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ABSTRACT OF THE DISSERTATION

Molecular Beam Epitaxy and High-Pressure Studies of van der Waals Magnets

by

Dante J. O’Hara

Doctor of Philosophy, Graduate Program in Materials Science and Engineering
University of California, Riverside, September 2019

Professor Harry Tom, Chairperson

Van der Waals (vdW) magnets provide an exciting opportunity for exploring two-

dimensional (2D) magnetism for next generation scientific and technological advances.

While previously realized in 3D ultrathin films where the magnetism is stabilized via

substrate-assisted magnetic anisotropy, recent reports have shown intrinsic ferromagnetism

at low temperatures (< 60 K) in isolated µm-sized flakes mechanically exfoliated from a bulk

single-crystal down to a single-atomic layer. This opens up the possibility to truly study

magnetism in free-standing 2D layers without direct effects from the underlying substrate

and being intrinsically susceptible to surface effects such as atomic adsorbates, electrostatic

gating, and proximity-induced phenomena. This dissertation examines the molecular beam

epitaxy (MBE) growth and characterization of new 2D magnets, monolayers of MnSe2 and

VSe2, that show ferromagnetic ordering above room temperature. Growth on different sub-

strates and varying the substrate temperature during growth affects the growth mode and

morphology of the deposited 2D magnet and also affects the measured magnetization. Di-

rect atomic and magnetic imaging via scanning transmission electron microscopy (STEM)

viii



and scanning tunneling microscopy (STM) show stable 2D magnetic layers.

Due to the lack of dangling bonds at the surface of these 2D magnets, applying

external epitaxial strain is a challenge. Later in this dissertation, the magnetic, electronic,

and structural properties of vdW-layered, Fe-deficient Fe3−xGeTe2 are systematically in-

vestigated by the application of high pressure. Fe3GeTe2 is of particular interest due to its

high Curie temperature, Tc, strong perpendicular magnetic anisotropy, and tunable mag-

netic properties depending on the concentration of Fe and its thickness. Electrical and

magneto-transport measurements show a suppression in Tc with an increasing pressure up

to 20 GPa. The decrease in Tc is due to the lattice shrinkage from pressurization which leads

to a weakening of the exchange interaction. These observations showcase the tunability in

vdW magnets via pressure which can complement other external stimuli such as chemical

doping, making them candidates for future spintronic, electronic and photonic devices.
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Chapter 1

Toward Magnetism in the

Ultrathin Limit

1.1 Introduction to Magnetism and Magnetic Materials

Magnetism and magnetic materials have become heavily involved in our everyday

lives. This begins with the discovery of the ”South pointer” in ancient China or what we’ve

come to know as the navigational compass, which aligns its suspended needle with the

Earth’s magnetic field. Since then, research in magnetism has led to many early discoveries

including a current-carrying wire coil producing a magnetic field (e.g. electromagnetism),

and magneto-optics such as the Faraday effect [1, 2]. Developing a basic understanding of

the physics led to advances in quantum mechanics such as the discovery of an electron’s spin

which is the origin of the electron’s intrinsic magnetic moment (µB). High-frequency mag-

netic resonance, spin-based electronics and material advances such as rare-earth magnets
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providing a large energy product for future permanent magnets were later discovered. These

technological advances are in modern-day speakers, electric motors, television screens, and

generators for wind turbines.

Spin-based electronics or ”spintronics” which exploits both the charge and spin

degrees of freedom of an electron, has been an exploding field since the discovery of the

giant magnetoresistance (GMR) effect in 1988 by Albert Fert and Peter Grünberg [3, 4]

and a related phenomena known as tunneling magnetoresistance (TMR) [5, 6, 7, 8]. This

discovery has led to major advances in the computer industry leading to high density storage

media, non-volatile memory, low-energy magnetic devices, and also advances toward cloud

computing and quantum information [9, 10, 11, 12]. This area of study is heavily dependent

on the advancement and development of high quality thin film materials as is the consumer

electronics industry (e.g. Moore’s Law). This has led to breakthroughs and discoveries of

new quantum materials such as topological insulators, high temperature superconductors,

2D semiconductors and magnets, magnetic insulators, etc.

It is important to distinguish certain concepts in magnetism before moving for-

ward. Different types of magnets including ferromagnets, antiferromagnets, paramagnets,

diamagnets, and ferrimagnets all exhibit different properties (depicted in Figure 1.1. Both

paramagnets and diamagnets are non-magnetic materials. For paramagnets, the magnetic

dipoles in the material are all randomly oriented and do not polarize unless a very high

external magnetic field is applied to the sample and does not retain its magnetization when

the external field is turned off. In diamagnets, the slope of the magnetization curve is neg-

ative as the magnetic field is swept from negative to positive (or vice versa). This response
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Figure 1.1: Ordering of the magnetic moments in magnetic materials.

is due to the atomic orbitals being completely filled or empty and the diamagnetic material

repelling the magnetic flux from the external magnetic field [1, 2, 13].

Ferromagnets, in particular, show an irreversible nonlinear response of magne-

tization to an applied magnetic field. This is shown via a hysteresis loop explained by

the ferromagnet’s intrinsic property of spontaneous magnetization due to the alignment of

atomic magnetic moments (Figure 1.2). The magnetization is dependent on temperature

where at a specific temperature, named the Curie temperature (Tc), the magnetization falls

to zero and undergoes a phase transition. The phase transition is due to thermal fluctu-

ations causing disorder in the atomic moments at higher temperature while it is ordered

below the Tc. The ferromagnetic hysteresis loop shows interesting features related to energy

loss. Hard magnetic materials (e.g. CoPt [14]) typically have broad, square loops while soft

magnetic materials (e.g. Py [15]) have narrow loops. This feature is related to the coercive
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Figure 1.2: An example of a ferromagnetic hysteresis loop with different components labeled
(discussed in text). Adapted from [2].

field (Hc), which is the force required to flip the magnetization in the opposite direction. The

field this switches at typically depends on the domain structure and anisotropy energy [1].

The saturation magnetization (when all magnetic moments align with field, Ms), saturation

field (the field at which all moments align, Hs), and remanent magnetization (amount of

aligned magnetization left over after field is shut off, Mr) are features of the ferromagnetic

hysteresis loop and are all dependent on the magnetic anisotropy energy [1, 2]. We will

discuss magnetic anisotropy more in the next section.

Antiferromagnetism and ferrimagnetism are similar in that the interaction be-

tween the magnetic moments tend to align adjacent moments antiparallel to each other.

The difference between the two is that in an antiferromagnetic material, the overall net
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Figure 1.3: Type II (or Type A) antiferromagnetic mode for the MnO fcc(111) lattice.
Adapted from [1].

magnetization is zero, while the net magnetization in a ferrimagnet is not zero. Most ox-

ides that possess a nonzero net magnetization are typically ferrimagnets, like Fe3O4 and

YFe5O12 (YIG) [16, 17]. In terms of susceptibility, antiferromagnets order at a tempera-

ture below the Néel temperature, TN . The way they are typically characterized is through

susceptibility measurements (M vs. T) or high field (M vs. H) scans since it takes a large

external magentic field to polarize the antiparallel spin alignment. Interestingly, there are

different magnetic modes for antiferromagnets in cubic lattices, particularly the fcc. Shown

in Figure 1.3, a structure with alternating ferromagnetic planes along the [001] is a Type

I antiferromagnet, while a structure with alternating ferromagnetic (111) planes is a Type

II (or Type A) antiferromagnet [1]. Type III is made up of alternating antiferromagnetic

planes [1]. This understanding will come in handy later in this dissertation.
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1.2 Magnetic Anisotropy

Magnetic anisotropy is the directional dependence of a material’s magnetic prop-

erties. An easy axis is an energetically favorable direction of a magnetic material. The

family of easy directions are usually equivalent and the actual direction of magnetization

can be along either of them. The hard axis is typically characterized by the higher magnetic

field needed to saturate the sample magnetization while the easy axis reversal is usually

characterized by lower saturation fields and square hysteresis loops. In hard magnets, the

easy axis anisotropy energy is typically strong as opposed to soft magnets. The anisotropy

energy (Ea) is typically represented by the equation below:

Ea = K1sin
2θ (1.1)

1.2.1 Magnetocrystalline Anisotropy

Magnetocrystalline anisotropy is an intrinsic property of crystalline magnetic ma-

terials. The direction of the magnetic moments is pointed along the energetically favorable

easy axes of the crystal which is largely dependent on the crystal symmetry. Its microscopic

origin is related to the crystal-field interaction and spin-orbit coupling. This crystal-field

interaction tends to stabilize a particular orbital, and by spin-orbit interaction the mag-

netic moment is aligned in a particular crystallographic direction [1]. For example in Fe, the

cube edges <100> are easy directions and the cube diagonals <111> are hard directions.

Crystals that are hexagonal such as Co, have easy directions along the c axes, [0001]. This

does not apply to polycrystalline or amorphous samples without a preferred orientation of

the grains.
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Figure 1.4: Magnetocrystalline anisotropy in bcc Fe.

1.2.2 Shape Anisotropy

Shape anisotropy has a magnetostatic origin which is closely related to demag-

netizing fields. The demagnetizing field, Hd, is created by the magnetization, M , of the

sample and is directly proportional to the size of the sample, Nd. The demagnetizing fields

are usually written as

Hd = NdM (1.2)

In the case of a perfectly spherical sample, the magnetization will point along all

axes. If it is not perfectly spherical, then it will prefer to lie along a long axis. For the case

of this dissertation, we will mainly focus on thin films. In the case of a thin film (which

may be crystalline or non-crystalline), the shape anisotropy overcomes the bulk magneto-

crystalline anisotropy. The magnetic moments will prefer to point along the crystalline easy
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Figure 1.5: Surface magnetic moments beginning to tilt outward at spin-reorientation tran-
sition thickness.

axes but since the demagnetizing fields will be too large along the z direction, the moments

will prefer to point along the in-plane family of easy directions. A high field is typically

necessary to overcome the demagnetizing field.

1.2.3 Surface Anisotropy

The third and last type of magnetic anisotropy that I will be discussing in this

dissertation is the surface anisotropy which typically happens in metallic ultrathin mag-

netic films at their interfaces. When a thin film reaches a thickness where the interface

breaks symmetry, the moments will deflect out of plane (depicted in Figure 1.5). This is

also represented by a competition between shape anisotropy and the surface component of

magnetocrystalline anisotropy [1]. An example of this is growing wedged magnetic films

on top of metallic substrates such as Ag and Au where at higher thicknesses the magnetic
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moments prefer to lie in the sample plane (dominated by its shape) but when the thickness

decreases they tend to tilt out of the plane (dominated by surface) [18, 19, 20, 21, 22, 23].

This region where the magnetic moments change orientation of its preferred axes is called

the spin-reorientation transition (SRT) [18, 19, 24, 25, 26, 27, 28, 29]. The samples need

to be of high quality to realize this reorientation of the spins, which requires a growth

technique such as molecular beam epitaxy (MBE) and an ultra-clean substrate.

1.3 Magnetism in Low Dimensions

In order to scale down samples for next generation magneto-electronics and spin-

tronic devices we have to keep in mind that there are more constraints and significant

challenges in moving toward lower dimensions (<3) [30, 31]. Magnetic excitations, also

known as spin waves, play a significant role in the stability of the magnetic ordering while

the dimension of the system is reduced.

Electron spins have different interactions with an applied magnetic field and are

dependent on temperature. Spins precess under an applied field, H, where the precession of

spins couple around an ordered moment and also propagate through the lattice which can

destroy the long range magnetic ordering at Tc [1, 13, 32]. Think of spin waves (or magnons)

as oscillations in the relative orientations of spins on a lattice, whereas lattice waves (or

phonons) are oscillations of the relative positions of atoms on a lattice. At T = 0, the spin

wave modes are stable while T > 0 the thermal population is occupied. The dispersion

relationship for magnons is shown below,

h̄ωk ≈ 4JS(1− coska) (1.3)
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where h̄ is Planck’s constant, ωk is the frequency for the spin wave, J is the nearest-neighbor

exchange interaction, S is the total spin angular momentum, k is the wave vector and a is

the interatomic spacing [1, 13, 32]. Magnons behave like Boson modes meaning they follow

Bose-Einstein statistics shown here,

n(E) =
1

e
h̄ωk
kBT − 1

(1.4)

where n(E) is the number of magnons at a given energy (or mode), and kB is the Boltzmann

constant [1, 13, 32]. The general spin wave dispersion for ferromagnets is ∼ k2 [32]. Using

Equations 1.3 and 1.4, Mermin and Wagner found that the total number of thermally

excited magnons integrated over all modes (at low energies) diverges in 1-D and 2-D, leading

to magnetism (ferromagnetic or antiferromagnetic) being unstable at a finite temperature

above T = 0. This is commonly known as the Mermin-Wagner theorem [33].

While this theorem provides an important benchmark, it does not take into ac-

count interaction with a substrate, a finite film thickness, surface texture, and additional

interactions which may induce symmetry breaking. Uniaxial magnetocrystalline anisotropy

is a requirement for stabilizing ferromagnetism in two-dimensions (2D), which creates an

extra term in the spin wave dispersion relationship, or a non-zero spin wave excitation gap

in the lowest energy mode of the acoustic magnon branch. This is known as the 2D Ising

Model [34, 35, 36, 37, 38]. This can be thought of as an ”all surface” system that has an

intrinsic surface anisotropy which creates a finite Tc as opposed to a 3D system where the

Tc is directly related to the exchange interaction.

Of the model discussed, it is important to note that this is for a highly local-

ized system such as rare-earth f -electron magnets. In the Stoner criterion, a delocalized
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or itinerant ferromagnet can be understood in terms of the spin density of states (spin-

DOS) [13, 39]. In the spin-DOS there is a spin imbalance when the number of up spins

(N↑) exceeds the number of down spins (N↓). In this picture, spontaneous magnetization

arises from a spin imbalance from the net spin-DOS (N↑ - N↓). According to the Stoner

criterion, metals having a large value of spin-DOS at the Fermi level or having a large value

of the exchange interaction tend to be ferromagnetic [1, 13].

Prior studies on fabricating ”two-dimensional” (2D) magnetic materials primar-

ily focused on reducing the thickness of 3D metallic ferromagnets (e.g. Fe, Ni, CoFeB,

etc.) to several atomic layers through thin film deposition techniques on ultraclean sub-

strate surfaces [20, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. In

these structures, the magnetic ordering is stabilized through lattice-strain-induced magnetic

anisotropy, which also determines their spin-reorientation transition thickness from shape

to surface anisotropy. 2D magnetism is not limited to these systems. Atomic layers of non-

magnetic 3D materials have also shown artificial ferromagnetic ordering at their surfaces

with an example being elemental vanadium epitaxially grown on Ag(100) substrates [56].

Similar theoretical predictions have been made for monolayer 4d elements (Tc, Ru, Rh, Pd)

and 5d elements (Os, Ir) on Ag(100) surfaces but so far no success has been reported on

these materials [57, 58].

Magnetic ultrathin films fabricated down to the 2D limit are unavoidably affected

by the underlying substrate, which makes it challenging to study 2D magnetism in free-

standing monolayers. An isolated or suspended layer could exhibit a largely weakened or

possibly no substrate effect and is therefore a good platform for studying magnetism in 2D
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which will be discussed in the next section.

1.4 Magnetism in van der Waals Materials

Since the isolation of monolayer graphene (e.g. a single isolated atomic sheet of

graphite) via scotch tape micromechanical exfoliation in 2004 [59], there have been intense

efforts to search for new 2D van der Waals materials. Of these discovered include super-

conducting metals (e.g. NbSe2) [60, 61], direct band gap semiconductors (e.g. transition

metal dichalcogenides (TMDCs) such as MoS2) [62], insulators (e.g. h-BN) [63], topological

insulators (e.g. Bi2Se3) [61, 64], and other elemental 2D materials such as phosphorene,

silicene, germanene, antimonene, and stanene [65]. Due to the unique physical and chemi-

cal properties compared to their bulk counterparts, ultrathin 2D van der Waals materials,

especially down to thicknesses of one or several atomic layers, have become a focus of the

scientific community [66].

Magnetic properties of van der Waals 2D materials have been historically under-

investigated. 2D magnets have the potential to be extremely important for future magneto-

electronic and spintronic devices as they continue to scale to smaller thicknesses for low-

energy applications [67, 68, 69, 70]. Furthermore, the magnetic properties can couple with

rich electrical and optical properties via layer stacking techniques, leading to fascinating

magnetoelectric and magneto-optic physics.

Many previous studies have tried various ways to induce ferromagnetic ordering

into non-magnetic 2D van der Waals materials. This includes various types of defect en-

gineering [72, 73, 74, 75, 76, 77, 78, 79], induced magnetism via strain [80], compositional
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Figure 1.6: Out-of-plane hysteresis loops of Sn1xMnxSe2 films grown at Mn effusion cell
temperatures of 670◦C ((a) and (b)), 690◦C ((c) and (d)), 740◦C ((e) and (f)), and 760◦C
((g) and (h)) measured at 300 K and 10 K. Adapted from [71].
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Figure 1.7: AHE resistance at different temperatures of graphene on YIG. Adapted
from [16].

alloying [71], or the proximity effect [16, 17, 81] to induce a magnetic moment at the interface

of the non-magnetic 2D material.

A few examples are worth discussing here, including ”decorating” an isolated layer

of graphene with atomic hydrogen adatoms. In McCreary, et al., researchers used an in

situ atomic hydrogen source to deposit cracked hydrogen molecules onto the surface of a

graphene spin-valve [72]. It is important to note that graphene has a long spin-diffusion

length, which makes it a prime candidate to study spin diffusion across a long channel. The

researchers noticed that while they measured a non-local graphene spin-valve and deposited

atomic hydrogen onto the surface, they observed a new ”kink” in the non-local resistance

scan. With theoretical assistance, they learned that this ”kink” was signature of a localized

magnetic moment in graphene. While not a full sheet of magnetic moments, this was still
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an advancement in a new field of study.

A few years later, scientists began studying the effects of depositing magnetic im-

purities into non-magnetic 2D semiconductors during MBE growth [71, 82, 83]. There has

been many theoretical predictions about magnetic doping of Mn, Cr, and V into TMDCs

such as MoS2 [84], which is a motivating factor for attempting these studies. One would

expect similarities to 3D semiconductors such as Ga1−xMnxAs due to the existence of

Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, where the exchange between local-

ized d electrons (from the magnetic impurity) is mediated by s conduction electrons (from

the non-magnetic semiconductor) giving rise to a ferromagnetic signal [85]. In Dong, et

al., researchers grew thin films of Mn-doped SnSe2 on GaAs(111)B substrates [71]. They

showed that with up to ∼70% of Mn impurities, the crystal structure of SnSe2 is unchanged

and they are able to observe a weak ferromagnetic moment up to room temperature of

about ∼0.09 µB. Since the magnetic moment is extremely weak, it may be due to antiferro-

magnetic ordering with a few uncompensated spins throughout the doped structure, giving

rise to a weak moment.

In parallel, there has also been many attempts to induce magnetism into a non-

magnetic 2D van der Waals layer via the magnetic proximity effect [16, 17, 87, 88, 89].

In this case, 2D materials are deposited or stacked onto a underlying magnetic substrate,

preferably a magnetic insulator in order to perform device measurements without current

shunting to a conducting substrate. An example being the work of Wang, et al. [16] where

they transferred a single layer of graphene onto YIG, etched it into a Hall bar geometry and

observed an anomalous Hall effect (AHE) signal up to room temperature which is indicative
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Figure 1.8: (a) Optical contrast and (b) atomic force microscope images of 1L FePS3 on
SiO2/Si substrate. (c) Temperature dependence of Raman spectrum of 1L FePS3 with
polarization direction of α = β = 45◦. *indicates a signal from the Si substrate. (d)
Thickness dependence of P3 and P4 with polarization direction of α = 45◦ (red curves)
and α = 90◦ (blue curves) at 300 K. (e) Temperature dependence of P1a peak height for
different thicknesses. Adapted from [86].
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Figure 1.9: Crystal structure and MOKE of layered CrI3. Adapted from [90].

of ferromagnetic ordering in the graphene layer (shown in Figure 1.7).

With all the above mentioned, intrinsic magnetism in 2D materials had not been

observed until 2016 with antiferromagnetic ordering in single atomic layers of van der Waals

FePS3 [86, 91, 92]. In Lee, et al. [86], researchers used polarized Raman spectroscopy to

show an antiferromagnetic phase transition below the TN at 118 K. A year later, two

important results were reported in Nature journals showing intrinsic ferromagnetism down

to the monolayer limit in CrI3 [90] (Figure 1.9) and a bilayer in Cr2Ge2Te6 [93] (Figure

1.10). In both works, the magneto-optic Kerr effect (MOKE) was employed to measure the

magnetic properties as a function of applied magnetic field and layer thickness. The Tc in

both systems decreased from a bulk value of 61 K to 45 K in CrI3 and 30 K in Cr2Ge2Te6

which is similar to other 3D ferromagnets in the ultrathin limit. Interestingly, in CrI3, the

magnetic ordering has a thickness dependence that switches from ferromagnetic in the odd
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Figure 1.10: (a) Optical image of exfoliated Cr2Ge2Te6 and (b) corresponding MOKE
imaging. Scale bar is 10 µm. Adapted from [93].

layer to antiferromagnetic in the even layer while increasing in magnitude while the periods

of the said layers increases [90, 94].

Since these results were reported, an extreme interest in looking for new 2D mag-

nets, tuning their properties, and showing their potential in future technologies has gar-

nered [95]. Electric field control of the magnetic properties through electrostatic gating [96]

has been shown in structures such as CrI3 [90] and Cr2Ge2Te6 [93] while tunneling mag-

netoresistance measurements showing up one million percent in graphene/CrI3/graphene

heterojunctions [97, 98, 99, 100, 101]. Structures such as Fe3GeTe2 [102, 103, 104] show

thickness dependent hysteresis with interesting magnetic domain structures and can also be

tuned via Fe vacancies. While these are very exciting results, they are all realized at low

temperatures and in exfoliated micron-sized flakes.

In order to move toward industrial applications, 2D magnets need to be wafer
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scale and have magnetic ordering up to room temperature or above. A few works have

been reported on exfoliated flakes showing gate-tunable ferromagnetism in Fe3GeTe2 [105],

in which the ferromagnetic signal persists to room temperature. MBE is a powerful tool, in

which it can synthesize ultraclean samples to large scalability, grow non-equilibrium phases

of materials, and precisely control thicknesses. This has been a crucial growth technique

in the metallic ultrathin films area of study for studying spin-reorientation transitions and

is also a good tool for growing van der Waals materials. Recently two works have been

published showing room temperature ferromagnetism in van der Waals 1T-VSe2 [106] and

1T-MnSe2 [107] layers grown by MBE. These works will be discussed throughout this dis-

sertation.
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Chapter 2

Experimental Techniques

In this Chapter, I will discuss the experimental methods that were used to obtain

the results shared in this dissertation. These include thin film deposition methods such as

molecular beam epitaxy, structural and magnetic characterization methods including X-ray

diffraction and SQUID magnetometry and the subsequent physical understanding of these

techniques.

2.1 Molecular Beam Epitaxy (MBE)

2.1.1 Introduction to MBE

Molecular beam epitaxy (MBE) is a common physical vapor deposition (PVD)

technique for depositing crystalline films onto crystalline surfaces in a ultra-high vacuum

(UHV) environment. It is particularly useful for synthesizing high purity and high crys-

talline quality thin films with a minimal amount of structural defects. MBE can be thought

of as ”atomic spray painting” where gaseous-phase molecules evaporate out of a thermal
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effusion source onto a surface in a layer-by-layer fashion. Founded in the late 1960s by

Bell Labs as a reaction to the development of the first transistor and early semiconductor

technologies, MBE was used to grow and study high quality semiconductor films such as

GaAs [108, 109, 110, 111]. A vast variety of materials have been synthesized via MBE

since then, including complex oxides [112, 113], compositional alloys [114, 115, 116], su-

perlattices [3], dilute magnetic semiconductors [78, 111], van der Waals-layered topological

insulators, superconductors [117, 118] and metal chalcogenides [64]. As we will discuss

further in later sections, MBE is a useful deposition technique for:

(1) Development of high purity materials with low defect density.

(2) Precise control over thickness of deposited material(s).

2.1.2 Vacuum Science Fundamentals

Typical thin film growth techniques require a vacuum environment in order to pro-

duce materials with a low amount of impurities (see Table 2.1). For example, direct current

(DC) magnetron sputtering takes place in a growth chamber which typically operates in a

rough (760 to 1 × 10−3 Torr) to high vacuum (1 × 10−3 to 1 × 10−9 Torr) environment,

using a series of roughing and turbo pumps. In the case of MBE, a series of roughing, turbo,

ion and cryogenic pumping is required to bring the pressure of the growth chamber from

atmospheric (760 Torr) to UHV (1 × 10−9 to 1 × 10−12 Torr). This ultra-clean environ-

ment is required to grow a film of high purity, which comes from clean and outgassed source

material and therefore increasing the mean free path of molecular beams. It is important

to note that, you cannot just simply get to a UHV environment by just plugging pumps

in, there are specific procedures to doing so and it requires patience and consistent moni-
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toring of partial pressures and the overall pressure in the system. An example step-by-step

procedure of bringing a chamber to UHV pressures is listed here:

(1) Pump down chamber with scroll pump to roughing vacuum (see Table 2.1).

(2) Once reaching rough vacuum regime, turn on turbo pump to bring chamber

to high vacuum.

(3) Once reaching high vacuum regime, turn on ion pump to bring into UHV

regime.

(4) At high vacuum or UHV, open to cryogenic pump (if necessary).

(5) Bake chamber at ∼150◦C (including thermal evaporators) for 24-72 hours to

desorb water from the chamber walls.

(6) Fire titanium sublimation pump out any further contaminants.

Also, if you have a large volume of high vapor pressure material throughout your

chamber that has a low evaporation temperature (near the bake out temperature), the

likelihood of cleaning your chamber properly via a bake out is low. The proper way to clean

out these types of chambers is a series of pumping as well as cooling of a liquid nitrogen

(LN2) cryoshroud for several days and to grow a few low-quality samples to further outgas

and pump out the chamber. The excessive growths and pumping will act as ”getters” where

the deposited ”getter” materials will react with the other vapors in the chamber and will

remove them from the evacuated space.

22



Type of Pumping Pressure Range (Torr)

Roughing 760 to 1 × 10−3

High Vacuum 1 × 10−3 to 1 × 10−9

UHV 1 × 10−9 to 1 × 10−12

Table 2.1: Different pumping levels for vacuum systems.

2.1.3 Growth Chamber Basics

MBE chambers are typically a massive piece of stainless steel in a spherical shape

roughly between 1 and 5 feet (see Figure 2.1). They are usually designed in a fashion

where the sample manipulation and temperature control are inserted from the top and 8

to 12 Knudsen thermal effusion cells are geometrically oriented toward the sample surface

from the side or bottom of the vacuum chamber. The thermal effusion cells are masked with

pneumatic shutters to prevent them from contaminating other growths and cells if not in use,

the shutters are also very useful for controlling thicknesses very precisely. MBE chambers

are usually equipped with an ion gauge to measure pressures ranging from high vacuum to

UHV and a residual gas analyzer (RGA) to measure partial pressures of elemental gases in

the chamber. The chamber may also be equipped with capabilities to measure thickness

such as a quartz crystal monitor (QCM) that changes in frequency when a different atomic

mass hits the surface of the QCM which can then be converted into a Å/min growth

rate. Typical ways MBE growers’ measure deposition rates are via a nude ion gauge (also

commonly known as a beam flux monitor, BFM) attached to a continuous azimuthal rotator

(CAR) or reflection high-energy electron diffraction (RHEED) oscillations (discussed later).

The MBE growth chamber is typically connected to other vacuum ”zones” to keep

samples under vacuum to keep them clean from oxidation or being deposited on from sitting
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Figure 2.1: MBE growth chamber in semiconductor epitaxy and analysis laboratory (SEAL)
at The Ohio State University.

in the chamber overnight and to transfer other samples to the growth chamber without

breaking vacuum. These zones are typically called the ”buffer chamber” and the ”load

lock.” The load lock is typically a region of the vacuum apparatus that breaks vacuum a

few times throughout the day to load/unload samples for growth/characterization.

Depending on sample loading designs (varies from chamber to chamber), a user

can load one or multiple substrates for growth on a substrate carrier/holder. Samples are

loaded and are pumped from atmospheric pressure to high vacuum in a matter of minutes to

hours. The samples will then be transferred to the buffer chamber which is typically under
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UHV and may have capabilities such as substrate annealing or sputtering in order to clean

the sample surface. The sample can then be loaded into the MBE growth chamber and the

surface can be monitored via electron diffraction techniques (discussed next section) prior

to further sample preparation and subsequent growth.

2.1.4 Reflection High-Energy Electron Diffraction (RHEED)

MBE chambers are also typically equipped with a reflection high energy electron

diffraction (RHEED) gun that is used to monitor the sample surface in real time or ”during

growth” [119]. In situ RHEED is extremely useful in determining the following: (1) growth

rates (in monolayer (ML) per second, ML/sec.), (2) lattice parameters (e.g. structural phase

transitions), (3) crystalline symmetry (e.g. 4 fold vs. 6 fold), (4) epitaxial registry (e.g.

lattice mismatch), (5) surface roughness, (6) and growth modes (e.g. step flow versus island

growth). The basic principle of RHEED is using high energy electrons to reflect off of a

sample surface at grazing incidence (0.5-5◦) and the diffracted electrons (5-50 keV) interfere

constructively to form patterns on a fluorescent screen opposite from the RHEED gun in

the chamber. The image that appears on the screen is collected via a CCD camera and can

be interpreted on a computer screen.

A crystalline surface can be viewed as a 2D x − y plane consisting of a periodic

arrangement of atoms in real space. High energy electrons (k0) from the RHEED gun will

reflect off of the substrate surface and thus diffract from the 2D periodic plane. The steeper

the incidence angle, the deeper the electrons will penetrate the substrate before before

reflecting and leading to a more intensified RHEED pattern. Further, a Fourier transform
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Figure 2.2: Schematic of RHEED showing high-energy electrons diffracting off of sample
surface. Adapted from [120].

can convert this periodic plane into a reciprocal lattice and the arrangement of atoms will

be viewed as infinite rods using the relationship

ka =
2π

a
(2.1)

where ka is the reciprocal space lattice and a is the real space lattice. A Ewald construction

is used to meet the diffraction conditions for when the periodic lattice rods intersect with

the geometrically constructed sphere at kx and ky components in reciprocal space (depicted

in Figure 2.2).

Patterns that are seen on the RHEED screen can change in size depending on

the terrace size, roughness and growth mode. Figure 2.3 shows some of the fundamental

RHEED patterns typically observed during MBE growth and also shows the corresponding

common real space structures these patterns represent. Usually, sharp streaks represent

an atomically flat surface and a sample with rotational symmetry represents higher atomic
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Figure 2.3: Different types of RHEED patterns shown on a screen. Typical patterns are
shown in (a), (b) and (f). Adapted from ref [119].
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ordering and high crystalline quality. There are also RHEED patterns that can give users

further information about their crystal structures such as surface reconstructions which you

may see after thermally annealing semiconductors such as GaAs(100) or Si(111) or deposit-

ing adsorbates on a crystalline surface such as Cu adatoms on Pt(100) substrates [121].

Surface superstructures or reconstructions are usually described with respect to the bulk

crystal structure and are typically defined by Wood’s notation which are described via

p(|b1|/|a1| × |b2|/|a2|)Rθ −X (2.2)

where p or c is to denote either primitive or centered surface lattice, b is the adsorbate

or overlayer unit cell vectors, a is the bulk surface unit cell vector, Rθ is the rotation an-

gle and X is the chemical symbol of the adsorbed species [122]. An example of surface

reconstructions defined by Wood notations is shown below in Figure 2.4. A (2 × 1) pe-

riodicity reconstruction in GaAs(100) means that the surface unit cell is twice as long in

the a direction and the same length in the b direction with respect to the bulk unit cell.

These reconstructions occur due to dangling bonds at the GaAs surface, which creates an

interface that can be reconstructed into a lower-energy structure. RHEED is one technique

that can measure the differences in these surface reconstructions while comparing to the

bulk structure during the sample preparation and the growth process and a complemen-

tary technique that can measure the atoms in real space (which will be discussed later) is

scanning tunneling microscopy (STM).

Another interesting feature that is determined from RHEED is the growth rate

through intensity oscillations. The principle involves variation of constructive and destruc-

tive interference from electron scattering which can be monitored by integrating the primary
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Figure 2.4: Example of using Wood Notation in fcc(100) where the structure here is p(2 ×
2). Adapted from ref [122].

RHEED spot intensity. A smooth surface provides an intense, coherent primary spot (de-

noted 00), whilst a rough surface provides a weak, incoherent primary spot. This is depicted

in Figure 2.5 where the degree of coverage corresponds to each fraction of a full layer of

growth, hence low intensity is partial coverage deposited and high intensity for the smooth

surface after full coverage. It is a simple case of counting the number of oscillations (1 os-

cillation = 1 ML) and averaging them over time (in seconds) to determine the growth rate

in ML/sec. These oscillations will eventually dampen out in thicker layers which depends

on how smooth the starting surface was and on the deposited material moving toward an

equilibrium in surface roughness.
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2.1.5 Growth Modes

Epitaxy typically takes place by depositing atomic layers on a smooth, lattice-

matched surface. The growth may then proceed in an atomically flat, layer-by-layer fashion,

which is referred to as the Frank-Van der Merve growth mode [122]. Two-dimensional

nucleation sites form at the surface and the morphology is dependent on on the surface

energy of the deposited layer versus the surface energy of the substrate. Eventually, in

thicker deposits, the layers will coalesce from the nuclei on the surface. In the absence of

terrace steps and defects like screw dislocations, growth of atomically flat surfaces in the

layer-by-layer mode proceeds by clusters of adsorbed atoms with a sufficient size. They

provide more preferential sites (2D nucleation sites) for the attachment of further atoms at

their perimeter to go to higher thicknesses.

An intermediate case is referred to as Stranski-Krastanow growth mode, also

termed layer-plus-island growth [122]. After exceeding some critical coverage, the growth

changes to the Volmer-Weber case, creating islands or a three-dimensional growth mode [122].

Such change may be induced by the gradual accumulation of strain in the epitaxial layer.

The overlayer then resumes growth in form of 3D islands, leaving a 2D wetting layer un-

derneath. It should be noted that the critical thickness pointed out here lies usually below

that required for the formation of misfit dislocations, due to lattice matching constraints.

Stranski-Krastanow growth mode has been used in recent years for growth of defect-free

quantum dots or nanowires [122].

These particular growth modes arise from a thermodynamic consideration of the

interface energies. Which mode of nucleation, 2D or 3D, is thermodynamically preference
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Figure 2.5: Schematic of RHEED intensity oscillations during epitaxial growth. Adapted
from ref [119].
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depends on the difference in interface energies and strain. For materials with low surface

mobility of adatoms, columnar growth may be obtained. Similar to Volmer-Weber growth,

islands nucleate, but they do not merge to continuous layers when growth proceeds.

2.1.6 Types of Epitaxial Growth

During epitaxial growth, lattice matching constraints play an enormous role in

determining what material to grow on top of a crystalline substrate. The way to determine

this is by calculating the percent difference from the in-plane lattice constant of the substrate

to the as-deposited film, also known as the lattice mismatch. The lattice constant is directly

related to the crystal structure of the material.

The three types of well-known epitaxial growths are homoepitaxy, heteroepitaxy,

and van der Waals epitaxy (Figure 2.6). Homoepitaxy has to do with growing the same

material as the substrate, A (e.g. Aoverlayer grown on Asubstrate). The growth should be rel-

atively straight forward since the crystal structures match, but will need to take into account

the thermodynamics and adatom mobility in order to have a high-quality epitaxial growth.

Heteroepitaxy involves growing a different material, B, on substrate A (e.g. Boverlayer

grown on Asubstrate). Here, lattice matching constraints will play a role. As discussed simi-

larly in the growth modes section, the deposited material will follow the substrate’s lattice

constant up to a critical thickness (dependent on the lattice mismatch) and then convert

to its crystal structure. This region of growth up to a critical thickness usually consists of

misfit dislocations which effects electronic device performance in semiconductors [64, 122].

The third and most important type of epitaxial growth for this dissertation is van
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Figure 2.6: Different types of epitaxial growth. (a) Homoepitaxy. (b) Heteroepitaxy. (c)
van der Waals epitaxy. Adapted from [123, 124].

der Waals epitaxy, which was discovered by Atsushi Koma in the early 1990s [124, 125, 126].

Usually dangling bonds appear on a clean surface of a 3D substrate and this makes it

difficult to grow good heteroepitaxial films without a good lattice match in the constituent

materials. On the other hand, materials such as graphite, or transition metal dicalcogenides

(e.g. MoS2), have a layered structure consisting of two-dimensional unit layers separated

by a van der Waals gap. Each intralayer is formed via strong covalent bonds, while there

is a weak van der Waals interaction between layers. These van der Waals materials can be

easily exfoliated (via scotch tape) and the cleaved surface has a very wide and flat terrace

without active dangling bonds. When adatoms are deposited on this inert surface, only

the weak van der Waals interaction works between the substrate and the grown material.

This results in a much smaller lattice mismatch distortion in the grown film even if it has

a different lattice constant or crystal structure from the substrate. Consequently single
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crystalline heteroepitaxial growth of layered materials can be achieved from the first layer

on the van der Waals substrate. Initially, van der Waals epitaxy was the growth of a van der

Waals material onto another van der Waals layered substrate. Later, it was extended to the

growth of van der Waals materials onto 3D crystalline substrates, which have active dangling

bonds on their clean surfaces. If these active dangling bonds are regularly terminated

by suitable atoms, the surface will be inactive like a cleaved surface of a van der Waals

material. A crystalline film of a van der Waals material can then be heteroepitaxially

grown on such a passivated surface via weak interaction. This is depicted in Figure 2.6

An example of this is Se-terminated GaAs(111)B, H-terminated Si(111), or F-terminated

CaF2(111) [123, 124, 125, 126].

2.2 Structural Characterization

2.2.1 X-Ray Diffraction (XRD)

XRD techniques give information about the structure of solids which are the ar-

rangement of the atoms that compose the solid. It permits a nondestructive structural

analyses, although it is relatively low in sensitivity. There are three different types of XRD

methods depending on the type of sample, which include: the powder method (for poly-

crystalline samples, discussed later), the single crystal method, and the amorphous method.

XRD scans can give different types of qualitative and quantitative information including:

(1) Structural phases in the solid (e.g. peak indexing)

(2) Phase fractions that compose the solid (e.g. intensity of peaks)

(3) The quantity of materials that are crystallized
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Figure 2.7: An example of XRD Bragg diffraction off of crystalline planes of a sample.

(4) Strain/stress in the solid (e.g. reciprocal space mapping)

(5) The size of crystallites that compose the solid

(6) Average orientation of crystallites that compose the solid

The basic principle of the XRD setup is shown in Figure 2.7. To measure your

sample, incoming X-rays (produced from a Cu K-α radiation source) constructively interfere

with the sample and diffract from crystal planes following Bragg’s law

nλ = 2dsinθ (2.3)

where n is the integer number, λ is the wavelength of the X-ray source (typically Cu Kα, λ =

1.54 Å), d is the spacing between planes (typically denotes the out-of-plane lattice parameter

or c), and θ is the angle of diffraction. Some crystal Bragg reflections may have different

intensities than others which may be due to the structure factor, polarization, Lorentz force,
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multiplicity, temperature, or absorption. In order to determine the d-spacing, the following

equations below can be used for six crystal structures

Cubic :
1

d2
=
h2 + k2 + l2

a2
(2.4)

Tetragonal :
1

d2
=
h2 + k2

a2
+
l2

c2
(2.5)

Orthorhombic :
1

d2
=
h2

a2
+
k2

b2
+
l2

c2
(2.6)

Hexagonal :
1

d2
=

4

3
(
h2 + hk + k2

a2
) +

l2

c2
(2.7)

Rhombohedral :
1

d2
=

(h2 + k2 + l2)sin2α+ 2(hk + kl + hl)(cos2α− cosα)

a2(1− 3cos2α+ 2cos3α)
(2.8)

Monoclinic :
1

d2
=

1

sin2β
(
h2

a2
+
k2sin2β

b2
+
l2

c2
+

2hlcosβ

ac
) (2.9)

where h, k, l are the Miller indices, a, b, c are the lattice parameters, d is the interplanar

spacing, and α and β are the angles between the lattice parameters.

2.2.2 X-Ray Reflectometry (XRR)

Another X-ray technique, known as X-ray reflectometry, is a complementary mea-

surement to atomic force microscopy (which will be discussed next) in terms of determining

quantitative information on the thickness and roughness of samples deposited on wafers.

XRR analysis can be performed on both crystalline and amorphous materials. The basic

principle is when X-rays are exposed to a material’s flat surface at a grazing incidence,

total reflection will occur at or below a certain angle. This angle is exceedingly small and

is referred to as the critical angle (θc). The angle varies depending upon the electronic

density of the material. The higher the incident X-ray angle relative to the θc, the deeper
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Figure 2.8: Relation between profile of the XRR and the structure parameters. Adapted
from [127].
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the X-rays transmit into the material. With a material whose surface is ideally flat, the

reflectivity suddenly decreases at angles above the θc proportional to θ4.

If the material surface is rough, it causes a more drastic decrease in reflectivity.

If a substrate is evenly overlaid with another material having a different electronic density,

then reflected X-rays from the interface between the substrate and the overlayer film as well

as from the top surface of the film will either constructively or destructively interfere with

each other. This will result in an interference-induced oscillation pattern or Kiessig fringes

(shown in Figure 2.8). Two oscillation frequencies may show for a bilayer heterostructure

sample. The periodicity of the oscillation depends on the film thickness, and the thicker

the film, the shorter period of the oscillations. Therefore, XRR is a powerful tool that

can determine the electron density profile, the vertical properties (layer thicknesses) as well

as the lateral properties (roughness and correlation properties of interfaces or lateral layer

structure) and characterization of multilayers.

2.2.3 Atomic Force Microscopy (AFM)

Atomic force microscopy is a powerful tool for determining surface morphology

and roughness of a material. The basic principle of AFM is shown in Figure 2.9. A sharp

tip (typically of SiN) is mounted onto the end of a cantilever which is oscillated at a chosen

frequency while a laser is focused on the back of the cantilever. The reflected laser light is

collected by a four-quadrant photodiode using a lock-in amplifier to isolate the noise from

the signal. As the tip is brought into contact with the sample surface, van der Waals forces

will interact with the tip and push it back. This tip deflection is picked up by the photodiode
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Figure 2.9: Basic principle of AFM. Adapted from [128].

as a voltage and converted into a topography output. Data is collected by scanning the tip

in a lateral area across the sample and producing a 2D map of the surface. The tip can

be operated in contact or tapping modes and also has options use other types of tips to

perform conductive and magnetic force microscopy. The lateral resolution is ∼30 nm and

vertical resolution can be up to 0.01 nm.

2.2.4 Scanning Tunneling Microscopy (STM)

A scanning tunneling microscope (STM) is an instrument for imaging surfaces

at the atomic level. The resolution of the STM is of 0.1 nm lateral resolution and 0.01

nm depth resolution. Within this resolution, individual atoms within materials may be

routinely imaged and manipulated.

STM is based on the concept of quantum tunneling [129]. When a conducting tip is
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Figure 2.10: STM imaging of Si(111) 7 × 7 surface. (a-b) filled and unfilled electronic
states of the surface and (c) Schematic representation of surface. Yellow, red, and blue
circles represent Si atoms, Si dimers, second layer Si rest-atoms. Adapted from [129].

brought very near to the surface to be examined, a voltage bias applied the tip and surface

can allow electrons to tunnel through the vacuum barrier between them. The resulting

tunneling current is a function of tip position, applied voltage, and the local density of

states of the sample. Information such as topography is acquired by monitoring the current

as the tip’s position scans across the surface, and is usually displayed in image form (see

Figure 2.10). STM can be a challenging and time consuming measurement technique,

as it requires extremely clean and stable surfaces, well-prepared and sharp tips, excellent

vibration control, and sophisticated electronic communication.

To measure specific magnetic textures (e.g. magnetic domain structures, skyrmions,

or other complex magnetic phases) down to the atomic scale, a magnetic tip is used [130,

131, 132]. This process is called spin-polarized STM (SP-STM). The principle operation
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is having an extremely sharp tip coated with a thin layer of magnetic material (typically

Cr) which is moved over a sample. For a magnetized tip, electrons with spins matching the

tip’s magnetization will have a higher chance of tunneling. This phenomenon is the effect

of tunneling magnetoresistance (TMR) and the tip/surface interaction essentially acts as a

spin valve.

2.2.5 Scanning Transmission Electron Microscopy (STEM)

Scanning transmission electron microscope (STEM) is a type of TEM. TEM is an

extremely powerful tool for materials science in order to monitor structural defects such as

misfit dislocations and impurities, image interfaces to look for strain and phase transitions,

and to observe atomic imaging due to the high resolution. This is a microscopy technique

during which a beam of high energy electrons is transmitted through a very thin specimen

to form an image on a detector. The specimen is usually a very tiny cross-section extracted

from a larger material less than 100 nm thick. Due to the short de Broglie wavelength of

high energy electrons the resolution limit of such microscopes can reach 0.5 Å for the best

high-resolution aberration-corrected TEMs. High-resolution TEM has become an extremely

useful tool in studying atomic interfaces of MBE-grown films after growth and will be

mentioned throughout this dissertation.

For preparation, samples post-growth are first capped with a thick metallic layer

(typically Pt or Au). The sample is then thinned (via a focused ion beam, FIB) to make a

slice of 30-50 µm. The slice is then removed via a probe from the larger sample and is then

further thinned down by the FIB and ion milling to ∼10 nm. This geometry is necessary

for electrons to travel through the specimen easily. Finally, the specimen will be transferred
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to a TEM chamber for the actual experiment.

TEMs have a wide range of operating modes such as imaging (STEM, and Lorentz

TEM), diffraction, and spectroscopic measurements. For this dissertation we will focus

on STEM or imaging modes. Imaging methods use information from the electron waves

leaving the sample to form an image. The time-averaged intensity, I, of the image, can be

approximated as

I(x) =
k

t1 − t0

∫ t1

t0

ΨΨ∗dt (2.10)

where k is the electron momentum vector and Ψ is the electron wavefunction. The observed

image depends not only on the amplitude of the electrons, but also on the phase which may

take effect for extremely thin specimens. The specimen is illuminated with a parallel electron

beam, formed via beam shaping from a combination of condenser lenses and apertures. After

electron and sample interaction, two types of electrons exist: unscattered and scattered. To

achieve an image, a combination of the objective aperture and signal from the diffracted

beam is used to create bright field and dark field images, then the selected signal is magnified

and projected on a screen via projector lenses.

2.3 Magnetometry

2.3.1 Superconducting Quantum Interference Device (SQUID)

A SQUID is a very sensitive magnetometer that operates on the principle of a

Josephson junction that measures down to a single quantum flux (φ0) of

φ0 =
2πh̄

2e
= 2.0678× 10−15Tm2 (2.11)
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where h̄ is Planck’s constant and e is the charge of an electron [133]. The SQUID consists

of two superconductors separated by thin insulating layers to form two parallel Josephson

junctions and is used in a magnetometer to detect small magnetic fields, B, as low as 5

× 10−18 T. An external magnetic field is applied to a sample and a pick-up coil measures

the response of the sample to the magnetic field. This is done through the principle of

Faraday’s law and converts the voltage signal into a total magnetic moment in electromag-

netic unit (emu). SQUID is a very useful technique for measuring very small or ultrathin

magnetic samples which may also be its limitation when trying to exclude impurities from

a measurement [134]. Typical operation includes:

(1) Loading a specimen in a non-magnetic straw in either in-plane or out-of-plane

orientation with respect to the external magnetic field of SQUID.

(2) Attach the sample-straw holder to a DC or reciprocating sample option (RSO)

rod and load into sample space of SQUID magnetometer.

(3) Vent/purge sample space three times to clean out any dust or debris.

(4) Open sample space to SQUID via gate valve and slide down to position slowly

(speed will depend on the temperature of the system).

(5) Once sample is below its magnetic or superconducting ordering temperature,

run centering scan to find sample and to position it with respect to the coils.

(6) Run sample sequence (e.g. M(T) or M(H)).

2.3.2 Vibrating Sample Magnetometer (VSM)

VSM, which refers to vibrating sample magnetometry, is an instrument that mea-

sures the magnetic properties of materials. It is similar to SQUID in terms of the quanti-
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Figure 2.11: Basic principle of VSM. Adapted from link:
https://en.wikipedia.org/wiki/Vibrating-sample-magnetometer.

tative information that you gather about a material’s magnetic moment but it is much less

sensitive to small magnetic fields and the physical principle of operation is quite different.

It consists of an electromagnet capable of applying a desired external magnetic

field along a desired axis and a cavity composed of a solenoid coil. The sample is placed

inside this cavity under a uniform magnetic field while being under vibration at a known

frequency. This oscillatory motion of a magnetic moment will produce a change in the

magnetic flux inside the cavity and will be picked up by the nearby coils. The induced

voltage is proportional to the material’s magnetic moment. This magnetic moment, µ is

related to the flux through

φB = µ
B

I
(2.12)
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with B being the magnetic field generated by the effective current I circulating in the

detection coil. The measurement is performed by sweeping the applied magnetic field, H,

and determining the magnitude of the magnetic moment at each applied field, producing a

µ (or m) vs. H plot. This can be converted to magnetization M vs. H through dividing

m by the volume, V of the film of interest. This is depicted in Figure 2.11.

VSM is a bulk magnetization measurement (like SQUID) which picks up the signal

generated by the sample holder and the substrate on which the film is grown. While all these

components are non-magnetic, they will each contribute a diamagnetic linear background,

which must be subtracted during analysis. VSM’s may come with other advantageous

options such as an oven option where samples may be heated to temperatures up to 1000 K

while measuring the magnetic properties. Also, if measuring in air, magnetic samples that

have non-magnetic electrical probes can be measured while under an applied electric field.

2.3.3 Ordinary Magnetoresistance (MR)

Ordinary MR is the change of electrical resistance in a material due to an externally-

applied magnetic field. This is due to reduction of the mean free path in the current direction

when the electrons complete a significant fraction of a cyclotron orbit before they are scat-

tered. MR effects associated with cyclotron motion can be significant when ωcτ ≥ 1, where

τ is the time between scattering events. The effect is initially quadratic in B. The longer

the relaxation time, the greater the influence of magnetic field on the resistivity [135]. This

MR depends on the interband scattering; and in fact it is strictly zero in the single-band

free-electron model [135]. The MR is small (≈1% in 1 T) in metals where scattering is

strong, but it may be much larger in semimetals and semiconductors, where the electron
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mobility is high. MR is typically denoted by a percentage to compare with other materials

or effects on the sample, this is denoted by

∆R

R
(%) =

Rxx(H)−Rxx(0)

Rxx(0)
× 100% (2.13)

This is typically denoted as Rxx for the electrical resistance or ρxx for the resistivity. MR

is generally positive in metals but may change due to its band structure or other exotic

physical properties [135]. MR depends on the magnitude of the applied magnetic field and

the orientation of the applied current with respect to the field. For this dissertation, we

will focus on transverse MR, where the applied magnetic field, H, is perpendicular (or

transverse) to the applied current direction.

2.3.4 Anomalous Hall Effect (AHE)

The ordinary Hall effect comes into the picture due to the Lorentz force. When an

electrical current (of electrons) is passed through a conductor and a perpendicular magnetic

field is applied, the electrons are deflected and accumulate at the edge of sample until the

electric field they create is sufficient enough to balance the Lorentz force. This is typically

used to determine a material’s carrier density and mobility.

The AHE is observed in a sample with broken time-reversal symmetry or in other

words, a ferromagnetic impurity that deflects the electrons and creating a net spin pop-

ulation at the edge of the sample. The Hall resistance, Rxy, is significantly different for

ferromagnetic conductors opposed to non-magnetic conductors. As mentioned earlier, Rxy

increases linear with applied field, Hz, in non-magnetic materials while it is non-linear and

saturates at a higher field in ferromagnets. This saturation is proportional to the magneti-
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zation, Mz, in the ferromagnet. This is given by

Rxy = R0Hz +RsMz (2.14)

where R0 is the electrical resistance related to charge carriers or the ordinary Hall effect

and the second term, Rs, is related to the material parameters (which may give rise to

the magnetic ordering). The microscopic origin of the AHE is may be due to extrinsic

mechanisms such as skew scattering or side jump and in some structures is dominated

by the intrinsic Berry curvature [136]. This measurement is most useful for measuring

hysteresis loops in ferromagnetic conductors with an out-of-plane magnetic anisotropy.

2.4 High Pressure Measurement Tools

2.4.1 Piston Pressure Cells

For hydrostatic pressures up to ∼1 GPa, piston pressure cells are typically used.

The DC Quantum Design SQUID magnetometers are equipped with an attachment for

these pressure cells (shown in Figure 2.12). For loading, samples are placed inside a small

cylindrical plastic tube along with a Sn manometer (for determining the pressure) and a

transmitting medium. This is then placed in the middle of the pressure cell held in by extru-

sion disks and ceramic pistons. Pressure (P) is determined by the Tc of the superconducting

Sn manometer, this is shown by the equation below [137]:

Tc(P ) = Tc(0)− (0.4823± 0.002)P + (0.0207± 0.0005)P 2 (2.15)

Samples are then externally pressurized via a piston hydraulic press. After each pressur-

ization, samples are attached to the DC SQUID rod via threading and loaded into the

47



Figure 2.12: Exploded view of SQUID pressure cell components. Taken from link:
https://grabcad.com/library/mcell-10-high-pressure-cell-1.

measurement system. The loaded cell is shown in 2.13. The pressure cell is then cooled

down slowly below the transition temperature of the Sn manometer and positioned accord-

ingly. The pressure cell must be thermalized at 300 K before inserting or removing from

the measurement chamber.

2.4.2 Diamond Anvil Cells (DACs)

Diamond anvil cells (DACs) are instruments that can place samples under high

pressures. This is particularly useful for looking at physical phenomena that only occurs

under extreme conditions such as high temperature and pressures like the Earth’s core. A

DAC consists of two opposing diamonds with a sample compressed between the polished

culets (tips) on each diamond. These diamonds are typically attached via a glue such as
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Figure 2.13: Loaded SQUID pressure cell.

stycast to a tungsten carbide backing plate which are held in by set screws on an exterior

housing for protection. A metal gasket (typically rhenium) is placed between the two dia-

mond culets and the desired sample is placed inside the center hole of the gasket along with

a pressure marker (if necessary) and a pressure-transmitting medium. For this dissertation,

I will be discussing about DACs with culet sizes of 500 µm that can pressurize samples up

to ∼40 GPa. The exterior housing of the DAC is held together with four screws to bring

the diamonds into contact with eachother and to increase/decrease pressure. The housing

is also designed to allow a gas-driven membrane to be attached. This provides more consis-

tent pressure increments and the DAC does not need to be removed from the experimental

apparatus to pressurize.
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2.4.3 Designer DACs

Lawrence Livermore National Laboratory (LLNL) owns a pair of designer diamond

anvils that contain eight electrical probes. These are meant to perform electrical transport

measurements down to temperatures as low as 1.8 K and up to external magnetic fields

as high as 16 T. The cell is made of Cu-Be to minimize the effects of stray fields and the

gaskets are made of non-magnetic steel, MP35N. A standard 300 µm diamond is paired with

a 250 µm designer diamond with eight tungsten electrical probes lithographically deposited

onto the culet surface and encapsulated with chemical vapor deposition (CVD) synthetic

diamond [138, 139, 140]. A schematic and laboratory photo is shown in Figures 2.14 and

2.16. The tungsten probes are only exposed in the center of the culet of the diamond in

which they are connected to larger tungsten pads deposited on the pavilion of the diamond.

The larger tungsten pads are used to connect to gold wires, which are soldered to external

copper wires for connecting to a measurement system.

The gasket for the sample is initially indented to a 40 µm thickness and a hole is

drilled through the center using a wire-electrical discharge machine (EDM). A bulk crystal

(crystalline or non-crystalline) is polished or cleaved to ∼10 µm in thickness with a cross

sectional area of ∼50 × 50 µm2. It is carefully placed onto the tungsten probes which are

centered in the gasket hole. It is imperative that the sample remain on the probes when

closing the pressure cell. This means that traditional pressure media (e.g. Ne, silicone gel,

organic solvents, etc.) cannot be utilized and instead steatite is used. Steatite is more

susceptible to pressure gradients than other pressure media, but is solid under ambient

conditions and only minimally influences the sample position when assembled. By applying
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Figure 2.14: Schematic of designer DAC. Tungsten microprobes are deposited onto a stan-
dard diamond and encapsulated in CVD synthetic diamond. The culet of the diamond is
then polished to provide a smooth surface. By placing a sample on the tungsten probes
and pressurizing the cell, electrical connections can be achieved. Adapted from [138].

a modest pressure (approximately 0.5 GPa for a new sample loading), electrical connections

between the sample and the tungsten probes can be achieved. Pressure in the designer-DAC

is controlled with an external piston which is driven up or down with a small dial that has

a 100:1 force ratio.

The cell is designed for a physical property measurement system (PPMS) by Quan-

tum Design. The geometry is such that the magnetic field of the PPMS will be normal to

the sample plane while the current (and voltage) will be parallel to the sample surface. To

measure different crystalline axes or attempt to perform angular-dependent measurement,

the samples must be polished along different axes. Depending on the cleavage plane, it may

result in crystals failing at lower pressures, less signal-to-noise ratio, and a challenging cell

assembly. For these reasons, it is generally best to start these measurements with oriented

crystals, and to only attempt alternate orientations if necessary. Van der Waals crystals are
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Figure 2.15: Optical photograph of designer diamond with metal probes. The deposited
metal leads are connected to pads on the edge of the diamond which are then connected to
external wires for measurements. Adapted from [141].
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Figure 2.16: Laboratory photo of designer DAC attached to PPMS rod for measurements.

preferred for assembly due to the weak bonding between layers (meaning easy cleavage),

but during pressurization challenges may arise such as folding and tearing which may lead

to electrical contact problems and/or large changes in data.

2.4.4 Pressure Calibration

When assembling and pressurizing a DAC, the quickest method of checking pres-

sure is by measuring the ruby fluorescence. A low-power laser is focused onto one of the

rubies, and the fluorescence is measured with a spectrometer. The pressure can be calcu-
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lated by the following equation

P (Mbar) =
a

b

[(λ0 + ∆λ

λ0

)b
− 1
]

(2.16)

where a = 19.04, b = 5, λ0 is the wavelength measured at 1 bar and ∆λ is the lineshift

observed under pressure [142]. This is the preferred method for measuring pressure when

performing spectroscopic measurements or when using the designer DAC. When performing

XRD measurements, the best method to determine the pressure is by measuring the con-

traction of the unit cell of a material with a well known equation of state (EOS). Typically

copper or gold are used for this purpose, where a small amount of powder is mixed with the

sample and the diffraction pattern is measured alongside that of the sample. The diffraction

pattern is analyzed to calculate the unit cell volume, and, combined with the bulk modulus

and its derivative, is sufficient to calculate the pressure. For this work, only gold was used,

which has a bulk modulus of B = 148-180 GPa and a pressure derivative of B′ = 6.43 [143].

These values were then used to calculate the pressure via the Rose-Vinet EOS [144]. The

EOS’s are shown below starting with the third-order Birch-Murnaghan [145]

P (V ) =
3

2
B0

[(V0

V

)7/3
−
(V0

V

)5/3]{
1 +

3

4
(B′0 − 4)

[(V0

V

)2/3
− 1
]}

(2.17)

and Rose-Vinet

P (V ) = 3B0

(1− η
η2

)
e1.5(B′

0−1)(1−η) (2.18)

where η = 3

√
V
V0

, B0 is the bulk modulus, B′ is the pressure derivative, and V0 is the volume

at ambient pressure.
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2.5 Synchrotron Experiments

2.5.1 X-ray Magnetic Circular Dichrorism (XMCD)

XMCD was performed at both the Advanced Light Source (ALS) of Lawrence

Berkeley National Laboratory (LBNL) on beamline 6.3.1 and at 4-ID-C of the Advanced

Photon Source (APS) of Argonne National Laboratory (ANL). The XMCD is defined as

the difference between the x-ray absorption spectra (XAS) for antiparallel and parallel

configuration of the light helicity and magnetic field direction [146, 147]. The 2p core level

is split in a j = 3/2 state (L3 edge) and j = 1/2 state (L2 edge), where spin and orbit are

coupled parallel and antiparallel, respectively. In the first step, the emission with the light

helicity vector parallel (antiparallel) to the 2p orbital moment results in excited electrons

of preferred spin up (down) direction. Finally, these excited electrons have to find a place

in the 3d valence band, and if there are less spin-up than spin-down holes available, the

XMCD spectrum displays a net negative L3 and positive L2 peaks. XMCD is advantageous

due to the following:

(1) Element-specificity.

(2) Orbital sensitivity.

(3) Selection rules.

(4) Magnetic sensitivity.

(5) High energy resolution.

(6) Well-defined core-level states.

(7) Sum rules.
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Figure 2.17: Debye-Sherrer geometry used for powder XRD experiments. Adapted
from [150].

2.5.2 Powder XRD

XRD under high pressure was perfomed at sector 16-BMD of the APS at ANL.

These beamlines are dedicated to high-pressure experiments and use the Debye-Sherrer

geometry shown in Figure 2.17. The powder XRD patterns are acquired on a 2D image plate,

where an example pattern is shown in Figure 2.18 and are integrated with Dioptas [148] to

obtain 1D I(θ) plots [149].

The typical beam energy is 30 keV, chosen to avoid any excessive attenuation

through the DAC components, and to maximize the incident flux. The sample is powdered

and loaded into a DAC, along with pressure marker (e.g. Au, Cu or NaCl) and a ruby (the

pressure marker is chosen depending on overlapping of peaks). The DAC is then pressurized

using Ne as a pressure medium and loaded into the beamline hutch. The X-ray beam is
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Figure 2.18: CeO2 image scan for calibration. Black lines are the image plate and diode.

initially aligned to the powder by performing transmission and rocking curve scans. The

exact position is then slowly refined by maximizing sample and pressure marker peaks and

by minimizing or avoiding gasket diffraction peaks.

As discussed in an earlier section, peak positions are defined via Bragg’s Law. For

high-pressure powder XRD, peak positions and intensities are particularly important for

refinement. The analysis in this work is performed using a combination of GSAS-II and

UnitCell to refine lattice parameters [151, 152]. The steps below are used to refine the

given data and determine lattice parameters:

(1) Refine diffraction pattern of CeO2 calibration sample (Figure 2.18) to deter-

mine instrument parameters (corresponds to peak broadening due to the instrumentation)

(2) Refine diffraction pattern of pressure-dependent sample using fixed instru-
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mentation parameters and only allow the lattice parameters, peak intensity, indexing, and

peak broadening vary with pressure.

Due to peak broadening that occurs under pressurization, peaks begin to merge

and will become challenging to index properly resulting in inadequate fittings and refine-

ments at varied pressures. In this case, the merging peaks are removed for the pressures

that they overlap and if this causes continued inconsistencies in the lattice parameters, they

are removed for all XRD spectra.

58



Chapter 3

Molecular Beam Epitaxy of

Non-Magnetic 2D Semiconductors

and Their Heterostructures

3.1 Motivation

In this chapter, I will discuss the development of non-magnetic 2D semiconductors

on 3D substrates, primarily on GaN(0001). The materials discussed will be GaSe and SnSe2,

which will be a baseline for later work discussed in this dissertation.
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3.2 Molecular Beam Epitaxy of 2D-Layered GaSe on GaN

Substrates

Two-dimensional (2D) metal chalcogenides are of great scientific interest for elec-

tronic as well as optical devices due to their unique structural, electrical, and mechanical

properties, such as wide range of bandgaps, [62, 153] valley-polarized carriers, [154, 155]

strong spinorbit coupling, [156] and superconductivity [157]. Recently, artificial stacking of

these layered materials is being heavily explored to create heterostructures for novel appli-

cations. Most of these studies have been carried out by transferring layered flakes or films

from minerals [158, 159] or synthesized materials obtained using chemical vapor transport

(CVT) [160, 161] or chemical vapor deposition (CVD) methods [162, 163]. In contrast to

such stacking methods, epitaxial techniques such as metal organic chemical vapor deposi-

tion and molecular beam epitaxy (MBE) provide a more practical approach to achieving

large area epitaxial materials with precise control of layer thickness and doping. In addi-

tion, the absence of out-of-plane dangling bonds in layered materials can enable van der

Waals epitaxy (vdWE) on highly lattice-mismatched substrate without lattice matching

constraints [124, 125]. For instance, growth of gallium selenide (GaSe) on mica substrates

with a significant lattice mismatch of 35% has been reported [124].

Van der Waals epitaxy was first introduced by Koma and co-workers and has been

proven to be a powerful route to realize heteroepitaxy of 2D materials [125]. More recently,

renewed interest in 2D materials has led to the exploration of MBE growth of several

materials, including GaSe, [164, 165, 166] MoSe2, [167, 168, 169, 170, 171] WSe2, [172]

and HfSe2 [173]. In this Chapter, I report our work on growth of GaSe, which has a
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layered crystal structure consisting of repeating units of covalently bonded Se-Ga-Ga-Se

held together by weak van der Waals force.

Layered GaSe, however, occurs in several polytypes displaying different stacking

sequences, leading to ε-, β-, γ-, and δ- phases of the material [174]. Most common polytypes,

epsilon (consists of two layers per unit cell and has the space group, D13h) and b (consists

of two layers and has the space group, D46h), have a 2H stacking sequence [175]. Bulk

ε-GaSe is a 2 eV direct bandgap semiconductor and has been explored for applications in

nonlinear optics, photovoltaics, and photodetectors [176, 177].

Single crystal MBE growth of GaSe on GaAs(111)B substrates has been reported

by Ueno et al. [178] It has also been shown that GaSe and Ga2Se3 can be grown on

GaAs(001) substrates depending on the surface reconstruction [179]. Vinh et al. demon-

strated the growth of single crystal GaSe film on Si(111) substrate with 7 × 7 surface

reconstruction [180]. In addition, recent studies report that the growth of GaSe on sapphire

substrates produces crystalline films with random in-plane orientation of the domains [164].

However, there have not been reports on GaSe growth on wide bandgap semicon-

ductors such as gallium nitride (GaN). Epitaxially grown high quality 2D materials on GaN

can enable vertical 2D/3D heterostructures [181, 182] that can enable vertical tunneling

devices, [181] heterojunction bipolar transistors (HBT), and hot electron transistors. We

demonstrate the growth of highly crystalline centimeter-scale few layer GaSe films on bulk

3D materials such as sapphire and GaN. First, we have investigated the growth of continuous

GaSe film on sapphire substrates at various growth conditions and utilized the optimized

condition to grow GaSe on a GaN substrate. We report a two-step growth method to grow
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Figure 3.1: RHEED patterns observed along [101̄0] azimuth for (a) sapphire substrate and
(b) GaSe film. (c) XRD spectra of GaSe grown at 400◦C with Ga:Se of 1:200 (black) and
1:100 (red). Se flux was maintained at 1 × 10−6 Torr.

crystalline GaSe on GaN substrates by employing a high temperature nucleation step for

growth of single crystal domains followed by the second step at lower growth temperature

to achieve coalescence of the film.

MBE growths were performed in a Veeco Gen930 system with a standard thermal

effusion cell for gallium. While previous reports on GaSe growth use the standard Knudson-

type effusion cell to evaporate selenium, in this work, we use a valved cracker source to

supply Se. Se was evaporated using a valved cracker source with the cracker zone at 950◦C

in order to obtain Se2 species of Se [183]. Growth was monitored in situ using reflection

high-energy electron diffraction (RHEED). Prior to the growth, c-plane sapphire and Fe-

doped insulating GaN(0001)/sapphire substrates were solvent cleaned, annealed at 400◦C

under ultra-high vacuum conditions (1 × 10−9 Torr), and loaded into the growth chamber
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(base pressure 7 × 10−10 Torr). Sapphire substrates were then annealed at 850◦C in the

growth chamber for 30 min. before ramping down the substrate temperature for GaSe

growth (400-500◦C). The Gallium sub-oxides on GaN substrates were removed in situ prior

to the growth by using the following Ga polish technique. GaN substrates were exposed to

a Ga flux of 1 × 10−8 Torr until the RHEED showed an amorphous pattern at 400◦C. The

substrate was then heated to 700◦C for 30 min., followed by a ramp down to the growth

temperature. Streaky RHEED patterns with Kikuchi line patterns were obtained prior to

initiation of GaSe growths on sapphire and GaN substrates. The substrate temperature was

measured using the thermocouple attached with the continuous azimuthal rotation (CAR)

heater. The beam-equivalent pressure (BEP) of Se was fixed at 1 × 10−6 and 1 × 10−5

Torr during growth and was measured using a nude ion gauge with a tungsten filament.

Samples were grown at different substrate temperatures (350-600◦C) and Ga:Se flux ratios.

The growth was initiated by opening the Se shutter for 2 min. followed by opening of the

Ga source at the growth temperature.

The crystalline quality of the GaSe films were evaluated through X-ray diffraction

(XRD) (Bruker, D8 Discover) and Raman spectra (Renishaw) with a 1 mW laser at 514

nm. The surface morphology of the samples was examined by atomic force microscopy

(AFM) (Veeco Instrument, DI 3000). The microstructure of GaSe was examined by cross

sectional scanning transmission electron microscopy (STEM). Due to the oxidation of GaSe

in ambient conditions, [184] AFM scans were performed immediately after the growth. XRD

was measured after covering the GaSe surface with SPR955 photoresist. For the STEM

measurements, the photoresist was removed using solvents and the surface was capped
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Figure 3.2: (a) AFM images of GaSe as a function of growth temperature and Ga:Se
BEP flux ratio. RMS surface roughness is marked in the image. Red boxes indicate growth
conditions to obtain relatively smooth surface morphology. (b) Surface morphology of GaSe
film grown at the optimized condition (400◦C, Ga:Se 1:100) showing atomic steps. (c) Step
height of GaSe film taken from the red line in (b).

with Au metal immediately to prevent oxidation. Graphical illustrations of GaSe crystal

structure was generated using V ESTA software [185].

Growth of GaSe was explored on c-plane sapphire substrates by varying the sub-

strate temperature and the Ga:Se flux ratio. C-plane sapphire was chosen due to the

hexagonal symmetry of the basal plane, which is similar to that of GaSe, and the high

chemical and thermal stability of sapphire. The substrate temperature was varied from

350◦C to 500◦C, while changing the Ga:Se ratio from 1:50 to 1:200, and holding the Se flux

at 1 × 10−6 Torr. Growth was performed for one hour. The Se shutter was opened for

two minutes and the streaky RHEED pattern of sapphire substrates (Fig. 3.1(a)) remained

before the opening of the Ga shutter indicating that the sticking of Se adatoms is very poor
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in the absence of Ga flux. Upon opening the Ga shutter, the RHEED pattern corresponding

to m- (1 0 1̄ 0) and a- (1 1 2̄ 0) planes of GaSe was observed, and the RHEED pattern

did not change along the different azimuths (i.e., in-plane rotation of the substrate). The

coexistence of the RHEED patterns corresponding to the m- and a-planes of GaSe was also

reported earlier [164]. This indicates that GaSe nucleated with random in-plane orienta-

tion. However, no polycrystalline rings were observed in the RHEED. The inverse of the

ratio of spacing between m-plane and a-plane streaks in the RHEED image (Figure 3.1(b))

was measured to be 1.72, which is very close to the theoretical value of 3. XRD spectra of

the samples grown in the range of conditions mentioned above, with the exception of the

extremely Se-rich condition (Tsub = 400◦C, Ga:Se 1:200) showed diffraction peaks corre-

sponding to the (002) family of planes in layered-GaSe. However, with extremely Se-rich

condition, the Ga2Se3 phase was observed in XRD and a spotty RHEED pattern was ob-

served. The growth window for GaSe in order to maintain a streaky RHEED pattern was

found to be very narrow at a given substrate temperature. The RHEED pattern remained

streaky and the intensity remained constant only at a certain Ga flux at a given substrate

temperature. Higher Ga flux resulted in complete RHEED dimming and lower Ga flux

resulted in a spotty RHEED pattern.

Surface morphology of GaSe films as a function of growth conditions is shown

in Figure 3.2(a). At 350◦C, a Ga:Se ratio of 1:50 resulted in a relatively smooth surface

morphology, while a reduced Ga flux (Ga:Se = 1:100) was required at a growth tempera-

ture of 400◦C. With an increase in substrate temperature from 350◦C to 450◦C, relatively

smooth surface morphology could be maintained only with a reduction of Ga flux. This
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Figure 3.3: (a) RHEED pattern of GaSe showing coexistence of a- and m-planes. (b) XRD
pattern, and (c) surface morphology of GaSe film grown on GaN substrate.

can be explained as follows. With an increase in substrate temperature, the sticking co-

efficient of Se is expected to reduce exponentially and hence the Ga flux that is required

to maintain stoichiometry at the surface is lower at higher substrate temperatures. This is

also expected to result in a reduction in the growth rate of GaSe with an increase in the

substrate temperature, assuming unity sticking coefficient for Ga adatoms at the growth

temperature used. This observation is in agreement with the RHEED patterns observed

during the growth. At the optimized conditions, where the adsorbed Ga and Se adatoms

are close to stoichiometry, the RHEED pattern remained streaky throughout the growth.

However, when the Ga flux is higher than the stoichiometry (Ga:Se = 1:50, Tsub = 400◦C,

450◦C) the RHEED showed an amorphous pattern indicating the presence of excess Ga on

the surface during the growth. With Se-rich conditions, a spotty (i.e., rough) RHEED pat-

tern was observed. At higher substrate temperatures (>500◦C), the Se sticking coefficient

is very low and no growth was observed. At the optimized conditions with streaky RHEED

pattern and bright RHEED intensity, atomic steps were clearly observed (Fig. 3.2(b)). The

step height measured from AFM (0.8 nm) matches closely with the thickness of monolayer
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Figure 3.4: (a) The XRD spectra for GaSe film grown at different conditions with Se flux
at 1 × 10−5 Torr. The asterisks indicate the substrate peaks of GaN (002) and sapphire
(006) at 34.5◦ and 42◦, respectively. ((b)(e)) RHEED patterns of GaN and GaSe along the
[112̄0] and [101̄0] azimuth showing basal plane alignment. (f) AFM image of the GaSe film
showing aligned triangular domains.

GaSe. The growth rate was found to be 1.25 nm/min with a total film thickness of 75 nm.

In addition, we suspect the particles on GaSe surfaces to be Ga droplets, confirmed by its

removal using HCl treatment.

Using the optimized growth conditions obtained from growth studies on sapphire

(Tsub = 400 C, Ga:Se = 1:100), we next explored the growth of GaSe on GaN templates.

The films were grown for one hour and the growth rate was found to be 0.75 nm/min with

a total film thickness of 45 nm. While the lattice mismatch between GaN and GaSe (18%)

is high, GaN provides a direct route for device design using 2D/GaN heterostructure based

devices. X-ray diffraction of the films (Fig. 3.3(b)) showed diffraction peaks corresponding

to (002), (004), (006), and (008) planes of GaSe. Complete surface coverage with spiral

hillocks and atomic steps (RMS roughness = 0.85 nm) was obtained. However, the sample

showed in-plane disorder (Fig. 3.3(a)) showing both m-plane and a-plane spacing, and the

RHEED pattern was insensitive to substrate rotation.

67



Figure 3.5: (a) Schematic of the two-step growth of GaSe on GaN substrates. (b) RHEED
patterns of GaSe after the two-step growth. (c) XRD scan of GaSe after first nucleation
step (black) and second (red) low temperature growth step. (d) XRD phi scan at GaSe(103)
and GaN(102) planes confirming basal plane alignment.

Control of in-plane orientation of the crystal domains during nucleation is very

critical to obtaining single crystalline GaSe films. GaSe growth temperature was hence

increased from 400◦C to 575◦C to control the in-plane orientation. Higher growth tempera-

ture necessitates higher Se flux due to reduction in sticking coefficient of Se with increase in

the substrate temperature. This is qualitatively similar to the effect of flux ratios observed

at lower growth temperature of 400◦C. The Se beam flux was increased to 1 × 10−5 Torr.

Figure 3.4(a) shows the XRD spectra of GaSe films grown at different growth
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conditions on GaN substrates. The sample grown at 500◦C showed the Ga2Se3 phase

due to excess Se. With an increase in the Ga:Se ratio from 1:400 to 1:100 diffraction

peaks corresponding to both GaSe(002) and Ga2Se3(111) planes were measured. With

further increase in the Ga:Se ratio to 1:100, only GaSe(002) was detected at higher growth

temperature of 575◦C.

Figures 3.4(b)-3.4(e) show the RHEED patterns of GaN substrate and GaSe film

grown at 575◦C with Ga:Se = 1:100 along the [1 1 2̄ 0] and [1 0 1̄ 0] directions of the GaN

substrate. The RHEED patterns corresponding to m- and a-planes of GaSe (Figs. 3.4(d)

and 3.4(e), respectively) were observed along the same azimuth as GaN. The basal planes

of GaSe was found to be perfectly aligned with the GaN substrate ([1 1 2̄ 0]GaSe//[1 1 2̄

0]GaN and [1 0 1̄ 0]GaSe//[1 0 1̄ 0]GaN ) and six-fold symmetry of GaSe was clearly observed.

Unlike the film grown at 400◦C with in-plane disorder, GaSe streaks corresponding to m-

and a-planes of GaSe appeared only at every 60◦ azimuthal rotation spacing. The inverse

of the RHEED spacing ratio between GaN and GaSe was found to be 1.170, which is very

close to the ratio (1.173) of bulk lattice constants of GaSe (3.74 nm) and GaN (3.189 nm).

This clearly suggests that the epilayer is fully relaxed and the growth proceeds by van der

Waals epitaxy.

While the higher temperature growths led to single phase films, surface coverage

was found to be incomplete. A step height corresponding to 1 ML of GaSe (0.8 nm) was

measured at the edge of a triangular domain that grew on top of another triangular domain.

Large area (10 µm x 10 µm) AFM scan and STEM measurements confirmed the observation

of incomplete surface coverage from AFM scans. More details regarding the microstructure
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Figure 3.6: (a) AFM image of the GaSe after two-step growth. (b) Raman spectra of
the GaSe film grown after first (red) and second (blue) steps. Substrate is also shown for
comparison. (c) Raman intensity mapping of the A1

1g peak over 20 µm by 20 µm.

of the film is discussed later in the manuscript.

While high temperature growth of GaSe at 575◦C resulted in (002)-oriented single

crystal domains, the layers did not coalesce to form a continuous layer. Growth at 400◦C

with a Ga:Se ratio of 1:100 resulted in coalesced (002)-oriented GaSe layers with in-plane

disorder. To obtain single crystalline GaSe with complete surface coverage, we designed a

two-step growth method illustrated in Fig. 3.5(a). After forming the nucleation layer at

575◦C with 1 x 10−5 Torr of Se beam-equivalent pressure (BEP) flux, the growth temper-

ature reduced to 400◦C with a reduced Se flux of 1 × 10−6 Torr followed by 30 min. of

GaSe growth with 1:100 of Ga:Se ratio. Figure 3.5(b) shows the RHEED patterns along

the [1 1 2̄ 0] and [1 0 1̄ 0] azimuthal orientations. Six-fold symmetry was maintained after

the second low temperature step, indicating that the basal planes are aligned with the GaN

substrate and there is no in-plane disorder. Figure 3.5(c) displays XRD spectra of grown

GaSe films after the first nucleation step (black) and the second low temperature growth

step (red). The GaSe layers grew along the (002) orientation, and a higher order peak
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(006) was observed after second step growth mainly due to the increased thickness of the

film. No additional phase such as Ga2Se3 was observed after the second step growth. An

off-axis scan of the GaSe(103) plane was performed, and six peaks with 60◦ spacing were

observed. The scan was repeated along the (102) plane of GaN and six peaks were found at

the identical azimuth angles as GaSe, confirming the observation of basal plane alignment

from RHEED.

Figure 3.6(a) shows the surface morphology of GaSe after the two-step growth

process with a rms roughness of 1.1 nm. Surface coverage was found to be complete. Figure

3.6(b) shows the Raman spectra for GaSe grown after the first nucleation step (red), and the

second low temperature step (blue). The Raman mode corresponding to a shift of 143 cm−1

comes from the GaN/sapphire substrate. After the two-step growth, the Raman spectra

matches the typical spectra expected from bulk GaSe with Raman modes at 134.3 cm−1

(A1
1g), 211.7 cm−1 (E1

2g), 250.2 cm−1 (E2
1g), and 307.6 cm−1 (A2

1g) [186]. The A1
1g and A2

1g

modes correspond to the out-of-plane vibration modes, while the E2
1g and the E2

2g modes

are associated with the in-plane vibrational modes of GaSe. In contrast to the enhanced

intensity of these Raman peaks with the film thickness, [187] no significant peak shift of

A2
1g mode due to the change in thickness was observed because of sufficiently thick GaSe

film after the first step growth. The appearance of E2
1g peak in GaSe has been reported in

the literature [176, 188]. Nevertheless, at present the assignment of the new mode remains

unclear. In addition, it is difficult to differentiate the polytypes from the Raman spectra as

they show similar vibration modes [189]. Contour plot in Fig. 3.6(c) shows the intensity map

of the dominant A1
1g Raman mode over a 20 µm × 20 µm area indicating complete surface

71



Figure 3.7: (a) Cross-sectional STEM image of GaSe film growth after first step at 575◦C.
(b) Magnified image from the boxed area in (a). (c) GaSe STEM image taken from the
same sample but different area. (d) and (e) Magnified images from (c). (f) Ball-and-stick
model of ε- and β-GaSe types. 60◦ rotation of every other layer in GaSe structure in ε-type
turns out to be β-type.

coverage. Thus, this two-step growth method enables formation of coalesced multilayer

GaSe films.

The microstructure of MBE-grown GaSe films were investigated in detail using

STEM measurements. STEM images from two regions of the GaSe nucleation layer grown

at 575◦C is shown in Figs. 3.7(a) and 3.7(c). An abrupt GaSe/GaN interface and 5-8 GaSe

monolayers separated by van der Waals gaps could be clearly resolved in the STEM images.

Ball-and-stick model generated using VESTA is superimposed on the atomic resolution

image to identify the stacking sequence. The stacking sequence indicates that the films

grown are of the ε-GaSe polytype, in Fig. 3.7(b). However, a 60◦ rotation of the Se-Ga-Ga-

Se tetralayer is observed in the region highlighted in Fig. 3.7(d), in which the Ga atoms

sit on top of Se atom. Figure 3.7(f) shows the simulated crystal structure of ε-GaSe with

a 60◦ rotation of every other layer resulting in β-GaSe polytype crystal structure. Such a

rotation of the basal plane would not be captured in the RHEED or XRD measurements
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Figure 3.8: (a) and (b) Cross sectional STEM images of GaSe after two-step growth taken
from different region. (c) Magnified image from boxed area in (b). Ball-and-stick models
of GaSe and GaN are also presented. (c) Defects formed in the middle of GaSe film are
marked with an arrow.

due to the six-fold symmetry of both the β and ε polytypes of GaSe. In spite of the rotation

of the first tetralayer, subsequent GaSe stacking is pure ε-type. This may be attributed

to the fact that the ε-polytype is energetically more stable than the β-type [190]. Similar

lattice rotations and the resultant formation of grain boundaries have been reported in the

case of MoS2 [191, 192, 193]. Dumcenco et al. [193] has reported simulated data on the

binding energies for MoS2 and sapphire substrate as a function of orientation angle of MoS2

grains. It was pointed out that only 0◦ or 60◦ orientations of the lattice were energetically

favorable and stable.

The microstructure of the coalesced GaSe films grown using the two-step method

was also investigated using crosssection STEM. Total number of layers after two-step growth

was found to be 25-27 from STEM measurements, and 20-22 layers were grown in the

second step. This implies a growth rate of 0.7 nm/min, which is similar to the low growth

temperature (Tsub = 400◦C) sample. The first five layers are identical to the nucleation
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sample. A region with 60◦ rotation of first layer was also observed in the two-step sample and

is shown in Fig. 3.8(a). However, inclusions of β-type is observed along with the dominant

ε-type GaSe. Figure 3.8(b) shows a magnified image of a region cropped from the boxed

region in Fig. 3.8(a). Surface reconstruction of the GaN surface can be clearly observed in

the image. Ga atoms (red arrow) at the surface are bonded directly to a Ga atom below

it, suggesting a 1 × 1 reconstruction of Ga atoms. On top of the surface Ga atoms, two

atoms (green arrows) were observed above every second Ga atom. We hypothesize that

these could be Se atoms passivating the GaN surface. This suggests that van der Waals

epitaxy can be used to maintain surface reconstructions on the GaN surface, and which

could have important implications for Fermi level pinning and dangling bond termination

at heterostructure interfaces. The electronic properties of these artificial two-dimensional

interfacial layers could be of great interest, but are outside the scope of the present work.

We also observed that defects formed in one area of GaSe film did not propagate along

c-axis towards surface due to the absence of bonding between individual 2D layers (Fig.

3.8(c)). However, certain amount of defect propagation is indeed observed and further

careful study is required to understand extended defects in 2D crystals. The GaSe growth

study has provided an overall understanding of 2D material growth. The growth rate is

predominantly determined by the amount of Ga flux. However, unlike Ga, migration-

enhanced epitaxy may be more effective in the case of TMD growth using refractory metal,

such as Mo, W, or Nb.
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3.3 Large-Area SnSe2/GaN Heterojunction Diodes Grown

by Molecular Beam Epitaxy

Heterogeneous integration of two-dimensional (2D) and three-dimensional (3D)

materials could enable device architectures that are not possible for conventional semicon-

ductor heterojunctions. The absence of out-of-plane chemical bonds in 2D layered materials

enables flexibility for epitaxy of 3D materials, [124, 125] and can therefore enable combi-

nations of materials for devices such as heterojunction bipolar transistors (HBTs), vertical

tunneling devices, [182] and hot electron transistors [194].

The synthesis of 2D/3D heterojunctions has been investigated extensively using

mechanically exfoliated 2D crystals transferred onto bulk crystals [158, 195, 196, 197] and

wafer-scale chemical vapor transport [160, 198] or chemical vapor deposition [199, 200, 201]

growth of 2D materials on epitaxial templates and molecular beam epitaxy (MBE). The

method used in this work, MBE, offers some distinct advantages due to the ability to realize

sharp interfaces, excellent control of background impurities, and powerful in situ charac-

terization techniques [169, 202]. Previous work on MBE growth of metal dichalcogenides

(MoSe2, HfSe2, WSe2, and SnSe2) on 3D substrates has shown epitaxial registry between

the 2D material and 3D bulk substrates [172, 173, 203].

To date, band lineups for various heterojunctions between 2D and 3D materi-

als have been proposed. For instance, type-I band alignment was demonstrated in n-

MoS2/p-Si, [204] p-MoS2/n-SiC, [163] and p-MoS2/n-GaN [181, 205]. Unlike transition

metal dichalcogenides, Sn has two oxidation states (Sn2+ and Sn4+) which give two stoi-

chiometric phases, SnSe and SnSe2. SnSe is an orthorhombic layered structure [206] with
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Figure 3.9: (a)(d) RHEED patterns of SnSe2 and GaN along the [112̄0] and [101̄0] azimuthal
directions. (e) XRD spectra of SnSe2 on the GaN/sapphire substrate exhibiting the (001)
family of diffraction peaks. (f) XRD φ scan of GaN(103) and SnSe2(101) planes confirms
the basal plane alignment.

p-type conductivity [207], while SnSe2 is intrinsically an n-type semiconductor [208] and is

known to have two crystal structures. One is the 2H phase with D6h (P63/mmc) symmetry

and the other is the 1T phase with D3d (P3m1) symmetry. The bulk 1T phase of SnSe2 has

been reported to have a direct energy bandgap of 1 eV [171, 208] with an electron affinity of

5 eV [203]. This high electron affinity has been exploited to form type-III heterojunctions

with black phosphorus [209] and WSe2 [203].

In this section, we report on the growth and electronic properties of SnSe2/GaN

heterojunctions. The combination of such a high electron affinity low bandgap material

such as SnSe2 with a wide bandgap material such as GaN presents a unique heterojunction

combination that is not possible with the III-Nitride system alone. While the bandgap of

InGaN can be tuned to be as low as 1 eV, lattice mismatch between InN and GaN (11%)

makes it very challenging to grow high composition InGaN on GaN.

The epitaxial growth of SnSe2 on GaN was performed in a Veeco GEN930 MBE

system with a standard thermal effusion cell for Ga and Sn. A valved cracker source (with
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the cracker zone at 950◦C) was used to evaporate Se. The sample surfaces were monitored

in situ by reflection high-energy electron diffraction (RHEED) operated at 15 keV. The

structural quality of the SnSe2 films was evaluated through X-ray diffractometry (XRD)

(Bruker, D8 Discover) and Raman spectroscopy (Renishaw) equipped with a 514 nm laser.

The thickness of the SnSe2 film was measured by X-ray reflectometry (XRR) (Bruker, D8

Discover). Atomic force microscopy (AFM) (Bruker Icon 3) was used to examine the surface

morphology of the film. V ESTA software [185] was used to generate graphical illustrations

of the SnSe2 crystal structure.

Semi-insulating and n-type (0001) oriented GaN/sapphire substrates were used

for the study. Pre-growth surface preparation included solvent cleaning followed by a 1

hr. 400◦C anneal under ultra-high vacuum conditions (1 × 10−9 Torr). Samples were then

loaded into the growth chamber (base pressure 7 × 10−10 Torr) and exposed to the Ga

polish procedure to remove gallium sub-oxides on the GaN surface prior to the growth. The

procedure used is as follows. The GaN surface was exposed to a Ga flux of 1 × 10−8 Torr

at 400◦C until the RHEED intensity dropped. The substrates were then heated to 700◦C

for 30 min to recover the GaN RHEED pattern, followed by a ramp down to the growth

temperature of 210◦C. The substrate temperature was measured using a thermocouple

attached to the continuous azimuthal rotation (CAR) substrate heater.

For growth of SnSe2, the Se:Sn beam equivalent pressure (BEP) flux ratio (mea-

sured using a nude ion gauge with a tungsten filament) was maintained at ∼250. The

surface was covered with Se by opening the Se shutter for two minutes. Growth was then

initiated by opening the Sn shutter. This procedure is qualitatively similar to that de-

77



Figure 3.10: (a) 2 µm × 2 µm atomic force microscopy image of SnSe2 after growth with
the RMS roughness of 0.99 nm. (b) Raman spectra of SnSe2 on the GaN/sapphire substrate
with characteristic Eg and A1

g peaks.

scribed previously for the growth of GaSe on GaN [202]. Growth was carried out for 1 hour

and terminated by closing all shutters and immediately cooling down the sample to room

temperature.

Figures 3.9(a)-3.9(d) show the RHEED patterns of the GaN substrate before

growth and the SnSe2 film after growth was completed, along the [112̄0] and [101̄0] di-

rections. The streaky RHEED patterns observed in both azimuthal orientations indicate

two-dimensional growth with azimuthally aligned to the GaN substrate. The RHEED spac-

ing for the GaN and SnSe2 patterns was found to have a ratio of 0.85, which matches the

experimentally expected ratio (0.848) from bulk in-plane lattice constants of SnSe2 (a =

3.76 Å) and GaN (a = 3.189 Å). We conclude that the hexagonal basal plane lattice for

SnSe2 and GaN materials is aligned along the same crystallographic direction despite their
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large lattice mismatch of 18%.

Figure 3.9(e) shows the on-axis (001)-oriented high resolution XRD spectrum of

the SnSe2/GaN structure, and the SnSe2 peaks are found to be at the theoretically expected

positions. No other phases were observed in the scan. The thickness of the crystalline SnSe2

film was determined by X-ray reflection measurements to be 21 nm. Off-axis azimuthal scan

[Fig. 3.9(f)] was done using a thick (>200 nm) SnSe2 film. A full range of 360 scans (φ)

for the SnSe2(101) plane and GaN(102) plane were done, and six peaks were found at

the identical azimuth angles for both SnSe2 and GaN, confirming that the two hexagonal

unit cells are epitaxially aligned. This is in agreement with our conclusion from RHEED

measurements.

Figure 3.10(a) shows the surface morphology of SnSe2. The RMS roughness was

calculated to be 0.99 nm for a 4 × 4 µm2 region. As shown in Fig. 3.10(b), two characteristic

Raman active modes for SnSe2 at 112 (in-plane mode, Eg) and 186.27 (out-of-plane mode,

A1
g) cm−1 are present in the spectrum, which corresponds to 1T phase SnSe2 as reported

for the MBE grown [203] and exfoliated bulk film [196, 210]. The corresponding 1T SnSe2

crystal structure is shown in the inset of (b). The asterisk indicates the Raman modes at

419 and 570 cm−1 for sapphire (A1
g) and GaN (E2), respectively [182].

For electrical characterization of the SnSe2/GaN heterojunction, Ti/Au/Ni con-

tacts were evaporated using e-beam evaporation to form ohmic contacts to the SnSe2. The

contact to the n-GaN layer was formed by an indium dot. Inductively coupled plasma reac-

tive ion etching (ICPRIE) with BCl3/Ar chemistry was used for the device mesa isolation.

Hall measurements on SnSe2 films on semi-insulating GaN substrates were found to exhibit

79



n-type conductivity with a carrier concentration of 1.3 × 1019 cm3 and an electron mobility

of 4.7 cm2 V−1 s−1.

3.4 Conclusion

In summary, we have developed a two-step method to grow continuous, crystalline

films of multilayer ε-GaSe on GaN(0001). To achieve this, we first optimized the growth of

GaSe films on c-plane sapphire and GaN(0001) substrates in the low temperature regime

(optimized Tsub = 400◦C). On both substrates, this produced continuous films of (002)-

oriented GaSe with random in-plane orientation of domains. In contrast, high temperature

(575◦C) growth on GaN(0001) resulted in discontinuous GaSe films, but with well-defined

in-plane orientation aligned to the substrate lattice. For continuous, crystalline films, we

combined these two growth modes into a two-step process where the first step is a high

temperature growth to establish well-defined in-plane orientation, and the second step is a

low temperature growth to coalesce the nucleated domains into a continuous film. This work

illustrates the advantage of molecular beam epitaxy in realizing the growth of large area 2D

crystals with high material quality. We also have demonstrated large area heterojunctions

of layered-SnSe2 on GaN using MBE. We characterized the heterojunction between n-SnSe2

and n-GaN with RHEED, XRD, AFM, Raman and electrical transport. Despite the large

lattice mismatch, we are able to integrate non-magnetic 2D semiconductors with 3D GaN

substrates. This demonstration of the 2D/3D heterojunction demonstrates the potential

for 2D/3D heterojunctions for high performance device applications.
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Chapter 4

Room Temperature Intrinsic

Ferromagnetism in Epitaxial

Manganese Selenide Films in the

Monolayer Limit

4.1 Abstract

Monolayer van der Waals (vdW) magnets provide an exciting opportunity for ex-

ploring two-dimensional (2D) magnetism for scientific and technological advances, but the

intrinsic ferromagnetism has only been observed at low temperatures. Here, we report

the observation of room temperature ferromagnetism in manganese selenide (MnSex) films

grown by molecular beam epitaxy (MBE). Magnetic and structural characterization pro-
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vides strong evidence that in the monolayer limit, the ferromagnetism originates from a vdW

manganese diselenide (MnSe2) monolayer, while for thicker films it could originate from a

combination of vdW MnSe2 and/or interfacial magnetism of α-MnSe(111). Magnetization

measurements of monolayer MnSex films on GaSe and SnSe2 epilayers show ferromagnetic

ordering with large saturation magnetization of ∼4 Bohr magnetons per Mn, which is con-

sistent with density functional theory calculations predicting ferromagnetism in monolayer

1T-MnSe2. Growing MnSex films on GaSe up to high thickness (∼40 nm) produces α-

MnSe(111), and an enhanced magnetic moment (∼2x) compared to the monolayer MnSex

samples. Detailed structural characterization by scanning transmission electron microscopy

(STEM), scanning tunneling microscopy (STM), and reflection high energy electron diffrac-

tion (RHEED) reveal an abrupt and clean interface between GaSe(0001) and α-MnSe(111).

In particular, the structure measured by STEM is consistent with the presence of a MnSe2

monolayer at the interface. These results hold promise for potential applications in energy

efficient information storage and processing.

4.2 Introduction

The study of magnetism in two dimensions (2D) has fascinated physicists for

decades, inspiring theoretical studies of phase transitions [33, 34] and topological order [211]

as well as their experimental realization in physical systems [20, 212, 213, 214]. Recently,

intrinsic ferromagnetism has been demonstrated in van der Waals (vdW) crystals in the

monolayer limit, [90, 93] which creates new opportunities for science and applications related

to the potential for highly tunable magnetic properties via electrostatic gating, strain, and
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proximity effects [17, 89, 215, 216, 217, 218, 219, 220]. This is particularly important for

spintronics and valleytronics with 2D vdW heterostructures, where the monolayer magnets

could provide a route toward low energy magnetization switching and proximity interactions

for non-volatile logic [221, 222, 223, 224, 225, 226]. However, ferromagnetism in monolayer

magnets has so far been limited to low temperatures, below∼60 K [90, 93]. In this Letter, we

report the observation of room temperature ferromagnetism in manganese selenide (MnSex)

films grown by molecular beam epitaxy (MBE). Magnetic and structural characterization

provides strong evidence that in the monolayer limit, the ferromagnetism originates from

a vdW manganese diselenide (MnSe2) monolayer, while for thicker films it could originate

from a combination of vdW MnSe2 and/or interfacial magnetism of alpha-MnSe(111). This

behavior differs of bulk MnSex compounds such as MnSe2 (pyrite structure) and α-MnSe

(rocksalt structure) which are not ferromagnetic [227, 228]. On the other hand, density

functional theory (DFT) calculations have predicted the stability of vdW MnSe2 monolayers

with 1T structure (Figure 4.1a) as well as a ferromagnetic ground state with substantial

exchange splitting for high Curie temperatures [229, 230]. Our results are consistent with

these predictions.

Our investigation consists of material synthesis by MBE, magnetic characterization

by superconducting quantum interference device (SQUID) magnetometry, and structural

characterization by in situ reflection high energy electron diffraction (RHEED), scanning

transmission electron microscopy (STEM), scanning tunneling microscopy (STM), atomic

force microscopy (AFM), and x-ray diffraction (XRD). To outline our study, we start by

growing ∼one monolayer (ML) of manganese selenide (MnSex) on vdW GaSe(0001) on
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GaAs(111) and vdW SnSe2(0001) on GaAs(111) substrates. Magnetic measurements by

SQUID show ferromagnetism at room temperature, and the similarity of the loop shapes

and saturation magnetic moment on two different substrates help eliminate potential ar-

tifacts related to substrate interaction. In growing thicker films on GaSe substrates, the

RHEED patterns remain streaky up to several tens of nanometers, and XRD scans reveal

that the growth converts to rocksalt α-MnSe(111). SQUID measurements exhibit room tem-

perature ferromagnetism with larger saturation magnetic moment (∼2x) than the ∼1 ML

MnSex, and XRD scans reveal a new peak consistent with vdW transition metal dichalco-

genides. Because α-MnSe is not ferromagnetic, this provides evidence for ferromagnetic

vdW MnSe2 layers forming at the interface of GaSe and α-MnSe(111). Detailed structural

characterization by STEM, STM, and RHEED reveal an abrupt and clean interface between

GaSe(0001) and α-MnSe(111). In particular, the structure measured by STEM is consistent

with the presence of a MnSe2 monolayer at the interface. This provides strong evidence for

the room temperature ferromagnetism originating from vdW MnSe2 monolayers.

4.3 Results and Discussion

The MnSex samples are prepared via van der Waals epitaxy, [124, 126] in a Veeco

GEN930 MBE chamber equipped with a liquid nitrogen cryoshroud and base pressure of 2 ×

10−10 Torr. We investigate the growth of MnSex on two different base layers, GaSe(0001)

on GaAs(111)B and SnSe2(0001) on GaAs(111)B. The growth of the GaSe, SnSe2, and

MnSex layers are performed under a Se overpressure and the growth rate is determined by

the Ga, Sn, or Mn flux. Details of the growth are provided in the Appendix, sec. B. For
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Figure 4.1: MBE growth and structural properties of monolayer MnSex. (a) Top and side
views of 1T-MnSe2 lattice with purple and green balls representing Mn and Se atoms,
respectively. Arrows indicate location of magnetic moments. (b, c) θ-2θ XRD scans of ∼1
ML MnSex on the 55 nm base layer of GaSe (blue) and on the 12 nm base layer of SnSe2

(wine), respectively. (d) RHEED image along the [11̄00] crystallographic axis of the GaSe
base layer on GaAs(111)B and (e) the corresponding AFM image. (f) RHEED image of ∼1
ML of MnSex on the GaSe base layer with (g) the corresponding AFM image showing a
smooth morphology. (h) RHEED image along the [11̄00] crystallographic axis of SnSe2 on
GaAs(111)B and (i) the corresponding AFM image. (j) RHEED image of ∼1 ML MnSex on
the SnSe2 base layer with (k) the corresponding AFM image showing an island morphology.
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the growth of MnSex on the GaSe(0001) surface, we deposit a 55 nm GaSe base layer on

GaAs(111)B at 400◦C [178, 202]. Figures 4.1d and 4.1e show a streaky RHEED pattern

and an AFM image of the GaSe base layer that displays atomically smooth terraces and

monolayer steps with a spiral hillock morphology, respectively. After growth of ∼1 ML

MnSex at 400◦C, the RHEED pattern remains streaky (Figure 4.1f) and the AFM image

in Figure 4.1g shows similar atomically smooth morphology as the GaSe base layer. The

RHEED pattern rotates with six-fold rotation symmetry which confirms in-plane epitaxial

registry. For characterization by XRD and SQUID, the sample is capped with 5 nm GaSe

and amorphous Se to protect the sample from oxidation before being removed from the

chamber. The θ-2θ XRD scan for the ∼1 ML MnSex on GaSe (Figure 4.1b) exhibits two

prominent peaks coming from the GaAs(111) substrate and the GaSe base layer (2θ =

22.4◦). An additional A peak is also observed at 2θ = 23.5◦, for which the origin of the

peak is not known.

We investigate the magnetic properties of the MnSex layers by SQUID magnetom-

etry. Room temperature, out-of-plane magnetization scans reveal a ferromagnetic hysteresis

loop for a ∼1 ML MnSex sample on the GaSe base layer (Figure 4.2a). The inset shows the

unprocessed SQUID data which includes diamagnetic and paramagnetic contributions (see

Chapter 5 for details of background subtraction). The ferromagnetic hysteresis loop ex-

hibits a coercivity of ∼150 Oe and a saturation magnetic moment of ∼3.3 × 10−5 emu/cm2

(this represents the total moment, but normalized to the sample area), which corresponds

to ∼4.4 µB per Mn.

To rule out the possibility that the ferromagnetism is generated by a substrate-
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Figure 4.2: Out-of-plane room temperature SQUID magnetometry measurements on 1 ML
MnSex. (a) Magnetic hysteresis loop of 1 ML MnSex on the GaSe base layer showing fer-
romagnetic ordering. Inset: the unprocessed SQUID data prior to background subtraction.
(b) Magnetization loop of 1 ML MnSex on the SnSe2 base layer. Inset: the unprocessed
SQUID data prior to background subtraction.

specific artifact, we develop the growth of MnSex on another substrate, SnSe2(0001) grown

on GaAs(111)B. For this study, we grow 12 nm of SnSe2 on GaAs(111)B at 165◦C [206].

The streaky RHEED pattern (Figure 4.1h) indicates an atomically smooth surface, which

is verified by AFM scans (Figure 4.1i). After deposition of ∼1 ML MnSex at 165◦C, the

RHEED pattern starts becoming spotty indicating 3D growth (Figure 4.1j) and the cor-

responding AFM image confirms the 3D growth with island formation as shown in Figure

4.1k. The RHEED pattern rotates with six-fold rotation symmetry which confirms in-plane

epitaxial registry. For XRD and SQUID, an additional protection layer of SnSe2 (12 nm) is

deposited and the sample is capped with amorphous Se. The θ-2θ XRD scan (Figure 4.1c)

shows two large peaks from the GaAs(111) substrate and the 12 nm SnSe2 base layer (2θ

= 14.5◦), and the A peak is absent. Room temperature, out-of-plane magnetization scans

reveal a ferromagnetic hysteresis loop for a ∼1 ML MnSex sample on the SnSe2 base layer

(Figure 4.2b). The ferromagnetic hysteresis loop exhibits a coercivity of ∼100 Oe and a
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saturation magnetic moment of ∼3.2 × 10−5 emu/cm2 which corresponds to ∼4.2 µB/Mn.

These values are very similar to that observed in GaSe base layer samples. The absence

of the A peak while still observing ferromagnetism indicates that any associated structures

are not relevant for the magnetic signal.

The observation of room temperature ferromagnetism with similar characteristics

for both SnSe2 and GaSe base layers implies that the ferromagnetism does not originate

from the base layer vdW materials. For example, the formation of certain magnetic com-

pounds such as GaMn [231] in the GaSe samples would provide no explanation for the

ferromagnetism observed in the SnSe2 samples. Furthermore, the large magnetic moment

(∼4 µB/Mn) cannot be explained by the formation of a dilute magnetic semiconductor (e.g.

Ga1−xMnxSe [232] or Sn1−xMnxSe2 [71]) due to interdiffusion of Mn into the base layer.

Although room temperature ferromagnetism has been observed in Sn1−xMnxSe2 for Mn

concentration up to ∼70%, only a small net saturation magnetic moment of ∼0.09 µB/Mn

has been reported [71]. Thus, if the observed ferromagnetism in our samples were due to

interdiffusion into the base layer, we would expect characteristics that are different from

we observe, and the GaSe and SnSe2 samples should be different from each other. This

provides strong evidence that the observed ferromagnetism originates from the deposited

MnSex monolayers.

To possibly identify the structural composition of MnSex, we attempt to grow

thicker films on GaSe and SnSe2 base layers. For the case of GaSe, the growth of MnSex

maintains a streaky RHEED pattern through several tens of nanometers. Figures 4.3a,b

show the initial RHEED pattern for a 20 nm GaSe base layer and Figures 4.3c,d show
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Figure 4.3: Structural and magnetic characterization of thick MnSex films. (a, b) GaSe
RHEED images along the [11̄00] and [112̄0] crystallographic axes, respectively, and (c, d)
RHEED of 40 nm MnSex film epitaxially aligned to the GaSe base layer. (e) θ-2θ XRD
scan of a 40 nm MnSex film on GaSe showing additional peaks at 28.3◦ and 29.4◦. (f)
Magnetic hysteresis loop of a 40 nm MnSex film (red and blue) in comparison to ∼1 ML
MnSex (gray) showing a larger magnitude of signal.
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RHEED after ∼40 nm of MnSex growth. The θ-2θ XRD scan (Figure 4.3e) provides an

explanation for the persistent streaky pattern. Compared to the XRD scan of the ∼1 ML

MnSex on 55 nm GaSe shown in Figure 4.1b, the main new feature is the emergent of a large

peak appearing at 2θ = 28.3◦, which indicates the presence of (111)-oriented α-MnSe [233].

α-MnSe is a thermodynamically stable bulk structure [228], which explains the persistence

of streaky, crystalline growth out to large thicknesses. We also observe an additional B peak

at 2θ = 29.4◦, which corresponds to a lattice spacing of 6.07 Å (for 2nd order diffraction).

This does not correspond to any peak in bulk MnSe2, α-MnSe, or other known Mn-Se

compounds [233, 234], but is similar to the layer spacing for vdW layered transition metal

dichalcogenides: 6.00 Å for TiSe2, 6.10 Å for VSe2, 6.15 Å for MoS2, 6.16 Å for WS2, 6.46

Å for MoSe2, 6.48 Å for WSe2 [235, 236, 237, 238, 239]. In addition to the emergence

of new XRD peaks in the thicker MnSex films, an enhancement in the magnetization is

also observed. As shown in Figure 4.3f, the magnetic hysteresis loop has similar coercivity

(∼75 Oe) but more than double the saturation magnetic moment per area (∼7.3 × 10−5

emu/cm2) as compared to the ∼1 ML MnSex sample on GaSe (Figure 4.2b). Because α-

MnSe is not ferromagnetic, the enhanced saturation magnetic moment suggests that the

ferromagnetic signal is likely coming from the interface between α-MnSe and GaSe.

To better understand the structure at the α-MnSe/GaSe interface, which is likely

providing the ferromagnetic ordering, we investigate few-layer MnSex films. Figure 4.4a

shows the MnSex growth evolution viewing the RHEED images as a function of time dur-

ing the first ∼30 seconds (∼3 ML) of MnSex deposition. Linecuts of the [11̄00]GaSe RHEED

pattern are taken along the white dashed line in the inset of Figure 4.4a. The red curve

90



shows the linecut for the GaSe base layer, the blue curve shows the linecut after ∼3 ML

of deposition, and the greyscale image shows the evolution of the RHEED linecut during

the growth. Notably, the spacing of the RHEED streaks becomes smaller with MnSex

deposition, which indicates that the in-plane lattice constant increases with MnSex depo-

sition. The ratio of the RHEED spacing between GaSe and MnSe is 1.0244, which is very

close to the expected ratio of 1.0285 for the bulk in-plane lattice constants of α-MnSe(111)

(3.862 Å) and GaSe(0001) (3.755 Å). This confirms what we observed earlier in the XRD

scans (Figure 4.3c) showing the α-MnSe(111) phase. The streakiness and six-fold rotational

symmetry of the RHEED patterns also suggests that we have epitaxial alignment between

each material ([112̄]MnSe//[11̄00]GaSe and [11̄0]MnSe//[[112̄0]GaSe). Figure 4.4b shows the

in-plane lattice constant of the MnSex film normalized by the GaSe in-plane lattice constant

(afilm/aGaSe) as a function of time and thickness. The structural transition from the GaSe

base layer is abrupt and transitions to the bulk α-MnSe lattice constant within one mono-

layer of MnSex deposition. The formation of α-MnSe(111) at the MnSex/GaSe interface is

further confirmed by STM. The surface structure, lattice constant (3.90 Å), and band gap

(∼3.39 eV) measured with dI/dV spectroscopy on a ∼3 ML MnSex sample (Figure 4.4) are

in good agreement with that of bulk α-MnSe, which is distinct from the same measurement

performed on GaSe base layer (Figure 4.4c).

The cross-sectional STEM high angle annular dark field (HAADF) images in Fig-

ure 4.4e demonstrate high quality growth of GaSe [202] on GaAs with the epitaxial re-

lationship of [111]GaAs//[0002]GaSe. We observe the γ-GaSe polytype in two orientations

that are related by a 30◦ in-plane rotation. Because the α-MnSe overlayer is registered
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Figure 4.4: RHEED line profile and high resolution imaging of the α-MnSe/GaSe interface.
(a) RHEED line profile of MBE growth evolution from the GaSe base layer to ∼3 layers of
MnSex (inset showing region of GaSe RHEED image that the line profile is taken from).
(b) Lattice constant ratio as a function of thickness showing abrupt change from GaSe
to α-MnSe(111) lattice within ∼1 ML of MnSex deposition. (c) STM topography image,
Fourier transform, line profile, and dI/dV spectrum on a GaSe base layer sample. The
image is taken with an etched PtIr tip, with V = 2.0 V and I = 0.2 nA. (d) Same set
of data taken on another sample with ∼3 ML MnSex sample grown on GaSe. (e) High
resolution STEM HAADF imaging of α-MnSe(111) and GaSe with different orientations.
(i) α-MnSe(111) viewed along <110> and (ii) shows α-MnSe viewed along <112>. Both
images are collected from the areas indicated by the boxes in the middle image. There is no
tilting of the specimen between imaging the two areas. These samples are grown at 300◦C.

92



with the GaSe lattice, the [11̄00]GaSe and [112̄0]GaSe viewing directions can be imaged si-

multaneously without any tilting of the specimen. Figure 4.4e shows HAADF images that

contains two different orientations of α-MnSe, including high magnification images (Figure

4.4e(i) and (ii)) that clearly show the rotated atomic lattices). Both have the relation-

ship [111]α−MnSe//[0002]GaSe, although Figure 4.4e(i) is oriented along <110> and Figure

4.4e(ii) is along <112>. The former also confirms the similarity between α-MnSe along

<110> and 1T-MnSe2 along [112̄0] as discussed below. The structure in both orientations

is consistent with the presence of a MnSe2 monolayer at the interface and it should be noted

that if 1T-MnSe2 along [112̄0] also undergoes a 30◦ in-plane rotation, the atoms align verti-

cally similar to the GaSe [11̄00] direction shown in the schematic in Figure 4.4e. However,

we have no direct evidence from imaging or compositional mapping for the presence of this

phase. In any case, the interface between the GaSe and MnSe layers is abrupt with no

evidence for segregation or contaminants.

The clean, sharp and crystalline interface between GaSe and α-MnSe(111) ob-

served in STEM indicates that the monolayer MnSex should have similar structure as the

α-MnSe(111). This brings a key insight on the origin of the observed ferromagnetism in

monolayer MnSex (Figure 4.2). It is important to notice that a single monolayer of α-

MnSe(111) is virtually identical to a monolayer of vdW MnSe2 with 1T structure. This

is depicted in Figures 4.5a,b which show the top view, side view, and nearest-neighbor

coordination diagrams (insets) for the α-MnSe(111) and vdW 1T-MnSe2 lattices, respec-

tively. The similarity of the structures is evident in the top view and nearest-neighbor

coordination diagrams. Most importantly, the side view of the lattices shows clearly that a
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single monolayer of α-MnSe(111), which is the Se-Mn-Se atomic trilayer highlighted by the

dashed lines in Figure 4.5a, is equivalent to the 1T-MnSe2 shown in the side view of Figure

4.5b. Furthermore, DFT calculations show that the 1T structure is thermodynamically

stable for monolayer MnSe2 and is ferromagnetic close to room temperature. Their pre-

dicted magnetic moment (3.0-3.7 µB/Mn) is consistent with our experimental observation

in Figure 4.2. In addition, as discussed earlier in Figure 4.4, the smooth evolution of the

RHEED pattern from GaSe to α-MnSe without intermediate patterns, the rapid transition

to α-MnSe(111) as confirmed by STM, and the STEM images provide strong evidence that

the first monolayer forms in the 1T-MnSe2 structure. Based on these considerations, we

conclude that the room temperature ferromagnetism in monolayer MnSex originates from

magnetic ordering of vdW 1T-MnSe2.

It is also important to discuss the ferromagnetism in the thick MnSex samples

which exhibit slightly larger magnetic moment per area than in the monolayer. We con-

sider two possible mechanisms that could contribute to the magnetic signal. One is the

stabilization of one or more vdW MnSe2 layer at the interface. This would be consistent

with the experimental results from STEM and XRD (B peak). The other possibility is

that the surface of α-MnSe(111) could exhibit interfacial ferromagnetism, such as that ob-

served in Cr2O3 [240]. It would be very interesting to investigate these two possibilities in

future studies. Nevertheless, due to the structural similarities between α-MnSe(111) and

1T-MnSe2, there is no distinction between these two mechanisms in the monolayer limit.
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Figure 4.5: Crystal structure diagrams of α-MnSe(111) and monolayer 1T-MnSe2. (a) Ball-
and-stick model of α-MnSe(111) hexagonal lattice (top view) with inset showing octahedral
coordination. The Mn atom is purple, and the Se atom is green. The side view shows that 1
ML of α-MnSe(111) is equivalent to 1 ML 1T-MnSe2. (b) Ball-and-stick model of 1T-MnSe2

hexagonal lattice (top view) with the inset showing octahedral coordination. The side view
shows that 1T-MnSe2 is equivalent to 1 ML α-MnSe(111).
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4.4 Conclusions

In conclusion, we have observed room temperature ferromagnetism in epitaxial

manganese selenide films grown by MBE. In the monolayer limit, we attribute the mag-

netic signal to intrinsic ferromagnetism of a vdW manganese diselenide (MnSe2) monolayer,

while for thicker films it could originate from a combination of vdW MnSe2 and/or interfacial

magnetism of α-MnSe(111). This enables the integration of room temperature ferromag-

netism into 2D layered vdW heterostructures in a variety of ways. For monolayers, the

vdW MnSe2 could be grown on appropriate vdW surfaces (either exfoliated or epitaxial

layers) and capped with other vdW materials to produce the isolated MnSe2 vdW layers.

This could be used for studies of vertical magnetic tunneling junctions, magnetic proxim-

ity effect, and gate tunable magnetism. For thick α-MnSe(111) structures, its insulating

character could allow it be used as a gate dielectric for spin field-effect structures and gate

tunable magnetic proximity effect. In addition, direct measurement of the magnetism and

atomic scale magnetic ordering by spin-polarized STM could help realize the full potential

of 2D magnets for spintronics and valleytronics.
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Chapter 5

Importance of Paramagnetic

Background Subtraction for

Determining the Magnetic

Moment in Epitaxially Grown

Ultrathin van der Waals Magnets

5.1 Abstract

Due to the atomically thin nature of monolayer and few-layer van der Waals mag-

nets, the undesired background signal from the substrate can have significant contribution

when characterizing their magnetic properties. This brings challenges in accurately de-
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termining the magnitude of the magnetic moment of the epitaxially grown van der Waals

magnets on bulk substrates. In this paper, we discuss the impact of the background sub-

traction method for accurately determining the magnetic moments in such systems. Using

the recently reported intrinsic two-dimensional (2D) van der Waals ferromagnet MnSe2 as

an example, we show that a normal diamagnetic background subtraction method in ana-

lyzing the bulk magnetometry measurement will result in an unexpectedly large magnetic

moment (greater than ∼10 µB per formula unit). Through our systematic growth study,

we identify an additional paramagnetic signal due to unintentional Mn doping of the sub-

strate. To extract the correct magnetic moment, a paramagnetic background should also be

considered. This yields a total magnetic moment of ∼4 µB per formula unit in monolayer

MnSe2, which is in close agreement to the theoretically predicted value.

5.2 Introduction

Realizing and understanding magnetism in two-dimensional (2D) van der Waals

materials has been a fascinating topic for physicists for many decades. Although exten-

sively studied theoretically [33, 34, 211, 219], the experimental demonstration of intrinsic

ferromagnetic ordering in 2D materials was not achieved until 2017 [90, 93]. Using the me-

chanical exfoliation method on van der Waals CrI3 and Cr2Ge2Te6, researchers thinned the

crystals down to monolayers (bilayers for Cr2Ge2Te6) and obtained ferromagnetic signals

from µm-sized flakes at cryogenic temperatures. Since these discoveries, extensive studies

have been performed on both materials, and exciting properties, such as gate tunable mag-

netism [241, 242, 243, 244, 245], strong magnetic proximity when coupled to a non-magnetic
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material [217], giant tunneling magnetoresistance and spin-filtering effects [97, 98, 99, 246]

have been reported. Meanwhile, other 2D van der Waals magnets such as FePS3 [86, 247]

and Fe3GeTe2 [103, 104, 105], have also been discovered and studied extensively in their

bulk form and after mechanical exfoliation down to the multilayer and monolayer limit.

Another breakthrough in the development of 2D magnets is the epitaxial growth of mono-

layer van der Waals magnets in the transition metal dichalcogenide (TMDC) family. By

using molecular beam epitaxy (MBE), Bonilla, et al. and O’Hara, et al. have separately

reported ferromagnetism in large area van der Waals materials, VSe2 [106] and MnSe2 [107]

down to the monolayer limit. Remarkably, the ferromagnetism in both VSe2 and MnSe2

persists up to and above room temperature, which is crucial for industrial applications in

magnetic memory. These advances in 2D van der Waals magnets show great promise for

future information storage and non-volatile logic technologies [248].

The ability to synthesize large area van der Waals magnets also opens the possi-

bility to measure their magnetic properties via bulk magnetometry methods, such as super-

conducting quantum interference device (SQUID) and/or vibrating sample magnetometry

(VSM). However, challenges have also arisen when characterizing the 2D magnets with the

above techniques.

Due to the atomically thin nature of the monolayer and few-layer van der Waals

magnets, the undesired magnetic background signal from the substrate can have significant

contribution to the total magnetization measurement. This brings difficulty in accurately

determining the magnetic moment in these materials. For example, an extremely large mag-

netic moment of ∼15 µB per formula unit was reported for a monolayer of VSe2 grown on
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Figure 5.1: Lattice structure and properties of monolayer 1T-MnSe2. (a) Ball-and-
stick model showing top and side views of monolayer 1T-MnSe2. Purple represents Mn
and yellow represents Se. (b) Schematic showing the MnSe2/GaSe(0001) heterostruc-
ture grown on a GaAs(111)B substrate. (c) XRD characterization of 40 nm MnSe films
grown on GaSe(0001)/GaAs(111)B substrates showing additional peaks corresponding to
α-MnSe(111) and 1T-MnSe2.

highly oriented pyrolytic graphite (HOPG) and MoS2 [106], which exceeds the theoretically

predicted value of ∼0.7 µB per formula unit [218]. On the other hand, the magnetic moment

of ∼4 µB per formula unit reported for a monolayer of MnSe2 grown on GaSe(0001) [107]

is in agreement with density functional theory (DFT) calculations [229, 230]. Such dis-

crepancies in the experimentally obtained total magnetic moment can be due to different

background subtraction methods when analyzing the magnetization results, where differ-

ent contributions of the background signal are considered. The choice of the background

subtraction method can strongly affect the total magnetic moment extracted from the ex-

perimental results.

In this Letter, we use epitaxially grown MnSe2 monolayers on GaSe(0001) on

GaAs(111)B substrates as an example to demonstrate how the background subtraction
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method can affect the value of the magnetic moment extracted from the experimental

measurement. Importantly, systematic control measurements identify the presence of a

paramagnetic signal that originates from unintentional Mn impurities in the substrate, most

likely incorporated in the GaSe layer during synthesis. When the background subtraction

only accounts for the diamagnetism from the substrate and ignores the presence of the

paramagnetic signal, we obtain unexpectedly large magnetic moment values greater than

∼10 µB per Mn. On the other hand, when the background subtraction includes both the

diamagnetic and paramagnetic components, we obtain magnetic moment values of ∼4 µB

per Mn, which is consistent with DFT calculations [229, 230]. Analysis of the background

subtraction procedure including the paramagnetic component demonstrates its improved

reliability and accuracy as compared to typical procedures only considering the diamagnetic

component. Moreover, our results show that a careful background subtraction is crucial for

further study of monolayer and few-layer van der Waals magnets grown by MBE on bulk

substrates.

5.3 Experimental Methods

The MnSe2 samples are prepared by van der Waals epitaxy in a Veeco GEN930

MBE chamber on GaSe(0001)/GaAs(111)B substrates following the recipe of O’Hara, et

al. [107] in a recent report with a base pressure of 2 × 10−10 Torr. Epi-ready, un-doped

GaAs(111)B substrates (AXT, single-side polished, 0.5 mm thick, 0◦ ± 0.5◦ offcut, 1.4 ×

108 Ω-cm resistivity) are indium-bonded to an unpolished Si backing wafer and annealed

under a Se flux (beam equivalent pressure (BEP) of ∼2 × 10−6 Torr) at 600◦C for 20 min.

101



Figure 5.2: Room temperature, out-of-plane magnetic hysteresis loop of 1 ML MnSe2. (a)
Raw bulk magnetization loop showing diamagnetic background from substrate. Inset: Full
range M(H) scan up to higher magnetic fields. (b) Bulk magnetization loop after linear
diamagnetic background subtraction of raw data. Inset: Full range M(H) scan up to higher
magnetic fields.

under ultra-high vacuum to remove the surface oxide and terminate the surface with Se.

The sample is then cooled to a substrate temperature of 400◦C for the base layer growth of

GaSe. The growth is monitored in real-time via reflection high-energy electron diffraction

(RHEED) at an operating voltage of 15 kV. The substrate temperature is measured using

a thermocouple that is attached to the continuous azimuthal rotation (CAR) manipulator

substrate heater. Standard Knudsen-style effusion cells are used for the deposition of Ga

(United Mineral & Chemical Corporation, 99.99999%) and Mn (Alfa Aesar, 99.98%) with

typical cell temperatures of 1000◦C and 800◦C, respectively, while a valved cracking source

is operated at 950◦C (bulk zone, 290◦C) for the deposition of atomic Se (United Mineral &

Chemical Corporation, 99.9999%). The growth is performed under a Se overpressure with a

BEP flux ratio of ∼100 for Se:Ga and ∼60 for Se:Mn, where the Se re-evaporates. The beam

102



Figure 5.3: 0 ML MnSe2 magnetization control measurements with standard linear back-
ground subtraction and Brillouin function fitting. (a) M(H) measurement of 0 ML Mn hot
control sample using TMn = 800◦C. (b) M(H) measurement of 0 ML Mn cold control sample
using TMn = 620◦C.

fluxes are measured using a nude ion gauge with a tungsten filament positioned for growth

and the corresponding deposition rate is calibrated based on film thicknesses determined

by x-ray reflectometry (Bruker, D8 Discover). The typical deposition rate is 1 nm/min for

GaSe and 0.1 ML/sec for MnSe2. Samples are capped with amorphous selenium (a-Se) at

room temperature prior to removal from the chamber to protect the surface from oxidation

and degradation. The lattice structure for monolayer MnSe2 and the heterostructure for
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the samples discussed in this study are shown in Figures 5.1a and 5.1b, respectively.

The GaSe base layer growths are followed by two different growth recipes for van

der Waals MnSe2. The first keeps the sample temperature at 400◦C while the second lowers

the sample temperature to 300◦C for the deposition of MnSe2. The former is employed by

closing the Ga shutter (while the Se shutter remains open) and opening the Mn shutter

immediately. This provides streakier RHEED patterns up to high thicknesses (> 40 nm)

and transitions to antiferromagnetic α-MnSe(111) according to x-ray diffraction (XRD)

measurements, shown in Figure 5.1c. The latter is employed by closing both the Ga and

Se shutters and cooling the sample to 300◦C. Once the sample temperature is stable, the

Se and Mn shutters are opened to deposit MnSe2 layers. This recipe leads to rougher films

according the spotty RHEED patterns when the sample gets thicker (> 5 MLs) [107]. XRD

scans show identical peaks to the 400◦C growth, shown in Figure 5.1c. While the results

of this paper apply for both types of samples, the representative analysis is presented for

samples grown at 400◦C.

Superconducting quantum interference device (SQUID) magnetometry (Quantum

Design, MPMS XL) measurements are used to measure the magnetic properties of the

samples. Samples are mounted in the out-of-plane orientation (with the magnetic field

applied perpendicular to the film surface) and are measured at room temperature. The

magnetic moment per formula unit is determined by dividing the Bohr magneton (µB) by

the number of Mn atoms in a single monolayer of MnSe2 grown on the substrate. Within

a monolayer, the concentration of Mn is ∼7.00 × 1014 cm−2.

104



5.4 Results and Discussion

Monolayer MnSe2 films are grown on 55 nm GaSe(0001)/GaAs(111)B and are

capped with 5 nm GaSe and amorphous Se before removing the sample from the MBE

chamber (schematic shown in Figure 5.1b). Room temperature, out-of-plane magnetization

loops show magnetic hysteresis indicating ferromagnetic ordering for 1 ML MnSe2 on the

GaSe base layer. Figure 5.2a shows the SQUID magnetization loop without any background

subtracted and is normalized to the area of the sample.

The 1 ML MnSe2 hysteresis loop shows an obvious linear diamagnetic background

at high magnetic field, which arises from the bulk GaAs(111) substrate. The standard

data analysis procedure for extracting the ferromagnetic signal is using a linear background

subtraction to remove the diamagnetic signal from the substrate. Figure 5.2b shows the

magnetization loop after applying a linear fit to the diamagnetic background in Figure

5.2a and subtracting out the signal. Although the hysteresis loop clearly closes at low

magnetic field (∼2 kOe), the magnetic moment does not saturate until higher fields (∼15

kOe), indicating a possible paramagnetic component. In addition, the saturation moment

at room temperature is calculated to be ∼12 µB/Mn (Figure 5.2b, inset) after subtracting

the linear background, which is approximately three times as large than what is predicted in

DFT calculations [230]. The strong and non-saturating magnetic moment at high magnetic

field draws attention for understanding the contributions to the bulk magnetization loop.

An interesting question is to understand what is contributing to the large back-

ground signal in the 1 ML MnSe2 SQUID magnetization loop. One possibility is that the

background signal comes from the GaSe(0001) base layer. It is worthwhile mentioning that
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Figure 5.4: 1 ML MnSe2 magnetic hysteresis loop using new background subtraction method
considering diamagnetic and paramagnetic components using a Brillouin function back-
ground subtraction method. (a) Raw M(H) loop showing fitting parameters (dashed lines).
(b) Final ferromagnetic hysteresis loop after background subtraction. (c) Background sub-
traction components (raw data, diamagnetic, paramagnetic, and ferromagnetic contribu-
tions) in 1 ML MnSe2 grown on a 55 nm GaSe/GaAs(111) substrate.

during the annealing of the GaAs substrate and growth of the GaSe base layer, the Mn

effusion cell is at its deposition temperature (TMn = 800◦C). Although the Mn effusion cell

is masked by a shutter during this process, trace amounts of Mn impurities might possibly

bypass the shutter and incorporate into the base layer and/or substrate due to the relatively

high vapor pressure of Mn. To examine this case, we systematically study the GaSe base

layer growth under identical conditions and characterize its magnetic properties.

To investigate the contribution of the GaSe base layer to the magnetic signal,
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we grow a 60 nm GaSe(0001)/GaAs(111)B sample under identical conditions to the 1 ML

MnSe2 sample with the Mn cell maintained at its deposition temperature of 800◦C (we label

this as: 0 ML Mn hot). The magnetic properties of this sample show a non-linear signal

which has a large saturation magnetic moment of ∼4.3 × 10−5 emu/cm2 with no remanent

magnetization after the diamagnetic background subtraction (Figure 5.3b). There is no

MnSe2 deposited in this case and the saturation magnetic moment has similar order of

magnitude to what is shown in Figure 5.2, so the paramagnetic-like signal should only come

from the substrate. We further employ a Brillouin fitting on the extracted curve, which is

shown in the bottom panel in Figure 5.3a. The Brillouin fitting agrees very well with the

observed non-linear signal, which confirms the paramagnetic signature in this sample.

The Mn impurities that are potentially incorporating inside the Ga1−xMnxSe ma-

trix may contain randomly oriented magnetic moments that have no direct exchange in-

teraction with each other [232]. This can give rise to a paramagnetic contribution in the

magnetization signal which can be explained by the Brillouin function. To further confirm

that the paramagnetic signal is coming from Mn doping in the GaSe(0001) base layer, we

grow a nominally identical 0 ML control sample but with the Mn effusion cell temperature

lowered to an idle state (TMn = 620◦C, which we label as: 0 ML Mn cold). By lowering the

temperature of the effusion cell, the Mn vapor pressure should decrease leading to less impu-

rities in the base layer and/or substrate. Indeed, after measuring the magnetic properties

via SQUID, the magnetization signal is nearly linear and the paramagnetic contribution

is much smaller (Figure 5.3b). This further confirms that there is a large paramagnetic

contribution from the GaSe base layer for our 1 ML MnSe2 sample, shown in Figure 5.2.
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Hcut (kOe) MPM (10−6 emu/cm2) MFM (10−6 emu/cm2) MFM (uB/Mn)

1.8 56 31 4.1

2.0 52 36 4.7

2.2 49 39 5.1

Table 5.1: Detailed description of Brillouin fitting parameters to determine magnetic mo-
ment in 1 ML MnSe2 and 0 ML MnSe2 control samples.

The control experiment of the ”0 ML MnSe2” sample shows that to accurately

determine the ferromagnetic signal in our MnSe2/GaSe(0001) samples, one has to also

consider the paramagnetic contribution from the substrate. We apply a new method for

background subtraction to the 1 ML MnSe2 sample discussed in Figure 5.2. We proceed

with the following equation to fit the non-hysteretic part of the SQUID data (|H|≥Hcut),

m(H) = AdiaH +AparaB 5
2
((

5

2
g∗µB)/(kBT )H) + sign(H)msat (5.1)

where Adia,Apara,g
∗,and msat are fitting parameters. The first term is a diamagnetic back-

ground that is linear in H. The second term is a paramagnetic background described by a

Brillouin function with J = 5/2 for Mn, and g∗ is an effective g-factor observed in dilute

magnetic semiconductors [249]. The last term is the saturated ferromagnetic magnetization,

which adds as a positive/negative offset (msat) depending on the direction of the applied

magnetic field.

To determine the magnetic moment per formula unit in the 1 ML MnSe2 sample,

we proceed with this new fitting method. Figure 5.4a shows the raw SQUID measurement

for this sample. The measurement was performed up to ±30 kOe, and the full range of data

were used for the fitting. For the new method of background subtraction, we select a cutoff

field, Hcut, that bounds the range of the ferromagnetic hysteresis loop. To demonstrate, we

proceed with Hcut = 2 kOe and fit the data with Equation 5.1. After the fit is completed,
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the first two terms of Equation 5.1 (i.e. the diamagnetic and paramagnetic contributions)

are subtracted from the raw data to yield the ferromagnetic hysteresis loop, shown in Figure

5.4b. Figure 5.4c shows the raw data, diamagnetic component, paramagnetic component,

and ferromagnetic component over the field range of ±5 kOe. This yields a value for msat

of 4.7 µB/Mn which is in agreement with theoretical calculations [230].

The result of the fitting process depends on the choice of Hcut, which is determined

by the field value that the hysteresis loop in the SQUID signal closes. An uncertainty in

choosing Hcut could in principle affect the extracted ferromagnetic signal. To show the

robustness of the background subtraction method, we further performed the same fitting

process with a few different Hcut values, as shown in Table 5.1. The change of the Hcut

indeed changes the extracted magnetic moment in both the paramagnetic and ferromagnetic

component. However, the total change of both components is within 20%, which indicate

that the fitting method is reliable in determining the ferromagnetic response of the van der

Waals magnet MnSe2.

5.5 Conclusions

In summary, we have demonstrated that unintentional Mn doping of the GaSe(0001)

base layer can introduce a strong paramagnetic signal in the MBE grown van der Waals

magnet MnSe2. This provides the physical basis for a new method of background subtrac-

tion that separates out diamagnetic and paramagnetic contributions from the ferromagnetic

signal of monolayer MnSe2. This is shown to be a reliable method for extracting the ferro-

magnetic hysteresis loop and value of the magnetic moment and should be considered for
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future studies of van der Waals magnets grown by MBE. Our study further shows the impor-

tance of performing control experiments on the magnetic background signal for epitaxially

grown van der Waals magnets on a case-by-case basis. Further studies including compar-

isons with complementary techniques that are less sensitive to background signals, such as

magneto-optic Kerr effect or anomalous Hall effect, will also be beneficial for accurately

determining the magnetic moments in such systems.
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Chapter 6

Integration of MnSe2 on

Topological Insulator, Bi2Se3

6.1 Motivation

Van der Waals magnets are particularly interesting due to their high surface sen-

sitivity owed to their large surface-to-volume ratio. This is useful for studying the effects

of electrostatic gating, strain, and proximity-induced phenomena which may be advanta-

geous in developing highly tunable spintronic devices and energy efficient magnetoelectron-

ics. With recent reports of ferromagnetism in 2D materials such as CrI3 and Cr2Ge2Te6,

achieving this is now possible but limited at low temperatures [90, 93]. With new studies

showing room temperature ferromagnetism in MnSe2 and VSe2 grown by molecular beam

epitaxy (MBE) [106, 107], real-world applications now are possible.

Combining a 2D magnet with a high z material, or a material with large spin-orbit
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coupling is advantageous for looking at properties such as novel magnetic textures, quantum

anomalous Hall effect, and spin-orbit torque [87, 250, 251, 252]. This requires a high quality,

sharp interface in order to properly couple the magnetism of the overlayer and the spin-

orbit coupling of the underlying substrate. Particularly, the proximity effects between the

2D magnet and a topological insulator (Bi2Se3) is of great interest. For the magnetic

proximity effect (MPE), the effective magnetic field induced in the topological insulator

through proximity with a 2D magnet can break the time-reversal symmetry of its surface

state, which can cause a gap opening in the surface state and lead to a quantum anomalous

Hall state in the topological insulator [64, 253, 254]. On the other hand, the strong spin-

orbit coupling in the topological insulator can affect the magnetic properties, such as the

magnetic anisotropy, in the 2D magnet [106]. Furthermore, the spin-orbit coupling in the

topological insulator layer can generte an interface Dzyaloshinskii-Moriya interaction (DMI)

in the 2D magnet, which is required for generating possible magnetic skyrmion phases in

the system [255]. Such 2D magnet/TI heterostructures with clean interfaces are ideal for

studying the MPE as well as potentially induced magnetic phases. In this work, we study

the integration of monolayer MnSe2 on Bi2Se3 by using a combination of molecular beam

epitaxy (MBE) and spin-polarized scanning tunneling microscopy (SP-STM).

6.2 Results and Discussion

20 nm Bi2Se3 films were grown by MBE on sapphire(0001) substrates with details

described elsewhere [64, 256]. Samples were then capped with amorphous Se, mounted

onto a Ferrovac tantalum flagship paddle and transferred to another MBE chamber (base
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Figure 6.1: RHEED images and STM measurements on Bi2Se3 grown on sapphire(0001)
substrates. (a) Se-capped Bi2Se3 after transferring to another MBE chamber for MnSex
growth, (b) de-capped Bi2Se3 after annealing at 200◦C for 30 minutes, (c) topography image
showing ultraclean, smooth surface of Bi2Se3 after de-capping, and (d) atomic resolution of
Bi2Se3.
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Figure 6.2: STM measurements showing MnSex grown on Bi2Se3. (a) Topography image of
an MnSex triangle on the surface, (b) and (c) showing height scale and electronic structure
corresponding to possible α-MnSe(111) phase. (d) Zoomed in atomic resolution image
confirming that these properties are consistent with a bilayer of α-MnSe(111).

pressure 2 × 10−10) for MnSex growth. Bi2Se3 samples are then decapped at ∼200◦C for 30

minutes prior to growth. Cleanliness of the interface is shown in the STM images in Figure

6.1 from a sample that was de-capped via annealing. Atomic resolution images of the Bi2Se3

substrates show lattice parameters that match bulk values previously reported [64]. Samples

are then heated to 400◦C for MnSex deposition. Elemental Mn (99.98%, Alfa Aesar) is

evaporated from a standard Knudsen-style effusion cell (operated at TMn = 745◦C), while

atomic species of Se is deposited from a valved cracking source (Veeco) as previously noted in

other studies. Samples are monitored via in situ reflection high energy electron diffraction

(RHEED) with operation at 15 kV. Note that due to the larger mass of the tantalum

paddles, the substrate heater reads a higher temperature of approximately 300◦C difference

from normal sample mounting described in previous work. ∼1 monolayer (ML) and 40 nm

MnSex samples are grown on the Bi2Se3/sapphire(0001) surfaces for the work reported in
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this Chapter.

∼1 ML MnSex samples were grown by MBE and transferred under ultra-high

vacuum (∼1 × 10−9 Torr) via a Ferrovac vacuum suitcase to a separate STM chamber. As

mentioned in Hinkle, et al., deposition of certain metals on top of topological insulators

leads to a low sticking coefficient and possible magnetic dead layers [253]. This work is

taken into consideration when co-depositing Mn and Se on the surface of the topological

insulator. In the deposition of MnSex, we observe interesting features in the RHEED and

STM. The RHEED images show no change from the Bi2Se3 substrate. When measured

by STM, the MnSex layers deposited do not fully cover the Bi2Se3 surface, and only have

about ∼10% of monolayer coverage. Figure 6.2 shows part of the deposited regions that

stuck to the surface, which are possible α-MnSe(111) layers. These small triangles of MnSex

are found showing a height difference from the underlying substrate of 2.9 ± 0.2 Å and a

electronic gap of ∼700 meV [257]. Zooming in on these regions show atomic resolution and

confirms a bilayer of α-MnSe(111), shown in Figure 6.2 with the inset highlighting a ball-

and-stick model of the structure described. As mentioned in previous work α-MnSe(111)

is a antiferromagnetic material with a rock salt structure and has a closely related lattice

structure to the underlying substrate [107, 254].

Interestingly, while scanning in other regions of the sample, we observed nucleation

of a different structural phase at the edge of the α-MnSe(111) triangles. These extended

domain regions show different contrast in the topography measurements due to the different

lattice height of 5.8 ± 0.1 Å which is similar to the XRD d-spacing reported in [107, 258] for

1T-MnSe2. Figure 6.3 shows the difference in dI/dV spectroscopy in the two regions, with
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Figure 6.3: STM topography and spectroscopy measurements showing MnSex grown on
Bi2Se3. This region shows a α-MnSe(111) bilayer attached to a 1T-MnSe2 triangle.

blue showing the electronic structure of the α-MnSe(111) and red showing the electronic

structure of the possible 1T-MnSe2 region. These observations confirm that these are two

different structural phases that are growing on the Bi2Se3 surface. The reason why the

1T-MnSe2 may be nucleating on the edge of the α-MnSe(111) bilayer is possibly due to

creation of preferential nucleation sites and extended compact domains giving rise to a new

material which has an extremely similar lattice structure [259].

To understand the magnetic properties of these layers, we used etched antiferro-

magnetic Cr tips to measure a magnetic contrast as a function of applied magnetic field at

5 K. Four different regions of the small compact triangle are measured to confirm what we

observe. During the spectroscopy measurements, dI/dV, we sweep an applied field of 1 T

and see interesting behavior and it is important to explain what may be happening here.
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Figure 6.4: SP-STM spectroscopy on the 1T-MnSe2 phase in four different regions showing
ferromagnetic ordering.

In SP-STM, when both the surface and the tip are magnetic, the imbalance of the spin-up

and spin-down electrons around the Fermi level lead to an additional contribution to the

tunnel current [54, 76, 130, 131, 132]. Figure 6.4 shows the differential conductance mea-

surements where we see a asymmetric effect when sweeping the field back and forth which is

repeatable on different areas of the sample. The asymmetry reflects the energy-dependent

spin-polarization of the tunnel junction between the tip and the sample, which in general

may mean that this area is ferromagnetic.

To confirm that this area is indeed ferromagnetic, it is important to identify the

magnetic ordering of the α-MnSe(111) bilayer and Bi2Se3 substrate mentioned earlier. Fig-

ure 6.5 shows the dI/dV scans as a function of external magnetic field on the adjacent layer

and underlying substrate. In these measurements, we do not observe any asymmetry that
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Figure 6.5: SP-STM spectroscopy on the bilayer α-MnSe(111) phase in four different regions
showing zero magnetization.
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Figure 6.6: RHEED and XRD showing growth of α-MnSe(111) on Bi2Se3 up to high thick-
nesses.

may attribute to a net magnetization. Each region shows virtually no dependence on mag-

netic field which confirms that the Bi2Se3 is a non-magnetic material and the α-MnSe(111)

is an antiferromagnet with a net zero magnetization. We also grow 40 nm films of MnSex to

study the structure of the material at higher thicknesses. Figure 6.6 shows RHEED patterns

along two different azimuthal orientations of the as-grown α-MnSe(111) film. Samples are

capped with amorphous Se and measured by ex situ XRD to confirm the bulk structure.

XRD further confirms that α-MnSe(111) is indeed growing on the surface of the Bi2Se3 and

is the preferred thermodynamic structure.
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6.3 Conclusions

In summary, we report the first direct atomic and magnetic imaging of an MBE-

grown 1T-MnSe2 monolayer on a Bi2Se3 substrates. We learn that the magnetic MnSe2

monolayer nucleates off of preferential growth sites on an α-MnSe(111) bilayer which will

need to be considered for other studies of this material. Nevertheless, this is a gigantic

breakthrough in the field of 2D magnets and will become a foundation for studying future

phenomena such as layer dependence, novel spin textures, and engineering structures using

the spin-polarized tip.
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Chapter 7

Epitaxial growth of van der Waals

VSe2 layers on HOPG and GaAs

Surfaces

7.1 Motivation

Recent experimental breakthroughs open up possibilities to study magnetism in

2D materials [90, 93, 106, 107]. With limitations to growth on van der Waals substrates

and small grain size, understanding growth kinetics by molecular beam epitaxy (MBE) is

important to understand growth conditions for thermodynamic equilibrium phases. Here,

we report the MBE growth of vanadium diselenide thin films on GaAs(111)B and HOPG

substrates. A comprehensive microstructural and chemical study has been carried out by the

use of x-ray diffraction, transmission electron microscopy, scanning tunneling microscopy
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and x-ray photoelectron spectroscopy for the growth on GaAs substrates and a systematic

study of how the growth temperature effects the domain size of the VSe2 overlayers. The

fundamental understanding gained through these investigations has enabled integration of

VSe2 on a insulating 3D substrate with epitaxial registry and we are able to study its

structure up to thick layers, also we have developed a way to study how the magnetism

may depend on the grain size and structure of the VSe2 epilayer.

7.2 Introduction

The exploration of two-dimensional (2D) materials has received appreciable atten-

tion since the first isolation of monolayer graphene [59, 62, 154, 221]. Being only a few atoms

thick, the reduced dimensionality in 2D materials can strongly influence their electronic,

optical and magnetic properties compared to their bulk analogues. For example, when re-

duced to monolayer thickness, the low energy dispersion of electrons in graphene becomes

massless-Dirac fermion like [59, 221] while the electronic band structure in transition metal

dichalcogenides (e.g. MoS2, WSe2) undergoes an indirect to direct gap transition with 100%

valley selective with circular polarized light [62, 154, 192]. Other examples include tunable

magnetism in hole-doped monolayer GaSe [260], strong Ising pairing in superconducting

NbSe2 atomic layers [61], and quantum spin Hall states in monolayer 1T’-WTe2 [261]. Con-

trolling the material thickness and further studying how their properties depend on the

number of layers is essential for understanding 2D materials.

Among the family of 2D materials, VSe2 is of particular interest, because both its

electronic and magnetic properties are significantly different in the monolayer limit [106,
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218, 262]. Bulk VSe2 may exhibit two polymorphs in which it forms, which are the semi-

conducting 2H (trigonal prismatic) or metallic 1T (octahedral) phase. 1T-VSe2 forms in

a layered van der Waals hexagonal structure, with each V atom octahedrally-coordinated

by six surrounding Se atoms. Bulk 1T-VSe2 undergoes a (4 × 4 × 3) charge density wave

(CDW) transition with Tc = 110 K [106, 235, 263]. However, the monolayer shows a (
√

7

×
√

3) CDW with altered-symmetry-type compared to the (4 × 4) CDW in the bulk [264].

On the other hand, although bulk 1T-VSe2 is reported to be paramagnetic [235, 263], it

has been shown to be ferromagnetic in its monolayer form with a Curie temperature above

room temperature [106]. The drastic differences in bulk and monolayer 1T-VSe2 make it

an advantageous material system to further study how its properties change with increased

thickness from the monolayer limit.

Here, we demonstrate growth of large-area, high-quality 1T-VSe2 on GaAs(111)B

substrates by molecular beam epitaxy (MBE) up to high thickness. X-ray diffractometry

(XRD) and scanning transmission electron microscopy (STEM) confirms the formation of

high quality 1T-VSe2 layers. X-ray photoelectron spectroscopy (XPS) measurements were

conducted to confirm the chemical composition and air stability of VSe2 on GaAs. Us-

ing scanning tunneling microscopy (STM), we further confirm the formation of 1T-VSe2

on GaAs(111)B and measure its local electronic properties with scanning tunneling spec-

troscopy (STS). These results establish a baseline for understanding and controlling the

number of layers of VSe2 thin films grown by MBE.
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Figure 7.1: RHEED images of VSe2 growth on GaAs(111) substrate.
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7.3 Experimental Methods

VSe2 growths are prepared by van der Waals epitaxy in a Veeco GEN930 chamber

with a base pressure of 2 × 10−10 Torr. GaAs(111)B substrates (AXT, single-side polished,

0.5 mm thick, ± 0.5◦ miscut, 1.4 × 108 Ω-cm) are prepared by indium bonding to a 3 in.

unpolished Si wafer then loading into the chamber and annealing at 400◦C for 15 minutes

under UHV conditions (1 × 10−9 Torr) to remove any surface impurities. The GaAs is then

loaded into the growth chamber and exposed to a Ga flux (United Mineral & Chemical

Corporation, 99.99999%, 1 × 10−8 Torr) at 450◦C for 2-4 minutes to remove the native

oxides on the surface via Ga polishing [265]. The substrate is then heated to and annealed

600◦C under a Se flux (1 × 10−7 Torr) for 15 minutes to remove any excess sub-oxides and

terminate the surface with Se atoms then cooled to the growth temperature. Elemental

Se (United Mineral & Chemical Corporation, 99.9999% is evaporated from a standard

Knudson-type effusion cell with a typical cell temperature of 170◦C and Elemental V (ESPI

Metals, 99.98%) is evaporated using a quad-rod electron-beam evaporator (MANTIS). The

beam fluxes are measured using a nude ion gauge with a tungsten filament positioned

at the sample growth position and the corresponding growth rate is calibrated based on

nominal film thicknesses measured by ex situ x-ray reflectometry (XRR). In situ RHEED

is used to monitor the growth and annealing procedures in real-time with an operation

voltage of 15 kV. The VSe2 growth is performed in an adsorption-limited growth regime at

a beam-equivalent pressure (BEP) V:Se ratio of ∼1:1000, where the excess Se re-evaporates.

Samples are capped with amorphous Se or Te after growth at room temperature to perform

ex situ structural characterization.
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Figure 7.2: Structural characterization of thick VSe2 films grown by MBE on GaAs. X-ray
diffraction showing 30 ML VSe2 film on GaAs(111) (left) and (right) STEM image of 5 ML
VSe2 on GaAs showing 1T structure and sharp interface transition.

7.4 MBE Growth of VSe2 on GaAs(111) substrates

Our study began with determining the growth temperature window of VSe2 on

GaAs(111)B substrates for the highest quality thin films. At low temperature growths

below 150◦C, the RHEED pattern becomes dim after co-deposition of V and Se confirming

an amorphous film from the large sticking coefficient of Se and low adatom mobility of V.

At temperatures above 250◦C, the RHEED pattern is streaky initially after deposition of

V and Se, but then quickly becomes spotty after 1-2 monolayers (MLs) of growth. The

sticking coefficient of the Se atoms decreases with higher substrate temperature leading

to less coverage of chalcogen adatoms and the low adatom mobility leads to a smaller

nucleation density and a 3D growth mode. For lower temperature growth, the sticking

coefficient of the chalcogen adatoms increases leading to non-crystalline Se layers on the

surface. At a GaAs substrate temperature of 200◦C (± 10◦C), the RHEED pattern of the

VSe2 remains streaky to approximately 30 MLs, which indicates atomically smooth films
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up to high thickness which opens up an opportunity to study layer dependence. The co-

deposition of VSe2 films on GaAs are illustrated in the Figure 7.1 showing RHEED images

as a function of thickness. Although growth temperature window is narrow, the RHEED

pattern remains streaky and the intensity remains constant through larger thicknesses up

to 30 MLs. After deposition of 1 ML (Figure 7.1, top right panel), the VSe2 RHEED

streaks coexist with the underlying GaAs(111) showing a clear structural transition. The

inverse ratio of the RHEED spacing between the VSe2 and GaAs(111) is measured to be

1.15, which is very close to the expected value of 1.17 for bulk in-plane lattice constants of

1T-VSe2(0001) and GaAs(111). After 2 MLs of growth, the VSe2 streaks no longer coexist

with the underlying GaAs and remain streaky with six-fold rotational symmetry which

suggests we have an epitaxial alignment between the two materials, [11̄00]V Se2//[112̄]GaAs

and [112̄0]V Se2//[11̄0]GaAs.

Using the optimized growth conditions to grow thicker films of high-quality, crys-

talline VSe2 on GaAs, we performed structural measurements that can measure the bulk

properties of our films. To determine the crystallographic orientation of the film, XRD

measurements are performed on 30 ML VSe2 films grown on GaAs. θ-2θ XRD scans show

a weak (002) 1T-VSe2 peak, shown in Figure 7.2 (left panel). While we expected a stronger

peak due to the higher thickness, previous reports on 1T-VSe2 bulk crystals show peak

intensity of low counts [266], which may be related to the small scattering cross section of

(002) planes in 1T-VSe2. To further confirm the high crystalline quality of the film, atomic

structure and interface quality, we perform high resolution scanning transmission electron

microscopy (STEM). High resolution, cross-sectional STEM images shown in Figure 7.2
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Figure 7.3: XPS spectra of 1 ML VSe2 growth on GaAs surfaces.

(right panel) demonstrate a high quality growth of VSe2 on GaAs. The interface shows

no evidence of clusters, defects, or misfit dislocations, further confirming van der Waals

epitaxy. The high atomic resolution also confirms the octahedral 1T structure of the VSe2

films grown on GaAs.

In order to study the air stability and chemical composition of our samples, we per-

formed x-ray photoelectron spectroscopy (XPS) measurements. First, in order to transfer

samples under UHV without exposing the sample to potential surface oxidation, we used a
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Ferrovac UHV suitcase to keep samples under vacuum while moving from the MBE growth

chamber to the XPS system. Shown in Figure 7.3, characteristic peaks of both Se and

vanadium are found in the XPS spectra of the as grown VSe2 film. For the characteristic

peaks (2p1/2 and 2p3/2 of vanadium), we compare the difference of the as-grown film, 30

minutes after air exposure and 15 hours after air exposure. Unlike air stability reported

for films grown on HOPG and MoS2 substrates [106], our samples show characteristics of

oxidation on the vanadium XPS spectra.

The formation of VSe2 on GaAs is further confirmed by STM. ∼1 ML samples

were grown and not capped then transferred via vacuum suitcase to UHV chamber for the

STM measurement at 5 K. The surface atomic structure is imaged through a topography

measurement showing a well-ordered hexagonal lattice and very smooth surface and deter-

mine an in-plane lattice constant of 3.3 - 3.5 Å, which agrees well with the Se-Se distance

reported in literature [106, 267] and a metallic electronic structure via dI/dV spectroscopy

(Figure 7.4).

Although there has been a report about observing room temperature intrinsic

ferromagnetism in monolayer VSe2, we did not observe any signature of magnetic ordering

in our samples (measurements not shown). We grew multiple samples of varied thicknesses

of 0.5 - 1.5 MLs and measured their magnetic properties via SQUID magnetometry and

magneto-optic Kerr effect (MOKE). There was no observation of ferromagnetism in the

samples we grew on GaAs. We recognize that many factors may contribute to not observing

ferromagnetic ordering including, a small magnetic moment for which the theoretical value

is 0.7 µB/formula unit, the magnetic domain nucleation which may potentially cancel off
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Figure 7.4: STM and dI/dV spectroscopy measurements of VSe2 on GaAs showing metallic
structure.
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the ferromagnetism, and the film coverage which may be low and not measurable in bulk

magnetization measurements.

7.5 Growth of VSe2 on HOPG surfaces

To develop an understanding of why we see no ferromagnetism in our VSe2 films

grown on GaAs(111), we revert back to studying growth on highly-oriented pyrolytic graphite

(HOPG) substrates per the Bonilla, et al. report [106]. A reason why we may not be ob-

serving magnetism is that the morphology of the VSe2 monolayer may have many small

grains that could possibly create a non-magnetic layer upon growth from scattering. This

is very challenging to study on commercial GaAs(111) wafers due to the surface roughness

of the substrate. HOPG surfaces are inert, clean upon cleavage and have very large terrace

widths which makes it preferable to study nucleation of MBE-grown epilayers.

Following recent reports of MBE-grown transition metal dichalcogenides (TMDCs)

run into many device challenges due to their small grain size (<200 nm) compared to CVD-

grown TMDCs [169, 170, 171, 172, 173, 192]. Most of the reports show films with almost

full coverage consisting of small grains, indicating high density of nucleation and grain

boundary formation within the film. In [259], they were able to show a complex competition

between kinetic factors including adsorption, desorption, on-substrate diffusion, and edge

diffusion, which all have a significant influence on grain size. They specifically learned from

growing WSe2, that lowering the transition metal (TM) flux in conjunction with an elevated

substrate temperature reduces the nucleation density while providing a Se-rich environment

promotes a 2D growth mode [259]. With this knowledge for WSe2 layers, we will use it to
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Figure 7.5: RHEED and AFM images of HOPG substrate and VSe2 grown on HOPG at
250◦C showing streaky patterns and flat dendrite sub-monolayer coverage. Height scale is
in nm.

study the nucleation for another TMDC, VSe2.

Few-layer VSe2 films are prepared via van der Waals epitaxy in a Veeco GEN930

chamber with a base pressure of 2 × 10−10 Torr. HOPG substrates (ZYA Grade from SPI,

10 mm × 10 mm × 1 mm) are prepared by cleaving the top layers with scotch tape until a

clean, smooth surface is exposed. The substrate is then loaded into the MBE chamber and

annealed at 600◦C for 12 hours to remove any surface adsorbates. Elemental vanadium (V)

(99.98%, ESPI Metals USA) is evaporated from a four-pocket MANTIS quad electron-beam

source and atomic Se (99.9999%, United Mineral & Chemical Corporation) is deposited from

a valved cracking source operated at 950◦C (bulk zone, 290◦C). The growth is performed
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Figure 7.6: RHEED and AFM images showcasing change in grain growth of VSe2 overlayers
on HOPG. From left to right: 300◦C, 400◦C, 500◦C, and 600◦C growth. Height scale is in
nm.

under an adsorption-limited regime (e.g. Se overpressure) to develop compositional VSe2

films due to the re-evaporation of the Se species. The beam flux is typically performed at

∼1000 for a Se:V beam equivalent pressure (BEP) ratio. Beam fluxes are measured using

a nude ion gauge positioned for growth and the corresponding deposition rate is calibrated

based on nominal film thicknesses via ex situ x-ray reflectometry (XRR), and reflection high

energy electron diffraction (RHEED) imaging during growth. Film morphology is studied

using a combination of RHEED patterns and atomic force microscopy (AFM) (Bruker Icon

3).

Pursuit of a VSe2 monolayer with large grains began with an investigation of

nucleation and morphology as a function of growth temperature on HOPG. 1T-VSe2 is the

preferred thermodynamic phase when grown by co-deposition MBE techniques [106, 267].

Figure 7.5 shows both RHEED and AFM images of the HOPG substrate and a smooth VSe2

monolayer grown at 250◦C at a fixed BEP ratio. At substrate temperatures below ∼200◦C,
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the RHEED pattern during VSe2 growth dims out indicating a disordered, amorphous

growth mode likely due to the larger sticking coefficient of Se adatoms at lower temperatures.

The VSe2 RHEED pattern is streaky with irregularly spaced streaks denoting in-plane

disorder which matches the underlying HOPG substrate. This invariance occurs because

the HOPG substrate is not single crystalline, but rather has a textured, (0001) out-of-plane

orientation and the grains have random in-plane orientations [268]. Thus, the RHEED

images of the HOPG and the VSe2 overlayer are a superposition of all azimuthal angles.

Due to this circumstance, the epitaxial relationship between VSe2 and the HOPG substrate

cannot be determined. While the RHEED patterns are streaky in this thickness limit

resulting in a smooth film, it does not give useful information on the domain width or

structure. The corresponding AFM image shows that the terrace step edges of the HOPG

substrate are preferred nucleation sites for VSe2 growth and also indicates that the overlayer

prefers to grow into random structures with branches. This preferential growth structure

with high nucleation density at a low substrate temperature indicates a close relationship

between the adatom density and stable nuclei formation [259, 269] which we will study

further as a function of growth temperature.

The chalcogen sticking coefficient is much lower than that of the transition metal

due to the short mean lifetime and mean free path of Se adatoms [259]. Since desorption is

negligible at low growth temperatures, most the chalcogen adatoms are able to form stable

domains that exceed a critical nucleus size [259]. However, the desorption rate increases

exponentially at elevated substrate temperatures from being close to the evaporation tem-

perature of Se, which is an Arrhenius-related process [64]. More adatoms desorb from the
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Figure 7.7: Zoomed in AFM images showcasing change in grain growth of VSe2 overlayers
on HOPG. From left to right: 300◦C, 400◦C, 500◦C, and 600◦C growth. Height scale is in
nm.

surface at these elevated temperatures before forming stable nuclei, reducing the overall

adatom density and sticking coefficient, as mentioned earlier. RHEED and corresponding

AFM images in Figure 7.6 show the growth of VSe2 on HOPG as a function of substrate tem-

perature. Lower coverage and island growth are observed for elevated temperatures above

500◦C while lower temperatures show larger coverage with smoother layers. The RHEED

patterns show a trend that is directly related to the morphology displayed. Streaky pat-

terns are observed at lower temperatures (< 500◦C), indicating good short-range ordering

and atomic-scale smoothness, while at elevated temperatures the RHEED shows spotty

patterns, which is characteristic of island growth processes. The RHEED patterns at all

growth temperatures do not change with azimuthal rotation due to the underlying HOPG

substrate, as mentioned earlier.

The corresponding AFM images in 7.6 are consisitent with the RHEED patterns

shown but also show more features of the domain size and width. Compact domains with

triangular shape are observed under conditions of high desorption rate (achieved via low V

flux with an elevated substrate temperature of Tsub = 500◦C), while discontinuous domains
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are observed when the desorption rate is decreased is decreased (Figure 7.6, Tsub < 500◦C).

At growth temperatures above 500◦C, there is not enough Se supply leading to colum-

nar structures and metal clusters which strongly influence the nucleation. The randomly

dendrite-type branched, highly discontinuous domains are referred to as fractals [259, 269].

This fractal-to-compact transition is the result of the competition between adatom attach-

ment and edge diffusion processes [259]. The latter being responsible for the relaxation

of the domain from the initial shape (often random and branching) to the thermodynam-

ically favorable configuration (compact triangle) [259, 269]. Compact, triangular domains

are produced close to the adsorption-desorption equilibrium, in which the growth rate and

sticking coefficient are relatively low. The fractal structure may be undesirable since defects

could be created along the rough edges as domains grow [259, 269], which may give rise to

a non-magnetic layer.

In the zoomed-in AFM images in Figure 7.7, the fractal-to-compact to island tran-

sition can be clearly seen as we increase substrate temperature. For the compact triangular

domain samples grown at Tsub = 500◦C, the surface coverage is relatively low in the mono-

layer limit due to the low adatom density of the chalcogen atoms. Thicker layers seem to

prefer to grow on top of the compact triangles as one can see in the AFM image. At the

edges of some of the compact triangles, some further nucleation is observed. This transi-

tion may be associated with the expanded domains which capture more chalcogen adatoms,

breaking the equilibrium between attachment and edge diffusion leading to a possible fractal

structure [259].

Due to the low lateral monolayer coverage of the compact triangular domain growth
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Figure 7.8: RHEED and corresponding AFM images of VSe2 post annealing on HOPG.

using a Tsub of 500◦C, practical applications in need of wafer-scale films will not be feasible.

Combining both the lower temperature fractal larger area growth with higher temperature

compact domain growth will be an ideal way to alleviate this issue. To do so, we grew

few-layered VSe2 films at 300◦C and post annealed at 500◦C under no flux for 30 minutes

in order to attempt to promote lateral growth. What we observe are some interesting

features, which include both compact triangular domains, expanded branches connecting

the compact domains and regions exposing the underlying HOPG substrate (Figure 7.8).

While larger larger coverage is observed, the lack of homogeneity and lateral coalescence

throught the film still leaves a concern. This will need to be further investigated by studying

the post annealing process under a Se flux to initiate more chalcogen adatom mobility giving

potential rise for more lateral continuity in the film.

It is also important to see if ferromagnetism exists in these compact domain films,

which were reported in previous work [106]. For this study, we mechanically exfoliate the
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Figure 7.9: Room temperature SQUID measurement on ∼1 ML VSe2 grown on HOPG at
Tsub = 500◦C showing easy plane magnetization.

top layer of the Tsub = 500◦C sample with kapton tape and encapsulate it with more

tape to protect it from damage prior to loading inside the magnetometer. The sample is

measured in both in-plane and out-of-plane orientations at room temperature using SQUID

magnetometry. Our observations, shown in Figure 7.9, show a preferred magnetization

pointing into the sample plane as previously reported in [106]. This leads us to believe that

the VSe2 grain nucleation is extremely important into realizing ferromagnetism in these

materials and may be very difficult to study on other substrates that have smaller terrace
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widths.

The results of this nucleation and growth study indicate that to limit the nucle-

ation density and promote 2D layered growth, it is necessary to have an elevated substrate

temperature with an Se-rich environment. This is important, while having the transition

metal flux low, to suppress the formation of V-rich nuclei, which in turn suppresses vertical

growth and promotes 2D growth. It should be noted that this has only been studied in

WSe2 films grown by MBE and needs to be studied on other TMDC materials grown by

MBE and other thin film deposition techniques. By using the strategies used in [259], we

developed a way to grow large-domain VSe2 films which is crucial for both device appli-

cations and realizing magnetism in these materials which will lay a foundation for future

studies of other 2D TMDCs that may hold magnetic ordering. We have achieved monolayer

compact domains with a width of ∼100-120 nm, which is a drastic improvement from the

discontinuous, branch-like domains formed at lower temperatures.

7.6 Conclusions

In this Chapter, we have demonstrated that high quality VSe2 can be grown on

both van der Waals and 3D substrates via van der Waals epitaxy. Despite the large lattice

mismatch with the substrate, the grown VSe2 films have no misfit dislocations or epitax-

ial strain and are rotationally aligned to the GaAs(111) and HOPG substrates. Due to

the lack of ferromagnetism observed in samples grown on GaAs substrates, we studied the

growth nucleation and domain formation on HOPG substrates and learned that the sub-

strate temperature is extremely critical in obtaining a 2D growth mode. Growing in an
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Se-rich environment and at an elevated substrate temperature (while keeping the V flux

fixed), enables compact domain growth of triangular structures and growing at low temper-

atures enables growth of discontinuous branch-like structures. The knowledge gained from

this study provides a road map into realizing interesting phenomena in TMDC structures

grown by MBE.
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Chapter 8

Suppression of Magnetic Ordering

in Fe-Deficient Fe3 − xGeTe2 from

Application of Pressure

8.1 Abstract

Two-dimensional (2D) van der Waals magnets with multiple functionalities are

becoming increasingly important for future technologies in spintronics and valleytronics.

Application of external pressure is desired to explore interesting phenomena such as the

underlying physical mechanisms of the intrinsic magnetism. In this work, the magnetic,

electronic, and structural properties of van der Waals-layered, Fe-deficient Fe3−xGeTe2 is

systematically investigated by application of high pressure. Magnetotransport measure-

ments show a suppression of Curie temperature (Tc) with an increasing pressure up to 19.4
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GPa. The electrical resistance of Fe3−xGeTe2 shows a change from a metallic (dR/dT > 0)

to a less metallic (dR/dT < 0) phase, while the transverse magnetoresistance (MR) is nega-

tive with an increase in magnitude (below Tc) with pressure. High-pressure x-ray diffraction

(HP-XRD) shows no structural phase change in the hexagonal crystal for pressures up to

29.4 GPa but a clear compression of the unit cell parameters. The decrease in the Tc is

due to the lattice shrinkage from pressurization which leads to a weakening of the exchange

interaction, while the increase in MR may be related to shrinkage of the van der Waals

gap leading to a stronger interlayer coupling. These results indicate that the application of

pressure can complement other external stimuli such as chemical doping and strain when

manipulating the material properties of van der Waals magnets which are of high interest

for next-generation spintronic technologies.

8.2 Introduction

Recent studies showing intrinsic ferromagnetism in the monolayer limit of van

der Waals (vdW) materials has opened many opportunities to study two-dimensional (2D)

magnetism and other scientific explorations [90, 93]. Fascinating properties such as layer

dependence, gate-tunable magnetism and giant magnetoresistances in tunneling junctions

consisting of mechanically exfoliated CrI3 [97, 98, 100], and room temperature ferromag-

netic ordering in large-area films of monolayer MnSe2 [107, 258] and VSe2 [106] grown by

molecular beam epitaxy have been reported showing the potential integration for spin-based

technological applications. Among the recently studied 2D magnets, Fe3−xGeTe2 is of in-

terest due to its high Curie temperature, Tc, strong perpendicular magnetic anisotropy,
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competing magnetic phases, and tunable magnetic properties depending on the concentra-

tion of Fe and its thickness [102, 104, 270, 271, 272, 273, 274, 275, 276, 277, 278].

Since many chalcogen-based materials (consisting of S, Se, and Te) can be exfo-

liated down to single atomic sheets, there is interest in developing a better understanding

of the complexity of the bulk parent compound. This is of interest due to the possibilities

of creating more structurally and magnetically stable 2D materials. To develop a better

insight of their bulk counterparts, studies under varied environmental conditions will give

a firmer foundation for going toward the 2D limit of these compounds.

Application of pressure offers a unique way of modifying the relative strengths

of the exchange interactions by altering the respective interatomic separations of the crys-

tal [279, 280, 281, 282]. A recent example showing a pressure-induced spin-reorientation

transition in vdW Cr2Ge2Te6, shows that due to their weak vdW coupling between layers,

pressure may cause drastic magnetic and structural transitions [283, 284]. In this Letter,

we demonstrate that the crystal structure, electronic properties and magnetic properties

can be drastically manipulated by applying high pressure. In particular, we find that the

intrinsic magnetoresistance can dramatically change by increasing the pressure within our

measured range, which is due to both shrinking of the Fe3−xGeTe2 lattice and suppression

of the magnetic moment leading to a decrease in Tc. This work indicates that pressure pro-

vides an effective approach to reliably control the magnetic properties in vdW ferromagnets

and it offers a new route for exploring exotic properties of the 3D counterparts of 2D vdW

materials.
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8.3 Methods

Crystals of Fe-deficient Fe2.75GeTe2 were grown from a Te flux according to a

modified literature procedure [285]. 80.4 mg Fe granules (2 eq., 99.98%, Alfa Aesar), 52.3

mg Ge powder (1 eq., 99.999%, Alfa Aesar), and 367.4 mg Te lumps (4 eq., 99.999%, Alfa

Aesar) were heated in an alumina crucible in an evacuated quartz ampoule to 950◦C, kept

there for 12 hrs., cooled to 875◦C at a rate of 60◦C/hr. and to 675◦C at a rate of 3◦C/hr. The

mixture was quenched to air and the hot flux removed by centrifugation, yielding metallic

crystals of several mm edge length. Sample composition is confirmed via Rutherford back

scattering (RBS) measurements.

Lattice parameters of the samples in ambient conditions were determined using

standard x-ray diffraction (XRD) measurements (Bruker, D8 Discover) with a Cu K-α

source (λ = 1.54 Å). Pressure-dependent XRD scans were performed at sector 16-BMD of

the Advanced Photon Source (APS) at Argonne National Laboratory using a 30 keV x-ray

source (λ = 0.4133 Å). Samples were powdered and loaded into a gas-driven-membrane

diamond anvil cell (DAC) with a rhenium gasket and neon gas as the pressure-transmitting

medium. The pressure is determined via gold powder mixed with the sample and confirmed

with ruby spectroscopy at select pressures [142, 286]. The XRD patterns are collected

by an area detector and converted into powder patterns using DIOPTAS [148]. A CeO2

calibration crystal was used to determine the instrument parameters for refinements via

GSAS-II [151, 152]. All measurements were performed at room temperature at a pressure

range between 0.7 and 29.4 GPa.

Bulk magnetization measurements are employed by a 5 T SQUID magnetometer
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(Quantum Design). For pressure measurements inside the magnetometer, the sample is

mounted inside a high-pressure cell module (Almax easyLab Mcell 10) that is part of a

Cu-Be attachment mounted to a DC SQUID rod. Prior to pressurization, the sample is

immersed in a pressure-transmitting medium of Daphne mineral oil. Pressure is applied to

the sample through the transmitting medium by exerting a force on a series of tungsten

carbide pistons via a mechanical press (Mpress Mk2) and the pressure is determined from

the superconducting transition temperature of a Sn manometer that is inside the pressure

cell next to the sample. The magnetization measurements are performed from 5 to 350 K

with the sample in an out-of-plane orientation with respect to the external magnetic field

of the SQUID. The maximum pressure range for this experiment is from 0 to 1 GPa.

Electrical and magneto-transport measurements are performed in a 16 T physical

property measurement system (PPMS) (Quantum Design) using the AC transport option.

High-pressure transport is performed on a crystalline sample using an eight-probe designer

DAC [138] with steatite as the pressure-transmitting medium and ruby as the pressure

calibrant. Samples in this study are pressurized up to 19.4 GPa.

8.4 Results and Discussion

Fe-deficient Fe2.75GeTe2 is a weak itinerant ferromagnet that crystallizes into a

hexagonal structure with a space group of P63/mmc as projected in Figure 8.1a. The

crystal consists of layered Fe3Ge slabs sandwiched between two van der Waals-bonded Te

layers. Ambient pressure XRD measurements (Figure 8.1b) are indexed and obtain lattice

parameters of a = 3.95553 Å and c = 16.38871 Å, which are very close to previous reports (a
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Figure 8.1: Structural and magnetic properties of Fe2.75GeTe2 at ambient and low hydro-
static pressures. (a) Ball-and-stick model of Fe3−xGeTe2, (b) ambient pressure XRD (inset
shows laboratory photograph of crystal, scale bar is 5 mm) and star labeled peaks are the
FeTe2 impurities. (c) Ambient bulk M(H) loops showing easy axis anisotropy at 5 K, (d)
M(T) showing a Tc at ∼150 K and (e) M(T) hydrostatic pressure measurements showing
small decrease in Tc.
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= 3.95001(7) Å and c = 16.4019(4) Å at 200 K [285]). Our samples contain an Fe-deficient

phase of non-magnetic FeTe2 (orthorhombic, Pnnm) impurities which is considered for the

XRD refinement analysis but excluded from paper. Figures 8.1c-d shows the magnetic

properties at ambient pressures, showing a preferred out-of-plane magnetization along the

c axis of the crystal and a Tc of ∼150 K. Under hydrostatic pressure from 0 to 1 GPa,

bulk magnetization measurements as a function of temperature show a slight decrease in

its Tc. Figure 8.1e presents the results of the zero-field-cooled (ZFC) magnetization, M(T),

measured with an external magnetic field of 0.01 T as a function of pressure. With in-

creasing external pressure, the paramagnetic to ferromagnetic phase transition temperature

decreases to ∼145 K. This transition temperature is determined via differentiation of the

M(T) curves, dM/dT , shown in the inset of Figure 8.1e. The variation of the Tc is likely

due to the sensitivity of the magnetic exchange interactions in relation to the deformation

of the lattice structure of Fe2.75GeTe2. In order to develop a further understanding of how

the compression of the crystal affects the magnetic properties we move to apply higher

pressures using a DAC.

Based on previous chemical doping studies of Fe3−xGeTe2 crystals, the Tc is di-

rectly related to the amount of Fe vacancies which distort the lattice [285]. With less Fe

vacancies, the lattice expands along the a axis but contracts along the c axis leading to

an increase in the Tc to 220 K, close to room temperature. While this work is used as a

guide, the application of hydrostatic pressure is expected to shrink both crystal axes, for

which it will affect the ordering temperature differently. Figure 8.2a displays the refine-

ment of the high-pressure XRD at 0.8 GPa denoting the Fe2.75GeTe2, FeTe2, Au pressure
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marker, and Re gasket phases. All Fe2.75GeTe2 diffraction peaks are well indexed with the

hexagonal P63/mmc structure and gradually shift to a higher angle with increasing pres-

sure, indicating a smaller unit cell. There are a few low intensity, unidentifiable peaks at

higher pressures in consistent positions which were excluded from the refinement. Lattice

contraction at higher pressures up to 29.4 GPa is shown in the XRD patterns in Figure

8.2b. This shows no obvious sign of a structural phase transition and can be well described

by the Rose-Vinet equation of state (EOS) [144] with B = 52 GPa and B = 5.77 [144]

(Figure 8.2f) which is close to other van der Waals crystals under high pressure [287]. Fig-

ures 8.2c-e show the refined lattice constants a, and c, and the c/a ratio further confirming

compression of the unit cell. It is found that the reduction of the c-axis is relatively more

significant than that of the a-axis due to the weak interlayer vdW interaction. There are no

signs of significant disruption in the lattice from these curves but there is a small anomaly

in the pressure range from 9.3 to 18.4 GPa, which may be due to the solidification of neon

gas at 9.3 GPa (2θ = 18.8◦) that persists until 18.4 GPa (2θ = 19.9◦) when it merges with

another sample peak. Nevertheless, the XRD confirms that the hexagonal crystal structure

of Fe2.75GeTe2 persists up to the highest measured pressures near 30 GPa.

To develop an understanding on how the structural compression effects the mate-

rials electronic and magnetic properties at high pressures, we performed longitudinal and

transverse resistance (Rxx and Rxy) measurements at selected pressures with and without

applied magnetic fields. Figure 8.3a displays a schematic of a designer DAC which permits

these measurements and allows us to perform a novel, high-pressure electrical- and magneto-

transport study. Temperature-dependent longitudinal resistance, Rxx(T), as a function of
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Figure 8.2: High pressure XRD measurements on Fe2.75GeTe2. (a) Rietveld refinement of
powdered sample at 0.7 GPa, blue, red, teal, and green tick marks refer to Au, Fe2.75GeTe2,
FeTe2, and Rh gasket peaks, respectively. (b) XRD spectra at select pressures showing
increase in angle which corresponds to shrinking of lattice. (c-f) Lattice parameters and
cell volume as a function of pressure with Rose-Vinet EOS fitting well to the curve.
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pressure with no applied field is shown in Figure 8.3b and is normalized to the room tem-

perature resistance value for comparison. The electronic properties change as a function

of applied pressure, from a metallic state at ambient pressure to a less metallic state with

increasing pressure up to 16.2 GPa. In a concurrent report on Fe-rich Fe3GeTe2 (bulk Tc

= 220 K), researchers denoted a kink in the ρxx(T) curve which represents the transition

from a ferromagnetic phase to a non-magnetic phase after taking a derivative, dρxx/dT,

where this becomes indistinguishable at pressures above 13.4 GPa (Tc = 120 K) [288]. In

our work, we observe similar broadening of the derivative of the Rxx(T) curve in pressures

above 4.1 GPa (shown in Figure 8.3c), which makes it challenging to determine the Tc from

this method. The reason why we are seeing broadening at lower pressures is due to the

lower starting Tc from Fe vacancies. Other methods include taking the intercept between

the two different slopes on the Rxx(T) curve or marking a middle point of the d(ρ, R)xx/dT

broad peak (or kink) which corresponds to the transition temperature [289]. It is clear from

our case that while we increase pressure, the transition temperature has a decreasing trend

according to the mentioned methods but difficult to determine an actual numerical value

for Tc.

To quantify Tc as a function of pressure, we continue our investigation by studying

the transverse magnetoresistance (MR) as a function of applied magnetic field (Rxx(H)

and Rxy(H)). Figure 8.4 presents both the symmetric (Rxx) and antisymmetric components

(Rxy) of the MR curves at select temperatures as a function of pressure. The Rxx(H) data

has been normalized by calculating the MR (%) given in the equation below

MR(%) =
∆R

R
=
R−R0

R0
(8.1)
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Figure 8.3: High pressure electrical transport measurements on Fe2.75GeTe2. (a) Schematic
of designer DAC showing how sample is loaded and wired up for measurement. (b)
Temperature-dependent resistance as a function of pressure showing transition from metal-
lic to less metallic state at higher pressure and (c) differentiation of resistance measurements
showing transition of ordering temperature with higher pressures.
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Figure 8.4: High pressure magnetotransport measurements on Fe2.75GeTe2. (a,b) Trans-
verse MR measurements at select pressures showing Tc lowering with higher pressure and
(c) transverse MR as a function of temperature at 7.8 GPa denoting quadratic-to-linear
transition. (d,e) AHE measurements at select pressures showing decrease in saturation
magnitude with pressure and (f) AHE as a function of temperature at 7.8 GPa.

where R is the resistance at a given magnetic field and R0 is the resistance at zero field. The

symmetric MR curves show interesting features such as negative MR, which is not common

in normal metals [135] but has been observed in ferromagnetic materials [290, 291, 292], and

an increase in magnitude of the MR up to 11 GPa and then a gradual decrease in magnitude

at higher pressures. At higher fields, the MR also shows a quadratic-to-linear transition at

higher pressures, where lower pressures have a quadratic dependence with applied field and

higher pressures have a linear dependence (Figures 8.4a and 8.4b). This transition may be

related to the transition temperature decreasing with increasing pressure and will need to

be investigated further with temperature dependence.

Figure 8.4c displays a temperature-dependent MR curve at a pressure of 7.8 GPa
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showing a quadratic-to-linear transition near what we expect the Tc to be from Rxx(T)

measurements. Due to the broadening of the dRxx/dT curve, we first roughly quantify

the Tc by taking a linear fit of both the lower temperature regions and higher temperature

regions of the Rxx(T) curve then identifying the intercept of those two linear fits as a Tc =

93 K. Second, we look at the temperature-dependent MR curve and further quantify the Tc

as the temperature region where the curvature transitions from quadratic to linear which

is ∼100 K. To quantify Tc value for pressure ranges 0 to 11 GPa, we will use a combination

of both R(T) and MR curvature and will use the equation below

∆Tc =
Tc,R(T ) + Tc,MR

2
(8.2)

where ∆Tc is the averaged Curie temperature that is a combination of taking the intercept

of the two slopes in Rxx(T) measurements (Tc,R(T )) and the quadratic-to-linear transition in

the MR measurements (Tc,MR). In the case of 7.8 GPa, the magnetic ordering temperature

of the Fe2.75GeTe2 is determined to be 96.5 K, a 54.5 K decrease from ambient pressure

conditions. For pressures above 11 GPa, we will just use the quadratic-to-linear transition

of the MR curve as the determining factor for the ordering temperature. A table below is

given for each pressure step showing a drastic decrease in the Tc, using our equations.

It is clear that the pressurization has a drastic effect on the ferromagnetic transition

temperature. A closer look at Figures 8.4a and 8.4b shows how the lowering of the Tc

changes the shape and size of the MR curve. At 5 K, which is well below the transition

temperature at ambient pressure, the magnitude of the MR increases from 1.3% to 10.8%

as a function of increasing pressure until 11 GPa where the magnitude of the MR begins to

decrease to 5.8% at 16.2 GPa. The initial increase in magnitude is likely due to a stronger
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Pressure (GPa) Tc,R(T ) (K) Tc,MR (K) ∆Tc (K) Quantified Tc (K)

0 145 150 147.5 147.5

2.5 132.3 n/a n/a 132.3

4.1 121.6 135 128.3 128.3

7.8 93 100 96.5 96.5

11 78.7 72.5 75.6 75.6

13.9 n/a 50 n/a 50

16.2 n/a 35 n/a 35

Table 8.1: Determination of magnetic ordering temperature at select pressures.

interlayer exchange coupling while the van der Waals gap shrinks (as noted in the XRD

data), converting the bulk Fe2.75GeTe2 from a quasi-2D to a quasi-3D structure. While

the likelihood of Fe atoms from other unit layers possibly fill the vacancies in the crystal

with pressurization, the decrease in Tc contradicts this since we would expect an increase

in Tc with less Fe vacancies [285]. With increasing pressure up to 16.2 GPa, the magnitude

of the MR decreases which is directly related to the Tc decreasing, meaning the sample is

experiencing more thermal fluctuations at higher pressures. For higher temperatures near

the Tc at ambient pressure (120 K), the curve shows a similar trend while also starting with

a smaller MR (%) due to the metallic nature of the crystal. The magnitude of the MR

increases up to 7.8 GPa but then decreases at higher pressures. This confirms the trend

that when the unit cell shrinks initially the exchange coupling between layer units becomes

stronger, giving rise to a larger MR, then when the Tc is closer to a given temperature,

thermal fluctuations cause the MR to monotonically decrease. It is also important to note

that once above Tc, the shape of the MR changes from a sharp, quadratic convex (below

Tc) to a broad, linear concave (well above Tc) curvature which confirms our observations

from before.
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Figure 8.5: Transverse MR (%) as a function of pressure at select temperatures of
Fe2.75GeTe2 showing transition temperature and Tc showing a monotonic decrease with
increasing pressure

To confirm these observations further, we look at the antisymmetrized Rxy(H)

data. For ferromagnetic conductors, the ordinary Hall component (Rxy) has an additional

non-linear ferromagnetic contribution to it typically noted as the anomalous Hall effect

(AHE) [102, 293, 294]. To isolate the AHE contribution, we fit the slope over the field range

where the Rxy appears to saturate which is from 0.5 T to 10 T. This linear component is then

subtracted from the overall signal to yield the AHE component as shown in the equation

here

RAHE = Rxy −RHHz, (8.3)

where RAHE is the isolated AHE contribution to the signal, which is shown in Figures 8.4d-

f as a function of applied magnetic field. Our observations show that with application of

pressure, the overall saturation value of the RAHE signal decreases with increase in pressure

as observed in Wang, X., et al. [288], but the overall squareness does not remain due to the

decrease in Tc and suppression of the Fe magnetic moment.
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Figure 8.6: Relative bond distance of Fe(I) and Fe(II) atoms showing decrease with pressure.
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Figure 8.5 displays our observations discussed earlier. The MR curves in Figure

8.5a show the change in MR (%) at 4.1 GPa from 150 K to higher temperatures where the Tc

begins to decrease with increase in pressure and the Fe moment becomes more suppressed.

There are also two other anomalies at 7.8 GPa for a temperature range of 80 to 120 K and

11 GPa for the temperatures less than 80 K which further indicates the Tc becomes more

suppressed at higher pressure. This pressure-dependent reduction of the Tc is displayed in

Figure 8.5b showing a linear monotonic decrease in the magnetic ordering temperature with

increasing application of pressure. With pressures above 19.4 GPa, the magnetic moment

of the Fe is completely suppressed, and we are not able to measure any magnetism in the

sample. It is important to discuss why the ferromagnetic ordering is heavily suppressed

by hydrostatic pressurization. One possibility is that due to the deficiency of Fe in the

crystal, the pressurization can cause a disruption of the magnetic exchange by increasing

the disorder in the system via manipulation of the interatomic distances. In [285], the

reduced Tc correlates with the expansion of c, an increase in Fe(I)-Fe(I) bond distance, and

a decrease in Fe(I)-Fe(II) bond distance. In our case, we see a reduction in c, and a decrease

in both Fe(I)-Fe(I) and Fe(I)-Fe(II) (Figure 8.6) atomic distances with high pressure which

gives rise to a reduced Tc. Since Fe2.75GeTe2 is an itinerant ferromagnet, we expect that

the spins will become more delocalized with pressure. Unfortunately, we are not able to

perform bulk magnetization measurements at high pressures in order to extract an effective

magnetic moment to quantify the Rhodes-Wohlfarth ratio as a function of pressure [39, 295].
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8.5 Conclusions

In summary, we have systematically studied the effect of hydrostatic pressure on

Fe-deficient Fe2.75GeTe2. With the absence of applied pressure, it shows negative magne-

toresistance, metallic behavior and strong easy axis anisotropy. Meanwhile, with application

of high pressure, the Tc decreases from ∼150 K to nearly full suppression (∼10 K) at 19.4

GPa owing to the shrinking of the lattice and relative Fe-Fe bond distance. The electronic

properties show a transition from a metallic to an insulating state with increasing pressure

up to 19.4 GPa. Magnetoresistance measurements show an initial increase in magnitude

with applied pressure owed to a stronger interlayer exchange interaction followed by a de-

crease in magnitude with the lowering of the ordering temperature. The demonstration of

the suppression of Tc in Fe2.75GeTe2 shows that high pressure can probe regimes that cannot

be achieved by other techniques such as chemical doping or strain and can also potentially

be used to study underlying mechanisms of magnetic ordering in these systems.
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Chapter 9

Conclusions

With these recent works demonstrating magnetism in 2D van der Waals materials

and the subsequent tunability of these materials shows the possibility for future technolog-

cial advances in spintronics and other fields. In this Dissertation, I have shown the (1)

synthesis of 2D magnets by MBE, (2) detailed structural characterization of said materials

(i.e. MnSe2, VSe2), (3) systematic magnetic characterization, and (4) pressure-dependent

studies on the properties of their bulk counterparts. Bringing together wafer scale devel-

opment, room temperature ferromagnetism, and large tunability can open up many realms

of possibilities to make future magnetic tunnel junctions and spin filtering devices and for

studying interesting phenomena in extreme conditions. There remains to be seen what may

come of these materials, but their interest may surpass typical 3D magnets used in industry

in the coming decades.
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Appendix A

Thermal processing of Co/Sm

multilayered films via isochronal

magnetic field annealing

A.1 Abstract

Achieving and retaining a high energy density at high operating temperatures is an

engineering challenge for hard-phase permanent magnets. Here, the control of coercivity and

remanence is reported in [Sm/Co]n multilayered films via thermal processing. Magnetic and

structural characterization shows that after isochronal annealing the [Sm/Co]n structure at

moderate temperatures (750 K), the Sm reacts with Co and forms a [Co/SmCo5]n structure.

Magnetic field annealing in fields up to 50 kOe induces a uniaxial magnetic anisotropy in

the elemental Co prior to the thermal reaction of Sm and Co. Low magnetic field anneals

188



below 10 kOe increase the squareness and coercivity of the Co/SmCo5 structure while high

fields up to 50 kOe begin to diminish the magnetic properties. Further isochronal annealing

at higher temperatures above 800 K degrades the ferromagnetic properties, which is likely

due to the structural decomposition of the SmCo5 layers. This work demonstrates a method

to investigate the both the effect of magnetic field annealing on the SmCo5 compound and

the operational limits of a potential nanocomposite magnet.

A.2 Introduction

Permanent magnets are key components in clean energy production such as com-

pact motors in wind-powered turbine generators and in environmental protection such as

regenerative braking in electric and hybrid vehicles. For compact high-performance appli-

cations, permanent magnets are generally composed of rare-earth-based intermetallic alloys

(e.g. Sm-Co, Nd-Fe-B) which have high coercivity (HC) and correspondingly large energy

products (|BH|Max) although these benefits are offset by high material cost and supply

risks. Exchange spring magnets, which consist of a nanocomposite mixture of highly coer-

cive magnetic hard phases that are exchange coupled to a magnetic soft phase with high

remanence, offer the potential to increase the energy product while simultaneously reducing

the critical rare-earth element material intensity [304, 308, 313, 314, 322, 323, 329, 330].

In compact motor technologies, permanent magnets need to retain both a high remanent

magnetization and coercive field at high operating temperatures . Commercial standard

Nd2Fe14B magnets are limited by their low operating temperatures (e.g. 150◦C) [298, 325],

in which additional amounts of Tb and Dy preserve Nd’s magnetic properties at high tem-
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peratures, comes at a high cost. The Sm-Co system is appealing for such applications,

due to high Curie temperatures of the materials (SmCo5 (Tc = 750◦C), Sm2Co17 (Tc =

850◦C), Co (Tc = 1115◦C)) [300, 301, 304, 312, 318, 320], and excellent magnetocrystalline

anisotropy.

The structural and magnetic properties of hard-phase permanent magnets (e.g.

Sm-Co, L10 CoPt, Nd-Fe-B, MnBi) are sensitive to thermal processing conditions [298, 302,

310, 311, 327, 332], which leads to many challenges in achieving and retaining a high energy

density. For instance, a high temperature anneal around 600◦C is known to obtain a high

coercivity in sintered Nd-Fe-B magnets [326, 331], while a magnetic field anneal can induce a

preferred orientation of the crystal [307]. It is also known that upon rapid thermal annealing

of Sm-Co/Co multilayered films at 525◦C, an exchange-coupled, single-phase magnet can

be obtained with a large energy product [332].

This work presents a study of isochronal annealing of superlattices of Sm and

Co, wherein the coercive SmCo5 phase is formed and exchange coupled to unreacted Co

through successive heat treatments. Magnetic field annealing is employed to study the

effects of imposing a preferential orientation during reaction, and the phase stability of the

nanocomposite magnet is reported.

A.3 Materials and Methods

Samples are prepared by direct current (DC) magnetron sputtering in a high-

vacuum chamber with a base pressure of ∼5 × 10−7 Torr. Base layers of Co/Cu/Ti are

grown on AlN wafers to create adhesion for the [Sm/Co]n growth. All samples are grown at
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Figure A.1: Thermal processing of [Sm/Co]n multilayered films. (a) Schematic of a
[Sm/Co]n multilayered stack prior to thermal reaction. (b-c) Room temperature in-plane
ferromagnetic hysteresis loop of [Sm(21.9 Å)/Co(100 Å)]167 before and after Sm-Co reac-
tion at 750 K, respectively. (d) STEM image showing sharp, distinct alternate planes of Co
and SmCo5. Inset: Plan view TEM showing crystalline Co layers with adjacent amorphous
SmCo5 layers. (e) EELS linescan showing sharp transitions from Co to SmCo5 layers. In-
set: EELS map of the Co/SmCo5 structure with purple representing the Co layers and teal
representing the SmCo5 layers, respectively.
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room temperature. Elemental Sm and Co are evaporated from commercial standard sput-

tering targets. Capping layers consisting of Ti/Cu/Co are grown on top of the [Sm/Co]n

multilayers to further protect the sample from surface oxidation and impurities. Film thick-

nesses are calibrated using flux measurements and cross-checked with x-ray reflectometry

scans of elemental films. In this study, [Sm/Co]n multilayers consisting of the following

structure: [Sm(21.9 Å)/Co(100 Å)]167, are used with a total thickness of 2 µm. The samples

are thermally processed by isochronal annealing in a 160 kOe physical properties measure-

ment system (PPMS, Quantum Design) equipped with a vibrating sample magnetometer

(VSM) oven option, allowing for sample temperatures of up to 1000 K. All anneals are

performed for 1 hour in 100 K steps from room temperature, up to the 700 K, and 25 K

steps thereafter (50 K/min ramp rate). In-plane magnetization loops, M(H), are measured

at room temperature after each subsequent anneal. The crystal structure and composition

of the samples are measured by electron energy loss spectroscopy (EELS) and scanning

transmission electron microscopy (STEM). The element-specific magnetic properties of the

samples are measured by soft x-ray absorption spectroscopy (XAS) and x-ray magnetic

circular dichroism (XMCD) on beamline 6.3.1 of the Advanced Light Source.

A.4 Experimental Results and Discussion

The magnetic properties of the as-deposited [Sm(21.9 Å)/Co(100 Å)]167 (total

thickness = 2 µm) samples (schematic shown in Figure A.1a) are dominated by the elemental

Co, as shown in the magnetization loop in Figure A.1b. Upon annealing at 750 K, the Sm-Co

hard phase forms giving a coercive, two-phase ferromagnetic hysteresis loop shown in Figure
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A.1c. Subsequent STEM micrographs are shown in Figure xxd showing sharp and distinct

alternating planes of a Co (7 nm) and SmCo5 (4 nm) structure after thermal processing.

Figure A.1e shows an EELS linescan showing a 1:5 Sm:Co stoichiometric ratio by comparing

the Sm concentration in the SmCo5 to the adjacent elemental Co layers. The inset shows an

EELS map encompassing the alternating layers of the Co/SmCo5 structure. This confirms

that the Sm is entirely consumed in the reaction with Co to give amorphous SmCo5 layers

and leaves an excess of adjacent crystalline Co layers, where the atomic structure of the

crystalline layers is clearly shown in the Figure A.1d inset via plan view TEM. Continued

anneals above 800 K begin to degrade the ferromagnetic properties of the sample, with a

sharp decrease in the coercive field and remanent magnetization. This degradation at high

temperatures (up to 1000 K) is likely due to the slow structural decomposition of SmCo5

into Sm2Co17, Sm2Co7 (TC = 432◦C), and/or Sm5Co19 (TC = 513◦C) [297, 306, 309, 328],

as well as face-centered-cubic (fcc) Co and Sm2O3 [299].

Applying a magnetic field during the isochronal annealing process leads to a drastic

increase in the magnetic remanence after an anneal at 500 K. This suggests the application

of a magnetic field influences the magnetic anisotropy in the elemental Co. Figure A.2a

shows a magnetization loop comparison of a 500 K anneal with and without an application of

a 10 kOe applied field. Previous reports have shown that a well-defined uniaxial anisotropy

can be obtained in amorphous soft magnets due to pairwise texture induced by magnetic

field annealing [305]. Rotating the sample by 90◦ in-plane (transverse) and out-of-plane

(perpendicular) confirms that a uniaxial magnetic anisotropy is induced.

Upon annealing at 750 K under several applied fields (Figure A.2c), similar mag-
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Figure A.2: Magnetic field annealing on [Sm(21.9 Å)/Co(100 Å)]167 multilayered films.
(a) In-plane magnetic hysteresis loops of [Sm/Co]n annealed at 500 K with (blue) and
without (red) an applied external field showing change in magnetic remanence. (b) Angular
dependence of 500 K field-annealed sample confirming an induced in-plane uniaxial magnetic
anisotropy. (c) M(H) loops of [Sm/Co]n annealed at 750 K with an application of different
external magnetic fields showing changes in the squareness and coercivity. (d) Coercive
field as a function of annealing temperature at different applied external magnetic fields.
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netic hysteresis loops are obtained compared to the samples with no applied field (Fig-

ure A.1c), suggesting that the formation of the SmCo5 hard phase is not affected by the

application of a magnetic field. In fact, at low and moderate fields, the loop square-

ness and coercivity increases as shown in Figures A.2c and d. This behavior may also

be related to reports of preferential domain nucleation while annealing under a magnetic

field [296, 310, 315, 321, 324], but the underlying mechanism remains unclear. Modifying the

strength of the field applied during annealing suggests that higher values are detrimental,

with a 10 kOe field yielding higher coercivities than a 50 kOe field.

If applied magnetic fields lead to orientation of elemental Co, then it is possible

that higher fields can cause sufficient orientation to limit the exchange coupling or else

drive a phase segregation that hinders SmCo5 formation. Examining the ratio of hard

to soft phases in the hysteresis loops in Figure A.2c reveals an increased fraction of soft,

elemental Co for higher applied fields. High field-anneals from 10 to 50 kOe show a ∼60-70%

hard/soft ratio with a two-phase hysteretic behavior, while low applied fields from 500 Oe

to 5 kOe gives nearly a 100% single phase square loop. It is apparent that low and moderate

applied fields act to orient the Co and improve the coercivity of the resulting SmCo5, but

higher fields lead to a diminished magnetic performance.

The magnetic field dependence and two-phase magnetic behavior can be further

examined through element-specific XMCD hysteresis loops measured in surface sensitive

total electron yield mode. Figure A.3a shows a hysteresis loop for Co at the L3 edge

after annealing at 800 K under a 10 kOe field. A low coercivity of <1 kOe is observed,

in contrast to the hard phase previously observed in the bulk-sensitive VSM loops, and
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Figure A.3: Element-specific XMCD on a [Sm(21.9 Å)/Co(100 Å)]167 multilayered film
after an 800 K anneal under a 10 kOe field. (a) Elemental Co (blue) XMCD prior to
mechanically polishing the surface of the film showing a soft magnetic hysteresis loop. (b)
Elemental Co (blue) and Sm (red) XMCD after mechanically polishing off the top layers
of the film showing hard magnetization loops of the two elements present, thus confirming
SmCo5 reaction.

no magnetic signal is observed for elemental Sm. To further investigate, the sample is

mechanically polished to expose the SmCo5 layer and re-measured. Figure A.3b shows a

significantly larger coercivity for the Co XMCD magnetic hysteresis loop and the emergence

of a coincident Sm XMCD loop. This indicates the presence of an unreacted, uncoupled layer

of Co at the surface. Such spatial segregation could arise from interdiffusion of the Cu and

Ti capping layers, which act to inhibit the Sm-Co reaction, and give rise to the two-phase

behavior observed in the VSM hysteresis loops. XAS/XMCD spectra measurements (not

shown) did not reveal any evidence of oxidation of the Sm or Co meaning the ferromagnetic

signal is not a result of any related oxide compounds.
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A.5 Summary and Conclusions

In summary, thermal processing is employed to study the ferromagnetic properties

of a Sm/Co superlattice. Isochronal annealing of [Sm/Co]n multilayered films at moderate

temperatures (750 K) forms a hard ferromagnetic hysteresis loop from a Sm and Co reaction.

Annealing at higher temperatures (above 800 K) leads to decomposition of the SmCo5

compound into different Sm-Co species such as Sm2Co17, Sm2Co7, Sm5Co19 and/or the

yielding of different byproducts such as fcc Co or Sm2O3. Further investigation using

the application of low and high magnetic fields during the annealing process leads to an

observation of a uniaxial magnetic anisotropy in the elemental Co and an influence on the

loop squareness and coercivity in SmCo5. Element-specific XMCD confirms the magnetic

hard phase in the Sm and Co XMCD hysteresis loops after mechanically polishing the

top layers of the structure. With this, a way to investigate the thermally-driven diffusion

mechanisms for multilayered Sm/Co films and operational limits for reacted SmCo5 layers

is provided and can be a test bed for a potential nanocomposite magnet.
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Appendix B

MBE Growth Recipes

B.1 γ-GaSe on GaAs(111)B

(1) Mount cleaved 10 × 10 mm2 GaAs(111)B substrate to un-polished Si(100)

backing wafer via indium bonding.

(2) Mount backing wafer onto uni-block and trolley.

(3) Load into load lock chamber and pump down to rough vacuum. Anneal at

200◦C for 1 hour, then cool down.

(4) Open to buffer chamber and load sample onto buffer heater.

(5) Anneal sample at 400◦C for 15 minutes then cool down to room temperature.

(6) In the meantime, measure beam fluxes of Ga and Se cracker to be 1:100 flux

ratio.

(7) Load sample into main chamber after measuring fluxes and heat sample to

600◦C.

(8) Anneal for 20 min. with Se open until native oxide is removed and GaAs
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RHEED pattern appears.

(9) Cool down to 400◦C with Se remaining open.

(10) Open Ga and Se shutters at 400◦C and grow for desired time. Growth rate

is typically 1 nm/min.

(11) Close both shutters, and cool to room temperature.

(12) If necessary, cap with amorphous chalcogen material (Se or Te).

B.2 SnSe2 on GaAs(111)B

(1) Mount cleaved 10 × 10 mm2 GaAs(111)B substrate to un-polished Si(100)

backing wafer via indium bonding.

(2) Mount backing wafer onto uni-block and trolley.

(3) Load into load lock chamber and pump down to rough vacuum. Anneal at

200◦C for 1 hour, then cool down.

(4) Open to buffer chamber and load sample onto buffer heater.

(5) Anneal sample at 400◦C for 15 minutes then cool down to room temperature.

(6) In the meantime, measure beam fluxes of Sn and Se cracker to be 1:60 flux

ratio.

(7) Load sample into main chamber after measuring fluxes and heat sample to

600◦C.

(8) Anneal for 20 min. with Se open until native oxide is removed and GaAs

RHEED pattern appears.

(9) Cool down to 165◦C with Se remaining open.
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(10) Open Sn and Se shutters at 165◦C and grow for desired time. Growth rate is

typically 3 nm/min.

(11) Close both shutters, and cool to room temperature.

(12) If necessary, cap with amorphous chalcogen material (Se or Te).

B.3 Monolayer MnSe2 and α-MnSe(111)

For growth on GaSe/GaAs(111)B surfaces:

(1) After growth of GaSe base layer, deposit Mn and Se (close Ga shutter), Mn can

grow at any flux ratio to Se, typically ran at 9-20 secs/ML depending on cell temperature.

(2) Close Mn and Se shutters and cool to room temperature (unless capping with

more GaSe, then close Mn shutter and re-open Ga until capping thickness reached).

(3) Cap with amorphous chalcogen material.

For growth on SnSe2/GaAs(111)B surfaces:

(1) After growth of SnSe2 base layer, deposit Mn and Se (close Ga shutter), Mn can

grow at any flux ratio to Se, typically ran at 9-20 secs/ML depending on cell temperature.

(2) Close Mn and Se shutters and cool to room temperature (unless capping with

more SnSe2, then close Mn shutter and re-open Ga until capping thickness reached).

(3) Cap with amorphous chalcogen material.

For growth on Bi2Se3/sapphire(0001):

(1) De-cap Bi2Se3 surface for 30 min. (annealing temperature around 200◦C.

(2) Deposit Mn and Se below the decomposition temperature of Bi2Se3 for appro-

priate time.
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(3) Close Mn and Se shutters, then cool down to room temperature

(4) Cap or transfer to another vacuum chamber via vacuum suitcase.

B.4 VSe2 growth on GaAs(111)B

(1) Mount cleaved 10 × 10 mm2 GaAs(111)B substrate to un-polished Si(100)

backing wafer via indium bonding.

(2) Mount backing wafer onto uni-block and trolley.

(3) Load into load lock chamber and pump down to rough vacuum. Anneal at

200◦C for 1 hour, then cool down.

(4) Open to buffer chamber and load sample onto buffer heater.

(5) Anneal sample at 400◦C for 15 minutes then cool down to room temperature.

(6) In the meantime, measure beam fluxes of V and Se cracker to be 1:1000 flux

ratio. The V is operated via the quad e-beam evaporator and needs to be operated at

a moderate power which varies with the length of the rod. Lifetime of the rods are low,

it is advised to have more than 1-2 rods during a growth run on the chamber (between

maintenance periods).

(7) Load sample into main chamber after measuring fluxes and heat sample to

600◦C.

(8) Anneal for 20 min. with Se open until native oxide is removed and GaAs

RHEED pattern appears.

(9) Cool down to 200◦C with Se remaining open.

(10) Open V and Se shutters at 200◦C and grow for desired time.
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(11) Close both shutters, and cool to room temperature.

(12) If necessary, cap with amorphous chalcogen material (Se or Te).
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