Moffat, 1986)
3wrp Trp Aporepressor (Lawson et al., 1988)

4.2.5. Prediction Methods

Four prediction methods — Chou-Fasman, GOR, neural nets, and ALPPS — are

used. Chou-Fasman (1978) [CF] and Garnier, Osguthorpe, & Robson (1978) [GOR)

were selected because they are well known and readily available on many computers.

Neural nets [NN] are a recent tool for secondary structure prediction. The network and

weights’ developed by Kneller, Cohen, and Langridge (1990) take advantage of training

only on O■ o proteins. ALPPS is the segment based method which we are currently

developing.

7 When a protein was in the original neural net protein set, a "jackknife" weight set developed
by excluding the given protein from the training set is available. All but 156b, 2cts, 2tmv, 3cln,
and 3wrp were in the original set of proteins used in the neural network. Surprisingly, the neural
net aggregate scores for these proteins exceeds the aggregate scores for the other 15.
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4.2.6. Aggregate Scores and Summary Statistics

An aggregate score can be calculated for any residue based measure by taking the

four tallies — true positives, true negatives, false positives, false negatives — over the

set of 20 proteins. This essentially treats the 20 proteins as one long sequence. Summary

statistics can be obtained by treating each the score on each of the 20 proteins as one

entry. Not surprisingly, the aggregate score will not always be the same as the mean

score since the scores on longer sequences get more weight in the aggregate score.

4.3. Results

For each of the twenty o■ o proteins listed in Table IV-1, predictions are generated

based on four methods (Chou-Fasman, GOR, neural nets, and ALPPS) and compared

against helix assignments from three methods (Kabsch-Sander, Richards-Kundrot, and

PDB). Comparisons are also made between pairs of assignment methods. The comparis

ons are scored by Q and C quality indices calculated on standard, trimmed, and trimmedit

residue tallies.

The main set of results is found in the twenty pages of Figure 4-5. Each page con

tains 7 feature diagrams — one for each assignment or prediction — and a table contain

ing the described Q and C scores.

Table IV-2 with the same format as each of the 20 tables in Figure 4-5 gives results

based on aggregating the 20 sequences. The concept of trimming appears to be validated

by the aggregate results shown in the last 3 columns. Table IV-3 gives summary statis

tics — mean, median, standard deviation, worst, best, and range — on each set of Q
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scores on the three significant assignment-assignment pairings.” Three assignment

assignment pairings and three tallying methods yield 9 sets of 20 (one for each protein) Q

scores. The ranking of proteins by Q score within each set is shown in Tables IV-4, IV

6, and IV-6 for standard, trimmed, and trimmedit tallies.

Similarly Table IV-7 gives summary statistics for the 12 prediction-assignment

pairing sets and Tables IV-9 through IV-11 show the ranking of proteins by Q score

withing each set.

Figure 4-5: Individual Sequence Results

The next 20 pages contain the results of running four secondary structure pred
iction methods and scoring the predictions against the secondary structure as
signments based on three different methods. Each page contains the results for
one of the 20 proteins. The assignments and predictions are displayed as
feature diagrams. A table shows Q and C values generated from the 21 paired
comparisons of a predicted or assigned secondary structure with an assigned
secondary structure. Standard, trimmed, and trimmedit tallying methods are
used and listed separately. The proteins are identified by the Protein Databank
name given in Table IV-1. The prediction methods are Chou-Fasman (cf),
Garnier-Osguthorpe-Robson (gor), neural nets (nn), and segment based
(alpps). The assignment methods are Kabsch-Sander (ks), Richards-Kundrot
(rk), and Protein Databank HELIX records (pdb).

* For convenience, the scoring tables of Figure 4-5 show 21 pairings even though 6 are redun
dant. Twelve come from pairing each prediction with each assignment. An additional three come
from using an assignment as a prediction for scoring purposes. The symmetry of true and false
tallies in both Q and C lead make predicted tallied against observed the same as observed tallied
against predicted. Obviously an assignment scored against itself gives Q and C of 1.
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ks: rk: pdb: cf: gor: Inn. alpps:

SecondaryStructureAssignments
for156b:

57– ->

–

Tº-fJ-f
—astºiod

56Q■ ì

+LIH*Cº-f
ag-tºlº o245682

–id|43
|
ad
|

soft A122419
-Ji2d.

J—"TJ-fg
!A2
|

42-'99 A.3.■adf93tº
-*Tº-º-Tº-
719

ResidueBasedScores-
Q(C)

Prediction
cfgorinnalppsksrkpdb

ObservedMethod ksstandard.54(-.05).72(35).76(.45).77(.55)1.00(1.00).87(72).86(.71)

trimmed.52(-.06).72(.41).76(.47).80(.64)1.00(1.00).93(.85).92(.82) trimmedit.54(-06).78(42).79(.56).87(77)1.00(1.00)1.00(1.00).98(96)

rk
standard.52(-.15).71(23).71(.32).74(.50).87(72)1.00(1.00).83(.61)

trimmed.48(-17).71(28).71(.35).77(.57).93(.85)1.00(1.00).88(.72) trimmedit49(-.19).78(39).76(47).82(.67)1.00(1.00)1.00(1.00).96(.88)

pdbstandard.64(.04).83(43).80(.48).69(.44).86(.71).83(.61)1.00(1.00)

trimmed.64(.08).85(49).81(.53)
|
.69(.46).92(.82).88(.72)1.00(1.00) trimmedit.68(.11).91(57).89(.71).77(.60).98(.96).96(.88)1.00(1.00)
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ks: rk: pdb: cf: gor: alpps:

SecondaryStructureAssignments
for1.cc5:

ResidueBasedScores-Q(C)

Prediction
cfgorinnalppsksrkpdb

ObservedMethod ks
standard.81(.61)
||
77(.53)
|
84(.68).65(32)
||
1.00(1.00).89(.80).93(.86)

trimmed.83(.65).80(.58).90(.78).67(35)
||
1.00(1.00).96(.91)
|
1.00(1.00) trimmedit

||.88(.72).81(.62).98(.95).69(.43)
|
1.00(1.00).98(.96)
|
1.00(1.00)

rk
standard.82(.65).69(.44).83(.68)
|
.71(42).89(.80)
|
1.00(1.00).94(.88)

trimmed.87(.74)
||71(49)
|
.87(.75)
|
.73(46).96(91)
|
1.00(1.00).97(.95) trimmedit.90(.80).72(.52).98(.96).78(.56).98(.96)
|
1.00(1.00)
|
1.00(1.00)

pdbstandard.78(.57).70(.43)
|
.84(.69)
||
70(.40).93(.86).94(.88)
|
1.00(1.00)

trimmed.84(.67).72(.48)
|
.90(.79)
||
70(42)
||
1.00(1.00).97(.95)
|
1.00(1.00) trimmedit.90(.78).75(.54).98(.95).74(.50)

||
1.00(1.00)
|
1.00(1.00)
|
1.00(1.00)
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SecondaryStructureAssignments
for1ccr:

l

*TººLº
35

ResidueBasedScores-
Q(C)

Prediction
cfgorinnalppsksrkpdb

ObservedMethod ks
standard.74(.56)
|
84(.69)
|
.86(.70)
|
.75(.51)
||
1.00(1.00).87(.77).88(.79)

trimmed.73(.55).85(.69).88(.73)
|
.79(57)
||
1.00(1.00).93(.85).94(.87) trimmedit.73(.56).89(.76).92(.81).81(.59)

||
1.00(1.00).93(.85).94(.87)

rk
standard.69(.38).78(.57)
||
77(.54)
||
71(42).87(.77)
|
1.00(1.00).97(.95)

trimmed.70(.44).80(.59)
||
79(57).73(46).93(.85)
|
1.00(1.00)
|
1.00(1.00) trimmedit

||
.75(.54).85(.69)
|
.85(.68)
|
.75(49).93(.85)
|
1.00(1.00)
|
1.00(1.00)

pdbstandard.68(.36).79(.58).78(.55).72(.44).88(.79).97(.95)
|
1.00(1.00)

trimmed.69(.42).81(.61)
|
.80(.59).73(46).94(.87)
||
1.00(1.00)
|
1.00(1.00) trimmedit

||.74(.52).87(.72)
|
.87(.71)
|
.76(49).94(.87)
|
1.00(1.00)
|
1.00(1.00)
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SecondaryStructureAssignments
for1ecd:

531194.

*–

Tº-"Lºº-º-º-Tº-º-Lº-º"Tº 527693447–

*

+TI-.”TJ”—”ºfa;+"od-[.ud-ad

2^~77

aws
—"Lº"L.H.G-#"*H"
sº-"wº-"Tºº

ResidueBasedScores-
Q(C)

Prediction
cfgorninalppsksrkpdb

ObservedMethod ks
standard.62(.19)
|
.66(.18).62(27).58(.07)
||
1.00(1.00).77(43).76(39)

trimmed||.62(.24)
||
67(.24)
|
.62(.26)
|
.56(.07)
||1.00(1.00)
|
.83(.56).81(.52) trimmedit.59(.18).68(.19).58(.16)
.

.54(.01)
||
1.00(1.00)
|
.85(.53)
|
.83(.55)

rk
standard
||64(.24).70(.07)
|
.56(.17)
|
.60(.02)
||77(43)
|
1.00(1.00)
|
.96(.82)

trimmed||.63(.29).71(.11).56(.24).59(.04)
||.83(.56)
|
1.00(1.00)
|
.98(.93) trimmedit.59(.20).76(-13)
|
.51(.13)
|
.59(-18)
||.85(.53)
|
1.00(1.00)
|
.99(.92)

pdbstandard||.62(.19)
.

.67(-.01).57(.21)
|
.63(.11)
||.76(.39)
|
.96(.82)
|

1.00(1.00)

trimmed
|.61(.23)
|
.68(.03)
|
.58(.28).62(.13)
|.81(.52).98(.93)
|
1.00(1.00) trimmedit.57(.17)

||
73(-15).58(.29).64(.06)
||.83(.55).99(.92)
|
1.00(1.00)
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SecondaryStructureAssignments
for1fdh:

ks 75 =-ºr14142

4.19.35
50—157199123

*Ti■as■ ad[siH*...”Hud-149
Al1935991Oº

pdb—||isº11

al aws—
Tºº-º-Taº-º
º

ji'Tº-º-"Tºº-º-Tº ResidueBasedScores-
Q(C)

Prediction
cfgorInnalppsksrkpdb

ObservedMethod ksstandard.69(.35).72(39)
|
.87(.70)
||76(45)
||1.00(1.00).84(.64).81(.56)

trimmed.70(42).70(.38).90(.79)
||
78(.52)
||
1.00(1.00).92(.79).88(.72) trimmedit.71(48).77(.52)
|
.96(.90).85(.67)
||
1.00(1.00).94(.84).91(.77)

rk
standard.65(.28).67(26).78(.48).74(.36).84(.64)
||
1.00(1.00).92(.75)

trimmed.65(.35).66(28)
|
.82(.58)77(46).92(.79)
|
1.00(1.00).95(.86) trimmedit.67(43)
|
.72(42)
|
.92(.77)
|
.88(.69).94(.84)
|
1.00(1.00).98(.91)

pdbstandard.61(.17).62(.13)
|
.74(.37)
||67(.19).81(.56).92(.75)
|
1.00(1.00)

trimmed.60(.20).59(.13)
|
.77(45).69(27).88(.72).95(.86)
|
1.00(1.00) trimmedit.60(.20).62(.18).83(.54).78(.39).91(.77).98(.91)
|
1.00(1.00)
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ks: rk: pdb: cf. gor: Inn. alpps:

SecondaryStructureAssignments
for1hmd:

1944–

-
|31

4849z

—
agi83.!

1944

—3.H.v-y

29&

—■sº-i
J—“Twº—
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3354L-82

145988

—
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("L.
|

sº-i

ResidueBasedScores-
Q(C)

Prediction
cfgormnalppsksrkpdb

ObservedMethod ks
standard.59(08)
|
.80(.55)
||
72(.44).63(.17)
||1.00(1.00).88(.74).96(.91)

trimmed.56(06).81(.59)
||
74(49).61(.16)
||1.00(1.00).93(.84).96(.92) trimmedit.59(.13)
|
.89(.77)
|
.84(.69).64(.21)
||1.00(1.00).94(.86).98(95)

rk
standard.65(.10)
|
.81(.58)
|
.63(.28).65(.12).88(.74)
|
1.00(1.00).92(.82)

trimmed.61(.09)
|
.82(.61).63(.33)
|
.63(.15).93(.84)
|
1.00(1.00).99(97) trimmedit.64(.15).91(.80)
|
.74(.53)
|
.71(.33).94(.86)
|

1.00(1.00)
|
1.00(1.00)

pdbstandard.64(.14)
.

.82(.60)
|
.67(.35).60(.08).96(.91).92(.82)
|
1.00(1.00)

trimmed.61(.13)
|
.84(.65).68(.40).57(.06).96(92).99(.97)
|
1.00(1.00) trimmedit.64(.19)
.

.91(.80)
||
77(.56).63(.18).98(95)
|
1.00(1.00)
|
1.00(1.00)
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SecondaryStructureAssignments
for1mbd:

ºn1

AL I.

ks:—tº-359514449
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J–"Lºº-"Lº–
ResidueBasedScores-
Q(C)

Prediction
cfgorinnalppsksrkpdb

ObservedMethod ks
standard.74(.36).77(35)
||
77(42)
|
.79(47)
||1.00(1.00).86(.66).88(.70)

trimmed.74(.40)
|

.76(40).79(.50)
|
.80(.51)
||
1.00(1.00).92(.79).93(.82) trimmedit.80(.47).81(49).86(.62).83(55)

||
1.00(1.00).94(.79).94(.84)

rk
standard.77(.32).82(27)
||
78(.34).76(27).86(.66)
|
1.00(1.00).93(.77)

trimmed.79(.41).83(.32).80(.40)
|
.78(.32).92(.79)
||
1.00(1.00).96(.88) trimmedit.90(.54).90(.41)
|
.90(.51).84(28).94(.79)
|
1.00(1.00).99(.95)

pdbstandard.76(.34).80(.33)
|
.77(.36).75(.30).88(70).93(.77)
|
1.00(1.00)

trimmed.79(.44)
|
.81(.39)
||
79(.44)
||
77(37).93(.82).96(.88)
|
1.00(1.00) trimmedit.88(.61).86(.53)
|
.89(.64).84(44).94(.84).99(.95)
|
1.00(1.00)
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SecondaryStructureAssignments
for2Ccy:
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|

loft12
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et
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loft12&
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sor–
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alpps:—||Hal-J—"
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ºs

ResidueBasedScores-
Q(C)

Prediction
cfgornnalppsksrkpdb

ObservedMethod ksstandard||.74(.34).75(.30)
|
.80(.61)
|
.85(.61)
||1.00(1.00)
|
.94(.86)
|
.98(.94)

trimmed||.74(.37)
|
.75(.32).84(.69)
|
.87(.68)
||
1.00(1.00).99(.98)
|
.97(.94) trimmedit.78(.43)
|
77(35).88(.77)
||93(.80)
||1.00(1.00)
|
1.00(1.00)
||
97(.93)

rk
standard||.73(.28).80(.38).76(.55).86(.58)
||.94(.86)
|
1.00(1.00).92(.79)

trimmed
|.75(.34).81(.41).80(.61).90(.71)
||.99(.98)
|
1.00(1.00)
|
.96(.91) trimmedit.78(.40)
|
.85(49)
|
.85(.71)
||
93(.78)
||
1.00(1.00)
|
1.00(1.00)
||
97(.91)

pdbstandard||.76(.39)
||
77(.34).78(.57).87(.66)
||.98(.94).92(.79)
|
1.00(1.00)

trimmed
|.78(.45).77(.36).81(.64).92(.77)
||.97(.94).96(.91)
|
1.00(1.00) trimmedit

||84(.56).81(42).85(.71)
|
1.00(1.00)
||97(.93)
|
.97(.91)
|
1.00(1.00)
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ResidueBasedScores-Q(C)

Prediction
CfgorInnalppsksrkpdb

ObservedMethod ks
standard.64(.27).61(.28).82(.63)
|
.72(42)
||
1.00(1.00).89(.77).87(75)

trimmed.64(.30).62(.31).86(.71)
|
.74(46)
||
1.00(1.00).96(.92).95(90) trimmedit.65(.33)
|
.64(.36).89(.78).76(.51)
||
1.00(1.00)
||
1.00(1.00)1.00(.99)

rk
standard.61(.22).59(.31).77(.52).71(36).89(.77)
|
1.00(1.00).95(.89)

trimmed.62(.26).60(.34).82(.64).73(43).96(.92)
|
1.00(1.00).97(.94) trimmedit.61(.27)
|
.62(42)
|
.86(.70).77(.51)
||
1.00(1.00)
|
1.00(1.00).99(.98)

pdbstandard.61(.23)
|
.56(.26).75(.48).72(40).87(.75).95(.89)
|
1.00(1.00)

trimmed.61(.27).56(.28)79(57)
||
74(46).95(90).97(.94)
|
1.00(1.00) trimmedit.62(.30).56(.35).85(.65).79(54)1.00(.99).99(.98)
|
1.00(1.00)
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SecondaryStructureAssignments
for2Cyp:

*—“–“J—"Hº
HºHº

p09– L293

ResidueBasedScores-Q(C)

Prediction
Cfgorninalppsksrkpdb

ObservedMethod ksstandard.53(.12).66(.32).72(.41).66(.34)
||
1.00(1.00).86(.74).88(.78)

trimmed.53(.11).66(.30)
||
73(.40)
||
67(35)
||
1.00(1.00).91(.83).93(.86) trimmedit

||.51(.10)
|
.67(.30).73(.34).65(.32)
||1.00(1.00).94(.88).92(.84)

rk
standard.55(.09)
|
.64(.29).65(.36)
|
.62(23).86(.74)
|
1.00(1.00).92(.84)

trimmed.54(.09)
||
65(31)
||
67(36).63(26).91(.83)
|
1.00(1.00).95(90) trimmedit.54(.11)
.

.65(.30)
||
67(.35).65(.30).94(.88)
|
1.00(1.00).97(93)

pdbstandard.55(.09).64(.29).66(.38).66(.31).88(.78).92(.84)
|
1.00(1.00)

trimmed.55(.11).65(.30).66(.38).67(.34).93(.86).95(90)
|
1.00(1.00) trimmedit.55(.13)
|
.66(.33)
|
.66(.35).69(.38).92(.84).97(.93)
|
1.00(1.00)
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SecondaryStructureAssignments
for21h1:
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1
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Toº-º-Tº-"Tºº 2437194127

pdb—||2d.º
lº-is: st
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1.14&Q2A
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|
13.
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21º

º51

alpps:49—■J–.Hº
Tºº-º-Tº:"...

ResidueBasedScores-Q(C)

2

Prediction
cfgorninalppsksrkpdb

ObservedMethod ks
standard.78(.44).81(.46).80(.43)
|
.74(.34)
||
1.00(1.00).89(.71).92(.78)

trimmed.81(.54).81(.48).81(.50)
|
.76(43)
|
1.00(1.00).93(.84).98(.94) trimmedit.87(.65).88(.59)
|
.90(.69)
|
.83(.54)
||
1.00(1.00).95(.88)
|
1.00(1.00)

rk
standard.78(.46).79(.40)
|
.78(.39)
|
.69(23).89(.71)
|
1.00(1.00).90(.73)

trimmed.79(.50)
|
.80(45)
|
.80(.47)
||
70(.29).93(.84)
|
1.00(1.00).92(.81) trimmedit

||.81(.51).85(.52).85(.58).75(.35).95(.88)
|
1.00(1.00).97(.91)

pdbstandard.80(.46).87(.47).83(43)
|
.76(.35).92(.78).90(.73)
|
1.00(1.00)

trimmed.83(.56).89(.58).86(.54).76(.39).98(.94).92(.81)
|
1.00(1.00) trimmedit.89(.69)
|
.96(.78).94(.77)
||
82(44)
||1.00(1.00).97(.91)
|
1.00(1.00)
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SecondaryStructureAssignments
for21hb:

12894

ks:
—”* rk:

1328*Q94143

o

aws

—“TJ–"J–"Jº-"T.H"Twº-tº"Tº-º"Tº ResidueBasedScores-Q(C)

Prediction
cfgorninalppsksrkpdb

ObservedMethod ks
standard.60(.12)
|
.66(.10)
|
.80(.56).73(38)
||1.00(1.00).86(.65).94(.85)

trimmed.60(.18)
||
65(.13)
|
.85(.70)
||
77(.51)
||1.00(1.00).93(.82).97(.93) trimmedit.61(.23)
|
.71(.22)
|
.93(.86).83(.60)
||1.00(1.00).99(.97)
|
1.00(1.00)

rk
standard.62(.15)
|
.72(22)
||
77(48)
|
.67(23).86(.65)
|
1.00(1.00).85(.61)

trimmed.63(23)
|
.73(.27).80(.60)
|
.68(.29).93(.82)
|
1.00(1.00).91(.77) trimmedit.68(.33)
|
.81(.43)
|
.93(.86).76(44).99(.97)
|
1.00(1.00).99(.96)

pdbstandard.62(.15)
||
71(.17)
||
79(55).72(35).94(.85).85(.61)
|
1.00(1.00)

trimmed.62(.22).69(.19)
.

.84(.67)
|
.76(48).97(.93).91(.77)
|
1.00(1.00) trimmedit.62(.22).76(.29)
|
.93(.84).80(.50)
||1.00(1.00).99(.96)
|
1.00(1.00)
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SecondaryStructureAssignments
for212m:

ResidueBasedScores-
Q(C)

Prediction
Cfgorninalppsksrkpdb

ObservedMethod ks
standard.70(.37).63(.30)
|
.68(.29)
||
77(.52)
||1.00(1.00).86(.68).94(.86)

trimmed.71(41).64(35).69(.33)
|
.78(.57)
||1.00(1.00).95(.89).95(90) trimmedit.76(.54).64(.42)
|
.74(.42).83(.67)
||
1.00(1.00).99(97).95(90)

rk
standard.74(.48).64(.36).68(.24)
||
71(41).86(.68)
|
1.00(1.00).85(.66)

trimmed.76(.55).65(41).69(.30).73(49).95(.89)
|
1.00(1.00).93(.84) trimmedit.81(.63)
|
.65(.44).76(.40)
|
.81(.65).99(.97)
||

1.00(1.00).93(.85)

pdbstandard.68(.32).66(.34).73(.41)
|
.78(.55).94(.86).85(.66)
|

1.00(1.00)

trimmed.67(.33)
|
.67(.40).74(.45).80(.61).95(90).93(.84)
|
1.00(1.00) trimmedit

||72(.44).68(.47).78(.53)
|
.88(.77).95(90).93(.85)
|
1.00(1.00)



s

SecondaryStructureAssignments
for2tmv:

gor: apps—f
Lº"Lº–"Lº–"J"J–"Lº–

ResidueBasedScores-Q(C)

Prediction
Cfgorninalppsksrkpdb

ObservedMethod ks
standard.62(.24)
|
.58(.00).75(.56)
|
.75(.49)
||
1.00(1.00).83(.67).79(.61)

trimmed.62(23)
|
.58(.00)
|
.78(.61)
||
76(.50)
||
1.00(1.00).87(.74).84(.68) trimmedit.63(.23)
|
.58(.00)
|
.80(.67).78(.53)
||
1.00(1.00).90(.79).89(.78)

rk
standard.54(08).50(.00).74(.49)
|
.77(.55).83(.67)
|
1.00(1.00).91(.82)

trimmed.54(08)
|
.50(.00)
|
.78(.58).81(.61).87(.74)
|
1.00(1.00).94(.88) trimmedit.51(.02).50(.00)
|
.84(.72).86(.71).90(.79)
||
1.00(1.00).99(.98)

pdbstandard.58(.15).46(.00).77(.53)
|
.82(66).79(.61).91(.82)
|
1.00(1.00)

trimmed.59(.17).46(.00).81(.63)
|
.86(74).84(.68).94(.88)
|
1.00(1.00) trimmedit.58(.16).46(.00).86(.74).92(.85).89(.78).99(.98)
|
1.00(1.00)



G

SecondaryStructureAssignments
for3c2c:

Tºy
14

9
T

ResidueBasedScores-Q(C)

Prediction
cfgornnalppsksrkpdb

observed
■ ºMethodTll ksstandard.64(.38).55(33)
|
.76(.51)
|
.58(24)
||
1.00(1.00).89(.81).90(.82)

trimmed.63(.39)
|
.52(32)
||
79(.54).57(29)
||
1.00(1.00).96(.91).95(90) trimmedit.63(46).51(.33)
|
.79(49).56(39)
||
1.00(1.00).97(.94).96(.91)

rk
standard.66(.32)
|
.66(.41).72(.47)
|
.62(22).89(.81)
|

1.00(1.00).92(.84)

trimmed.67(41)
||
65(41).75(.51)
||61(26).96(.91)
|
1.00(1.00).94(.88) trimmedit

||.68(.48).67(43)
|
.79(.56).63(.39).97(.94)
|

1.00(1.00).95(90)

pdbstandard.62(23)
|
.65(.40)
|
.75(.52).64(29).90(.82).92(.84)
|
1.00(1.00)

trimmed.61(.25).64(.41).77(.54).63(.30).95(90).94(.88)
|
1.00(1.00) trimmedit

||.61(.28).66(44).78(.51).65(.45).96(91).95(.90)
|
1.00(1.00)



G

SecondaryStructureAssignments
for3cln:

*

{T}–"Taj-"T.H"Tº-"Tºº-º-º-º-º-º- A1 II.

pdb:

1078

cf.:

Lº"Lº-fs—“13–º-"ºr
“Lº-"
is

!96

sor
TLG-#"|-|"Cº-fsº-Éº-"
ºr

o10oTºl

apps:+1}{T33
-ºrF-F

ResidueBasedScores-Q(C)

Prediction
cfgorInnalppsksrkpdb

ObservedMethod ks
standard.79(.55).82(.63).91(.81).79(55)
||1.00(1.00).87(75).95(.90)

trimmed||.84(.66).86(71).95(.90)
|
.86(.71)
||
1.00(1.00)
|
.95(.89).96(.92) trimmedit.92(.81).92(.82)
|
1.00(1.00)
||
93(.85)
||
1.00(1.00)
|
.98(.95).97(.94)

rk
standard
||.75(.38)
|
.87(.65).82(.65)
|
.79(.46)
||.87(.75)
|
1.00(1.00).91(.80)

trimmed
|.80(.52).93(.82)
|
.90(.79).84(.61)
||.95(.89)
|
1.00(1.00).98(.96) trimmedit.86(.62).96(.87)
|
.95(.89).92(.76)
||.98(.95)
|
1.00(1.00).99(.97)

pdbstandard
||77(.47)
|
.87(.71).86(.71).77(.46)
||.95(.90).91(.80)
|
1.00(1.00)

trimmed
|.81(.58).90(.79)
|
.90(.80).83(.63)
|.96(.92).98(.96)
|
1.00(1.00) trimmedit

||91(.78).96(.90).94(.88).91(.77)
||97(.94).99(.97)
|
1.00(1.00)



S

SecondaryStructureAssignments
for3cpw:

78

5

ºn&39

alpps:

ResidueBasedScores-Q(C)

Prediction
cfgorInnalppsksrkpdb

ObservedMethod ksstandard.65(.43)
|
.56(.29).70(.46).78(.63)
|
1.00(1.00).80(.65).87(74)

trimmed||.65(.47)
.

.54(.33)
|
.72(.52).80(.67)
||
1.00(1.00)
|
.83(.72).91(.82) trimmedit.61(.43)
|
.51(.30)
|
.69(.53)
|
.79(.65)
||
1.00(1.00)
|
.80(.67).93(.86)

rk
standard||.70(.33)
|
.74(.45).80(.56).89(.76)
||.80(.65)
|
1.00(1.00)
|
.81(.66)

trimmed
|.72(.44).73(49)
|
.86(.71).92(.84)
||.83(.72)
|
1.00(1.00)
|
.85(.73) trimmedit.75(.54).79(.56).93(.84).92(.83)
|.80(.67)
|
1.00(1.00)
|
.89(.79)

pdbstandard||.59(.25).59(.32)
|
.72(.48).80(.64)
||.87(.74).81(.66)
|
1.00(1.00)

trimmed
|.60(.36).58(.36).76(.58).84(.72)
||.91(.82).85(.73)
|
1.00(1.00) trimmedit.61(.42).57(.35).79(.65).86(.76)

||93(.86).89(.79)
|
1.00(1.00)



3.

SecondaryStructureAssignments
for3hhb:

4.24

ks:—1.H3514213

Qºn05148

rk:—[is■ .
J–"Tº
sºJ–ud-ag

º3694148–

pdb.tº-flas

215

Cf.

!-24&■ h

gor:1.Has■ 'sºftis: Inn 14212

Alºn&

alpps:

ResidueBasedScores-Q(C)

Prediction
Cfgornnalppsksrkpdb

ObservedMethod ksstandard.62(.22)
|
.76(.38).85(.68)
|
.68(24)
||
1.00(1.00).82(.56).90(.76)

trimmed.62(.28).75(.38).87(.73)
|
.70(.31)
||
1.00(1.00).89(.71).97(.92) trimmedit.58(.25).78(39)

||
92(.82)
|
.78(.45)
||
1.00(1.00).94(.80).99(97)

rk
standard.60(.18)
|
.88(.60)
|
.83(.65).79(.45).82(.56)
|
1.00(1.00).86(.59)

trimmed.58(20)
|
.91(.71)
|
89(.76)
||
79(51).89(.71)
|
1.00(1.00).89(.69) trimmedit.57(.19)
.

.97(.88).99(.96).87(.68).94(.80)
|
1.00(1.00).94(.78)

pdbstandard.56(.09).77(28).79(.55).68(.18).90(.76).86(.59)
|
1.00(1.00)

trimmed.56(.16).78(.33)
|
.82(.64).69(.25).97(.92).89(.69)
|
1.00(1.00) trimmedit.53(.17).81(.37)
|
.90(.78).78(38).99(97).94(.78)
|
1.00(1.00)



§

ks: pdb: cf. gor: alpps:

SecondaryStructureAssignments
for3icb:

H"Hº

3.

44

5

ResidueBasedScores-Q(C)

Prediction
Cfgormnalppsksrkpdb

ObservedMethod ks
standard.65(.28)
|
.72(48).91(.81)
||
61(.17)
||1.00(1.00).81(.64).81(.65)

trimmed.67(33)
|
.75(.54).97(.94).63(28)
||
1.00(1.00).88(.76).90(.80) trimmedit.75(.40)

||
79(55)
|
1.00(1.00)
|
.69(.34)
||
1.00(1.00).85(.73).89(.77)

rk
standard.71(20)
||
77(35).75(.52).69(.15).81(.64)
|
1.00(1.00).97(.93)

trimmed.75(.34)
||
77(39).81(.65)
||71(24).88(.76)
|
1.00(1.00).98(.96) trimmedit.79(.10)
|
.82(.33).83(.71).80(.14).85(.73)
|
1.00(1.00)
|
1.00(1.00)

pdbstandard.73(.24).80(.39).75(.54).72(.19).81(.65).97(.93)
|
1.00(1.00)

trimmed.79(.41)
|
.81(.45).81(.67).76(.31).90(.80).98(.96)
|
1.00(1.00) trimmedit.81(.12).87(38).87(.75).83(.15).89(.77)
|
1.00(1.00)
|

1.00(1.00)



g

ks: pdb: cf: gor: alpps:

SecondaryStructureAssignments
for3Wrp:

F-I,fº-
*º7287

2335sº-s:
|
º

Al27.37–ºº-124&
|
2■ad57.85º &7287.—■

2–"Lº–"T.H"T.H
sº-fos oº —l

–

22–■ º
£2.

“Ex
!º
|

a...H.”
º—“To

ºlR■ ) —■

A1*J-f†H.º

&1oºlo

—ÉT.H"Lº-fi
sº-fºiod

ResidueBasedScores-Q(C)

Prediction
cfgorInnalppsksrkpdb

ObservedMethod ks
standard.60(.10)
|
.66(-.13)
|
.76(.27)
|
.64(.12)
||
1.00(1.00).87(.63).95(.86)

trimmed.60(.13)
|
.66(-13)
|
.75(.30)
|
.65(.17)
||
1.00(1.00).96(.87)
|
1.00(1.00) trimmedit.64(27)

||
74(-.15).88(.59)
||71(29)
||1.00(1.00)
||
1.00(1.00)
|
1.00(1.00)

rk
standard.59(-01).77(-.13)
|
.85(.37)
|
.69(.17).87(.63)
|
1.00(1.00).86(57)

trimmed.59(.03)
|
.76(-.13)
|
.85(.42).68(.20).96(.87)
|
1.00(1.00).97(90) trimmedit.65(.17)
|
.83(-,07)
|
.98(.89)
|
.75(.38)
||1.00(1.00)
|
1.00(1.00)
|
1.00(1.00)

pdbstandard.61(.11)
.

.67(-.13)
|
.77(.28).67(.19).95(.86).86(.57)
|
1.00(1.00)

trimmed.62(.16).66(-.14)
.

.77(.34).66(.22)
||
1.00(1.00).97(.90)
|
1.00(1.00) trimmedit.67(.28).74(-.15).90(.63)
|
72(.34)
||
1.00(1.00)
|
1.00(1.00)
|
1.00(1.00)



g

AggregateResidueBasedScores-Q(C)

Prediction
cfgornnalppskskrpdb

ObservedMethod ks
standard.66(28).69(.35).78(.55).71(40)
||
1.00(1.00).86(.72).89(.77)

trimmed.66(.30).69(.37).81(.61).73(45)
||
1.00(1.00).92(.84).94(.87) trimmedit

||67(.33)
|
.72(.43)
|
.85(.69)
|
.76(.51)
||
1.00(1.00).95(90).95(.90)

kr
standard.65(.23)
|
.71(.35).74(.47)
||
71(.36).86(.72)
|
1.00(1.00).91(.79)

trimmed.66(27)
||
71(39)
||
78(.55).73(42).92(.84)
|
1.00(1.00).95(.89) trimmedit.67(.30)
|
.75(.46).83(.66).78(.52).95(.90)
|
1.00(1.00).98(.94)

pdbstandard.65(.23)
|
.69(.32).75(.48).72(.38).89(.77).91(.79)
|
1.00(1.00)

trimmed.66(27)
|
.69(35)
||
78(.55).74(44).94(.87).95(.89)
|

1.00(1.00) trimmedit.67(.30).72(.42).83(.65).79(.54).95(.90).98(.94)
|
1.00(1.00)

TableIV-2:AggregateScoresforAll20Proteins

Thistableshowstheresiduebasedscoresonthe
aggregation
ofthetalliesforall20proteins.
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Assignment Comparison Summary Statistics on Q Scores
Method Mean Median SD Worst Best Range

rk ks || standard .86 .86 .04 .77 .94 .17
trimmed .92 .91 .04 .83 .99 .16

trimmedit .94 .90 .06 .80 1.00 .20
pdb rk standard .91 .89 .05 .81 .97 .16

trimmed .95 .93 .04 .85 1.00 .15
trimmedit .97 .94 .03 .89 1.00 .12

pdb ks || standard .89 .87 .06 .76 .98 .22
trimmed .94 .91 .05 .81 1.00 .19

trimmedit .95 .92 .05 .83 1.00 .17

Table IV-3: Assignment Comparison Summary Statistics on Q Scores

Sets of 20 (one for each protein) Q scores are taken from the residue based
score tables of Figure 4-5. The combination of two secondary structure assign
ment methods and tallying method (e.g., trimmed) specifies each set. This
table lists summary statistics (mean, median, standard deviation, worst, best,
and range) on each set of Q scores.



Secondary Structure Assignment Comparisons Ranking by Standard Q
rk-ks pdb-ks pdb-rk

.94 2Ccy .98 2ccy .97 3icb

.89 3c2c .96 1hmq .97 1ccr

.89 10C5 .95 3cln .96 1ecd

.89 21h1 .95 3wrp .95 2cts

.89 2cts .94 2lhb .94 1cc5

.88 1.hmq .94 2lzm .93 1mbd

.87 3cln .93 1cc5 .92 2ccy

.87 10cr .92 21h1 .92 3c2c

.87 156b .90 3c2c .92 1hmq

.87 3Wrp .90 3hhb .92 2cyp

.86 1mbd .88 1ccr .92 1 foln

.86 21zm .88 1mbd .91 3cln

.86 21hb .88 2cyp .91 2tmv

.86 2.cyp .87 2cts .90 21h1

.84 1 foln .87 3cpv .86 3hhb

.83 2tmv .86 156b .86 3wrp

.82 3hhb .81 1 foln .85 21hb

.81 3icb .81 3icb .85 2lzm

.80 3cpv .79 2tmv .83 156b

.77 1ecd .76 1ecd .81 3cpv

Table IV-4: Assignment Comparisons Ranking by Standard Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on standard Q scores for each of the three com
parisons.



Secondary Structure Assignment Comparisons Ranking Trimmed Q
rk-ks pdb-ks pdb-rk

.99 2ccy 1.00 3wrp 1.00 1ccr

.96 3wrp 1.00 1CC5 .99 1hmg

.96 2.cts .98 21h1 .98 3icb

.96 3c2c .97 2ccy .98 3cln

.96 1CC5 .97 2lhb .98 1ecd

.95 21zm .97 3hhb .97 3wrp

.95 3cln .96 1hmq .97 1cc5

.93 21h1 .96 3cln .97 2cts

.93 156b .95 2lzm .96 2ccy

.93 1hmq .95 2cts .96 1mbd

.93 1CCr .95 3c2c .95 1fdh

.93 21hb .94 1ccr .95 2cyp

.92 1 mbd .93 1mbd .94 2tmv

.92 1 foln .93 2cyp .94 3c2c

.91 2cyp .92 156b .93 2lzm

.89 3hhb .91 3cpv .92 21h1

.88 3icb .90 3icb .91 21hb

.87 2tmv .88 1fdh .89 3hhb

.83 3cpv .84 2tmv .88 156b

.83 lecd .81 lecd .85 3cpv

Table IV-5: Assignment Comparisons Ranking by Trimmed Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on trimmed Q scores for each of the three com
parisons.



Secondary Structure Assignment Comparisons Ranking Trimmedit Q
rk-ks pdb-ks pdb-rk

1.00 3wrp 1.00 3wrp 1.00 3wrp
1.00 2Cts 1.00 21hb 1.00 3icb
1.00 2ccy 1.00 21h1 1.00 1hmq
1.00 156b 1.00 1cc.5 1.00 1ccr

.99 21zm 1.00 2cts 1.00 1cc5

.99 21hb .99 3hhb .99 2cts

.98 1CC5 .98 156b .99 2tmv

.98 3cln .98 1hmq .99 1mbd

.97 3c2c .97 2ccy .99 3.cln

.95 21h1 .97 3.clin .99 21hb

.94 1 foln .96 3c2c .99 1ecd

.94 3hhb .95 2lzm .98 1 foln

.94 1mbd .94 1mbd .97 21h1

.94 lb.mq .94 1ccr .97 2ccy

.94 2cyp .93 3cpv .97 2cyp

.93 1CCr .92 2cyp .96 156b

.90 2tmv .91 1fdh .95 3c2c

.85 lecd .89 2tmv .94 3hhb

.85 3icb .89 3icb .93 2lzm

.80 3cpv .83 1ecd .89 3cpv

Table IV-6: Assignment Comparisons Ranking by Trimmedit Q

Secondary structure assignments (Kabsch-Sander, Richards-Kundrot, PDB) on
the 20 proteins are compared against each other in pairs. This table lists a
ranking of the proteins based on trimmedit Q scores for each of the three com
parisons.



86

Summary Statistics on Residue Based Q Scores
Method Mean Median SD Worst Best Range

ks cf standard | .67 .67 .08 .53 ETT-25
trimmed .67 .68 .09 .52 .84 .32

trimmedit .69 .71 .12 .51 .92 .41
gor standard .70 .70 .09 .55 .84 .28

trimmed .70 .69 .10 .52 .86 .34
trimmedit .74 .71 .12 .51 .92 .41

nin standard .79 .77 .07 .62 .91 .28
trimmed .81 .79 .09 .62 .97 .35

trimmedit .85 .79 .11 .58 1.00 .42
alpps || standard .71 .71 .08 || .58 .85 | .27

trimmed .73 .72 .09 .56 .87 .31
trimmedit .76 .74 .11 .54 .93 .39

rk cf standard .67 .67 .09 .52 .82 .30
trimmed .67 .68 .10 .48 .87 .39

trimmedi: .70 .70 .12 .49 .90 .41
gor standard .73 .69 .10 .50 .88 .38

trimmed .74 .72 .10 .50 .93 .43
trimmedit .78 .73 .12 .50 .97 .47

mil standard .75 .70 .07 .56 .85 .29
trimmed .78 .73 .09 .56 .90 .33

trimmedit .84 .75 .12 .51 .99 .48
alpps || standard .72 .75 .07 .60 .89 .29

trimmed .74 .75 .09 .59 .92 .33
trimmedit .79 .76 .10 .59 .93 .34

pdb cf standard .66 .67 .08 .55 .80 .25
trimmed .67 .69 .10 .55 .84 .29

trimmedit .70 .72 .13 .53 .91 .38
gor standard .71 .67 .11 .46 .87 .41

trimmed .72 .68 .12 .46 .90 .44
trimmedit .76 .71 .14 .46 .96 .50

nn standard .76 .72 .07 .57 .86 .29
trimmed .79 .74 .08 .58 .90 .32

trimmedit .84 .78 .10 .58 .98 .39
alpps || standard .72 .74 .07 .60 .87 .27

trimmed .74 .74 .09 .57 .92 .34
trimmedit .79 .81 .10 .63 1.00 .37

Table IV-7: Summary Statistics on Residue Based Q Scores

Sets of 20 (one for each protein) Q scores are taken from the residue based
score tables of Figure 4-5. The combination of secondary structure assignment
method (observation), prediction method, and tallying method (e.g., trimmed)
specifies each set. This table lists summary statistics (mean, median, standard
deviation, worst, best, and range) on each set of Q scores.
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Summary Statistics on Residue Based Q Scores
Method Mean Median SD Worst Best Range

rk rg || standard .74 .74 .08 .59 .88 .28
trimmed .75 77 .09 .60 .93 .33

trimmedit .80 .79 .10 .62 .97 .35
ks rg standard .71 .70 .09 .55 .84 .28

trimmed .71 .69 .10 .52 .86 .34
trimmedit .75 .71 .12 .51 .92 .41

pdb rg standard .73 .72 .10 .56 .87 .31
trimmed .73 .73 .11 .56 .90 .34

trimmedit 77 .76 .12 .56 .96 .40

Table IV-8: GOR Summary Statistics without 2tmv

This table is similar to Table IV-7 in format. Only summaries of GOR predic
tions are shown, and only 19 of the 20 predictions are included in the data.
The GOR prediction for Intact Tobacco Mosaic Virus [2tmv) contains no hel
ices, and this Q score is not considered here.
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Rankingof
IndividualPredictions
byStandard
Q

Cfgornnalpps

ksrkpdbksrkpdbksrkpdbksrkpdb
.811CC5.821cc5.8021h1.841ccr.883hhb.873cln.913cln.853wrp.863cin.852ccy.893cpv.872ccy .793Cln.7821h1.7810C5
|

.823cln.873cln.8721h1.913icb.831Cc5.841cc5.791mbd86.2ccy.822tmv .7821h1.771mbd.773cln.8121h1.821mbd.83156b
|
.871foln.833hhb.8321h1.793Cln.793Cln.803cpv .74limbd.753cln.762ccy
|
80lhma.811hmq.821hmq
|
86lccr.823cln.80156b783cpv.793hhb.7821zm .742ccy.7421zm.761mbd
|
.77loc5.802ccy.801mbd.853hhb.803cpv.793hhb
|

.7721zm.772tmw.773Cln .74locr.732ccy733icb.77.1mbd7921h1.803icb.841cc5.781■ olh.792]hb.77156b.761mbd.7621h1 .7021zm.713icb.6821zm
|

.763hhb.781ccr.7910Cr.822cts.7821h1.782ccy.761f.jh.741■ dh.751mbd .691fdh.703cpv.681ccr.752ccy773icb.773hhb
|

802ccy.781mbd.781ccr.7516:Cr.74156b.722cts .653icb.691Ccr.64156b
|

.723icb77.3wrp772ccy
|

8021hb.772cts.773wrp.752tmv.7121zm.72lecr .653cpv.663c2c.641hmq
|

721fdh743cpv7121hb.8021h1.772]hb.771mbd.7421h1.71locr.723icb .643c2c.651f.jh.621ecd.72156b.722lhb.7010C5
|
.771mbd.771cCr.772tmv
|
.7321hb.71loc5.7221hb .642cts.651hmq.6221hb
|
663wrp.71156b.673wrp
||

763wrp.762ccy.752cts.722cts.712Cts.7010C5 .62lecd.64lecd.623c2c
|
.66lecd.70lecd.67lecd.763c2c.753icb.753c2c.683hhb.693Wrp.69156b .623hhb.622lhb.613wrp

||

6621hb.69loc56621zm
|
.76156b.742tmv.753icb.662cyp.693icb.683hhb .622tmv.612Cts.6l2Cts.662cyp.671■ dh.653c2c
|

.752tmw.723c2c.741foln.65loc5.6921h1.673wrp .603wrp.603hhb.611■ dh.6321zm.663c2c.642cyp.722cyp.71156b.732lzm.643wrp.6721hb.671foln .602|hb.593Wrp.593cpv
|

.612cts.642cyp.621fdh.721hmq.6821zm.723cpv
|
.631hmq.651hma.662cyp .59lbmg.552cyp.582tmv
|

.582tmv642izm593cpv
|

.703cpv.652cyp.671hmq
|

.613icb.622cyp.643c2c .54156b.542tmv.563hhb
|

.563cpv59.2cts.562cts.6821zm.631hmq.662cyp.58lecd.623c2c63lecd .532cyp.52156b.552cyp.553c2c.502tmv.462tmv
|
.62lecd.56lecd.57lecd.583c2c.60lecd.601hmq

TableIV-9:Ranking
of
Predictions
by
Standard
Q

Thistablelistsa
rankingoftheproteinsbasedonstandard
Qscoresforeachcombination
of
predictionmethodandsecondarystructureassignment method.
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Ranking
of
IndividualPredictions
byTrimmed
Q

cfgorInnalpps

ksrkpdbksrkpdbksrkpdbksrkpdb .843cln.871cc5.841cc5
|

.863cin.933cln.903cln.973icb.903cln.903cln.872ccy.923cpv.922ccy .831CC5.803cln.8321h1.851ccr.913hhb.892|hl.953cln.893hhb.901CC5.863cin.902ccy.862tmv .8121h1.791mbd.813cln.8121h1.831mbd.85156b.901■ dh.871CC5.8621h1.803cpv.843cln.843cpv .74limbd.7921h1.793icb.811hmq.821hmq.841hmq
|
.90lecy.863cpv.842|hb.80156b.812tmv.833clin .742ccy.7621zm.791mbd
|
.80loc5.812ccy.81lecr.881ccr.853wrp.823hhb.801mbd.793hhb.8021zm .731CCr.752ccy.782ccy.761mbd.801ccr.813icb.873hhb.822cts.813icb.7910Cr.781mbd.77.1mbd .7121zm.753icb.691ccr.753icb.8021h1.811mbd

|
.862.cts.821f.jh.812Ccy.7821zm.77156b.762|hb .701■ dh.723cpv.6721zm.753hhb773icb.783hhb
|
.8521hb.813icb.812tmv
|
.781■ dh.771follh.763icb .673icb.70locr.64156b.752ccy.763wrp772ccy
|

842ccy8021hb.81156b
|

.772]hb.7321zm.762.lhl .653.cpv.673c2c6221hb.72156b.733cpv721cc5.8121h1.8021h1.801ccr.7621h1.731CCr.742cts .642cts.651fdh623wrp
||
701■ dh.732lhb.692lhb.791mbd.801mbd.791mbd.762tmv.732Cts.731CCr .633c2c.632/hb.612Cts.67lecd71156b.68lecd.793c2c.802ccy.792cts.742cts.731CC5.70loc5 .62lecd63lecd61lecd.662cyp.71lecd.6721zm.782tmv.791ccr.773c2c.703hhb.713icb.693hhb .623hhb.622cts.613c2c

|

663wrp.71lecs.663wrp
||

76.156b.782tmv.771fan.672cyp.7021h1.69156b .622tmv61lbma.61lbma
|

.652lhb.661fah.652cyp.753wrp.753c2c.773wrp.671cc5.6821hb.691■ dh .602|hb.593wrp603cpv
|

.6421zm.652cyp.643c2c.741hmq.71156b.763cpyv
||

653Wrp.683wrp.672cyp .603wrp.583hhb.601filh.622cts.653c2c.591■ dh
|

73.2cyp.6921zm7421zm.633icb.631hmq.663wrp .561.hmq.542tmv59.2tmv
|

.582tmv.6521zm.583cpv
|

.723cpv.672cyp.681hmq
|
.61lbma.632cyp.633c2c .532cyp54.2cyp.563hhb
|

.543cpv.602cts.562cts.6921zm63lhma.662cyp.573c2c.613c2c.62lecd .52156b.48156b.552cyp.523c2c.502tmv.462tmv
|
.62lecd.56lecd.58lecd.56lecd.59lecd.571hmq

TableIV-10:Ranking
of
Predictions
by
Trimmed
Q

Thistablelistsa
rankingoftheproteinsbasedontrimmed
Qscoresforeachcombination
of
predictionmethodandsecondarystructureassignment method.
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Rankingof
IndividualPredictions
by
Trimmedit
Q

Cfgorinnalpps

ksrkpdbksrkpdbksrkpdbksrkpdb
.923cln.901CC5.913cln.923cln.973hhb.9621h11.003icb.993hhb.981CC5.933clin.932ccy1.002ccy .881cc5.901mbd.901CC5.891hmq.963cln.963cln1.003cln.983wrp.94.21h1.932ccy.923cln.922tmv .8721h1.863cln.8921h1.89locr911hmq911hmq98.1cc5.981cc5.943cln.87156b.923cpv.913cln .801mbd.8121h1.881mbd

|
.8821h1.901mbd91156b
|
.961foln.953Cln.9321hb.851foln.881■ dh.882lzm .782ccy.812lzm842ccy.811mbd.851ccr.87locr.932|hb.9321hb.903hhb
|
.831mbd873hhb.863cpv .7621zm.793icb.813icb.811CC5.8521h1.873icb.921CCr.933cpv.903wrp

||8321zm862tmv.841mbd .753icb.782ccy.741ccr.793icb.852ccy86.1mbd.923hhb.921fah.891mbd
|
.8321hb.841mbd.833icb .731CCr.753cpv.7221zm783hhb.833wrp813hhb
|

9021h1.901mbd.89156b
|
.8321h1.82156b.8221h1 .71

1
foln.751CCr.68156b
|
.78156b.823icb.812Ccy.892Cts.862.cts.873icb.81lecr.8121zm.8021hb .652cts.683c2c.673wrp

||

772ccy.8121hb.762|hb.883wrp.851ccr.871CCr.793cpv.803icb.792&ts .643wrp.6821hb.641hmq
|

.771fih.793cpv751cc5.882ccy.852ccy.862tmv
||

783hhb.7810C5.783hhb .633c2c.671■ dh.6221hb.743wrp78156b743wrp.861mbd.8521h1.852cts.782tmv.772cts.781foln .632tmv.653Wrp.622cts.7121hb.76lecd.73lecd.841hmq.842tmv.852ccy76.2cts.7621hb.77156b .613cpv.641hma.613cpv.68lecd.721cc56821zm
|

802tmv.833icb.83
1
foln.713Wrp7521h1.761ccr .6121hb.612Cts.613c2c.672cyp.721fdh.663c2c.79156b.793c2c.793cpv.693icb.753wrp.741cc.5 .59lbma.59lecd.601foln.642cts.673c2c.662cyp.793c2c.76156b.7821zm.691CC5.7510cr.723wrp .59lecd.573hhb.582tmv

|
.6421zm.6521zm.621fan.7421zm7621zm783c2c65.2cyp.711.hmq.692cyp .583hhb.542cyp.57lecd.582tmv65.2cyp57.3cpv
|

73.2cyp.741hmg.771hmq
|

.641hmq.652cyp.653c2c .54156b.512tmv.552cyp.513c2c.622cts.562.cts.693cpv.672cyp66.2cyp.563c2c.633c2c.64lecd .512Cyp49156b.533hhb.513cpv.502tmv.462tmv
|
.58lecd.51lecd.58lecd.54lecd.59lecd631hmq

TableIV-11:Ranking
of
Predictions
by
Trimmedit
Q

Thistablelistsa
rankingoftheproteinsbasedon
trimmedit
Qscoresforeachcombination
of
predictionmethodandsecondarystructureassignment method.
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4.4. Discussion

Before discussing scoring predictions it is important to look at the data collected on

the helices assigned by different secondary structure assignment methods. Counting the

helices in the feature diagrams of Figure 4–5, there is a range of 141 (Kabsch-Sander),

150 (Richards-Kundrot), and 152 (PDB) total observed helices on the 20 proteins. The

next section will look at differences in secondary structure assignments and the effects of

trimming. After looking at assignments some comments can be made on the scoring of

predictions.

4.4.1. Secondary Structure Assignments

4.4.1.1. Differences in Secondary Structure Assignments

Some of the differences in the total number of helices assigned by different methods

can be explained by the "run-on" helix problem. Using Richards-Kundrot assignments,

one can find examples of two adjacent helices which have no residue separating the C

terminal of one helix and the N-terminal of the next. There are even cases where the C

cap residue is the N-cap residue of the next helix (e.g., residue isoleucine-76 is serves

both roles in leghemoglobin [2lh1]). This comes about because the Richards-Kundrot

assignment is based on fitting ot-carbon locations with those of an ideal helix. The kink

at a given residue may allow it to fit two adjacent helices. A feature of Richards-Kundrot

is that it treats each helix as a unit. Kabsch-Sander assignments, which use hydrogen

bonding patterns, define a helical unit as a set of contiguous residues which are assigned

as helical. In the leghemoglobin example, Richards-Kundrot assigns one helix from resi

due 57 through residue 76 and a second from 76 through 81, while Kabsch-Sander
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assigns one long helix from 58 through 81. (See Figure 4-6.) A visual examination of the

structure on a graphics terminal leads to an assignment of one (kinked) helix. In another

example (sperm whale myoglobin [1mbd]), Richards-Kundrot assign serine-58 to two

adjacent helices, while Kabsch-Sander define serine-58 as a one residue turn. In this case

a visual inspection gives the impression that there are two distinct helices. Had Kabsch

Sander treated serine-58 as a helical residue, the separation of these two distinct helices

would have been lost.

Leghemoglobin [21h1 - Residues 44-86)
ºv

ks:
-

84

57 76–
rk:
- -

al 84

57

pdb:
-

sº

Sperm Whale Myoglobin [1mbd - Residues 44-81]
52 59.

ks: |-

53 7

54 58
rk:

-

58. 19

54 58
pdb:
- -

57. 7:

Figure 4-6: Run-on Helices

These two examples show places where the Richards and Kundrot assignment
place one residue in two adjacent helices.
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From a residue based perspective, the Kabsch-Sander and Kundrot-Richards assign

ments are not very different. After discounting capping residues through the trimming

methods, all three assignments are very close in areas shown in Figure 4–6. The three are

identical for 21h1, and Kabsch-Sander and PDB are identical for 1 mbd. Extended trim

ming brings all three into agreement on both subsequences.

Other examples of differences in helix counts arise from more divergent assign

ments. Many "stray" helices, ones which appear in only one of the three assignments,

can be found. In Tobacco Mosaic Virus Coat Protein [2tmv), Kabsch-Sander finds a

helix from residue 104 through residue 108. Neither of the other two assignments show a

helix in the same area. On the other hand, Kabsch-Sander shows no helix before residue

20, while both Richards-Kundrot (8-13) and the PDB (9-14) assign a 5 residue helix

closer to the beginning of the sequence. On balance, all three assignments find 6 helices,

but there is a significant difference in where the helices are placed.

Table IV-2 shows the best aggregate Q scores between secondary structure assign

ments is only .91 (Richards-Kundrot and PDB). The .86 aggregate score (Richards

Kundrot and Kabsch-Sander) is low considering that 9 predictions have Q scores of .86

or better when compared against one (or more) secondary structure assignments.

Table IV-3 shows summary statistics for the cross assignment comparisons. When

comparing Richards-Kundrot and Kabsch-Sander, only one sequence [2ccy, .94] had a Q

score equal to or better than .90. The difference between these two assignments is

emphasized by noting that there is no overlap between top six sequences in the PDB-KS

and PDB-RK columns — even though the scores are at least .93. The hypothesis of pro

teins with secondary structure which is "easy" to assign can be dismissed. On the other
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hand, at least one protein [3cpv] appears to fare poorly in all three comparisons.

4.4.1.2. Secondary Structure Assignments and Trimming

Although stray helices will not be tempered by trimming, run-on helices and

moderate capping differences will. Table IV-2 shows what happens to the aggregate

scores when trimming is applied. The biggest jump occurs for the Richards-Kundrot and

Kabsch-Sander comparison (e.g., .86 to .92 Qs). The range of Q scores decreases from

.05 to .03. The aggregate scores continue to improve when extended trimming is applied.

The aggregate C scores also improve with both forms of trimming. With extended trim

ming the correlation coefficient is .90 or better for all three comparisons.

The summary statistics in Table IV-3 show the same trends for both PDB cross

comparisons. The scores in both PDB-RK and PDB-KS rise with trimming and the range

falls. This continues with extended trimming. The RK-KS scores go up with trimming

and the range drops slightly, but the trend does not carry over to extended trimming.

As seen in the discussion of Figure 4–4, trimming ameliorates helix capping differ

ences between secondary structure assignments, but it does not change the scoring of

stray helices. In the process of trimming capping residues from consideration in overlap

ping helices, some potential true positives are cut from the tallies. The false positives

and false negatives of the stray helices are not changed by trimming. In the RK-KS com

parisons, trimming improves the capping comparisons, but extended trimming exposes

the stray helices. For two proteins [3cpv and lecd] the extended trimming scores are

lower than the trimming scores.
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4.4.2. Scoring Predictions

As a first look at the predictions, the helix counts show that CF (143), NN (140),

and ALPPS (151) are similar to the assignment counts (141 to 152). The GOR count

(90) is very low. On the other hand, the aggregate residue based scores of Table IV-2

place GOR above CF and close to ALPPS on all comparisons. This is one indication that

residue based scoring does not necessarily reflect the fit between the topology of two

secondary structures. This section will look more carefully at the residue based numbers

before returning to the theme of scoring a prediction as an approximation of observed

secondary structure.

4.4.2.1. Residue Scores

Although there is a ranking of methods (NN, ALPPS, GOR, CF) based on the Q

scores, Table IV-7 reports all four methods having large (.25+) ranges which increase

with trimming and extended trimming. The standard deviations and ranges for the GOR

predictions appear to be slightly larger than the corresponding figures for each of the

other three prediction methods. A review of the feature diagrams in Figure 4-5 shows

that the GOR prediction for Tobacco Mosaic Virus Coat Protein [2tmv] contains no hel

ices. The Q scores stay the same through trimming, and the C score is zero. This predic

tion could be considered as an outlier. When this prediction is removed from considera

tion the range and standard deviation statistics for GOR (see Table IV-8) look similar to

those of the other three prediction methods.

Unlike the situation in assignments, it does appear that there are some proteins with

secondary structures which are "easy" to predict. Looking at the rankings in Table IV-9,

3cln is consistently in the top five predictions. Other proteins lend themselves to good or
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excellent prediction Q scores. For example, 2ccy is always in the top half of each list

with Q scores ranging from .73 (CF-RK) to .87 (ALPPS-PDB). Similarly, some

sequences [1ecd, 2cyp) were generally at the bottom of the Q rankings.

The rankings also show the influence of assignment methods on prediction scores.

The best GOR Q score is for the prediction of 3hhb compared to the RK assignment

(.88). Seven GOR-PDB scores are better than the one for 3hhb (.77), and six GOR-KS

scores are better than 3hhb's .76. The .12 difference between the GOR-RK score and the

GOR-KS score is significant. This difference is increased with trimming (.16) and

extended trimming (21).

4.4.2.2. Looking at the Feature Diagrams

A look at the feature diagrams for the GOR prediction and assignments on 3hhb

gives more insight into interpreting the residue scores. As can be seen in the feature

diagrams, GOR places one long helix from residues 60 to 137. The first two predicted

helices correspond well with the first two helices of each of the three assigned secondary

structures. The PDB and KS assignments show a third helix in the area of residues 37 to

42. Neither the RK assignment nor the GOR prediction have a helix in this area. Aside

from a one residue turn (at 59), GOR shows two helices taking up the entire area between

residues 51 and 137. RK places 5 helices (including a both parts of a run-on situation) in

this same stretch, while both KS and PDB have 4 helices. Although the topology of the

GOR prediction does not look very much like the layout of the RK assignment. The Q of

the comparison is very good. Moreover, the Q score gets even better as turn residues

from the RK assignment are discounted by extended trimming. Good Q scores do not

tell the whole story.
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One might argue that this secondary structure prediction is prima facie wrong

because of the unreasonable length of the fourth helix. Q scores for reasonable predic

tions do not necessarily portray a complete evaluation a prediction as an approximation

of an observed secondary structure. Consider the ALPPS and NN predictions for 1ccr.

Assuming that any predicted helix of less than 20 residues is reasonable, only the ALPPS

predicted A helix (residues 10-35) should be questioned. Since it is 25 residues, it may

be too long. The NN-KS Q score (.86) is much better than the ALPPS-KS Q score (.75).

Kabsch-Sander shows 4 helices — none of which are run-on. The ALPPS prediction

does a good job of matching the B, C, and D helices. For purposes of using the predic

tion to generate a tertiary structure, the missing turn in the NN prediction may be more

misleading than the extended helix in the ALPPS prediction.

4.5. Conclusions and Future Directions

This chapter looked at scoring by producing three sets of observed secondary struc

tures and four sets of predictions over a set of 20 O■ o proteins. The 7 sets of secondary

structures were scored against the 3 observed secondary structures using standard residue

based tallies and trimmed and extended trimming tallies. Scores were reported as both Q

and C quality indices. Additionally, feature diagrams of the 140 secondary structures

were used to examine the differences between secondary structure methods as well as to

explore the concept of predictions as approximations of observed structure.

In comparing secondary structure assignment methods, there is a large range in the

number of predicted helices and in the individual Q and C scores. Much of difference in

Q and C scores was removed by trimming. Although the aggregate scores continue to

improve after extended trimming, a couple of individual extended trimming scores are
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lower than the trimmed versions. Trimming is not a method that simply adds points to

residue scores. It allows scoring to discount residues which are subject to interpretation

by different assignment methods.

Some proteins have observed secondary structures which can be well predicted by

all four methods ("easy to predict"). Other proteins present observed secondary struc

tures which are not well predicted by any of the four methods.

Residue based scoring does not give a complete measurement of how well a

predicted secondary structure approximates an observed secondary structure. Residue

tallies do not reflect any assessment of a prediction as a reasonable secondary structure.

For example, GOR scores are generally close to ALPPS scores and better than CF scores,

yet GOR shows a third less helices. Many GOR helices are more than 40 residues in

length. The residue based penalty for missing turns relates solely to the length of the

missed turn. Some complementary scoring system needs to be developed which gives

additional information on the fit between the topology of the observed and predicted

secondary structures.

Feature based scoring methods and a proposal for a method based on changes to a

prediction which make it approximate an observed secondary structure are discussed in

the next chapter.



Chapter 5

A Proposal for Feature-Based Scoring

5.1. Introduction

Chapter 4 addresses the problem of evaluating secondary structure predictions. The

scoring techniques used in that chapter are variations of residue by residue comparisons

of predictions and observations. One conclusion of that chapter is that residue based

scoring fails to provide a complete evaluation of the relative "goodness of fit" between

predicted and observed secondary structures. This chapter attempts to lay the ground

work for a feature based scoring system for secondary structure predictions on O■ o pro

teins. This new evaluation technique would supplement residue based scoring systems.

Secondary structure prediction is not an end in itself. It is a valuable stepping stone

on a path towards some other goal. Any secondary structure prediction should be

evaluated in light of how well it furthers the underlying goal. For example, secondary

structure prediction might be used to refine a model structure built by sequence homol

ogy to a known structure. In this case, the correct prediction of the ends of helices would

be very important. For purposes of discussion in this chapter, it is assumed that the end

goal is tertiary structure generation based on combinatorial methods (Cohen, Richmond,

and Richards, 1979; Cohen and Kuntz, 1989).

At this time, residue based scoring is the accepted standard for evaluating secondary

structure predictions. Residue based scoring is a valuable tool, but it does not adequately

describe a comparison between predicted and observed secondary structure. The exam

ple shown in Figure 5-1 demonstrates a situation where two predictions have identical

residue based tallies, and upon visual inspection, the two predictions are both reasonable

99
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observed:

prediction 1:

prediction 2:
A B C D

—“ –“ —“ J-É.-
Figure 5-1: Residue Scoring Ambiguity

A secondary structure assignment and two predictions are shown in as feature
diagrams. Both predictions are correct on all but 8 residues. Prediction 1, to
tally misses the D helix, while prediction 2 simply misses the single capping
residues from each end of all four helices.

(e.g. no helix is less than 5 residues) yet different. In light of the goal of using secon

dary structure as a step towards a tertiary prediction, prediction 2 is a better approxima

tion of the observed secondary structure.” This assessment is more easily made when

examining the feature diagrams, than when looking at the residue tallies. This chapter

addresses the issue of devising a quantitative evaluation of a helical secondary structure

prediction based on a comparison of the features in the observed and predicted secondary

Structures.

This idea is not new. As seen in the introduction to Chapter 4, early secondary

structure predictions were evaluated by pairing observed and predicted helices. There

was a sense of under- and over- predicted helices as well as realization of the difficulty in

predicting the ends (especially the C-cap) of helices. These ad hoc evaluations were not

* Using the trimming modifications described in chapter 4, the tallies do differ, and prediction 2
is the clear winner. Another example of identical tallies for two reasonable predictions can be as
sembled that are differentiated by trimming.
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quantitative. As the number of known protein structures increased and more secondary

structure prediction methods became available, quantitative residue based comparisons

became the norm.

This chapter looks at two general types of feature based scoring methods. The first

is based on the only known published attempt at quantitative feature based scoring. The

remainder of the chapter introduces a new concept, pseudo-string editing, as a feature

based measure. In order to develop this, an excursion through the established field of

string edit distances is presented. The concept of pseudo-string editing is sketched with

some examples, but additional work will be required to fully develop this new idea.

5.2. Registration and Analysis Methods

One general approach to evaluation using the feature diagrams consists of two

major steps, registration and analysis. The predicted and assigned features need to be

paired or registered.” Some features will not have mates, while others have more than

one. Figures 5-2 and 5-3 give three examples of different rules for registering predicted

and observed features. Variations on these themes could also be considered. The regis

tration then needs to be analyzed. Some comparisons can be made based on the registra

tion alone. For example, does each assigned helix have one and only one mate in the

predicted secondary structure? A second level of analysis looks in more detail at the

pairings. For example,

* Although the term alignment would describe this step, alignment has taken on a specific
meaning in the context of protein sequence studies.
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• How do the sizes of the assigned and predicted helices
compare?

• How far apart are the mid-points of the respective
assigned and predicted helices?

5.2.1. Taylor’s Structure Percentage

In an appendix to an article on using templates to predict supersecondary structural

motifs (Taylor and Thornton, 1984), Taylor (1984) developed a feature based score

called a structure percentage. An example is shown in Figure 5-2. A registration of

observed and predicted secondary structure units (strands and helices) is based on a

minimum one residue overlap. The registration was used by Taylor to produce a struc

ture abstract for the observed secondary structure and each prediction. Taylor's structure

percentage was designed for comparing supersecondary structure motifs and not secon

dary structure predictions. Although the goals of the evaluation are different, Taylor's

approach appears to be a good starting point — especially with respect to the issue of

registration.

5.2.2. Alternative Registrations

Taylor's single residue overlap rule is dependent upon the secondary structure

assignment method. If an observed helix and a predicted helix share only one residue,

that residue is an NIC]-cap for one helix and a C[N]-cap for the other. As discussed in

Chapter 4, the caps of helices are difficult to assign and predict. Why should an observed

helix be registered with a predicted helix if they share but one residue in common? Fig

ure 5-3 provides examples of two alternative registration rules which put more emphasis

on correctly predicting the central region of the helix.
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Observed

Predicted | | | |

O. O. - O.

O. O. O. - O.

Structure Abstract Matrix

Structure Percentage = 3/5

Figure 5-2: Taylor’s Structure Percentage

First the predicted and observed features are registered. Starting at the N
terminal of the sequence, stop at the first C-terminal residue of a secondary
structure unit (helix or strand). Go to the same residue in the parallel feature
diagram and see if the same type of unit is found. If so, these two units are re
gistered and a matching column can be entered in the structure abstract matrix.
If not, the unit is not paired with another unit and a dash goes into the abstract.
This is shown here for the third helices of both the assigned and predicted
feature diagrams. Continue attempts at pairing using the N-most C-terminal of
any unit which has whose pairing (or non-pairing) is not determined until all
units have been considered.

The structure abstract matrix follows from the registration. A column is pro
duced for each pairing (or non-pairing) arrow in the registration. One row is
formed for the observed assignment and another for the prediction. The entries
are of for helix and - for turn. The structure percentage is simply the number of
columns with matching entries divided by the total number of columns.

Even with a more stringent set of registration rules, the calculation of the structure

percentage is too simplistic for evaluating predictions. No regard is given to the type of

error (e.g. a missing helix, extra turn, length of features) made by the prediction. All

errors are given the same weight.
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Observed

| | | i
Predicted | |

-*—º-º-º-º-
O. o: - - O. O.

O. - O. O.
-

0.

A. Structure Percentage = 2/6

Observed

Predicted | |1 —- W —"

0. O. —
-

0. - O.

o: - 0. O. - O. -

B. Structure Percentage = 1/7

Figure 5-3: Alternative Registrations

Panel A-Single Central Residue Overlap - A registration that requires only a
single residue overlap would be dependent upon the assignment algorithm.
This example requires that a central residue of a secondary structure unit must
overlap with a similarly assigned residue in the parallel feature diagram in ord
er to define a pairing. In this definition the parallel residue can be in any posi
tion of the secondary structure unit. A broad definition of central residue (e.g.,
each secondary structure could have more than one central residue) lowers the
dependence upon the assignment algorithm. It also focuses the scoring on ac
curate prediction of the cores secondary structure units.
Panel B-Double Central Residue Overlap - The single central residue over
lap registration (defined in Panel A) does not guarantee that the cores of both
of the paired units are covered by the extent of the opposite units. Although
the core of the fourth predicted helix is covered by the fourth assigned helix,
the core of the fourth assigned helix is not cover by the predicted helix. In this
example, a pairing units occurs only when a central residue from each poten
tial mate, finds a partner residue. A double central residue overlap rule
demonstrates a high standard for pairing.
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5.3. Pseudo-String Editing

When comparing a predicted secondary structure to an observed secondary structure

for a given protein one might ask the question, what mistakes distinguish the prediction

from the observation. Some mistakes are not as damaging to the long term goal (e.g., ter

tiary structure generation) as others. Another way of asking this question is what altera

tions are necessary to take a predicted secondary structure and transform it into an

acceptable approximation of the observed secondary structure. Consider the two predic

tions shown in Figure 5-4. Prediction 1 fails to show the turn between the B and Chel

ices. An insertion of a short turn breaking helix BC into two helices would produce a

good approximation by prediction 1. Prediction 2 has all four helices well registered

with the observed secondary structure. The predicted A helix is more than twice as large

as the observed A helix. Contracting the right (carboxy) half of the predicted A helix

would produce an approximation by prediction 2. Some consideration might be given to

expanding the left (amino) end of the predicted D helix, but unpredicted 6 residues may

not be important to the approximation.

Each type of alteration could be given a cost in scoring points, and the prediction

with the lowest score would be considered best. In the Figure 5-4 examples, the cost of

inserting a turn might outweigh the cropping of a helix. A scoring method can be con

structed based on this alteration scheme. Borrowing constructions from the well studied

field of string edit distances, a new scoring method, pseudo-string edit distances, could

prove to be a useful approach to feature based scoring.
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observed:

H A * sº C 26 D

prediction 1:

—º fºLi H=ºio
prediction 2:

tº A wº s C º
Figure 5-4: Feature Diagrams for Editing

These feature diagrams (based on 1ccr) are presented to consider what changes
are necessary to transform each of the predictions into approximations of the
observed feature diagram. This is discussed in the text.

5.3.1. String Edit Distances

This subsection gives on overview of string edit distances. It is presented to iden

tify some of the issues that will need to be considered for an implementation of pseudo

string editing. A detailed examination of string editing can be found in Sankoff and

Kruskal (1983).
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INDUST – R-Y- INDU––STRY
IN---TEREST INTEREST--

delete D substitute T for D
delete U substitute E for U
delete S insert R
insert E insert E
insert E delete R
substitute S for Y delete Y
insert T

IN--DUSTRY INDUSTRY
INTEREST-- INTEREST

insert T substitute T for D
insert E -T substitute E for U
substitute R for D- substitute R for S
substitute E for U substitute E for T
delete R substitute S for R
delete Y substitute T for Y

Figure 5-5: String Edit Examples

Four examples of string edits are shown. In each case, a set of edits transforms
INDUSTRY to INTEREST. Bold characters show places where the same
characters can be aligned. Dashes show insertions and deletions. Substitutions
are shown by different characters in the same position.
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d(a,b) > 0 nonnegative
d(a,b) = 0 if and only if a = b identity
d(a,b) = d (b,a) symmetry
d(a,b) + d (b,c) 2 d(a,c) triangle inequality

Figure 5-6: Distance Requirements

In this figure, d is a relation and a and b are objects (e.g., strings). These four
requirements are necessary for a relation to be considered a mathematical dis
tance metric.

Assume that you have two character strings, INDUSTRY and INTEREST.

Through the use of three string edit operations, insertion, deletion, and substitution, one

string can be transformed into the other. Four examples are shown in Figure 5-5. By

assigning a cost for each operation, totaling the costs of each set of operations, and deter

mining the set of operations which minimizes the total cost, a metric can be placed on the

distance between strings. The assignment of the individual operation costs needs to

preserve notions of a metric which are summarized in Figure 5-6. These imply that the

cost of an insertion must equal the cost of a deletion to preserve symmetry.

Table V-1 displays four cost schemes and their application to each of the four string

edit examples. The first scheme is based on the assumption that all operations should

cost the same. The second scheme also gives equal weight to operations after consider

ing that a substitution is equivalent to an insertion plus a deletion. The third scheme

encourages substitutions. There may be limitations placed on which characters are sub

ject to substitution. A scheme could also give different costs to different sets substitu

tions as long as the metric constraints of Figure 5-6 are preserved. This is exemplified by

the fourth scheme where D–T and U–E substitutions are preferred. Table V-1 demon

strates that the ranking of string edit sets is dependent upon the allocation of costs on
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Table V-1-A
Scoring indel substitute COmment
Scheme

I 1 1 1 for each operation
II 1 2 substitute = delete + insert
III 2 3 reward substitutes
IV 2 2 for D–T or U-E reward substitutes

3 for others to varying degrees

Table V-1-B
Scoring Scheme: I II III IV
Edit Set

INDUST-R-Y – 7 8 15 15
IN– — —TEREST

IN– – DUSTRY 6 8 14 13
INTEREST – –

INDU – – STRY 6 8 14 12
INTEREST--

INDUSTRY 6 12 18 16
INTEREST

Table V-1: String Edit Scores

Four different scoring rules, I, II, III, and IV, (Table V-1-A) are applied to the
four different string edits shown in Figure 5-5. The bold numbers in Table V
1-B show the lowest score for each set of scoring rules. The "shortest" string
edit is dependent on the scoring rules.

each operation. Moreover, the allocation should be based on the underlying goals of cal

culating the string edit distance. For example, in studying homologies between protein

primary sequences, some substitutions (e.g., I [isoleucine] for L [leucine]) should be

less costly than others (e.g., G [glycine] for W [tryptophan]).

The actual distance between two strings is the minimum total cost of editing one

string into the other. The problem of computing the optimal edit sequence is well

studied (Masek and Patterson, 1983). Algorithms have execution times of order O(jk)

where the strings have lengths of j and k.
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5.3.2. Pseudo-String Objects

In summary, string editing can be used to define a distance metric between strings.

Characters are string edit objects which are manipulated by string edit operations. The

metric is defined by an allocation of costs on operations. The distance is the minimum

total cost of transforming one string into the other. Given this brief summary of string

edit metrics, a parallel world of pseudo-string edits can be constructed. The objects,

operations, and cost allocation schemes described in these three subsections are merely

examples of a possible construction. Additional research will be necessary to produce a

working pseudo-string editing metric.

Before describing pseudo-string editing, it is important to note that I am not propos

ing to look at secondary structure assignments and predictions as character strings of As

and ts. Though one could take At strings (as shown in Figure 4-3) and produce string

edit distances, these distances would be another residue based score. Pseudo-string

objects need to be at the feature and not residue level of abstraction.

Feature diagrams can be viewed as pseudo-strings composed of helix and turn

objects. Although feature based scoring is meant to complement residue based scoring

by not considering individual residues, helix and turn units need some length attribute.

This could be accomplished by having three sizes for each object type giving six dif

ferent type pseudo-string objects (PSOs):

short helix
medium helix
long helix
short turn
medium turn
long turn.

The exact definitions of these PSO types need to be established.
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In string editing, the string objects are discrete characters. In pseudo-string editing,

the objects are fuzzy." The number of residues represented two PSOs of a given PSO

type may vary. For example, in Figure 5-1 the observed A helix is 10 residues long

while the prediction 2 A helix has 8 residues. The same type of PSO (e.g., a medium

helix) could be used to represent each helix. Both the observed secondary structure and

prediction 2 have matching pseudo-string representations.

5.3.3. Pseudo-String Operations

Continuing with a sample pseudo-string edit system, six edit operators (PSOPs) are

shown in Figure 5-7. In the following descriptions, a turn is used as the sample object,

but it is easy to see how the operators would act on any of the other five objects.

* This is not a reference to fuzzy set theory (Kandel, 1982). At this point in time, I am aware
that the field of fuzzy set theory is worth exploring but I am leaving that to future work.
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-I F-T Hº- -LC F

-L Hº- -L- TH-I Hº

insert turn delete turn

- F-T F- -I H Hº

-L TH TH- - HT T

expand left turn contract left turn

-ImP-Im)— -L H Hº

-I H Hº- -I I t T

expand right turn contract right turn

-I F-T W- -L Hº-I Hº

-I I L Hº- -I I I Hº

shift left turn shift right turn

Figure 5-7: Pseudo-String Editing Operations
Three pairs of possible pseudo-string editing operations are shown. In each
case, the operation takes the bottom feature diagram and produces the top
feature diagram. In these examples involving turns, only the helix caps which
actually touch the modified turn are changed. The caps at positions A and B
are unchanged.

insert short turn-breaks the existing helix into two smaller helices and a short turn.

The N-cap of the first new helix and the C-cap of the second match the caps of the origi

nal single helix.

delete short turn - removes the turn and concatenates the two surrounding helices.

shift right turn - moves the turn to the right by lengthening the neighboring left

helix and shrinking the neighboring right helix. The N-cap of the left helix and the C

cap of the right remain fixed.

shift left turn - moves the turn to the left by shrinking the neighboring left helix and

lengthening the neighboring right helix. The N-cap of the left helix and the C-cap of the



113

right remain fixed.

expand left small turn - takes a small turn and leaves a medium turn. The C-cap of

the adjacent left helix is moved to make room for the larger turn.

contract left medium turn - would reverse the previous operation.

expand right small turn - takes a small turn and leaves a medium turn. The N-cap

of the adjacent right helix is moved to make room for the larger turn.

contract right medium turn - would reverse the previous operation.

-I Hº- -I H HI I

—[ H-H —[HTH
delete turn insert helix

-TA | º I

—[Tºm]—[Emi
expand right helix B
expand left helix A

Figure 5-8: Nonreverse Pseudo-String Editing Operations

Two pseudo-string editing operations are shown. In each case, the operation
takes the bottom feature diagram and produces the top feature diagram. This
example shows that a delete turn is not the reverse of an insert helix. Similar
ly, applying expand-left helix and expand-right helix produces a slightly dif
ferent result from the delete turn.

These operators can be viewed as pairs of reversible operations. Some of the

reverse operators are necessary because of the requirement that either pseudo-string can

be edited to match the other. As shown in Figure 5-8, a delete turn is not the same as an

insert helix. The number of operators could be reduced if both pseudo-strings could be
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edited simultaneously until the resulting pseudo-strings were the same. Other operations,

e.g., shift, are redundant but convenient.

String Edit Example
ABCD
ABD

insert C

Pseudo-String Edit Example
A” B

A

— H

insert short turn
Figure 5-9: PSOPs and Adjacent PSOs

In both examples an insert is applied to the lower [pseudo-)string to produce
the upper [pseudo-]string. Unlike string edit operations, pseudo-string edit
operations can affect the object type of more than one object in a single opera
tion.

Unlike string edit operators, a PSOP can affect more than one object during the

course of a single operation. In Figure 5-9, the string insert pushes D to the right, but

does in change the B or D characters. The pseudo-string insert splits long helix A into

medium helix A* and medium helix B.

5.3.4. Pseudo-String Operational Costs

The final component is composed of the costs for each operation. Just as in the case

of string edits, the metric constraints of Figure 5-6 must be observed. Although one

could argue that the cost of inserting a helix should be different than the cost of deleting

a helix, the symmetric relationship between these two operations demands that they be

scored the same. This does not mean that inserting a helix must cost the same as insert
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ing a turn.

The underlying intended use for the secondary structure prediction is very impor

tant. For example, if the underlying use is tertiary structure generation based on a com

binatorial approach (Cohen, Sternberg, and Taylor, 1980; Cohen and Kuntz, 1989), then

the cost of changing the size of a helix should be less that the cost of inserting a helix.

This is because the tertiary fold will not be changed as much by a shortened helix as it

would by the presense of an additional helix. Although ordering the relative costs of

indels (insertion or deletion), shifts, and size changes (expansion and contraction) flows

from the underlying use, quantifying this ordering is much more difficult.
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5.4. Conclusions

A feature based scoring method would complement residue based scoring for secon

dary structure predictions. Feature based scoring allows the purpose of undertaking a

secondary structure prediction to be reflected in the scores.

Two general classes of feature based scoring are worth considering. A simple ver

sion of a "registration and analysis method" using any of three registration methods and

Taylor's structure percentage analysis gives some additional information, but the analysis

(structure percentage) is too simple. More work could be done on developing a more

sophisticated and useful analysis scheme.

Pseudo-string edits are not string edits on a turn-helix string representation of resi

dues. The pseudo-string edit distances show promise, but require much additional work

before they can demonstrate that promise. This future work for pseudo-string edit dis

tances includes:

• complete definitions for pseudo-string objects;

• complete definitions for pseudo-string operators; and

• costs for each operator-object combination.



Chapter 6

A Segment Based Approach to Protein Secondary Structure Prediction?

6.1. Introduction

Under suitable conditions, many proteins adopt a compact, globular fold which is

dictated by the amino acid sequence of their polypeptide chain. However, the precise

relationship of sequence to structure remains unresolved. Substantial experimental and

theoretical efforts have been directed at understanding the protein folding problem.

Experimentalists have uncovered evidence of native-like intermediates along the folding

pathway (Hughson, Wright, and Baldwin, 1990; Goto and Fink, 1990; Ptitsyn et al.,

1990). Theoretical methods are also being used to explore possible folding pathways,

and to gain an understanding of the forces which stabilize folded proteins. To date, three

approaches have been employed: energy minimization and/or molecular

dynamics (Levitt and Warshel, 1975; Nemethy and Scheraga, 1977; Weiner et al., 1984;

McCammon, Gelin, and Karplus, 1977; Karplus and McCammon, 1981; Beveridge and

Jorgenson, 1986), Lattice models (Skolnick and Kolinski, 1989), and semi-empirical sub

structure condensation (Cohen, Richmond, and Richards, 1979; Cohen, Sternberg, and

Taylor, 1980).

Energy minimization techniques and molecular dynamics approaches offer the

promise of a rigorous treatment of the inter- and intra-molecular forces in protein struc

tures. However, several practical details of these methods remain unresolved. The

t This chapter is similar to the manuscript of a paper prepared for publication:
Scott R. Presnell, Bruce I. Cohen, and Fred E. Cohen; A Segment Based Approach to Protein
Secondary Structure Prediction.

117
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current potential functions do not provide an accurate representation of energy states,

bulk solvent is not handled adequately, and optimization algorithms cannot sample the

entirety of conformation space. Moreover, computing power enables us to visualize no

more than 2 or 3 nanoseconds of dynamic variation while protein folding requires mil

liseconds to seconds (Udgaonkar and Baldwin, 1988; Roder, Eloeve, and Englander,

1988).

Monte Carlo simulations utilizing simplified lattice frameworks have been per

formed in an attempt to elucidate general rules for globular protein folding. These simu

lations have incorporated several different lattice types (cubic, diamond, and "210" or

"knights walk") to simulate the folding pathways of four helix bundles such as apo

ferritin and somatotropin (Sikorski and Skolnick, 1989), and 3-barrel proteins such as

plastocyanin (Skolnick and Kolinski, 1990) These methods provide an interesting vig

nette of the possible folding pathways. However, the simulations currently require that

position specific conformational preferences be built into the backbone atom representa

tion of each simulated sequence.

Semi-empirical methods also suffer some limitations; but they have found utility in

the development of structure models. The present semi-empirical condensation methods

are based on a hierarchical definition of globular proteins. The classical hierarchy struc

ture presents the following categories: primary, secondary, and tertiary structure. Typi

cally, condensation schemes fold primary structure into secondary structure, then secon

dary structure is assembled into tertiary structure. This strict ordering is not intended to

be an accurate reflection of a protein folding pathway: some aspects of secondary struc

ture formation may be influenced by specific tertiary interactions. However, current
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work on the molten globule state indicates that the intermediate stages in protein folding

show a large fraction of the secondary structure apparent in the native state (Hughson,

Wright, and Baldwin, 1990; Goto and Fink, 1990; Ptitsyn et al., 1990). The body of

work that focuses on the transition of secondary structure to tertiary structure will not be

considered here (Cohen, Richmond, and Richards, 1979; Cohen, Sternberg, and Taylor,

1980; Cohen, Sternberg, and Taylor, 1982). This work concentrates on advanced tech

niques for relating primary structure to secondary structure.

Several groups have reported methods for the prediction of secondary structure in

globular proteins (for a review see: Schulz, 1988). These methods group loosely into two

classes. The collection of known structures provides a database of information about the

propensity of the individual amino acid to reside in specific types of secondary structure.

The first class of methods is based on statistical analyses of this data. The progenitor of

these methods was developed by Chou and Fasman (Chou and Fasman, 1974; Chou and

Fasman, 1978). Specialized treatments of context in the amino acid sequence (e.g. Mar

kov dependence) or the information content within the sequence were developed into

prediction methods by Garnier, et al. (referred to here as the GOR method, Garnier,

Osguthorpe, and Robson, 1978; Gilbrat, Garnier, and Robson, 1987). The most

advanced of these methods now combines many predictive schemes, or combinations of

predictions from sequences homologous to the sequence of interest (Levin and Garnier,

1988; Nishikawa and Ooi, 1986). Recently, computational neural networks have been

used to investigate the mapping of protein sequence to secondary structure (Qian and

Sejnowski, 1988; Holley and Karplus, 1989; Kneller, Cohen, and Langridge, 1990).

The second class of methods rely on biophysical principles as a basis for the predic
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tion of interactions among the amino acids. This approach was first outlined by

Nagano (Nagano, 1973; Schulz et al., 1974), and Lim (Lim, 1974a; Lim, 1974b). For

globular proteins, these principles include compactness of form, the presence of a hydro

phobic core, or cores, and a polar outer shell. The geometries inherent in the two arche

types of secondary structure, O-helix and B-sheet, afford restrictions on the types of

amino acid side- and main-chain interactions. Our methods for the generation and

analysis of patterns that recognize sequence-structure correlates have followed from this

second class of techniques.

Long range interactions are believed to play a critical role in the formation of com

plete tertiary structure. Kabsch and Sander (1984) were among the first to note that

identical or similar sequences of up to five residues can adopt decidedly different three

dimensional structures. Hence, five residues of context is not enough to define unique

three dimensional structure. Classical secondary structure prediction methods typically

achieve results of no greater than 65% accuracy. This limitation has often been attri

buted to the absence of long range interactions in the prediction algorithms. At first

glance, the specification of long range interactions seems a daunting problem. But, gen

eral knowledge of the nature, or types of long range interactions expected can be

included into predictive schemes. In previous work, Cohen et al. (1986) described the

specification of regular expression patterns that could incorporate long range interactions

from the estimated turn distribution in proteins. The patterns developed under the

PLANS system were able to accurately locate turns in the three classes of globular pro

teins: (0/o, o/3, 5/3) with success rates approaching 90%.

We report here the extension of the PLANS work to predict regular secondary struc
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ture in o■ o proteins. This advancement involved two explicit developments. First, the

general problem of regular secondary structure prediction was divided into subtasks.

Regular expression patterns were developed to recognize the individual component parts

of helices, the amino terminus, the core, and the carboxy terminus. Those patterns were

designed to function in an autonomous fashion. Second, A Language for the Prediction

of Protein Substructures (ALPPS) was formulated to coordinate the development and

analysis of meta-patterns: patterns of patterns. In the case of helical structure prediction,

meta-patterns coordinate the recognition of the helix components.

The patterns developed in this work recognize three helical features to differing

extents. Scoring the success of feature prediction, we are able to detect 95% of the helix

core structures, with a 10% over-prediction rate (for every 10 helix core features

predicted correctly, one over-prediction will occur). N-cand C-terminal helix caps are

much more difficult to recognize. One half of these features are detected, but a 25%

over-prediction rate is observed. The recognition of individual features at these rates

produces prediction accuracies that exceed the statistically based prediction algorithms.

The residue based scores from the pattern based work presented here do not surpass the

the scores obtained by the latest neural network algorithms. However, pattern based

methods allow complete inspection, and consequent structural interpretation, of the tools

used to predict structure. Interpretation of the internal weights of neural network connec

tions is difficult for all but the simplest architectures.

In summary, we can analyze protein structures for specific features of helical secon

dary structure, and develop patterns to recognize those features. We can also orchestrate

the recognition of these features in specific orderings via a language that describes meta
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patterns. The developments described in this work mark the emergence of a prediction

scheme that uses the hierarchical organization in protein structure to facilitate the the

inclusion of sequential, long range interactions.

6.2. Methods

Definitions. Our previous work on the prediction of turns considered protein

sequences from three structural classes of proteins o■ o, o/3, 5/3 (Levitt and Chothia,

1976). In this work, we have focused on the features that stabilize individual ot-helices

within protein structures constructed primarily of helices (o■ o protein structures). This is

not intended to be a representative sampling of all globular proteins. Instead, it provides

a limitation on the variety of structural interactions to identify, characterize, and predict.

For O■ o proteins the polypeptide chain has only two conformational states: helix and

turn. All forms of helical structure (310, o, and it helix) are treated identically. Simi

larly, any region that interconnects regular secondary structure is considered a turn.

One drawback to class specific structure prediction algorithms is the problem of

determining the structure class of the protein under scrutiny. Protein class determination

in the absence of a crystal structure remains a difficult problem in biochemistry (Sheridan

et al., 1985; Klein and Delisi, 1986; Deleage and Roux, 1987). However, work in

sequence analysis (Bowie et al., 1990), and machine learning techniques are beginning to

provide new algorithms for this task (Kim, 1991). Advanced experimental methods (Lee

et al., 1990) are also providing new methods beyond the classical circular dichroism

techniques for determining structure class from experimental data (Johnson Jr., 1990).

Data Sets. Twenty polypeptide chains from the collection of O■ o proteins in the

Brookhaven protein data bank (PDB, Bernstein et al., 1977) were pooled and split into
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two sets of ten chains each. One set was used for the development and analysis of pat

terns. The sequences of the other set were sequestered from examination for the pur

poses of unbiased evaluation after pattern development was complete (Table VI-1).

Except for the structure of Tobacco Mosaic Virus Coat protein, the data sets were

selected from crystal structures that have an atomic resolution greater than 2.5 Å. Iden

tity scores were evaluated after alignment with the multiple sequence alignment program

PIMA (Smith and Smith, 1990). The greatest amount of identity between any two

polypeptide chains was 42% (between fetal human hemoglobin Y chain and human adult

human hemoglobin 3 chain). The next highest identity was 27%.

Table VI-1: Proteins Used for Pattern Development and Analysis

Development Set
PDB Protein

1ccr Cytochrome C (Ochi et al., 1983)
1f.jh Human Fetal Hemoglobin (gamma chain) (Frier and Perutz, 1977)
2ccy Cytochrome C prime (Finzel et al., 1985)
2cts Citrate Synthase (Remington, Wiegand, and Huber, 1982)
21h1 Leghemoglobin (Arutyunyan et al., 1980)
2lhb Hemoglobin V

-
(Honzatko, Hendrickson, and Love, 1985)

2lzm T4 Lysozyme * (Matthews, 1975)
3c2c Cytochrome C2

-
(Bhatia, 1981)

3cln Calmodulin (Babu, Bugg, and Cook, 1988)
3cpv Parvalbumin B (Moews and Kretsinger, 1975)

Test Set

156b Cytrochrome B562 (Lederer et al., 1981)
1cc.5 Cytochrome C5 (Carter et al., 1985)
lecd Erythrocruorin (Steigemann and Weber, 1979)
lhma Hemerythrin (Stenkamp, Sieker, and Jensen, 1983)
1mbd Myoglobin (Phillips and Schoenborn, 1981)
2cyp Cytochrome c Peroxidase (Finzel, Poulos, and Kraut, 1984)
2tmv Tobacco Mosaic Virus Coat Protein (Namba, Pattanayek, and Stubbs, 1989)
3Inhb Human Hemoglobin (alpha chain) (Fermi et al., 1984)
3icb Vitamin D-dependent Calcium-binding Protein (Szebenyi and Moffat, 1986)

| 3wrp Trp Aporepressor (Lawson et al., 1988)
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Secondary structure assignment. Secondary structure assignment was performed

with the aid the the program DEFINE (Richards and Kundrot, 1988). Briefly, the algo

rithm within DEFINE evaluates the fit of actual secondary structure backbone Co. atoms to

an ideal secondary structure through a difference distance matrix technique. Specific

structure "masks" are used to make secondary structure assignments to the three dimen

sional structure. The cumulative root mean squared difference between the ideal and

actual structures is used to evaluate the assignment of the desired structure type. In this

study, 0.75 Å was used as the maximum RMS difference between the ideal and actual

helical structures. This yielded a secondary structure assignment that was consistent with

most authors assignments. While other programs are available for structure

assignment (Kabsch and Sander, 1983a; Sklenar, Etchebest, and Lavery, 1989), DEFINE

was employed because it more closely matched the crystallographers' helical structure

assignments.

Evaluation. The accuracy of the algorithms presented here were evaluated using

several measures. Feature based scoring was used to evaluate the predictive capabilities

of the PLANS patterns. If a pattern appears within four residues of the targeted feature

of structure (e.g. the core of an O-helix), that event is considered a true positive (TP), oth

erwise the event is registered as a false positive (FP). The absence of a prediction for a

targeted feature is registered as a false negative (FN). Since PLANS patterns do not

explicitly predict the absence of a structure element, true negatives (TN) cannot be

recorded. We represent the success of a feature based prediction as the quotient of the

correctly predicted features and the total number of features. This index, often referred

to as Q2, is defined as follows (Schulz and Schirmer, 1979): This index all but ignores

the possibility of over-prediction, so we also report the quotient of over-predicted
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TP
22=75. FW (3)

features (FP) and the total number of features (referred to simply as O):

FP
- 4

O TP+FN (4)

The primary goal of the patterns and algorithms developed in this work was the

prediction of helical features. However, structural feature analysis is not a commonly

accepted standard for algorithm comparison. Residue based scoring, in which each resi

due is given equal weight, was used to evaluate the success of helical predictions for the

purposes of comparison to other algorithms. Residue based scoring and trimming are dis

cussed in Chapter 4.

Pattern Development. In our previous work, PLANS was developed to facilitate

expression of sequence-structure correlates as regular expression patterns (Cohen et al.,

1986; see also Chapter 2). We continue to use that regular expression syntax and algo

rithm as the basis for turn and helix component pattern development in this work.”

Turn Patterns. In the ALPPS assisted prediction of regular secondary structure, the

first step is to predict the likely locations of turns. This is done using the composite turn

prediction pattern, TU, developed previously (Cohen et al., 1986). TU is the synthesis of

several patterns that predict turn location. A cluster of hydrophilic residues provides the

* The PLANS patterns described here, which show primarily sequential relationships, are
presented in a simplified syntax. The general PLANS pattern syntax is pattern_name: pattern.
q} represents one of a set of hydrophobic residues; A, V, I, L, M, C, K, F, W, or Y.
‘P represents one a set of hydrophilic residues; A, D, E, H, K, N, Q, R, S, or T.
– represents one of the acidic amino acids; D or E.
+ represents one of the basic amino acids; K or R.

presents any amino acid.§ represents residues X or Y.
'P represents the complement of the set ‘P.
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strongest signal. A pattern that explicitly recognizes the special role of proline in initiat

ing and terminating helices is also included. Weaker turns are recognized as an inter

rupted collection of hydrophilic residues spaced appropriately from the strongest turn

indications. The relationships between the constituent aspects of TU and the composite

pattern is shown in Figure 6-1.

Helix Component Patterns. The characteristics of helical residues vary as a func

tion of their position within the helical structure. There are often differences in the spa

tial distribution of residues (e.g. the amphiphilic character of a helix), as well as differ

ences in residue types between the center and the termini. Several authors have noted

specific sequential characteristics of helices from globular proteins (Richardson and

Richardson, 1988), and others from membrane associated proteins (Rees, DeAntonio,

and Eisenberg, 1989; Sternberg and Gullick, 1990). In order to efficiently describe pat

terns that recognize diverse O-helical characteristics in O■ o proteins, we have chosen to

subdivide helices into three specific components for study: the central section or core

region of the helix, the amino terminal area of the helix (referred to hereafter as the N

cap) and carboxy terminal area (C-cap). While the principle of structure subdivision is

general, the PLANS patterns subsequently described are specific to soluble, globular pro

teins. The patterns would have to be reformulated for integral membrane proteins.

Helix Core. The criteria for the prediction of the helix core regions incorporate

several different biophysical properties (Figure 6-2). Sequential placement of hydropho

bic residues in a pattern suggestive of a hydrophobic patch on one face of a helix would

facilitate the creation of a hydrophobic interaction with another part of the

protein (Schiffer and Edmundson, 1968).
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PATCH: q}..Qx)..Q.)

Acidic and basic residue can be placed in such a way as to generate a charged pair on

one surface of the helix.

PAIR: -...+

Empirical rules can be used to identify a putative helix-helix interaction site (Richmond

and Richards, 1978).

INTER: ow■ \{^{q}

Long stretches of hydrophilic residues indicate a turn or loop regions on the surface of

the molecule. By process of elimination the remaining areas are likely to contain helices.

NO-PHIL: \{*}^*}^{\{1\}^{

We have found that these criteria are effective when given equal weights (i.e. not

hierarchical). These individual PLANS patterns, along with others, are collected into an

aggregate helix core pattern called HCORE.

Helix N-cap. Three sub-types of patterns have been developed to describe the

amino terminal capping sites of the helices (Figure 6-3). Those patterns that give the

most reliable indication of a helix N-cap stem from the combination of a residue com

monly found at the exact helix N-cap site (in this case N, S, T, or D) and a proline

residue (Richardson and Richardson, 1988).

NSIMPLE:
º

P

Patterns containing a residue from the set N, D or S, one or more acidic residues one to

three residues from the N-cap site, and one or more large hydrophobic residue five to six

residues from the N-cap site are also highly reliable.
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Figure 6-2-(a): Helical Core – Hydrophobic Patch

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c) form a puta
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy
drophilic residues might also indicate a helical region.
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Figure 6-2-(b): Helical Core — Charged Pair

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c) form a puta
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy
drophilic residues might also indicate a helical region.
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Figure 6-2-(c): Helical Core — Putative Helix-Helix Interaction Site

Patterns that are indicative of a helical sequences include those that would (a)
form a hydrophobic patch on one side of the helix (3cpv residues 7 to 19); (b)
form a charged pair of residues (3cpv residues 39 to 51); and (c) form a puta
tive helix-helix interaction site (1fdh residues 57 to 77). A low density of hy
drophilic residues might also indicate a helical region.
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Figure 6-3-(a): N-Cap Examples — Specific Residues

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi
dues placed just after a residue with a strong N-cap preference (3cpv residues
59–65); and (c) a Strong N-cap residue "terminating" a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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Leu 65

Figure 6-3-(b): N-Cap Examples — Acidic and Large Hydrophobic Residues

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi
dues placed just after a residue with a strong N-cap preference (3cpv residues
59–65); and (c) a Strong N-cap residue "terminating" a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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Ser 39

Figure 6-3-(c): N-Cap Examples—"Terminating" a Putative Hydrophobic Patch

Sequence patterns indicative of N-cap sites include (a) simple juxtapositions of
specific residues (1fdh residues 57-77); (b) acidic and large hydrophobic resi
dues placed just after a residue with a strong N-cap preference (3cpv residues
59–65); and (c) a Strong N-cap residue "terminating" a putative hydrophobic
patch for a helix (3cpv residues 39 to 49).
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Naciº #.
The placement of the acidic residue correlates well with the hypothesis that interaction

with the helix dipole is important to the stabilization of helical structure. These two pat

terns are considered at the same level in the N-cap pattern hierarchy. The next most reli

able patterns require a residue that strongly suggests a N-cap site "in phase" with a clus

ter of hydrophobic residues on one face of the putative helix. In the case of N-caps, it

seems that there is a requirement for a hydrophilic residue, just after the N-cap position,

to terminate the hydrophobic patch.

NPHASE: \{*..Qxd..q)

S

This effect will be referred to as the "hydrophobic phasing" of the cap site.

These patterns, along with others are collected together into a composite N-cap pattern

referred to as NCAP.

Helix C-cap. The C-cap prediction scheme follows an analogous hierarchical con

struction of patterns, but the critical residues differ. The pattern that provides the most

reliable, independent, indication of a carboxy terminal site for a helix is the juxtaposition

of a G at the C-cap site and a P one or two residues after the helix.

CSIMPLE: GP

Patterns containing, one of G, H or K (residues indicative of the C-cap site) and one or

more basic residues one to three positions from the C-cap site, or a large hydrophobic

residue three to four positions upstream of the C-cap site have also proven predictive.
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cºst■ ...}}|
By analogy with the N-cap patterns, a residue that strongly suggests a C-cap specific site

"in phase" with a hydrophobic patch on one face of a putative helix constitutes the final

class of patterns used in C-cap prediction.

CPHASE: QD..Qxb.
i

These patterns, along with others are collected together into a composite C-cap pattern

referred to as CCAP.

ALPPS Pattern Language. ALPPS, as described in Chapter 3, was used to produce

patterns for this work. By utilizing the information in the required sequential ordering of

the secondary structure component patterns, we take the next step in introducing long

range interactions into secondary structure prediction.

The location of the turn predictions generated by the TU pattern is used to segment

the sequence into blocks. After initial segmentation, all the sequence blocks are hidden

from consideration. Then, those blocks that contain strong evidence for helical structure

are exposed for evaluation. This is done using the PLANS pattern for helix core recogni

tion: HCORE. Each visible block is then examined for orderings of PLANS patterns that

match the region definitions supplied in the form of an ALPPS pattern. The subsequent

PLANS patterns are then evaluated within the context of a block. Helical regions are

specified under four possible conditions. Under the best of conditions, the the amino ter

minus, the core, and the carboxy terminus of a helix are recognized by the PLANS pat

terns NCAP, HCORE, CCAP respectively. The sequence beginning with the location of the

NCAP pattern and ending with the CCAP pattern is marked as a helical region. If one or
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more of the capping patterns is not recognized within the block, helical regions are con

structed from the available information. The ordering of region definitions is significant,

and there is at most one helical region per block. Figure 6-4 presents a symbolic

representation of the different stages of prediction for the the protein carp parvalbumin B.

A complete listing of the ALPPS and PLANS patterns used to produce the results

discussed in this chapter can be found in Appendix C.

Figure 6-4: A Working Example of an ALPPS Prediction
The first row of the figure on the next page is a description of the actual secon
dary structure for carp parvalbumen b (3cpv). The next three rows show where
the sequence is broken into blocks using the turn prediction algorithm. The
next three rows indicate the low-level PLANS patterns that recognize the dif
ferent helical foundations (N-cap, helix core, and C-cap). ALPPS then uses
the location of these PLANS patterns to define secondary structure. In this
case, ALPPS first looks for the correct juxtaposition of N-cap core and C-cap
then calls the region between the the N-cap and C-cap a helix. If one of the
helix caps cannot be found, the ALPPS constructs a helix covering the distance
between the remaining cap pattern and the helix core patterns, or possibly to
the end of the block. If there are no caps at all, the helical core pattern might
be used to define the helical region.
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6.3. Results and Discussion

Table VI-2 shows the predictive capabilities of individual PLANS patterns on the

specific structure sub-types: turns, helical cores, N-caps and C-caps. Because of a lack of

false negatives (FN), strict Q3 or C values as described earlier cannot be calculated: the

PLANS patterns are scored on a basis of feature recognition. Multiple identifications of

the same feature had no effect on the accuracy scores.

Table VI-2: Feature Scores

Development sequence set
Class Q2 O # =Fw–FF
Turns 84% 12% 63 12 9
Cores 95%. 10% 81 4 9
N-Cap 61% 20% 51 33 17
C-Cap 58%. 27% 49 35 23
Test sequence set
Turns 82%, 1.1% 47 10 6
Cores 95%. 10% 63 4 7
N-Cap 51%. 30% 34 33 20
C-Cap 35% 32% 23 44 21
Both sequence sets
Turns 83%. 11%. 110 22 15
Cores 95%. 11%. 144 8 16
N-Cap 56%. 25% 85 66 37
C-Cap 48%. 29% 72 79 44

The patterns used to predict the locations of turns show a high level of success. The

2% decrease in prediction accuracy from the development set to the test set suggests the

possibility that some patterns recognize specific features of the development set rather

than generalized biophysical principles of turn stabilization. Within an error range of

four residues, the strong turn patterns rarely generate false indications. However, the
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weaker turn prediction patterns are not as reliable an indicator of the placement of actual

turns. These patterns are more dependent on additional signals, such as the expected

periodic distance between turns (Cohen et al., 1986). As a consequence, most of the over

or under prediction (false positives and false negatives) are a result of the noise in these

secondary signals.

In a specific example of an over prediction (false positive), the first helix of Cyto

chrome c prime is broken by the presence of a weak turn indicator. Weak turn indica

tions are not utilized if they are within eleven residues of strong turn indications. In this

particular instance, the weak turn indications occur 15 residues from the nearest strong

turn indicator. Hence, the pattern is accepted as an authentic turn (Figure 6-5).

Lysozyme contains an example of an under prediction (false negative). The last

block should be split into two blocks, but it is not. There are some weakly hydrophilic

residues in the area we would like to call a turn. While the area is sufficiently distant

from the previous turn, the signal is below the threshold for accepting a weak turn indica

tor (Figure 6-6).
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The patterns used to predict helix core regions also appear successful. The lack of a

significant decrease in prediction accuracy is likely to indicate the recognition of general

principles in helix core formation. The few false positives for helix core feature stem

from a displacement or extension of the predicted helical core, either beginning too soon,

and/or ending too late in the sequence. Currently, it is difficult to associate this character

with a specific structure or sequence phenomenon. Short helices (of length 5 to 10) are

under-reported (false negatives), as are those helices with a strong hydrophilic character.

Prediction of the core region of these types of helices is generally dependent on the

recognition of complementary charged residue pairs, or a putative tertiary helix-helix

interaction site (Richmond and Richards, 1978).

The predictive capability of the N- and C-cap patterns is significantly lower than

that of the helix core patterns in both the development and test sets of protein sequences.

Similarly, the decrease in predictive accuracy from the development to the test set for the

cap patterns is currently greater (approx. 10% to 20%) than the decrease for the turn or

helix core prediction. This suggests a tendency for the capping patterns to recognize

specific features of the proteins in the development set, instead of general principles of

the amino acid sequences that initiate and terminate helices. There is no specific struc

tural feature that identifies over-prediction. However, the lack of crucial residues in the

amino acid sequence near the site of the N- or C-cap typically characterizes under

prediction. Often the capping patterns will have as a constituent one of a class of resi

dues commonly found at the terminus of a helix. The N-cap positions in helices are often

one of the residues G, N, S, T, or D. The C-cap positions are usually G, K, H, or N.

Further, proline is often a constituent of C-cap areas of sequence, appearing one or two

residues after the cap position. If a helix does not begin or end in one of these residues,
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the likelihood of a correctly predicted helix cap is low.

These helix capping patterns suggest that one of a specific set of residues is required

(but not sufficient) to initiate or terminate a helix. A systematic approach to the

mutagenesis of N-caps in barnase by Serrano and Fersht (1989) has provided some addi

tional data on this aspect of helix structure. Threonines found at two different helix N

caps were mutated to several alternative residue types to examine the energetic contribu

tions of different residues to helical structure stabilization. On the whole, the energetic

stability provided by the alternative residues commonly found at the N-caps corroborate

the statistical data presented by Richardson and Richardson (1988). However, the choice

of a "best" residue to terminate a specific helix appears to be dependent on the tertiary

interactions at the particular site. In this sense, the statistical data reported by Richardson

and Richardson is not sufficent to completely specify the N- and C-caps.

Multiple regions can be defined by the user specified ALPPS prediction patterns. In

the ALPPS pattern for predicting helical structure, four different region types have been

specified as described in the methods section and in Figure 6–4. These regions reflect the

amount of information available to specify the extent of the predicted helix. The number

of assigned regions (helices) can be evaluated against the number of predicted regions for

the protein sequences examined. Table VI-3 presents the number of each type of region

identified in each protein. There was no particular relationship between the type of

region predicted and the quality of the prediction for that region. Nor was there a more

general relationship between the distribution of region types and the overall quality of a

sequence prediction. However, some sequences appear to be more difficult to predict

than others given any prediction method. For example, both cytochrome C peroxidase

af
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and erythrocruorin are predicted equally poorly by the methods of Chou and Fasman

(1974), GOR (Garnier, Osguthorpe, and Robson, 1978), neural networks (Kneller,

Cohen, and Langridge, 1990), and ALPPS. The rank orderings of the proteins by success

rate using the different prediction methods were similar (data not shown).

Table VI-3: ALPPS Region Scores

Development set
Protein Assigned Predicted | Both No Nt No Ct No ends Repechage

Helices Helices ends
1ccr 5 4 1 1 0 2 0
1 foln 9 9 3 1 2 3 O
2ccy 5 6 2 1 2 1 0
2cts 21 24 5 7 5 6 1
21h1 7 8 1 5 1 1 0
21hb 8 8 O 2 3 3 O
2lzm 11 9 4 1 1 3 O
3c2c 5 7 4 0 3 O O
3cln 7 8 5 O 3 O 0
3cpv 7 7 4 0 1 1 1
Totals 85 90 29 18 21 20 2

Test set

156b 4 5 2 1 1 . 1 0
1ecd 8 7 2 3 1 1 0
1mbd 8 6 2 2 1 1 0
3icb 6 5 3 0 2 0 0
1cc5 4 3 1 0 1 1 0

2cyp 13 11 3 1 6 0 1
3wrp 6 5 0 1 2 2 0
1hmg 5 5 1 1 0 3 0
2tmv 6 6 1 0 3 2 0
3hhb 7 8 2 0 3 3 O
Totals 67 61 17 9 20 14 1

Table VI-4 presents the results of evaluating the predicted helical regions on a resi

due by residue basis in comparison to helical residues defined by the automatic assign

ment algorithms. In this two state prediction scheme, those regions not predicted as heli
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cal were scored as turns. The Chou and Fasman algorithm (Chou and Fasman, 1974)

produced a predictive accuracy (Q3) of 65% when applied to the collection of 20 all

alpha protein sequences used in this study; the GOR algorithm (Garnier, Osguthorpe, and

Robson, 1978) provided an accuracy of 71%; the neural net scheme of Kneller et

al. (Kneller, Cohen, and Langridge, 1990) was 78% accurate; and the ALPPS algorithm

provided an accuracy of 71%. Trimming the N- and C-cap locations in both the assigned

sequence and the predicted sequence improved the Chou and Fasman, GOR, the neural

net, and ALPPS based predictions 9%2, 9%4, 9%6, and 6% respectively. Most of the indivi

dual prediction scores increase as the endpoint locations are eliminated from considera

tion, but some scores stay constant or decrease. This suggests that the overall error rate

in prediction stems mainly from the difficulty in assigning the N- and C-caps. It is our

experience that those predictions that do not benefit from neglecting the endpoints were

poor predictions from the start. These data give a relative indication of the ability each

algorithm possesses to predict the core features of secondary structure.

The primary source of error in the ALPPS prediction of helices results from failures

in the underlying PLANS patterns. These errors can be subdivided into two levels: the

segmentation of the sequence into structural units, or block definition, and the

specification of helices within those units, or region definition. The primary source of

block definition comes from correct identification of turns; here with the PLANS pattern

TU. Failure at this level results in either the scission of a segment of regular secondary

structure or the concatenation of two segments of regular secondary structure. Based on

our previous work in turn prediction, we had anticipated and planned for these failures.

We were able to describe a simple length based heuristic for splitting exceptionally long

blocks. This is analogous to the PLANS work where weak turn predictions were masked
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away from the location of strong turn indicators based on the expected distance between

turns for a given protein class. We were not able to develop a consistently accurate

heuristic for recognizing appropriate situations for adjacent block concatenation.

The errors in region specification are of two types: mis-assignment of the helical

core, or mis-assignment of the helical endpoints. When one or both of the helix termini

cannot be determined, helix is defined over the extent of the helical core pattern. This

usually leads to under- prediction, but can lead to over-prediction when false positive

helical core signals are generated. Predicted helical termini can also be located in a

manner which erroneously shortens the helical region.

ALPPS also provides information to drive a display of the secondary structure pred

iction. Using the graphical display program MIDAS (Ferrin et al., 1988), one can evaluate

a secondary structure prediction in light of the the actual three dimensional structure of

the protein. Graphical display of the structures facilitates an inspection of the postulated

sequence-structure correlates for structural relevance. Examination of algorithm errors is

also greatly simplified by coloring the residues with respect to the types of errors (under

vs. over) in the secondary structure prediction. A MIDAS ribbon rendering which

highlights the differences in the assigned and the predicted secondary structure for Cyto

chrome c, is presented in Figure 6-7.

6.4. Conclusions

We have developed PLANS patterns that recognize individual components of

secondary structure. In the work presented here, we present concepts used to recognize

the distinct structural components of O-helices: N-cap, core region, and C-cap. Currently
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Table VI-4: ALPPS Residue by Residue Scores

Development set
Protein Q3 C TP TN FP FN
1ccr 0.71 0.42 38 41 16 16
1 folh 0.74 0.35 91 17 7 31
2ccy 0.85 0.58 91 18 11 7
2cts 0.70 0.36 220 89 48 80
21h1 0.69 0.23 87 19 22 25
2lhb 0.66 0.23 79 21 18 32
2lzm 0.71 0.41 87 30 8 39
3c2c 0.61 0.22 48 21 31 12
3cln 0.79 0.46 90 23 14 16
3cpv 0.88 0.75 64 32 8 4
Totals 0.73 0.39 895 311 183 262
Trimmed 0.80 0.56 543 225 86 101

Test set
156b 0.73 0.49 48 28 5 22
1cc5 0.71 0.41 33 26 13 11
1ecd 0.60 0.01 75 7 11 43
1hmq 0.64 0.12 62 11 15 25
1mbd 0.75 0.26 104 12 11 26
2cyp 0.61 0.23 103 78 62 50
2tmv 0.77 0.54 57 62 15 20
3hhb 0.78 0.45 91 20 8 22
3icb 0.69 0.15 46 6 14 9
3wrp 0.69 0.17 64 6 5 26
Totals 0.69 0.33 683 256 159 254
Trimmed 0.75 0.47 408 192 72 126

we can identify almost all of the helical regions via their core structure features. How

ever, we can identify only some of the N-cap, and C-cap positions with certainty.

With the success of the pattern based turn prediction, it was our expectation that the

predicted location of turns would be a useful basis for sub-dividing a protein sequence

into regions for independent evaluation. This expectation has been fulfilled. A language

to facilitate a segment based approach to the prediction of regular secondary structure,

ALPPS, has been designed and implemented. Initial pattern development was performed
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Figure 6-7: Sample ALPPS Result

Blue indicates where the secondary structure assignment and prediction match.
Red indicates those segments of the sequence falsely predicted as helical.
Violet outlines those segments where sequence was assigned helical but not
predicted as such. The orange segment indicates an entire helix that was not
predicted.

on a database of ten O■ o proteins. These patterns were applied to an independent, non

homologous data set. The results presented here compare favorably with the current

secondary structure prediction algorithms (Table VI-5). The ALPPS method is similar to

the GOR method when all residues are considered. However when the scoring is focused

on the core of the helical segments, the ALPPS algorithm fairs better. On the basis of

individual residue scores, the neural network algorithm and weights developed by

Kneller et al. performs 3% better than the ALPPS system.

Effective, practical use of secondary structure prediction methods is facilitated by
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Table VI-5: Comparison of Prediction Methods for All
Helical Proteins

Method Raw Trimmed Reference
Q3 (C) Q3 (C)

Chou & Fasman 0.65 (0.23) 0.68 (0.30) (Chou and Fasman, 1978)
Garnier, et al. 0.71 (0.36) 0.75 (0.46) (Garnier, Osguthorpe, and Robson, 1978)
Qian, et al. 0.67 (NC) NC (NC) (Qian and Sejnowski, 1988)
Kneller, et al. 0.79 (0.55) 0.85 (0.69) (Kneller, Cohen, and Langridge, 1990)
This Work 0.71 (0.36) 0.80 (0.56)

NC is used to show Not Calculated. The values determined for Chou and Fas
man, Garnier, et al. and the current work were taken by applying the respective
algorithms to the 20 protein dataset described in methods, and comparing that
to the assignments as generated by the algorithm of Richards and Kundrot.
The weights generated in the neural net simulation by Kneller et al., were also
used in a run against the 20 protein dataset, but compared against the helical
assignment as determined by the algorithm of Kabsch and Sander, as this as
signment was used in the training of the neural network. The value for Qian
and Sejnowski were taken unmodified from Kneller et al. (Kneller, Cohen, and
Langridge, 1990).

ability to determine the basis for individual predictions. With methods based on statisti

cal analyses, this determination is infeasible because the data are primarily numerical dis

tributions. The problems are similar with computational neural network learning algo

rithms. However, the database of rules contained in a pattern matching system such as

ALPPS is interpretable by the experimentalist. This allows the experimentalist to per

form an evaluation of confidence based on the biochemical knowledge incorporated into

the pattern. Secondary structure prediction then overcomes the concept of a "black box"

procedure.

Several secondary structure prediction algorithms may in fact be useful when used

in concert. Predictions with the ALPPS system and the neural network software often

complement each other. When the neural network software incorrectly predicts a partic
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ular region, often the ALPPS evaluation will be closer to the targeted assignment, and

vice versa. In future work, we plan to integrate the two methods to obtain the best infor

mation from each package.

Work on extensions to the ALPPS method is also underway. PLANS patterns that

recognize the components of 3-structure, and the ALPPS patterns that would coordinate

the prediction of 3-structure regions are currently under development. The eventual

incorporation of combined o. and 3 component structure patterns for the set of O■ 3 pro

teins is also anticipated. We have only explored the lower half of the structural hierar

chy. We are now incorporating concepts into the syntax of ALPPS that will facilitate the

description of higher level concepts in protein structure. These will include super

secondary structure and "motifs" such as four helix bundles (Presnell and Cohen, 1989)

or nucleotide binding folds (Rao and Rossman, 1973).

One of the innovative features incorporated into the ALPPS language was the abil

ity to utilize the sequential ordering of sub-structure features as recognized by PLANS

patterns. We have exploited that aspect of the ALPPS meta-pattern language to construct

the first example of a predictive algorithm for regular secondary structure that explicitly

incorporates non-local sequence-structure correlations. The results presented here

strongly suggest that processing the sequence into structurally reasonable segments can

provide an advantage over non-hierarchical methods of prediction.

The developments in predictive schemes have also brought to our attention the com

plexities in describing the target. Scoring algorithms that focus on the prediction of indi

vidual residues have been used as a standard of comparison for several years. One

artifact of these algorithms is that each residue is considered equally important. How
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ever, researchers and algorithms and cannot agree amongst themselves on the precise

location of the terminal residues of regular secondary structure. Moreover, the semi

empirical condensation methods of model construction, which use secondary structure as

input, are insensitive the the exact end or beginning of a particular stretch of secondary

structure (Cohen and Kuntz, 1989). Of much greater importance is the number and loca

tion of the individual secondary structure features. The trimming technique presented

here affords one method to examine this issue. We * continuing to develop new scor

ing algorithms that focus on the segmented, feature oriented, nature of regular secondary

structure. This should provide an evaluation technique that indicates the utility of secon

dary structure predictions for subsequent steps in the modeling process.
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Chapter 7

Conclusions

“[T]he prediction of helix locations has almost become a science.”

— Richard E. Dickerson (Dickerson et al., 1971)

Twenty years later, the prediction of helix locations is still an open problem.

Secondary structure can provide a low-resolution view of the structure of a protein — a

view that can be used for many purposes, e.g., the epitope search described in Chapter 1

or tertiary structure prediction described in Chapter 6. Most of the standard secondary

structure prediction techniques have failed to adequately focus on the prediction of helix

[strand] locations. Instead, the emphasis has been on maximizing some quality index

(usually Q or C) which is based solely on residue counts. As is shown in Chapter 4, resi

due based scores do not necessarily reflect how well a prediction approximates observed

secondary structure. Segment based secondary structure prediction, as described in this

thesis, is attempt to produce predictions which do approximate observed secondary struc

ture.

As described in Chapter 2, local sequence patterns can provide some sequence

structure correlates — particularly for turns when combined with the concept of link

length (appropriate spacing between turns). The non-local information provided by the

appropriate spacing is an important caveat. Sequence-structure correlates for helix com

ponents can also be derived from local sequence information, but these patterns need to

be placed into a larger framework in order to predict helix locations. ALPPS provides

the framework through its various segment types and metapattern syntax.

153
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The results of using ALPPS and a segment based approach, detailed in Chapter 6,

are promising. Because the predictions begin with a partitioning of the sequence into

segments based on turn predictions, no predicted helix is unreasonably long. Similarly,

minimum sizes are applied to predicted helices. The bootstrap kernel of segment based

prediction allows the use of local sequence information to go into refining the prediction

with more long range information.

One of the areas of future improvement for ALPPS is an implementation of the

frame concept sketched at the end of Chapter 3. Prediction may also be improved by

moving to a multiple pass technique. Preliminary predictions of helix locations may be

subject to change on a second pass when supersecondary structure (e.g., C. - 3 -o) or

motif (e.g., four helix bundle) signals are recognized.

Although residue based scores do not completely evaluate secondary structure pred

ictions, they do reveal some information. This is particularly true after capping differ

ences are removed by trimming. Based on Q or C scores, our predictions are superior to

Chou-Fasman (Chou and Fasman, 1978) and GOR (Garnier, Osguthorpe, and Robson,

1978), but not as good as a recent neural net technique (Kneller, Cohen, and Langridge,

1990). Neural nets and machine learning in general offers the capacity of exhaustive

searching that might exhaust (bore) a human. Work should go into combining aspects of

a neural net (or other machine learning) approach into our segment based approach.
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Pseudo-string edit distances described in the chapter on feature based scoring, could

improved machine learning by providing an evaluation tool which reflects the goal of

making predictions which approximate secondary structure assignments. Though all of

the components of pseudo-string editing (objects, operations, and costs) are outlined in

Chapter 5, the remaining work will be difficult, but also rewarding.
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Appendix A

Common Lisp Source Code for def-alpps Macro

::::: ************************************************************************
;;;;* Match-Set System
;;;;* file: alpps.lisp
;33;
:::: *************************************************************************
;3,
; These functions are the basis of the segmentation capabilities of
;: ALPPS.

(in-package 'alpps)

(use-package '(user lisp loop plans))

(import '(loop:mit-loop))
(export '(segment-sequence substring hide-blocks expose-blocks split-blocks

cat-blocks alpps-eval-all))

;;; def-alpps macro
(defvar *alpps-pattern-names” nil)
(setf “alpps-pattern-list” nil)

;;; defaults for automatic turn regions
(setf "turn-region-name* "auto-turn")
(setf "turn-region-target” "Cturn")
(setf "turn-region-symbol". "+")
(setf "turn-region-color" "Yellow")

(defnmacro def-alpps (name lamda-list &rest body)
(let ((it (gensym)))

“(let ((,it
(cons 'progn

(cons (cons 'segment-known-sequence ’, lamda-list)
”,body))))

(set■ "alpps-pattern-list”
(cons”, name *alpps-pattern-list”)

(set■ "alpps-pattern-names”
(cons (format nil "s"', name) *alpps-pattern-names"))

(defun, name O
,it))))
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(defvar *top-alpps-blocks" nil "place to put seqs from alpps")
(defvar *bottom-alpps-blocks” nil "place to put seqs from alpps")
(defvar *top-visible-alpps-blocks” nil "place to put seqs from alpps")
(defvar *bottom-visible-alpps-blocks” nil "place to put seqs from alpps")
(defvar *top-visible-alpps-regions” nil "place to put seqs from alpps")
(defvar *bottom-visible-alpps-regions” nil "place to put seqs from alpps")
(defvar *default-seq*nil "working sequence name for alpps")
(defvar *default-resseq*nil "working sequence for alpps")
(defvar *default-spat” nil "working alpps pattern")
(defvar *summary-seq*"SUMMARY")

(defun alpps-eval ()
"perform alpps patterns see s-patterns-table"
(mit-loop for spat in *alpps-pattern-list”

do
(setf "region-color-list” nil)
(setf “default-spat” spat)
(eval (eval (list spat)))
(setf “default-sb” (get-default-block-pointer))
(setf “alpps-sb-list”

(append *alpps-sb-list* (list *default-sb")))
(send-to-midas)
(tally-regions-and-types)))

(defun alpps-eval-all ()
"this function should not be in alpps package"
(setf “alpps-tallys-list” ())
(setf "alpps-region-type-tallys-list* ())
(setf "alpps-sb-list* ())
(start-total-residue-scoring)
(mit-loop for seq in match-set::*sequence-deck”

do
(setf “default-seq* seq)
(setf "default-resseq* (match-set::resseq-obj-seq

(gethash seq match-set::resseq-hash)))
(alpps-eval)))
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---

99.9

; STRUCTURES FOR BLOCKS

(defstruct (seq-blocks :named)
"holds blocks for a given sequence"
(name);(::type string)
(alpps-pattern);(:type string)
(tolerance);(::type integer)
(length);(::type integer)
(block-list);(:type list)
(predicted-ss-seq);(:type string)
(predicted-helices); (:type list)
(predicted-strands); (:type list)
(helix-results); (:type list)
(strand-results); (:type list)
(turn-results); (:type list)
(big-Q)
(big-C-alpha)
(big-C-beta)
(visible-list));(:type list)

(defstruct (block)
"main object for blocks"
(seq);(::type string)
(left-tol);(:type string)
(right-tol);(:type string)
(ss-seq);(:type string)
(length);(:type integer)
(tolerance);(:type integer)
(start);(:type integer)
(end);(:type integer)
(visible);(:type bool)
region
(markings));(:type list)

(setf seq-blocks-hash (make-hash-table size 100:test #'equal))
;( "hash table for holding seq-blocks")
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(defun segment-sequence (&key (seq “default-seq*) (tol 0) pat
(turn-regions nil)
(spat *default-spat"))

(let ((resseq (match-set::resseq-obj-seq
(gethash seq match-set::resseq-hash))))

(set q "default-resseq*resseq)
(segment-known-sequence seq seq :resseq resseq:turn-regions turn-regions

:tol tol:pat pat:spat spat)))

(defvar tol-pad-char #V2 "character for tol area before and after seq")

(defun segment-known-sequence (&key (seq “default-seq*)
(resseq “default-resseq*)
(turn-regions nil)
(tol 0) pat
(spat *default-spat”))

(let” ((tol-pad (make-string tol:initial-element tol-pad-char))
(block-list (make-block-list seq seq:resseq resseq

:tol tol:pat pat
:turn-regions turn-regions
:left-tol tol-pad
:right-tol tol-pad)))

(setf (block-left-tol (car block-list))"")
; (setf block-list (reverse block-list))
(setf(block-right-tol (car (reverse block-list)))""); remove padded tol

(setf(gethash (format nil "s4"s" seq spat) seq-blocks-hash)
(make-seq-blocks
:name seq
:length (length resseq)
:alpps-pattern spat
:tolerance tol
:block-list block-list
:visible-list block-list))))

(defun get-default-block-pointer ()
(setf “default-sb”

(gethash (format nil "s4's" *default-seq**default-spat”)
seq-blocks-hash)))
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(defun remove-mid-numbers (1)
"takes a list of numbers and removes middle adjacent numbers.

e.g. (remove-mid-numbers "(
' (1 3 4 5 6 7 8 12 13 14 15 18 19 27 28 29))

gives (138 12 1518 192729)"
(mit-loop for i in l with result = () and j = nil and look-back = nil

do
(if (null j)

(setf result (cons i result))
(if (equal i (+ 1 j))

(setflook-back t)
(progn

(if look-back
(setf result (cons jresult)))

(setflook-back nil)
(setf result (cons i result)))))

(setfji)
finally
(if look-back

(setf result (cons jresult)))
(return (reverse result))))
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(defun get-run-beginnings-only (1 &key (run-length 3))
"takes a list of numbers and returns the beginnings of runs

of length 3 or more.
e.g. (get-run-beginnings-only "(

' (1 3 4 5 6 7 8 12 13 14 15 18 19 27 28 29) )
a a a a

gives (3 1227)"
(mit-loop for i in l and jin (cdr l) with result = () and hold = (car l) and

count = 1
do
(if (equal (+ i 1).j)

(if (equal count 1)
(progn

(setf hold i)
(setf count 2))

(incf count))
(if (>= count run-length)

(progn
(setf result (cons hold result))
(setf hold i)
(setf count 1))

(progn
(setf hold i)
(setf count 1))))

finally
(if (>= count run-length)

(setf result (cons hold result)))
(return (reverse result))))

-
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(defun make-block-list (&key (seq "default-seq*) resseq (tol 0) pat (offset 0)
(left-tol "") (right-tol "")
(turn-regions nil))

"block out a sequence "
(let” ((1 (length resseq))

(match-results (plans-match resseq pat))
(turn-starts ()) this-block
block-list obj(start 1)
(full-seq (format nil "a a a "left-tol resseq right-tol)))

(progn
(if turn-regions

(setf turn-starts (get-run-beginnings-only match-results)))
(setf match-results (delete 1 (remove-mid-numbers match-results)))
(mit-loop for i in match-results

do
(setf this-block

(make-block
:seq (substring resseq:start start:end i)
:ss-seq nil
:left-tol (substring full-seq

:Start Start

:end (+ start tol-1))
:right-tol (substring full-seq

:start (+ i tol. 1)
:end (+ i tol tol))

:length (-(+ i 1) start)
:start (+ start offset)
:end (+ i offset) :region nil
:tolerance tol :visible t
:markings nil))

(setf block-list
(cons this-block block-list))

(if (and turn-regions (member start turn-starts))
(setf(block-region this-block)

(make-region
:name *turn-region-name*
:seq (block-seq this-block)
:length (block-length this-block)
:start (block-start this-block)
:target *turn-region-target”
:symbol *turn-region-symbol"
:color *turn-region-color”
:end (block-end this-block)
:visible t)))

(seta start i))
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(if (not (equal start 1))
(progn

(setf this-block
(make-block
:seq (substring resseq:start start:end l)
:ss-seq nil
:left-tol (substring full-seq

:start (- start tol)
:end (- start 1))

:right-tol (substring full-seq
:start (+ 1 1)
:end (+l tol))

:length (-(+ l 1) start)
:start (+ start offset)
:end (+ 1 offset)
:tolerance tol visible t
:markings nil))

(setf block-list
(cons this-block block-list))

(if (and turn-regions (member start turn-starts))
(setf(block-region this-block)

(make-region
:name *turn-region-name*
:seq (block-seq this-block)
:length (block-length this-block)
:start (block-start this-block)
:target *turn-region-target”
:symbol "turn-region-symbol"
:color *turn-region-color”
:end (block-end this-block)
:visible t)))))

(reverse block-list))))
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(defun substring (string &key (start 1) (end (length string)))
"returns a substring of string. Does some checking for reasonable bounds."
(let (result)

(if (or (string-equal string "") (null string))
(setf result string)

(progn
(if (< start 1) (setf start 1))
(if (> end (length string)) (setf end (length string)))
(setf result

(make-string (-(+ 1 end) start):initial-element # space))
(mit-loop for i from (- start 1) to (- end 1)

with j = 0
do
(setf(elt result j) (elt string i))
(incfj))))

result))

(defun show-all-blocks (&key (seq "default-seq*) (spat *default-spat"))
(preshow-all-blocks:seq seq:spat spat)
(format t "Ta■ º," "top-alpps-blocks”)
(format t "Tarº" *bottom-alpps-blocks”))
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(defun preshow-all-blocks (&key (seq "default-seq*) (spat *default-spat”))
"retrun list of blocks for a given sequence in up-down fashion"
(let” ((seq-ptr (gethash (format nil "s4"s" seq spat) seq-blocks-hash))

(tol (seq-blocks-tolerance seq-ptr))
(top-list nil)
(1 (seq-blocks-length seq-ptr)))

(setf "top-alpps-blocks”
(make-string l initial-element # space))

(setf "bottom-alpps-blocks”
(make-string 1:initial-element # space))

(mit-loop
for block in (seq-blocks-block-list seq-ptr)
with tol = (seq-blocks-tolerance seq-ptr)
do
(setf top-list (not top-list))
(mit-loop for i from (max 1 (- (block-start block) tol))

to (min l (+ (block-end block) tol))
and jin (coerce

(format nil "Ta'a'a" (block-left-tol block)
(block-seq block)
(block-right-tol block)) 'list)

do
(if top-list

(setf(elt "top-alpps-blocks” (-i 1)) j)
(setf(elt *bottom-alpps-blocks” (-i 1)) j))

))))
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(defun preshow-visible-blocks (&key (seq “default-seq*) (spat *default-spat"))
"put visible blocks into 2 strings for up/down display"
(let” ((seq-ptr (gethash (format nil "s4's" seq spat) seq-blocks-hash))

(tol (seq-blocks-tolerance seq-ptr))
(top-list nil)
(1 (seq-blocks-length seq-ptr)))

(setf "top-visible-alpps-blocks”
(make-string l initial-element # space))

(setf "bottom-visible-alpps-blocks”
(make-string 1:initial-element # space))

(setf "top-visible-alpps-regions*
(make-string l initial-element # space))

(setf "bottom-visible-alpps-regions”
(make-string l initial-element # space))

(mit-loop
for block in (seq-blocks-visible-list seq-ptr)
with tol = (seq-blocks-tolerance seq-ptr)
do
(setf top-list (not top-list))
(mit-loop for i from (max 1 (- (block-start block) tol))

to (min l (+ (block-end block) tol))
and jin (coerce

(format nil "Ta'a'a" (block-left-tol block)
(block-seq block)
(block-right-tol block)) 'list)

do
(if top-list

-

(setf(elt "top-visible-alpps-blocks" (-i 1)) j)
(setf(elt *bottom-visible-alpps-blocks” (-i 1)) j)))

(if (not (null (block-region block)))
(mit-loop for k from (region-start (block-region block))

to (region-end (block-region block))
do
(if top-list

(setf(elt "top-visible-alpps-regions* (-k 1))
(coerce (region-symbol (block-region block))

'character))
(setf(elt *bottom-visible-alpps-regions* (-k 1))

(coerce (region-symbol (block-region block))
'character))))))))
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(defun show-visible-blocks (&key (seq "default-seq*) (spat *default-spat”))
"retrun list of visible blocks for a given sequence"
(setf “default-block-list*

(seq-blocks-visible-list
(gethash (format nil "s4's" seq spat) seq-blocks-hash)))

(mit-loop
for block in (seq-blocks-visible-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
with result = nil and region-list = nil
do

(setf “default-block” block)
(setf result

(cons (list (block-start block) (block-end block)) result))
(if (block-region block)

(setf region-list
(cons (list (region-start (block-region block))

(region-end (block-region block)))
region-list)))

finally
(print (reverse region-list))
(return (reverse result))))
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(defun hide-blocks (&key (seq "default-seq*) (spat *default-spat”) pat
(spat-min-count 1)
(no-limit nil))

"looks for segments which have pattern and are then hidden"
(mit-loop
for block in (seq-blocks-visible-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
with result = nil and plans-results = nil
do
(if (null no-limit)

(setf plans-results (plans-match (block-seq block) pat))
(setf plans-results (interval

(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* pat))))

(if (< (length plans-results) spat-min-count)
(setf result (cons block result))

(setf(block-visible block) nil))
finally
(setf (seq-blocks-visible-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
(reverse result))))

(defun expose-blocks (&key (seq “default-seq*) (spat *default-spat”) pat
(spat-min-count 1) (no-limit nil))

"remove blocks from hiding based on pat"
(mit-loop
for block in (seq-blocks-block-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
with result = nil and plans-results = nil
do
(if (not (block-visible block)) ; only build if necessary

(if (null no-limit)
(setf plans-results (plans-match (block-seq block) pat))

(setf plans-results (interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* pat)))))

(if (or (block-visible block)
(not (< (length plans-results) spat-min-count)))

(progn
(setf (block-visible block) t)
(setf result (cons block result))))

finally
(setf(seq-blocks-visible-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
(reverse result))))



177

(defun expose-all-blocks (&key (seq "default-seq*) (spat *default-spat”))
(let ((sb (gethash (format nil "s4"s" seq spat) seq-blocks-hash)))
(mit-loop
for block in (seq-blocks-block-list sb)
do
(setf (block-visible block) t))

(setf (seq-blocks-visible-list sb)
(seq-blocks-block-list sb))))

(defun split-long-blocks
(&key (seq "default-seq*) (max-length 100) (spat *default-spat”))
"looks for segments which are longer than max-length and divide them

in half"
(mit-loop
for block in (seq-blocks-block-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
with block-results = nil and visible-results = nil
do
(if (not (block-visible block))

(setf block-results (cons block block-results))
(if (not (> (block-length block) max-length))

(progn
(setf block-results (cons block block-results))
(setf visible-results (cons block visible-results)))

(progn
(mit-loop for i in (cut-block:block block

:cut-point (round (/ max-length 2)))
do
(setf block-results (cons i block-results))
(setf visible-results (cons i visible-results))))))

finally
(setf (seq-blocks-block-list

(gethash (format nil "s+"s" seq spat) seq-blocks-hash))
(reverse block-results))

(setf(seq-blocks-visible-list
(gethash (format nil "s4"s" seq spat) seq-blocks-hash))

(reverse visible-results))))



178

(defun cut-block (&key block cut-point)
"given a block, return a list of 2 cut at cut-point"
(let ((left-block nil) (right-block nil)

(i 0) (offsetet 0))
(format t "using cut-block 9%")
(setf tol (block-tolerance block))
(setf offset (- (block-start block) 1))
(setfleft-block

(make-block
:seq (substring (block-seq block):end cut-point)
:ss-seq nil
:left-tol (block-left-tol block)
:right-tol (substring (block-seq block)

:start (+ cut-point 1)
:end (+ cut-point tol))

:length cut-point
:start (block-start block)
:end (+ cut-point offset)
:region nil
:tolerance tol
:visible t
:markings nil))

(setf right-block
(make-block
:seq (substring (block-seq block):start cut-point)
:ss-seq nil
:left-tol (substring (block-seq block)

:start (- cut-point tol)
:end (- cut-point 1))

:right-tol (block-right-tol block)
:length (-(block-length block) (- cut-point 1))
:start (block-end left-block)
:end (block-end block)
:region nil
:tolerance tol
:visible t
:markings nil))

(list right-block left-block)))



179

(defun split-blocks (&key (seq “default-seq*) pat (spat *default-spat”))
"looks for segments which have pattern and are then split"
(mit-loop
for block in (seq-blocks-block-list

(gethash (format nil "s4's" seq spat) seq-blocks-hash))
with block-results = nil and visible-results = nil and new-blocks = nil
do
(if (not (block-visible block))

(setf block-results (cons block block-results))
(if (not (plans-match (block-seq block) pat))

(progn
(setf block-results (cons block block-results))
(setf visible-results (cons block visible-results)))

(progn
(setf new-blocks

(reverse (make-block-list :resseq (block-seq block):pat pat
:left-tol (block-left-tol block)
:right-tol (block-right-tol block)
:tol (block-tolerance block)
:offset (- (block-start block) 1))))

(setf block-results (append new-blocks block-results))
(setf visible-results (append new-blocks visible-results)))))

finally
(setf (seq-blocks-block-list

(gethash (format nil "s+"s" seq spat) seq-blocks-hash))
(reverse block-results))

(setf(seq-blocks-visible-list
(gethash (format nil "s4"s" seq spat) seq-blocks-hash))

(reverse visible-results))))
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(defun cat-blocks (&key (seq “default-seq*) patl pat? (spat *default-spat”))
"looks for adjacent segments which have pattern and are then merged"
(let” ((block-list (seq-blocks-block-list

(gethash (format nil "s4's" seq spat) seq-blocks-hash)))
(first-block (car block-list)))

(setf block-list (delete first-block block-list))
(mit-loop
for second-block in block-list
with block-results = nil and visible-results = nil
do
(if (not (block-visible first-block))

(progn
(setf block-results (cons first-block block-results))
(setf first-block second-block))

(if (not (and
(block-visible second-block)
(plans-match (block-seq first-block) patl)
(plans-match (block-seq second-block) pat?)))

(progn
(setf block-results (cons first-block block-results))
(setf visible-results (cons first-block visible-results))
(setf first-block second-block))

(merge-to-one-block first-block second-block)))
finally
(setf block-results (cons first-block block-results))
(if (block-visible first-block)

(setf visible-results (cons first-block visible-results)))
(setf(seq-blocks-block-list

(gethash (format nil "s4's" seq spat) seq-blocks-hash))
(reverse block-results))

(setf (seq+blocks-visible-list
(gethash (format nil "s4"s" seq spat) seq-blocks-hash))

(reverse visible-results)))))
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(defun merge-to-one-block (first-block second-block)
"combines two block structs into the first"
(setf(block-seq first-block)

(format nil "Ta'a" (block-seq first-block)
(substring (block-seq second-block):start 2)))

(setf(block-ss-seq first-block)
(format nil "Ta'a" (block-ss-seq first-block)

(substring (block-ss-seq second-block):start 2)))
(setf(block-length first-block) (+ (block-length first-block)

(block-length second-block)))
(setf (block-end first-block) (block-end second-block))
(setf(block-markings first-block)

(merge-block-markings (block-markings first-block)
(block-markings second-block))))

(defun merge-block-markings (first-list second-list)
"combines two block marking lists"
)

(defun equal-pair (a b)
"test for equality of all member of list"
(if (and (null a) (null b))

T
(if (and (equal (car a) (car b))

(equal-pair (cdra) (cdrb)))
T

nil)))
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::::: ************************************************************************> * >

;;;;* Match-Set System
;;;;* file: globals.lisp
;;*
. . . . . . . . . . . . ºr ºt tº k + 4 + k + 4 + k + k + k + k + k + 4 + 4 + 4 + k + k + k + k + k \, it k + k + k + k + k + k ≤ k ≤k-k-k-k-k-k-k-k-k-k-k-k-k-k
* * * >

(in-package match-set)
(use-package '(lisp user loop plans))

;;;; LISTS for patterns
(defvar *plans-results-list” nil)
(defvar *alpps-pattern-list” nil)
(defvar *alpps-pattern-names-list” nil)
(defvar *plans-pattern-list” nil)
(defvar *ssblock-types* ("H" "S" "L" "T") "sec struct types")

(defvar *ms-output-directory” "." "place forms output")
(defvar *default-plans-output-file" "plans-summary.tbl")
(defvar *default-alpps-tally-output-file” "alpps-summary.tbl")
(defvar *default-plans-seq-output-file" "plans-dump.roff")
(defvar *send-helix-tallys" t)

;;; flags for controling running of ms
(defvar *do-alpps-runs*t)
(defvar *control-file-lock-out” nil "if T, don’t reload control-file")
(defvar *just-peeking” nil "if T, don't show primary sequence")
(defvar *dump-target” nil "possible target for general run")

;;; bags of sec struct symbols for look-down
(defvar *Helix* (coerce "a 34;k"'list))
(defvar *Strand” (coerce "be"'list))
(defvar *Cturn” (coerce "tljk"'list))

(setf "hit-char-list" (#A #A@ ###$#\% #\ #\& #Vº #(#\) #|- #
#A=#\+ #\|#\ #\! {\º #: #A■ #A}
#A[#A] #\: #A; #A" # #7 #V #, #A))

(deftype bool ()
"a logical type"
'(or (satisfies null) (satisfies symbolp)))
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;;;; residue sequence object
(defstruct (resseq-obj:named)

"main object for dealing with matches"
(name)
(seq)
(ss-seq)
(ss-3-seq); place to put abt type ss-assignments
(loops);;(:type list "start stops for each class")
(turns)
(strands)
(helices)
(match-list);;(:type list"((1 2 3) (3910)...)")
(results-list);;(::type list "((T LF))")
(alpps-runs));;(::type list "pointers to alpps results")

(defvar resseq-hash (make-hash-table size 100:test #'equal)
"hash table for holding resseq-objs")
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::::: ************************************************************************
;;;;* Match-Set System
;;;;* file: helix-output.lisp
- - - -

• * > *

- - - -

* * * *

- - - -

* * * *

... . k + k + k i■ : { * * * * * *::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k:k:k:k:k:k:k:k:k:k
* * * *

(in-package :alpps)
(use-package '(lisp user loop plans match-set))

(setftab-char #Mab)

(setf “default-alpps-helix-output-file" "helix-results.tbl")

(defun send-helix-tallys (&key (file ""))
"build an output file with alpps helix results"
(let (file-name (assigned-total 0) (predicted-total 0) (type-totals ())

(type-count (length *region-color-list")))
(progn

(mit-loop for k from 1 to type-count
do
(setf type-totals (cons 0 type-totals)))

(if (equal file "")
(setf file *default-alpps-helix-output-file”))

(seta file-name (format nil "a■ a"
match-set::*ms-output-directory” file))

(format t "type-count "dº" type-count)
(with-open-file
(output-stream file-name

:direction output
:if-exists:new-version
:if-does-not-exist :create)

(format output-stream ".sp 27%")

(format output-stream "a 9%"a"96 a 9%"a"96 a 9%"a"9%"
"TS"
"box;"
"c S S S S s”
"l 1 c c c S"
"l 1 C C C C"
"11 || n | n | n | n.")

(format output-stream "Match-Set ALPPS Helix Tallys"%")
(format output-stream

"Sequence aPattern aÁssigned aPredicted aregions 96"
tab-char tab-char tab-char tab-char)
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(format output-stream
"Ta'a'a atype acount"9%="%"
tab-char tab-char tab-char tab-char tab-char)

(mit-loop for i in (reverse *alpps-tallys-list”) and
for jin (reverse *alpps-region-type-tallys-list”) and
assigned-count = 0
do
(setf assigned-count

(length
(match-set::resseq-obj-helices
(gethash (cari) match-set::resseq-hash))))

(incf assigned-total assigned-count)
(incf predicted-total (fifth i))
(format output-stream

(cari) tab-char
(cadri) tab-char
assigned-count tab-char
(fifth i))

(mit-loop for k from 0 to (- type-count 1)
do
(incf (nth k type-totals) (nth (+ k2).j))
(format output-stream

tab-char tab-char tab-char tab-char
(car (nth k "region-color-list”)) tab-char
(nth (+ k2).j)))

finally
(format output-stream

"="33")
(format output-stream

tab-char tab-char assigned-total tab-char
predicted-total)

(mit-loop for k from 0 to (- type-count 1)
do
(format output-stream

tab-char tab-char tab-char tab-char
(car (nth k "region-color-list”)) tab-char
(nth k type-totals)))

(format output-stream "..TE '%"))))))
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. . . .x::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k
* * * *

;;;;* Match-Set System
;;;;* file: look-down.lisp
$33,
. . . . kº tº:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k
> * > *

(in-package match-set)
-

(use-package '(lisp user loop plans))

(defvar *true-pos” 0)
(defvar *tol-pos” 1)
(defvar *false-pos” 2)

(defun look-down (&keyss-seq postol goal)
"look down ass-seq from position pos and try to find goal. returns

*true-pos” “tol-pos” false-pos”"
(let ((true-pos nil) (found nil))

(setf pos (- pos 1))
(if (member (nth posss-seq) goal)

(setf true-post)
(mit-loop for i from (max (- postol) 0) to

(min (+ postol) (- (length ss-seq) 1))
do
(if (member (nth iss-seq) goal)

(progn
(setf found t) (loop::loop-finish)))))

(if true-pos
*true-pos”

(if found
*tol-pos”

*false-pos”))))

(defun make-pat-results-list (&keyss-seq tol goal match-list)
(mit-loop for i in match-list with positive = 0

and true-pos = 0 and tol-pos = 0 and false-pos = 0
do
(setf positive (look-down :ss-seq ss-seq

:pos i :tol tol:goal goal))
(case positive

((0) (incf true-pos))
((1) (incf tol-pos))
((2) (incf false-pos)))

finally
(return (list true-postol-pos false-pos))))
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:::: *************************************************************************3 *

;;* Match-Set System
;;;;* file: ms.lisp
$33,
.... it tº º ºx! ■ º tº k + k + k + k + k + ºr 4::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k:k:k:k:k:k kºk k
* * * *

(in-package match-set)
(use-package '(lisp user loop plans alpps)

(defun m-s ()
(ms-main))

(defun ms-main ()
"main-line forms"
(setup-for-ms)
(mit-loop for protein in *sequence-deck”

do
(evaluate-protein (gethash protein resseq-hash)))

(send-plans-results)
(if *do-alpps-runs*

(progn
(alpps-eval-all)
(send-alpps-tallys)))

(send-plans-sequences)
(if *send-helix-tallys"

(alpps::send-helix-tallys))
(say-good-bye))

(defun evaluate-protein (obj)
(do-plans-matching obj))

(defun print-proteins ()
(mit-loop for protein in *sequence-deck"

do
(print (gethash protein resseq-hash ))))
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(defun do-plans-matching (obj)
"perform match on all patterns on one resseq"
(let ((seq (resseq-obj-seq obj))

(ss-seq (coerce (resseq-obj-ss-seq obj) 'list))
(match-list ())
(matches ())
(results ())
(new-plans-results-list ())
(results-list ()))

(mit-loop
for pattern in (reverse *plans-pattern-list”)
and plans-results in (reverse *plans-results-list”)
do
(seta matches (plans-match seq (car pattern)))
(seta match-list (cons matches match-list))
(seta results (make-pat-results-list:ss-seq ss-seq

:tol *plans-tol"
:goal (eval (cadr pattern))
:match-list matches))

(set q results-list (cons results results-list))
(set q new-plans-results-list (cons (list-add results plans-results)

new-plans-results-list)))
(seta *plans-results-list* new-plans-results-list)
(setf(resseq-obj-results-list obj) results-list)
(setf(resseq-obj-match-list obj) match-list)))

(setf protein-data-loaded nil)
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(defun setup-for-ms ()
(if (not *control-file-lock-out”)

(load
(format nil "a■ a" *match-set-working-dir" "control.lisp")))

(if *do-alpps-runs”
(progn

(setfalpps::*alpps-pattern-list” nil); reset to prevent doubles
(load
(format nil "a■ a" *match-set-working-dir" "alpps-control.lisp"))))

(if (not protein-data-loaded)
(progn

(load
(format nil "a■ a" *match-set-working-dir” “protein-data”))

(setf protein-data-loaded t)))
(setf "plans-results-list* ())
(mit-loop for i in *plans-pattern-list* do

(setf "plans-results-list* (cons'(000)
*plans-results-list")))

(init-plans-pat-file *plans-pattern-file”))

(defun say-good-bye ()
(format t "good-bye"%"))
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... . . . ; ; ; ; * * * * * *:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k
> * > *

;;;;* Match-Set System
;;;;* file: plans-output.lisp
* * * *

. . . . * * * * * * * * * * *:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::k:k:k:k:k:k::::::k:k:k:k:k k + k >k #
9 * > *

(in-package match-set)
(use-package '(lisp user loop plans alpps))

(setftab-char #Mab)
(setf break-length 150)

(defun send-plans-sequences (&key (file ""))
"build an output file with plans sequence results"
(let (file-name objhits len)

(progn
(if (equal file "")

(setf file *default-plans-seq-output-file”))
(seta file-name (format nil "a■ a"

*ms-output-directory” file))
(with-open-file
(output-stream file-name

:direction :output
:if-exists :new-version
:if-does-not-exist :create)

(format output-stream ".ps 87%")
(format output-stream "...vs 97%")
(format output-stream "..nfº%")
(format output-stream ".ll 10i"9%")
(format output-stream "...po.5iº")
(format output-stream "...pl 8i’%")
(format output-stream".de NP-96")
(format output-stream

".tl "Vn(mo/\n(dy/\n(yr'Match-Set PLANS Sequence Results’%"%")
(format output-stream".sp 9%")
(format output-stream "..."9%")
(format output-stream "..wh 0 NP-96")
(format output-stream "\fC'90")
(format output-stream".NPrº")
(format output-stream "Pattern Symbols:"9%")
(mit-loop for i from 0 to (- (length *plans-pattern-list”) 1)

with hit-char = nil and pat = nil do
(seta hit-char (nth i "hit-char-list”)
(seta pat (car (nth i "plans-pattern-list")))
(format output-stream "Ta-Ta’%" hit-char pat))

(format output-stream "9%"9%")
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(mit-loop for protein in *sequence-deck”
do
(seta obj(gethash protein resseq-hash))
(setflen (length (resseq-obj-seq obj)))
(if (<= len break-length)

(progn
(format output-stream".ne "d"9%"

(+ (length *plans-pattern-list”) 5))
(format output-stream "Sequence Name: a Length: "d 96"

(resseq-obj-name obj) len)
(if (null "just-peeking")

(format output-stream "a 9%" (resseq-obj-seq obj)))
(if (null *dump-target”)

(format output-stream "a 9%"
(resseq-obj-ss-seq obj))

(format output-stream "a 9%"
(reduce-string (resseq-obj-ss-seq obj)

:show *dump-target”)))
(if *do-alpps-runs”

(dump-alpps-predictions:start 0
:end nil
:protein protein
:output output-stream))

(mit-loop for i from 0 to
(-(length *plans-pattern-list”) 1)
with hit-char = nil do
(set q hits

(nth i (resseq-obj-match-list obj)))
(setq hit-char (nthi "hit-char-list”)
(format output-stream

"-a-96"
(make-match-string
len hits
:hit-char hit-char)))

(if (null "just-peeking”)
(format output-stream "a 9%"

(resseq-obj-seq obj))))
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(mit-loop for j from 0 to (truncate (/len break-length))
with start = 0 and end = len
do
(setf start (* jbreak-length))
(setf end (min len (+ start break-length)))
(format output-stream".ne "dº"

(+ (length *plans-pattern-list”) 5))
(format output-stream

"Sequence Name: a From: "d To: "d 96"
(resseq-obj-name obj) (+ start 1) end)

(if (null "just-peeking”)
(format output-stream "Ta`9%"

(subseq
(resseq-obj-seq obj) start end)))

(if (null *dump-target”)
(format output-stream "a 9%"

(subseq (resseq-obj-ss-seq obj)
start end))

(format output-stream "a 9%"
(reduce-string

(subseq (resseq-obj-ss-seq obj)
start end)

:show "dump-target")))
(if *do-alpps-runs*

(dump-alpps-predictions
:Start Start
:end end
:protein protein
:output output-stream))

(mit-loop for i from 0 to
(-(length *plans-pattern-list”) 1)
with hit-char = nil do
(seta hits

(nth i
(resseq-obj-match-list obj)))

(setq hit-char (nth i “hit-char-list*))
(format output-stream

"a 36" (subseq
(make-match-string

len hits
:hit-char hit-char)

start end)))
(if (null "just-peeking”)

(format output-stream "a 96-96"
(subseq (resseq-obj-seq obj)

start end))))))))))
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(defun seq-portion (seq size part)
"returns the partth sized portion of seq"
(let” ((len (length seq))

(start (* part size))
(end (+ (min len (+ start size)) 0)))

(subseq seq start end)))

(defun send-plans-results (&key (file ""))
"build an output file with plans results in format for class analysis"
(let (file-name objresults t-ptol-p f-p d-p (total 0) (res-count 0)

(hit-count 0) (hit-percent 0))
(progn

(if (equal file "")
(setf file *default-plans-output-file”)

(set q file-name (format nil "a■ a"
*ms-output-directory” file))

(with-open-file
(output-stream file-name

:direction output
:if-exists:new-version
:if-does-not-exist :create)

(format output-stream ".sp 27%")
(format output-stream "a 9%"a"96 a 96"a 96"a 9% a 9%"

"TS"
"box;"
"c s ss ss s”
"l c c c c c c"
"l c c c c c c"
"l || n | n | n | n | n | n.")

(format output-stream "Match-Set PLANS Results".9%")
(format output-stream "Pattern a■ rue atolerated aFalse adecent a”

tab-char tab-char tab-char tab-char tab-char)
(format output-stream "Hit of a Hit of 9%."

tab-char)
(format output-stream "apositives apositives apositives aPercentage a”

tab-char tab-char tab-char tab-char tab-char)
(format output-stream "All Residues aunmasked 9%"

tab-char)
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(mit-loop for protein in *sequence-deck”
do ºr '-

(seta obj(gethash protein resseq-hash))
(setfres-count (length (resseq-obj-seq obj)))
(format output-stream " '96"a: "d res".9%" i.

(resseq-obj-name obj) res-count) º
(incf total (+ res-count))
(format output-stream "A

tab-char res-count)
(mit-loop for i from 0 to (-(length *plans-pattern-list”) 1)

do
(seta results (nth i (resseq-obj-results-list obj)))
(setft-p (nth 0 results))
(setf tol-p (nth 1 results))
(setff-p (nth 2 results))
(setf hit-count (+ t-ptol-p f-p))
(if (not (equal hit-count 0))

(setf d-p
(/ (* (+t-ptol-p) 100.0)

hit-count)) . ."
(setf d-p 0)) sº

(format output-stream
" "a a dra"d a dra",1f" A Tº
(car (nthi "plans-pattern-list”) tab-char º
t-p tab-char tol-p
tab-char f-p
tab-chard-p)

(if (not (equal 0 res-count)) º
(format output-stream º,

"-a",1f-%"
tab-char

-

(/ (* 100.0 hit-count) res-count)) lsº
(format output-stream "%"))))

-
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(format output-stream "="%"a: "d res".9%" "Totals" total)
(format output-stream "A

tab-char total)
(mit-loop for i from 0 to (- (length *plans-pattern-list”) 1)

do

(seta results (nth i “plans-results-list”)
(setft-p (nth 0 results))
(setf tol-p (nth 1 results))
(setff-p (nth 2 results))
(if (not (equal (+t-ptol-p f-p) 0))

(setf d-p (/(* (+t-ptol-p) 100.0) (+t-ptol-p f-p)))
(setf d-p 0))

(car (nth i "plans-pattern-list”)) tab-char
t-p tab-char tol-p
tab-char f-p
tab-chard-p)

(if (not (equal 0 total))
(format output-stream

"-a",1f-%"
tab-char
(/ (* 100.0 (+t-ptol-p)) total))

(format output-stream "9%")))
(format output-stream "TE".9%")))))
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(defun send-alpps-tallys (&key (file ""))
"build an output file with alpps results"
(let (file-name (nils 0) (alphas 0) (betas 0) (turns 0) (row-tot 0))

(progn
(if (equal file "")

(setf file *default-alpps-tally-output-file”))
(setq file-name (format nil "a■ a"

*ms-output-directory” file))
(with-open-file
(output-stream file-name

:direction :output
:if-exists:new-version
:if-does-not-exist :create)

(format output-stream".sp 2 %")
(format output-stream "a 9% a 9%"a 96"a 96"a 9% a 9%"

"TS"
"box;"
"c S S S S S S S"
"l 1 c c c c c c"
"ll c c c c c c"
"ll || n | n | n | n | n | n.")

(format output-stream "Match-Set ALPPS Tallys"%")
(format output-stream

"Sequence aPattern an ILS"a■ urns ahelices aStrands"
tab-char tab-char tab-char tab-char tab-char tab-char tab-char)

(format output-stream
"Tahelix"aStrand 96"
tab-char tab-char)

(format output-stream
-_-_-_-_--_--

tab-char tab-char tab-char tab-char tab-char tab-char tab-char)
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(mit-loop for i in (reverse alpps::*alpps-tallys-list”)
do
(incf nils (third i))
(incf alphas (fifth i))
(incf betas (sixth i))
(incf turns (fourth i))
(format output-stream

(cari) tab-char
(cadri) tab-char
(caddri) tab-char
(fourth i) tab-char (fifth i) tab-char (sixth i))

(setf row-tot (+ (third i) (fourth i) (fifth i) (sixth i)))
(format output-stream

"a",1f-a-,1f-%"
tab-char (/(* (fifth i) 100.0) row-tot)
tab-char (/(* (sixth i) 100.0) row-tot)))

(format output-stream

"Totals" tab-char tab-char nils tab-char turns
tab-char alphas tab-char betas)

(setf row-tot (+ nils alphas betas turns))
(format output-stream

"a",1f a ,1f96"
tab-char (/ (* alphas 100.0) row-tot)
tab-char (/ (* betas 100.0) row-tot))

(format output-stream "TE"%")))))

(defun dump-alpps-predictions (&key start end protein output)
"puts out predicted sequence"
(mit-loop for spat in (reverse alpps::*alpps-pattern-list”)

with sh = nil and result = nil and better-result
do
(setfsb (gethash (format nil "s4's" protein spat)

alpps::seq-blocks-hash))
(setf result (subseq (alpps::seq-blocks-predicted-ss-seq sh)

start end))
(setf better-result (string-char-replace

:string result:old # a new #Wh))
(setf result (string-char-replace

:string result:old #|t:new #Mc))

(format output "a 9%" result)))
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:::: ************************************************************************** * *

;;;* Match-Point System
;;;;* file: regions.lisp

;* CHANGES:
;;;* 4/4/90 mid pattern for region
;;;* 10/4/90 chamges for tallying region types
;;;;* 2/19/91 fix minimum residue count for regions after chopping TU
- - - -

• * > * :
$33,
::::: ************************************************************************• * >

(in-package 'alpps)

(use-package '(user lisp plans loop))
(import '(loop:mit-loop))
(export '(make-regions hide-regions expose-regions check-region

report-all-regions tally-regions))

(defvar blue "blue")
(defvar *default-color” Blue)
(defvar *region-color-list* nil)

(defstruct (region)
"main object for regions"
(name)
(seq)
(ss-seq)
(target)
(symbol)
(length)
(start) ; with respect to entire sequence
(end)
(color)
(visible))

; change for minimum AFTER dropping TU
;;; after change to eliminate TU from regions



199

(defun make-a-region (&key block start-pat end-pat name color target symbol
(mid-pat nil)
(start-n t)
(end-c t)
(min-size 1) (no-limit nil))

"make a region in a given block"
(let” ((full-seq (format nil "Ta'a'a" (block-left-tol block)

(block-seq block)
(block-right-tol block)))

(offset (- (block-start block) (length (block-left-tol block) 1))
start-list stop-list mid-list
(start nil)
(stop nil))

(block nil
(if (null no-limit)

(progn
(setf start-list (plans-match full-seq start-pat))
(setf stop-list (plans-match full-seq end-pat)))

(progn
(setf start-list

(interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* start-pat)))

(setf stop-list
(interval
(- (block-start block) (block-tolerance block))
(+ (block-end block) (block-tolerance block))
(plans-match *default-resseq* end-pat)))

(setf offset 0)))
(if start-n

(setf start (car start-list))
(setf start (car (last start-list))))

(if end-c
(setf stop (car (last stop-list)))

(setf stop (car stop-list)))
(if (or (null start) (null stop) (< (- stop start) (- min-size 1)))

(return nil))
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(if (not (null mid-pat))
(progn

(setf mid-list
(interval start stop (plans-match *default-resseq* mid-pat)))

(if (null mid-list)
(return nil))))

(setf start (max (+ start offset) (+ (block-start block) 1)))
(setf stop (min (+ stop offset) (- (block-end block) 1)))
;; recheck for minimum after TU has been eliminated
(if (< (- stop start) (- min-size 1))

(return nil))
(setf(block-region block)

(make-region
:Imal■ TMC ma■■ MC

:length (+ 1 (- stop start))
:Start Start

:target target
:symbol symbol
:color color
:end stop
:visible t))

(return t))))

(setf "nil-region*
(make-region
:name "*nil-region*"
:visible nil))
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(defun make-regions (&key (seq “default-seq*) (spat *default-spat”)
(color *default-color")
(start-n t)
(end-c t)
(mid-pat nil)
(min-size 0)
(no-limit nil)
start-pat end-pat name target (symbol " "))

"make regions in visible blocks"
(setf "region-color-list* (cons (list name color) *region-color-list”))
(mit-loop
for block in (seq-blocks-visible-list

(gethash (format nil "s4"s" seq spat) seq-blocks-hash))
with count = 0
do
(if (and (block-visible block)

(null (block-region block))
(not (null (make-a-region block block:start-pat start-pat

:symbol symbol
:color color
:no-limit no-limit
:Start-n Start-n
:end-c end-c
:mid-pat mid-pat
:min-size min-size
:end-pat end-pat :name name
:target target))))

(incf count))
finally
(return count)))

(defun hide-regions (&key (seq “default-seq*) (spat *default-spat”)
name)

"hide all blocks with regions named name"
)

(defun expose-regions (&key (seq “default-seq*) (spat *default-spat”)
name)

"expose all blocks with regions named name"
)
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(defun check-regions (&key (seq "default-seq*) (spat "default-spat”)
pat)

"do something for blocks whose regions contain pat"
)

(defun report-all-regions (&key (seq “default-seq*) (spat *default-spat”))
"builds a list which includes the seq-name and the list of region

targets. A "NIL" is given if there is no region in a given block."
; e.g. ("2kai-b" "Cturn" "beta" "Cturn" "beta" "Cturn" "beta" "Cturn" "beta")

(let ((sb (gethash (format nil "s+"s" seq spat) seq-blocks-hash))
reg (goals ()) (names ()) (result ()))

(setf result (cons (format nil "a" (seq-blocks-name sb)) result))
(setf result (cons (format nil "Ta"

(seq-blocks-alpps-pattern sb)) result))
(mit-loop
for block in (seq-blocks-block-list sb)
do
(setfreg (block-region block))
(if (null reg)

(progn
(setf goals (cons

(format nil "a" "NIL") goals)))
(progn

(setf goals (cons
(format nil "Ta" (region-target reg)) goals))

(setf names (cons
(format nil "Ta" (region-name reg)) names))))

finally
(setf result (cons goals result))
(return (reverse (cons names result))))))

(setf "default-tally-goals” ("NIL" "Cturn" "helix" "beta"))
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(defun tally-regions-and-types (&key (seq “default-seq*) (spat *default-spat”)
(goal-list *default-tally-goals*))

"adds tally lists to both region goal and type lists"
(let ((report (report-all-regions:seq seq:spat spat))

(goal-result ()) (type-result ()))
(mit-loop for i from 0 to (- (length goal-list) 1)

do
(setf goal-result

(cons (count (nth i goal-list) (third report)
:test #'equal) goal-result))

finally
(setf goal-result

(cons (cadr report) (reverse goal-result)))
(setf "alpps-tallys-list* (cons (cons (car report) goal-result)

*alpps-tallys-list")))
(mit-loop for j from 0 to (- (length *region-color-list”) 1)

do

(setf type-result
(cons (count (car (nth j "region-color-list”))

(fourth report)
:test #'equal) type-result))

finally
(setf type-result

(cons (cadr report) (reverse type-result)))
(setf “alpps-region-type-tallys-list”

(cons (cons (car report) type-result)
*alpps-region-type-tallys-list”)))))

(defun tally-regions (&key (seq “default-seq*) (spat *default-spat”)
(goal-list *default-tally-goals”))

"given a goal-list (e.g. ((helix reg-name) (Cturn reg)))
the function produces
a count list: (3fxn 1 2 3)"

(let ((report (report-all-regions:seq seq:spat spat))
(result ()))

(mit-loop for i from 0 to (- (length goal-list) 1)
do
(setf result

(cons (count (nth i goal-list) (third report)
:test #'equal) result))

finally
(setf result

(cons (cadr report) (reverse result)))
(return (cons (car report) result)))))
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(defun tally-region-types (&key (seq “default-seq*) (spat *default-spat”)
goal-list)

"returns a list of region-type and counts"
(let (;; (report (report-all-regions seq seq:spat spat))

(report (test-report-all-regions))
(result ()))

(mit-loop for i from 0 to (- (length *region-color-list”) 1)
do
(setf result

(cons (count (car (nth i "region-color-list”)
(fourth report)

:test #'equal) result))
finally
(setf result

(cons (cadr report) (reverse result)))
(return (cons (car report) result)))))

(defun test-report-all-regions ()
"builds a list which includes the seq-name and the list of region

targets. A "NIL" is given if there is no region in a given block."
; e.g. ("2kai-b" "Cturn" "beta" "Cturn" "beta" "Cturn" "beta" "Cturn" "beta")

(let ((sb *default-sb”)
reg (goals ()) (names ()) (result ()))

(setf result (cons (format nil "Ta" (seq-blocks-name sb)) result))
(setf result (cons (format nil "Ta"

(seq-blocks-alpps-pattern sb)) result))
(mit-loop
for block in (seq-blocks-block-list sb)
do
(setfreg (block-region block))
(if (null reg)

(progn
(setf goals (cons

(format nil "a" "NIL") goals)))
(progn

(setf goals (cons
(format nil "a" (region-target reg)) goals))

(setf names (cons
(format nil "a" (region-name reg)) names))))

finally
(setf result (cons goals result))
(return (reverse (cons names result))))))
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;;;;* Match-Set System
;;;;* file: register.lisp
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(in-package :match-set)
(use-package '(lisp user loop plans)

(defun determine-next-standard (a p)
"determine whether a or p is next c terminus standard"
(let ((at-a nil))

(if (null a)
(setfat-anil)

(if (null p)
(setfat-at)

(if (< (cadra) (cadrp))
(setfat-at)

(setfat-a nil))))
at-a))
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(defun raw-regitration-scoring (registration)
"given a registration e.g. "(((36) (37)) ((1216) (915)) ((2025) ()))

function will return a list of (length-a len-p n-overlap c-over)"
(mit-loop for i in registration

with n-over = nil and c-over = nil and result = nil
and len-a = nil and len-p = nil
do
(if (cari)

(setflen-a (- (cadr (cari)) (car (cari))))
(setflen-anil))

(if (cadri)
(setflen-p (- (cadr (cadri)) (car (cadri))))

(setflen-p nil))
(if (and len-a len-p)

(progn
(setf n-over (- (car (cari)) (car (cadri))))
(setfc-over (- (cadr (cadri)) (cadr (cari))))
(setf result

(cons (list len-a len-p n-over c-over) result)))
(if len-a

(setf result (cons (list len-a nil nil nil) result))
(setf result (cons (list nil len-p nil nil) result))))

finally
(return (reverse result))))
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(defun mid-point-compares (registration)
"given a registration e.g. "(((36) (37)) ((1216) (915)) ((2025) ()))

function will return a list of midpoint differences '(-1 2 nil)"
(mit-loop for i in registration

with mid-a = nil and mid-p = nil and result = nil
and len-a = nil and len-p = nil
do
(if (cari)

(progn
(setf len-a (- (cadr (cari)) (car (cari))))
(setf mid-a

(truncate (/ (+ (car (cari)) (cadr (cari))) 2))))
(setf mid-a nil))

(if (cadri)
(progn

(setf len-p (-(cadr (cadri)) (car (cadri))))
(setf mid-p

(truncate (/ (+ (car (cadri)) (cadr (cadri))) 2))))
(setf mid-p nil))

(if (and mid-a mid-p)
(setf result

(cons (list len-a len-p (- mid-a mid-p)) result))
(setf result (cons nil result)))

finally
(return (reverse result))))
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(defun register-prediction (prediction assignment)
"return a pairing of blocks"
(let ((a-left (cdr assignment)) (p-left (cdr prediction))

(a (car assignment)) (p (car prediction))
at-a other-used
(result nil))

(mit-loop while (or a p)
do
(setfat-a (determine-next-standard a p))
(if at-a

(progn
(setf other-used nil)
(if (and p (>= (cadra) (carp)))

(progn
(setf other-used t)
(setf result (cons (list ap) result)))

(setf result (cons (list a ()) result)))
(setfa (car a-left))
(setfa-left (cdra-left))
(if (and other-used

(and (or (nulla)
(and (car p-left)

(> (cara) (cadrp))))))
(progn

(setf p (car p-left))
(setf p-left (cdrp-left)))))

(progn
(setfother-used nil)
(if (and a (>= (cadr p) (car a)))

(progn
(setf other-used t)
(setf result (cons (list a p) result)))

(setf result (cons (list () p) result)))
(setf p (car p-left))
(setf p-left (cdrp-left))
(if (and other-used

(or (null p)
(and (car a-left) (> (carp) (cadra)))))

(progn
(setfa (car a-left))
(setfa-left (cdra-left))))))

finally
(return (reverse result)))))
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(defun pull-nil-pairs (list)
"remove NIL pairs from listeg (1 NIL)"
(let ((result nil))

(mit-loop for i in (reverse list)
do
(if (or (null (cari)) (null (cadri)))

()
(setf result (cons i result)))

finally
(return result))))
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::::: ************************************************************************
;;;* Match-Set System
• - - - ºk
* * * *

;;;* file: utils.lisp
::::: ************************************************************************

(in-package :user)
(use-package '(loop))

(export '(string-char-replace list-add make-match-string interval
prune-left prune-right))

;;; make-match-string
;3, given the length of the protein sequence and a list of
;3, the hit points, the function returns a string of hits.

; (make-match-string 5’(134)
... * * * * *

* * *

(defun make-match-string (length hits &key (show-misses nil) (misses nil)
(tols nil) (hit-char #V") (miss-char #|-)
(tol-char ##))

"build a string for display on m-p window"
(let ((result (make-string length initial-element # space)))

(progn
(mit-loop for hit in hits

do
(setf(elt result (- hit 1)) hit-char))

(if show-misses
(progn
(mit-loop for miss in misses

do
(setf(elt result (- miss 1)) miss-char))

(mit-loop for tol in tols
do
(setf(elt result (-tol 1)) tol-char))))

result)))



211

(defun interval-old (start stop list)
"make a list of all elts of list between start and stop"
(let ((picks ()))

(mit-loop for i from start to stop do
(setf picks (cons i picks)))

(intersection picks list)))

(defun prune-left (list cutoff)
"cuts sorted list from the left based on >= cutoff"
(member cutoff list :test #’-))

(defun prune-right (list cutoff)
"cuts sorted list from the right based on >= cutoff"
(reverse (member cutoff (reverse list):test #">=)))

(defun interval (start stop list)
"make a list of all elts of list between start and stop"
(let ((left (prune-right list stop))

(right (prune-left list start)))
(sort (intersection right left) #’•)))

(defun list-add (a b)
"returns list which is sum of two lists"
(let (result)

(mit-loop for i in a and j in b
do
(setf result (cons (+ ij) result)))

(reverse result)))

(defun string-char-replace (&key (string "") (old # space) (new #|space))
"take string and change from old char to new char whnever old is found"
(let ((result string) pos)

(progn
(if (member old (coerce string 'list)); check for existence of old

(mit-loop while (setf pos (position old (coerce result 'list)))
do
(setf(elt result pos) new)))

result)))
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(defun reduce-string (string &key (show nil) (blank-char #|space))
"take string and only show chars in show. replace others with blank-char."
(let ((result (make-string (length string):initial-element blank-char)))

(progn
(mit-loop for i from 0 to (- (length string) 1)

do
(if (member (elt string i) show)

(setf(elt result i) (elt string i))))
result)))

(defun break-point-string (string &key (size 50) (break-size 3)
(break-char #|space))

"take a string and divide it into sections of length size. sections
are marked with break-size break-chars."

(let ((result nil) (sects (truncate (/ (length string) size)))
(break (make-string break-size initial-element break-char)))

(progn
(mit-loop for i from 0 to (- sects 1)

do
(if (null result)

(setf result
(format nil "a"

(subseq string
(*i size) (* (+ i 1) size))))

(setf result
(format nil "Ta'a'a" result break

(subseq string (*i size) (* (+ i 1) size)))))
finally
(if (null result)

(setf result (format nil "a" string))
(if (not (equal (subseq string (* i size)""))

(setf result (format nil "Ta'a'a" result break
(subseq string (* i size))))))

(return result)))))
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Common Lisp Source Code for Trimmed Scoring

::::: ************************************************************************
;;;;* score package
;;;;* file: res-scoring.lisp
::::: ************************************************************************
(in-package score)
(use-package '(lisp user loop))
(setf “do-cuts-with-pairing* t)

;;;; tolerated residue scoring 9/19/90
;;; cut out residues around helix caps and then score
;;;; pred-ss, assgn are strings of a,t
(defun res-score-seq-tol-pattern (&key (goal #Va)

(tol 1) (assgn-ends t)
(do-pairing *do-cuts-with-pairing*)
(assgn-cuts ())
(assgn-ss "")
(pred-cuts ())
(pred-ss "")
(pred-ends nil))

"returns a list (TPTN FPFN) for the default seq pattern combo
accounting for the tolerance"

(let (cut-assgn-ss cut-pred-ss (helix-cuts ()))
(if assgn-ends

(setf helix-cuts (cons assgn-cuts helix-cuts)))
(if pred-ends

(setf helix-cuts (cons pred-cuts helix-cuts)))

(if do-pairing ; only paired helices are cut
(setf helix-cuts

(sort (remove-duplicates
(remove-paren (pull-nil-pairs

(register-prediction
assgn-cuts pred-cuts))))

#’-3)))
(setf cut-pred-ss (make-tol-cuts:cuts helix-cuts

:tol tol seq pred-ss))
(setf cut-assgn-ss (make-tol-cuts :cuts helix-cuts

:tol tol:seq assgn-ss))
(res-score-seq-pattern goal goal

:assgn-SS cut-assgn-SS
:pred-ss cut-pred-ss)))

o 13
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(defun make-tol-cuts (&key (seq "") (cuts ()) (tol 1))
"takes a sequence and makes cuts based on a tolerance around points"
(let (result (len (length seq)) (off-char #WO))

(setf result (format nil seq))
(mit-loop for i in (remove-paren cuts)

do
(if (eql tol 0)

(setf(elt result (-i 1)) off-char)
(mit-loop for j from (-i tol) to (+ i tol)

do
(if (and (>j 0) (<jlen))

(setf(elt result (-j 1)) off-char))))
finally
(return (remove off-char result)))))

(defun remove-paren (L)
"depth first remove paren"

(cond ((null L) nil)
((atom L) (list L))
(T (append (remove-paren (car L) (remove-paren (cdr L))))))

(defun compute-big-Q (&key p-a p-b p-t N)
"returns Q for the default seq pattern combo"
(/ (+ p-ap-b p-t) N))

(defun compute-big-C (results-list)
"returns correlation coefficient given results list (TPTN FPFN)"
(let” ((TP (car results-list))

(TN (cadr results-list))
(FP (caddr results-list))
(FN (cadddr results-list))
(denom
(sqrt (* (+TN FN) (+TNFP) (+TPFN) (+TPFP)))))

(if (equalp denom 0)
0

(/ (- (*TP TN) (* FN FP)) denom))))
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;;;;* score package
;;;;* file: register.lisp
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(in-package score)
(use-package '(lisp user loop))

(defun determine-next-standard (a p)
"determine whether a or p is next c terminus standard"
(let ((at-anil))

(if (null a)
(setfat-a nil)

(if (null p)
(setfat-at)

(if (< (cadra) (cadrp))
(setfat-at)

(setfat-a nil))))
at-a))
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(defun raw-regitration-scoring (registration)
"given a registration e.g. "(((36) (37)) ((1216) (915)) ((2025) ()))

function will return a list of (length-a len-p n-overlap c-over)"
(mit-loop for i in registration

with n-over = nil and c-over = nil and result = nil
and len-a = nil and len-p = nil
do
(if (cari)

(setflen-a (- (cadr (cari)) (car (cari))))
(setf len-anil))

(if (cadri)
(setflen-p (- (cadr (cadri)) (car (cadri))))

(setflen-p nil))
(if (and len-a len-p)

(progn
(setf n-over (- (car (cari)) (car (cadri))))
(setfc-over (- (cadr (cadri)) (cadr (cari))))
(setf result

(cons (list len-a len-p n-over c-over) result)))
(if len-a

(setf result (cons (list len-a nil nil nil) result))
(setf result (cons (list nil len-p nil nil) result))))

finally
(return (reverse result))))
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(defun mid-point-compares (registration)
"given a registration e.g. "(((36) (37)) ((1216) (915)) ((2025) ()))

function will return a list of midpoint differences '(-1 2 nil)"
(mit-loop for i in registration

with mid-a = nil and mid-p = nil and result = nil
and len-a = nil and len-p = nil
do
(if (cari)

(progn
(setf len-a (- (cadr (cari)) (car (cari))))
(setf mid-a

(truncate (/ (+ (car (cari)) (cadr (cari))) 2))))
(setf mid-a nil))

(if (cadri)
(progn

(setf len-p (- (cadr (cadri)) (car (cadri))))
(setf mid-p

(truncate (/ (+ (car (cadri)) (cadr (cadri))) 2))))
(setf mid-p nil))

(if (and mid-a mid-p)
(setf result

(cons (list len-a len-p (- mid-a mid-p)) result))
(setf result (cons nil result)))

finally
(return (reverse result))))
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(defun register-prediction (prediction assignment)
"return a pairing of blocks"
(let ((a-left (cdr assignment)) (p-left (cdr prediction))

(a (car assignment)) (p (car prediction))
at-a other-used
(result nil))

(mit-loop while (or a p)
do
(setfat-a (determine-next-standard a p))
(if at-a

(progn
(setf other-used nil)
(if (and p (>= (cadra) (carp)))

(progn
(setf other-used t)
(setf result (cons (list a p) result)))

(setf result (cons (list a ()) result)))
(setfa (car a-left))
(setfa-left (cdra-left))
(if (and other-used

(and (or (null a)
(and (car p-left)

(> (cara) (cadrp))))))
(progn

(setf p (car p-left))
(setf p-left (cdrp-left)))))

(progn
(setfother-used nil)
(if (and a (>= (cadr p) (car a)))

(progn
(setfother-used t)
(setf result (cons (list ap) result)))

(setf result (cons (list () p) result)))
(setf p (car p-left))
(setf p-left (cdrp-left))
(if (and other-used

(or (null p)
(and (car a-left) (> (carp) (cadra)))))

(progn
(setfa (car a-left))
(setfa-left (cdra-left))))))

finally
(return (reverse result)))))
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(defun pull-nil-pairs (list)
"remove NIL pairs from listeg (1 NIL)"
(let ((result nil))

(mit-loop for i in (reverse list)
do
(if (or (null (cari)) (null (cadri)))

()
(setf result (cons i result)))

finally
(return result))))

(defun pair-for-scoring (&key assignment prediction)
"pair helices for scoring purposes"
(let” ((this-p (car prediction))

(pred-left (cdr prediction))
(result ()))

(mit-loop for a in assignment
do
(if (determine-next-standard a this-p)

(case (best-match pred1 this-p:pred2 (car pred-left)
:assign a)

(1))))))
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;;;;* socre package
;;;;* file: utils.lisp
• . . . *
* * * *

:::: *************************************************************************

(in-package :user)
(use-package '(loop))

(export "(string-char-replace list-add make-match-string interval
prune-left prune-right make-length-ss-seq make-ss-seq))

;; make-match-string
;3, given the length of the protein sequence and a list of
35; the hit points, the function returns a string of hits.

; (make-match-string 5’(134)
::: **** *
(defun make-match-string (length hits &key (show-misses nil) (misses nil)

(tols nil) (hit-char #A*) (miss-char #A-)
(tol-char ##))

"build a string for display on m-p window"
(let ((result (make-string length initial-element # space)))

(progn
(mit-loop for hit in hits

do
(setf(elt result (- hit 1)) hit-char))

(if show-misses
(progn
(mit-loop for miss in misses

do
(setf(elt result (- miss 1)) miss-char))

(mit-loop for tol in tols
do
(setf(elt result (-tol 1)) tol-char))))

result)))
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(defun prune-left (list cutoff)
"cuts sorted list from the left based on >= cutoff"
(member cutoff list :test #’3–))

(defun prune-right (list cutoff)
"cuts sorted list from the right based on >= cutoff"
(reverse (member cutoff (reverse list):test #">=)))

(defun interval (start stop list)
"make a list of all elts of list between start and stop"
(let ((left (prune-right list stop))

(right (prune-left list start)))
(sort (intersection right left) #'3)))

(defun list-add (a b)
"returns list which is sum of two lists"
(let (result)

(mit-loop for i in a and jin b
do
(setf result (cons (+ ij) result)))

(reverse result)))

(defun string-char-replace (&key (string "") (old # space) (new # space))
"take string and change from old char to new char whnever old is found"
(let ((result string) pos)

(progn
(if (member old (coerce string 'list)); check for existence of old

(mit-loop while (setf pos (position old (coerce result 'list)))
do
(setf(elt result pos) new)))

result)))
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(defun make-length-ss-seq (&key (length 0) (hits nil) (symbol #Va))
"builds a string the length of the seq which represents the predicted

secondary structure based on regions and their targets. The default assignment
is t."

(let ((result (make-string length initial-element #|t)))
(mit-loop for block in hits

do
(mit-loop for i from (-(car block) 1) to (- (cadr block) 1)

do
(setf(elt result i) symbol))

finally
(return result))))

(defun make-ss-seq (&key (seq "") (hits nil) (symbol #Va))
"builds a string the length of the seq which represents the predicted

secondary structure based on regions and their targets. The default assignment
is t."

(let ((result (make-string (length seq):initial-element #|t)))
(mit-loop for block in hits

do
(mit-loop for i from (-(car block) 1) to (- (cadr block) 1)

do
(setf(elt result i) symbol))

finally
(return result))))

;;;;;;;; existence of old before entering the loop. Version 3 lacks
;;;;;;;; this feature. Version one does check, but goes thru the loop
;;;;;;;; many more times than is necessary. There was a version 0,
;;;;;;;; version 1 without the member check, which was very slow.
;;;;;;;; 2/2/90 bic
--------

(defun string-char-replace-3 (&key (string "") (old # space) (new #|space))
"take string and change from old char to new char whnever old is found"
(let ((result string))

(progn
(mit-loop while (member old (coerce string 'list))

do

(setf(elt result (position old (coerce result 'list)))
new))

result)))
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(defun string-char-replace-2 (&key (string "") (old # space) (new #Aspace))
"take string and change from old char to new char whnever old is found"
(let ((result string) pos)

(progn
(if (member old (coerce string 'list)); check for existence of old

(mit-loop while (setf pos (position old (coerce result 'list)))
do
(setf(elt result pos) new)))

result)))

(defun string-char-replace-1 (&key (string "") (old # space) (new #|space))
"take string and change from old char to new char whnever old is found"
(let ((result string))

(progn
(if (member old (coerce string 'list)); check for existence of old

(mit-loop for i from 0 to (- (length string) 1)
do
(if (equal (elt string i) old)

(setf(elt result i) new))))
result)))

(defun reduce-string (string &key (show nil) (blank-char #|space))
"take string and only show chars in show. replace others with blank-char."
(let ((result (make-string (length string):initial-element blank-char)))

(progn
(mit-loop for i from 0 to (- (length string) 1)

do
(if (member (elt string i) show)

(setf(elt result i) (elt string i))))
result)))
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(defun break-point-string (string &key (size 50) (break-size 3)
(break-char #|space))

"take a string and divide it into sections of length size. sections
are marked with break-size break-chars."

(let ((result nil) (sects (truncate (/ (length string) size)))
(break (make-string break-size:initial-element break-char)))

(progn
(mit-loop for i from 0 to (- sects 1)

do
(if (null result)

(setf result
(format nil "a"

(subseq string
(*i size) (* (+ i 1) size))))

(setfresult
(format nil "Ta'a'a" result break

(subseq string (*i size) (* (+ i 1) size)))))
finally
(if (null result)

(setf result (format nil "a" string))
(if (not (equal (subseq string (*i size)""))

(setf result (format nil "Ta'a'a" result break
(subseq string (* i size))))))

(return result)))))
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ALPPS and PLANS Patterns for O■ o. Proteins

ALPPS Patterns

* * *

;;; N.B. Comments come *after* the line or statement.
* * *

(in-package :alpps)
(use-package '(lisp user loop plans))

(defvar *default-min-region*4)
;:; Minimum helix length

(def-alpps all-alpha-min-1 (-pat "TU" :tol 1); :no-limit t
;;; Split the sequence based on the TU turn pattern.
(split-long-blocks :max-length 40)
; Split any resulting blocks such that no block is longer than 40 residues
(hide-blocks:pat "anything")
(expose-blocks:pat "HA":no-limit t :spat-min-count 2)
(make-regions:start-pat "Nt":end-pat "Ct"

:target "helix"
:symbol "b"
:color "Blue"
:min-size “default-min-region*
:no-limit t
:name "both-ends")

;;; Nt-HA-Ct helix.
(make-regions:start-pat "Nt":end-pat "HA"

:target "helix"
:symbol "n"
:color "Green"
:min-size “default-min-region*
:no-limit t
:name "no-ct")

;;; Nt-HA helix.
(make-regions:start-pat "HA":end-pat "Ct"

:target "helix"
:color "Red"
:symbol "c"
:min-size “default-min-region*
:no-limit t
:name "no-nt")
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)

;;; HA-Ct helix.
(make-regions :start-pat "HA":end-pat "HA"

:target "helix"
:symbol "e"
:color "Yellow"
:min-size “default-min-region*
:no-limit t
:name "no-ends")

; Parse again for the existence of only one HA.
(expose-blocks:pat "HA":no-limit t :spat-min-count 1)
(make-regions:start-pat "Nt":end-pat "Ct"

:target "helix"
:symbol "b"
:color "Blue"
:min-size “default-min-region*
:no-limit t
:name "repechage")

;;; Nt-HA-Ct helix.
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PLANS Patterns

999

;; N.B. Comments about the patterns come *after* the pattern itself.
;;; Syntax: <name> . ~pattern

;: == HELIX CORE PATTERNS ===

chprl: "[DE]...[HKR]"{22}
; charged pair neg to pos N to C

chpr2: "[HKR]...[DE]"{2,2}
;;; charged pair pos to neg N to C

chprla: "[DE].[AVLIMFWY].[HKR]"{2,2}
;;; charged pair neg to pos with phobic interior face

chpr2a: "[HKR].[AVLIMFWY].[DE]"{2,2}
;;; charged pair pos to neg with phobic interior

chprlc1: "[TPGN][DE][*PGN][AVILMFYW][*PGN][HKR][“PGN]"{3,3}
;; Neg to Pos charge pair with hydrophobic backside NO PDG or N

chprlc2: "[*PGN][HKR][“PGNI[AVILMFYW][“PGN][DE][*PGN]"{3,3}
;:; Pos to Neg charge pair with hydrophobic backside NO PDG or N

chpric3: "[TPGN][DE][*PGN][*PGN][HKR][“PGN]"{22}
;; Neg to Pos charge pair with hydrophobic backside NO PDG or N

chprls1: ("[DE].[AVILMFYW].[HKR]"{2,2}) and
(not (density(>=,5,7,"[DEGHKNPQRSTY]"){3,3}))

;;; helix charge pair pattern --> +

chprls2: ("[HKR].[AVILMFYW].[DE]"{2,2}) and
(not(density(>=,5,7,"[DEGHKNPQRSTY]"){3,3}))

;;; helix charge pair + -> -

chprls3: ("[DE]...[HKR]"{1,1}) and
(not (density(>=,4,6,"[DEGHKNPQRSTY]"){2,2}))

;;; helix charge pair pattern --> +

CP: (chprlc1 or chprlc3 or chprlsl or chprls3)
; Current working set of charge pairs. Only those aligned with the helix
;;; dipole moment are used.
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h1: "[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]"
h2: "[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]"
h3: "[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]...[AVILMCKFWY]"
h4: "[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]...[AVILMCKFWY]"
h5: "[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]"
h6: "[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]...[AVILMCKFWY]"
h7: "[AVILMCKFWY]...[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]"
h8: "[AVILMCKFWY]...[AVILMCKFWY]...[AVILMCKFWY][AVILMCKFWY]"
; Patterns of 4 phobics encompassing 1-2 turns of the helix.

ha: (hl{-3,-3} and hl){0,3}
hb: (hl {-4,-4) and hl){0,4}
hc: (h?(-4,-4} and h2){0,4}
hd: (h2|{-5,-5} and h2){0,5}
he: (h3{-1,-1} and h9){0,1}
hf: (h? (-4,-4} and h;){0,4}
hg: (h4(-1,-1} and h4){0,1}
hh: (h4(-4,-4} and h4){0,4}
hi: (h5(-1,-1} and h9){0,1}
hj: (h5{-4,-4} and hj){0,4}
hk: (h5(-5,-5} and h9){0,5}
;;; Longer groups of phobic diamond patterns.

helix: (ha or hb or he or hd or he or hf or hg or him or hi or hjor hk)
;;; Bring it all together.

p1: "[PGQNDERKSTH]...[PGQNDERKSTH]...[PGQNDERKSTH]"
p2: "[PGQNDERKSTH]...[PGQNDERKSTH]...[PGQNDERKSTH]"
p3: "[PGQNDERKSTH]...[PGQNDERKSTH]...[PGQNDERKSTH]"
pstripe: (p1 or p2 or p3)
; Philic area's the absence of which seems to be predictive of helix.
;;; orignally this stemmed from the idea that a philic stripe was
;; predictive of helix.

H1: (helix)
H2: (aend{2,2} and abegin{2,4} and (not a^{-4,4})); old a■
H3: (CP)
H4: (gs)
H5: (density(=,0,8, pstripe)) {6,6}
H6: (hl{0,6} or h7(0,6} or hö{0,6})
; The high level patterns that are predictive of helix.

HA: (H1 or H2 or H3 or H4 or H5 or H6)
; Core helix structure: Final Pattern.
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c1:
c2:
c3:
c4:
C5:
c6:
; Hy

Cz:

Cy:

CV:
Cw:

Cx:

== C-CAP PATTERNS ==

"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]...[GKNH]"{7,7}
"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]...[GKNH]"{8,8}
"[ACFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY][GKNH]"{8,8}
"[ACFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY][GKNH]"{8,8}
"[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY][GKNH]"{5,5}
"[ACFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY][GK]"{8,8}

drophobic phasing of the C-cap

"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]...[DEGKPNQRS]
[GKHN]"{8,8}
"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]...[DEGKPNQRS]
(GKHN]"{9,9}
"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY].[DEGKPNQRS].P"(8,8}
"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]..
[ACFIKLMVWY]...[DEGKPNQRS][GKHN]"{11,11}
"[ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY].
[ACFIKLMVWY]...[DEGKPNQRS][GKHN]"{12,12}

; Hydrophobic patch + terminating hydrophilic residue followed by a C-cap
;;; Not currently used.

Cu:

HK:

("[GKHN][L].[CFILMVWY]...[CFILMVWY]" or
"[GKHN][L]...[CFILMVWY].[CFILMVWY]")

(density(>=,2,3,"[HK]") and (not density(>=2,3,"[K]")))
;;; High density of basic residues R is not used here.
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CA:

CB:
CC:
CD:
CE:

CF:
CG:

CH:

CS:

(("[GK]"{0,0} or "P"{-2,-1}) and
("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}))

(("G"{0,0} or "P"{-2,-1}) and ("[FMW]"{4,4} or "L"{3,3}))
("[GK]"{0,0} and ("P"{-2,-1} or "[TW]"{-2,-2}))
(("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and "[TW]"{-2,-2})
(("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and

("[FMW]"{4,4} or "L"{3,3}))
(("[FMW]"{4,4} or "L"{3,3}) and "[TW]"{-2,-2})
("[G]"{0,0} and "P"{-2,-1})

(("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and
("[FMW]"{4,4} or "L"{3,3}) and "[TW]"{-2,-2})

(("[GK]"{0,0} or "P"{-1,-1}) and
("K"{1,3} or "R"{2,2} or "[QH]"{1,1} or "H"{5,5}) and
("[FMW]"{4,4} or "L"{3,3}))

;;; Combinations of residue patterns that mimic the statistical information
;;; in the Richardson and Richardson Science paper 1988.

Ca:
Cb:
Cc:
Col:
Ce:

Cf.

(CG)
(CH)
(CS and "[*ACFILMV]"{-2,-2})
(c6)
(("[GK]"{0,0} and "W"{-2,-2}) or ("P"{-1,-1} and "[WT]"{-2,-2})

or ("N.P." or "NP")
(HK and (not CC{-10,0}) and (not Cb{-10,0}) and (not Ca(-10,0}) and

HA (0,13} and (not density(>,2,5,HA){5,5}))
;;; The high level patterns that are predictive of a C-cap.

Ct: (Ca or Cb or CC or Cd or Ce)
;;; C-cap: Final Pattern
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;; = N-CAPPATTERNS =

n1: "[NSTDE]...[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY]"
n2: "[NSTDE]...[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY]"
n3: "[NSTDE][ACFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY]"
n4: "[NSTDE][ACFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY]"
n5: "[NSTDE][ACFIKLMVWY]...[ACFIKLMVWY][ACFIKLMVWY]"
; Hydrophobic phasing of the N-cap

Nz: "[GDNST][DEKPNQRS]...[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY]"
Ny: "[GDNST][DEKPNQRS]...[ACFIKLMVWY][ACFIKLMVWY]...[ACFIKLMVWY]"
Nw: "[GDNST][ADEKPNQRS]...[ACFIKLMVWY]...[ACFIKLMVWY]

[ACFIKLMVWY]...[ACFIKLMVWY]"
Nx: "[DNST]...[CFIKLMVWY]...[ACFIKLMVWY]...[ACFIKLMVWY]

[ACFIKLMVWY]...[ACFIKLMVWY]"
; Hydrophobic patch + terminating hydrophilic residue followed by a N-cap
; Currently, these are more predictive than without the hydophilic residue.

DE: (density(>=,2,3,"[DE]")

NA: ("[NS]"{0,0} and ("D"{-3,-2} or "E"{-3,-1}))
NB: ("[NS]"{0,0} and ("[LFW]"{-4,-4) or "M"{-5,-4}))
NC: ("[ND]"{0,0} and "P"[-2,-2})
ND: (("D"{-3,-2} or "E"{-3,-1}) and "P"{-1,-1})
NE: (("[LFW]"{-4,-4} or "M"{-5,-4}) and ("D"{-3,-2} or "E"{-3,-1}))
NF: (("[LFW]"{-4,-4} or "M"{-5,-4}) and "P"{-1,-1})
NG: ("[GNSDT]"{0,0} and "P"{-1,-1})

NH: (("D"{-3,-2} or "E"{-3,-1}) and ("[LFW]"{-4,-4} or "M"{-5,-4})
and "P"{-1,-1})

NS: ("[DNS]"{0,0} and ("D"{-3,-2} or "E"{-3,-1})
and ("[LFW]"{-4,-4} or "M"{-5,-4}))

; Combinations of residue patterns that mimic the statistical information
;;; in the Richardson and Richardson Science paper 1988.
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Na: (NG)
Nb: (NS)
Nc: (NA and (Nw or Ny or Nz) and (not Na(0,10}) and (not Nb{0,10}))
Nd: (NE and (Nw or Ny or Nz) and (not Na■ ), 10}) and (not Nb{0,10}))
Ne: (NB and (n1 or n+ or n3) and (not Na■ ),10}) and (not Nb{0,10}))
Nf: (DE and (not Nc{0,10}) and (not Nb{0,10}) and (not Na■■ ), 10}) and

HA(-13,0} and (not density(>,2,5, HA){5,5}))
Ng: (group(2,NC) and (not NG(-1,-1}))
; The high level patterns that are predictive of a N-cap.

Nt: (Na or Nb or Nc or Nd or Ne or Ng or group(5.Nf))
;;; N-cap: Final Pattern



233

;; = TURN PATTERNS: refer to the 1986 Biochemistry paper ==

al: (gs or CP)
; Primary helical mask for turns.

a2: (density(=,0.5,alpha_strong phobic)
and (not "[DE]...[KHR]"{-2,4})
and (not "[DE]...[KHR]"{-2,4})
and (not gs{-2,2})){2,2}

;;; AA_Turnl_no-phobics

a3: (density(=,4,4,alpha_philic)){1,1}
;;; Strong Turn of four Hydrophilic residues in sequence.

a4: (a 3)
;;; AA_Turn2_4-philics

HP: ("[VLIAWYKFCT][VLAIWKYFCT]PIVLAIWYFCT]"{2,2} and
(not density(>=,1,5, "[NQRS]")){1,1})

;:; Potential situation of a proline in helical region

AP: ("P"{-1,-1} and (density(>=,1,5, "[DEKNQRST]")){1,1})

as: ("P"{-1,-1}
and (not az(-11,0})
and (not a 4{-1 1,0})
and (not HP(-1,-1}))

;; AA_Turn3_proline + Must be a philic residue in the surrounding area.

a6: (aend and abegin{-2,0}
and (not (a2(-11,11} or a 4{-11,11} or as)))

;;; AA_Turn4_helix-ends

a?: ((not ap[-1,1}) and (not al{-2,2}) and (not ab{-11,11}))
;;; AA_Turns_weak

a8: (group(7,a7))
;;; AA_turns_group

a9: (group(7,0a2 or a 4 or as or a■ )))
;;; AA_T_possible

tu: (a8 or a9)
TU: (a8 or a9)
;;; *The* turn pattern

ATM

rº
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abegin: "[DEGHKNQRS][ACFIKLMPTVWY][DEGHKNQRS]
[ACFIKLMPTVWY]"{-3,-3)

; Pattern frequently found at the beginning of helices.

aend: "[ACFIKLMPTVWY][DEGHKNQRS][ACFIKLMPTVWY][DEGHKNQRS]"
; Pattern frequently found at the end of helices.

alpha_philic: "[DEGKPNQRS]"
;;; Alpha/alpha hydrophilic residues

alpha_phobic: "[ACFIKLMPTVWY]"
;;; Alpha/alpha hydrophobic residues

alpha_strong_phobic: "[ACFILMVW]"
;;; Alpha/alpha strong hydrophobic residues

ap: (not density(>=,2,3,alpha_philic)){-1,-1}
;;; alpha_turn

g1: "[ACFIKLMTVWY][ADEHKNQRST]%2,2(AG)
[ADEHKNQRST]%2,2■ ACFIKLMTVWY]"{4,4}

;;; Cluster of 'phobic bounded by 'philics (helix-helix interactions)

g2: "[ACFIKLMTVWY]%2,2(ADEGHKNQRST][ADEHKNQRST][AG)
[ADEHKNQRST]%2,2.[ACFIKLMTVWY]"{5,5}

;;; Cluster of 'phobic bounded by 'philics (helix-helix interactions)

g3: "[ACFIKLMTVWY].[ADEHKNQRST]%2,2(AG)
[ADEHKNQRST]%2,2■ ACFIKLMTVWY]%2,2"{5,5}

;;; Cluster of 'phobic bounded by 'philics (helix-helix interactions)

gs: ((gl org2 or g3) and (not ma) and (not ga))
;: A Gly-Ala type heliceal site without too many Alas.

ma: (density(>=,3,9,"A")){5,5}
;:; Too many alanines in one area are a bad sign for helix-helix packing

ga: (density(>=2,9,"G")){5,5}
;;; Too many glycines in one area are a bad sign for helix-helix packing

anything: "."

END
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