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Abstract

Background

Studies of cost-effective disease prevention have typically focused on the tradeoff between

the cost of disease transmission and the cost of applying control measures. We present a

novel approach that also accounts for the cost of social disruptions resulting from the spread

of disease. These disruptions, which we call social response, can include heightened anxi-

ety, strain on healthcare infrastructure, economic losses, or violence.

Methodology

The spread of disease and social response are simulated under several different interven-

tion strategies. The modeled social response depends upon the perceived risk of the dis-

ease, the extent of disease spread, and the media involvement. Using Monte Carlo

simulation, we estimate the total number of infections and total social response for each

strategy. We then identify the strategy that minimizes the expected total cost of the disease,

which includes the cost of the disease itself, the cost of control measures, and the cost of

social response.

Conclusions

The model-based simulations suggest that the least-cost disease control strategy depends

upon the perceived risk of the disease, as well as media intervention. The most cost-

effective solution for diseases with low perceived risk was to implement moderate control

measures. For diseases with higher perceived severity, such as SARS or Ebola, the most

cost-effective strategy shifted toward intervening earlier in the outbreak, with greater

resources. When intervention elicited increased media involvement, it remained important

to control high severity diseases quickly. For moderate severity diseases, however, it

became most cost-effective to implement no intervention and allow the disease to run its

course. Our simulation results imply that, when diseases are perceived as severe, the costs

of social response have a significant influence on selecting the most cost-effective strategy.
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Introduction
Despite progress in the fight against infectious diseases, they remain a persistent threat to
global health, resulting in approximately 15 million deaths annually [1]. Moreover, as illus-
trated by the recent H1N1 pandemic, pathogens can easily and quickly spread from country to
country, infecting millions. Both researchers and policy makers are therefore interested in find-
ing cost-effective solutions to reduce the burden of infectious disease transmission.

Modeling studies have investigated the cost-effectiveness of a number of intervention strate-
gies, including vaccination, anti-viral use, and social distancing [2–5]. These studies attempt to
quantify the cost to society imposed by the spread of disease (such as death, disability, and lost
productivity resulting from illness), and by the intervention itself (such as vaccines, anti-virals,
and lost productivity resulting from social distancing). They then determine which strategy
minimizes the overall cost of the outbreak. These studies have proven useful for comparing the
efficacy of different types of interventions. Nevertheless, an essential cost of disease transmis-
sion has not yet been considered in modeling efforts—the cost of social response.

Social responses are societal reactions to disease outbreaks. They range from anxiety to
riots, violence, or flight [6–10]. Economic effects are also frequently observed, including the
collapse of the tourism industry [11], an important source of income for many countries. The
economic impact of social responses can sometimes be substantial, far outpacing the costs of
the disease itself. For example, the World Bank has estimated that fear-driven changes in
behavior, especially reductions in workplace productivity, travel, and consumer spending, are
responsible for the bulk of the economic impact of the Ebola epidemic in West Africa [12].
Similar observations have been made about the SARS epidemic lasting from 2002 to 2004 [11].
With only 8096 cases reported worldwide [13], the direct costs of treatment were small. Never-
theless, substantial economic losses were incurred due to reductions in travel and consumer
spending, as well as reduced confidence in the markets.

Far from the rational actors presented in many mathematical models, humans tend to
inflate the actual risk from novel or severe pathogens, which are perceived as unpredictable
and uncontrollable [14]. More mundane diseases, while frequently still deadly, typically elicit
little response. We have developed a network-based model anticipating social response to dis-
ease outbreaks [15]. Social interactions are the main driver of disease transmission, while social
response spreads through both social and media influence. The model has been shown to repli-
cate population-level social responses on historical outbreaks. In the current work, we use this
model to conduct a cost-effectiveness analysis in which we explicitly account for the cost of
social response. We show how the optimal level and timing of intervention are affected. We
also explore how the intervention strategy changes if intervention elicits increased media atten-
tion, leading to a surge in social response.

Methods
We designed a set of simulations to explore how the least-cost intervention strategy is affected
by considering the cost of social response. We assumed that the total cost of an outbreak is the
sum of the cost of the disease itself, the cost of the intervention, and the cost of social response.
Our formulation differs from previous cost-effectiveness analyses, because we assumed that the
spread of disease has a cost beyond the people infected, namely, the social response.

Model of Disease and Social Response Transmission
The simulations were conducted using ALARM (AnaLytic Anxiety Response Model), a sto-
chastic model of the joint transmission of disease and social response. ALARM has been cali-
brated to data from historical disease outbreaks with and without social response, achieving a
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good fit to population-level disease transmission and social response [15]. The ALARM disease
model is a susceptible-infected-recovered model, implemented on a network, with nodes repre-
senting individuals and edges representing social connections. Individuals become infected via
contact with infected neighbors on the network, with per-contact probability p. Infected indi-
viduals recover and become immune to reinfection TR days after infection. The size of the sus-
ceptible population, structure of the disease network and the relative values of p and TR

determine the expected size of the outbreak.
The social response portion of the ALARMmodel connects the disease spread with the socie-

tal reaction. An individual i’s social response at each day t, Yi(t), is represented as a numeric
value between 0 and 1, with 0 indicating no anxiety and 1 indicating extreme anxiety or behav-
ioral manifestations of concern about disease, such as panic buying or participating in a protest.
Social response is transmitted locally, via social connections, and globally, via a signal from the
media. Infected individuals broadcast social response to their neighbors, who then communicate
with their own neighbors spreading social response through the network. The media affects the
social response independently of the magnitude of the disease spread. A key parameter of the
model, κ, reflects the perceived risk of the disease. Higher values of κ indicate greater perceived
risk, and, consequently, greater risk for social response if the disease spreads. Many factors affect
the perceived risk of a disease, including its novelty and clinical severity, as well as the availabil-
ity of counter-measures [7]. The complete methodology of ALARM is described in previous
work [15] and in S1 File. A graphical summary of the model dynamics is provided in Fig 1.

Approach to Determining the Most Cost-effective Level and Timing of
Intervention
We define the cost of the outbreak as the sum of the costs of the disease spread, the interven-
tion, and the social response. The costs of the disease spread are costs directly associated with
caring for the infected, as well as the costs associated with mortality and lost workplace produc-
tivity. The costs of intervention are costs associated with vaccination, social distancing, and
media campaigns intended to encourage preventive practices. Finally, the costs of social
response include lost productivity, stress on the healthcare delivery system, and damage to
property resulting from the population reaction to the outbreak. We define the expected cost of
the disease, given the parameters, as the sum of the expected costs of disease spread, interven-
tion, and social response:

Expected Outbreak Cost ¼ Expected Cost of Infection

þExpected Cost of Intervention

þExpected Cost of Social Response:

ð1Þ

More formally, let cD be the expected cost resulting from one infected person. The the cost
of the disease is cD ϕD where ϕD represents the total number of people infected by the disease.
Let the total cost of intervention be cI ϕI, where ϕI accounts for the level and duration of inter-
vention, and let cS ϕS be the cost of social response, where ϕS accounts for the social responses
of the individuals in the community. We minimize the expected cost of the outbreak subject to
three parameters: the timing of the intervention (τ), the duration of the intervention (TI), and
the level of the intervention (δ). Let us denote the remaining parameters as ψ. We then define
the expected cost of the outbreak as follows:

EðC j c;TI ; t; dÞ ¼ cDEð�D j c;TI; t; dÞ þ cIEð�I j c;TI ; t; dÞ þ cSEð�S j c;TI; t; dÞ: ð2Þ
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Using this formula, we can calculate the expected cost for any level (δ), duration (TI), and
timing of intervention (τ). In the paper, we discuss the how δ and τ are chosen to minimize the
cost for fixed TI. We present results showing the effects of TI in S2 File.

Implementation
Simulation Approach. We used a simulation approach to determine the most cost-effec-

tive social distancing strategy. Simulations were conducted on a scale-free network [16] with
30,000 nodes and a mean degree of 5 (household contacts [17] plus 2 to 3 additional contacts
on average). We set the disease the per-contact probability of infection, p, such that a large pro-
portion of the population, on average approximately 40%, would be infected. The time from
infection to recovery, TR, was set to 6 days, reflecting the infectious period for influenza [18].
We explored six different scenarios, by varying the perceived risk of the disease and the media
effect. In particular, for three values of the perceived risk of disease (low: κ = 0.50, moderate:κ
= 0.75, and high: κ = 1.00), we found the most cost-effective social distancing strategy with and
without the assumption that intervention leads to increased media attention. The following
procedure was used to find the most cost-effective strategy for each scenario:

1. We ran 10,000 replications of the ALARMmodel for each parameter combination where
δ 2 {0.0, 0.2, . . ., 1.0}, τ 2 {10, 1000, 5000}, and TI 2 {7, 21, 35}.

2. By averaging over the 10,000 replications, we obtained estimates of E(ϕD j ψ, TI, τ, δ), E(ϕI j
ψ, TI, τ, δ), and E(ϕS j ψ, TI, τ, δ).

3. We used Eq (2) to find the intervention strategy that minimized E(Cjψ, TI, τ, δ) for each
combination of cD, cI, and cS.

For our simulations, we defined ϕD as the total number of people infected in the outbreak.
We defined ϕI with respect to the level of intervention (δ), size of the population (n), and the

Fig 1. Overview of model dynamics. (A) Each day, infection spreads on the disease network, which sends a social response signal to the social response
network. Social response is then transmitted on the social response network via social connections and a media signal. (B) Social response is primarily
affected by the perceived risk of the disease. Outbreaks with the same number of cases produce different social responses depending upon whether the
disease in question is perceived as low risk (such as seasonal influenza) or high risk (such as SARS).

doi:10.1371/journal.pone.0136059.g001
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duration of the intervention (TI):

�I ¼ d2nTII ð�D � tÞ; ð3Þ

where I(ϕD� τ) is an indicator for the event in which the cumulative number of cases surpasses
the intervention threshold, triggering the intervention. Finally, we defined ϕS as the sum of
squared social responses. The social responses were squared to represent the fact that mild anx-
iety has almost no cost while severe social responses, such as rioting or seeking unnecessary
medical treatment can be extremely costly. Specifically,

�S ¼
XtL

t¼1

Xn

i¼1

YiðtÞ2; ð4Þ

where tL is the last day of the outbreak and Yi(t) is individual i’s social response at day t. The
parameters used in our simulations are listed in Tables 1 and 2.

Social Response Resulting from Intervention. Several researchers have pointed to the
phenomenon of social response resulting from the actions or communications of officials,
rather than from the characteristics of the disease itself [19, 20]. By calling for an intervention,
public officials draw additional media attention to the disease, making the public even more
concerned and drawing attention away from other, possibly more pressing, public health con-
cerns. We find the most cost-effective intervention strategy under this scenario, as well as
under the scenario in which intervention has no cost in terms of social response and compare
the results.

We modeled the surge in media attention resulting from the intervention by increasing
both the magnitude of the media signal and the proportion of individuals in the community
who receive the signal on the day on which the intervention was initiated. In the ALARM social
response model, each individual typically receives a signal from the media of sizeM(t) with
probabilitymp. On the day that the intervention begins, each individual receives a signal of size
5M(t) with probability tanh(10mp). Thus, on the day that the intervention begins, there is a
higher probability of receiving a signal from the media and the magnitude of that signal is

Table 1. Disease transmission and social response parameters set at fixed values for all simulations.

Parameter Description Value Justification

p per-contact infection probability 0.07 40% of population infected, absent intervention

TR duration of infective period 6 days infectious period for influenza [18]

κ disease risk index 0.50, 0.75, 1.00 explores the range of κ (0.5 � κ � 1.0)

mp media penetration 0.1 estimated from historical outbreaks [21]

q social interaction probability 0.5 assumed value; the model is insensitive to changes when κ > 0.5

α response decay 0.95 estimated from historical outbreaks [15, 21]

k� mean degree of scale-free network 5 assumed household contacts [17] and 2 to 3 additional contacts on average

γ exponent of scale-free network 2.4 2 < γ < 3 for most real-world networks [16]

doi:10.1371/journal.pone.0136059.t001

Table 2. Ranges of optimized disease transmission and social response parameters.

Parameter Description Range

δ edge removal probability 0.0, 0.2, . . ., 1.0

τ intervention threshold 10, 1000, 5000 cases

TI duration of intervention 7, 21, 35 days

doi:10.1371/journal.pone.0136059.t002
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larger. On subsequent days, the media signal returns to normal. The parameters for the media
surge were selected through analysis of data from the 2012–2013 influenza season in Boston,
Massachusetts [21]. We ran the cost-effectiveness analysis with and without the assumption
that intervention causes increased social response.

Social Distancing Intervention. A number of interventions can be considered for cost-
effectiveness analysis. In the current implementation, we used social distancing as the interven-
tion, simulating it through random edge removal in the network. In particular, after the cumu-
lative number of cases surpassed the intervention threshold, τ, edges were randomly removed
from the network, each with probability δ. After TI days, the removed edges were restored to
the network.

Results
The simulations reveal that accounting for the cost of social response can dramatically alter the
most cost-effective disease control strategy, when the disease has moderate to high perceived
risk. When the disease has low perceived risk, the least-cost strategy is only marginally affected
by the cost of social response. When intervention results in increased media attention, doing
nothing frequently becomes the most cost-effective strategy. In the following sections, we pres-
ent results for an intervention duration (TI) of 21 days and a cost coefficient of intervention (cI)
of 0.05cD. In S2 File, we discuss the effects of varying the cost and duration of intervention. The
cost coefficients of social response and intervention were defined relative to cD, the expected
treatment cost of a single infected individual. Therefore, the expected costs of the simulated
outbreaks are also defined relative to cD (e.g. E(C j ψ, TI, τ, δ) = 3.0ncD).

Cost-Effective Intervention Assuming No Media Surge Resulting from
Intervention
In our simulations, the most cost-effective disease control strategy was strongly dependent
upon the cost of social response and the perceived risk of the disease. Fig 2 shows the most
cost-effective edge removal probability and timing, assuming that no additional social response
results from the initiation of an intervention. When no cost was assigned to social response (cS
= 0.0cD), the cost was minimized by implementing a low level of social distancing (δ = 0.2)
after the number of cases surpassed 1000 (Fig 2, top panels, light colored bars). This interven-
tion had the effect of decreasing the disease incidence by 16%. While the social response was
reduced by 18% for diseases with mild perceived risk, this intervention was not effective at
decreasing the social response for diseases perceived as having moderate to high risk. In fact,
the total social response increased by about 1% for such diseases. This increase occurred
because the intervention was insufficient to quickly stop the outbreak. Even though the number
of cases was reduced, the duration of the outbreak was slightly extended as a result of the inter-
vention, leading to a longer period of media influence and more social response.

The cost of social response did not considerably affect the most cost-effective intervention
strategy for diseases with low perceived risk (Fig 2, left panel). For diseases with moderate or
high levels of perceived risk, the cost of social response played a meaningful role in determining
the most cost-effective strategy. As the cost of social response increased, the most cost-effective
strategy shifted toward intervening earlier in the outbreak, after only 10 cases, and at higher
levels (Fig 2, middle and right panels). Our simulations reveal that, for diseases with moderate
or high perceived risk, it can be worth the high costs of extreme intervention measures to stop
transmission early in the outbreak and prevent the additional cases and social disruptions that
would occur should the disease be allowed to spread.

Cost-Effective Disease Control Accounting for Societal Reaction
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Our simulations show that 100% edge removal was frequently the least-cost solution when
the perceived risk of disease was high. In general, social distancing interventions that are
enacted early in an outbreak require a high level of social distancing to be effective. If the out-
break is not entirely stopped, the outbreak will be reseeded once the intervention ends, and the
intervention will have limited effect [22]. Nevertheless, it is not necessarily true that there must
be a complete shut down of activity in a population in order for the disease to be stopped early.
In our original simulations, we examined values of edge removal spaced by 20% increments
(0%, 20%, . . ., 100%). We conducted followup simulations in which intervention was imple-
mented following 10 cases, and we compared the costs of 90% edge removal for diseases with
high perceived risk (κ = 1.0) with the costs of 80% and 100% edge removal. We found that for
lower values of the cost of social response, 90% edge removal was significantly less costly than
either 80% or 100% edge removal (Fig 3, left panels). At high values of the cost of social
response, 100% edge removal was less costly than 90% edge removal (Fig 3, right panels),
though 90% edge removal was less costly than any level of intervention later in the outbreak.
These findings suggest that intervention early in the outbreak can be effective, even when the
social distancing is not absolute. It is important, however, to actually stop the transmission of
disease. With 80% edge removal, the disease spread was stopped before 5000 cases in 56% of
simulations. With 90% and 100% edge removal, the disease spread was stopped before 5000
cases in 93% and 100% of simulations, respectively. For this study, we used random edge
removal as the social distancing intervention. In the early stages of the outbreak, social distanc-
ing targeted in the vicinity of infected individuals is likely to be effective and may be a less
costly alternative to population-wide social distancing.

Fig 2. Most cost-effective intervention level and timing with no additional social response resulting from intervention. The least cost probability of
edge removal and the associated expected cost are shown for three intervention thresholds (τ = 10 cases, 1000 cases, 5000 cases) and for four values of the
cost coefficient of social response (cS). The cost coefficient of intervention (cI) was 0.05cD. The most cost-effective intervention is marked with a star (*) for
each value of cS. In cases where the pairwise difference in expected cost between strategies was not statistically significant with a permutation test, all least-
cost strategies are marked with dots (�). The error bars on the expected cost indicate the bootstrapped empirical 95% confidence interval. When no cost was
assigned to the social response, the most cost-effective solution was to intervene at a low level as the outbreak approached its peak—here, after 1000 cases.
As cS increased, the most cost-effective strategy shifted toward intervening at higher levels, earlier in the outbreak. This effect was especially pronounced as
the perceived risk of the disease (κ) increased.

doi:10.1371/journal.pone.0136059.g002

Cost-Effective Disease Control Accounting for Societal Reaction

PLOS ONE | DOI:10.1371/journal.pone.0136059 August 19, 2015 7 / 12



Cost-Effective Intervention Assuming Media Surge Resulting from
Intervention
We ran the cost-effectiveness analysis again with the assumption that the decision to imple-
ment an intervention led to a temporary increase in media focus on the disease, and, as a result,
increased social response. Fig 4 illustrates the effect of this assumption on the overall cost of
the outbreak for an intervention initiated at 1000 cases with 40% edge removal. Under our
assumptions about the effect of intervention on the the media penetration and signal, the
increase in cost was proportionate to the social response cost coefficient for diseases with mod-
erate or high perceived risk (κ 2 {0.75, 1.00}). For diseases with low perceived risk, there was
no additional social response.

Fig 3. Cost of 80%, 90%, and 100% edge removal early in the outbreak. The expected costs are shown
for a disease with high perceived risk (κ = 1.0) and interventions with 80%, 90%, and 100% edge removal all
beginning after 10 cases of the disease. The cost coefficient for intervention (cI) was 0.05cD. The most cost-
effective intervention for each value of cS is marked with a star (*). In cases where the pairwise difference in
expected cost between strategies was not statistically significant with a permutation test, all least-cost
strategies are marked with dots (�). For cS � 0.2cD, 90% edge removal was significantly less costly than either
80% or 100% edge removal. For cS � 0.4cD, 100% edge removal was the most cost-effective intervention
level. Nevertheless, 90% edge removal was still less costly than intervention later in the outbreak.

doi:10.1371/journal.pone.0136059.g003

Fig 4. Cost of media attention resulting from the initiation of an intervention to control the disease.
The expected cost is shown for an intervention initiated at 1000 cases with 40% edge removal. The cost
coefficient for intervention (cI) was 0.05cD. The cost increased with the perceived risk of disease and with the
social response cost coefficient (cS). When the perceived risk of the disease was low (κ = 0.50), the media
attention resulting from the intervention did not increase the overall cost. When the perceived risk was higher,
the cost was substantially increased by the media attention.

doi:10.1371/journal.pone.0136059.g004
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Fig 5 shows the most cost-effective level and timing of intervention, under the assumption
that intervention temporarily increased media attention. When the cost of social response was
considered (cS> 0.0cD) and the perceived risk of the disease was moderate or high (κ 2 {0.75,
1.0}), the most cost-effective solution was frequently to implement no intervention (Fig 5, mid-
dle and right panels). In these cases, the increased social response resulting from the interven-
tion was not justified by the reduction in cases. For diseases with high perceived risk (κ = 1.0),
the most cost-effective solution remained to intervene at a high level early in the outbreak, if
the cost coefficient of social response was sufficiently high (Fig 5, right panel). In particular,
when cS = 0.06cD, we found that the least-cost solution for diseases with high perceived risk
(κ = 1.0) was to implement 100% edge removal after 10 cases of disease. In contrast, the least-
cost solution for diseases with moderate perceived risk (κ = 0.75) was to implement no inter-
vention. The difference in strategies resulted from differences in the cost of allowing the disease
to run its course. With no intervention, the expected cost for diseases with high perceived risk
was 40% greater than that for diseases with moderate perceived risk. As a result, it was worth
the cost of intervention for diseases with high perceived risk to stop the spread of disease
quickly.

Discussion
In our simulations, accounting for social response when evaluating how respond to an infec-
tious disease outbreak, resulted in the use of increased disease control measures in the most
cost-effective strategy. Moreover, the least-cost disease control strategy was highly dependent
upon the perceived risk of the disease (κ). For diseases that are perceived to be mild, such as

Fig 5. Most cost-effective intervention level and timing when intervention leads to a surge in media attention and social response. The least cost
probability of edge removal and the associated expected cost are shown for three intervention thresholds (τ = 10 cases, 1000 cases, 5000 cases) and for four
values of the cost coefficient of social response (cS). The cost coefficient for intervention (cI) was 0.05cD. The most cost-effective intervention is marked with
a star (*) for each value of cS. In cases where the pairwise difference in expected cost between strategies was not statistically significant with a permutation
test, all least-cost strategies are marked with dots (�). The error bars on the expected cost indicate the bootstrapped empirical 95% confidence interval. The
most cost-effective intervention strategy was unchanged when the disease has low perceived risk (κ = 0.50). For diseases with moderate or high perceived
risk, the least-cost strategy shifted to implementing no intervention, for most values of the cost coefficient of social response that we examined. For cS =
0.6cD, it remained optimal to intervene following only 10 cases with 100% edge removal.

doi:10.1371/journal.pone.0136059.g005
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seasonal influenza, our analysis suggests that the most cost-effective solution is to implement
moderate control measures. For diseases with moderate to high perceived severity, such as pan-
demic influenza or SARS, the most cost-effective strategy shifts toward intervening earlier in
the outbreak and with more resources. Acute social response can be generated by only a few
cases of these diseases, and controlling these diseases rapidly is of great importance in order to
minimize the cost of the outbreak. The strategy of early intervention for severe diseases is com-
mon practice in public health already. Our study indicates that this strategy is likely to be effec-
tive, not only for controlling the disease, but also for preventing extreme societal reactions.

When intervention elicits increased media involvement, our simulations suggest that it
remains important to control high severity diseases quickly. For moderate severity diseases,
however, the most cost-effective situation shifts to implementing no intervention. The cost of
the media frenzy surrounding the intervention can sometimes surpass the cost of a few more
cases of the disease. Policy-makers should therefore carefully consider the possible costs of
social response prior to implementing an intervention.

One difficulty in formulating a cost-effectiveness analysis including social response is that
the cost coefficient of social response is unknown. With some research, it is possible to assign a
dollar amount to the cost of treatment and lost productivity per infected person (cD). Similarly,
it is possible to quantify the costs of an intervention (cI). Assigning a monetary value to social
response is much more difficult. Choosing what cost to assign to the public’s fear is, at its heart,
a value judgment. For this case study, we have selected to present the most cost-effective strate-
gies for a range of possible cost coefficients, reflecting the fact that the coefficients chosen by a
public health official, a politician facing a tough election, and an average person may not be the
same. Despite the difficulties associated with quantifying the costs of social response, monetary
estimates of the costs involved in social response will be needed in order to give more precise
guidance to decision makers. Much of the current research into the economic effects of disease
outbreaks does not separate the effects of social response from the effects of disease transmis-
sion and intervention. For example, many studies quantify losses to the tourism industry, but
do not differentiate between losses resulting from fear of traveling (social response), and losses
resulting from travel bans (intervention) [12, 23]. Similarly, some costs that appear to be costs
of disease transmission, such as costs from visits to hospital emergency rooms, can partially
result from social response. With high profile diseases, the worried well and worried ill place
an increased burden on the health system in the form of unnecessary medical testing and care
[24]. Further economic analyses will be needed in order to untangle the costs of social response
from those of disease spread and intervention.

Our model simulations have shown that for diseases with moderate to high perceived risk,
incorporating the cost of social response results in implementing a dramatically different inter-
vention strategy than would be suggested by a cost-effectiveness analysis that does not consider
the costs of social response. In order to make cost-effectiveness analysis useful in cases of these
severe diseases, it will be important to appropriately quantify the cost of social response. Other-
wise, cost-effectiveness analysis will not achieve its goal of controlling disease spread in the
most efficient way possible. The spread of disease takes place in a dynamic social environment,
and the costs of a disease outbreak are not limited to only treatment costs and disease control
costs. Diseases can have much broader social impacts, including effects on the economy and
social upheaval. This work represents a first step toward developing effective disease control
measures, taking into account the indirect social costs of an outbreak. This type of model can
aid analysts in assessing disease outbreaks and making informed decisions about application of
control measures.

Cost-Effective Disease Control Accounting for Societal Reaction
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