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Abstract

Image correlation analysis has evolved to become a valuable method of analysis of the diffusional 

motion of molecules in every points of a live cell. Here we compare the iMSD and the 2D-pCF 

approaches that provide complementary information. The iMSD method provides the law of 

diffusion and it requires spatial averaging over a small region of the cell. The 2D-pCF does not 

require spatial averaging and it gives information about obstacles for diffusion at pixel resolution. 

We show the analysis of the same set of data by the two methods to emphasize that both methods 

could be needed to have a comprehensive understanding of the molecular diffusional flow in a live 

cell.
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1. Introduction

In this article we describe two methods to analyze the same set of data. The iMSD (image 

Mean Square Displacement) method is used to obtain the diffusion law in small regions of 

interest (ROI) of the cell [1]. The term diffusion law indicates here that the iMSD plot can be 

fitted with a parabolic equation (flow), a straight line (pure diffusion), a function that bends 

at a given value of the iMSD (confined diffusion) or a combination of diffusion at a small 

spatial scale and slow apparent diffusion at a large spatial scale. These terms are discussed in 

[1]. The iMSD analysis provides information similar to the MSD obtained using single 

particle tracking, but is based on spatio temporal image correlation functions (STICS) and 

therefore do not require to isolate and track single particle. Since the correlation function is 

calculated in a given ROI, the diffusion law obtained refers to the ROI. The spatial resolution 

depends on the size of the ROI. In figure 1 we discuss the required size of the ROI as a 

function of the local diffusion coefficient. In figure 2 we show the concept of diffusion law 

in the contest of the iMSD method. The second method discussed in this article is named 

2D-pCF (two dimensional pair correlation function) has the resolution of a pixel and 

provides the average path followed by molecules in the proximity of obstacle [2]. In the 

application of the 2D-pCF in article the 2D-pCF is not used to obtain values of the diffusion 

coefficient or the law of diffusion but it is used to visualize the path followed by molecules 

in the proximity of obstacles. The two approaches are complementary since they provide 

different information.

1.1 Theory/calculation

1.1.1 The purpose of the iMSD analysis—The purpose of the iMSD (image Mean 

Square Displacement) analysis is to determine the diffusion law in heterogeneous media. 

Commonly, the MSD is obtained in the single particle tracking from the analysis of a 

particle trajectory. Instead, for the iMSD, the MSD is obtained by a correlation function 

calculation without resolving the specific trajectory of a particle. The correlation function 

provides an estimation of the variance of a Gaussian describing the broadening of the spatial 

probability of finding a molecule in a given volume if it was at the center of the volume at 

time zero [1]. The Gaussian shape of the correlation function is a direct result of the Fick’s 

second law for diffusion. In general, as molecules diffuse, they can be found at a distance 

from the origin that depends on the square of time, if the motion is pure Brownian diffusion. 

This is called the mean square displacement (MSD) which is a graph of the square of the 

displacement of a molecule as a function of time [3]. The slope of this graph is proportional 

to the diffusion coefficient. In the single particle tracking method, the MSD parameter is 

obtained in real space by tracking the position of particles one a time [3]. However, in 

heterogeneous media such as the cell interior, the distance from the center could be limited 

by the nature of the medium, barriers to diffusion, cavities and molecular interactions with 

fixed or mobile structures. Information about the mean-square displacement can be obtained 
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using spatial correlation functions in the correlation space rather than in the real space 

without the need to track individual particles [4]. Using image correlation methods we can 

calculate the spatiotemporal correlation function that shows a broadening as a function of 

time that can be related to a model of diffusion. Since this broadening is obtained using 

image correlation methods we call the parameter obtained by image correlation the iMSD. 

The broadening can in principle be different in different directions giving rise to diffusion 

anisotropy [5]. The intent of the iMSD analysis is to capture the heterogeneous broadening 

of the correlation function in different parts of the sample and at different times. If the 

motion is very fast, we must explore a large region around the origin to capture the 

displacement of the molecule. If the motion is very slow, the molecule (or particle) could not 

have moved or moved a very small quantity with respect to our sampling of the space around 

the molecule. For example, assume that a molecule has a diffusion coefficient of 100 µm2/s, 

in 10−2s, which is about the fastest frame time we can acquire with a EMCCD camera, the 

molecule will have moved within a Gaussian distribution with a variance of about 4µm2. 

Assuming that the camera pixel (of the image projected on the real camera pixel) is about 

100nm, we will need a region of exploration of about 80 pixel-square to capture the 

broadening of the Gaussian to a factor of 2 in variance. At the other extreme, if the molecule 

has a diffusion coefficient of 0.001µm2/s, then the change of the variance of the Gaussian 

distribution after 1s will be only a fraction of a pixel (10−5µm), so that we will need to 

collect data for a much longer delay times to see a sizeable increase of the variance. This 

concept is illustrated in figure 1. In figure 1A we show the broadening of the Gaussian 

(Fick’s second law) which depends on time and on the diffusion coefficient. In figure 1B we 

show the calculations of the size of the ROI needed to detect a change of a value of 2 in the 

Gaussian variance as a function of the diffusion coefficient. The consideration of the size of 

the ROI is crucial for the proper calculation of the diffusion coefficient using the correlation 

function method. As shown in figure 1B, when the diffusion coefficient is large, we need to 

increase the region of analysis. If the diffusion coefficient is very small, we need to collect 

data for a longer time.

1.1.2 Algorithm and equations used for the iMSD analysis and data 
processing pipeline—The algorithm for the calculation of the iMSD is based on the 

STICS correlation function [4]

G(ξ, χ, τ) = 〈I(x, y, t) · I(x + ξ, y + χ, τ + t)〉
〈I(x, y, t)〉2 − 1 (Eq 1)

where the bracket indicates average over the x, y coordinates and time t. ξ and χ are the 

shift of the x and y coordinates and τ is the time delay. I(x,y,t) represents one image of an 

image stack of the same field of view acquired as a function of time. While this equation is 

valid for any type of images, in this article we deal with fluorescence intensity images. 

Assuming the shape of the illumination volume is Gaussian and the process of diffusion can 

be expressed by the Fick’s second law, the resulting correlation function after the integration 

on the x, y and t coordinates is given by Eq 2 [1]
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G(ξ, χ, τ) = g(τ) · exp  − ξ2 + χ2

σr
2(τ)

+ g∞(τ) (Eq 2)

The term g(τ) represents the change of the amplitude of the correlation function and the term 

σ2
r(τ) represents the broadening as a function of time and position of the Gaussian 

correlation function.

1.1.2.1 Diffusion laws: The variance of the Gaussian is assumed to be composed of 3 terms 

as shown in equation EQ 3.

σ2(τ) = σ0
2 + 4Dmacroτ + L2

3 (1 − e
−kmicroτ

) (Eq 3)

The first term σ2
0 represents the Gaussian variance at time zero, the second term represents 

the macroscopic diffusion and the third term represents confined diffusion within a region of 

average length L. kmicro is the rate to achieve confinement and it has dimensions of inverse 

time.

The behavior of Eq 3 is illustrated in figure 4 where 3 common diffusion laws are considered 

[1]. In the case of pure diffusion, the value of L is zero and the variance changes linearly 

with the delay time τ. In the case of pure confinement, the rate to reach confinement is 

described by the kmicro term and the average size of the confinement is given by L. The term 

kmicro has the dimension of inverse time. The initial slope to reach confinement is given by 

the following expression.

Dmicro = L2

12 ∗ kmicro (Eq 4)

which has the dimension of a diffusion coefficient and it is generally also called Dmicro

1.1.3 The iMSD sprites—From the graphs of figure 1B, we can see that for a diffusion 

coefficient of 1 µm2/s, the change of the Gaussian variance by a factor of 2 will occur in 

about 1s or 100 frames (green line in Figure 1B). Instead for a diffusion coefficient of 

0.001um2/s it will require about 10,000 frames for the Gaussian to broaden by about a factor 

of 2. For this reason it is convenient to present the STICS correlation function using a log 

time axis. A sprite is a small image obtained calculating a series of correlation functions for 

a given ROI (typically 32×32 pixels or 16×16 pixels) using a log time axis with 32 time 

points equally spaced in a logarithmic time scale. The size of a sprite in terms of file size in 

bytes is, for example 32×32×32*(sizeoffloat32)=131072 bytes. Assume that a typical image 

was acquired in the format 256×256 pixels and that we calculate each iMSD sprite by 

moving the ROI of 32×32 pixels in such a way as to superimpose each ROI by at one half of 

the ROI. In each direction we will have (2*256/32)−1 sprites for a total of 15×15=225 
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sprites. If the frame size is 512×512 we will have 961 sprites, which is typical of our 

measurements (Figure 3).

1.1.4 Calculation time—Next we discuss the issue of the calculation time for each sprite. 

The computation of each sprite must be in the order of 10ms to give a reasonable waiting 

time for the 200 to 1000 calculations to complete. To calculate one sprite we use an ultrafast 

3D FFT routine (C. Gohlke. "Pair Correlation Function Analysis of Fluorescence 

Fluctuations in Big Image Time Series using Python". Big Data Image Processing & 

Analysis (BigDIPA) Course, 19 September 2017, University of California, Irvine). A typical 

calculation involves a 3D FFT of size 32×32×32768 and it takes about 20ms (also taking 

into account the log averaging operation) for a total computational time of about 4–5 s for a 

256×256 image stack and 16–20 s for a 512×512 image stack. This is a reasonable amount 

of time to wait for this calculation to be completed. The sprites are computed only once and 

then they are stored together with the original image stack. For a file of 256×256×32768 the 

total sprite file is approximately 28.8 MB starting with about 8GB of the original image 

stack, which is a very substantial decrease in file size. In the SimFCS program (available at 

www.lfd.uci.edu), the sprite files are stored in the same directory and with the name of the 

original image stack but with information added to the file name to indicated the size of the 

ROI and if the time was calculated in a log or linear scale.

A further reduction of the data size take place by fitting each of the planes of the correlation 

function using a 2D Gaussian with 7 parameters: the amplitude, zero offset, 2 central 

positions, 2 variances along 2 lab axis and the orientation of the 2D Gaussian (Figure 3, right 

panel). This reduces each plane of the sprite (32×32) to 7 parameters per each of the 32 time 

delays (Figure 3, left panel). The resulting file is about 200Kb and it is stored again in the 

same directory and with the same name but the end part of the name is changed. There are 

options in SimFCS to perform the fit of the correlation function with lesser parameters, but 

all parameters are stored in a vector of 8 values anyway.

1.1.5 Law of diffusion—Once the fit parameters are calculated, it is possible to use these 

parameters to find the “law of diffusion”. For example the inverse of the G(0) and the 2D 

Gaussian variance can be used to fit 3 models for diffusion at each ROI, linear or pure 

diffusion, confined diffusion or a mixture of confined diffusion and long range diffusion 

corresponding to the models of Figure 2. The models can be ranked according to the 

correlation parameter or the chi-square of the fit as it will be shown in the Results section. 

The parameters of the fit are then stored in a fit-file together with other information about 

the data set and the images for each of the parameters as it varies at every ROI. All images 

and maps can be saved in an Excel file for permanent storage and easy display.

1.2 The pair-correlation function analysis

As previous described by [6] for one dimension, we used the 2D pair-correlation function 

defined as:
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pCF = G(τ, r0, r1) =
〈F(t, r0) · F(t + τ, r1)〉

〈F(t, r0) · F(t, r1)〉 − 1 . (Eq 5)

where, τ is the time delay between acquisitions of the fluorescence intensity (F) at two 

points in the image (r0 and r1). The temporal average is indicated by the brackets. The 2D-

pCF (Eq. 5 and Figure 7B) is able to detect barriers or obstacles to diffusion by the delay 

time on the correlation maximum in the presence of diffusion barriers or the absence of 

correlation between two points. The 2D-pCF approach is intended to measure the average 

path for a molecule diffusing in the cell with statistical spatio-temporal significance. To 

achieve this goal, we start with a stack of at least 8192 images of the same focal plane in the 

cell. From this stack we calculate the pCF at a given distance (δr) and at different angles 

around a given point for all the pixels in the image. A schematic illustration for an expected 

2D-pCF with heterogeneous diffusion is represented in the Figure 4B. To analyze the 2D-

pCF for each pixel in the image we use common image processing methods to obtain 

parameters of the angular distribution of the pCF [2]. We calculate first and second central 

moments of the spatial distribution. From these two parameters it is possible to obtain the 

angle of the 2D-pCF distribution (θ) and long (λ1) and short (λ2) axis using EQs 6–11. 

Equation 10 and 11 define the eccentricity and anisotropy, respectively, for the 2D-pCF and 

this parameter will be used to produce the connectivity maps.

Mij =
∑x ∑y xiy jI(x, y)

∑x ∑y I(x, y) (Eq 6)

μpq = ∑
x

∑
y

x − x p y − y qI(x, y) (Eq 7)

θ = 1
2arctan

2μ11
μ20 − μ02

(Eq 8)

λi =
μ20 + μ02

2 ±
4μ11

2 + (μ20 − μ02)2

2 (Eq 9)

Eccentricity = 1 −
λ2
λ1

(Eq 10)
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Anisotropy =
λ1 − λ2
λ1 + λ2

(Eq 11)

I(x,y) in EQ. 6 is the value of the 2D-pCF correlation function at pixels shifts x and y. Mij is 

the definition of the moments of the distribution of the 2D-pCF. The shift of the center of 

mass of the distribution (the μ parameters at the first order, p=q=1) can be used to obtain the 

net velocity (or the center of mass shift) of the particle. From EQ. 7, the displacement of the 

center of mass is expressed in the unit of pixels of the image. We use the ratio (or 

normalized difference) of the long and short axis of the ellipses (λ1 and λ2, respectively) to 

construct a map indicating where the pCF distribution is expanding unevenly, indicating the 

average local direction of the diffusional motion.

2. Material and Methods

2.1 Material

All media and reagent for cell culture were acquired at Invitrogen by Thermo Fisher 

Scientific Inc. (Waltham, MA-USA). All chemicals and solvents used were high-grade 

quality and acquired from Sigma-Aldrich (St. Louis, MO-USA). Plasmids were acquired 

from Addgene (Cambridge, MA-USA)[7].

2.2 Cell culture

Chinese Hamster Ovary (CHO-K1) cells were cultured at 37°C in media containing 

Dulbecco’s Modified Eagle medium (DMEM)/ F-12 Nutrient mixture supplemented with 

10% Fetal Bovine Serum (FBS) and 1% Penstrep, a 5% C02 atmosphere was used. Cells 

were plated on a 35 mm dish previously coated with fibronectin (Invitrogen, Thermo Fisher 

Scientific Inc., Waltham, MA-USA) and transfected using Lipofectemine® 2000 and 

according to manufactures instructions (Invitrogen, Thermo Fisher Scientific Inc., Waltham, 

MA-USA). The experiments were carried out at 37°C by a thermostat stage (Tokai Hit Co., 

Ltd., Fujinomiya-shi, Shizuoka-Japan) and 5% C02 atmosphere was included.

2.3 TIRF instrumentation

The measurements were done on a commercial Olympus TIRF microscope (Olympus, 

USA), for the EGFR-EGFP excitation a 488 nm line of the argon ion laser was used. In the 

emission path a filter set for EGFP a HQ500/20 and 515 nm long pass filter split by a 

Q515lp dichroic mirror (Chroma Technology Corporation., Bellows Falls, VT-USA) was 

used. The signal was collected using an Olympus TIRF UIS2 PlanApo N 60× (NA = 1.45) 

oil-immersion objective and the fluorescence fluctuation was recorded by an EMCCD 

camera 512B Cascade (Photometrics, Tucson, AZ, USA). The frame rate was 20 ms and the 

image size 256×256 pixels with a pixel size of 139 nm. For both methods (iMSD and 2D-

pCF) we needed to acquire at least 8192 frames which correspond to about 80 seconds of 

data acquisition. Cells were CHO-K1 cells transiently transfected with EGFR-EGFP plasmid 

(#32751) from Addgene (Cambridge,MA)[7] All date sets were detrended for bleaching 

using the exponential detrend function of the SimFCS Software. Bleaching affects the 
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amplitude of the correlation function but much less the variance. However, in the specific 

data set used for the examples of this paper to total bleaching was about 10% from the initial 

to the final frame.

3. Results

3.1 iMSD laws of diffusion

For this illustration of the iMSD method we analyze a time stack of 8192 frame taken with 

the EMCCD camera at a rate of 50 frames/sec of a cell expressing the EGFR receptor in the 

TIRF microscope. The actual record is much longer but we analyze here only a small 

fraction since the cell was slowly moving to the right. However the movement during the 

first 80s was less than one pixel. The same data was also used for the 2D-pCF illustration 

(see next session in the Results section). For the sample, the EGFR receptor moves slowly so 

that we use a small ROI of exploration (16×16 pixels =2.22 µm-square) a total of 961 sprite. 

All pixel of intensity less than 1000 were disregarded for this analysis giving 264 sprites.

3.1.1. Linear model for diffusion—The data were first analyzed using the linear model 

for diffusion (Figure 4);

The EGFR receptor has a relatively small diffusion coefficient. Most of the values in the 

histogram are in the 0.01–0.1 µm2/s range which is typical for transmembrane receptors. In 

the histogram of the σ0
2 parameter most of the occurrences are larger than the value of the 

intercept expected for the sole effect of the PSF. The PSF is about 0.3µm so that the square 

should be 0.09µm2. This finding indicates extensive clustering of the receptor.

3.1.2. Confined model for diffusion—The correlation coefficient histogram indicates 

that most of the fits are “reasonable” (Figure 5E). We use a threshold value of 0.7 of the 

correlation coefficient to accept all fits above that “reasonable” value. The histogram of the 

σ0
2 parameter indicates again extensive clustering of the receptor. The histogram of the 

confinement parameter L, which is prevalent below 1µm, is in the range expected for a 

transmembrane receptor. The Dmicro parameter is also very small in the same range of the 

Dmacro found using the linear model. This result could indicate the in many sprites the fit is 

not reflecting the real model. For this reason we need a criterion to compare the models 

which is used next.

3.1.3. The “all models” for diffusion—Then we analyzed the data for the “all models”. 

In the “all models” the three models for diffusion are tested in sequence (linear model, 

confined model and partially confined, Eq 3). The correlation coefficient for the fit is 

calculated at each sprite. Then the models are ranked according to the correlation coefficient. 

The model with the highest correlation coefficient is then recorded in a table (Figure 6) if the 

correlation coefficient is larger than 0.7, otherwise the sprite is disregarded. The 3 models 

tested are in reference to Eq 3. Model 1 only considers the first and second terms in Eq 3 and 

it is called linear model. Model 2 considers term 1 and term 3 of Eq 3 and is called the 

confined model. Model 3, also called “all” corresponds to a partially confined model. For 

this data set, the linear model has a greater prevalence, with the confined model found in 

fewer sprites and the partially confined model found only in some sprites as indicated in the 
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map. For each model, the map of the parameters of the fit is shown. The maps are 

complementary because if the best ranking is found in one sprite it cannot be found for 

another model in the same sprite. The models have different type and number of parameters. 

Figure 6J shows the histogram of Dmicro only for the sprites with best fit for the confined 

model. Comparing this panel with Figure 5H one can observe that the histogram of Dmicro is 

now different indicating that forcing a specific model for the fit can give erroneous results. 

Instead ranking all the models according to the correlation parameter for the fit provides the 

best model fit for a given sprite.

The ranking method shows that most of the sprites are best fitted by the linear model and 

that forcing the fit to provide the parameters for the confined model as was done for in the 

previous subsection could lead to erroneous interpretations. For example, in the few sprites 

where the confined model fit the best, the Dmicro parameter is much higher than the D micro 

found in subsection 3.1.2, as it should be expected (Figure 6J).

3.2 Diffusion and connectivity of EGFR by the 2D-pCF

Here we analyze by the 2D-pCF approach the same data set used for the illustration of the 

iMSD algorithm in section 3.1. Figure 7 shows the map for the anisotropy defined in EQ. 11 

obtained for pCF at a distance of 4 and 8 pixels by the 2D-pCF analysis presented in section 

1.2. EGFR in CHO-K1 cells shows clusters of high diffusion anisotropy (Figure 7C and D). 

The direction of the prevalent diffusion can be found by the map of the angles of the 

diffusion anisotropy (see Figure 7E and F). By calculating the pCF at increasing distances (4 

and 8) we can identify the occurrence of different features in Figures 7C and F. The 

anisotropy histogram shows also a change in the profile of values at the two distances 

(Figure 7G and H). These results mean that the maps for the anisotropy are modified by the 

pCF distance calculation, thus associated the anisotropy with obstacles detected at different 

distances.

Hence, if we focus on the anisotropy direction (or angle) for pCF(8) and we split the 

anisotropy for range 0.15–0.3, 0.3–0.5, 0.5–0.7 and 0.7–1.0 and by fitting the histogram of 

the anisotropy directions using multi-Gaussian we can identify the main component of the 

diffusion in the cells (Figure 8). Anisotropies below 0.15 were disregarded because this is 

the anisotropy range expected for random diffusion. The 2D-histogram for the anisotropy vs 

anisotropy direction shows the occurrence of at least 2 maximum angles for anisotropies 

ranged 0.3–0.8 (Figure 8A). Then the fitted results were plotted in a polar plot and the main 

angle for the major axis of the cell is represented also on top of the plot (Figure 8B), 

therefore, it is possible to see the distribution of angles for the anisotropy with respect to the 

main cell axis. From the amplitude of the angle histogram, we can distinguish one main 

angle directions aligned with the cell axis and one more in the perpendicular direction.

The pCF analysis also provide an additional variable particular sensitive to the occurrence of 

barriers, which is the center of mass shift (CMS, see insert in Figure 9A for its definition). 

The high resolution images for the CMS for pCF at 4 and 8 pixel distances are shown in 

Figure 9. These regions of high CMS are associated with the displacement of the first central 

moment of the 2D-pCF distribution which occurs close to obstacles, shown in the inset of 
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Figure 9A. It is also possible so see that the features observed at pCF(4) are different for 

pCF(8).

3.2.1 The connectivity map and its meaning—The connectivity map is built by 

thresholding the anisotropy histogram excluding the values below 0.15, which are associated 

with isotropic diffusion. Then a segment at each pixel of length proportional to the value of 

the anisotropy and at the angle of the anisotropy direction. In Figure 10, we show the 

connectivity maps for pCF(8) using the same ranges for the anisotropy values defined in 

Figure 8. First column (A) in Figure 10 shows the connectivity maps for the four thresholds 

(0.15–0.3, 0.3–0.5, 0.5–0.7 and 0.7–1.0) for the anisotropy (left columns). For each 

anisotropy range it is possible to identify different sizes and directions in the clusters of 

anisotropy values. These results are even clearer when the angle for each vector is color-

coded (see the second column in Figure 10B). By segmentation and masking it was possible 

to quantify different shape descriptors for the clusters within anisotropy ranges as describe 

above (column 3 in Figure 10C and 11). The shape descriptors selected were: Area (size of 

clusters) and Circularity (determined as 4π.area/perimeter2, perfect circle = 1) using the 

ImageJ routine “Analyze particles”.

The analysis of the anisotropy map using increasing anisotropy thresholds selects clusters 

with increasing circularity (see Figure 11). This is not obvious and indicates that the 

connectivity map is not simply the results of a random distribution. The histogram for 

cluster sizes does not show significant changes (evaluated by the area) by the different 

anisotropy thresholds (Figure 11A). However, the shape descriptor for the clusters shows the 

differences in clusters shape by anisotropy thresholds (Figure 11B), thus illustrating the 

ability of the 2D-pCF approach to detect the diffusion path for a molecule at high resolution 

in space and time in the cell.

4. Discussion

Biological processes studied by image correlation analysis

We show that the law of diffusion can be obtained in ROIs of about 2 µm side. This is due to 

the iMSD method that is based on a spatial average. We schematically show in figure 1 that 

the ROI must have a minimum size in order to observe the broadening of the correlation 

function or in the case of very slow diffusion the correlation must be calculated at very long 

time delays. In order to better define the law of diffusion we need to compare the fits of the 

correlation function using different models. This is done in our software for the law of 

diffusion. The ranking of the model can be shown at each sprite and the chi-square of the fits 

can be compared. For the 2D-pCF we show that we can map barriers for diffusion which are 

not visible and that cannot be obtained with the iMSD method.

Necessary hardware

The iMSD and the pCF method work with images taken with a camera. However, several of 

the new confocal microscopes can acquire images at a speed comparable with EMCCD 

cameras in relatively small frames. If the image is acquired very fast in the confocal mode, it 

could appear as images acquired with a camera. However the interpretation of the intercept 
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parameter σ0
2 must be re-evaluated. For the example shown in this paper, since the EGFR 

receptor diffuse relatively slowly, the TIRF microscope with a EMCCD camera provides 

sufficient resolution and speed to observe the diffusion of the receptor. Large frame sCMOS 

cameras could be used although the noise of these cameras must be accounted for using de-

noising procedures. Otherwise, we must consider the 2D-pCF approach that has a larger 

dynamic range and better spatial resolution.

Computational power and size of the data set

The ideal data set should have good spatial resolution and the time stack should have at least 

10,000 frames. The average file size for a single measurement is of several GB. Clearly, the 

computer must be able to maintain in core memory the data needed for the computation. We 

have been using laptops with a minimum of 8GB of core memory and at least 4 processors 

to use independent threads for the computation. Since the iMSD and pCF algorithms are 

based on fast Fourier transforms in 1D or 3D, the speed of computation is very high but we 

have to use double or quadrupole precision to compute FFT’s with one of the axis on the 

order of 32,000 elements or larger sizes. The sprite method discussed in this article allows 

very large compression of the original stack. After the first computation of the correlation 

function the size of the data set is reduced by more than a factor of 100 and subsequent 

calculations of the fit of the correlation function using few parameters can reduce to data set 

size another factor of 100. This enormous compression without losing information makes 

the calculation fast and affordable to be further analyzed for different physical models.

Methods for data visualization

Visualization of data obtained in every pixel or small region of a cell is usually done under 

the form of maps, with the purpose of maintaining the spatial location of the original 

fluorescence image so that features of the original image can be associated with the property 

measured. We have used this visualization strategy for all data obtained by the iMSD and by 

the 2D-pCF techniques as shown in this article. However, for example diffusion coefficients 

are tensors which require more than one value to be displayed. Other quantities can be 

visualized using only one value and some of the maps do not refer to a specific physical 

quantity, like the map of the chi-square or the map of the best model. Visualization using 

maps requires the color palette to be specified and the correspondence between color and 

value to be given. In this work, for each map we provide a histogram of all values found in 

the map and we use the same color scale for all images. The color scale is reported for one 

histogram. The vector or tensor maps have associated two or more images. One way to 

visualize a vector is to use an arrow that indicate the direction and the modulus of the 

quantity is indicated by the length or color of the arrow. If this vector quantity is obtained at 

each pixel, it is not possible to have an arrow at every pixel. In this case we use two color-

coded maps, one to display the modulus and the other the direction.

Using this visualization it is easy to recognize regions that have similar moduli and regions 

that show the same direction. The visualization methods provided by our software are 

intended to be the first step for a more detailed analysis. For example, the map of the σ2
0 

above a given threshold can be associated to clusters. The map (like all the maps in the 
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software) can be exported to be analyzed in other programs, for example in ImageJ, to 

obtain the number, size, shape, area and other parameters of the clusters.

Other approaches for image correlation analysis

There are been other approaches different from the iMSD and the 2D pCF techniques 

discussed in this article. Particularly important are the methods described by the Wohland 

lab [8–10] which also provide the law of diffusion at each point in an image and with 

relatively high resolution. In this approach, the law of diffusion is obtained by integrating the 

intensity at increasing areas around a pixel and calculating the time correlation function as a 

function of the area. This method is quite robust but similarly to the iMSD method it is 

limited in the spatial resolution by the need to integrating over increasing areas. A different 

method was proposed earlier based on the k-space analysis by the Wiseman lab [11].

5. Conclusions

We have presented some elements of the theory behind the iMSD and 2D-pCF approaches to 

image correlation spectroscopy as well as the algorithms and the software for data 

visualization. The two methods offer complementary information about the diffusion of 

molecules in live cells. The iMSD provides the law of diffusion in a certain ROI. In the 

iMSD method, the spatial resolution is limited by the size of the ROI since we cannot 

determine which part of the ROI has contributed to the overall results. We show that the size 

of the ROI is in part dictated by the rate of diffusion (Fig 1). Specifically, faster diffusion 

needs to be observed in a large ROI for a given frame rate. For slow diffusion, we need to 

collect data for a long time to observe a broadening of the correlation function. The 2D-pCF 

approach is not based on spatial averaging so that very high spatial resolution could be 

obtained. This is particularly important for the visualization of barriers to diffusion such as 

internal membranes or organelles that limit the space for local diffusion.

The algorithms used for iMSD and 2D-pCF have been published and also a program is 

available that implements the calculation and visualization shown in this article. As a final 

note, fluctuation analysis should not be used for fixed samples where fluctuations are absent.

We envision that the methods based on correlation functions will find a broad application in 

cases in which single particles cannot be isolated. The 2D-pCF has the highest resolution 

since it depends on the fluctuations in a pair of pixels. We are developing the 2D-pCF for the 

Zeiss Airy detector where the pixel waist is effectively in the range of 120nm, at the detector 

center. The methods iMSD and 2D-pCF techniques described in this article can also be used 

on line scans which can be very fast in the STED microscope.
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Abbreviations

2D-pCF two dimensional pair-Correlation Function

iMSD image Mean Square Displacement

EGFR epidermal growth factor receptor
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Highlights

• The iMSD fluctuation correlation analysis method provides the mean square 

displacement of molecules in a crowded environment without the need to 

track individual molecules.

• iMSD requires averaging over small regions of the cell depending on the 

value of the diffusion coefficient, limiting the spatial resolution.

• The 2D-pCF analysis shows obstacles and barriers to diffusion and 

emphasizes the anisotropy of the diffusion flow in live cells.

• 2D-pCF analysis does not require spatial averaging and the position of 

barriers to diffusion can be obtained with pixel resolution
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Figure 1. 
A) Simulation of a Gaussian distribution for with a width of 3 pixels (black curve). The blue 

curve represents the spreading as a function of time of the original Gaussian function (black 

curve) by diffusion of a molecule with large diffusion coefficient. The dotted double arrow 

line represents FWHM for a fast diffusion (16 pixels wide). The red curve represents the 

spreading of the original Gaussian function (black curve) by diffusion of a molecule with 

slow diffusion coefficient. The spreading for the slow diffusion is almost unperceivable but 

the amplitude significantly decreases in the case of slow diffusion. B) Plot for the ROI (in 

pixels) in a camera-based image (pixel size 100 nm) needed to observe a change of a factor 

of 2 in the FWHM as a function of diffusion coefficient. From top to bottom the dashed/

dotted lines indicate the measurable range in the diffusion coefficient (from 400 µm2/s to 

3×10−4 µm2/s) for a ROI (from 64 to 8 pixels) used in the iMSD analysis. From right to left 

(black to purple curves) the delay is increasing from 0.01 s black single frame, 0.1s red, 1s 

green 10s blue, 100s purple (delay after 10,000 frames).
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Figure 2. 
iMSD analysis on simulated 2D diffusion. (a) Simulated condition: 2D isotropic diffusion, 

with diffusivity D. (b) iMSD is linear, with a higher slope for increasing D values. (c) 

Accordance between the theoretical D value and that recovered from the analysis. (d) 

Simulated condition: 2D isotropic diffusion in a meshwork of impenetrable barriers 

(probability P = 0 to overcome the barrier). (e) iMSD plot starts linear and then reaches a 

plateau that identifies the confinement area and the corresponding linear size L. (f) 

Accordance between the theoretical L value and that recovered from the analysis. (g) 

Simulated condition: 2D isotropic diffusion in a meshwork of penetrable barriers. Particles 

have probability P > 0 to overcome the barrier, thus generating a hop diffusion component. 

(h) iMSD plot starts linear (with a slope dependent on Dmicro) and then deviates toward a 

lower slope which depends on P. (i) Calculated Sconf as a function of the imposed P. Part of 

this figure was previously published in [1].
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Figure 3. 
Left: Part of an image of size 256×256 is shown (pixel size is 0.139 µm). The red solid 

square indicates an ROI of 16×16 pixels (2.22 µm square) and the red dashed square indicate 

to movement by 8 pixels in the x direction where the next sprite will be calculated. The 

sprites are calculated at each ROI and there is superposition between adjacent sprites. Right: 

example of one spatial correlation function at one sprite fitted with a 2D Gaussian function 

tilted. The red ellipse indicates the contour at half the amplitude. The size of the sprite is the 

same as that of the ROI.
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Figure 4. 
iMSD analysis for linear model of diffusion. A) Intensity image. B) Map of the intercept 

parameter σ0
2 as defined in EQ. 3. C) Map of the Dmacro parameter defined in EQ. 3. D) 

Histogram of the correlation coefficient of the fit. The blue line is at 0.7. Values below 0.7 

were not used to evaluate the model. E) Histogram of the σ0
2 parameter. The black vertical 

line indicates the value expected if the intercept is due to the PSF. F) Histogram of the 

Dmacro parameter. The color code in the histograms is the same color code used for the 

maps.
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Figure 5. 
iMSD analysis for confined model of diffusion. A) Intensity image. B) Map of the intercept 

parameter σ0
2 as defined in EQ. 3. C) Map of the L parameter of confinement size as 

defined in EQ. 3. D) Map of the initial slope also called Dmicro parameter as defined in EQ. 

4. E) Histogram of the correlation coefficient of the confined model fit. Only sprites with 

values above the blue line in the histogram are selected. F) Histogram of the intercept 

parameter. The blue vertical line indicates the value expected if the intercept is due to the 

PSF. G) Histogram of the confinement length. H) Histogram of the initial slope also called 

Dmicro parameter. The color code in the histograms is the same color code used for the maps.
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Figure 6. 
Comparison and ranking of model for diffusion at each sprite. The first column labeled 

“Sprite best model” show where in the cell one of the 3 models ranks the best. The 3 models 

tested are in reference to Eq 3. Model one only considers the first and second terms in Eq3 

and it is called linear model. Model 2 considers term 1 and term 3 of Eq 3 and is called the 

confined model. Model 3, also called “all” corresponds to a partially confined model. The 

linear model has a greater prevalence with the confined model found in fewer sprites and the 

partially confined model found only in some sprites as indicated in the map. For each model, 

the map of the parameters of the fit is shown. The maps are complementary because if the 

best ranking is found in one sprite it cannot be found for another model in the same sprite. 

The models have different type and number of parameters. Panel J show the histogram of 

Dmicro only for the sprites with best fit for the confined model. Comparing this panel with 

panel H) of Figure 5 one can observe that the histogram of Dmicro is now different indicating 

that forcing a specific model for the fit can give erroneous results. Instead ranking all the 

models according to the correlation parameter for the fit provides the best model fit for a 

given sprite.
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Figure 7. Analysis of the anisotropy diffusion of the EGFR on CHO-K1 cell based on 2D-pCF of 
TIRF data
A) Average intensity for the 8192 frames from EGFR-EGFP fluorescence used in the 2D-

pCF analysis. B) 2D-pCF illustration (blue ellipse) and definition for the anisotropy 

calculation. C and D) Anisotropy of EGFR diffusion image for the pCF distance of 4 and 8, 

respectively. E and F) Angle of the anisotropy diffusion (anisotropy direction, θ) for the 

EGFR at pCF distance of 4 and 8, respectively. G and H) Histograms of the anisotropy 

distribution in the images C and D, respectively. The color scale in the histogram plots is the 

same color scheme used for the anisotropy map in the range 0–1 and for the anisotropy 

direction in the range 0–180 degrees (blue to red).
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Figure 8. Analysis of the anisotropy direction for the pCF distance of 8
A) Two dimensional histogram of the anisotropy vs anisotropy directions (angle) for the 

pCF(8), Figure 7D and F. B) Polar histogram of the diffusion angle produced by the 

anisotropy direction histogram using thresholds for the anisotropy (the thresholds are 

indicated at the 2D-histograme in panel A). This plot is obtained by fitting multi-Gaussian 

components on the Cartesian histogram for the angles (not shown). The pink arrow 

represents the cell long axis orientation.
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Figure 9. Center of mass shift (CMS) map for the EGFR diffusion in CHO-K1 cells
A and C) Images for the center of mass shift obtained for EGFR-EGFP on the plasma 

membrane of NIH3T3 cells transfected with the EGFR receptor for pCF distance of 4 and 8, 

respectively. Insert in figure A illustrate the concept of the CMS calculation.
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Figure 10. Connectivity maps and cluster shape analysis of EGFR-EGFP in CHO-K1 cells by 
pCF(8)
A) The left column shows the connectivity maps for 0.15–0.3, 0.3–0.5, 0.5–0.7 and 0.7–1.0 

threshold in the anisotropy values, from top to bottom respectively. B) The connectivity 

maps are color-coded by the anisotropy angle used in the Figure 7. C) The connectivity 

clusters obtained by the anisotropy thresholds (0.15–0.3, 0.3–0.5, 0.5–0.7 and 0.7–1.0, from 

top to bottom respectively) were segmented and masked to be analyzed using the “Analyze 

Particles” routine in ImageJ for shape descriptors. The insert is a 3× zoom for a ROI on the 

corresponding map.
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Figure 11. 
A and B) Histograms produced by the shape descriptor of the connectivity clusters: Area and 

circularity, respectively. Dotted lines are polynomic function fitted to compare the 

histograms distributions.

Malacrida et al. Page 25

Methods. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical abstract
	1. Introduction
	1.1 Theory/calculation
	1.1.1 The purpose of the iMSD analysis
	1.1.2 Algorithm and equations used for the iMSD analysis and data processing pipeline
	1.1.2.1 Diffusion laws

	1.1.3 The iMSD sprites
	1.1.4 Calculation time
	1.1.5 Law of diffusion

	1.2 The pair-correlation function analysis

	2. Material and Methods
	2.1 Material
	2.2 Cell culture
	2.3 TIRF instrumentation

	3. Results
	3.1 iMSD laws of diffusion
	3.1.1. Linear model for diffusion
	3.1.2. Confined model for diffusion
	3.1.3. The “all models” for diffusion

	3.2 Diffusion and connectivity of EGFR by the 2D-pCF
	3.2.1 The connectivity map and its meaning


	4. Discussion
	Biological processes studied by image correlation analysis
	Necessary hardware
	Computational power and size of the data set
	Methods for data visualization
	Other approaches for image correlation analysis

	5. Conclusions
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11



