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Abstract

NEUROTROPHIC SIGNALING ENDOSOMES: Clathrin-Coated Vesicles Propagate

the NGF Signal Through the Ras/MAPK Pathway. Charles L Howe

The target-derived neurotrophic factor, nerve growth factor (NGF), signals through its

receptor tyrosine kinase TrkA to promote the survival, differentiation, and maintenance

of neurons. How the NGF signal generated in axon terminals is conveyed to the cell body

is unknown. The ‘signaling endosome hypothesis' postulates that NGF:TrkA complexes

are internalized at axon terminals and retrogradely transported to the cell body, where

they initiate local signal transduction cascades that exert pleiotropic effects on cell

survival and differentiation. Many receptor tyrosine kinases are internalized and

downregulated from the plasma membrane via clathrin-mediated endocytosis. I

hypothesized that TrkA might also be internalized via a clathrin-mediated mechanism,

and the vesicles formed as a result of this internalization might function as signaling

endosomes. I found that signaling through TrkA led to the redistribution of clathrin

within cells, and the recruitment of clathrin to membranes, including the plasma

membrane. Moreover, I found that NGF signaling induced the formation of a complex

containing activated TrkA, the clathrin adaptor protein AP2, and the clathrin heavy chain.

These findings led me to develop a protocol for isolating a highly purified clathrin-coated
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vesicle fraction. Utilizing this cellular fractionation protocol, I found that NGF treatment

induced the formation of clathrin-coated vesicles that contained NGF bound to activated

TrkA. Importantly, Shc, and Ras were recruited to clathrin-coated vesicles in NGF

treated cells. Unexpectedly, I found that the MAP kinases Erk 1 and 2 were present in

clathrin-coated vesicles, and that following NGF treatment, Erk1 and 2 were activated

within these vesicles. This activity was judged by the phosphorylation state of Erk 1 and

2, and by the ability of NGF-induced clathrin-coated vesicles to signal in vitro to activate

Elk, a transcription factor that is a downstream physiological target of Erk. Though others

have previously provided evidence in support of signaling from internalized membranes,

the findings reported here are the first to document the existence of endosomes that

signal, and suggest that TrkA activation induces the formation of signaling endosomes

derived from clathrin-coated membranes.
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1. Introduction

Neurons are linked together in complex circuits in which each neuron acts as an

information processing node within a larger network. Efficient function of this network

requires that signals be transmitted reliably from one neuron to the next. This

information transfer takes place at the synapse, a highly specialized structure that occurs

at the apposition of the presynaptic axon terminal and the postsynaptic dendritic or somal

membrane. Information flow from the presynaptic terminal to the postsynaptic element

is mediated by neurotransmitters, chemical messengers that bind to specific receptors on

the postsynaptic plasma membrane in order to transduce pleiotropic intracellular events

in the postsynaptic neuron. These events range from electrical excitation, via ionic flux,

to morphological plasticity, via kinase-mediated signal transduction cascades. However,

information flow is not unidirectional. Reciprocal flow of information occurs from the

postsynaptic cell to the presynaptic terminal, instructing the terminal as to the degree of

activity in the postsynaptic cell, as well as to the fitness and propriety of the connection.

The information flowing in this retrograde direction may be mediated by several factors,

including secreted protein factors such as neurotrophins and growth factors, membrane

anchored factors such as adhesion proteins, and soluble membrane-permeant factors such

as lipid-derivatives and gases. All of these agents elicit signals within the presynaptic

element. Many of these signals are local, in that they provide information that is used to

control events within the presynaptic terminal. However, some signals, particularly those



generated in response to secreted protein factors, are meant as long-distance bulletins.

These signals are intended to transmit information from the postsynaptic element to the

cell body of the presynaptic terminal receiving the secreted protein factor. For example,

the postsynaptic element, as a target for the presynaptic terminal, may instruct the

presynaptic neuron cell body to maintain or retract its connection. The postsynaptic

element may also instruct the presynaptic neuron to elaborate or strengthen existing

connections. Some retrograde signals may even instruct the presynaptic cell body to

commit suicide or alter phenotype. These signals, necessarily signals-at-a-distance, may

be communicated from the presynaptic terminal to the cell body via several mechanisms.

A signal generated at the plasma membrane of the axon terminal may simply diffuse

through the cytoplasm, eventually reaching the cell body and registering an effect. Such

a mechanism is certainly viable for short distance communication. However, the

distances over which some axonal signals must traverse are, in terms of the kinetics of

diffusion, essentially infinite. Communication over such distance requires an active

process. One such active process is a regenerating wave of signal, elicited at the

terminal, but propagated by a wave that is periodically amplified by local signal

transducers along the length of the axon. This type of signal transmission is akin to radio

communications that utilize transponders to boost signal strength for long-distance

transmission. However, perhaps the most efficient mechanism for signaling-at-a-distance

involves the packaging of a secreted factor signal into a discrete, coherent, membrane



bounded organelle that is moved along the length of the axon via a cytoskeleton-based

transport machine. This type of signal is akin to writing a letter and sending it by mail to

a specifically addressed recipient. Unlike the diffusion- and regenerating wave-based

mechanisms, this quantal method of signaling from the postsynaptic element to the

presynaptic neuron cell body requires far fewer resources to accomplish the

communication. Furthermore, it is resistant to noise and cross-talk, as essentially each

quantal element of the downstream signal can reconstruct the initial stimulus signal upon

arrival at the cell body. In contrast, wave-based signals are open to interference by other

signals generated either at the same presynaptic terminal or at other sites within the

presynaptic neuron, including the cell body. Moreover, wave-based communications

lack specificity – anyone tuned in to the appropriate frequency can listen to any radio

communication. On the other hand, quantal signals can be addressed to highly specific

cellular locations. Hence, quantal signals, in the form of membrane-bounded organelles

containing factors secreted by the postsynaptic element bound to receptors removed from

the presynaptic plasma membrane, can serve to communicate highly specific information

using limited resources in a noise-resistant manner. Such a signal appears to be one

mechanism by which neuronal targets instruct innervating neurons about the level of

available trophic support and the fitness of nascent connections formed during

development. As discussed below, the neurotrophic factor hypothesis requires that such

communication occur in order to shape the connectivity of the nervous system and



control plasticity in response to environmental stimuli. A corollary of this hypothesis is

that communication is mediated by quantal signal packets containing postsynaptically

derived neurotrophin bound to neurotrophin receptors derived from the presynaptic axon

terminal. This signaling endosome hypothesis posits that these packets are retrogradely

transported through the axon to the cell body, carrying the target-derived communication

in a discrete and efficient parcel. Upon arrival in the cell body, this quantal signaling

packet elicits local signal transduction cascades that modify transcriptional and

translational events necessary to control cell survival, differentiation, and maintenance.

2. Neurotrophins and Neurotrophic Factors

2.1 The Neurotrophic Factor Hypothesis and Pre-History of Nerve Growth Factor

The critical role of the target in the survival, differentiation, and phenotypic maintenance

of innervating neurons during development has been appreciated since the early 1900's.

Classic experiments using either target ablation via limb bud extirpation or target

expansion via the surgical addition of supernumerary limbs showed that the number of

peripheral sensory and sympathetic neurons, as well as the number of central motor

neurons, is regulated by the size of the target field they innervate (Bueker 1948; Detwiler

1920; Hamburger 1934; Hamburger 1939; Hamburger and Levi-Montalcini 1949; Shorey

1909). This concept forms the central element of the “Neurotrophic Factor Hypothesis”

(Figure 1.1). It states that innervating neurons compete for a limited supply of a target



derived trophic factor in order to match innervation density to target size and to ensure

innervation propriety (Purves 1986). The first experimental evidence of the neurotrophic

factor hypothesis dates to the work of Marian Shorey in 1909 and 1911. She discovered

that extirpation of limb bud target fields in chick embryos led to a consequent loss of

neurons in the corresponding ganglia (Shorey 1909). She went on to hypothesize that the

differentiation and development of neurons is controlled by factors produced by target

tissues, stating that “the sources of stimulation will always be found to be the metabolic

products of other tissues” (Shorey 1911). The focus was shifted from control of

differentiation to control of neuronal survival by the experiments of Viktor Hamburger

who hypothesized that the severe hypoplasia of neural populations resulting from limb

bud extirpation was the result of death of differentiated neurons, rather than the failure of

neuronal precursors to differentiate (Hamburger 1934). An exogenous source of a

“metabolic product” capable of controlling the survival of neurons was discovered in

1948 by Elmer Bueker. He provided evidence that grafting fragments of mouse sarcoma

180 into the body wall of a 3-day old chick embryo resulted in ectopic innervation of the

neoplastic tissue by sensory fibers emanating from the adjacent dorsal root ganglia, and

in the consequent enlargement of the ganglia (Bueker 1948). However, the scope and

importance of this source of survival-promoting factor was not appreciated until Rita

Levi-Montalcini, under the guidance of Viktor Hamburger, discovered that such

neoplastic tissue was able to elicit a massive response from sympathetic ganglia. This
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response was evidenced by ganglionic volume increases to six-fold the size of control

ganglia, and by the ectopic innervation of blood vessels, sex glands, thyroid, parathyroid,

and spleen (Levi-Montalcini 1952; Levi-Montalcini and Hamburger 1951). These data

led to the hypothesis that the neoplastic cells were releasing a soluble and diffusible

factor that controlled the survival and differentiation of sympathetic neurons. This

hypothesis was further confirmed when Levi-Montalcini grew explanted sensory and

sympathetic ganglia in proximity to, but not in contact with, mouse sarcomas 180 or 37

(another sarcoma of identical origin to 180). Within 24 hours of co-culturing these

tissues, a robust halo of nerve fibers was found emanating from the ganglia, with

maximal fiber density on the side facing the sarcoma (Levi-Montalcini and others 1954).

This discovery led Stanley Cohen, working with Levi-Montalcini and Hamburger, to

isolate from the tumors a nucleo-protein fraction containing the nerve growth-promoting

activity (Cohen and others 1954). In an effort to remove the nucleic acids from this

fraction, Cohen employed the phosphodiesterase enzyme found in snake venom, and

essentially stumbled upon one of the most potent sources of the nerve growth-promoting

factor. During an experiment to test whether the nucleic acids or the proteins within the

nucleo-protein fraction were responsible for promoting the fiber outgrowth from ganglia,

a small amount of snake venom was added to the cultures. Cohen's hypothesis was that

the snake venom would degrade the nucleic acids, and if they were responsible for the

fiber growth, no halo would be found. Surprisingly, addition of the snake venom resulted



in a dramatic increase in the density of fibers produced by the explanted ganglia.

Furthermore, addition of snake venom alone to explanted ganglia provoked a dense halo

of nerve fibers. These results led to the subsequent biochemical purification of a small

protein capable of inducing fiber outgrowth from explanted ganglia, and capable of

provoking hyperplasia of Sensory and sympathetic ganglia in chick embryos following

injection of the protein into the yolk every day for several days (Cohen 1959; Cohen and

Levi-Montalcini 1956; Cohen and others 1954; Levi-Montalcini and Cohen 1956).

Finally, Cohen discovered that the same protein was present in mouse submandibular

salivary glands (Cohen 1960), and on the basis of further purifications, a single protein

named Nerve Growth Factor (NGF) was isolated.

NGF is the prototypical member of a family of growth factors collectively named the

neurotrophins, comprised of brain-derived neurotrophic factor (BDNF), neurotrophin-3

(NT-3), NT-4/5, NT-6, and NT-7 (Lewin and Barde 1996). The neurotrophins have since

been joined by a growing list of growth factors that mediate neuronal survival and

development, including glial-derived neurotrophic factor (GDNF) and members of the

cytokine family such as leukemia inhibitory factor (LIF) and ciliary neurotrophic factor

(CNTF) (DeChiara and others 1995; Durbec and others 1996; Moore and others 1996).

However, NGF remains the best studied nerve growth-promoting agent, and the first

factor to fulfill the requirements of the neurotrophic factor hypothesis. This includes the



following evidence: 1) administration of NGF prevents both naturally occurring and

experimentally induced cell death in specific neuronal populations; 2) administration of

anti-NGF antibodies leads to the death of virtually all sensory and sympathetic neurons;

3) NGF is bound to specific receptors on axon terminals, internalized, and retrogradely

transported to the cell body, where it elicits a host of transcriptional events; 4) NGF

protein and mRNA is present within the targets of sensory and sympathetic neurons,

while NGF protein but not mRNA is found within the cell bodies of these neurons; and 5)

transgenic ablation of either NGF or its receptors results in the loss of specific sensory

and sympathetic neuronal populations (Reichardt and Farinas 1999). Together, these

findings serve both to verify the validity of the neurotrophic factor hypothesis, and to

showcase NGF as the prototypic neurotrophic factor.

2.2 The Neurotrophins

2.2.1 Nerve Growth Factor

The family of neurotrophic factors includes members of the neurotrophins, the fibroblast

growth factors, the transforming growth factors, and the cytokines. Each of these factors

exhibit specific tissue expression patterns and act to promote the survival of distinct but

overlapping neuronal populations (Table 1). Of the neurotrophins, NGF, BDNF, and NT

3 genes have been identified in all higher vertebrates, including the teleost fishes, and

NGF, BDNF, NT-3, and NT-4/5 have been identified in all tetrapods, except for birds,
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which appear to lack the gene for NT-4/5 (Hallbook 1999; Hallbook and others 1991).

NGF, BDNF, NT-3, and two novel neurotrophins named NT-6 and NT-7 are found in

bony fish (Gotz and others 1994; Lai and others 1998; Nilsson and others 1998), while

two other highly divergent neurotrophins are found in the jawless fish Lampetra

fluviatilis and Myxine glutinosa (Hallbook and others 1998; Kumar and Hedges 1998).

Evidence that substitution of only seven amino acids in the NT-3 sequence is sufficient to

confer the biological activity of NGF, BDNF, and NT-3 to the mutant protein suggests

that NGF and BDNF may have evolved from NT-3 (Urfer and others 1994). However,

other phylogenetic evidence indicates that NGF and NT-3 may have formed from the

gene duplication of one intermediate ancestral gene, while BDNF and NT-4/5 formed

from the gene duplication of another intermediate ancestor (Hallbook 1999).

As described above, NGF was discovered as the nerve-growth promoting factor of mouse

sarcomas 180 and 37, of snake venom, and of the mouse submandibular salivary gland.

The NGF isolated from mouse submandibular gland occurs in two distinct forms. The

first, named 7S NGF due to its sedimentation coefficient, is a high molecular weight

complex of three protein subunits named 0-, 3-, and Y-NGF (Varon and others 1967a;

Varon and others 1967b). The second form, referred to as 2.5S NGF (Bocchini and

Angeletti 1969), exhibits a large degree of terminal proteolytic modification, but is

effectively indistinguishable from the fl-subunit of 7S NGF. It is this subunit, either as
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derived from 7S NGF or as 2.5S NGF, that contains all of the relevant neurotrophic

activity of NGF. The mature form of 3-NGF (henceforth, just NGF) is a sequence of 118

amino acids proteolytically derived from a 307 amino acid precursor protein via cleavage

of 187 N-terminal residues and 2 C-terminal residues (Scott and others 1983). The

sequences derived from human, guinea pig, rat, bovine, chicken, cobra, viper, Xenopus,

and salmon NGF indicate that there is a high degree of conservation within specific

regions of NGF that are likely to be important for receptor interaction and maintenance of

three-dimensional structure (Ebendal and others 1986; Goedert 1986; Hallbook and

others 1991; Meier and others 1986; Schwarz and others 1989; Selby and others 1987a;

Selby and others 1987b; Ullrich and others 1983a; Ullrich and others 1983b; Whittemore

and others 1988; Wion and others 1986). This structure is comprised of seven ■ strands

oriented in three anti-parallel pairs, with elongated loops at either end that contribute to

binding specificity (McDonald and Blundell 1991; McDonald and others 1991;

Wlodawer and others 1975). In particular, the N-terminal six residues of NGF contribute

significantly to both binding specificity and binding affinity (Shih and others 1994).

NGF, like the other neurotrophins and many other growth factors, belongs to the cystine

knot superfamily of proteins, and this cystine knot region is highly conserved among the

individual neurotrophins (Butte and others 1998). Finally, NGF and the other

neurotrophins exist exclusively as dimers that share an interface containing an extensive

buried hydrophobic surface. It has been suggested that dimerization is necessary to
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stabilize the neurotrophin structure by burying these hydrophobic regions within the core

of the dimer (Sun and Davies 1995).

While NGF expression is very high in the mouse submandibular gland, its expression in

physiological targets of neuronal innervation is much more limited. Quantification of

NGF mRNA levels in target regions using an NGF cDNA hybridization assay revealed

that the density of sympathetic innervation was directly correlated to the level of NGF

mRNA, and that expression was highest in tissues such as the heart and the iris, which

receive dense sympathetic innervation (Heumann and others 1984; Shelton and Reichardt

1984). Analysis of NGF protein levels by ultrasensitive immunoassay provided similar

results (Korsching and Thoenen 1983; Thoenen and others 1983). Utilizing these same

techniques, NGF was detected in the central nervous system as well, with specific

expression found in several neuronal populations, including hippocampal neurons (Ayer

LeLievre and others 1988; Korsching and others 1985; Shelton and Reichardt 1986;

Thoenen and others 1987; Whittemore and Seiger 1987). The induction of choline

acetyltransferase by NGF in basal forebrain cholinergic neurons, and the retrograde

transport of radiolabeled NGF from the hippocampus and cortex to the basal forebrain,

indicates that NGF is a neurotrophic factor for specific central neuronal populations

(Gnahn and others 1983; Seiler and Schwab 1984). This topic is taken up at length in
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chapter 5 of this manuscript, which deals with the control of plasticity within the central

nervous system by NGF-mediated modulation of cholinergic function.

2.2.2 Brain-Derived Neurotrophic Factor

The initial attempts to isolate neurotrophic factors distinct from NGF led to the discovery

of an activity present in media conditioned by a glioma cell line that was able to induce

the morphological differentiation of neuroblastoma cells (Monard and others 1973;

Monard and others 1975). This “glioma factor” was found to induce neurite outgrowth

from explants of chick embryo dorsal root ganglia (DRG), and this activity was not

blocked by antibodies against NGF (Barde and others 1978). Furthermore, the glioma

conditioned media was more effective than NGF at promoting survival of cultured DRG

neurons (Barde and others 1980). Attempts to justify a physiological relevance for this

glioma-derived factor led to the isolation of a similar activity from chick and rat brain

extracts, and from homogenates of postnatal chick spinal cord and embryonic chick heart,

liver, and kidney (Barde and others 1980; Lindsay and Peters 1984a; Lindsay and Peters

1984b; Lindsay and Tarbit 1979). Identification of an activity in rat brain homogenates

that was unique from NGF led to the eventual purification of BDNF from pig brains by

Yves-Alain Barde in 1982 (Barde and others 1987; Barde and others 1982; Barde and

others 1983; Barde and others 1985; Barde and Thoenen 1984; Barde and Thoenen 1985;

Edgar and Barde 1983). BDNF was purified as a 12.3 kDa protein that shared many
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physiochemical and biological properties of NGF, and that exhibited specific activity for

neurite outgrowth from DRG neurons (Hofer and Barde 1988). BDNF was subsequently

cloned and found to contain highly conserved regions of sequence homology with NGF

(Leibrock and others 1989). The first activity defined for BDNF that was clearly distinct

from NGF was the support of survival and neurite outgrowth from neurons of the nodose

ganglia isolated from chick embryos (Lindsay and others 1985a; Lindsay and Rohrer

1985; Lindsay and others 1985b). Such differential sensitivity to NGF versus BDNF was

later extended to the general premise that sensory neurons of neural crest derivation, such

as DRG, dorsomedial trigeminal ganglia, and jugular ganglia neurons, are responsive to

NGF and BDNF, while neural placode-derived neurons, such as nodose ganglia and

petrosal ganglia neurons, are insensitive to NGF but responsive to BDNF (Table 1)

(Davies and others 1986a; Davies and others 1986b; Lindsay and others 1985a; Lindsay

and Rohrer 1985; Lindsay and others 1985b). Furthermore, BDNF was found, not

surprisingly, to support the survival and neurite outgrowth of several central neuronal

populations, including retinal ganglion cells (Johnson and others 1986b; Rodriguez-Tebar

and others 1989), spinal motor neurons, basal forebrain cholinergic neurons, cerebellar

granule cells, and cortical and hippocampal neurons (Ernfors and others 1994; Jones and

others 1994; Reichardt and Farinas 1999). Finally, the role of BDNF in plasticity of

cortical and hippocampal connections has established itself as perhaps the most exciting

function of neurotrophins within the central nervous system. Competition among axonal
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terminals for a limited supply of target-derived BDNF has been implicated in the

experimental and developmental plasticity of the visual cortex (Berardi and Maffei 1999;

Berardi and others 2000; Cabelli and others 1995), and in the plasticity of learning and

memory within the hippocampus (Carmignoto and others 1993; Kang and others 1996;

Kang and Schuman 1995a; Kang and Schuman 1996; Kang and Schuman 2000; Kang

and others 1997; Kang and Schuman 1995b; Korte and others 1995; Korte and others

1998; Lessmann and others 1994; Li and others 1998a; Li and others 1998b). Chapter 5

of this manuscript contains further review of this subject.

2.2.3 Neurotrophin-3 and Neurotrophin-4/5

Following the isolation, cloning, and sequencing of BDNF, the search for other growth

factors related to these two neurotrophins accelerated. Based upon sequence homologies

between NGF and BDNF, several groups designed degenerate oligonucleotide primers

for PCR amplification of genomic DNA sequences that might encode other neurotrophin

family members. Using this strategy, NT-3 was discovered in 1990 (Ernfors and others

1990a; Ernfors and others 1990b; Jones and Reichardt 1990; Kaisho and others 1990;

Maisonpierre and others 1990; Rosenthal and others 1990), and NT-4/5 was isolated in

1991 (Berkemeier and others 1992; Berkemeier and others 1991; Hallbook and others

1991). NT-3 mRNA is expressed in numerous neuronal and non-neuronal tissues

throughout the body, and exhibits a complex pattern of temporal expression that changes
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from high embryonic expression to low overall adult expression levels, though significant

expression remains within specific neurons of the hippocampus, cerebellum, and cortex

(Maisonpierre and others 1990; Phillips and others 1990), and within tissues such as

heart, liver, kidney, spleen, and muscle (Phillips and others 1990; Rosenthal and others

1990). Several populations of neurons in both the peripheral and central nervous systems

are responsive to NT-3, including neurons of the DRG, nodose ganglion sensory neurons,

motor neurons, basal forebrain cholinergic neurons, mesencephalic GABAergic neurons,

dopaminergic neurons of the substantia nigra, hippocampal neurons, striatal neurons,

neurons of the trigeminal mesencephalic nucleus and the locus ceruleus, and retinal

ganglion cells (Table 1) (Yuen and Mobley 1996). NT-3 is a potential candidate for the

control of diabetic sensory neuropathy. NT-3 supports the survival and neurite outgrowth

of developing Ia proprioceptive afferent sensory neurons that project to muscle (Hohn

and others 1990; Hory-Lee and others 1993), and administration of NT-3 to developing

animals rescued sensory neurons from a normal program of cell death (Oppenheim and

others 1993). These findings suggest that a failure in NT-3 signaling may play a role in

the development of diabetic neuropathy, and suggest that exogenous trophic support of

these neurons may be a viable therapeutic intervention. NT-3, like BDNF, has also been

implicated in the developmental and learning- and memory-related plasticity of

hippocampal and cortical neurons (Berninger and others 1993; Kim and others 1994;

Lohof and others 1993). Similarly, NT-4/5 is expressed in several neuronal and non
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neuronal tissues throughout development and in the adult animal, where it exhibits

overlapping but also distinct actions from BDNF (Reichardt and Farinas 1999; Yuen and

Mobley 1996). Likewise, NT-4/5 appears to exhibit overlapping function with BDNF

within the context of cortical and hippocampal plasticity (Schuman 1999).

2.3 Other Neurotrophic Factors

2.3.1 Glial-Derived Neurotrophic Factor

Glial cell line derived neurotrophic factor (GDNF) was initially identified as a glioma

secreted factor capable of eliciting survival of cultured embryonic ventral midbrain

dopaminergic neurons (Lin and others 1993). Following its initial characterization, it was

found to support the survival of several neuronal populations, including spinal motor

neurons and sympathetic, parasympathetic, proprioceptive, enteroceptive, and small and

large cutaneous sensory neurons (Buj-Bello and others 1995; Ebendal and others 1995;

Henderson and others 1994; Kotzbauer and others 1996; Trupp and others 1995; Yan and

others 1995). GDNF became a family in 1996, when a protein sharing 44% sequence

homology, named neurturin, was discovered as a survival factor for a subset of

sympathetic neurons, nodose ganglia sensory neurons, and neurons of the DRG

(Kotzbauer and others 1996). Subsequently, two other members of the GDNF family

were isolated: persephin (Milbrandt and others 1998) and artemin (Baloh and others

1998). Each of the members of the GDNF family exhibit specific patterns of expression,
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and support distinct but overlapping populations of neurons (Baloh and others 2000).

Evidence of the roles played by these proteins establishes that the GDNF-like

neurotrophic factors form a family of related factors that parallel the relationship between

the NGF-like neurotrophins. Characterizing each of these factors as Neurturin-1

(GDNF), Neurturin-2 (neurturin), Neurturin-3 (persephin), and Neurturin-4 (artemin),

would permit discussion of the neurotrophin versus neurturin families of neurotrophic

factors, and would emphasize the basic similarities in the organization of these families.

2.3.2 Ciliary Neurotrophic Factor

As with the use of explanted sympathetic ganglia in the identification and isolation of

NGF, development of cultures of chick ciliary ganglia provided a sensitive system for the

characterization of novel neurotrophic factors. Work in the mid-60's proved that the

chick ciliary ganglion is a population of purely cholinergic parasympathetic motor

neurons that innervate the intraocular muscles of the eye (Hess 1965; Landmesser and

Pilar 1972; Marwitt and others 1971). On the basis of this knowledge, several groups

established co-cultures of explanted chick ciliary ganglia and chick hindlimb skeletal

muscle, and began to investigate the factors released by the muscle cells which supported

survival and neurite outgrowth of the ciliary neurons (Betz 1976; Hooisma and others

1975). This assay, modified such that the chick ciliary neurons were cultured in media

conditioned by dissociated chick heart cells led to the isolation of a factor which
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supported survival and neurite outgrowth in 15% of the cultured ganglia cells (Helfand

and others 1976). Following up these experiments, and returning to the use of skeletal

muscle cells either in co-culture with dissociated ciliary neurons or as producers of

conditioned media, a factor was discovered that supported the survival and neurite

outgrowth of essentially all ciliary neurons in culture (Nishi and Berg 1977; Nishi and

Berg 1979). However, as these factors were identified using target fields other than the

in vivo physiological target, it was realized that they likely represented factors with

widespread neurotrophic effects, rather than effects specific for ciliary ganglia neurons.

Hence, an assay system was developed utilizing dissociated ciliary neurons and serial

dilutions of extracts from various tissues, including the intraocular muscles of the eye. It

was found that chick eye extract contained significantly more ciliary-directed trophic

activity than any other tissue (Manthorpe and Varon 1985). Biochemical purification of

this trophic activity led to the isolation of a factor initially called CIPE, for choroid, iris,

ciliary body, and attached pigment epithelium, from which the factor was isolated. It was

defined as a ciliary neurotrophic factor, or CNTF (Manthorpe and others 1980). The

factor was identified as a protein of roughly 40 kDa that exhibited very strong potency

for neurite outgrowth and survival of chick ciliary ganglia neurons (Barbin and others

1984; Manthorpe and others 1982). However, the most rapid advances in purification

and cloning of CNTF came when it was discovered that the rat sciatic nerve was a rich

and readily available source of the factor (Lam and others 1991; Lin and others 1990; Lin
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and others 1989; Manthorpe and others 1986; Stockli and others 1989). In addition to

developing ciliary ganglionic neurons, CNTF has been found to serve as a trophic factor

for several other neuronal populations, including sympathetic neurons (Barbin and others

1984; Ernsberger and others 1989), DRG neurons (Barbin and others 1984; Eckenstein

and others 1990; Manthorpe and others 1981a; Manthorpe and others 1981b; Skaper and

others 1986), spinal cord motor neurons (Arakawa and others 1990; Magal and others

1991; Oppenheim and others 1990; Wewetzer and others 1990), and striatal cholinergic

neurons (Asada and others 1996; Hagg and others 1989). Recently, CNTF was shown to

be protective of striatal neurons in several models of Huntington’s disease (Emerich and

others 1998; Emerich and others 1997a; Emerich and others 1997b), and was found to

actually promote functional recovery of lost cognitive and motor skills attributable to

striatal cell death and dysfunction (Mittoux and others 2000).

3. Neurotrophic Factor Receptors

3.1 TrkA

3.1.1 Evidence that TrkA Mediates an NGF Response

TrkA, a single transmembrane spanning, single polypeptide chain member of the receptor

tyrosine kinase (RTK) superfamily, was initially discovered as an oncogenic fusion

protein isolated from human colon carcinoma (Martin-Zanca and others 1986a; Martin
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Zanca and others 1986b). In its oncogenic form, the N-terminal 392 residues of normal

TrkA were replaced by tropomyosin residues (hence tropomyosin receptor kinase, or

Trk), leading to constituitive kinase activity and oncogenicity. Further genetic analysis

revealed that in normal cells the proto-oncogene encoded a 140 kDa glycosylated protein

containing an extracellular domain comprised of several immunoglobulin-like binding

domains, a short, single transmembrane domain, and an intracellular domain encoding a

tyrosine kinase (Figure 1.2) (Martin-Zanca and others 1989). It was also found that this

protein exhibited a relatively restricted neuronal expression pattern (Martin-Zanca and

others 1990). Following its initial discovery in 1986, the receptor remained an “orphan

receptor” until 1991, when it was discovered that NGF evoked a rapid tyrosine

phosphorylation of endogenous TrkA in PC12 cells and of exogenous TrkA in transfected

fibroblasts (Kaplan and others 1991a; Kaplan and others 1991b; Klein and others 1991).

Furthermore, NGF was found to bind to TrkA with high affinity (Ka = 10" M, 0.1 to

0.01 nM NGF), and to elicit signaling cascades necessary for the biological responses of

PC12 cells and neurons to NGF. For example, a subclone of PC12 cells that was non

responsive to NGF in terms of neurite outgrowth was shown to exhibit recovery of such

responsiveness following transfection with human TrkA (Loeb and Greene 1993; Loeb

and others 1991), and Xenopus oocytes transfected with TrkA exhibited germinal vesicle

breakdown in response to NGF (Nebreda and others 1991). Further evidence for a role of

TrkA in mediating biological responses to NGF came from studies of TrkA knockout
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mice. It was found that many populations of NGF-responsive and NGF-dependent

neurons were selectively winnowed or lost in animals missing one or both copies of the

TrkA gene (Smeyne and others 1994). Finally, the neuronal localization of TrkA in the

peripheral and central nervous systems correlates with NGF dependence and

responsiveness, confirming that TrkA is the RTK that mediates biological responsiveness

to NGF (Shelton and Reichardt 1984; Shelton and Reichardt 1986).

3.1.2 TrkA Expression in the Peripheral and Central Nervous Systems

TrkA is expressed in neurons of the trigeminal, dorsal root, and sympathetic ganglia

within the peripheral nervous system (Martin-Zanca and others 1990), and within

cholinergic neurons of the caudate-putamen and the basal forebrain in the central nervous

system (Holtzman and others 1992). Mice homozygously transgenic for a disruption in

the TrkA gene appear normal at birth, but show progressive hypotrophy and sensory

dysfunction, noticeable by PD10. By PD20, half of the animals die. Surviving animals

exhibit severe sensory defects, including non-responsiveness to painful stimuli and a

failure to orient to vibrissal stimulation. Furthermore, the animals exhibit a severe defect

in pupilary response indicative of a loss of sympathetic innervation. Indeed, the superior

cervical ganglia of perinatal animals show both cell loss and actively degenerating

neurons, and by PD10 the ganglia are extremely shrunken. Moreover, the dorsal root

ganglia exhibit a loss of 70-90% of neurons, with small, NGF-dependent neurons
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preferentially affected. Likewise, the trigeminal ganglia of these mice are reduced by 70

90% in neuronal number, with the cell loss apparently distributed throughout the ganglia

(Smeyne and others 1994). These findings are consistent with previous work showing

that administration of anti-NGF antibodies to developing mice resulted in severe loss of

neurons within specific peripheral ganglia (Johnson and others 1980; Ruit and others

1992), and suggest that these specific neuronal populations rely upon TrkA signaling for

survival and maintenance.

As with the specific peripheral populations described above, a subpopulation of cells

within the central nervous system known to express TrkA were affected by homozygous

deletion of the TrkA gene. Evidence from in situ hybridization and

immunohistochemistry shows that both caudate-putamen and basal forebrain cholinergic

neurons express TrkA. Moreover, evidence from intraventricular injection of NGF into

adult rats shows that these neuronal populations respond to NGF by upregulating choline

acetyltransferase and TrkA mRNA (Holtzman and others 1992). These same populations

were selectively reduced in number in mice expressing a homozygous deletion of TrkA,

with an increase in TUNEL-positive staining in young animals suggesting an active

process of cell death rather than a failure to differentiate. Furthermore, the cholinergic

neurons which remained in the caudate-putamen and basal forebrain were atrophic

(Fagan and others 1997). In addition, those neurons which were not lost exhibited
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significantly decreased innervation of target regions such as the hippocampus and cortex,

as marked by staining for acetylcholinesterase (Fagan and others 1997; Smeyne and

others 1994) or p75NTR (Fagan and others 1997). In contrast to the peripheral

populations sensitive to loss of TrkA expression, the cell loss within central nervous

system populations was limited to 20-40% of cholinergic neurons, suggesting that only a

subset of these neurons is dependent upon NGF for survival, and that the remaining

cholinergic neurons require NGF for maintenance of phenotype and target innervation.

The role of NGF in the function of basal forebrain cholinergic neurons is discussed more

fully in chapter 5 of this manuscript.

3.1.3 TrkA Activation and Proximal Signaling

Upon binding of NGF to TrkA, the receptor is subjected to a series of events that

characterize RTK signaling. This includes receptor dimerization, transphosphorylation of

tyrosines in the activation loop leading to initiation of kinase activity,

autophosphorylation of tyrosines outside of the activation loop, binding of specific

signaling adaptors to these autophosphorylated sites, subsequent phosphorylation and

activation of these adaptor proteins, and generation of a cascade of receptor-independent

signaling pathways. Evidence for the requirement of receptor dimerization comes from

studies in which transfected kinase-inactive mutants of Trk/A act in a dominant-negative
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fashion to suppress activation of endogenous TrkA (Jing and others 1992). Under

conditions of TrkA overexpression, a high level of ligand-independent TrkA

autophosphorylation is observed, apparently due to an increase in the probability of

spontaneous TrkA:TrkA interactions (Hempstead and others 1992). Furthermore,

gangliosides and ceramide can elicit ligand-independent TrkA activation, presumably by

enhancing TrkA:TrkA interactions in the plane of the plasma membrane (MacPhee and

Barker 1999; Mutoh and others 1995). Interestingly, ligand-dependent TrkA activation

might also require the action of endogenous gangliosides, as inhibition of

glucosylceramide synthase in PC12 cells inhibited TrkA activation in response to NGF,

an effect that was reversed by exogenous supply of the ganglioside GM1 (Mutoh and

others 1998).

Following NGF binding to human TrkA and receptor dimerization, tyrosine residues 670,

674, and 675 within the kinase activation loop are autophosphorylated (Figure 1.2)

(Cunningham and others 1997). These residues, once phosphorylated, form specific

charge-pair interactions with neighboring positively charged residues. These interactions

stabilize a shift from a closed conformation of the kinase activation loop in which access

to kinase substrates is blocked, to an open conformation in which the kinase activation

loop can phosphorylate both intra- and intermolecular substrates (Cunningham and

Greene 1998; Mitra 1991). Tyrosines 490 and 785 are two such intramolecular targets
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that are transphosphorylated after TrkA kinase loop activation (Figure 1.2) (Loeb and

others 1994; Middlemas and others 1994; Stephens and others 1994). Tyrosine 785 is

near the C-terminus of TrkA, within a consensus site for the binding of the SH2 domain

of phospholipase C-Y (PLCY) (Figure 1.2). This tyrosine is required for NGF-dependent

recruitment of PLCY to TrkA, and for the phosphorylation and activation of PLCY (Vetter

and others 1991). TrkA mutated at tyrosine 785 still mediates NGF-induced neurite

outgrowth, but appears to be defective in induction of peripherin expression (Loeb and

others 1994). Tyrosine 751, which is within a consensus domain for RTK binding of PI3

kinase (Obermeier and others 1993), also appears to play a role in PLCY activation, as its

mutation results in the loss of NGF-dependent PLCY phosphorylation (though, oddly, not

PI3 kinase activation) (Friedman and Greene 1999). Interestingly, tyrosine 785, in

addition to PLCY binding, also appears to play a role in the association of TrkA with the

Csk homologous kinase (CHK), a protein which plays a role in NGF-induced neurite

outgrowth (Yamashita and others 1999a). Injection of anti-CHK antibodies into PC12

cells blocked neurite outgrowth, though the fact that mutation of tyrosine 785 fails to do

so suggests that CHK must interact with multiple or alternative residues within Trk/A.

Another potential adaptor protein that interacts with tyrosine 785 is Cbl (Figure 1.2).

NGF treatment leads to the tyrosine phosphorylation of Cbl (Galisteo and others 1995),
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but evidence of a direct association between Cbl and TrkA is lacking. However, it was

recently reported that mutation of tyrosine 785 in TrkB blocked BDNF-induced

activation of both Cbl and PLCY (McCarty and Feinstein 1999), suggesting that Cbl may

in fact bind at this site. It is interesting to note that Cbl adapts many RTKs to the Src

family of non-receptor tyrosine kinases, and that Src is tyrosine phosphorylated in

response to NGF in PC12 cells through an as yet undefined mechanism (Sato and others

1998) (Howe unpublished observations). The role of Cbl in NGF and TrkA signaling is

discussed further in chapter 4 of this manuscript.

Tyrosine 490, near the juxtamembrane domain of TrkA, is also involved in mediating

TrkA signaling. A primary target of tyrosine 490 appears to be Shc, an adaptor protein

that is critical to activation of the Ras signaling cascade (Figures 1.2 and 1.3) (Basu and

others 1994; Obermeier and others 1994). While Shc was originally thought to interact

with tyrosine 490 of TrkA via its SH2 domain, more recent work suggests that the

interaction is in fact mediated via a phosphotyrosine binding domain (PTB) within Shc

(Dikic and others 1995). Following phosphorylation of tyrosine 490 and subsequent

binding and phosphorylation of Shc, the Grb2-Sos complex binds to phospho-Shc via an

SH2 interaction (Rozakis-Adcock and others 1992), thereby bringing Sos into proximity

to membrane-associated Ras and activating the MAP kinase signaling cascade. Sos,

bound to Grb2 via two SH3 interactions (Cohen and others 1995), is a Ras GTP exchange
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factor that promotes the transition from inactive Ras-GDP to active Ras-GTP

(McCormick 1994). GTP-bound Ras then triggers a kinase cascade that results in the

phosphorylation and activation of the MAP kinases, a family of proline-directed kinases

that translocate into the nucleus and phosphorylate several transcription factor substrates

(Hill and Treisman 1995). Interestingly, mutations in tyrosine 490 of TrkA do not

abolish NGF induction of the MAP kinase signaling pathway. However, cells expressing

TrkA with a double mutation at tyrosine 490 and tyrosine 785 do not exhibit MAP kinase

activation or neurite outgrowth in response to NGF (Stephens and others 1994). This

finding suggests that there is an as yet undiscovered complexity or redundancy to the

interaction of adaptor proteins with tyrosines 490 and 785. One possible component in

this additional complexity is the recent finding that Grb2 binds directly to activated TrkA

at both tyrosine 785 and the kinase activation loop tyrosines (MacDonald and others

2000). This additional route to the Ras pathway may circumvent loss of either tyrosine

490 or tyrosine 785, but not loss of both tyrosines. Finally, overexpression of CHK,

reported to bind tyrosine 785, as described above, leads to enhanced activation of the

MAP kinase pathway, suggesting that this kinase may also mediate some of the

complexity in the interaction between cascades downstream from either tyrosine 490 or

tyrosine 785 (Yamashita and others 1999a).
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Tyrosine 490 also appears to mediate the interaction of TrkA with FRS-2, a novel

membrane-anchored adaptor protein that is tyrosine phosphorylated in response to NGF

(Figure 1.2) (Kouhara and others 1997; Ong and others 2000). Phosphorylated FRS-2

binds to the Grb2-Sos signaling unit, forming a multi-protein complex that includes Crk

and the protein tyrosine phosphatase SHP-2 (Hadari and others 1998; Kouhara and others

1997; Meakin and others 1999). Formation of this complex is necessary for FRS-2

activation of the Ras pathway. FRS-2 appears to compete with Shc for binding to

tyrosine 490 on TrkA, adding yet another layer of complexity to the signaling cascades

elicited by NGF treatment (Meakin and others 1999).

Finally, tyrosine 490 may play a role in linking TrkA to the phosphotidylinositol 3-kinase

(PI3 kinase) pathway via Grb2 and the Grb2-associated binder-1 (Gab1) protein. Gab1

was initially identified as a Grb2-associated protein in a human glial tumor expression

library, and was also identified in a yeast 2-hybrid screen using the Met RTK as bait

(Holgado-Madruga and others 1996; Weidner and others 1996). Gabl is a member of a

family of adaptor proteins that includes Gab2, IRS-1, IRS-2, and Dos, all of which

exhibit sequence homology within their pleckstrin homology domains, and all of which

link plasma membrane RTKs to intracellular signaling cascades (Bausenwein and others

2000; Gu and others 1998). Gabl contains several SH2 and SH3 binding domains that

recognize PI3 kinase and SHP-2, as well as Grb2, Nck, and Crk (Holgado-Madruga and
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others 1996; Weidner and others 1996). Gab1 is tyrosine phosphorylated in response to

signaling downstream from TrkA (Holgado-Madruga and others 1997), and it is also

induced to associate with and activate the p85 subunit of PI3 kinase. Furthermore,

overexpression of Gabl reduced the concentration of NGF necessary for mediating cell

survival in serum free conditions, while expression of a mutant Gabl lacking the PI3

kinase binding sites enhanced apoptosis (Holgado-Madruga and others 1997). These data

suggest that anti-apoptotic Trk/A signaling to PI3 kinase and the Akt pathway is mediated

by Gab1. This is supported by the finding that adenovirus-mediated expression of Gab1

in PC12 cells is sufficient to support enhanced survival, even in the absence of NGF

signaling, and that this enhancement is correlated with increased PI3 kinase signaling

(Korhonen and others 1999). However, Gab1 appears to utilize both the PI3 kinase

pathway and the MAP kinase pathway to mediate its effect on cell survival, as

pharmacological inhibition of both MAP kinase kinase (MEK) and PI3 kinase was

required to fully suppress Gab1-mediated cell survival (Korhonen and others 1999).

Finally, adenovirus-expressed Gabl enhanced neurite outgrowth in response to NGF via

a mechanism that was sensitive to either MEK inhibition or PI3 kinase inhibition

(Korhonen and others 1999). These results suggest that Gab1 plays a role as an adaptor

protein for both the PI3 kinase pathway and the MAP kinase pathway downstream from

TrkA signaling. However, another member of the Gab family, Gab2, was recently

identified as a substrate for tyrosine phosphorylation downstream of TrkA (Figure 1.2),
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and Gab2 was found in complex with CrkL, C3G, and SHP-2 following NGF treatment

of PC12 cells (Wu and others 2000). This finding suggests that Gab2 may adapt TrkA to

the Rap1/B-Raf pathway by inducing NGF-dependent activation of C3G, a Rap GTP

exchange factor. Activation of the Rap1 pathway leads to MEK activation in parallel

with the Ras pathway, and it is possible that overexpressed Gab1 subsumed the role of

endogenous Gab2 in mediation of neurite outgrowth.

The juxtamembrane region of TrkA, a unique region in the cytoplasmic domain of the

receptor, has been implicated in carrying out several specific signaling functions

downstream from NGF binding. This region contains the Shc NPQY binding site

(Obermeier and others 1993), an adjacent IMENP site involved in differentiative

signaling (Meakin and MacDonald 1998), and a KGF motif that is proximal to the

transmembrane domain and is involved in NGF-induced neuritogenesis (Peng and others

1995). Transfection of PC12 cells with a chimeric EGF receptor containing the TrkA

juxtamembrane domain led to EGF-induced neurite outgrowth and prolonged MAP

kinase activation, suggesting that this domain is a critical element in differentiative

signaling downstream from NGF binding (Yoon and others 1997). The juxtamembrane

domain is also implicated in the association of activated TrkA with Abl, a non-receptor

tyrosine kinase that is involved in the regulation of adhesion-dependent signaling and

cytoskeletal remodeling that occurs during neuronal differentiation (Yano and others
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2000). The basic pathway involves phosphorylation of the SH2 and SH3 domain

containing protein Crk (Reichman and others 1992), and consequent dissociation of a

CrkII, paxillin, Abl complex (Escalante and others 2000), leading to activation of Abl.

Activated Abl then feeds back into the system to regulate the phosphorylation of paxillin

and Crk. Treatment of PC12 cells with NGF induces the tyrosine phosphorylation of

paxillin, the formation of a Crk, paxillin, and Abl complex, and the association of Crk

with TrkA (Matsuda and others 1994; Ribon and Saltiel 1996; Teng and others 1995;

Torres and Bogenmann 1996). Formation of this complex is likely mediated via the

association of Abl with the TrkA juxtamembrane domain (Yano and others 2000). It is

interesting to note that tyrosine phosphorylation of Crk and paxillin are critical to the

increased cell adhesion necessary for neurite outgrowth, and that Abl is involved in this

pathway in Drosophila (Gertler and others 1989; Gertler and others 1993; Wills and

others 1999). Further evidence that Crk plays a role in NGF-induced neurite outgrowth

and differentiation comes from studies showing that v-Crk enhances NGF signaling

through the Erk pathway (Teng and others 1996), and that dominant-negative Crk

suppresses NGF signaling (Matsuda and others 1994). As mentioned earlier, Crk is

found in complex with Grb2 and Sos within the Ras pathway, and it also associates with

the Rap GTP exchange factor C3G (Matsuda and others 1994). This links Crk to the

MAP kinase cascade in two ways. Interestingly, via its interaction with C3G, Crk may

lead to the NGF-dependent sustained activation of Rap1. In this model, upon activation,
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Rap1 binds to and activates B-Raf, thereby triggering the sustained activation of Erk that

is a necessary component of neurite outgrowth (York and others 1998).

The Suc-associated Neurotrophic factor-induced Tyrosine-phosphorylated target protein,

or SNT, is another signaling agent that interacts with the juxtamembrane domain of

TrkA. SNT, which may or may not be identical to FRS-2 (Friedman and Greene 1999;

Kouhara and others 1997), is considered a candidate for the factor that controls the

decision between cell cycle progression and cell cycle arrest, a critical component of

differentiative signaling. Its ability to bind the cyclin-dependent kinase substrate pl3”,

and the fact that it is rapidly tyrosine phosphorylated in response to NGF, even in the

absence of tyrosines 490 and 785 in TrkA (Rabin and others 1993), as well as the fact

that cell cycle arrest also occurs in the presence of such mutations (Meakin and

MacDonald 1998), suggests that SNT is indeed the mediator of this key decision. While

the relationship between SNT and FRS-2 is still unresolved, recent evidence indicates

that human FRS-2 does binds p13* (and, interestingly, the SH3 domain of src) in a

constituitive manner (Meakin and others 1999), strengthening the possibility that FRS-2

is an SNT.

Two other adaptor proteins which do not appear to interact with either tyrosine 490 or

tyrosine 785 are rapS and SH2-B, which were recently identified as TrkA substrates in
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developing cortical and sympathetic neurons (Figure 1.2) (Qian and others 1998). Both

rAPS and SH2-B were found in complex with Grb2, and either adaptor was able to

mediate NGF induction of the Ras pathway. Furthermore, in nnry PC12 cells expressing

extremely low levels of TrkA, co-transfection with either ràPS and a TrkA mutant

lacking all tyrosines except those in the kinase activation loop, or with SH2-B and this

TrkA mutant, led to robust neurite outgrowth (Qian and others 1998). Moreover, while

the interaction between rapS and Grb2 is at least partially dependent upon tyrosine

phosphorylation of rapS, Grb2 appears to bind to SH2-B constituitively via an SH3

interaction. Finally, antibodies to SH2-B inhibited NGF-dependent survival of cultured

neonatal sympathetic neurons, and transfection with a dominant-interfering mutant of

SH2-B completely blocked the elaboration of axons by cultured sympathetic neurons.

This suggests that SH2-B and rapS are critical elements in the TrkA signaling pathway

necessary for both neurite outgrowth and survival, but that their interaction with TrkA

may utilize a novel association mechanism.

3.1.4 TrkA Downstream Signaling Cascades

As indicated above, several signaling cascades downstream from TrkA activation have

been identified. Foremost among these is the Ras pathway, which is implicated in

pleiotropic responses to NGF (Figure 1.3). This pathway involves the recruitment of Shc,

Grb2, and Sos to the plasma membrane, where the Ras GTP exchange factor Sos can gain
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access to the membrane-associated small G-protein Ras (Segal and Greenberg 1996).

Ras is targeted to the plasma membrane via farnesylation (Casey 1995), and resides at the

plasma membrane in an inactive, GDP-bound state. Upon recruitment of Sos to the

membrane, Ras is activated by exchange of GDP for GTP (McCormick 1994). GTP

bound Ras then recruits the serine-threonine kinase C-Raf to the plasma membrane

(Marshall 1994; Van Aelst and others 1993; Wood and others 1992). In PC12 cells, Raf

family members (Jaiswal and others 1994; Oshima and others 1991; Traverse and Cohen

1994) mediate the signal downstream from NGF by phosphorylating and thereby

activating the dual-specificity MAP kinase kinase MEK1 (Figure 1.3) (Jaiswal and others

1994; Lange-Carter and Johnson 1994; Vaillancourt and others 1994). Raf catalyzes the

phosphorylation of MEK1 at serine 217 and serine 221, activating it and inducing the

further phosphorylation of two members of the MAP kinase family, extracellular signal

related kinases 1 and 2 (Erk 1/2) (Figure 1.3) (Crews and others 1992; Crews and Erikson

1992). Erk1/2 are phosphorylated on threonine 202 and tyrosine 204 by MEK1 (Payne

and others 1991), leading to activation and translocation of Erk1/2 into the nucleus (Chen

and others 1992). Erk1/2 are proline-directed serine-threonine kinases that phosphorylate

the consensus sequence (P/L)-X-(T/S)*-P in several substrates (Mansour and others

1994; Marshall 1994), including Elk-1 (Miranti and others 1995). Phosphorylation of

Elk-1 at serine 383 and serine 389 stimulates its interaction with the transcription factor

serum response factor (SRF) and with the CAGGAT binding site within the c-fos gene
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(Figure 1.3) (Gille and others 1995; Hill and others 1993; Mueller and Nordheim 1991;

Treisman 1992). c-fos is an immediate early gene that is rapidly transcribed in response

to many extracellular stimuli, including NGF (Ginty and others 1994; Greenberg and

others 1986; Sheng and Greenberg 1990). A sequence called the c-fos SRE, or serum

response element, is a 20 base pair region located roughly 310 base pairs 5’ to the site of

transcription initiation within the c-fos gene. It contains a core sequence called the CArG

box, which is composed of the sequence CC(A/T), GG, and which serves as a binding site

for the transcription factor SRF (Treisman 1992; Treisman 1994). The CAGGATElk-1

binding site within the c-fos promoter is directly adjacent to the CArG box, and SRF

must bind to the CArG box prior to Elk-1 binding to the CAGGAT site within the SRE.

Hence, SRF serves as a docking site for activated Elk-1, and SRF and Elk-1 must act

together in PC12 cells to mediate induction of SRE-dependent c-fos transcription

following NGF treatment (Hill and others 1993; Mueller and Nordheim 1991).

Additional transcription factors contribute to the regulation of c-fos transcription in

response to NGF signaling. The cAMP regulatory element binding protein (CREB) is a

transcription factor that binds to three sites within the c-fos promoter that differ from the

SRE (Figure 1.3) (Berkowitz and others 1989). Mutation of these binding sites inhibits

NGF induction of c-fos transcription without disrupting the SRE (Bonni and others

1995). Furthermore, NGF signaling leads to the phosphorylation of CREB at serine 133
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via a Ras-dependent mechanism (Ginty and others 1994). This phosphorylation permits

CREB interaction with SRF and Elk-1 (Bonni and others 1995; Ramirez and others

1997), possibly via the transcriptional coactivator protein CREB binding protein (CBP),

which binds to phosphorylated serine 133 in CREB (Chrivia and others 1993), as well as

to SRF (Ramirez and others 1997) and Elk-1 family members (Janknecht and others

1993). However, CREB may play an even more important role in transcriptional

regulation of several NGF-specific delayed response genes, including the VGF gene.

Mutation of the CREB binding site within the VGF gene significantly reduced NGF

induced VGF transcription (Hawley and others 1992). Interestingly, VGF transcription

may require the cooperation of CREB with an as yet unidentified transcription factor

product of an immediate early gene. CREB is persistantly phosphorylated at serine 133

for several hours after an initial NGF stimulus, and this may permit accumulated

immediate early gene protein to interact with activated CREB. In contrast, EGF

stimulation, which does not lead to VGF transcription, only transiently phosphorylates

CREB, such that by the time sufficient immediate early gene product is present, activated

CREB may no longer be available to cooperatively stimulate VGF transcription (Bonni

and others 1995). This may be one mechanism by which NGF and EGF activate different

transcriptional programs leading to either differentiation or proliferation (Marshall 1994).
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The difference in temporal control of CREB phosphorylation induced by NGF or EGF is

a specific example of a more general temporal difference elicited in the MAP kinase

pathway by these two growth factors. In PC12 cells treated with NGF, there is a

sustained activation of the MAP kinase pathway that persists for several hours. In

contrast, EGF stimulation only transiently activates the MAP kinase pathway (Muroya

and others 1992; Qui and Green 1992; Traverse and others 1992), suggesting that the

temporal dynamics of Erk1/2 activation may account for a differentiative versus

proliferative signaling outcome. One explanation for how two RTKs linked to very

similar signaling pathways might induce such very different Erk activation kinetics

requires a better understanding of the specific isoforms of certain adaptor proteins

utilized in these cascades. For example, while both NGF and EGF appear to utilize the

classic Shc/Grb2/Sos/Ras/C-Raf■ NMEK pathway to activate Erk, NGF also utilizes an

accessory route to Erk activation that utilizes Gab2/CrkL/C3G/Rap1/B-Raf■ NAEK (Figure

1.4). This second pathway, unique to NGF signaling, promotes sustained activation of

Erk1/2 (Wu and others 2000; York and others 1998), while the Ras-mediated pathway

utilized by both receptors only results in a rapid and transient Erk activation. Hence,

NGF activation of the Rap1 pathway may lead to Erk activation that is sustained long

enough to induce either sufficient immediate early gene transcription, and translation of

protein products that are able to interact with activated CREB, or that is sufficient to

induce transcription of novel delayed response genes. However, this simple model is
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tempered by the fact that expression of a mutant Rap that blocks sustained Erk activation

in response to NGF does not block neurite outgrowth in PC12 cells (York and others

1998). On the other hand, complete inhibition of Erk activation either by

pharmacological inhibition of MEK or transfection with a dominant-interfering MEK

mutant does block NGF-induced neurite outgrowth (Cowley and others 1994; Pang and

others 1995), and inhibition of Ras activity by microinjection of a Ras-neutralizing

antibody also blocks differentiation (Hagag and others 1986). This indicates that Ras

dependent signaling is critical to NGF-induced differentiation, suggesting that some very

early event triggered by a Ras- and C-Raf-mediated transient activation of the Erk

pathway is necessary for priming the cell to respond differentiatively to the later and

sustained activation of Erk by the Rap1 and B-Raf pathway.

A further level of control of NGF-induced immediate early gene transcription and

translation comes from parallel activation of the Rsk pathway downstream from Ras

(Figure 1.3). The Rsk serine-threonine kinase was originally isolated as a 90 kDa cell

cycle regulated kinase that phosphorylated the S6 protein of the 40S ribosomal subunit

(Erikson and Maller 1991; Erikson and others 1991). This p90 kinase (Ribosomal S6

Kinase, hence Rsk) was itself found to be regulated by serine-threonine phosphorylation,

and Erkl/2 were subsequently identified as the kinases responsible for this regulatory

phosphorylation (Sturgill and others 1988; Zhao and others 1996). Rsk is a unique
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serine-threonine kinase, in that it contains both an N-terminal kinase that phosphorylates

Rsk substrates, and a C-terminal kinase that is involved in its own activation (Jones and

others 1988). The Rsk family is comprised of Rsk1, Rsk2, and Rsk3, each showing

unique patterns of tissue expression (Moller and others 1994; Zhao and others 1995).

Rsk2 was identified as a Ras-dependent protein kinase that phosphorylates CREB on

serine 133 (Ginty and others 1994; Xing and others 1996), thereby regulating its

transcriptional activation. Rsk family members are also involved in phosphorylation of

the estrogen receptor-O., IKBO/NFKB, and c-fos (Ghoda and others 1997; Joel and others

1998; Schouten and others 1997; Xing and others 1996). Rsks also bind to the

transcriptional coactivator CBP (Nakajima and others 1996), and phosphorylate several

members of the ribosomal complex (Angenstein and others 1998). Interestingly, Sos is a

substrate for Rsk which appears to be negatively regulated by Rsk kinase activity

(Douville and Downward 1997), suggesting that Rsk activation downstream from

activation of Erk1/2 may feed back to truncate Ras signaling. Recently, all three

members of the Rsk family were found to be activated by NGF in PC12 cells, and all

were able to phosphorylate CREB at serine 133 (Xing and others 1998). Hence, the Ras

pathway is able to sensitively regulate c-fos induction by using a parallel and cooperative

pathway in which Erk phosphorylation of Elk-1 converges upon Rsk phosphorylation of

CREB (Figure 1.3) (Xing and others 1996). Furthermore, once synthesized, c-fos is

subject to regulatory phosphorylation at two serines in its C-terminus. These serines are
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located within Rsk and Erk consensus sites, and Rsk and Erk phosphorylate c-fos in a

coordinate manner to stabilize the protein and enhance its downstream function (Chen

and others 1993; Chen and others 1996). Thus, the Erk pathway is marked by both

divergent and convergent signaling, in which an early divergence at the level of Shc

versus Gab2 can control the temporal dynamics of Erk activation, and convergence at the

level of Elk-1 and CREB regulation of c-fos can control gene transcription and protein

translation.

Convergence of signaling is also found between the downstream pathways elicited by

PLCY activation and the Ras pathway. Following binding to tyrosine 785 of TrkA, PLCY

is activated and induced to hydrolyze phosphatidylinositol 4,5-bisphosphate (PI 4,5-P,).

PI4,5-P, is produced by successive phosphorylations of phosphatidylinositol at the D-4

and D-5 positions of the inositol ring (Figure 1.5). PI 4,5-P, then serves as a substrate for

modification by either PI3 kinase, which will be discussed shortly, or by PLCY (Figure

1.5) (Kamat and Carpenter 1997). PLCY-mediated hydrolysis of PI 4,5-P, yields two

products that each function as intracellular second messengers: inositol 1,4,5-P, (IPA),

which interacts with its specific receptor on the endoplasmic reticulum to induce the

release of intracellular calcium, and diacylglycerol (DAG), which is a potent activator of

protein kinase C(PKC) isoforms (Figure 1.5) (Lee and Rhee 1995). IP,-mediated release
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from intracellular calcium stores leads to the activation of calcium-dependent proteins

within the cell and to the generation of further IP derivatives such as IP, IPs, and IP,

which are able to interact with other intracellular proteins (Menniti and others 1993).

DAG produced downstream from PLCY is a critical activator of several isoforms of the

serine-threonine calcium-dependent kinase PKC, including the classical PKC isoforms o,

{{I, §II, and Y (Bell and Burns 1991; Nishizuka 1988), and the novel PKC isoforms 6, e,

m, and 0 (Liyanage and others 1992; Ono and others 1988; Osada and others 1990; Osada

and others 1992). DAG may also play a role in activation of the atypical PKC isoforms

Ç, UA, and pi (Marais and others 1998). DAG cooperates with calcium,

phosphatidylserine, cis-unsaturated fatty acids, and lysophosphatidylcholine to activate

the classical PKC isoforms, and it cooperates with phosphatidylserine and cis-unsaturated

fatty acids to activate the 6 and e isoforms of novel PKC. Interestingly, PLCY activation

is also involved in the generation of these other modulators, as PLCY-induced DAG can

be further hydrolyzed to arachidonic acid, which can then be converted into eicosanoids

such as prostaglandin, that then feedback into the production pathway for factors like cis

unsaturated fatty acid. Furthermore, PLCY activation is often accompanied by

phospholipase A2 (PLA2)-mediated hydrolysis of phosphatidylcholine, directly

generating cis-unsaturated fatty acid and lysophosphatidylcholine (Asaoka and others

1992; Nishizuka 1992). These factors, in combination with DAG, serve to sensitively
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tune PKC activation to signaling downstream from TrkA, leading to phosphorylation of

several proteins critical to survival and differentiation (Coleman and Wooten 1994;

Wooten and others 1999; Wooten and others 1994; Wooten and others 1997). One such

substrate of PKC is Raf, which is directly activated by PKC.-mediated phosphorylation

(van Dijk and others 1997a; van Dijk and others 1997b), as well as by PKCo-, 3-, and Y

mediated phosphorylation (Carroll and May 1994; Kolch and others 1993; Schonwasser

and others 1998; Sozeri and others 1992). The association of PKC. with Raf appears to

be mediated by binding of the scaffolding protein 14-3-3 (Freed and others 1994; Fu and

others 1994; Irie and others 1994; van der Hoeven and others 2000). Such a PKC-(14-3-

3)-Raf complex may also contribute to PKC0- and PKCu-mediated regulation of the

MAP kinase cascade (Hausser and others 1999; Meller and others 1996), and may

account for PKCE-mediated activation of Raf (Cacace and others 1996; Ueffing and

others 1997). It has also been suggested that PKC mediates activation of the MAP kinase

cascade by directly activating Ras, leading to the formation of (Ras-GTP)-Raf complexes

independently of an activation pathway that is sensitive to blockade by the N17Ras

dominant-negative mutant (Marais and others 1998). This finding is consistent with

evidence that PKC-mediated activation of Raf is blocked by mutation in the Ras-binding

domain of Raf (Luo and others 1997). Finally, PKC can directly phosphorylate the c-jun

protein product, which is also under the control of phosphorylation by Erk, and which is
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able to bind to the c-fos protein product to form the transcriptional regulatory complex

AP-1 (Oberwetter and others 1993).

Convergence of control over the MAP kinase pathway may also occur between Ras,

PKC, and Src. Src was originally identified as the transforming protein tyrosine kinase of

the oncogenic retrovirus, Rous sarcoma virus (Brugge and Erikson 1977; Purchio and

others 1978), in which it is mutated to a constituitively active form (Brown and Cooper

1996; Collett and Erikson 1978; Stehelin and others 1976). Src was subsequently

identified as a member of a large family of non-receptor protein tyrosine kinases that

share significant sequence homology, including Fyn, Yes, Yrk, Blk, Fgr, Hck, Lck, Lyn,

Frk/Rak, and Iyk/Bsk (Brown and Cooper 1996; Cance and others 1994; Lee and others

1994a; Thomas and Brugge 1997; Thuveson and others 1995; Welch and Maridonneau

Parini 1997). This family of kinases regulates a wide range of cellular events, ranging

from cell proliferation, cytoskeletal alterations, and differentiation, to survival, adhesion,

and migration. Src family members also contain two modular protein:protein interaction

domains that are found in many cellular proteins, including adaptor molecules,

transcription factors, cytoskeletal proteins, protein phosphatases, lipid kinases, and lipid

phosphatases (Pawson and others 1993). The first such domain is called an SH2 domain

(Src homology 2) (Cohen and others 1995; Pawson 1995). SH2 domains in all proteins

bind to short contiguous sequences containing phosphotyrosine, with specificity of any

**** **
º .*



given SH2 domain defined by the 3-5 residues following the phosphotyrosine (Pawson

1995; Songyang and others 1993), as well as residues upstream from the phosphotyrosine

(Bibbins and others 1993). Structurally, the SH2 domain is composed of two binding

pockets, one of which binds to the phosphotyrosine, and the other of which binds to the

third downstream residue (Eck and others 1993; Waksman and others 1993).

The second modular protein:protein interaction domain based upon the Src family

prototype is the SH3 domain. This module binds to short contiguous proline-rich regions

that contain the core consensus sequence of P-x-x-P, with specificity of binding conferred

by surrounding residues (Rickles and others 1995). The SH3 binding pocket contains

two hydrophobic grooves that come into contact with the P-x-x-P core, and a second

region that contacts the residues either N-terminal or C-terminal to the proline core (Feng

and others 1994b; Yu and others 1994). While SH2 and SH3 domains play a role in

protein:protein interaction in a host of proteins, within the Src family members, these

domains play specific roles in activation of Src catalytic activity. In the basic model of

activation, based upon the crystal structures of Src and Hek (Moarefi and others 1997;

Sicheri and Kuriyan 1997; Sicheri and others 1997; Xu and others 1997), a C-terminal

regulatory tyrosine phosphorylated by the C-terminal Src kinase (Csk) binds to the SH2

domain of the same Src protein. This bond holds the kinase in an inactive conformation

that is released upon dephosphorylation of the regulatory tyrosine (Cartwright and others
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1987; Imamoto and Soriano 1993; Kmiecik and Shalloway 1987; Nada and others 1993;

Piwnica-Worms and others 1987; Reynolds and others 1987). Release of this SH2

interaction results in an extended conformation of the catalytic domain, which may serve

both to release the kinase domain from a negative regulatory interaction with the SH3

domain, and to open the kinase to interaction with substrates. Furthermore, a tyrosine

autophosphorylation site exists within the catalytic domain of Src, and appears to be

important for proper orientation of the N-terminal lobe of the catalytic domain following

release from the SH2 and SH3 restraints (Cooper and others 1986; Kmiecik and others

1988; Kmiecik and Shalloway 1987; Parsons and Weber 1989; Piwnica-Worms and

others 1987; Snyder and others 1983).

In addition to the recruitment of various adaptors and cascade linkers, RTKs also interact

with Src family non-receptor tyrosine kinases, and utilize these kinases for the

transduction of several critical pathways (Erpel and Courtneidge 1995). The first RTK

found to interact with a Src family kinase was PDGF-R6 (Ralston and Bishop 1985).

Treatment with PDGF-BB was found to increase the catalytic activity of Src, Fyn, and

Yes in fibroblasts, and receptor activation induced serine and tyrosine phosphorylation of

Src and Fyn (Gould and Hunter 1988; Kypta and others 1990). The Src SH2 domain

binds directly to two phosphotyrosines within the juxtamembrane of PDGF-R, leading to

the activation of Src. This activation probably occurs via a mechanism in which the Src
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SH2 domain releases the Src catalytic domain in order to bind to the phosphotyrosines on

PDGF-R, thereby freeing the Src kinase domain of its intramolecular restraints (Alonso

and others 1995; Mori and others 1993). PDGF-R may also proactively turn on Src via

phosphorylation of two serines and a tyrosine within the N-terminal half of the protein,

and phosphorylation of a tyrosine within the catalytic domain (Broome and Hunter 1997;

Gould and Hunter 1988; Ralston and Bishop 1985; Stover and others 1996).

EGFR signaling also makes use of Src family kinases. Overexpression of Src enhances

several responses downstream from EGF, including tyrosine phosphorylation, DNA

synthesis, and tumor formation (Chang and others 1995a; Chang and others 1995b;

Luttrell and others 1988; Maa and others 1995; Wilson and others 1989; Wilson and

Parsons 1990). Furthermore, EGF stimulation induces a two- to threefold increase in Src

kinase activity, as well as a redistribution of Src to specific subcellular fractions

indicative of activation (Sato and others 1995; Weernink and Rijksen 1995). Src may

interact directly with EGFR, either via an interaction between EGFR and the catalytic

domain of Src, or by way of an SH2-mediated interaction (Lombardo and others 1995;

Maa and others 1995; Sato and others 1995). Activation may also be mediated indirectly.

For example, activation of the SHP-2 tyrosine phosphatase by EGFR may activate Src

family kinases by dephosphorylating the negative regulatory tyrosine within the C

terminal region of the kinase (Feng and others 1994a). Finally, several other receptor
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families recruit and activate Src family members, including FGFR, the insulin receptor,

G-protein coupled receptors, GPI-linked receptors, and cytokine receptors (Thomas and

Brugge 1997).

Involvement of Src or a Src family member in NGF-mediated differentiative signaling

was first proposed when it was discovered that infection of PC12 cells with the oncogenic

form of Src recapitulated the neurite outgrowth induced by NGF (Alema and others

1985). Further analysis showed that neutralization of Ras by microinjection of anti-Ras

antibodies blocked the neuritogenic effects of both Src and NGF (Hagag and others 1986;

Kremer and others 1991). In contrast, neutralization of Src activity by antibody

microinjection did not block neurite outgrowth induced by infection with oncogenic Ras

(Bar-Sagi and Feramisco 1985; Kremer and others 1991; Noda and others 1985), but did

inhibit NGF-induced neuritogenesis, and did cause retraction of established neurites

induced by NGF or FGF treatment (Kremer and others 1991). Finally, both oncogenic

Src and oncogenic Ras are able to “prime” PC12 cells, such that subsequent NGF

treatment elicits a more rapid and robust neuritogenesis than NGF treatment of unprimed

cells (Thomas and others 1991). These data suggest that the role of Src in neurite

outgrowth is downstream of TrkA activation, but upstream of Ras signaling. However,

evidence from another differentiative signaling cascade argues against a linear

relationship between Src and Ras, and suggests that parallel and differentially regulated
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pathways are involved. In PC12 cells expressing PDGF-RB, treatment with PDGF-BB,

like treatment with NGF, induces cessation of growth, neurite outgrowth, induction of

sodium channels, persistent activation of the MAP kinase pathway, and persistent

phosphorylation of PLCY (Fanger and others 1995a; Fanger and others 1995b; Gronwald

and others 1988; Qui and Green 1992). In cells expressing mutant PDGF-R that is unable

to elicit morphological differentiation, persistent activation of the MAPK pathway was

still observed (Vaillancourt and others 1995), indicating that, at least in this signaling

system, there is a disconnect between neurite outgrowth and persistent MAP kinase

activation. Unexpectedly, persistent tyrosine phosphorylation of PLCY and association of

Src with the RTK were correlated to neurite outgrowth (Vaillancourt and others 1995),

suggesting that these two signaling elements play critical roles in differentiative

signaling. Hence, as persistent activation of the MAP kinase pathway is not predicative

of differentiation, while signaling through the Src pathway apparently is, the relationship

between Src and Ras discussed above must not be linear (i.e. Src is not simply upstream

from Ras), but rather parallel. Further support for a parallel relationship comes from

studies showing that in conditionally immortalized E17 hippocampal neurons, oncogenic

Src induced cellular differentiation without activation of the Ras-Raf-MAP kinase

pathway. However, Src did activate the N-terminal c-jun kinase (JNK) pathway (Kuo

and others 1997), another member of the MAP kinase family of serine-threonine kinases.
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Hence, one possible explanation for the role that both Src and Ras play in differentiation

would be that they share a common convergence factor downstream from each other, but

upstream from a differentiative pathway signaled through either Erk1/2 or JNK (Lewis

and others 1998). A possible candidate for this factor is one or several of the MEK

family members, which control activation of both Erk1/2 and JNK under specific cellular

conditions (Ellinger-Ziegelbauer and others 1997). This model is compatible with data

showing that pharmacological inhibition of MEK in PC12 cells abrogated neurite

outgrowth in response to NGF (Pang and others 1995). Interestingly, MEK activity is

also regulated by several PKC isoforms (Berra and others 1993; Berra and others 1995;

Schonwasser and others 1998; van Dijk and others 1997b), and overexpression of either

PKCu or PKC resulted in enhanced NGF-induced neurite outgrowth and enhanced NGF

induced JNK activation (Wooten and others 1999), while inhibition of atypical PKC

isoforms blocked NGF-induced activation of JNK (Wooten and others 1999).

Furthermore, oncogenic Src enhances JNK activation, and this effect is blocked by

expression of a dominant-negative Crk mutant, implicating the Rap pathway in this

phenomenon (Dolfi and others 1998). PI3 kinase is also implicated in signaling to JNK,

as NGF-induced JNK activation was impaired by either wortmannin or LY294002, and

overexpression of PI3 kinase resulted in neurite outgrowth and JNK activation in the

absence of Erk activation (Kobayashi and others 1997). Finally, inhibition of JNK

activation directly blocked neurite outgrowth in response to NGF (Kita and others 1998).
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Thus, a signaling cascade involving Src, PI3 kinase, PKC, and JNK appears to be

involved in neurite outgrowth and differentiative signaling, and may either complement

or parallel the Ras-Raf-MEK-Erk1/2 cascade.

Signaling through Src, PI3 kinase, PKC, and JNK may also play a role in cell survival

signaling. Overexpression of either Src or PKCu enhanced PC12 cell survival in serum

free conditions, and both increased the activation of the transcription factor NFKB

(Wooten and others 2000; Wooten and others 1999), apparently via JNK signaling.

Moreover, inhibition of Src or atypical PKC isoforms promoted cell death (Seibenhener

and others 1999; Wooten and others 2000). Likewise, inhibition of PI3 kinase activity

blocked cell survival and reduced NGF-induced NFkB activation (Wooten and others

2000). These findings are compatible with data showing that constituitive activation of

NFkB promotes cell survival and resistance to apoptosis (Giri and Aggarwal 1998), and

that NGF induction of NFkB is primarily dependent upon signaling through the JNK

pathway (Wooten and others 2000). Thus, both differentiative and survival signaling

may be controlled in part by a signaling unit that includes Src, PI3 kinase, and PKC.

PI3 kinase and Src are also implicated in survival signaling via the common substrate

Akt, a serine-threonine kinase also known as Protein Kinase B (PKB), or Related to A



and C Protein Kinase (RAC-PK). Akt was originally identified as the homolog of the

retroviral oncogene v-Akt (Cross and others 1995; Franke and others 1995), and was

subsequently found to be regulated by growth factor and serum factor signaling through

PI3 kinase (Alessi and others 1996; Andjelkovic and others 1996; Burgering and Coffer

1995; Franke and others 1997; Franke and others 1995; Klippel and others 1997). PI3

kinase is a heterodimer composed of an 85 kDa regulatory subunit and a 110 kDa

catalytic subunit. Activation of the kinase involves binding of the regulatory subunit

either directly or via adaptors to activated RTKs. This interaction with the cytoplasmic

domain of an RTK results in recruitment of the 110 kDa catalytic subunit to the plasma

membrane, where it can interact with membrane phosphoinositides. PI3 kinase

phosphorylates the D-3 position of the inositol ring of phosphatidylinositol (PI), PI-4-

phosphate (PI4-P), and PI-4,5-P, to yield, respectively, PI-3-P, PI-3,4-P, and PI-3,4,5-P,

(Figure 1.5) (Franke and others 1997). PI-3-P is constituitively produced by PI3 kinase,

in the absence of growth factor signaling, and may play a role in vesicle trafficking via

interaction with FYVE domains in proteins like EEA1 (Cockcroft 1999; Leevers and

others 1999). PI-3,4-P, and PI-3,4,5-P, are rapidly induced in response to growth factor

signaling, and both signal to activate Akt. In addition, PI-3,4,5-P, interacts with specific

SH2 and pleckstrin homology domains within proteins such as PLCY (Bae and others

1998; Falasca and others 1998; Rameh and others 1998) and the Arf-GEFs ARNO,

GRP1, and cytohesin-1 (Chardin and others 1996; Klarlund and others 1998; Meacci and
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others 1997; Nagel and others 1998; Venkateswarlu and others 1998), proteins that each

play a role in vesicular trafficking (Moss and Vaughan 1998; Schimmoller and others

1997). Akt interacts with PI-3,4-P, or PI-3,4,5-P, via a pleckstrin homology domain

located in its N-terminus, but this interaction alone is insufficient to activate the kinase.

Rather, the 3-Phosphoinositide-Dependent Kinase PDK1 must also be present and active

to get Akt activation (Figure 1.6). PDK1 also contains a pleckstrin homology domain

that binds PI-3,4-P, or PI-3,4,5-P, and this binding is necessary to permit PDK1 to

phosphorylate Akt on threonine 308. Threonine 308 is within the activation loop of Akt,

and its phosphorylation is required for Akt activity (Alessi and others 1997a; Alessi and

others 1997b; Cohen and others 1997; Stephens and others 1998; Stokoe and others

1997). Deletion of the Akt pleckstrin homology domain circumvented the need for PI

3,4-P, for activation, while point mutations within the pleckstrin homology domain

blocked Akt activation (Stokoe and others 1997). Furthermore, as PDK1 is in a

constituitively active conformation, binding of PI-3,4-P, or PI-3,4,5-P, to Akt must serve

to induce a conformational change in Akt that permits phosphorylation of the activation

loop (Leevers and others 1999). However, an interaction of PDK1 with PI-3,4-P, or PI

3,4,5-P, may also serve to control its localization at the plasma membrane, as

overexpressed PDK1 was found to be primarily cytoplasmic, moving to the plasma

membrane in a PI3 kinase-dependent manner (Anderson and others 1998; Andjelkovic

and others 1996). Hence, TrkA signaling via PI3 kinase presumably signals to generate
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3-phosphoinositides that conformationally control Akt and permit it to be activated by

membrane-associated PDK1. Interestingly, PDK1 has been shown to phosphorylate the

activation loop of several other serine-threonine kinases, including certain isoforms of

PKC (Chou and others 1998; Le Good and others 1998), suggesting that PI3 kinase

mediated generation of 3-phosphoinositides may also control differentiative or survival

signaling via PKC activation.

PI3 kinase mediation of TrkA survival signaling is indicated by experiments showing that

two inhibitors of PI3 kinase activity, wortmannin and LY294002, induce apoptosis in

PC12 cells and sympathetic neurons supported by NGF. Moreover, PDGF prevented

apoptosis in PC12 cells expressing wild-type PDGF-R, but not in cells expressing a

mutant PDGF-R that fails to activate PI3 kinase (Crowder and Freeman 1998; Yao and

Cooper 1995). The role of Akt in regulation of cell survival downstream from PI3 kinase

is suggested by the fact that overexpression of Akt in primary cultures of cerebellar

neurons or sympathetic neurons provides protection against death induced by serum

withdrawal or inhibition of PI3 kinase, while expression of dominant-interfering forms of

Akt blocked NGF-mediated survival (Crowder and Freeman 1998; Dudek and others

1997). The mechanism by which Akt mediates survival is unclear, though Akt has been

reported to bind and phosphorylate Bad, a member of the Bcl-2 family of proteins (Figure

1.6) (Datta and others 1997; del Peso and others 1997). Phosphorylation of Bad prevents
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it from binding the anti-apoptotic Bcl-2 family members Bcl-2 and Bcl-Xi (Zha and

others 1996), shifting the cell to contain more Bcl-2 homodimers than Bcl-2/Bax

heterodimers. The Bcl family is composed of two groups of proteins, one which

promotes cell survival and includes Bcl-2, Bcl-X1, Mcl-1, A1, and Bag-1, and the other

which promotes cell death and is comprised of Bcl-Xs, Bad, Bid, Bik, Bim, Bax, and Bak

(Boise and others 1995; Kroemer 1997; Steller 1995). The members of the Bcl family

form homo- and heterodimers, and the balance of each within the cell is considered to

regulate the maintenance of survival or the induction of death. In the absence of

phosphorylation of Bad on serine 112 and serine 136, Bad signals to promote cell death,

apparently by forming heterodimers with Bcl-Xi (Figure 1.6). Formation of these

heterodimers leads to the generation of Bax homodimers. Homodimerization of Bax

induces its translocation into mitochondria and insertion into the mitochondrial

membrane (Gross and others 1998). There it leads to altered mitochondrial membrane

potential via ion channel formation, and to generation of cytotoxic reactive oxygen

species (Xiang and others 1996). In contrast, the phosphorylation of Bad promotes cell

survival by inducing an interaction between Bad and the 14-3-3 protein. This interaction

effectively sequesters Bad from any interaction with Bcl-XL, keeping the balance of Bcl

XI./Bax heterodimers high, and preventing Bax homodimerization (Figure 1.6) (Zha and

others 1996). Hence, TrkA survival signaling involves PI3 kinase-mediated activation of

Akt, and the consequent maintenance of Bcl-X/Bax heterodimers. Interestingly, Src is
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also implicated in the activation of Akt, via a mechanism that involves PI3 kinase and

SHP-2 (Datta and others 1996; Hakak and others 2000). This interaction may explain the

finding, presented above, that inhibition of Src promotes cell death, and suggests that

additional complexity may exist in the mechanism by which TrkA signaling induces cell

survival.

3.2 TrkB and TrkC

TrkB, the receptor tyrosine kinase for BDNF and NT-4/5, and TrkC, the RTK for NT-3,

exhibit many of the same properties as TrkA (Bothwell 1995; Greene and Kaplan 1995).

As described above, TrkA is the only RTK for NGF, while BDNF and NT-4/5 essentially

share TrkB (Figure 1.7). NT-3 is the only ligand for TrkC, but NT-3 can also bind and

activate TrkA and TrkB, at least within appropriate cellular contexts (Ip and others

1993b; Klein and others 1990; Lamballe and others 1991; Soppet and others 1991;

Squinto and others 1991). The Trk family of RTKs all elicit essentially the same

signaling cascades, though with varying degrees of intensity and along slightly different

time courses, suggesting that these receptors share common adaptor proteins and

common mechanisms for activating transcriptional events (Yuen and Mobley 1999).

Interestingly, several variant isoforms of TrkB and TrkC are expressed in a cell-specific

manner, some of which entirely lack the tyrosine kinase domain. The role of these

kinase-less receptors is unclear, though it is hypothesized that they function to scavenge
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free neurotrophin or to change the kinetics of binding of BDNF or NT-3 to their fully

functional cognate RTKs. Whether these kinase-less receptor isoforms are able to signal

following dimerization with the full-length RTK, and how such signaling may modify

normal signal transduction in response to BDNF or NT-3, are unanswered questions. It is

interesting to speculate that the various isoforms of TrkB and TrkC may function in a

manner analogous to the p75 neurotrophin receptor (p75NTR), discussed below.

3.3 p75-Neurotrophin Receptor

3.3.1 Discovery of p75NTR

p75NTR was the first identified NGF receptor, and for many years was believed to be the

only such receptor. Initial investigations into the specific binding of NGF to cell-surface

receptors identified a wide variety of cell types exhibiting such binding, including

sympathetic neurons (Frazier and others 1974; Massague and others 1981), Schwann

cells (DiStefano and Johnson 1988b; Taniuchi and others 1986a), neurofibromas (Ross

and others 1986), melanoma cells (Fabricant and others 1977), neuroblastoma cells

(Marchetti and Perez-Polo 1987; Sonnenfeld and Ishii 1982), and pheochromocytoma

(PC12) cells (Green and Greene 1986; Grob and others 1983; Hosang and Shooter 1985;

Landreth and Shooter 1980). The identification of the receptor responsible for this

binding proceeded with the use of affinity crosslinking of the receptor to iodinated NGF.

Isolation of the major radioiodinated complex from several different cell types following
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crosslinking identified a protein of 75 kDa (Massague and others 1981). Likewise,

immunoprecipitation with monoclonal antibodies directed against the NGF receptor

yielded a protein of 75-80 kDa (Green and Greene 1986; Grob and others 1985; Marano

and others 1987; Taniuchi and others 1986a; Taniuchi and others 1986b). Finally,

affinity chromatography with NGF-sepharose isolated a 75-80 kDa protein from

sympathetic neurons and melanoma cells (Kouchalakos and Bradshaw 1986; Marano and

others 1987; Puma and others 1983), and metabolic labeling experiments identified the

receptor as a glycosylated protein that is processed from a 59 kDa precursor (Grob and

others 1985). The receptor was cloned using an elaborate process in which high

molecular weight DNA fragments were introduced into mouse fibroblasts, viable

transfectants were selected, and cells expressing the receptor were isolated either via a

clustering assay or by a cell sorting process using monoclonal antibodies against the

receptor (Chao and others 1986; Radeke and others 1987). After selection of a cell line

expressing the receptor, the gene was isolated by subtractive cDNA hybridization, and

the validity of the cDNA was determined by expression in mammalian cells (Johnson and

others 1986b; Radeke and others 1987) and Xenopus laevis oocytes (Sehgal and others

1988).
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3.3.2 Structure of p75NTR

p75NTR is the first identified member of a superfamily of receptors that includes CD27,

CD30, CD40, 4-1BB, OX40, LTBR, Fas (CD95), DR4, DR5, TRID, HVEM, TRAMP,

CAR-1, and the tumor necrosis factor receptors (Bazan 1990; Cosman and others 1990;

Mallett and Barclay 1991; Smith and others 1994). These receptors share several

common signaling features, including the ability to control cell viability via regulation of

apoptosis (this will be discussed more fully in the section regarding p75NTR signaling),

as well as common structural features that include a highly conserved cysteine-rich motif

within the extracellular ligand-binding domain. This motif takes the form of CxxCxxC,

and is repeated several times within the extracellular region of each of these receptors

(Ware and others 1998). The cysteine-rich motifs within p75NTR define the NGF

binding site and play a role in stabilizing the NGF-p75NTR complex (Baldwin and others

1992; Welcher and others 1991; Yan and Chao 1991).

The rat gene for p75NTR encodes a 395 amino acid protein, of which 221 residues

comprise the extracellular domain, 22 form the transmembrane region, and 152 residues

comprise the intracellular domain (Johnson and others 1986a; Radeke and others 1987).

The extracellular domain of p75NTR is glycosylated, and the intracellular domain is

palmitoylated (Barker and others 1994), two post-translational modifications that are

likely to control the membrane localization and distribution of the receptor. In addition
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to the full-length receptor, p75NTR is also expressed as a membrane-anchored

cytoplasmic domain that lacks the entire neurotrophin binding region. p75NTR also

exists in a soluble form that consists only of the receptor's ligand binding domain,

generated by the action of a cell-surface cysteine protease, perhaps in a signal-specific

manner (Barker and others 1991; DiStefano and others 1993; DiStefano and others 1991;

DiStefano and Johnson 1988a; Zupan and others 1989). Finally, comparison of the

p75NTR sequences from rat, human, and chicken indicates that the juxtamembrane, ***

transmembrane, and distal intracellular domains are almost completely conserved, ** ****

suggesting that these regions are critical to the function of p75NTR (Heuer and others 3.3
5

1990; Large and others 1989). ****

****,
*** **

3.3.3 p75NTR Expression 3
--~

p75NTR is widely expressed in many tissues, neuronal and non-neuronal. Within the -wº

peripheral nervous system, p75NTR is found within DRG sensory neurons, sympathetic

neurons, and a subset of enteric and parasympathetic neurons (Carroll and others 1992;

Schatteman and others 1993; Verge and others 1992; Yan and Johnson 1988). In the

central nervous system, p75NTR is expressed during development within spinal motor

neurons, cerebellar deep nuclei neurons, cerebellar Purkinje cells, the cuneate nucleus,

the olivary pretectal nucleus, cortical subplate neurons, thalamic nuclei such as the lateral

geniculate nucleus, and the amygdala (Buck and others 1988; Ernfors and others 1988;
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Heuer and others 1990; Large and others 1989; Schatteman and others 1988). In

addition, in the adult, p75NTR is expressed within basal forebrain cholinergic neurons, as

well as in neurons of the superchiasmatic, trigeminal, hypoglossal, and raphe nuclei

(Hefti and others 1986; Henry and others 1994; Koh and others 1989; Pioro and Cuello

1988; Sofroniew and others 1989; Springer and others 1987). A significant amount of

p75NTR expression occurs within non-neuronal tissues, including extremely high levels

of expression within the mesenchymal tissue of the pelvis and in the developing limb

buds (Heuer and others 1990; Wheeler and Bothwell 1992). Expression is also found

within mesenchymal tissue of the kidney, testes, inner ear, hair follicles, and lung, and

within myoblasts, endothelial cells, perivascular fibroblasts, and dental pulp cells (Alpers

and others 1993; Byers and others 1990; Durbeej and others 1993; von Bartheld and

others 1991; Yan and Johnson 1988).

3.3.4 Interactions Between p75NTR and Trk

As discussed earlier, neurotrophins mediate many of their biological effects via Trk

receptors. However, while some cells do only express Trk, such as early sympathetic

neuronal precursor cells and pyramidal cells of the hippocampus (Ip and others 1993a;

Marsh and others 1993; Verdi and Anderson 1994), many cells expressing Trk co-express

p75NTR. On these cells, binding studies demonstrate two classes of binding sites. One

site, called the low-affinity binding site, accounts for the predominance of neurotrophin

61



binding, and has a Ka of circa 10° nM and rapid association and dissociation kinetics.

The other site, called the high-affinity binding site, exhibits rapid association but slow

dissociation kinetics, and has a Ka of approximately 10" nM (Rodriguez-Tebar and

others 1992; Schechter and Bothwell 1981; Sutter and others 1979). While no consensus

currently exists regarding the identification of p75NTR as the receptor responsible for

low affinity binding, most data support the idea that it is at least responsible for the

majority of such binding (Clary and others 1994; Ibanez and others 1992; Johnson and

others 1986a; Radeke and others 1987; Weskamp and Reichardt 1991). p75NTR appears

to bind NGF, BDNF, and NT-3 with low affinity (Figure 1.7), while Trks are largely

responsible for binding the neurotrophins with high affinity in the presence of p75NTR

(Battleman and others 1993; Mahadeo and others 1994; Meakin and others 1992;

Rodriguez-Tebar and others 1990; Rodriguez-Tebar and others 1992; Venkatakrishnan

and others 1990). Conflicting reports exists regarding the dissociation kinetics of Trk/A

expressed alone, with most groups reporting a Ka of 10° nM (Clary and others 1994;

Hartman and others 1992; Hempstead and others 1991; Mahadeo and others 1994). This

suggests that high affinity binding sites are the result of a cooperative effect between the

two receptors, rather than a facet of either receptor by itself. This is further supported by

the fact that TrkA alone exhibits a relatively slow association rate, but in the presence of

p75NTR expresses the fast association kinetics characteristic of the high affinity binding

site (Mahadeo and others 1994; Sutter and others 1979). Furthermore, NGF binding to
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p75NTR is a pre-requisite for this enhanced association rate, as specific inhibition of

p75NTR binding reduces the amount of NGF that becomes bound to Trk/A at limiting

concentrations of NGF (Barker and Shooter 1994). These data support the idea that high

affinity binding sites are formed via a fast association rate provided by p75NTR and a

slow dissociation constant provided by TrkA.

The kinetic argument for the cooperativity between TrkA and p75NTR is supported by

biochemical evidence that disruption of p75NTR binding reduces NGF-induced TrkA

activation and gene induction, though only at low concentrations of NGF (Barker and

Shooter 1994). Furthermore, p75NTR transgenic knockout mice exhibit a progressive

loss of sensory and sympathetic innervation, consistent with the idea that a lack of

p75NTR reduces the efficacy of neurotrophin binding, and hence reduces the viability of

neurons that depend upon neurotrophic retrograde signaling. Sensory neurons from these

animals do, in fact, exhibit reduced responsiveness to NGF, though, interestingly, BDNF

and NT-3 binding appear to be unaffected (Davies and others 1993; Lee and others

1994b; Lee and others 1994c; Lee and others 1992). This observation suggests that the

role p75NTR may play in enhancing neurotrophin binding is selective for sympathetic

and sensory neurons that normally co-express TrkA and p75NTR.
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The mechanism by which p75NTR cooperates with TrkA to generate high affinity

binding is still unresolved. One hypothesis is that p75NTR interacts directly with TrkA

to induce an allosteric change in the conformation of the TrkA ligand binding domain

such that it binds NGF more efficaciously (Bothwell 1995). An analogous relationship

exists between the receptors of the interleukin-2 (IL-2) system, in which the IL-20.

subunit enhances the binding characteristics of the IL-23 receptor, without requiring the

O. subunit to bind IL-2 directly (Grant and others 1992; Lowenthal and Greene 1987;

Wang and Smith 1987). Alternatively, p75NTR may enhance TrkA association kinetics

by first binding to NGF and then presenting it to TrkA in an altered conformation that

supports increased binding. This would require the formation of a heterodimer composed

of one p75NTR and one TrkA, cooperatively bound to NGF. While the formation of

such a heterodimer is not supported by kinetic data (Jing and others 1992), there is

precedence for such a relationship in the transforming growth factor-■ (TGF-3) system.

In this system, TGF first binds to TGF-RIII, and is then transferred to TGF-RII,

whereupon a TGF-RI/TGF-RII heterocomplex forms, resulting in signal transduction

(Wrana and others 1994). Finally, a third possibility is that p75NTR acts to concentrate

NGF near Trk/A, enhancing the association rate with TrkA on a micro-environmental

level in much the same way that simply increasing the overall concentration of NGF at

the macro-environmental level increases the association rate (Barker and Shooter 1994).



In support of this model, co-expression of p75NTR with TrkA slowed the lateral mobility

of p75NTR within the plane of the plasma membrane, suggesting that p75NTR is

colocalized with TrkA within the membrane, where it may act to concentrate NGF (Wolf

and others 1995).

p75NTR may also interact with TrkA to modify binding specificity. In fibroblasts that

express only TrkA, NT-3 and NT-4/5 are able activate the receptor, while in PC12 cells,

which express both p75NTR and TrkA, only NGF is able to activate TrkA (Berkemeier

and others 1991; Ip and others 1993b). Likewise, mutant PC12 cells that express only

very low levels of p75NTR exhibit NT-3-induced TrkA activation (Benedetti and others

1993). Finally, postnatal sympathetic neurons normally exhibit very limited survival in

culture in response to NT-3, but these same neurons isolated from p75NTR transgenic

knockout mice show a much more robust NT-3-induced survival response (Lee and

others 1994c). These data suggest that p75NTR may function to tune individual neurons

to specific neurotrophin responsiveness, thereby controlling the ability of such neurons to

compete for target-derived neurotrophic support. It is interesting to note that sympathetic

neurons normally undergo a switch in trophic dependence, from an early dependence

upon NT-3 to a later dependence on NGF, and that this switch is temporally correlated to

the onset of p75NTR expression (Birren and others 1993). Furthermore, as NGF

signaling via TrkA appears to control p75NTR expression in these cells (Miller and
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others 1991; Miller and others 1994; Verdi and Anderson 1994; Verge and others 1992;

Wyatt and others 1990), it is likely that first contact between the innervating sympathetic

fibers and NGF available from the target field elicits the trophic dependency switch.

Also, the expression of p75NTR by cells which have received an NGF signal from the

target is likely to increase the sensitivity of those neurons to low levels of target-derived

NGF, leading to a situation in which those neurons that express p75NTR are better able

to compete for synaptic space within the target. Hence, the ability of p75NTR to sharpen ****

TrkA binding specificity plays a significant role in the maturation of target innervation, ** -

and likely controls the competition which defines the adult pattern of innervation. * 3

Whether p75NTR plays such a role in synaptic competition within the central nervous -----.

system remains to be determined.

3.3.5 p75NTR Signaling -->

In addition to the role p75NTR plays in modulating and modifying Trk/A signaling for

survival and differentiation, as discussed above, this receptor may also signal

autonomously to induce apoptosis under specific cellular contexts. For example, in the

embryonic chick retina, neural precursor cells expressing p75NTR in the absence of

TrkA undergo NGF-dependent apoptosis, suggesting that developmentally programmed

death in these cells is mediated by p75NTR (Bredesen and Rabizadeh 1997; Carter and

Lewin 1997; Frade and others 1996). Furthermore, p75NTR mediates NGF-induced
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death of cultured oligodendrocytes (Casaccia-Bonnefil and others 1996; Gu and others

1999; Yoon and others 1998) and cultured hepatic stellate cells (Trim and others 2000),

and BDNF signaling via p75NTR was shown to induce apoptosis of postnatal

sympathetic neurons in culture (Bamji and others 1998). Moreover, an increased number

of sympathetic neurons are found in BDNF-deficient mice, and there is a delay in

sympathetic cell death in p75NTR homozygous knockout mice (Bamji and others 1998).

Interestingly, BDNF-dependent trigeminal neurons are killed via binding of NT-4 to

p75NTR, even though p75NTR is necessary to the cell survival induced by BDNF

(Agerman and others 1999). This indicates that p75NTR signaling is not only dependent

upon cell context, but also upon neurotrophin binding specificity.

One signal transduction pathway ascribed to p75NTR that may be involved in apoptotic

signaling involves generation of the lipid second messenger ceramide via activation of

sphingomyelinase. In fibroblasts expressing p75NTR but not TrkA, NGF induced the

production of ceramide. Furthermore, in T9 glioma cells, NGF induced the activation of

sphingomyelinase and the production of ceramide, and inhibited growth and fiber

formation, a process which was mimicked by incubation with membrane-permeant

ceramide analogs (Dobrowsky and others 1994). Other members of the p75NTR

superfamily, such as TNF-RI and Fas, also signal via ceramide production (Cifone and

others 1994). This signaling function appears to be mediated at least in part by a region
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within TNF-RI and Fas termed the “death domain,” a C-terminal region in the

cytoplasmic domain that is necessary for apoptotic signaling downstream from these

receptors (Tartaglia and others 1993; Watanabe-Fukunaga and others 1992). Analysis of

the p75NTR sequence shows that a homologous “death domain” region exists within the

intracellular region of this receptor (Liepinsh and others 1997). Recent experiments

suggest that the “death domain” serves to mediate protein:protein interactions. For

example, this region mediates Fas and TNF-RI intracellular domain aggregation (Boldin

and others 1995a; Song and others 1994), and a homologous region has been found

within ankyrin, a protein that anchors transmembranal proteins to the cytoskeleton

(Boldin and others 1995b).

Another death signaling domain was recently discovered within the p75NTR

juxtamembrane region. This domain, a 29 residue sequence named “chopper,” is

necessary and sufficient to induce cell death in several cell types, including neurons.

Interestingly, a peptide corresponding to the chopper domain only signaled cell death

when associated with the plasma membrane via a lipid anchor. Non-anchored chopper

peptide did not mediate cell death, and, in fact, acted in a dominant-negative manner to

p75NTR-mediated death signaling (Coulson and others 2000), suggesting that

palmitoylation of p75NTR is a crucial factor in mediating signaling from the receptor.
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This finding also suggests the possibility that proteolytic cleavage of the intracellular

domain may play a role in controlling p75NTR signaling.

Another possible mechanism of p75NTR-mediated cell death was suggested by the

observation that overexpression of the intracellular domain of p75NTR induced profound

cell death in several neuronal populations within the central and peripheral nervous

systems (Majdan and others 1997). This finding, plus the observation that immortalized

neural cells overexpressing p75NTR exhibit enhanced cell death following serum

withdrawal (Rabizadeh and others 1993), suggests that p75NTR may signal pro

apoptotically in the absence of ligand binding. In this model, binding of NGF to p75NTR

induces a conformational change which blocks the production of a death signal. Further

support for this idea comes from work showing that antisense-induced downregulation of

p75NTR in neonatal dorsal root ganglia sensory neurons enhanced survival (Barrett and

Bartlett 1994). Moreover, identification of an alternatively spliced isoform of p75NTR

lacking the neurotrophin-binding domain supports the model of ligand-independent

signaling (Dechant and Barde 1997). The receptor produced by this alternative splice

event contains the transmembrane and intracellular domains, but lacks the ability to bind

neurotrophin, and may therefore exhibit enhanced cell death signaling consistent with the

function of the death domains described above. Finally, p75NTR appears to exhibit

ligand-independent signaling through the RhoA pathway. In cells transfected with
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p75NTR, RhoA activation was generated in the absence of ligand, and was abolished by

addition of ligand, suggesting that p75NTR can signal to reorganize the actin

cytoskeleton in a manner that is negatively modulated by the presence of neurotrophin

(Yamashita and others 1999b).

Many proteins in the p75NTR superfamily interact with TNF receptor-associated factors

(TRAFs) that modulate signaling through the JNK and NFkB pathways. Six such factors

have been identified in signaling evoked by TNF-R, CD30, CD40, and the IL-1 receptor

(Arch and others 1998; Rothe and others 1995), and recently p75NTR was shown to

associate with TRAF-2, TRAF-4, and TRAF-6 following treatment with NGF

(Khursigara and others 1999; Ye and others 1999). Interestingly, the association of

TRAF-6 with p75NTR is mediated by the receptor's juxtamembrane domain (Khursigara

and others 1999), within a sequence that is absolutely conserved between human, rat, and

chicken p75NTR (Large and others 1989), suggesting that the interaction with TRAF-6 is

critical to p75NTR function. TRAF-6 is recruited to the IL-1 receptor via binding to

IRAK, the IL-1 receptor-associated serine-threonine kinase (Cao and others 1996a; Cao

and others 1996b), and TRAF-6 has also been shown to signal through NIK, the NFKB

inducing kinase (Malinin and others 1997), suggesting that one role of the p75NTR

(TRAF-6) interaction may be to couple p75NTR to several different kinase cascades.

The use of adaptor proteins such as TRAF-6 potentially permits p75NTR, which lacks
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any intrinsic kinase activity, to recruit and non-catalytically activate several cytoplasmic

non-receptor kinases, thereby linking NGF binding to p75NTR to JNK and NFKB

activation.

As described above, in addition to apoptosis-related signaling, p75NTR binding of NGF

also activates the transcription factor NFkB in neuroblastoma cells (Korner and others

1994), cultured sensory and sympathetic neurons (Maggirwar and others 1998; Wood

1995), Schwann cells (Carter and others 1996; Khursigara and others 1999), and

oligodendrocytes (Ladiwala and others 1998; Yoon and others 1998). The activation of

NFkB downstream from most inducer proteins involves the degradation of the IKB

protein, an inhibitory factor that binds heterodimers of the NFkB p50 and p55 subunits

and prevents them from translocating into the nucleus (Ghosh and others 1998). The

reduction in IkB levels in response to effector signaling is transient, as the IKB gene

contains NFkB binding sites within its promoter. Hence, IkB degradation, resulting in

NFkB nuclear translocation, results in upregulated transcription of the IkB gene, and

increased production of the IKB protein, which then binds to NFkB in the cytoplasm and

inhibits its activity. In oligodendrocytes, in which p75NTR appears to signal via both

NFkB and the JNK pathway, expression of TrkA abrogated NGF-induced cell death in a

manner that was correlated with cessation of JNK signaling, while the NFkB signal
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downstream from p75NTR was unaffected (Yoon and others 1998). This suggests that

p75NTR may evoke two separate pathways, one pro-apoptotic, the other anti-apoptotic,

and that the balance of these two pathways, modulated by Trk/A signaling, controls the

ultimate fate of the cell. However, the exact role that NFkB plays is unresolved — in

some systems it exhibits anti-apoptotic signaling (Maggirwar and others 1998; Mattson

and others 1997), but in others it is associated with pro-apoptotic signaling (Schneider

and others 1999; Schwaninger and others 1999). The TNF receptor, generally associated

with death signaling, also activates NFkB in a pathway that appears to promote survival

of lymphoid cells and fibroblasts (Liu and others 1996; Van Antwerp and others 1996;

Wang and others 1996). Likewise, in hippocampal neurons that do not express TrkA,

NGF signaling through p75NTR protects these cells from glucose deprivation-induced

apoptosis (Cheng and Mattson 1991). Furthermore, p75NTR appears to play a role in

protecting Schwann cells following axotomy. In the normal adult animal, Schwann cells

do not express p75NTR. However, following nerve injury, Schwann cells distal to the

injury site dramatically upregulate p75NTR expression (Heumann and others 1987;

Taniuchi and others 1986a), and exhibit increased NFkB activation (Gentry and others

2000). This increase in NFkB activation is correlated to the absence of apoptosis in

Schwann cells distal to the injury (Grinspan and others 1996). It is interesting that during

development Schwann cells require axonal contact for trophic support, and loss of such
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contact results in cell death. Hence, injury induced expression of p75NTR and

consequent signaling through NFkB may serve in the adult to maintain Schwann cells in

the absence of trophic support from the axon, thereby providing time for the axon to

regrow. Whether this survival signaling cascade differentiates post-injury nerve

regeneration in the peripheral nervous system from the absence of such regeneration in

the central nervous system remains an open question.

4. Endocytosis and Receptor Trafficking

4.1 General Endocytic and Trafficking Mechanisms

4.1.1 Introduction

Endocytosis is defined by the Oxford English Dictionary as “the taking in of material by

a living cell,” and by the Merriam-Webster dictionary as the “incorporation of substances

into a cell.” Cells utilize endocytosis for a host of functions, ranging from nutrient

acquisition, to maintenance of protein and lipid homeostasis following secretory events,

to the transmission of intercellular signals. While the process of endocytosis has been

appreciated for more than a hundred years (Mellman 1996), it is only in the last 20 years

that the fundamental organization of the endocytic pathways involved in the

internalization of cell surface receptors bound by ligands has been delineated (Gruenberg

and Maxfield 1995; Helenius and others 1983; Kornfeld and Mellman 1989; Steinman

and others 1983; Trowbridge and others 1993). In general, endocytosis is considered to
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involve the accumulation of receptor-ligand complexes within clathrin-coated plasma

membrane (CCPM) domains at the surface of the cell, the budding and pinching-off of

these membranes, and the formation of clathrin coated vesicles (CCVs) within the

cytoplasm (Figure 1.9). These CCV's rapidly uncoat and fuse with the early endosome

array, comprised of a dynamic and interconnected network of vesicles and tubular

structures distributed throughout the cell. These early endosomes are slightly acidic,

ranging from pH 6.0 to 6.8 due to the action of an ATP-driven proton pump (Al-Awqati

1986; Forgac 1992; Mellman and others 1986). Within this acidic environment, many

receptor-ligand complexes dissociate, with the free receptors selectively accumulating in

tubular extensions of the early endosomal network and eventually pinching off to form

recycling vesicles that are transported back to the plasma membrane. The dissociated

ligands accumulate within the vesicular compartment of the early endosome network, and

are eventually pinched off and transported through the cell to the perinuclear region,

where they fuse with late endosomes and/or lysosomes. The pH within lysosomes is

even more acidic, approximately pH 5.0, and this, plus the high concentration of

lysosomal enzymes, leads to the degradation of proteins contained with the lysosomal

compartment. Importantly, variations on this theme exist, in which receptors, as well as

ligands, are trafficked to the lysosomal compartment and degraded, or in which specially

marked receptors are trafficked to specialized degradation machines called proteosomes.

Also, some ligand-receptor complexes escape this degradatory pathway and are instead
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trafficked through the cell as a cohesive unit, apparently signaling from their location on

internal membranes much as other receptors signal from the plasma membrane.

In addition to mediating trafficking from the plasma membrane to the interior of the cell,

clathrin-mediated vesicle formation also permits trafficking to occur from the trans-Golgi

network to late endosomes and lysosomes. This pathway is necessary for delivering such

things as lysosomal enzymes from their site of production to the lysosome, where they

are able to function (Kornfeld and Mellman 1989). Thus, CCV's serve in the general role

of vesicle formation, both for endocytic trafficking and for intracellular protein and

membrane delivery. Therefore, CCVs are effectively a population of transport vesicles

specializing in fusion of cargo-containing membranes with endosomes.

The secretory pathway, readily marked by enzymatic activities involved in protein

synthesis, folding, and post-translational processing, is clearly organized into discrete

functional and physical compartments (Kornfeld and Mellman 1989). The endocytic

pathway, as well, is compartmentalized, but, unfortunately, the compartments are not so

readily demarcated. Likewise, endocytic compartments tend to be much more

heterogeneous than secretory organelles, making it difficult to identify endocytic

structures solely on morphological criteria. However, despite the inherent problems in

identifying discrete components of the endocytic pathway, it is generally the case that
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early endosomes are the site of dissociation and sorting of ligands and receptors, while

late endosomes and lysosomes are the sites of accumulation and degradation of proteins

and nutrients acquired from outside of the cell or generated within the cell. Furthermore,

in the last several years, sophisticated tools for biochemically and functionally identifying

and manipulating endocytic organelles have led to determination of many of the

mechanisms necessary for the internalization and trafficking of receptors and other

protein constituents of the plasma membrane, and this knowledge has permitted better

understanding of specializations and exceptions to the general endocytic pathway. The

endocytosis and trafficking of TrkA and NGF may be one such exception to the rule of

receptor-ligand dissociation and degradation, but an understanding of how the

exceptional pathway used by TrkA is relevant to NGF-induced signaling requires

understanding of the general endocytic pathway. Hence, the following sections will

review the general mechanisms of clathrin-mediated endocytosis, and subsequent

sections will focus on the particulars of TrkA endocytosis and trafficking as they relate to

the signaling endosome hypothesis.

4.1.2 Evidence for a Role of Clathrin in Endocytosis

Endocytosis is perhaps one of the most active processes exhibited by cells. Macrophages

and fibroblasts, for example, have been estimated to internalize the equivalent of more

than 200% of their cellular surface area every hour (Steinman and others 1983), and
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recycling of membranes at the presynaptic terminals of activated axons is even greater

(Marsh and McMahon 1999; Sankaranarayanan and Ryan 2000). Furthermore, most

plasma membrane proteins, though endocytosed, exhibit half-lives on the order of 24

hours, suggesting that these proteins must escape degradation for a period of time by

recycling back to the surface of the cell. Consistent with this, several different receptors

have been shown to undergo approximately 10 cycles of ligand uptake and receptor

recycling per hour over the course of their existence (Steinman and others 1983). In º:
****
º

general, the mechanism by which these membrane proteins are endocytosed requires the º:
º

formation of CCVs. The earliest evidence in support of CCV-mediated endocytosis ~
tº-º-º-º:

involved an accounting experiment which calculated the volume of fluid contained within ****

CCVs generated within a given time period, balanced against biochemical measurements ** -

*****,
--~~

of the amount of fluid taken up by the cell as a whole (Marsh and Helenius 1980). **.

Further evidence that CCVs were a necessary component of ligand endocytosis was

provided by experiments showing the selective localization of receptor-ligand complexes

within CCPMs, and a correlation of this localization to ligand uptake, evidenced by a

failure of endocytosis of mutant LDL receptors that could not localize to coated pits

(Brown and Goldstein 1979). Moreover, the Drosophila mutant shibire was shown to

exhibit temperature-dependent paralysis as a result of the loss of endocytosis at motor

nerve terminals. This defect was correlated with a loss of CCV production (Koenig and

Ikeda 1989; Poodry 1990), later shown to be the result of a mutation in dynamin, a
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GTPase necessary for the physical process of budding and pinching-off of CCVs from

CCPMs (Chen and others 1991; van der Bliek and Meyerowitz 1991). Hence, CCV's play

a clear role in the internalization of plasma membrane receptors, as well as in the

recycling of membrane following secretion, and in the uptake of fluid from the

extracellular milieu.

4.1.3 CCV Structure and Formation

Biochemical characterization of CCVs isolated from liver or brain led to the

identification of two major coat constituents: clathrin and the adaptor protein (AP)

complexes (Pearse 1975; Pearse 1976; Pearse 1978). Clathrin is an oligomeric protein

comprised of three 180-190 kDa clathrin heavy chains (CHCs) organized in a triskelion

array, with each CHC bound to one 30-35 kDa clathrin light chain (CLC) (Figure 1.10)

(Schmid 1997). The triskelion is the basic unit of assembly for the polyhedral lattice coat

that is characteristic of CCVs. Each leg of the triskelion unit is formed by an extended

CHC oriented like the arm of a fan or a pinwheel, with its C-terminus situated at the

center of the fan (Figure 1.10). The hub of the fan contains the small globular domain at

the C-terminal extreme of each CHC and the trimerization domain of each CHC. These

trimerization domains come together to form the center of the pinwheel (Figure 1.10).

Also contained within the hub is the proximal leg of each CHC, which serves as the

binding site for either CLCa or CLCb. The hub is connected to the distal leg of each
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CHC fan arm by a region called the knee, a protease sensitive bend within the extended

conformation of CHC that serves to create the characteristic pinwheel shape of the

triskelion (Figure 1.10). This region also provides flexibility to the triskelion and allows

it to adopt the slightly variable conformations necessary for either pentagonal or

hexagonal packing of the triskelions in the overall coat structure (Pearse and others

2000). Under appropriate conditions, clathrin triskelions exhibit self-assembly

properties, forming heterogeneously shaped polyhedrons called cages (Crowther and

others 1976; Kartenbeck 1978; Woodward and Roth 1978). Electron microscopic

analysis of these cages generated a structural model of the clathrin coat that involves a

triskelion hub at each vertex of the polygon, with each leg of the triskelion contributing to

two edges of the polygon and the knee region of the leg located at the vertex adjacent to

the hub vertex (Figure 1.10). Hence, each edge of the polygon is composed of two

antiparallel proximal CHC legs and their associated CLCs extending from adjacent

vertices along the outer face of the edge, and two antiparallel distal CHC legs (that is,

after the knee bend) extending from second-order vertices along the inner surface of the

edge (Kirchhausen and others 1986; Vigers and others 1986a; Vigers and others 1986b).

The angle of flexion at the knee determines whether the interaction amongst triskelions

generates a hexagonal or pentagonal lattice. CCPMs mature into CCVs apparently via

gradual addition of pentagons into the initial hexagonal array formed on the cytoplasmic

face of the plasma membrane (Heuser 1980; Jin and Nossal 1993; McKinley 1983),
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though the exact mechanism driving this interchange remains unclear. CCPMs exhibit a

variable degree of curvature when examined in vivo, and the ratio of curved CCPMs to

total CCPMs is a function of the rate of endocytosis, suggesting that the interchange of

pentagons for hexagons must occur gradually during coating, rather than as a separate

step following generation of the coat (Naim and others 1995; Pypaert and others 1987).

Coat assembly onto CCPMs and membrane curvature are insufficient to drive the

constriction and vesicle budding necessary to form actual CCVs. These two steps require

additional cytosolic factors, as well as ATP and GTP hydrolysis, indicating that these

steps are active, energy-driven processes. The process of CCV formation appears to

occur sequentially, with the formation of a constricted coated pit attached to the plasma

membrane via a narrow neck proceeding as a step separable from pinching-off of the

vesicle (Schmid 1997). Constriction is followed by membrane fission (or scission), and

both steps are dependent upon GTP hydrolysis, apparently mediated by the 100 kDa

GTPase dynamin. The role of dynamin in endocytosis was suggested following the

realization that mammalian dynamin and Drosophila shibire exhibit 70% homology

(Chen and others 1991; van der Bliek and Meyerowitz 1991). Demonstration that

receptor-mediated endocytosis is defective in mammalian cells transiently transfected

with a dominant-negative dynamin mutant confirmed the critical role of dynamin in

endocytosis (Herskovits and others 1993; van der Bliek and Meyerowitz 1991). Finally,
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morphological examination of cells expressing mutant dynamin showed that the protein

must act at a step downstream from CCPM formation and invagination, but upstream

from constriction and scission (Damke and others 1995; Damke and others 1994).

Further analysis of dynamin function showed that dynamin was localized to coated pits

on the plasma membrane (Baba and others 1995; Damke and others 1994; Takei and

others 1995), that it can self-assemble into helical stacks of rings localized to the necks of

invaginated coated pits (Koenig and Ikeda 1989; Takei and others 1995), and that it

interacts with AP2 complexes and amphiphysin (David and others 1996; Wang and

others 1993). These findings suggested a model for dynamin function in which it is

targeted to the nascent clathrin lattice in a GDP-bound, and hence inactive, state. It is

likely that amphiphysin, an SH3-domain containing protein, mediates this recruitment via

an interaction with the proline-rich C-terminus of dynamin (Simpson and others 1999).

Following recruitment to the lattice, dynamin undergoes GTP binding and activation, and

then redistributes away from the lattice in a manner that leads to the generation of a neck,

coated by a dynamin-formed ring structure, and which separates the coated membrane

from the plasma membrane. The helical dynamin rings may be comprised of up to 20

dynamin molecules oriented in a spiral around the neck (Schmid 1997). Formation of the

neck is then likely followed by a GTP-hydrolysis dependent constriction and scission of

the neck membrane, resulting in detachment of the coated vesicle (Vallis and others

I 999).
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4.1.4 Adaptor Protein Complexes

In addition to the clathrin hetero-oligomers, clathrin coats also contain a hetero-tetrameric

adaptor protein complex (Pearse and Robinson 1990). The proteins in this complex were

initially identified as factors that promoted in vitro cage assembly, and were subsequently

discovered to mediate recruitment and attachment of clathrin to membranes (Chang and

others 1993; Peeler and others 1993; Robinson 1994; Traub and others 1995). Several

adaptor complexes have been identified, though only two, the trans-Golgi membrane

specific adaptor complex AP1 and the plasma membrane-specific adaptor complex AP2,

have been thoroughly characterized. Both AP1 and AP2 consist of four related subunits

called adaptins. AP1 is formed by the association of a 100 kDa Y-adaptin, a 100 kDa flº

adaptin, a 50 kDa pil-adaptin, and a 20 kDa o 1-adaptin subunit, while AP2 is comprised

of either of two 100 kDa O, or Oc chains, a 100 kDa fl-adaptin, a 50 kDa pu2-adaptin, and

a 20 kDa Oz-adaptin subunit (Schmid 1997). The 100 kDa subunits show only slight

sequence homology, but all have the same domain organization, comprised of a large

head domain, a proline-rich hinge region, and a C-terminal ear or appendage domain

(Heuser and Keen 1988; Page and Robinson 1995; Ponnambalam and others 1990;

Robinson 1993). The four adaptin subunits tetramerize to form a roughly rectangular box
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that has the ear domains of the two large subunits extending out from the head domains

like the horns of a bull (Schmid 1997).

Adaptor complexes, in addition to recruiting clathrin to membranes, are necessary for

recruiting membrane proteins to CCPMs (Glickman and others 1989; Pearse 1988;

Sorkin and Carpenter 1993; Sorkin and others 1995). This recruitment is accomplished
*** -

- - - - - -- - - - - sºvia recognition of specific sequences within the cytoplasmic domains of membrane gº
-º-

-***

proteins. These recognition motifs generally involve aromatic residues, such as tyrosine, º:
sº

**-

within the context of several residues on either side of the aromatic residue that bear large
-->

hydrophobic side chains (Trowbridge and others 1993). For example, the LDL receptor -:

contains the cytoplasmic domain sequence FDNPVY, which clearly plays a role in :

localizing the receptor within coated pits (Mellman 1996). Two general consensus i.
sequences based on tyrosine are found within receptors that associate with coated pits: lº

(F/Y)xNPxY and Yxx0, where () represents a large hydrophobic residue like

phenylalanine (Marsh and McMahon 1999). Another common recognition motif,

especially within immune receptors such as the Fc receptor, CD3, and the MHC class II

associated invariant chain, involves neighboring leucine residues (Hunziker and Fumey

1994; Mellman 1996). Both the tyrosine-based and the dileucine-based motifs are

recognized as coated pit localization signals, though it is clear that these motifs can exist

within a protein sequence in situations in which the protein is not directed to coated pits.
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Furthermore, it has been shown that other residues outside of these narrowly defined

motifs are important for internalization, and it is therefore likely that it is the tertiary

structure of a protein which determines whether these recognition motifs engage in

coated pit localization (Miettinen and others 1989). Finally, two other endocytic sorting

motifs that have been identified within some proteins are ubiquitinated lysine residues

(Govers and others 1999; Hicke and others 1998) and phosphorylated serine-rich

domains, which are found within the C-termini of many G-protein coupled receptors

(Ferguson and Caron 1998). However, the exact nature of the interaction of these motifs º:

with adaptor proteins remains to be discovered. ...}
5

**i.

Interestingly, coated pit localization motifs are also found on proteins that are not * ---
*****

…”
associated with the plasma membrane. For example, the late endosomal and lysosomal "T3

specific glycoproteins lgp and lamp exhibit short cytoplasmic tails that contain a glycine- 3

tyrosine sequence followed two residues later by a hydrophobic residue (Kornfeld and

Mellman 1989). In general, lgp and lamp are sorted from the trans-Golgi network to

organelles of the endocytic pathway by way of CCVs, indicating that they may be

recognized by AP1. However, under conditions in which these glycoproteins are

overexpressed, some sorting to the plasma membrane occurs. These cell surface lgps or

lamps are rapidly internalized via CCV's derived from the plasma membrane, suggesting

that they are also recognized by AP2 complexes (Harter and Mellman 1992).

84



Other non-receptor proteins are also recognized by the APs. For example, TGN38, a

trans-Golgi network resident protein, recycles continuously from the Golgi to the plasma

membrane, and back, apparently via an association with early and late endosomes that is

mediated by AP1 (Miesenbock and Rothman 1995; Reaves and others 1993).

Furthermore, several integral membrane proteins found in synaptic vesicles, such as the

secretory carrier protein (SCAMP) 37 and synaptophysin, contain Yxx) motifs, and may

interact with AP2 during the membrane recycling component of the synaptic vesicle

cycle (Singleton and others 1997). Such an interaction may play a role in the synaptic

vesicle recycling model that involves recovery of synaptic vesicle membranes at sites

outside of the active zone. In this model, a serial progression of exocytosis and complete

fusion of the vesicle membrane with the plasma membrane is followed by de novo

construction of a coated vesicle. Interestingly, synaptophysin also binds to dynamin, an

interaction that may mediate clathrin-independent recycling of synaptic vesicle

membranes in the so-called “kiss-and-run” model (Daly and others 2000). In this model,

the synaptic vesicle never actually integrates its membrane fully into the plasma

membrane. Rather, the vesicle retains a discrete identity and is quickly recovered,

essentially intact, from the plasma membrane via a clathrin-independent mechanism.

Clearly, clathrin and components of the clathrin pathway play vital roles in several

cellular functions outside the domain of simple plasma membrane endocytosis.
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Another family of proteins that recognize clathrin adaptors is the fl-arrestin subfamily of

the arrestins. 3-arrestin1 and 3-arrestin2 are monomeric 45 kDa proteins that bind both

to the É2-chain of AP2 and directly to the clathrin heavy chain. These proteins were

identified as factors necessary for the activation-dependent surface downregulation of 32

adrenergic receptors. The 32-adrenergic receptor is a G-protein coupled receptor

gº

(GPCR) that is removed from the surface of cells following ligand binding via -º-

º

º

internalization into clathrin-coated vesicles (Tolbert and Lameh 1996; von Zastrow and tº cº
sº

Kobilka 1992). This internalization may serve either to terminate the £2-adrenergic --5
º-º-º:

º
**i.

receptor signaling pathway by directing the receptors to lysosomes, or it may allow for

----

***

***
* *-

recycling of the receptor back to the plasma membrane for another round of ligand

binding following a brief period of desensitization (von Zastrow and Kobilka 1992).

Endocytosis of the receptor may also permit interaction with downstream signaling

elements located in an endosomal compartment (Luttrell and others 1999). The

endocytosis of 32-adrenergic receptors is mediated by the interaction of 3-arrestin with

clathrin, AP2, and the cytoplasmic face of the GPCR. Hence 3-arrestin acts as an adaptor

protein, linking clathrin directly to the receptor, as well as an adaptor-adaptor, linking the

AP2 complex to the receptor. Both of these functions appear to be necessary for £2

adrenergic receptor internalization, though the interaction with AP2 may, under
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appropriate circumstances, be sufficient to mediate downregulation of the GPCR

(Laporte and others 1999). The role of 3-arrestins in clathrin-mediated endocytosis is

explored more fully in chapter 4 of this manuscript, in the context of Cbl as a clathrin

associated protein that may serve a function similar to fl-arrestin, but specific for RTKs

rather than GPCRs.

4.2 TrkA Endocytosis and Retrograde Trafficking

Receptor tyrosine kinases exhibit ligand-mediated downregulation from the cell surface,

generally via clathrin-mediated internalization mechanisms (Sorkin and Carpenter 1993).

This downregulation is linked to receptor degradation, and serves, for many receptors, to

truncate the signal elicited upon ligand binding (Beguinot and others 1984; Stoscheck and

Carpenter 1984). Early studies on TrkA suggested that it, too, was downregulated from

the cell surface following NGF treatment (Hosang and Shooter 1987; Layer and Shooter

1983). Such downregulation was marked by a pronounced decrease in the ability to

cross-link radiolabeled NGF to TrkA following 60 minutes of NGF treatment (Zhou and

others 1995), and by an increase in protected biotinylated TrkA inside the cell following

10 minutes of NGF treatment (Beattie and others 1996). This downregulation was

correlated with receptor degradation, as 60 minutes of NGF treatment led to the loss of

two-thirds of total cellular TrkA (Zhou and others 1995).

***

***

*-*
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While downregulation and subsequent degradation is the fate of most mitogenic RTKs,

differentiative RTKs like TrkA may utilize receptor internalization for an additional

purpose: to communicate the neurotrophic signal from axon terminals in the target

region back to the neuron cell body (Figure 1.11). This communication requires the

formation of a signal that can be coherently transmitted through the axon. Three

mechanisms have been proposed to explain retrograde signaling (Campenot 1994;

Hendry and Crouch 1993): 1) the target-derived neurotrophin is internalized and

transported from the axon tip to the cell body, where it binds receptors localized in the

cell body to initiate a signaling cascade; 2) the target-derived neurotrophin activates

presynaptic neurotrophin receptors which initiate signaling cascades that reach the cell

body in a wavelike fashion; 3) the target-derived neurotrophin binds to and activates

presynaptic neurotrophin receptors, inducing internalization of ligand-receptor complexes

into endosomes that are retrogradely trafficked to the cell body, where they initiate local

signal transduction cascades, including those that mediate transcriptional events.

Evidence from several sources supports the third model, the "Signaling Endosome

Hypothesis." First, while target-derived neurotrophin is internalized and retrogradely

transported (DiStefano and others 1992; Hendry and others 1974a; Hendry and others

1974b; Johnson and others 1987), injection of neurotrophin into the cell body does not

mimic the neurotrophic signal initiated at the axon terminal (Heumann and others 1981),
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suggesting that the neurotrophin by itself is unlikely to carry the signal. Second, as

mentioned above, NGF induces the endocytosis of TrkA (Zhou and others 1995), and it is

bound to TrkA within endosomes (Grimes and others 1997; Grimes and others 1996).

Interestingly, TrkA was found to colocalize with clathrin on the surface of NGF-treated

PC12 cells, suggesting that TrkA and NGF utilize the clathrin-coated vesicle pathway for

endocytosis, and that the endosomes containing NGF bound to TrkA may be derived

from such vesicles. Moreover, these endosomes are associated with activated Shc and

PLCY, downstream components of the NGF signaling cascade, suggesting that they carry

the neurotrophin signal (Beattie and others 1996; Grimes and others 1996).

The third piece of evidence in support of the signaling endosome hypothesis comes from

studies showing that complexes containing NGF and activated TrkA are found in sciatic

axons (Tsui-Pierchala and Ginty 1999), and that these complexes are retrogradely

transported to sympathetic neurons (Bhattacharyya and others 1997; Ehlers and others

1995). It has been recognized for 25 years that radiolabeled NGF is retrogradely

transported at a rate of approximately 2.5 mm per hour from the terminals of axons that

innervate the iris to the cell bodies of sympathetic neurons within the superior cervical

ganglion (Hendry and others 1974b; Korsching and Thoenen 1983). Furthermore, in

compartmentalized cultures of sympathetic neurons, radiolabeled NGF is transported at a

rate of 3 to 20 mm per hour from distal axon tips to cell bodies (Claude and others 1982;
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Ure and Campenot 1997). Hence, as mentioned above, NGF is certainly retrogradely

transported. Evidence that activated TrkA is also transported was provided by studies

showing that phosphorylated TrkA accumulates distal to a sciatic nerve ligation or crush,

and that injection of excess exogenous NGF into the footpad increases the amount of

phosphorylated TrkA that accumulates at the ligature site, while injection of anti-NGF

antibodies blocks such accumulation (Ehlers and others 1995; Johanson and others 1995).

Moreover, phosphorylated TrkA accumulates in the cell bodies of sympathetic neurons

grown in compartmentalized cultures following treatment of the distal axons and

terminals with NGF (Riccio and others 1997; Senger and Campenot 1997). Finally, an

NGF-TrkA complex is transported from axon terminals to sympathetic neuron cell bodies

in compartmentalized cultures, and this TrkA is active as judged by tyrosine

phosphorylation (Tsui-Pierchala and Ginty 1999). Interestingly, retrogradely transported

phosphorylated TrkA is associated with at least 3 tyrosine-phosphorylated proteins (Tsui

Pierchala and Ginty 1999), suggesting that it may form a complex with associated

signaling molecules that are carried with the receptor down the axon.

The formation of signaling complexes associated with retrogradely transported TrkA

would suggest that this TrkA may signal in the cell body. In fact, the fourth piece of

evidence in support of the signaling endosome hypothesis is that the arrival of NGF-TrkA

complexes in neuron cell bodies coincides with the phosphorylation of CREB in the cell
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bodies (Riccio and others 1997; Watson and others 1999). Serine phosphorylation of

CREB on its transcriptional regulatory site is a modification required to drive

transcriptional events necessary for the survival and maintenance of sympathetic neurons

(Ginty and others 1994). While application of NGF directly to the cell resulted in

phosphorylation of nuclear CREB within 5 minutes, application of NGF to the distal

chamber of the compartmentalized cultures resulted in CREB phosphorylation in the cell

bodies only after 20 minutes, generating a rate of signal conduction that is on the order of

2 to 4 mm per hour (Riccio and others 1997). This transport rate is virtually identical to

the rate of NGF transport measured in sympathetic neurons (Hendry and others 1974b).

Importantly, the retrograde signal to phosphorylate CREB depended upon internalization

and retrograde transport of NGF at the axon terminals. This was shown by experiments

in which NGF was covalently coupled to microspheres. NGF coupled in this fashion is

still competent to induce activation of TrkA and downstream signaling cascades, but is

not internalized (Riccio and others 1997). Application of bead-coupled NGF to cell

bodies resulted in CREB phosphorylation, suggesting that internalization of NGF is not

necessary to transmit the TrkA signal over relatively short distances, such as from the cell

body plasma membrane to the nucleus. However, bead-coupled NGF completely failed

to elicit CREB phosphorylation when applied to the distal chamber of compartmentalized

cultures (Riccio and others 1997). Hence, internalization and retrograde transport are

necessary to move the TrkA signal from axon terminals to the cell body, suggesting that a
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wave of signal generated by the receptor is not sufficient to transduce nuclear events at a

distance. Such a wave-like retrograde movement of the neurotrophin signal is also not

supported by the known kinetics of signal transport, which support neither a diffusion

mediated mechanism, nor a regenerating wave phenomenon (Fitzsimonds and Poo 1998).

Thus, the available evidence supports the signaling endosome hypothesis and suggests

that activated TrkA is internalized into an endocytic organelle that is retrogradely

transported from the target to the neuron cell body (Figure 1.11).

5. Implications of the Signaling Endosome Hypothesis

Perhaps one of the most interesting applications of the signaling endosome hypothesis is

to our understanding of the mechanisms of neurodegeneration. In particular, the

signaling endosome hypothesis may be a useful organizing principle for furthering our

understanding of the pathogenetic mechanisms of Alzheimer’s disease. Alzheimer's

disease is an age-related disorder of unknown etiology and pathogenesis that causes

widespread but specific degenerative changes in several neuronal populations within the

central nervous system. The disease is characterized by a progressive dementia that

begins with a variable declarative memory impairment, and ends in virtually systemic

failure of cognitive, comportmental, and psychiatric function. Alzheimer’s disease

currently accounts for up to 80% of the cases of dementia in the elderly, and with the

shift in age demographics that is expected during the next several decades, Alzheimer's
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disease may become essentially pandemic. Current therapeutic interventions are limited

to modest, short-term enhancements of cognitive dysfunction and symptomatic relief of

behavioral problems. No therapy currently exists to alter the eventual outcome of the

disease or to prevent its most serious clinical manifestations (Drouet and others 2000).

The development of effective therapeutic strategies requires a deeper understanding of

the key pathogenetic events involved in Alzheimer's disease. In particular, more º

information is needed about disease-related defects in neurotrophin receptor trafficking *-

and signaling, and a detailed account must be made of the state of neurotrophic support -3

communication from the target to neuron cell bodies in Alzheimer's patients. In **i.

Alzheimer's disease, loss of cholinergic function is a key factor in the early forgetfulness
****,
--~~

that marks the disease (Bartus 2000). Progressive and widespread synaptic loss 3

eventually leads to severe dementia. The etiology of this synaptic loss is complicated and –3

largely not understood. However, it is becoming increasingly clear that loss of

neurotrophic support for cholinergic neurons is an early and critical component of the

disease progression. One hypothesis regarding this cholinergic synaptic loss holds that a

failure in retrograde transport of NGF and TrkA from basal forebrain cholinergic axon

terminals in hippocampal and cortical target regions leads to progressive synaptic

dysfunction and eventually to synaptic retraction and death of cells within the basal

forebrain (see chapter 5 of this manuscript). Support for this hypothesis comes from data
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showing that NGF levels in the hippocampus and cortex of Alzheimer's disease brains

are increased 2-fold compared to normal, while NGF levels in the basal forebrain are

reduced by half (Scott and others 1995). These data suggest a failure in retrograde axonal

transport of the neurotrophin signal. This failure may be due to many causes, though

several primary possibilities exist: 1) NGF, though produced, is not released by the

target; 2) NGF is released, but does not bind to TrkA receptors on the surface of

cholinergic axon terminals; 3) NGF binds to TrkA, but the ligand-receptor complex is

not internalized; 4) the NGF-TrkA complex is internalized, but is aberrantly degraded by

lysosomes that are ectopically present within axons of cholinergic neurons in

Alzheimer's disease patients; or 5) the NGF-TrkA complex is internalized, but a defect

in some component of the cytoskeletal transport system prevents efficient retrograde

transport of the signaling endosome. It is currently unclear which of these mechanisms

plays a role in the pathogenesis of Alzheimer's disease, and further experimentation will

be necessary to isolate the root cause of the failure to transport NGF and the neurotrophin

signal from target regions to the cell bodies within the basal forebrain. However, the

experiments addressed within the remainder of this manuscript provide not only the first

proof of the existence of neurotrophic signaling endosomes, but also a deeper

mechanistic understanding of the role that endocytosis itself plays in the propagation and

control of the neurotrophin signal. This manuscript documents the generation of an

exquisite tool for the further analysis of the signaling endosome hypothesis: isolation of
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the nascent signaling endosome. Application of this tool to real neurons and animal

models will extend our knowledge of the pathogenetic mechanisms that underlie

Alzheimer's disease.
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Table 1

Neurotrophin Receptive Neurons
Nerve Growth Factor Sympathetic

Neural-Crest Derived Sensory (Nociceptive)
Basal Forebrain Cholinergic

Striatal Cholinergic
Cerebellar Purkinje

Brain-Derived Neurotrophin Factor Neural-Crest Derived Sensory
Placode-Derived Sensory

Basal Forebrain Cholinergic
Trigeminal Mesencephalic

Substantia Nigra Dopaminergic
Cerebellar Granule

Retinal Ganglion
Motor

Hippocampal and Cortical

Neurotrophin-3 Sympathetic
Sensory (Proprioceptive)

Enteric

Basal Forebrain Cholinergic
Locus Coeruleus Adrenergic

Motor
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Figure 1.1 Neurotrophic Factor Hypothesis.

The Neurotrophic Factor Hypothesis states that during development, innervating neurons

compete for a limiting supply of target-derived neurotrophic factor. This figure

schematically represents this process. In the early stage of development, many projecting

neurons exhibit exuberent connectivity with the target field. As development progresses

and these innervating fibers compete for neurotrophic factor released by the target, some

connections are maintained, while others are retracted. Process retraction and failure to

acquire sufficient target-derived trophic support, at least from a developmental

perspective, is correlated with cell death, yielding a final pattern of innervation that is

sculpted by the size of the target.
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Figure 1.2 TrkA Structural Elements

TrkA is a 140 kDa glycoprotein comprised of a single polypeptide chain that crosses the

plasma membrane once (TM = transmembrane domain). Following ligand binding, the

receptor dimerizes, leading to activation of the intrinsic kinase within the receptor. The

NH2-terminal extracellular domain is comprised of several cysteine-rich (Cys-rich) and

immunoglobulin-like (Ig-like) domains that participate in defining the extended NGF

binding site. The COOH-terminal intracellular domain contains several tyrosine residues

that are necessary for kinase activity and downstream signaling. Tyrosines 670, 674, and

675 form the core of the kinase domain in TrkA, and participate in auto- and trans

phosphorylation of the receptor following ligand binding and dimerization. These

tyrosines may also participate in binding to accessory proteins such as rapS and SH2-B.

Tyrosine 490 serves as a docking site for several signaling adaptors, including Shc, Gab,

and FRS-2. Tyrosine 785 is a docking site for PLCY, CHK, and the adaptor protein Cbl.
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Figure 1.3 Ras-mediated MAP Kinase Cascade Downstream From TrkA.

Following phosphorylation of tyrosine 490 within TrkA, Shc is recruited to the receptor

via either an SH2- or PTB-based interaction. Consequently, Shc is bound by a Grb2-SOS

complex. Recruitment of SOS to the membrane brings it into proximity of Ras, where it

functions as a GTP-exchange factor, activating Ras. Activated Ras recruits and activates

Raf. Raf is a serine-threonine kinase that phosphorylates the MAP kinase kinase MEK

on 2 serines. This phosphorylation event initiates activity of the dual-specificity kinase,

leading to activation of the MAP kinases Erk1/2 via phosphorylation of threonine 202

and tyrosine 204. Phosphorylated Erk1/2 then participate in at least two cascades.

Erk 1/2 may translocate into the nucleus, where it phosphorylates the transcription factor

Elk-1 on 2 serines, or it may phosphorylate the kinase Rsk. Phosphorylation of Elk-1

allows it to interact with the accessory transcription factor SRF, after which it binds to the

Serum Response Element (SRE) within the c-fos promoter region and contributes to

initiation of transcription. Phosphorylation of Rsk leads to its nuclear translocation and

consequent phosphorylation of CREB on serine 133. Phosphorylated CREB is bound by

the transcriptional coactivator protein CPB, which also binds to the SRF-Elk complex,

creating an extended transcriptional factor complex that leads to c-fos transcription.
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Figure 1.4 Rap-mediated MAP Kinase Cascade Downstream From TrkA

In parallel with the Ras pathway described in Figure 1.3, TrkA activation can lead to

signaling through Rap. Phosphorylated tyrosine 490 within TrkA is bound by the adaptor

protein Gab2. Activated Gab2 recruits Crk and C3G to the plasma membrane, bringing

the Rap GTP-exchange factor C3G into proximity of Rap. Activated Rap recruits and

activates B-Raf, which then phosphorylates Mek, leading to Erk 1/2 and Rsk activation in

parallel with such activation initiated by Ras.
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Figure 1.4
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Figure 1.5 PI3 Kinase and PLCY Effectors and Signaling Cascades

Phosphatidylinositol metabolism is schematized in this figure. PTI-3,4-P, is a key

activator of the PLCY pathway, serving as a substrate that leads to the generation of IP,

and DAG. These factors then participate in release of intracellular calcium and activation

of the serine-threonine kinase PKC. PTI-3,4-P, is also a critical substrate for PI3 kinase,

leading to the generation of PTI-3,4,5-Ps, a factor that leads to the activation of PKC and

the MAP kinases, as well as to adhesion and cytoskeletal reorganization. Other PTIs

participate in pleiotropic cellular functions.
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Figure 1.5
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Figure 1.6 TrkA Survival Signaling

TrkA phosphorylation leads to the activation of PI3 kinase. PI3 kinase catalyzes the

production of 3-phosphoinositides, including PI-3,4,5-P, which binds to and activates

PDK1. PDK1 associates with and phosphorylates the serine-threonine kinase Akt. Akt

then phosphorylates BAD, inducing its association with the 14-3-3 protein and

sequestering it from heterodimerization with Bcl-XL. As a result of BAD sequesteration,

Bcl-XL is able to heterodimerize with Bax, preventing Bax homodimerization.

Homodimerized Bax is a key element in apoptotic signaling, via its role in altering

mitochondrial membrane potential, and the balance of Bax:Bax homodimers versus

Bax:Bcl-X. heterodimers may determine whether the cell lives or dies.
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Figure 1.7 Trk and p75 NTR Binding Specificities sº
TrkA is the only receptor tyrosine kinase for NGF, and TrkB is the receptor tyrosine *. !

kinase for BDNF. NT3 binds predominantly to TrkC, but in appropriate cellular and º | s

7 *

receptor contexts, NT3 is able to bind to both TrkA and TrkB. All three neurotrophins

bind to p75NTR with approximately equal kinetics.
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Figure 1.7

|NGF

NGE

177



Figure 1.8 Trafficking Within the Endocytic Pathway

Many plasma membrane receptors are endocytosed via the clathrin coated vesicle (CCV)

pathway. Following internalization, CCV's rapidly uncoat and fuse with elements of the

endosomal compartment, including early endosomes. Early endosomes may mature into

late endosomes, and/or sort into secretory vesicles to permit recycling of receptors back

to the plasma membrane. Receptors and/or ligands that are trafficked into the late

endosome compartment may eventually graduate into the lysosomal compartment, where

they are degraded. Lysosomal enzymes are specifically trafficked from their site of

production and processing in the ER and Golgi apparatus to lysosomes via coated

vesicles.
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Figure 1.8
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Figure 1.9 Clathrin-Mediated Growth Factor Internalization

1) Following binding of growth factor to its receptor tyrosine kinase, 2) the receptor is

phosphorylated and recruits the AP2 adaptor complex to specific internalization motifs.

These motifs either involve phosphotyrosine or are exposed for AP2 binding by

conformational changes induced by receptor activation. 3) Following AP2 binding to the

receptor, clathrin triskelions are recruited and begin to coat the plasma membrane.

Alternatively, clathrin may coat the membrane at specific “seed” sites, and AP2-bound

receptors may migrate into these coated pits. 4) Coated membranes acquire greater

curvature as the clathrin triskelions incorporate more pentagonal elements into the

initially hexagonal array. Curvature is likely to be assisted by accessory proteins, and is

certainly promoted by dynamin. Dynamin functions to generate a neck that connects the

nascent clathrin-coated vesicle (CCV) to the plasma membrane. Dynamin then

participates in scission of this neck, leading to 5) release of the CCV from the plasma

membrane. 6) CCVs are rapidly uncoated, freeing the clathrin and AP2 components to

participate in new rounds of internalization. Uncoated vesicles containing the growth

factor bound to its receptor may then undergo specific sorting events that lead to

incorporation into early endosomes and eventual degradation, or these vesicles may

mature into elements of the signaling endosome pathway.
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Figure 1.9
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Figure 1.10 Clathrin

The upper panel shows the structural elements of one clathrin heavy chain. The protein is

comprised of an N-terminal globular domain that may participate in binding to other

proteins involved in clathrin coat formation. The distal leg and proximal leg are

separated by a flexible knee region that permits the heavy chain to adopt a variety of

conformations within the coat, thereby permitting the formation of hexagons or

pentagons. The C-terminal trimerization domain participates in bringing 3 heavy chains

together to form the triskelion.

The middle panel depicts a single triskelion. The hub is defined by the knee region and

proximal elements of the heavy chain. A clathrin light chain binds to the proximal leg of

each heavy chain within the triskelion hub.

The lower panel shows the formation of an hexagonal packing lattice composed of

triskelions. The triskelions aggregate via highly specific interactions between the hubs

and the distal legs of other triskelions (these interactions are discussed at length in the

text).

*- *C.
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Figure 1.10
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Figure 1.11 The Signaling Endosome Hypothesis

Binding of NGF to TrkA at the presynaptic terminal leads to the internalization of a

TrkA:NGF complex into clathrin coated vesicles, as described in Figure 1.9. These

vesicles rapidly uncoat, generating endosomes that contain NGF bound to activated

TrkA. Such endosomes carry the NGF signal from the terminal to the cell body via active

transport along the axonal cytoskeleton. In the cell body, signaling endosomes initiate

local signaling cascades that result in transcriptional and translational events.
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Summary

Neurotrophin (NT ) signals may be moved from axon terminals to neuron cell bodies via

signaling endosomes - organelles in which NTs continue to be bound to their activated

receptors . Suggesting that clathrin - coated membranes serve as one source of signaling

endosomes , in earlier studies we showed that nerve growth factor ( NGF ) treatment

increased clathrin at the plasma membrane and resulted in colocalization of clathrin with

TrkA , the receptor tyrosine kinase for NGF . Strikingly , however , we also noted that most

clathrin puncta at the surface of NGF - treated cells did not colocalize with TrkA , raising

the possibility that NGF induces a general increase in clathrin - coated membrane

formation . To explore further this possibility , we examined the distribution of clathrin in

NGF- and BDNF - treated cells . NGF signaling in PC12 cells robustly redistributed the

adaptor protein AP2 and the clathrin heavy chain ( CHC ) to surface membranes . Using

confocal and epifluorescence microscopy, as well as biochemical assays , the

redistribution of clathrin was shown to be due to activation of Trka . Significantly , NGF

signaled through TrkA to induce an increase in clathrin -mediated membrane trafficking,

as revealed in increased endocytosis of transferrin . In that BDNF treatment increased

AP2 and clathrin at the surface membranes of hippocampal neurons , these findings may

represent a physiologically significant response to NTs . We conclude that NT signaling

increases clathrin - coated membrane formation and clathrin -mediated membrane
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trafficking and speculate that this effect contributes to their trophic actions through

increased internalization of receptors and other proteins present in clathrin - coated

membranes .
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Introduction

The neurotrophins (NTs ) regulate the trophic state of neurons ( Yuen and Mobley , 1996 ;

Kaplan and Miller , 1997 ; Casaccia - Bonnefil et al . , 1999 ) . An interesting question is how

signals generated at the terminals of axons are communicated retrogradely to neuronal

cell bodies . That such communication occurs is strongly supported by studies showing

that NTs are produced in target tissues and that this source of NTs is critical for the

survival of responsive neurons ( Snider , 1994 ; Li et al . , 1995 ; Silos - Santiago et al . , 1995 ;

Francis et al . , 1999 ) . We ( Beattie et al . , 1996 ; Grimes et al . , 1996 ; Grimes et al . , 1997 )

and others ( Ehlers et al ., 1995 ; Bhattacharyya et al . , 1997 ; Riccio et al . , 1997 ; Senger and

Campenot , 1997 ; Tsui - Pierchala and Ginty , 1999 ; Watson et al ., 1999 ) have provided

evidence that retrograde NT signals are transmitted through the formation of signaling

endosomes , organelles that arise through endocytosis of complexes in which NTs are

bound to their Trk receptors .

Earlier findings in this laboratory suggested that clathrin - coated membranes may be used

to move NTs and their receptors into signaling endosomes . Nerve growth factor ( NGF )

treatment of PC12 cells resulted in a more than 10 - fold increase in the colocalization of

TrkA , the receptor tyrosine kinase for NGF , with the clathrin heavy chain ( CHC ) at or

near the cell surface ( Beattie et al , 1996 ; Grimes et al , 1996 ; Grimes et al , 1997 ) . CHC is

a constituent of clathrin used to mark the presence of clathrin - coated membranes ( Nathke
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et al . , 1992 ; Schmid , 1997 ; Marsh and McMahon , 1999 ) . Thus , as is the case for a

number of other cell surface receptors ( e.g. the transferrin receptor ( TfnR ), and the EGF

receptor ( EGFR )) ( Schmid , 1997 ) , clathrin - coated membranes may mediate the

endocytosis of Trk receptors . In the same experiments , we noted that NGF treatment

markedly increased clathrin - immunostained puncta at or near the plasma membrane

( Grimes et al . 1996 ) . Though consistent with earlier , as well as more recent, observations

on the effect of NGF , EGF and insulin ( Connolly et al . , 1981 ; Connolly et al . , 1984 ;

Corvera , 1990 , Wilde et al . , 1999 ) , the extent of the change and its rapidity were

impressive . Quite unexpectedly , we also found that most ( ~ 80 % ) clathrin puncta near

the surface of NGF - treated cells failed to stain for TrkA , suggesting that clathrin was

recruited to membranes containing little or no TrkA . Our observations gave evidence

that NGF signaling regulates clathrin - coated membrane formation . They predicted that

NGF increases endocytic trafficking of TrkA and other proteins found in these

membranes .

We have now tested the suggested link between NGF signaling and clathrin -mediated

membrane trafficking. NGF signaled through TrkA to increase the formation of clathrin

coated membranes . Significantly , TrkA activation also increased clathrin -mediated

membrane endocytic traffic , as revealed by increased uptake of transferrin ( Tfn ). These

findings may reflect a physiologic action of NTs since BDNF increased clathrin
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association with the surface membranes of hippocampal neurons . We speculate that

enhanced clathrin -mediated membrane trafficking may be a common feature of NT

actions that supports their trophic properties .

Experimental Procedures

Reagents

X22 , a mouse monoclonal antibody against CHC ( Brodsky , 1985 ) , was used for

immunoprecipitation and immunostaining. TD.1 , another mouse monoclonal antibody to

CHC ( Nathke et al . , 1992 ) , was used for probing Western blots . AP.6 ( Chin et al . , 1989 ) ,

a monoclonal antibody to the clathrin adaptor protein AP2 ( Schmidt , 1997 ) , was used in

immunostaining experiments . Immunoprecipitation of tyrosine phosphorylated proteins

was accomplished using mouse monoclonal antibody 4G10 as an agarose conjugate

( UBI , Lake Placid , NY ) . Blotting for tyrosine phosphorylated proteins also used 4G10 .

To detect the presence of mouse antibody binding to blots , we used HRP -conjugated goat

anti -mouse IgG ( Santa Cruz Biotechnology , Santa Cruz , CA ) . For immunofluorescence

studies , goat - anti - mouse IgG antibodies conjugated to FITC or to rhodamine were

obtained from Cappel ( Costa Mesa , CA ) . The membrane marker Dil C -7000 was from

Molecular Probes ( Eugene , Ore . ).
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PC12 nnr5 cells and nnr5 derivatives stably transfected with wild type human TrkA or

with the TrkA mutants 22.7 ( activation loop mutant , YY674 /675FF ) or M1 (kinase

inactive , K538N ), were obtained from Robert Kupta in the Louis Reichardt laboratory .

The mutant constructs were created by David Kaplan and colleagues ( Ferrari et al . , 1995 ;

Cunningham et al ., 1997 ) and were used with permission . For PC12 cells , we used KB

PC12 cells ( Grimes et al . , 1996 ) . Parental 3T3 cells and 3T3 cells expressing either Trka

or p75NTR were supplied by Chin - shiou Huang and maintained as indicated ( Huang et al .,

1999 ) .

NGF was isolated from the mouse submaxillary gland ( Mobley et al . , 1976 ) . BDNF was

a gift of Regeneron Inc. ( Tarrytown , NY ) . Papain was from Worthington Biochemical

Corporation . (Lakewood , NJ ) . Serum extender and poly - D - lysine were from

Collaborative Research ( Bedford , MA ). Collagen was obtained from Cohesion ( Palo

Alto , CA ) . Normal goat serum was from Jackson Immuno Research Laboratories Inc.

(West Grove , PA ) . Geneticin , Neurobasal medium and B - 27 serum - free supplement

were from Gibco BRL Inc. ( Rockville , MD ). FITC - dextran was from Molecular Probes .

Tfn , K252a , saponin and TX - 100 were from Sigma Chemicals ( St. Louis , Mo. ) . Unless

otherwise stated , all other reagents were from Sigma. Tissue culture media and media

additions were supplied by the UCSF Cell Culture Facility .
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Preparation of Cultured Hippocampal Neurons .

A modification of a previously described procedure was used ( Lester et al . , 1989 ) . The

hippocampi of six to nine PO Sprague - Dawley rats were removed and placed in a

dissecting solution ( 161 mM NaCl , 5.0 mM KCI , 530 UM MgSO4 , 2.9 mm CaCl2 , 5.0

MM HEPES , 5.5 mM glucose , 5.6 uM phenol red , pH 7.4 ) . The dentate gyri were

dissected and discarded . The remaining tissue was treated with papain ( 20 units /ml) in

10 ml of the same solution containing 1.7 mM cysteine , 1mM CaCl2 , and 0.5 mM EDTA

for 45 minutes at 37 ° C . The digestion was stopped by decanting the solution and by

adding 10 ml of complete medium (minimal essential medium with Earle's Salts , without

L - glutamine , and with 20 mM glucose , serum extender [ 1 : 1000 ], and 5 % heat - inactivated

fetal calf serum ) containing 25 mg BSA and 25 mg trypsin inhibitor type 3-0 . The tissue

was then triturated in a small volume of this solution using a fire - polished Pasteur pipette .

Using coverslips coated with poly - D - lysine ( 0.1 mg /ml) and collagen ( 0.06 mg /ml ), the

cells were plated overnight in Neurobasal medium containing the additives B - 27 serum

free supplement ( 1x ) and L - alanyl - L - glutamine ( 2 mM ). One - half the medium was

replaced with the Neurobasal medium plus additives the following day . Cultures were

refed by replacing one - half the volume of medium at weekly intervals . At week one they

were refed with complete medium containing B - 27 . At week two and beyond , they were

fed with the Neurobasal medium plus additives . Astrocyte growth was inhibited at day
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12 by adding 5 - fluoro - 2 ' -deoxyuridine ( 0.3 mM ) plus uridine ( 0.7 mM ). Cultures were

used for experiments between weeks three and four .

Immunofluorescence Studies

All cells were grown and maintained at 37 ° C with 5 % CO2 . PC12 cells , PC12 nnr5 cells

and nnr5 variants were cultured in DME -H21 , 10 % horse serum , and 5 % fetal calf serum

on collagen - coated plates . The medium used for maintaining TrkA - variant expressing

nnr5 PC12 cell lines included 100 ug /ml Geneticin . Priming of PC12 cells was

accomplished by adding NGF ( 2 nM ) for seven days . 3T3 cells were grown on plastic in

DME - H21 in 10 % horse serum .

In preparation for immunostaining experiments on primed PC12 cells , the cells were

washed at 37 ° C with serum - free medium ( minus NGF ) in three changes ( 30 minutes

each ). They were then treated with NGF or the vehicle in serum - free medium , as

indicated below . For experiments on unprimed PC12 cells , PC12 nnr5 cells and 3T3

cells , cells were first incubated in DME - H21 containing 1 % horse serum overnight prior

to treatment in the same medium . Hippocampal neurons were maintained and treated in

the medium described above . To examine the effects of NGF treatment , cells were

usually first incubated with NGF under conditions in which NGF would bind to its
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receptors without inducing membrane trafficking events . Thus , cells were incubated at

4 ° C in medium with NGF ( 2 nM ) , or with the vehicle ( 0.2 % acetic acid in the same small

volume as used to add NGF ) , for one hour prior to warming at 37 ° C . In some

experiments , NGF ( 2 nM ) or BDNF ( 2 nM ) was added to cells at 37 ° C . After NGF

treatment , cells were quickly chilled to 4 ° C , fixed with 4 % paraformaldehyde in

phosphate buffered saline ( PBS ) for 20 minutes at 4 ° C , permeabilized in PBS containing

saponin ( lug /ml), and blocked in 10 % normal goat serum . To visualize clathrin ( i.e.

CHC ) , X22 ( 10ug /ml ) was incubated with cells overnight at 4 ° C and the signal was

developed with either rhodamine- or FITC - conjugated goat anti - mouse IgG antibody.

To stain AP2 , AP.6 (6ug /ml) was incubated with cells using the same protocol and the

signal was developed with rhodamine -conjugated goat anti -mouse IgG . For plasma

membrane demarcation , Dil ( 0.5 ug / ml in PBS ) was applied to fixed and immunostained

cells for 30 minutes at room temperature in the dark , followed by a brief wash with PBS .

Confocal microscopic analysis of clathrin distribution was accomplished using a MRC

1000 Laser Scanning Confocal Microscope (Bio - Rad , Hercules , CA ) equipped with a

krypton /argon laser and attached to a Zeiss Axiovert microscope . Care was taken to

ensure data were collected at a point midway between the substrate - attached plasma

membrane and the top of the cell . Immunostained puncta were located near the apparent
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margin of all cells stained for CHC or AP2 . Though puncta were fewer in number and

less intense in vehicle -treated cells , the staining was adequate to delineate the cell

margin . The surface of cells was defined as a line that linked the outermost puncta .

Figure 2 shows that this method defined the margins of both NGF- and vehicle - treated

cells . The length of the line that marked the cell surface was measured using the

measurement analysis tool provided with the public domain NIH Image program

( developed at the U.S. National Institutes of Health and available on the internet at

http://rsb.info.NIH.gov/NIH-image/) and this value was used as the cell perimeter .

Immunostained puncta were counted as described ( Grimes et al . , 1996 ) . Briefly , after

defining the edge of the cell , a second line was drawn 0.5um interior to the first , and all

immunostained puncta between the lines were counted . The results were expressed as the

number of puncta per um of cell surface or the number per cell .

Epifluorescence microscopy was performed using a Nikon Diaphot 300 inverted

microscope with a PlanApo 60 Nikon objective . Images were collected and processed

using a Princeton Instruments Micro Max CCD camera and IP Lab Spectrum Image

Processing software from Signal Analytics ( Vienna , Virginia ). To define the margins of

cells and the number of puncta at or near the cell surface , the same methods were used as

for confocal microscopy .
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Clathrin Membrane Association Studies

For biochemical analyses , all cells were cultured and prepared for experiments as

described above . However , in some cases serum deprivation for 4 hours replaced

overnight incubation in 1 % horse serum . We used two methods to measure membrane

associated clathrin . In each , gentle conditions were used that favored maintaining the

association of clathrin with membranes ( Wilde and Brodsky , 1996 ) . The first method

produces a cell ghost depleted of cytosol and internal membranes ; importantly , however ,

the plasma membrane remains associated with the cell ghost (Grimes et al . , 1996 ) . Cells

( 5x10 ' per condition ) were harvested at 37 ° C in calcium- and magnesium - free (CMF )

PBS . They were pelleted at 1000 x g and resuspended in binding buffer ( PBS containing

glucose ( 1mg /ml), BSA ( 1mg /ml) and HEPES ( 10mm ), pH = 7.4 ) . Cells were then

treated with NGF ( 2nM ) or vehicle for 2 minutes at 37 ° C . The suspensions were then

rapidly chilled to 4 ° C in an ice water bath , pelleted at 1000 x g at 4 ° C , and resuspended

in 1 ml of cold ( 4 ° C ) MES buffer ( 100 mM MES , PH 6.8 , 0.5 mM MgCl2 , 0.2 mM DTT ,

1 mM NaOrthovandate , 1mM PMSF , and 0.1 ug /ml each leupeptin and aprotinin ). Cells

were then gently disrupted using a ball homogenizer , as described previously (Grimes et

al ., 1996 ). To separate the cell ghost from the cytosol , the preparation was centrifuged at

8000 x g for 35 minutes , a procedure that also pelleted the heaviest membranes released

198



from the cell ghost . After washing the pellet once in MES buffer and repelleting at 8000

xg for 35 minutes , the pellet was lysed with lysis buffer ( 20mM Tris , pH 8.0 , 137 mM

NaCl , 1mM NaOrthovandate , 1 % NP - 40 , 0.5 % DOC , 10 % glycerol , 1mM PMSF , and 1

ug / ml each of leupeptin , and aprotinin ). The samples , which represented equivalent

numbers of cells , were immunoprecipitated for CHC with X22 ( 10ug /ml ).

Immunoprecipitates were processed by SDS - PAGE and transferred to nitrocellulose as

described (Grimes et al . , 1996 ) . The blot was probed with TD.1 ( 3ug /ml ). After

incubating with HRP - conjugated goat anti -mouse IgG , the signal was visualized by ECL

phosphorescence ( Amersham , Buckinghamshire , England ) . Data were quantified using

NIH Image software .

In the second method , we more thoroughly disrupted cells in an attempt to eliminate any

possible contamination of membrane fractions by cytosol . One 15cm plate ( 5 x 10 ' cells )

per condition was harvested with CMF - PBS . The cells were pelleted at 1000 x g for 5

minutes and then resuspended in 5 ml of cold ( 4 ° C ) DME containing 25mM HEPES

buffer and either NGF ( 2 nM ) or the vehicle . The cell suspensions , in 15 ml conical

tubes , were rotated for 1 hour at 4 ° C , then warmed for the time indicated in a 37 ° C water

bath with periodic gentle mixing . Samples were then chilled in an ice bath for 3 minutes

and the cells were pelleted at 1000 xg for 5 minutes . They were then washed once with
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cold PBS ( 4 ° C ) and resuspended in 1 ml cold ( 4 ° C ) MES buffer . Membranes were

disrupted by three cycles of freezing followed by thawing , after each of which a 25 - gauge

needle was used to further disrupt the material. Samples were then spun at 1000 x g for 5

minutes to remove nuclei and intact cells and the supernatant was centrifuged at 100,000

xg for 40 minutes , essentially as described (Grimes et al . , 1996 ) . On the basis of results

from earlier studies ( Grimes et al . , 1996 ) , the resulting pellet ( P2 ' ) was predicted to

contain small and large fragments of the plasma membrane , internal membranes derived

from the plasma membranes , other cellular membranes , and organelles such as

mitochondria and ribosomes ; S2 ' contained the cytosol . P2 ' was resuspended in the lysis

buffer . The supernatant ( S2 ' ) was diluted 1 : 2 in a solution of 0.5 M Tris buffer containing

1 % TX - 100 . Lysed P2 ' fractions were equalized for protein , as were S2 ' fractions, and

they were subjected to SDS - PAGE , transferred to nitrocellulose and immunoblotted for

clathrin ( i.e. CHC ) with TD.1 ( 3ug /ml ) as described (Grimes et al . , 1996 ) . A

modification of this method was used to examine PC12 nnr5 cells and PC12nrr5 cells

expressing wild - type TrkA and mutant Trka receptors . After disrupting cells as

indicated above , they were centrifuged at 10,000 xg for 10 minutes at 4 ° C . This

produced a pellet containing cell ghosts , cell ghost fragments and heavy membranes that

was similar to that collected with the first method . The pellet was suspended in the lysis

buffer and processed as above , except that samples were slot blotted to nitrocellulose and

immunoblotted for CHC using the same antibody . After incubating blots with HRP
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conjugated goat anti -mouse IgG , the signal was detected by ECL phosphorescence and

quantified using NIH Image software . In control studies we verified that protein loads

and exposures produced signals in the linear range .

CHC Phosphorylation Assay

PC12 cells were used in the clathrin phosphorylation assay . Cells ( 3 x 107 per condition )

were treated with NGF ( 2 nM ) or the vehicle at 37 ° C for 2 minutes . The medium was

removed and cold ( 4 ° C ) PBS was used to wash cells while the plates were transferred

onto ice . Cells were then lysed in the lysis buffer and immunoprecipitated with X22

( 10ug /ml ). The immunoprecipitates were subjected to SDS - PAGE and transfer , and were

immunoblotted as described ( Grimes et al . , 1996 ) . Antibodies against CHC ( TD.1 ;

3ug /ml ), and phosphorylated tyrosine ( 4G10 ; 1/2000 ) , were used to sequentially probe

the blot . To prepare for reprobing , the blot was acid - stripped using TBS ( pH 2.0 ) for 30

minutes at room temperature . After incubating blots with HRP - conjugated goat anti

mouse IgG , the signal was detected by ECL phosphorescence and quantified using NIH

Image software .

FITC - Dextran and 125 I Transferrin Uptake Assays
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In FITC -dextran uptake studies, PC12 cells ( 5x10 ' cells per condition ) were removed

from culture plates in warm ( 37 ° C ) CMF - PBS and incubated , rotating , for 30 min in

serum - free PBS -HEPES ( 10 mM , pH 7.4 ) at 37 ° C . Cells were then pelleted for 2 minutes

at 1000 xg and resuspended in 1 mL HEPES -PBS . FITC - dextran ( 1 nM ) , with or

without NGF ( 2 nM ) , was then added to the suspension and cells were incubated ,

rotating , at 37 ° C for 5 or 10 minutes . Cells were chilled ( 4 ° C ) and washed three times

with ice - cold PBS . They were then lysed in the lysis buffer . After sedimenting nuclei

and insoluble debris at 1000 x g , absorbance was measured at 490 nm .

In Tfn uptake timecourse experiments , PC12 cells from four 15 cm plates ( 20x10 ' cells )

were pooled and suspended in 16 ml of CMF - PBS . One ml aliquots were incubated at

4 ° C for 30 minutes in PBS - HEPES . 1251 - Tfn ( 10 ng /mL ), with or without NGF ( 2 nM ) ,

was added to cells at 4 ° C and the mixtures were then incubated at 37 ° C for the time

intervals indicated . Cells were then chilled and spun down ( 1000 x g for 1 minute ) prior

to acid - stripping as described ( Zhou et al . , 1995 ) for 10 min at 4 ° C . Cells were then

quickly pelleted and washed once with cold ( 4 ° C ) PBS . Radioactivity of the cell pellet

was measured in a Beckman gamma counter . In samples treated with 1251 - Tfn or with

125I - Tfn and NGF , but not warmed , the counts in the pellet following stripping were less

than 20 % of the warmed values , and did not differ between NGF - treated and vehicle
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treated samples . In experiments testing the role of TrkA kinase activity on 1251 - Tfn

uptake , PC12 cells or PC12nnr5 cells were treated for 5 minutes with 1251 - Tfn or with

1251 - Tfn and NGF , essentially as described above . For K252a experiments , cells were

pretreated at _ ° C in suspension with 200 nM K252a for 30 minutes , and chilled to 4 ° C .

They were then treated with 1251 - Tfn or 1251 - Tfn plus NGF for 5 minutes , as above .

Results

NGF signaling recruited clathrin to the plasma membrane .

To investigate further the NGF effect on clathrin - coated membrane formation , we

examined the cellular localization of clathrin in PC12 cells incubated with NGF ( 2 nM ) ,

or the vehicle , for one hour at 4 ° followed by warming for 2 minutes at 37 ° C . After

treatment, cells were quickly chilled , and then washed , fixed and permeabilized before

immunostaining for CHC . Confocal microscopy of cells not treated with NGF showed

that CHC staining was seen in small puncta distributed diffusely throughout cells , with

most staining in the cytosol ( Figure 2.1 ) . Staining was noted in the perinuclear region ,

but there was relatively little associated with the plasma membrane . Following NGF

treatment there was a redistribution of staining with a marked increase at or near the

plasma membrane . There was also a consistent increase in staining in the perinuclear

region . The puncta near the cell surface consistently demonstrated a “ picket - fence "
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pattern in which they appeared to line up near the edge of the cell . We quantified the

increase in puncta within 0.5 um of the cell surface following NGF treatment . In NGF

treated cells , the average number of these puncta was 0.76 per um . With an average cell

perimeter of 56 um , the average number of puncta per cell was 43. The number of puncta

per um in NGF - treated cells was 244 % of the vehicle - treated control ( +/- 6.8 % [ SEM ) ,

n = 15 cells in two separate experiments ), a result that was significant ( p < 0.01 ). We

conclude that NGF acted to induce redistribution of clathrin .

The change in CHC staining suggested that NGF redistributed clathrin to the plasma

membrane . To better define the locus of clathrin near the cell surface , we asked if CHC

staining would colocalize with a lipophilic membrane marker , Dil . Figure 2.2 B and E

show that Dil effectively marked surface membranes in both vehicle -treated and NGF

treated cells . Permeabilization was required to immunostain for CHC . As a result, Dil

sometimes also marked membranes near the cell surface . The redistribution of CHC

staining that followed NGF treatment ( compare panels A and D ) resulted in increased co

localization of CHC with Dil at the cell surface . Note the marked increase in the number

of CHC puncta colocalized with Dil ( yellow denotes co - localization ) following NGF

treatment ( compare panels C and F ) . Since brief ( 3 minute ) NGF treatment of PC12 cells

has been shown not to increase plasma membrane surface area ( Connolly et al . , 1984 ) ,
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the NGF - induced increase in CHC immunostaining reflects an increase in clathrin at the

plasma membrane .

The change in CHC staining that followed NGF treatment was consistent with an

increase in membrane - associated clathrin . To confirm this prediction , we used two

methods . In each case cells were treated with NGF for 2 minutes . In the first method , we

gently disrupted cells using a ball homogenizer (Grimes et al . , 1996 ) . This method

depletes cells of cytosol , internal membranes and organelles under conditions that do not

fragment plasma membrane and that favor the continued association of clathrin with

membranes . By harvesting the 8000g pellet , clathrin in the cell ghost was separated from

cytoplasmic clathrin and from clathrin associated with all but the heaviest membranes

released from cells . CHC in the pellet was examined by SDS - PAGE , and transfer to

nitrocellulose followed by immunoblotting . In NGF treated cells , CHC was increased to

158 % of untreated controls ( Figure 2.3A )

In the second method , we used 3 cycles of freezing and thawing to more thoroughly

disrupt cells to ensure that trapping of cytosolic clathrin in cell ghosts could not

contribute to the findings for membrane - associated clathrin . After pelleting the

remaining cell ghosts , we quantified the amount of CHC associated with fragments of the
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plasma membrane and with membranes released from disrupted cells . These membranes

( P2 ' ) were separated from cytosol ( S2 ) using a 100,000g spin . CHC was present in both

fractions in both untreated and treated cells . Following NGF , the amount of CHC in P2

increased while the amount in S2 ' decreased ( Figure 2.3 B and C ) . In NGF treated cells ,

the amount of CHC in P2 ' was 166 % of the vehicle - treated control . There was a small

decrease in CHC in S2 ' .

These observations show that NGF induced movement of clathrin to membranes , with

changes that were comparable using the two methods . In that plasma membrane was a

major constituent of the membrane fractions produced by both methods , the findings

point to an NGF - induced increase in clathrin at the plasma membrane . The change in

CHC immunostaining at the surface of NGF - treated cells is consistent with this view , as

is an earlier EM study showing an NGF effect on clathrin - coated membranes ( Connolly

et al . , 1984 ) . The possibility exists that NGF induced an increase in clathrin association

with other membranes , including those derived from the plasma membrane .

NGF signaled through TrkA to increase the amount of clathrin at the plasma

membrane .
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NGF signals through two receptors , TrkA and p75NTR . To ask which NGF receptor ( s )

was responsible for the redistribution of clathrin , we carried out experiments in a number

of different cell types . To examine a contribution by Trka in the absence of p75NTR , we

tested 3T3 cells that express TrkA ( 3T3 - TrkA cells ) . In the absence of NGF treatment ,

CHC was distributed in the pattern seen in untreated PC12 cells ( Figure 2.4A ) . Addition

of NGF to these cultures resulted in redistribution of CHC such that the number of CHC

puncta at or near the plasma membrane was significantly greater ( Figure 2.4 B ) .

Quantification of puncta within 0.5um of the cell surface showed that NGF treatment for

2 minutes resulted in a value that was 250 % of the vehicle - treated control ( n = 10 cells , p <

0.01 ) . Corresponding to this increase , we found that in 3T3 - Trka cells treated with NGF

the amount of membrane -associated CHC in the P2 ' fraction was increased ( at 1 minute =

170 % , at 2 minutes = 136 % , and at 10 minutes = 137 % of the vehicle -treated controls ).

Very similar results for clathrin redistribution were obtained when 3T3 - TrkB cells were

treated with BDNF ( data not shown ) . In the 3T3 parental cells , the number of puncta at

the plasma membrane was unchanged after NGF treatment ( 3 % below vehicle -treated

control , n = 10 cells , p = 0.38 ) ( Figure 2.4 E & F ) . NGF did not increase CHC - positive

puncta near the plasma membrane in 3T3 cells expressing p75NTR ( Fig 2.4 C & D ) .

Indeed , NGF actually decreased the number of such puncta ( 30 % below vehicle treated

control , n = 10 cells , p < 0.05 ). Further studies are needed to characterize p75NTR effects on
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CHC distribution . We conclude that the NGF increased clathrin - coated membrane

formation through TrkA .

We tested further the role of Trka signaling in the clathrin redistribution by carrying out

studies in normal PC12 cells and in a series of PC12 cell variants ( i.e. nnr5 PC12 cells )

carrying wild - type and mutant Trka receptors . In all untreated cells , clathrin was

distributed diffusely and in a cytosolic pattern . In PC12 cells , as expected , NGF

signaling resulted in an increase in clathrin staining at or near the plasma membrane

( Figure 2.5 A and B ) . In PC12nnr5 cells , which have extremely low levels of TrkA but

normal levels of p75NTR ( Loeb and Greene , 1993 ) , there was no evident change in the

distribution of clathrin with NGF treatment ( Figure 2.5 E and F ) . Redistribution of CHC

staining was seen in a variant of PC12 nnr5 cells transfected with the wild -type TrkA

receptor ( Figure 2.5 C and D ) . When these cells were treated with NGF , many brightly

stained puncta were found in at the cell surface . We also examined PC12nnr5 cells stably

transfected with the Mi TrkA mutant , in which substituting N for K at residue 538

inactivates the kinase domain , and with the 22.7 mutant , in which two activation loop

tyrosines ( Y674 and 675 ) are replaced with phenylalanine . Earlier studies documented

markedly decreased Trka signaling in cells expressing these mutants ( Ferrari et al . , 1995 ;

Cunningham et al . , 1997 ) . We found that NGF treatment failed to induce clathrin

redistribution in cells expressing the mutant TrkA receptors ( Figure 2.5 G through J ) .
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Consistent with these findings , while CHC association with membranes was induced by

NGF in the nnr5 Trka cells ( % of vehicle = 113 +/- 1.9 % , n = 3 , p < 0.05 ), there was no

increase in the 22.7 mutant cells ( % of vehicle = 96.2 +/- 2.1 , n = 3 , p = 0.26 ). In the Mi

cells , NGF treatment caused a decrease that was not significant ( % of vehicle = 82 +/- 8 ,

n = 3 , p = 0.18 ) . Taken together , the data provide strong evidence that NGF signaled

through activation of TrkA kinase to induce formation of clathrin - coated membranes .
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NTs signaled to redistribute AP2 and clathrin in PC12 cells and in hippocampal

neurons .

The marked effect of NGF on clathrin at the plasma membrane suggested that other

components of clathrin - coated membranes would also be recruited . We tested this by

examining the distribution of AP2 , a major constituent of clathrin coats at the plasma

membrane ( Beck et al . , 1992 ; Wilde and Brodsky , 1996 ; Marsh and McMahon , 1999 ) .

By epifluorescence microscopy , AP2 was distributed in a cytosolic pattern in untreated

PC12 cells ( Figure 2.1C ) . Following NGF treatment , much more AP2 was present at or

near the plasma membrane ( Figure 2.1D ) . The pattern of staining was essentially

identical to that seen for CHC . Surface puncta were counted , as described above , in

epifluorescence micrographs . In NGF -treated cells , the number of puncta per um was

225 % ( +/- 15 % ; n = 12 ; p < 0.01 ) of the vehicle - treated control . Thus , as was true for

clathrin , NGF signaling recruited AP2 to the plasma membrane of PC12 cells .

To ask whether or not NTs influence the distribution of clathrin and AP2 in neurons , we

carried out studies in hippocampal primary cultures . Hippocampal neurons express little

if any Trka , but they do express TrkB and respond to BDNF ( Ip et al . , 1993a ;

Minichiello et al ., 1999 ) . In vehicle - treated cells , AP2 staining was distributed more or

less uniformly in the cytosol ( Figure 2.6A ( confocal image ) and B ( epifluorescent

age ] ) . There was no apparent change in the distribution of AP2 with NGF ( not
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shown ) . However , with BDNF treatment there was a clear increase in staining near the

plasma membrane ( Figure 2.6C and D ) . The surface membranes of both cell bodies and

processes showed the change . The change in AP2 staining was quantified in

epifluorescence micrographs . In BDNF - treated cells the number of surface puncta was

306 % ( +/- 23 % ; n = 5 ; p < 0.01 ) of the vehicle - treated control. To show whether or not

clathrin was also redistributed by BDNF treatment , hippocampal neurons were examined

after staining for CHC . In vehicle - treated cells there was a diffuse cytosolic pattern of

staining ( Figure 2.6E ( confocal image ) and F , I [ epifluorescent images ] ) . BDNF

treatment for 2 minutes resulted in marked redistribution of CHC staining to the plasma

membrane ( Fig 2.6G ( confocal ] and H , J ( epifluorescence ] ) ; the number of puncta was

241 % ( +/- 25 % ; n = 5 , p < 0.01 ) of that in vehicle - treated cells . The redistribution of AP2

and CHC induced by BDNF acting on hippocampal neurons suggests that increased

movement of clathrin to surface membranes may represent a physiological response to

NT signaling

NGF increases phosphorylation of CHC .

Recently , we showed that the redistribution of clathrin seen with EGF signaling was

associated with the phosphorylation of CHC ( Wilde et al . , 1999 ) . To determine whether

NGF signaling also induced an increase in the phosphorylation of CHC , we quantified

tyrosine phosphorylated CHC in immunoprecipitates from NGF -treated and untreated
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PC12 cells . Figure 2.7 shows that phosphorylated CHC was present in untreated cells .

The amount was significantly increased following NGF treatment for 2 minutes ; the

value averaged 223 % ( +/- 19 % , n = 3 , p < 0.01 ) of the vehicle - treated control . Similar

results were obtained in experiments in which the 4G10 antiphosphotyrosine antibody

was used for immunoprecipitation followed by probing with the antibody for CHC ( data

not shown ) . To evaluate further the effect of NGF on CHC phosphorylation , we carried

out timecourse studies . NGF treatment increased CHC phosphorylation as early as 1

minute ( NGF treated = 141 % ( +/- 9 % ) of control , n = 3 , p < 0.01 ) . The effect was maximal

at 2 minutes ( see above ) and lasted through 15 minutes ( at 5 minutes : 174 % ( +/- 14 % ) ,

n = 3 ; at 15 minutes : 143 % ( +/- 5 % ) , n = 3 ; for both p < 0.01 ) . These data show that NGF

actions on CHC phosphorylation are rapid and robust and that they were correlated in

time with clathrin redistribution .

NGF increases endocytosis and trafficking through clathrin - coated membranes .

The NGF - induced increase in AP2 and clathrin at the plasma membrane suggested that

NGF could signal to induce increased endocytosis through clathrin - coated membranes .

To test this idea we examined NGF effects on two markers of endocytosis . FITC -dextran

provides a marker of fluid - phase endocytosis. PC12 cells were incubated in the presence

of FITC -dextran for 0 to 10 minutes at 37 ° C. After 5 minutes NGF treatment , uptake

was increased by 20 % over baseline ; by 10 minutes the increase was nearly 60 % ( Figure
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2.8A ) . These findings show that NGF increases uptake of solutes that enter the cell by

bulk flow .

To test the idea that NGF influences trafficking through clathrin - coated membranes , we

examined NGF actions on the uptake of Tfn . This ligand is internalized through clathrin

coated pits following binding to TfnR ( Schmid , 1997 ) . To measure the uptake of Tfn , we

treated PC12 cells with radiolabelled Tfn in either the presence or absence of NGF . With

NGF treatment there was a marked increase in Tfn endocytosis over vehicle - treated

controls . The increase was marked by 5 minutes , measuring about 2 - fold . The increase in

uptake persisted through 15 minutes ( Figure 2.8B ) . By 30 minutes , the level of Tfn

uptake in NGF treated cells was the same as in vehicle - treated cells . The increase in

endocytosis was not seen following NGF treatment of PC12 nnr5 cells or in PC12 cells

pretreated with K252a , an inhibitor of Trk activation (Koizumi et al . , 1988 ) ( Figure

2.8C ) . These findings show that TrkA activation was required to induce endocytosis .

That NGF - treated cells more rapidly reached the same plateau for Tfn endocytosis as

vehicle - treated cells suggests that NGF acted to allow stimulated cells to more quickly

reach an equilibrium with respect to Tfn trafficking . Whether the plateau for Tfn

endocytosis reflects the presence of a limiting number of TfnRs or was due to an NGF

effect on TfnR recycling is unknown . In either case , these data are evidence that NGF

increases trafficking through clathrin - coated membranes .
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Discussion

Endocytosis plays a critical role in cellular functions ranging from nutrient acquisition to

synaptic transmission . It is important to elucidate the mechanisms that underlie

endocytosis and how they are regulated ( Marsh and McMahon , 1999 ) . The current study

shows that NT signaling increased the formation of clathrin - coated membranes . NGF

acted through its receptor tyrosine kinase TrkA to increase clathrin on the surface

membranes of PC12 cells . In concert , there was increased activity of the clathrin - coated

pit pathway , as evidenced by enhanced endocytosis of Tfn . In that BDNF induced

clathrin recruitment to the surface membranes of hippocampal neurons , our findings

suggest that NTs may act normally to regulate clathrin - coated membrane formation and

to increase clathrin -mediated membrane traffic .

A number of protein - protein and protein - lipid interactions underlie the assembly of the

clathrin -based endocytic machine . In addition to clathrin ( i.e. clathrin heavy chains

( CHC ) and light chain chains ] , AP - 2 and , in neurons , AP180 ( Schmid , 1997 ) , the proteins

include dynamin and amphiphysin ( Damke et al . , 1994 ; McMahon et al . , 1997 ) .

Accessory cytosolic proteins include synaptojanin I , an inositol 5 - phosphatase , and Eps 15

(Benmerah et al . , 1995 ; Tebar et al . , 1996 ; Haffner et al . , 1997 ; van Delft et al . , 1997 ) . In

what appears to be a critical step for vesicle formation , dynamin binds and possibly

activates endophilin I , a lysophosphatidic acid acyl transferase that catalyses the
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conversion of lysophosphatidic acid to phosphatidic acid ( Schmidt et al . , 1999 ) . How the

interaction of these components is regulated is of considerable interest . It has been

known for some time that polypeptide growth factor signals influence the formation of

coated membranes ( Connolly et al . , 1981 ; Connolly et al . , 1984 ) . Greene and colleagues

showed in PC12 cells treated with NGF that the number of clathrin - coated plasma

membrane densities increased two to threefold within 30 seconds of NGF addition

( Connolly et al . , 1981 ) . Similar results were seen in sympathetic neurons treated with

NGF and in PC12 cells treated with EGF ( Connolly et al . , 1984 ) . In related studies ,

insulin treatment of adipocytes caused a 3 - fold increase in the amount of CHC associated

with plasma membrane ( Corvera , 1990 ) . Recently , we showed that EGFR activation

resulted in a dramatic redistribution of clathrin to the plasma membrane of A431 cells , as

judged by confocal microscopy and by quantification of membrane - associated CHC

(Wilde et al . , 1999 ) . The current study extends these observations by showing that NGF

signaled through TrkA to robustly regulate clathrin coating of the plasma membrane .

NGF treatment resulted in a prominent increase in membrane - associated CHC and AP2 .

This was revealed by immunostaining studies of these proteins and in biochemical studies

in which we measured the amount of CHC in membrane fractions .

Our findings, and those for EGF and insulin ( Connolly et al . , 1984 ; Corvera , 1990 ; Wilde

et al . , 1999 ) , suggest that a common mechanism may link activation of receptor tyrosine
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kinases to induction of clathrin - coated membrane formation . However , beyond the

requirement for Trka kinase activation , the mechanism by which Trka signaling induces

increased clathrin - coated membranes is yet to be defined . Of note , several of the proteins

that make up clathrin - coated membranes are subject to phosphorylation and

dephosphorylation and it has been shown that such modifications contribute significantly

to the regulation of endocytic function ( Slepnev et al ., 1998 ) . As was seen with EGF

( Wilde et al ., 1999 ) , NGF effects on clathrin redistribution were associated with changes

in the phosphorylation of CHC . Whether , as is the case for EGFR , pp60src is required

downstream of Trka activation to increase clathrin - coated membrane formation and

CHC phosphorylation is yet to be determined . Furthermore , it is uncertain as to whether

the increase in clathrin at surface membranes was due to local changes in signaling (i.e.

due to local recruitment of clathrin and AP - 2 by activated TrkA receptors ) or to signaling

events not spatially contiguous with activated TrkA receptors . However , we have seen

TrkA in complex with CHC and AP - 2 in PC12 cells and that the amount of such

complexes increases with NGF treatment ( C. Howe , E. Beattie and W.Mobley ,

unpublished observations ). This suggests that some membrane - associated clathrin is

complexed with activated Trks

To demonstrate the physiological relevance of our findings , we asked whether or not

BDNF would influence the distribution of clathrin in hippocampal neurons . The changes

216



induced by BDNF were identical to those seen for NGF , in that both AP - 2 and clathrin

were rapidly recruited to surface membranes . Surface membranes were prominently

decorated with immunostained puncta . Remarkably , the changes seen with BDNF were

registered on cell bodies and processes . These findings show that BDNF signaling

induces widespread effects on clathrin - coated membrane formation and suggest that

much of the surface of neurons is responsive to this aspect of BDNF actions . The

similarity of the findings for BDNF and NGF suggests that each of the NTs will be

shown to act through Trk receptors to increase the production of clathrin - coated

membranes , a suggestion that is consistent with the existence of some signaling

mechanisms shown to be common for the Trk receptors ( Ip et al . , 1993b ; Kaplan and

Miller , 1997 ; Yuen and Mobley , 1999 ) .

Endocytic trafficking of cell surface receptors through clathrin - coated membranes

follows from their concentration in clathrin - coated membranes on either a constitutive

basis ( e.g. the TfnR , the low density lipoprotein receptor ( LDL - R ] ) or in response to

ligand binding ( e.g. EGF - R ) ( Schmid , 1997 ) . Our findings for NGF and EGF suggest

that regulated formation of clathrin - coated membranes also contributes to endocytosis .

One consequence would be increased endocytosis of the receptors for NGF and EGF .

Evidence that this is the case are data showing that when EGF signaling through pp60src

was inhibited , there was inhibition of clathrin redistribution and a delay in EGF
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endocytosis . In studies on PC12 cells , we found that NGF treatment increased

endocytosis of TrkA and that Trka at or near the surface of treated cells was colocalized

with clathrin (Grimes et al . 1996 ) . Additional recent findings also support the view that

endocytosis of Trka is via clathrin - coated membranes ( C. Howe and W. Mobley ,

unpublished observations ). Thus , it is likely that NGF acts to enhance the endocytosis of

Trka receptors through clathrin - coated membranes . We speculate that clathrin - coated

vesicles may serve as a source of signaling endosomes .

We entertained the novel possibility that NGF signaling effects on clathrin -mediated

membrane formation would result in a general increase in clathrin -mediated endocytosis ,

augmenting the uptake of markers unrelated to NGF or its receptors . This possibility was

suggested , in part, by the finding that many of the clathrin - positive puncta appearing near

the surface of NGF - treated cells did not stain for TrkA . Indeed , we discovered that even

though NGF induced more than a 10 - fold increase in the number of TrkA puncta that

colocalized with CHC , TrkA was detected in only ~ 20 % of CHC puncta ( Grimes et al . ,

1996 ). In the current study we showed that NGF treatment increased the endocytosis of

FITC - dextran and Tfn . The data for Tfn are especially important ; they show that NGF

acted through Trka activation to cause increased clathrin -mediated membrane trafficking

of a receptor unrelated to the NGF receptors and whose endocytosis is constitutive . The

endocytosis of other receptors , including those whose internalization is normally induced
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by ligand binding , may also be regulated by NGF . Indeed , in preliminary studies the

endocytosis of EGFR has been shown to increase following NGF treatment ( C. Howe , W.

Mobley , unpublished observations ). Our findings suggest that NGF may regulate the

endocytosis of many receptors present in clathrin - coated membranes . If so , increased

clathrin - coated membrane formation and trafficking may play an important role in

mediating the trophic effects of NGF and other NTs . One such effect might involve

increased delivery of receptors carrying nutrients , thus rapidly supplying neurons with

substrates important for growth and differentiation . The enhanced uptake of Tfn shown

here may supply iron needed for the function of iron -containing proteins under conditions

of NGF stimulation . Through increased endocytosis of plasma membrane receptors for

neurotransmitters and growth factors , NTs may impact a neuron's ability to respond to

such influences . The interesting possibility arises that NTs could exert indirect but

important influences on signaling through nonNT signaling pathways . Finally , it is

tempting to speculate that NT signaling might enhance the uptake of synaptic vesicle

proteins through clathrin - coated membranes , an action that could directly support

neurotransmission ( Berninger et al . , 1999 ; Schinder et al . , 2000 ). It will be important to

explore further the significance for neuronal function of the NT - induced increase in

clathrin - mediated membrane trafficking .
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Figure 2.1 . NGF Treatment Caused Clathrin and AP2 Redistribution in PC12 Cells .

Panels A and B : PC12 cells were cultured ( i.e. primed ) in the presence of NGF ( 2nM ) for

seven days . After washing three times with fresh serum - free medium without NGF , cells

were chilled to 4 ° C and incubated for one hour in either the absence ( A ) ( i.e. with vehicle

alone ) or presence ( B ) of NGF ( 2nM ) in serum - free medium . Cells were then warmed at

37 ° C for 2 minutes , quickly chilled ( 4 ° C ) , fixed and processed for CHC immunostaining

using X22 . The panels show confocal micrographs. The width of each panel is 45um .

Panels C and D : The localization of the adaptor protein , AP2 , was examined by

epifluorescence microscopy . Unprimed PC12 cells were treated with vehicle ( C ) or NGF

( 2nM ) ( D ) at 37 ° C for 2 minutes . They were then chilled , fixed and processed for

immunostaining for AP2 with AP.6 . NGF increased AP2 near the plasma membrane .

The width of each panel is 45um .
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Figure 2.2
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Figure 2.2 . NGF Treatment Resulted In Increased Movement of Clathrin To The

Plasma Membrane .

Confocal microscopy was used to show that CHC immunostaining colocalized with that

for the membrane marker Dil . PC12 cells were chilled to 4 ° C and incubated with the

vehicle ( A , B , and C ) or with NGF ( 2nM ) ( D , E , and F ) . Cells were then warmed to 37 ° C

for 2 minutes , chilled , fixed and prepared for CHC immunostaining with X22 ( A and D )

and stained with Dil ( B and E ) . The merged images for a control ( C ) and NGF - treated

cell ( F ) show that CHC colocalized with Dil at the surface of both cells and that the

extent of colocalization was much greater in the NGF - treated cell . The width of each

panel is 55um .

233



Figure 2.3
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Figure 2.3 . NGF Induced an Increase In Membrane - Associated Clathrin .

To quantify the amount of clathrin that was associated with membranes , we examined

CHC in membrane and cytosolic fractions using two methods . ( A ) : In the first method ,

equal numbers of PC12 cells were treated with either NGF ( 2nM ) or with the vehicle for

2 minutes at 37 ° C and the ghost of gently disrupted cells was separated from the cytosol

by pelleting at 8000 x g . CHC was immunoprecipitated with X22 and submitted to SDS

PAGE followed by transfer to nitrocellulose and immunoblotting with TD.1 . NGF

treatment caused a 158 % increase ( +/- 9 % , n = 4 ; p < 0.01 ) in membrane - associated

clathrin . ( B ) In the second method , cells were more thoroughly disrupted by 3 cycles of

free / thaw . Using samples normalized for protein from the P2 ' ( membrane - associated )

fraction or from the S2 ' ( cytosolic ) fraction , CHC was immunoprecipitated with X22 ,

submitted to SDS - PAGE , transferred to nitrocellulose and immunoblotted with TD.1 .

NGF treatment caused a significant increase in CHC in P2 ( 166 % of the vehicle - treated

control +/- 18 % , n = 3 , p < 0.05 ). There was a concomitant small decrease in CHC in

S2 ' ( 92 % of the vehicle -treated control +/- 3.5 % , n = 3 , p = 0.06 ) . ( C ) The bands developed

in ( B ) were quantified using NIH - Image and the data from 3 separate experiments are

shown . Error bars represent S.E.M.
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Figure 2.4
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Figure 2.4 . NGF Induced Redistribution of Clathrin to the Surface of 3T3 Cells

Expressing TrkA , But Not p75NTR .

NIH 3T3 fibroblasts were examined . Parental cells ( i.e. cells without Trk or p75NTR ) are

shown ( panels E and F ) , as are cells transfected with p75NTR ( C and D ) , or with TrkA ( A

and B ) . Cells were treated with NGF ( 2nM ) ( B , D , and F ) or vehicle ( A , C , and E ) for 2

minutes at 37 ° C . They were then chilled at 4 ° C , fixed , and processed to show the

distribution of clathrin by CHC immunostaining. The panels shown are confocal

micrographs and their width is 65um . Only the TrkA - expressing cell line displayed an

increase in clathrin at the plasma membrane ( panel B ) .
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Figure 2.5
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Figure 2.5 . NGF Induced Clathrin Redistribution In PC12 Cells Expressing

Wildtype Trka .

PC12 cells , PC12 nnr5 cells and nnr5 variants were chilled ( 4 ° C ) and then incubated with

vehicle or NGF ( 2nM ) for one hour before warming at 37 ° C for 2 minutes . Following

treatment , cells were quickly chilled , fixed , and processed to determine the distribution of

clathrin by immunostaining for CHC with X22 . The cell lines examined were KB PC12

cells expressing endogenous wild type Trka ( KB ) ( A and B ) , nnr5 cells transfected with

wildtype Trka ( Trka nnr5 ) ( C and D ) , nnr5 parental cells ( nnr5 ) ( E and F ) , nnr5 cells

transfected with kinase - inactivated Trka ( M1 nnr5 ) ( G and H ) , and nnr5 cells transfected

with activation - loop mutated Trka ( 22.7 nnr5 ) ( I and J ) . Confocal microscopy was used

to assess the distribution of clathrin in the vehicle - treated ( top row ) and NGF - treated

(bottom row ) conditions . Only cells with wild type Trka ( B and D ) responded to NGF

with an increase in clathrin near the plasma membrane ( arrowheads ). The width of each

panel is 55um .
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Figure 2.6
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Figure 2.6 . BDNF Induced An Increase In AP2 and Clathrin At the Surface of

Hippocampal Neurons .

To show whether or not NT treatment induced an increase in AP2 and clathrin associated

with surface membranes in primary neurons , BDNF was used to treat rat hippocampal

neurons . The distribution of AP2 was assessed by confocal ( A and C ) and

epifluorescence ( B and D ) microscopy of neurons immunostained with AP.6 . Clathrin

distribution was assessed using confocal ( E and G ) and epifluorescence ( F , H , I , and J )

microscopy of neurons immunostained for CHC with X22 . BDNF ( 2 nM ) ( C , D , G , H ,

and J ) or vehicle ( A , B , E , F and I ) , were applied to cultured neurons for 2 minutes at

37 ° C prior to chilling , fixing and processing for immunostaining . BDNF increased

staining for AP2 ( C and D ) and CHC ( G and H ) at the plasma membrane . Panels I and J

show sections of neuronal processes and indicate that the BDNF effect was also

registered here ( J ) . The width of all panels is 55um .
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Figure 2.7
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Figure 2.7 . NGF Treatment Increased Phosphorylation of CHC .

PC12 cells were treated with NGF or vehicle for 2 min . at 37 ° C . Cells were then quickly

chilled ( 4 ° C ) , and lysed in lysis buffer . Samples equalized for protein were

immunoprecipitated with X22 and subjected to SDS - PAGE , transferred to nitrocellulose ,

and immunoblotted ( IB ) with the anti - phosphotyrosine antibody 4G10 . The p - tyr panel

shows that CHC phosphorylation was increased by NGF . The CHC panel confirms that

equal amounts of CHC were present in the NGF and vehicle - treated samples .
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Figure 2.8 . NGF Enhanced The Uptake of FITC - dextran and of 125-1 Tfn In PC12

Cells .

Panel A : PC12 cells were incubated with FITC - dextran for 0 to 10 minutes at 37 ° in the

absence or presence of NGF ( 2nM ) . The amount of internalized FITC -dextran was

determined by measuring the absorbance at 490nm of the lysates of washed cell pellets .

The values are expressed as percent of the vehicle - treated samples warmed for 10

minutes . NGF increased the uptake of FITC - dextran by 20 % ( +/- 3 % , n = 3 , p = 0.02 ) at 5

minutes and by 60 % ( +/- 6 % , n = 3 , p = 0.01 ) at 10 minutes . The increase at 10 minutes

resulted in a value that was 157 % of the vehicle - treated control . The error bars represent

SEM . Panel B : PC12 cells were incubated with 1251 - Tfn in the absence or presence of

NGF ( 2nM ) for 2 , 5 , 15 , or 30 minutes at 37 ° . They were then chilled ( 4 ° C ) and quickly

pelleted prior to acid - stripping of surface - bound Tfn . Cell - associated counts represent

internalized 1251 - Tfn . The values are expressed as percent of the vehicle - treated samples

at 30 minutes . NGF treatment increased uptake of 1251 - Tfn by 35 % ( +/- 10 % , n = 3 ,

p = 0.001 ) at 5 minutes , to a value that was approximately twice the control . By 15

minutes the increase was 13 % ( +/- 1 % , n = 3 , p = 0.001 ) . Error bars are SEM . ( C ) TrkA

activation was required for the NGF effect on increased endocytosis of 1251 - Tfn . Cells

were incubated with 1251 - Tfn in the absence or presence of NGF ( 2nM ) for 5 minutes at

37 ° C . While NGF induced increased endocytosis of 125I - Tfn in KB PC12 cells ( 177 %
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Figure 2.8
180

160

140 .

120

100

Percentof
Dextran
-
Only

80

60

40 dex

20 + dex + NGF
0

0 2 4A 8 10 126
time ( min )

100

90

80

70

60

Percentof30minValue

50

40

30

20 Tfn

10 + Tfn + NGF

B.
0

0 10 30 4020

time ( min )
200

180 Tfn

Tfn + NGF160

140

120

PercentofTfn
-
Only

100

80

60 140

20

■ 0

KB K252a nnr5
245



+/- 6 % of the vehicle - treated , n = 3 , p = 0.001 ), it had no significant effect in KB PC12

cells pretreated with K252a ( 200 nM ) ( 110 % +/- 3 % , n = 3 , p = 0.08 ) or in PC12 nnr5 cells

( 96 % +/- 3 % , n = 3 , p = 0.38 ).
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Summary

The target -derived neurotrophic factor , nerve growth factor ( NGF ) , signals through TrkA

to promote the survival , differentiation , and maintenance of neurons . How the NGF

signal in axon terminals is conveyed to the cell body is unknown . The ‘ signaling

endosome hypothesis ' envisions that NGF - TrkA complexes are internalized at axon

terminals and retrogradely transported to the cell body . We found that NGF treatment

induced the formation of clathrin coated vesicles ( CCVs ) in which NGF was bound to

activated TrkA . Also , Shc , Ras , and activated Erk were recruited to CCVs in NGF treated

cells , and these vesicles signaled in vitro to activate Elk , a downstream physiological

target of Erk . Our results are evidence of NGF - induced signaling endosomes derived

from clathrin coated membranes .
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Introduction

That the targets of neuronal innervation play a vital role in regulating the survival and

differentiation of innervating neurotrophin - responsive neurons has been appreciated for

many years . Early studies documenting this phenomenon pointed to a direct correlation

between the number of peripheral sensory and sympathetic neurons and the size of the

targets they innervate ( Shorey 1909 ; Detwiler 1920 ; Hamburger 1934 ; Hamburger 1939 ;

Bueker 1948 ; Hamburger and Levi - Montalcini 1949 ) . An important clue to the

mechanism by which targets mediate neuronal function and survival came with the

discovery of nerve growth factor ( NGF ) by Levi -Montalcini and Hamburger ( 1953 ) .

Subsequent investigators have demonstrated that NGF and other neurotrophic factors are

produced and released in target tissues to activate receptors on the presynaptic elements

of innervating neurons , thereby signaling to regulate the survival and differentiation of

these neurons .

An unresolved issue is the mechanism by which such signals are communicated from

axon terminals to neuron cell bodies . We and others ( Ehlers et al . 1995 ; Grimes et al .

1996 ; Bhattacharya et al . 1997 ; Grimes et al . 1997 ; Riccio et al . 1997 ; Senger and

Campenot 1999 ; Tsui - Pierchala and Ginty 1999 ; Watson et al . 1999 ; Zhang et al . 2000 )

have suggested that such signals are transmitted via endocytosis of complexes containing

NGF bound to its activated receptor tyrosine kinase ( RTK ) TrkA , followed by retrograde
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transport of the ‘ signaling endosomes ' thus formed . In vitro and in vivo data support this

hypothesis . Trka endocytosis is enhanced by NGF , and endosomal fractions from NGF

treated cells contain NGF , activated TrkA , and activated PLC - y and Shc (Grimes et al .

1996 ; Grimes et al . 1997 ) . Significantly , NGF is still bound to TrkA in endosomes ,

raising the possibility that persistent binding of NGF to TrkA provides a source of

continuous signaling (Grimes et al . 1996 ; Grimes et al . 1997 ) . Additional support for the

“ signaling endosome hypothesis ” has been provided by Campenot and colleagues

( Senger and Campenot 1997 ) , by Ginty and colleagues ( Riccio et al . 1997 ; Tsui - Pierchala

and Ginty 1999 ) , and by Segal and colleagues ( Bhattacharyya et al . 1997 ; Watson et al .

1999 ; Zhang et al . 2000 ). Using cultures in which sympathetic neuron cell bodies and

their processes were compartmentalized , Senger and Campenot ( 1997 ) showed that NGF

treatment of distal axons resulted in the accumulation in cell bodies of tyrosine

phosphorylated TrkA and a number of additional tyrosine phosphorylated proteins.

Furthermore , Riccio et al . ( 1997 ) showed that NGF treatment of axon terminals and distal

neurites resulted in the activation of cell body loacalized CREB , a transcription factor

important for transmitting the NGF signal to the nucleus . Consistent with the signaling

endosome hypothesis , NGF internalization and persistent activation of TrkA were

required for transmission of the signal to the cell bodies . Using the same cultures , it was

recently shown that a complex containing NGF bound to TrkA was moved from distal

axons to cell bodies , and that retrogradely transported TrkA was activated ( Tsui - Pierchala
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and Ginty 1999 ) . Similar findings have been documented for compartmentalized cultures

of DRG neurons (Watson et al. 1999 ) . Recent work has also shown that activated TrkA

within endosomes enhances neuronal differentiation in response to NGF treatment

( Zhang et al . 2000 ). Finally , in vivo studies have shown that activated TrkA as well as

Erk and several downstream effectors of the Erk cascade are retrogradely transported in

sciatic nerve ( Ehlers et al . 1995 ; Johanson et al . 1995 ) , and that NGF regulates the

retrograde axonal transport of activated ATF - 2 , a transcription factor activated by MAP

kinase ( Delcroix et al . 1999 ) . Taken together , this evidence favors the existence of

signaling endosomes . Importantly , however , no well -defined preparation of endosomes

has been isolated and shown to propagate the neurotrophin signal ( s ) .

One clue as to the source of signaling endosomes is that TrkA is colocalized with clathrin

on the plasma membrane of NGF - treated PC12 cells (Grimes et al . 1997 ; Beattie et al .

2000 ). This suggested that clathrin - coated plasma membranes ( CCPMs) may give rise to

signaling endosomes containing the NGF - TrkA complex . CCPMs mediate the

endocytosis of receptors that are either constitutively internalized , such as the transferrin

receptor , or that are endocytosed in response to ligand binding , such as epidermal growth

factor receptor ( EGFR ) and insulin receptor ( Harding , Heuser , and Stahl 1983 ; Hanover ,

Willingham , and Pastan 1984 ; Sorkin and Waters 1993 ; Ceresa et al . 1998 ) .

Interestingly , while studies examining a role for coated membranes in receptor trafficking
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are extensive , little attention has been paid to the possibility that clathrin - coated vesicles

( CCVs ) derived from CCPMs could be used to transmit an RTK signal . Stimulated by

observations that link NGF signaling to CCPM formation and TrkA trafficking , ( Grimes

et al . 1996 ; Grimes et al . 1997 ; Beattie et al . 2000 ), we asked whether NGF signaling

induced the formation of CCVs that carry the NGF signal . Herein , we show that NGF

increased the association of clathrin with membranes and induced the formation of

complexes containing activated Trka , clathrin heavy chain ( CHC ) , and the plasma

membrane specific adaptor complex , AP2 . Linking complex formation to endocytosis via

CCPMs, CCVs isolated from NGF - treated cells contained NGF bound to activated Trka .

Shc , a critical component of the NGF signaling cascade was recruited to these

membranes , as was Ras and activated ERK1 / 2 . Importantly , we found that NGF - induced

CCVs were competent in an in vitro kinase assay to convey the NGF signal from the

ERKs to Elk , a downstream target of activated ERK . Our findings indicate that NGF

does signal from endosomes . They suggest that CCVs are one source of signaling

endosomes produced in response to NGF treatment.
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Results

NGF Induced Recruitment of CHC to Membranes .

We recently showed that NGF signaled to increase the association of CHC with the

plasma membrane of PC12 cells ( Grimes et al . 1997 ; Beattie et al . 2000 ) . To confirm

this finding , we examined the cellular localization of CHC after loading PC12 cells with

2 nM NGF for 1 hour at 4 ° C , and then warming for 0 , 2 , or 15 minutes at 37 ° C . After

treatment , cells were chilled and washed , and then fixed , permeabilized , and

immunostained for CHC ( X.22 ) . By confocal microscopy , CHC staining in unwarmed

PC12 cells was seen in small puncta distributed diffusely throughout cells , with most

staining in the cytosol ( Figure 3.1A ) . This is further demonstrated in Figure 3.1D - E ,

which shows the transmitted light image of an unwarmed cell ( Figure 3.1D ) , the CHC

immunostaining in the same cell ( Figure 3.1E ) , and the digital colocalization ( Figure

3.1F ) , indicating that most of the staining is concentrated in the cytoplasm . In contrast ,

following 2 minutes of warming there was a marked redistribution of punctate CHC

staining to the plasma membrane ( Figure 3.1B ) . Such a plasma membrane localization is

confirmed in Figure 3.1G - I , showing the transmitted light image of a cell following 2

minutes of warming ( Figure 3.16 ) , the CHC staining in the same cell ( Figure 3.1H ) , and

the colocalization overlay ( Figure 3.11 ) , indicating a robust increase in CHC

immunostaining at the periphery of the cell . By 15 minutes of warming , the CHC

immunostaining was less punctate and was concentrated in the perinuclear region , with a
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commensurate decrease in staining proximal to the plasma membrane ( Figure 3.1C ) .

Importantly , warming of cells did not itself induce a redistribution of CHC

immunostaining ( data not shown ) .

The change in CHC staining following NGF treatment suggested that there was an

increase in membrane - associated CHC . To test this prediction we examined the amount

of CHC in membranes of cells treated with NGF over several time intervals ( Figure 3.2 ) .

Following treatment , cells were resuspended in 4 ° C MES buffer and homogenized by

several passages through a Balch homogenizer , essentially as described in our previous

work (Grimes et al . 1997 ; Beattie et al . 2000 ). Membranes were isolated using two

different methods . In the first method , membranes corresponding to cell ghosts and to

the heaviest membranes released from cells were isolated by an 8000g centrifugation

( corresponding to P1 + P2 from Grimes et al . 1996 ) . In the second method , the

suspensions of permeabilized cells were first centrifuged at 1000g to remove cell ghosts

and unpermeabilized cells , and the resulting supernatant was then subjected to a 100000g

centrifugation to isolate released vesicular membranes ( corresponding to P2 + P3 from

Grimes et al . 1996 ). CHC in these membrane fractions was examined by SDS - PAGE and

western blotting . NGF treatment increased the amount of membrane - associated CHC in

both fractions , with the peak of association occurring at 2 minutes in the 8000g

preparation ( Figure 3.2A ) , and at 1 minute in the 100000g membrane fraction ( Figure
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3.2B ) . This result shows that more CHC was transiently associated with a variety of

cellular membranes following NGF treatment. Furthermore , the redistribution of CHC

was dependent upon TrkA tyrosine kinase activity , as membranes isolated by 8000g

centrifugation from cells expressing either a kinase - defective Trka ( nnr5 - M1 , K538N

mutation ) or an extremely low level of Trka ( nnr5 ) do not show NGF - induced increases

in membrane - associated CHC , while cells overexpressing TrkA ( PC12 6.24 ) exhibited a

robust redistribution ( Figure 3.2C ) . In agreement with our previous work ( Beattie et al .

2000 ), we conclude that NGF acts via Trka to increase the association of clathrin with

membranes , including the plasma membrane .

TrkA was Found in Complexes with AP2 and CHC Following NGF Treatment .

RTKs undergo endocytosis via recruitment of ligand -bound receptors to clathrin - coated

pits at the plasma membrane . These events are influenced by structural changes that

facilitate interaction with adaptor proteins, as well as by downstream signaling events .

The recruitment of clathrin to the plasma membrane and intracellular membranes

following NGF treatment , suggested that activated Trka would be found in complex with

CHC and AP2 . To test this prediction , cells were treated with NGF over intervals

ranging from 0 to 60 minutes and then lysed . Lysates were immunoprecipitated with an

antibody to Trka ( 06574 ) prior to SDS - PAGE and transfer . The blots were probed with

antibodies to clathrin , AP2 , and phosphotyrosine ( p - tyr ) . As evidenced in the p - tyr blot ,
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NGF treatment induced a robust increase in tyrosine - phosphorylated Trka (Figure 3.3A ) .

Increased Trka phosphorylation was associated with an increase in the amount of CHC

and AP2 in the TrkA immunoprecipitates . The increases for both AP2 and CHC were

maximal between 1 and 2 minutes . The levels of AP2 and CHC returned to baseline by

15 minutes . Interestingly , we also observed an increase in the association of tyrosine

phosphorylated CHC with TrkA . The peak in association occured following 5 minutes of

NGF treatment, after the peak in association of total CHC with TrkA , suggesting that

CHC phosphorylation may be the result of complex formation , not a predicative factor .

To determine whether or not activated TrkA receptors were present in NGF -induced

complexes , we immunoprecipitated phosphorylated Trka from NGF -treated cells ( Figure

3.3B ) . We found that , as in the total TrkA immunoprecipitates , CHC and AP2 were in

complex with activated TrkA increased following NGF treatment , peaking at 2 minutes

and rapidly returning to baseline . This result is consistent with published data showing

by confocal microscopy that CHC redistribution to the plasma membrane did not occur in

response to NGF in PC12 cell variants expressing kinase -defective TrkA or expressing

extremely low levels of Trka ( Beattie et al . 2000 ), and with the biochemical analyses

described above . We conclude that NGF signaling results not only in increased formation

of CCPMs , but also in the formation of complexes containing activated TrkA and the

molecular scaffolding that mediates receptor endocytosis .
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NGF Signaling Increased the Amount of CCVs .

In earlier studies , we discovered that NGF increased general trafficking through the

clathrin pathway ( Beattie et al . 2000 ) . These data , together with the increase in

membrane - associated clathrin and the formation of complexes containing activated Trka ,

AP2 , and CHC , suggested that NGF might itself be internalized via the clathrin pathway .

To test this prediction , we measured the internalization of 1281 -NGF in the presence of two

inhibitors of clathrin -mediated endocytosis : chlorpromazine (Wang , Rothberg , and

Anderson 1993 ; Subtil , Hemar , and Dautry - Varsat 1994 ) and monodansylcadaverine

( Davies et al . 1980 ; Davies et al . 1984 ) . As shown in Figure 3.5A , preincubation with

either 100 uM chlorpromazine or 50 uM monodansylcadaverine significantly blunted or

blocked the internalization of NGF under high affinity binding conditions . Importantly ,

these concentrations of chlorpromazine and monodansylcadaverine did not significantly

alter TrkA phosphorylation in response to NGF ( data not shown ) . Hence , we conclude

that the internalization of NGF under conditions which primarily involve TrkA binding is

mediated by the clathrin pathway .

To further address the role of clathrin -mediated endocytosis in the internalization of

NGF , we asked if NGF signaled to increase the number of CCVs , the organelle derived

from CCPMs. To answer this question , we isolated CCVs using a modification of an
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established protocol ( Maycox et al . 1992 ) . Briefly , PC12 cells were chilled , washed , and

resuspended in a MES - based CCV buffer at pH 6.5 , and then submitted to

permeabilization with a Balch homogenizer . The P2 plus P3 fraction was isolated using

our previously described protocol ( Grimes et al . 1996 ; Grimes et al . 1997 ) , and

submitted to a series of gradient fractionations to produce a pellet ( P7 ) containing CCVs

( Figure 3.4A ) . This fraction was examined by EM and found to contain electron -dense

particles that were approximately 65 nm in diameter with the characteristic structure of

CCVs ( Figure 3.4B ) . Fragmented CCVs were also present . Biochemical analysis

showed that the CCV fraction was highly enriched in CHC , AP2 , and other characteristic

markers of this organelle , such as internalized transferrin , the transferrin receptor , EGF ,

and EGFR ( data not shown ) .

To examine NGF effects on CCV production , PC12 cells were loaded with NGF ( 2 nM )

for 1 hour at 4 ° C , and then warmed for 0 , 2 , 5 , or 15 minutes . The amount of total protein

in the CCV fractions obtained from an identical number of cells was measured ( Figure

3.5B ) . Following 2 minutes of warming there was a 164 % increase in the amount of

isolated CCVs ( +6.1 % ; n = 6 ; p < 0.000001 ). After 5 minutes there was a 154 % increase

( 45.7 % ; n = 7 ; p < 0.000001 ), and by 15 minutes the number of CCVs had returned almost

to the level found in untreated cells ( 114 % 2.4 % ; n = 6 ; p < 0.0001 ). Importantly ,

warming alone did not contribute to the formation of CCVs ( data not shown ) . The
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temporal pattern for the increase in CCVs paralleled that for membrane association of

CHC and for complex formation between TrkA , CHC , and AP2 . We conclude that NGF

acted to increase the number of CCVs .

If NGF signals from CCVs , our hypothesis predicts that NGF should be contained within

these vesicles . To test this prediction , we isolated CCVs from PC12 cells treated with

radiolabeled NGF and assayed the amount of internalization ( Figure 3.5C ) . Briefly ,

PC12 cells were treated with 125I - NGF ( 2 nM ) for 1 hour at 4 ° C , and then warmed for 0 ,

2,5 , or 15 minutes . Following warming , cells were chilled and washed , and CCVs were

isolated . The specific activity of internalized NGF was measured as cpm per ug CCVs .

Figure 3.5C indicates that the specific activity of internalized NGF increased throughout

the timecourse , with a 124 % increase in internalized 1241 -NGF after 2 minutes of warming

( + 5.7 % ; n = 3 ; p < 0.001 ), a 128 % increase after 5 minutes ( + 7.7 % ; n = 3 ; p < 0.001 ), and a

182 % increase following 15 minutes of warming ( 3.9 % ; n = 3 ; p < 0.00001 ). These

findings indicate that NGF is internalized via CCVs , and that NGF is enriched in these

organelles over time . Furthermore , chlorpromazine and monodansylcadaverine both

inhibited the NGF - induced increase in CCV production ( Figure 3.5D ) , and inhibited the

internalization of 1281 -NGF into CCVs ( Figure 3.5E ) , providing further evidence that NGF

is internalized via a clathrin -mediated pathway .
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Since activated TrkA is recruited to complexes containing CHC and AP2 , and since NGF

is internalized through CCVs , we predicted that NGF would be bound to TrkA in CCVs .

CCVs were isolated from PC12 cells following 0 , 2 , and 5 minutes of NGF treatment ,

then lysed , immunoprecipitated for TrkA ( 06-574 ) , and submitted to SDS - PAGE and

transfer . Blots were probed with an anti - Trka antibody ( RTA ) . Figure 3.6A shows a

clear increase in TrkA in CCVs following 2 and 5 minutes of NGF treatment . To

determine whether NGF in CCVs was bound to TrkA , CCVs isolated from cells warmed

in the presence of radiolabeled NGF were lysed , and the lysates were immunoprecipitated

with an antibody against Trka ( G158A ) . Figure 3.6B shows that radiolabeled bands

corresponding to the monomer weight of NGF were present in autoradiographs . Note

that the presence of NGF was due to specific binding to TrkA since there was little or no

signal when cells were treated with radiolabeled NGF in the presence of 500 - fold excess

cold NGF ( Figure 3.6B ‘ cc ' ) . In one experiment, following autoradiography , bands were

excised from the gel and counted in a Beckman Gamma 4000 gamma counter .

Compared to the unwarmed sample , the amount of 1281 - NGF was increased by 296 % at 5

min , and 562 % at 15 min . These data indicate that NGF is bound to TrkA in CCVs .

Since NGF is bound to TrkA in CCVs , these receptors should be activated . To test this ,

we loaded PC12 cells with NGF ( 2 nM ) at 4 ° C for one hour and then warmed them for 0 ,

2 or 5 minutes . They were then chilled and permeabilized , and isolated CCVs were
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lysed and immunoprecipitated with an anti - TrkA antibody ( 06574 ) . Blots were then

probed with an antibody to phosphotyrosine . As expected , there was essentially no

tyrosine phosphorylated TrkA in the unwarmed sample . In contrast , increasing amounts

of activated TrkA were present in the CCVs of cells warmed for either 2 or 5 minutes

( Figure 3.6C ) , and the increases were proportional to the increases in total Trka . We

conclude that NGF is bound to activated TrkA in CCVs .

An NGF Signal is Contained in CCVs .

The signaling endosome hypothesis states that internalized activated receptors are

capable of transmitting a signal . To assess the ability of CCVs to signal , we asked

whether they were competent to signal via the MAP kinase pathway . She is an adaptor

protein that participates in a multi - component complex to link TrkA to Ras and the MAP

kinases , ERK1 and 2. CCVs isolated from NGF treated and untreated cells were lysed ,

and the constituent proteins were examined by SDS - PAGE and blotting . We found that

after 2 and 5 minutes of NGF treatment there was a robust increase in the amount of Shc

associated with CCVs ( Figure 3.6D ) . Furthermore , we found that while some Ras was

present in the CCVs of untreated cells , the amount was greatly increased after NGF

treatment for 2 or 5 minutes ( Figure 3.6E ) . These results suggested that CCVs could

signal to activate ERK 1 and 2. Moreover , they raised the possibility that activated

ERK1 and 2 might be associated with CCV membranes . To test this prediction we asked
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if ERK1 and 2 were present in CCVs . We discovered that they were present in both

treated and untreated cells ( Figure 3.6F ) . The amount of these proteins was influenced

very little , if at all , by NGF treatment . However , phosphorylated ( that is , activated )

ERK 1 and 2 were only present in the CCVs of NGF - treated cells ( Figure 3.6G ) . The

degree of phosphorylation of both ERKs increased between 2 and 5 minutes , a pattern

that was highly reminiscent of that seen for Ras ( Figure 3.6E ) .

Our hypothesis states that NGF signals from endosomes . The presence of activated Erk

suggested that the basic machinery to propagate such a signal is associated with NGF

induced CCVs . To test the in vitro signaling ability of CCVs , we examined the capacity

of isolated CCVs to phosphorylate Elk , a well - known substrate of ERK signaling. We

used as substrate an Elk - GST fusion protein that includes the Elk domain normally

phosphorylated by ERK 1 and 2 in vivo . CCVs isolated from treated or untreated PC12

cells were incubated in kinase buffer with Elk - GST in the presence of ATP . Following a

30 minute incubation at 30 ° C , the reaction was quenched with sample buffer and

submitted to SDS - PAGE and tranfer . Blots were probed with an anti - phospho - Elk

antibody ( 9181 ) , and a band corresponding to the molecular weight of the fusion protein

was identified ( 40 kDa ). Consistent with our findings for the phosphorylation state of the

ERKs , there was a marked increase in activity associated with the CCVs isolated from

PC12 cells treated with NGF for 2 or 5 minutes ( Figure 3.6H ) . We conclude that NGF
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acts to increase the activity of ERK1 and 2 in CCVs , and that these CCVs are signaling

endosomes .

Discussion

Neurotrophin -induced signals must be conveyed from the presynaptic terminal to the cell

body to induce pleiotropic effects on survival and differentiation . In the studies reported

herein , we addressed the possibility that clathrin -mediated pathways play an important

role in facilitating the movement of the neurotrophin signal from the cell surface to

internal membranes , thereby creating signaling endosomes that are capable of undergoing

retrograde transport from the axon tip to the cell body . In concert with earlier studies we

showed that NGF signaling through its receptor tyrosine kinase TrkA regulates the extent

to which clathrin assembles on surface membranes and induces the formation of

complexes containing Trka together with AP2 and CHC . In a highly purified CCV

fraction , we demonstrated that NGF signaling results in the formation of CCVs

containing NGF bound to activated TrkA receptors . Significantly , the activated TrkA

receptors present in CCVs were found together with activated ERK1 and 2. The NGF

TrkA complex in CCVs signaled in a cell - free assay to phosphorylate Elk , a downstream

target of the ERKs . We conclude that NGF signaling induces the formation of CCVs that

serve as signaling endosomes . We speculate that CCVs are one source of signaling

endosomes for moving the NGF signal from axon terminals to neuron cell bodies .
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Three mechanisms have been proposed to explain retrograde signaling ( Hendry and

Crouch 1993 ; Campenot 1994 ) : 1 ) the target -derived neurotrophin is internalized and

transported from the axon tip to the cell body , where it binds receptors localized in the

cell body to initiate a signaling cascade ; 2 ) the target -derived neurotrophin activates

presynaptic neurotrophin receptors which initiate signaling cascades that reach the cell

body in a wavelike fashion ; 3 ) the target -derived neurotrophin binds to and activates

presynaptic neurotrophin receptors , inducing internalization of ligand - receptor complexes

into endosomes that are retrogradely trafficked to the cell body , and initiating local signal

transduction cascades that mediate transcriptional events . Evidence from several sources

supports the third model . First , activated Trk receptors have been found along the length

of sciatic axons , suggesting that they must play a role in carrying the neurotrophin signal

( Ehlers et al . 1995 ; Bhattacharyya et al . 1997 ) . Second , a wave of second messengers

cannot be the only mechanism for transmitting the neurotrophic signal , as the speed at

which the signal arrives at the cell body and the concentration of signal generated at the

axon terminal are inconsistent with such a mechanism ( Bhattacharyya et al . 1997 ; but see

Senger and Campenot 1997 ) . Third , neurotrophin receptors , like other growth factor

receptors , are internalized and downregulated from the cell surface following activation

( Hosang and Shooter 1987 ; Kahle et al . 1994 ) . Fourth , neurotrophin receptors are

retrogradely transported ( Johnson et al . 1987 ; Raivich , Hellweg , and Kreutzberger 1991 ;
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Loy et al . 1994 ; Ehlers et al . 1995 ; Bhattacharyya et al . 1997 ; Tsui - Pierchala and Ginty

1999 ) . Finally , internalized complexes containing NGF and activated TrkA are

retrogradely transported in sympathetic neurons , and the arrival of such complexes in

neuron cell bodies coincides with the phosphorylation of CREB , a modification required

to drive transcriptional events necessary for the survival and maintenance of these

neurons ( Riccio et al . 1997 ; Watson et al . 1999 ) . This evidence supports the “ signaling

endosome hypothesis , ” but proof requires the isolation of discrete , endocytic , membrane

bound organelles containing the neurotrophin signal .

The formation of CCVs from the plasma membrane is a complex process that involves

the assembly of a number of protein components including the coat proteins clathrin and

AP2 . How the assembly of these components is regulated and how they are coordinated

to support endocytosis is uncertain . The signaling endosome hypothesis suggests that the

formation of endosomes is regulated by trophic factor signaling , and in recent studies ,

activation of EGFR , Trka , or TrkB was shown to result in a dramatic redistribution of

clathrin to the plasma membrane , as judged by confocal microscopy and by quantitation

of membrane - associated CHC and AP2 (Wilde et al . 1999 ; Beattie et al . 2000 ). NGF

signaling induced changes in CHC distribution through activation of Trka , and the

recruitment of AP2 and CHC to the plasma membrane in response to NGF suggested not

only that Trka signaling would increase Trka endocytosis , but that activated Trka
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would be found in complex with these proteins . While AP2 and CHC were present in

complexes with inactive TrkA prior to NGF treament , we found that brief NGF treatment

significantly increased the amount of complexed AP2 and CHC . These data suggest

either that activated receptors are trafficked to clathrin coated pits or that they are

preferentially retained in these membranes .

The molecular details that specify how proteins like TrkA interact with CCPMs are

poorly understood . One contributing factor is the receptor itself . Membrane proteins that

are internalized from CCPMs are known to contain one or more sequences that specify

their localization in such membranes . The exposure of these motifs in activated receptors

contributes to their endocytosis . That AP2 was co - immunoprecipitated with TrkA

suggests the existence of one or more endocytic codes within the Trka cytoplasmic

domain whose binding to AP2 is enhanced by kinase activation . Of the several sorting

signals identified , the TrkA cytoplasmic domain contains five dileucine motifs ( including

two which fit the criteria for the D / ExxxLL AP2 recognition motif ), three potential Yxx

motifs , 12 lysines which may participate in ubiquitination , and an IxNPxY motif that may

be a variant of FxNPxY (Marsh and McMahon 1999 ) . The carboxyl terminus of EGFR

also contains multiple endocytic codes . Of these , one containing Y974 was shown to

mediate high - affinity binding of the receptor to AP2 ( Sorkin et al . 1996 ) . What residues

consititute sorting signals for TrkA must be determined . As was demonstrated for EGFR
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activation , downstream signaling events , including those regulated by Ras , may also

influence the ability to localize TrkA in CCPMs . Given the roughly 2 - fold increase in the

amount of CHC associated with membranes , one might expect this effect alone to double

Trka endocytosis . In previous studies we have shown that the increase in TrkA

internalization was about 2 - fold at 5 minutes (Grimes et al . 1996 ) , suggesting that

increases in CCPM formation and changes in the binding of activated Trka receptors to

AP2 may both contribute to internalization of the receptor . Consistent with the

recruitment of AP2 and CHC to the plasma membrane , we documented an increase in the

formation of CCVs in NGF - treated cells . The increase was about 160 % above baseline at

two minutes . The magnitude of this change was the same as the increases in CHC

recruitment measured by confocal microscopy and by biochemical measurements of

clathrin recruitment to membranes ( Beattie et al . 2000 ). These findings suggest that the

CCPMs formed in response to Trka activation are engaged in Trka endocytosis .

Our findings suggested that NGF signaling would be carried into cells via CCVs . In a

series of studies we showed that CCVs could serve as signaling platforms for NGF . First

we showed that NGF was present in this fraction . Indeed , the specific activity of NGF in

CCVs ( i.e. the amount of NGF per ug protein ) exceeded the specific activity of NGF

bound to the surface of unwarmed PC12 cells ( data not shown ) . The specific activity was

increased at two minutes , relative to unwarmed cells , and continued to increase with
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further warming ; at 15 minutes the specific activity was increased further . Next we

showed that NGF in CCVs was specifically bound to Trka . We used TrkA

immunoprecipitation to demonstrate this , a method that precluded any interference with

TrkA trafficking that might arise from crosslinking NGF to its receptors . That NGF is

bound to TrkA in CCVs is consistent with a persistent tight association between ligand

and receptor . Third , we showed that TrkA was activated in CCVs isolated from NGF

treated cells , as revealed by the tyrosine phosphorylation of the receptor .

To test the signaling potential of CCVs we investigated downstream signaling proteins.

Significantly , Shc and Ras were both found associated with CCVs isolated from NGF

treated cells , indicating that these signal mediators were recruited to activated TrkA that

was internalized via the clathrin pathway . Furthermore , phosphorylated ERK 1 and 2

were found in the CCVs from NGF treated cells , and these kinases were active as judged

by their ability to phosphorylate a substrate consisting of an Elk - GST fusion protein .

Taken together , our findings are evidence that NGF acts upon the clathrin coated pit

pathway to accomplish two effects : 1 ) an increase in CCPM - mediated trafficking of

TrkA ; 2 ) the creation of membranes that serve as a platform to deliver the NGF signal to

the cell interior . Though we and others have previously provided evidence in support of

signaling from internalized membranes , the findings reported here are the first to

document the existence of endosomes that signal . Importantly , our findings suggest that
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in addition to the classical model of the NGF signaling cascade , endosomes are created

that act as coherent signaling platforms capable of moving the neurotrophic signal within

the cell ( Figure 3.7 ) . The most compelling context for this model is in the retrograde

transport of the neurotrophic signal from the axon terminal to the cell body . Unanswered

questions include the nature of the endosome that actually carries the signal through the

axon , how the endosome is moved through the axon , and what differential signals may be

generated in the axon versus the cell body by such endosomes .
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Experimental Procedures

Antibodies

TD.1 , a mouse monoclonal antibody against CHC , was from the Berkeley Antibody

Company ( Richmond , CA ) . X22 , a mouse monoclonal against CHC , was from Affinity

Bioreagents (Golden , CO ) . 100/2 , a mouse monoclonal against the a - subunit of AP2 ,

was from Sigma ( St. Louis , MO ) . 9141 , a rabbit polyclonal antibody against TrkA

specifically phosphorylated at tyrosine 490 , 9181 , a rabbit polyclonal antibody that

recognizes only Elk - 1 phosphorylated at serine 383 , 9101 , a rabbit polyclonal against

Erk1 / 2 that is catalytically activated by specfic phosphorylation at threonine 202 and

tyrosine 204 , and 9102 , a rabbit polyclonal generated against p42 and 244 Erk ( Erk1 / 2 ),

were from Cell Signaling Technology ( Beverly , MA ). 06574 , a rabbit polyclonal against

Trka , 06372 , a rabbit polyclonal against Ras , 06203 , a rabbit polyclonal against Shc , and

4G10 , a mouse monoclonal antibody against phospho - tyrosine , were from Upstate

Biotechnology ( Lake Placid , NY ) . G158A , a rabbit polyclonal antibody to Trka , was

from Promega (Madison , WI ) . RTA , a rabbit polyclonal antibody to Trka , was the kind

gift of Louis Reichardt . HRP - conjugated secondary antibodies were from Santa Cruz

Biotechnology ( Santa Cruz , CA ) . FITC - conjugated donkey anti - mouse secondary was

from Jackson Immunoresearch ( West Grove , PA ) , as was the normal donkey serum used

in blocking solutions . Agarose - conjugated goat anti - chicken IgY for

immunoprecipitating G158A was from Promega (Madison , WI ) .
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Chemicals and Other Reagents

Mouse NGF was prepared by ion - exchange chromatography as previously described

(Mobley , Schenker , and Shooter 1976 ) . Ultralink immobilized protein A / G plus , BCA

reagents , ECL reagents , and lodogen precoated iodination tubes were from Pierce

( Rockford , IL ). Growth factor reduced Matrigel matrix was from Becton Dickinson

( Bedford , MA ). Protran nitrocellulose transfer membrane was from Schleicher and

Schuell (Keene , NH ). X - OMAT x - ray film was from Eastman Kodak Company

( Rochester , NY ) . 125Iodine ( IMS - 30 ) , PD - 10 Sephadex G - 25M columns , and ECL

sensitive film were from Amersham Pharmacia Biotech ( Piscataway , NJ ) . The Elk - 1

fusion protein , 9184 , was from Cell Signaling Technology ( Beverly , MA ) . Dulbecco's

modified Eagle's medium ( DMEM ) , fetal bovine serum ( FBS ) , penicillin -streptomycin ,

PBS , and calcium -magnesium - free PBS ( CMF - PBS ) were from Mediatech (Herndon ,

VA ) . Horse serum was from Tissue Culture Biologicals ( Tulare , CA ) . Geneticin was

from GIBCO BRL (Gaithersburg , MD ) . Nonidet P40 ( NP40 ) was from Fluka

( Switzerland ) . All other chemical reagents were from Sigma ( St. Louis , MO ) .

Media and Buffers

Lysis buffer was composed of 20 mM Tris , 137 mM NaCl , 1 % NP40 , 0.5 % deoxycholic

acid ( DOC ) , 10 % glycerol, 1 mM PMSF , 10 ug /mL aprotinin , 1 ug /mL leupeptin , 500
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UM sodium orthovanadate , pH 8.0 . Sample buffer was 7 M urea , 125 mM Tris , 100 mM

EDTA , 0.1 % bromophenol blue , 2 % SDS , PH 6.95 . Blocking solution for western blots

for all antibodies except 100/2 was 5 % BSA in TBS - T ( 20 mM Tris , 137 mM NaCl ,

0.2 % Tween 20 ) . For 100/2 incubations , blots were blocked in 5 % milk in TBS - T . All

antibodies except 100/2 were diluted in TBS ( 20 mM Tris , 137 mM NaCl ). 100/2 was

prepared in TBS plus 5 % milk . Tris iodination buffer was 25 mM Tris , 400 mM NACI ,

pH 8.0 . Tris / BSA iodination buffer was 25 mM Tris , 400 mM NaCl , 0.25 % BSA , 5 MM

EDTA , 0.05 % sodium azide . The tyrosine scavenging buffer for iodinations was 10

mg /mL tyrosine in PBS , pH 7.4 . The acid strip for binding experiments was 0.2 M acetic

acid and 0.5 M NaCl . CCV isolation buffer was 100 mM 2- [ N

morpholino Jethanesulfonic acid (MES ), 1 mM EGTA , 2 mM MgCl2 , 0.02 % sodium

azide , 1 mM beta -mercaptoethanol , 1 mM sodium orthovanadate , 1 mM PMSF , 10

ug /mL aprotinin , 1 ug /mL leupeptin , pH 6.5 . CCV isolation D20 sucrose pad was 100

mM MES , 8 % ultrapure sucrose , 1 mM EGTA , 2 mM MgCl2 , 1 mM sodium azide ,

prepared in D20 ( Sigma - Aldrich # 15188-2 , 99.9 % D ) . The MES -based buffer for

membrane fractionation experiments was 25 mM MES , 150 mM NaCl , 10 mM EDTA , 1

mM sodium orthovanadate , 1 mM PMSF , 10 ug /mL aprotinin , 1 ug /mL leupeptin , pH

6.5 . The kinase buffer for the Elk phosphorylation assay was 25 mM Tris , 5 mM B

glycerolphosphate , 2 mM DTT , 100 uM sodium orthovanadate , 10 mM MgCl2 , 200 MM

ATP , PH 7.5 ) . All cell treatments were performed in PGBH , composed of 1 mg /mL

273



glucose , 1 mg /mL BSA , 10 mM HEPES , in PBS , PH 7.4 . Antifade mounting media for

immunostaining experiments was 235 mM N -propyl gallate , 90 % glycerol , in PBS , PH

7.2 . Fixative for immunostaining experiments was 3.7 % paraformaldehyde in PBS , pH

7.4 . Permeabilization solution for immunostained samples was 0.04 % saponin in PBS ,

pH 7.4 , and blocking solution was 10 % normal donkey serum , 4 % fetal bovine serum ,

0.1 % Triton X - 100 , 0.02 % SDS in PBS , PH 7.4 .

Cell Culture and Cell Treatments

KB PC12 cells ( gift of R. Kelly ) and nnr5 PC12 cells ( gift of L. Reichardt ) were

maintained at 37 ° C and 5 % CO2 in DMEM supplemented with 10 % horse serum , 5 %

FBS , 100 U penicillin , and 100 ug /mL streptomycin . 6.24 PC12 cells and M1 - nnr5 PC12

cells ( both kindly provided by D. Kaplan ) , were maintained under identical conditions ,

with the addition of 200 ug /mL geneticin . All cells were grown on plastic , with the

exception of PC12 cells used for immunostaining experiments , which were grown on

Matrigel coated coverslips for 2 d prior to experimentation . Sterile coverslips were

coated by overnight incubation in Matrigel diluted 1 : 200 in PBS , followed by 2 washes in

PBS just prior to cell seeding . In preparation for all experiments , cell growth media was

changed to DMEM supplemented with 1 % horse serum 16-20 hours prior to

experimentation . Immediately prior to every experiment except those involving

immunostaining , cells were removed from their plates with 37 ° C CMF -PBS , resuspended
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in 37 ° C PGBH , distributed into 1 mL aliquots , and rotated for 15 min to equilibrate the

cells prior to experimentation . All treatments were performed in suspension , on

equivalent numbers of cells , and incubated in a 37 ° C water bath , with periodic gentle

inversion of the tubes to keep the cells suspended . For membrane association studies ( 3

5 x 10 ' cells per condition ) , for complex formation experiments ( 3-5 x 10 ' cells per

condition ), and for all western blot analyses of CCV fractions ( 15-50 x 10 ' cells per

condition ), 50 ng of NGF in 50 UL PGBH was added to each tube at 37 ° C for the

appropriate time . For experiments involving pharmacological inhibitors , the appropriate

concentration of the drug was added in a small volume following the equilibration step ,

and the cell suspensions were then rotated for an additional 15 min at 37 ° C . For all

whole cell internalization ( 3-5 x 10 ' cells per condition ) and CCV generation and

internalization experiments ( 15-50 x 10 ' cells per condition ), cell suspensions were

chilled to 4 ° C by rotating in a cold room for 15 min following a 2 min incubation in an

ice - water bath . After thoroughly chilling the cells , 50 ng of NGF in 50 uL of 4 ° C PGBH

was added to each tube , and the cell suspensions were rotated at 4 ° C for a further 1 hr .

At the conclusion of this cold - loading step , cell suspensions were warmed in a 37 ° C

water bath for the appropriate time . Following warming , cell suspensions were rapidly

chilled in a -5 ° C salt - ice water bath , then either resuspended in the appropriate cellular

subfractionation buffer , or lysed .
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Immunofluorescence and Microscopy

Cells grown on Matrigel - coated coverslips were placed in 4 ° C PGBH contained in 10 cm

petri dishes 15 min prior to the start of experimentation . NGF was then added to the

media at 50 ng /mL ( 2 nM ) , and the cells were incubated at 4 ° C for 1 hr with very gentle

rocking . This cold - loading step was taken to maximize binding of NGF to its receptors

without inducing membrane trafficking events . After cold - loading , petri dishes

containing the coverslips were placed into a shallow bath of 37 ° C water for 2 min , 15

min , or were left unwarmed . Following warming , the petri dishes were placed into

shallow baths of -5 ° C salt - ice water , and the media was immediately aspirated and

replaced with 4 ° C PBS . Following this brief wash , cells were fixed for 10 min at RT ,

rinsed once in PBS , permeabilized for 10 min at RT , rinsed again in PBS , and blocked for

1 hr at RT , utilizing the solutions described above . Cells were then incubated overnight

at 4 ° C in X22 at 6 ug /mL in block . Coverslips were rinsed 3x in PBS at RT , then

incubated for 2 hr at RT in FITC -conjugated donkey anti - mouse secondary diluted 1 : 500

in block . Following 3 final rinses in PBS , coverslips were mounted with the anti - fade

media described above on glass slides .

Cells were observed with a Bio - Rad ( Hercules , CA ) MicroRadience AG - 2 laser scanning

confocal microscope equipped with argon ion and green HeNe lasers , and attached to a

Nikon Eclipse E800 microscope with a 60x Plan - Apo oil immersion objective that had a
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numerical aperture of 1.4 . Images were collected using an iris aperture of 1.5 mm , a

zoom of 4 , and a 1024x1024 collection box . After determining the top and bottom

optical planes of the cell , an image was collected at the half -height of the cell using 3

passes with a Kalman filter and an average laser power of 30 % . Gain and black settings

were optimized on unwarmed cell samples using the set - col false coloring filter to get

good contrast stretch . These gain and black levels were used for all subsequent image

collections . Following collection of the FITC emission for any given cell , the transmitted

light image was obtained using a laser power of 10 % and optimized gain and black

settings . Images were converted from the proprietary Bio -Rad pic format to tiff format

using either Confocal Assistant ( Bio - Rad , Hercules , CA ) or NIH Image 1.62 ( developed

at the US National Institutes of Health and available on the internet at

http://rsb.info.nih.gov/nih-image ), and then further processed in Adobe Photoshop 5.5

( Adobe Systems , Mountain View , CA ) . Electron microscopy of the CCV fraction was

performed using standard methods of glutaraldehyde fixation to formar - carbon Ni - grids ,

osmium tetroxide postfixation , and staining with tannic acid and uranyl acetate .

NGF Iodination

For iodinations , 5 ug of NGF in 100 uL tris iodination buffer was added to 1.0 mCi

125 Iodine that had been activated for 9 min at RT in 100 uL of tris iodination buffer in a

Pierce Iodo - Gen tube . This mixture was reacted for 9 minutes at RT , then quenched for 5
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min at RT by the addition of 50 L of tyrosine quench solution . The volume of this

mixture was then brought to 1 mL with tris / BSA iodination buffer . After removing 2 uL

for quantification of total reaction cpm , the remaining 998 uL were loaded onto a PD - 10

desalting column that had been pre - equilibrated with 20 mL of tris / BSA buffer . The

column was then washed with tris /BSA solution , and five 1 mL fractions were collected ,

beginning with the first “ hot ” drop . The 2 uL removed from the reaction mixture , and 2

UL from each of the first 2 fractions , was diluted into 198 uL tris /BSA buffer , then 5 uL

of each of these dilutions was further diluted into 445 uL of ddH , O , while 5 uL of each of

fraction 3-5 was diluted straight into 445 uL ddH2O . To these final water dilutions was

added 50 uL of TCA ( prepared as 100 % TCA with 1 mg /mL DOC ) , and this precipitation

mixture was incubated on ice for 1 hr . These solutions were then centrifuged at 16000g

for 10 min at 4 ° C , the supernatants were separated from the pellets , and the cpm for each

was determined . After normalizing for the activity of the 12 % Iodine and for the dilution

factors , the specific activity of the radiolabeled NGF was determined . Typical

iodinations produced NGF with a specific activity of 150-200 cpm /pg .

Cell Fractionation

Membrane preparation one : 8000g isolation .

Following treatment as described above , PC12 cells resuspended in 1 mL of 4 ° C MES

buffer were permeabilized in a Balch homogenizer , essentially as described in our
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previous work ( Grimes et al. 1996 ; Grimes et al . 1997 ; Beattie et al . 2000 ). The

suspension of permeabilized cells ( cell ghosts ) , cellular contents , and unpermeabilized

cells was centrifuged at 8000g for 35 min at 4 ° C , generating a pellet equivalent to

fractions Pl plus P2 from our earlier work ( Grimes et al . 1996 ) . This pellet, enriched in

the heaviest cellular membranes and organelles , was washed once with fresh MES buffer ,

recentrifuged at 8000g for 35 min , and then lysed and immunoprecipitated with X22 .

Membrane preparation two : 100000g isolation .

PC12 cells were permeabilized as described above . The permeabilized suspension was

centrifuged at 1000g for 10 min to remove the cell ghosts and unpermeabilized cells

( fraction P1 from our previous work ; Grimes et al . 1996 ) from the released organelles

and cytoplasm . The resulting supernatant was diluted to 6 mL in MES buffer , then

centrifuged at 100000g for 1 hr at 4 ° C , generating a pellet equivalent to fractions P2 plus

P3 from our previous work (Grimes et al . 1996 ) . This pellet, highly enriched in released

vesicular structures ranging in average size from 63 nm to 180 nm (Grimes et al . 1996 ) ,

was lysed , immunoprecipitated with X22 , and subjected to SDS - PAGE .

Clathrin coated vesicle isolation .

The isolation scheme used to purify clathrin coated vesicles is diagrammed in Figure 4A ,

and a modification of an established protocol ( Maycox et al . 1992 ) . Following
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treatment as described above , cells were resuspended in 1 mL of CCV isolation buffer ,

triturated 2x with a 22 - gauge needle to get a single cell suspension , then permeabilized

by 5 complete passes through a Balch homogenizer . The resulting permeabilized cell

suspension was then centrifuged at 1000g for 10 min at 4 ° C in a microfuge . The

supernatant from this centrifugation , Si , was diluted to 2 mL with fresh CCV buffer ,

layered onto a 500 uL 5 % glycerol pad made in CCV buffer , and centrifuged at 100000g

for 1 hr at 4 ° C in a Sorvall AH - 650 rotor and a Beckman XL - 80 ultracentrifuge . The

pellet , P2 + P3 ( equivalent to P2 ' from Beattie et al . 2000 and Grimes et al . 1997 ) , was

resuspended by gentle trituration into 250 uL of CCV buffer . This suspension was mixed

with 250 uL of CCV buffer containing 12.5 % ( wt / vol ) ficoll and 12.5 % ( wt /vol ) sucrose ,

then centrifuged at 40000g for 40 min at 4 ° C in an ultracentrifuge . S4 , the supernatant

from this centrifugation , was diluted 1 : 5 in fresh CCV buffer , and then centrifuged at

100000g for 1 hr at 4 ° C in an ultracentrifuge . P5 , the pellet from this round of

centrifugation , was gently resuspended in 1 mL CCV buffer and centrifuged at 16000g

for 20 min at 4 ° C in a microfuge . The supernatant from this spin , S6 , was diluted to 2

mL with CCV buffer , layered onto a 500 ML 8 % (wt / vol) sucrose pad prepared in CCV

buffer that had been made using D20 , and centrifuged at 112700g for 2 hr at 4 ° C in a

Sorvall AH - 650 rotor and a Beckman XL - 80 ultracentrifuge . The pellet resulting from

this centrifugation , P7 , was highly enriched in markers of CCVs .
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Elk Phosphorylation Assay

CCVs isolated as described above were resuspended in 25 uL of 4 ° C Elk phosphorylation

assay kinase buffer . After all samples were resuspended , 25 uL of 4 ° C kinase buffer

containing 2 ug of recombinant Elk - GST fusion protein were added to each , and the

samples were warmed to 37 ° C for 30 min in a water bath . The kinase reaction was

terminated by addition of 50 uL of sample buffer and boiling , and the entire 100 uL was

subjected to SDS - PAGE .

Immunoprecipitation and Western Blotting

All samples were immunoprecipitated in 1 mL lysis buffer plus 100 uL of a 50 % slurry of

protein A /G - sepharose in lysis buffer , and the following amounts of antibody : 15 ug /mL

06574 , 7.5 ug /mL G158A , 30 ug /mL X22 , or 0.4 ug /mL 9141. Immunoprecipitations

were performed overnight rotating at 4 ° C . The sepharose beads were then washed twice

with lysis buffer , once with water , and then resuspended in 65 uL of sample buffer . Prior

to loading 60 uL on 7.5 % SDS polyacrylamide gels , samples were boiled for 5 min and

then centrifuged for 1 min at 16000g . After transfer to nitrocellulose in a tris - glycine

based transfer buffer with 20 % methanol , blots were blocked for 1 hr at RT as described

above . Blots were probed with the following antibody concentrations : 2.5 ug /mL TD.1 ,

0.25 ug /mL 4G10 , 0.06 ug /mL 100/2 , 0.4 ug /mL RTA , 1 ug /mL 06203 , 1 ug /mL 06372 ,

0.05 ug /mL 9101 , 0.01 ug /mL 9102 , and 0.025 ug /mL 9181. HRP -conjugated
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secondaries were used for all blots at 1 : 20000 dilution . For sequentially probing blots ,

the membranes were either stripped by incubating for 15 min at RT in 0.2 N NaOH , or by

incubating for 30 min at RT in TBS PH 2.0 , followed by extensive washing in water and

blocking for 1 hr at RT .
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Figure 3.1 . NGF Induces a Redistribution of CHC Immunostaining .

PC12 cells cold - loaded for 1 hr at 4 ° C with 2 nM NGF were warmed to 37 ° C in the

continued presence of NGF for various times . Following warming , cells were chilled ,

rinsed , fixed , permeabilized , and stained for CHC using X22 and a FITC - conjugated

donkey anti - mouse secondary . ( A ) Unwarmed cell shows diffuse CHC staining primarily

localized to the cytosol . ( B ) Following 2 minutes of warming , the pattern of CHC

staining is more punctate and concentrated at the cell periphery . ( C ) By 15 minutes of

warming , the CHC immunostaining is more diffuse and exhibits a perinuclear

localization . ( D - F ) Further evidence of the primarily cytosolic localization of CHC

staining in unwarmed cells . Panel ( D ) shows the transmitted light image of an unwarmed

cell , while panel ( E ) shows the CHC immunofluorescence elicited in the same cell . Panel

( F ) is the digital overlay of ( D ) and ( E ) , showing that the CHC signal is largely restricted

to the cytosol. ( G - I ) Evidence that 2 minutes of warming results in redistribution of the

CHC staining to the cell periphery . Panel ( G ) shows the transmitted light image of a cell

warmed for 2 minutes in the presence of NGF . Panel ( H ) is the CHC

immunofluorescence pattern produced by the same cell , and panel ( I ) is the digital

colocalization indicating the the punctate CHC signal is predominantly located at the

periphery of the cell .
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Figure 3.2
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Figure 3.2 . NGF , via TrkA , Induces a Redistribution of CHC to Membranes .

Western blot analyses of CHC redistribution in two different membrane preparations, and

the effect of altered levels of TrkA or mutated Trka on such redistribution . ( A )

Membranes isolated by an 8000g centrifugation of PC12 cell homogenates show an

increase in CHC present in the fraction following NGF ( 2 nM ) treatment , peaking at 2

min of NGF . ( B ) Membranes isolated by a 100000g centrifugation of a supernatant

resulting from a 1000g spin of PC12 cell homogenates also show an increase in CHC

following treatment with 2 nM NGF , peaking around 1 min of treatment. ( C ) The

redistribution of CHC in the 8000g membrane fraction following 2 minutes of 2 nM NGF

is dependent upon a functional kinase domain in TrkA and upon the level of TrkA

present in the cell . 6.24 PC12 cells overexpress TrkA , and exhibit an increase in

membrane - associated CHC that is even more robust than that seen in KB PC12 cells . In

contrast , nnr5 PC12 cells , which express only 6 % of the total Trka found in KB PC12

cells , fail to exhibit an increase in membrane - associated CHC following NGF treatment .

Finally , no increase in membrane - associated CHC occurs in nnr5 PC12 cells expressing a

mutant TrkA ( M1 ) that has a defective kinase domain .
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Figure 3.3
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Figure 3.3 . NGF Induces the Formation of Complexes Containing Activated Trka ,

CHC , and AP2 .

( A ) Following treatment of KB PC12 cells with 2 nM NGF for the indicated times , cell

lysates were immunoprecipitated with an anti - Trka antibody , and the resulting western

blot probed for the presence of CHC ( upper panel ), phospho - tyrosine (middle panel ) , and

AP2 ( lower panel ) . There is a distinct increase in the association of CHC and AP2 with

TrkA that is correlated to the level of TrkA activation . ( B ) Evidence that CHC and AP2

are complexed with activated TrkA . Following treatment of KB PC12 cells with 2 nM

NGF for the indicated times , cell lysates were immunoprecipitated with an antibody

specifically directed against TrkA that is phosphorylated on Y490 . Probing the resulting

western blot for CHC , phospho - tyrosine , and AP2 indicated a robust increase in

formation of complexes containing activated TrkA , CHC , and AP2 .
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Figure 3.4
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Figure 3.4 . Isolation and EM Characterization of a Fraction Enriched in CCVs .

Panel ( A ) shows a schematic representation of the basic protocol used to isolate CCVs

from PC12 cells . Following treatment, cells were chilled , rinsed , and resuspended in a

MES -based CCV buffer , then " cracked ” by repeated passage through a Balch

homogenizer . Homogenates were then subjected to several rounds of centrifugation , as

indicated , resulting in a fraction highly enriched in markers of CCVs . ( B ) EM analysis

of the CCV fraction isolated as outlined above showing typical CCV profiles . Scale bar

in upper micrograph of panel ( B ) is 65 nm . Scale bar at bottom of panel ( B ) is 65 nm and

refers to the two higher magnification micrographs of individual CCVs .
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Figure 3.5 . CCV -mediated Internalization of NGF .

( A ) Inhibitors of clathrin - mediated endocytosis block 1251 - NGF internalization . PC12

cells were treated in suspension with either 100 um chlorpromazine or 50 M

monodansylcadaverine for 15 min at 37 ° C , then chilled to 4 ° C , and cold - loaded for 1 hr

at 4 ° C with 1281 -NGF in the continued presence of the inhibitors . To isolate high - affinity

binding sites , cells were washed 3 x 15 min by resuspension in 4 ° C PGBH containing

inhibitors as appropriate . After the final resuspension in ice - cold PGBH plus inhibitors ,

cells were warmed for the indicated times , then chilled , stripped under acidic conditions ,

and lysed . Lysates were assayed for cpm and values were normalized for nonspecific

internalization . Values shown are percent of normalized unwarmed internalization ( n = 3

for all conditions ) . ( B ) NGF induces the formation of CCVs . PC12 cells were cold

loaded with NGF at 4 ° C for 1 hr , then warmed in the continued presence of NGF for the

indicated times . Following treatment, cells were chilled , cracked , and CCVs were

isolated . This fraction was lysed and total protein was measured . Values are shown as

percent of unwarmed . Following 2 min of warming , CCV production was elevated to

164 % + 6.1 % ( n = 6 ; p < 0.000001 ) of unwarmed . After 5 min , CCV production was 154 %

$ 5.7 % ( n = 7 ; p < 0.000001 ). And by 15 min , CCV production was 114 % 2.4 % ( n = 6 ;

p < 0.0001 ) of unwarmed . ( C ) NGF is specifically internalized into CCVs . PC12 cells

were cold - loaded with 125I - NGF at 4 ° C for 1 hr , then warmed in the presence of

radiolabeled NGF for the indicated times . Following isolation of CCVs from these cells ,
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determination of both cpm and total protein in the fractions was made . Specific activity

( SA ) was calculated as cpm per ug total protein . Values shown are pecent of unwarmed

specific activity . Following 2 min of warming, SA was increased to 124 % = 5.7 % ( n = 2 ;

p < 0.001 ). By 5 min of warming , SA was increased to 128 % + 7.7 % ( n = 3 ; p < 0.001 ).

And after 15 min of warming , SA was elevated to 182 % + 3.9 % ( n = 3 ; p < 0.00001 ) of

unwarmed . ( D ) Inhibitors of clathrin -mediated endocytosis block NGF induction of CCV

formation . PC12 cells were treated with either 100 uM chlorpromazine or 50 M

monodansylcadaverine for 15 min at 37 ° C , then chilled , and cold - loaded for 1 hr at 4 ° C

with 2 nM NGF in the continued presence of the inhibitors . Cells were then either

warmed for 5 min at 37 ° C , or left unwarmed . Following isolation of CCVs , total protein

in the fraction was determined . Values shown are as percent of unwarmed ( n = 3 for all

conditions ). ( E ) Inhibitors of clathrin - mediated endocytosis block internalization of

NGF into CCVs . Cells were treated as in ( D ), except 125I -NGF was utilized . Following

isolation of CCVs , internalized cpm were determined , and the percent increase in

internalized 1251 - NGF following 5 min of warming was calculated . Values shown are

percent of unwarmed ( n = 3 for all conditions ) .
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Figure 3.6 . NGF Induces the Formation of Signaling Endosomes .

( A ) PC12 cells were treated at 37 ° C with 2 nM NGF for the times indicated , and CCVs

were isolated and lysed . Immunoprecipitation of TrkA from these lysates shows the

presence of increasing amounts of total TrkA in the CCV fraction induced by NGF . ( B )

PC12 cells were cold - loaded with 2 nM 1251 - NGF for 1 hr at 4 ° C , then warmed for the

indicated times . Following warming , CCVs were isolated , lysed , and the lysates

immunoprecipitated with an anti - TrkA antibody ( G158A ) . Immunoprecipitates were

subjected to SDS - PAGE , and the gel exposed to X - ray film for 15 days . The presence of

a band corresponding to the monomer weight of NGF was found to increase with

warming. The specificity of the interaction of 1251 -NGF with Trka in these

immunoprecipitates is indicated by the absence of signal in the lane corresponding to

cold -competition with 500x unlabeled NGF ( cc ) . ( C - G ) Same treatment conditions as

( A ) . ( C ) TrkA immunoprecipitates immunoblotted with anti - phosphotyrosine indicate

that TrkA is increasingly activated in the CCV fraction following NGF treatment . ( D )

Total protein from CCV fractions subjected to SDS -PAGE and immunoblotted with anti

Shc . Indicates that CCVs generated in response to NGF contain increasing amounts of

Shc . ( E ) Total protein from CCV fraction immunoblotted with anti - Ras showing that

NGF - induced CCVs contain increasing amounts of Ras . ( F ) Total protein from CCV

fraction immunoblotted with an antibody against Erk1 / 2 , showing no discernable increase

in total Erk1 / 2 in the CCV fraction following NGF treatment . ( G ) However , the same
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blot reprobed with anti -phospho - Erk1 / 2 shows a dramatic increase in the amount of

activated Erk present in the CCVs generated in response to NGF . ( H ) NGF - induced

CCVs are competent to transmit a signal in a cell - free assay . CCVs isolated from

untreated cells and cells treated for 2 or 5 min with 2 nM NGF were incubated in kinase

buffer with a Elk - GST fusion protein that can serve as a substrate for phosphorylation by

activated Erk1 / 2 . Following 2 and 5 min of NGF treatment , there was a robust increase

in the ability of isolated CCVs to phosphorylate the Elk - GST substrate , indicating that

CCVs are signaling endosomes .
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Figure 3.7
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Figure 3.7 . A Model of the " Signaling Endosome " Cascade .

The classical signaling cascade elicited by NGF binding to TrkA is depicted on the left

side of the figure . In general, this model does not take into account the spatial

organization of the signaling elements . Our data suggest that many of the signaling

cascade elements are in fact packaged into a discrete signaling platform , or signaling

endosome , which can be used to transmit the neurotrophic signal from the axon tip or the

periphery of the cell to the nucleus .
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The Role of a Cbl : Clathrin Complex in

Trka Signaling and Endocytosis
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Introduction

The Cbl Family and the " Cbl Homology ” Domain .

Cbl ( Casitas B - lineage lymphoma ; pronounced “ sibyl ” ) was initially identified as the

cellular homolog of the transforming gene of the Cas NS - 1 murine retrovirus , isolated

from a wild mouse found near Lake Casitas , CA ( Hartley and Row 1976 ; Langdon and

others 1989a ) . v - Cbl is formed as the result of a recombination between the Gag

encoding sequence of the Cas -Br - M virus and the cellular c - Cbl gene , and acts to acutely

induce pro - B - cell lymphomas , T - cell lymphomas , erythroleukemias , and myeloid

leukemias in mice ( Frederickson and others 1984 ) . Introduction of v - Cbl into fibroblasts

results in transformation , consistent with its role as an oncogene ( Langdon and others

1989a ) . v - Cbl encodes the amino -terminal 355 residues of the 906 residue full - length c

Cbl . Cbl is a 120 kDa cytoplasmic protein that is ubiquitously expressed , and is

especially abundant in thymus , testis , and cells of haemopoietic lineage ( Langdon and

others 1989b ) . Sequence analysis of the Cbl protein predicts a number of adaptor regions,

including several proline - rich SH3 - interacting domains , a novel phosphotyrosine -binding

domain ( PTB domain ) , a 14-3-3 protein binding domain , a Ring - finger domain , a

ubiquitin -binding domain , and 22 tyrosines that may participate in SH2 interactions

( Fukazawa and others 1995 ; Liu and others 1997 ; Lupher and others 1996 ; Meisner and

others 1995 ) . Subsequent analysis of Cbl function has identified it is a gregarious adaptor

protein that is found in complex with a host of proteins , ranging from the epidermal
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growth factor receptor ( EGFR ), the T - cell receptor ( TCR ), and the insulin receptor , to

Src , PI3 kinase , ZAP - 70 , and Vav ( Lupher and others 1998 ) .

When first cloned , Cbl showed no homology to any known mammalian protein , but

showed greater than 93 % homology between murine and human sequences ( Blake and

others 1991 ) . Since that time, several Cbl family members have been identified , including

Cbl - b and Cbl - 3 (Keane and others 1999 ; Keane and others 1995 ) . In addition , homologs

of mammalian Cbl have been identified in Caenorhabditis elegans ( Sli - 1 ) and

Drosophila ( D - Cbl ) ( Hime and others 1997 ; Meisner and others 1997 ; Yoon and others

1995 ). The C. elegans Sli - 1 gene encodes a protein of 582 amino acids that exhibits an

overall homology of 43 % to mammalian Cbl , and a 55 % homology within the amino

terminal Ring - finger motif ( Yoon and others 1995 ) . D - Cbl is a protein of 448 residues ,

weighing 53 kDa. It shows 63 % similarity within its amino terminus to mammalian Cul

and Sli - 1 , and exhibits 93 % identity within a region around the Ring -finger domain

( Hime and others 1997 ; Meisner and others 1997 ) , suggesting that this region is critical to

Cbl function . On the basis of the high degree of homology exhibited by the amino

termini of all Cbl family members identified to date , Bustelo and others ( 1997 ) have

coined the term “ Cbl homology ” domain , or CH domain , to describe the region of Cbl

that contains the PTB domain and the Ring - finger motif . In fact , while Cbl - b and Sli - 1

retain several of the proline - rich SH3 binding domains found in Cbl , D - Cbl only contains
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the CH domain , suggesting that this region is sufficient to confer the majority of Chl

function to the protein .

Analysis of the v - Cbl sequence indicates that the truncation occurs just upstream to the

start of the Ring - finger motif . This finding suggests that the Ring - finger may serve the

role of controlling Cbl function , and that in the absence of this component of the CH
.

domain , Cbl exhibits transforming properties. Two other naturally occuring Col mutants
E

that differ from v - Cbl have been used to further characterize the function of Cbl ,

especially as regards oncogenicity . The first mutant , HUT 78 , exhibits a smaller carboxy

terminal truncation than v - Cbl , producing a protein of 655 amino acids that contains an

intact Ring - finger . This protein is unable to induce transformation in fibroblasts ( Blake

#and Langdon 1992 ) , suggesting that a domain between residues 355 ( end of v - Cbl ) and

655 participates in controlling the activity of Cbl . The second mutant form of Cbl was

isolated from a 70Z / 3 pre - B lymphoma tumor . 70Z - Cbl exhibits a 17 residue deletion

mutation that occurs just upstream of the Ring - finger motif ( Andoniou and others 1994 ) .

Other than this mutation , which confers transformational capability to the mutant that

exceeds that found in v - Cbl , the protein is intact and identical to Cbl . In fact , while v - Cbl

is not detectably phosphorylated , 70Z - Cbl exhibits enhanced tyrosine phosphorylation

relative to Cbl ( Andoniou and others 1996 ) . Hence , v - Cbl is generally considered to

function in a dominant - negative manner by competing for Cbl binding sites and partners
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without consequent activation , while 70Z - Cbl functions in a positive manner by

interacting with Cbl partners and becoming hyperactive . That both of these mutant

proteins are oncogenic suggests that both must lead to the same loss of function . It also

suggests that an intact Ring - finger is critical to this function , as the only common feature

shared by these two mutations is loss of Ring - finger integrity .

Cbl as an Element of Receptor Tyrosine Kinase Signaling .
3

Subsequent to its initial identification , Cbl was found to be equivalent to the 120 kDa
.

major phosphorylated species in activated T cells ( Donovan and others 1994 ) . Following

that discovery , Cbl was shown to be rapidly , prominently , and transiently tyrosine

phosphorylated in response to activation of a large number of cell surface receptors .

These include the TCR and B - cell receptor ( Buday and others 1996 ; Cory and others

1995 ; Donovan and others 1994 ; Kim and others 1995 ; Panchamoorthy and others 1996 ) ,

the CD19 , CD38 , CD16 , and CD5 lymphocyte receptors ( Cerboni and others 1998 ;

Dennehy and others 1998 ; Kitanaka and others 1997 ; Kitanaka and others 1996 ; Kontani

and others 1996 ) , the Fc■ RI and FcYR Fc receptors (Marcilla and others 1995 ; Ota and

others 1996 ; Tanaka and others 1995 ) , the EGF , PDGF , FGF , NGF , CSF - 1 , c - Kit / Steel

factor , and prolactin receptors ( Bonita and others 1997 ; Bowtell and Langdon 1995 ;

Galisteo and others 1995 ; Hunter and others 1997 ; Meisner and Czech 1995 ; Wang and

others 1996 ; Wisniewski and others 1996 ) , the GM - CSF , erythropoietin , thrombopoietin ,

316



IL - 2 , IL - 3 , IL - 4 , and interferon - a receptors ( Anderson and others 1997 ; Barber and

others 1997 ; Brizzi and others 1996 ; Gesbert and others 1998 ; Odai and others 1995 ;

Sattler and others 1997a ; Uddin and others 1996 ; Ueno and others 1998 ) , and the integrin

receptors ( Ojaniemi and others 1997 ; Sattler and others 1997b ) . Cbl is also

phosphorylated downstream from insulin receptor activation , but apparently only within

differentiated adipocytes (Ojaniemi and others 1997 ; Sattler and others 1997b ) . Finally ,

Cbl is constituitively phosphorylated in cells that have been transformed with activated

Src , suggesting that this non - receptor tyrosine kinase may play a significant role in the

phosphorylation of Cbl ( Andoniou and others 1996 ).

Evidence that Cbl interacts with several members of the Src family of non -receptor

tyrosine kinases suggests that these kinases may generally mediate the phosphorylation of

Cbl downstream from a variety of RTKs . Cbl appears to be constituitively associated

with Fyn and Lck in unstimulated T - cells , and Cbl can be isolated from cellular lysates in

association with Fyn and Lck SH3 - domain fusion proteins (Donovan and others 1994 ;

Fukazawa and others 1995 ; Reedquist and others 1994 ; Tsygankov and others 1996 ) .

Similarly , in B - cells , Cbl was found in constituitive complexes with Lyn , Fyn , Blk , and

Lck (Marcilla and others 1995 ; Panchamoorthy and others 1996 ; Tezuka and others

1996 ) . The functional significance of these findings is suggested by experiments showing

that overexpression of Fyn in T - cell hybridomas led to increased phosphorylation of Chl
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in response to TCR stimulation . In contrast , TCR stimulation in T - cells isolated from

Fyn -deficient mice does not elicit Cbl phosphorylation ( Tezuka and others 1996 ) .

Furthermore , overexpression of Lyn in mast cells enhanced Fce receptor -induced

phosphorylation of Cbl ( Ota and others 1996 ), while BCR stimulation in Lyn - deficient

chicken B - cells was unable to induce Cbl phosphorylation ( Tezuka and others 1996 ) .

Hence , Src family kinases appear to mediate Cbl phosphorylation downstream from

many receptors , and may do so by holding Col in a constituitive complex that permits

rapid phosphorylation following activation of the kinase .

Cbl also associates directly with RTKs , including EGFR , PDGFR , and the CSF - 1

receptor ( Bonita and others 1997 ; Bowtell and Langdon 1995 ; Fukazawa and others

1996 ; Galisteo and others 1995 ; Meisner and others 1995 ; Tanaka and others 1995 ; Thien

and Langdon 1997a ) . Cbl utilizes two mechanisms for binding to these receptors . In the

first , a proline - rich region of Cbl interacts with the SH3 domain of Grb2 , which then

adapts Cbl to the RTK ( Meisner and others 1995 ; Thien and Langdon 1997a ) . The second

mechanism utilizes direct contact of Col with the RTK mediated via the PTB domain

within the amino - terminus of Cbl ( Thien and Langdon 1997a ) . Both of these mechanisms

appear to be utilized under different cellular contexts . Interestingly , while EGFR tyrosine

kinase activity is required for EGF - induced Cbl phosphorylation , association of Col with

EGFR is not required (Galisteo and others 1995 ; Thien and Langdon 1997a ) . This finding
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strengthens the argument that a non -receptor tyrosine kinase such as Src is involved in

translating EGFR kinase activity into Cbl phosphorylation .

A number of potential phosphorylation sites exist within Cbl . There are 22 tyrosines

within the entire protein , 13 of which are located in the CH domain . Moreover , 8 of these

amino - terminal tyrosines are absolutely conserved in all Cbl homologs , suggesting that

they are critical to Cbl function . In addition , 3 tyrosines are conserved within the

carboxy -terminal region of Cbl and Cbl - b , and these tyrosines are phosphorylated

downstream from Abl , EGFR , and FceR activation ( Andoniou and others 1996 ) . It is

interesting to note that tyrosine 307 , which is conserved in all Cbl homologs , is directly

adjacent to glycine 306 , the site of a G306E mutation that renders Cbl non - functional

( Thien and Langdon 1997a ) .

Cül is induced to interact with several SH2 domain - containing proteins following

phosphorylation . One of the primary partners is the p85 regulatory subunit of PI3 kinase ,

and following TCR , BCR , and EGFR activation there is an increase in Cbl - associated P13

kinase activity (Donovan and others 1996 ; Fukazawa and others 1995 ; Hartley and others

1995 ; Kim and others 1995 ; Meisner and others 1995 ; Odai and others 1995 ; Ojaniemi

and others 1997 ; Panchamoorthy and others 1996 ; Reedquist and others 1996 ; Soltoff and

Cantley 1996 ) . The consensus site within Cbl for binding of PI3 kinase is a YEAM
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sequence that begins with tyrosine 731 ( Liu and others 1997b ) . Interestingly , Cbl appears

to be the major phospho -protein associated with PI3 kinase in T - cells , and this complex is

particularly enriched in the membrane fraction of homogenized T - cells . In fact ,

membrane - associated Cbl was shown to contain 20 times more PI3 kinase activity than

cytosolic Cbl , suggesting that Cil may act to recruit P13 kinase to the plasma membrane

following TCR activation ( Hartley and Corvera 1996 ) .

Another group of phospho - Cbl binding partners are the Crk family members . Crk is

composed of one SH2 domain and one SH3 domain , while Crk - II and Crk - L each have

one SH2 and two SH3 domains ( ten Hoeve and others 1993 ) . The SH2 domain within

these proteins mediates an inducible interaction with Cbl that occurs following activation

of the TCR , BCR , and cytokine receptors ( Barber and others 1997 ; Buday and others

1996 ; Reedquist and others 1996 ; Sawasdikosol and others 1996 ; Smit and others 1996a ;

Smit and others 1996b ). The implications of such interactions are unclear , but they may

play a role in coupling specific receptors to activation of the Rapl pathway . This is

supported by the finding that increased Fyn activity leads to the formation of a ( phospho

Cbl ) -CrkL - C3G complex that is associated with heightened activity of Rapl ( Boussiotis

and others 1997 ) . It is important to note that following TCR stimulation , essentially all of

the phosphorylated Cbl within the cell is co - immunoprecipitated with CrkL ( Reedquist
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and others 1996 ; Sawasdikosol and others 1996 ) , suggesting that this interaction is

crucial to TCR signaling.

Cbl as a Negative Regulator of Receptor Tyrosine Kinase Activity .

The first evidence that Cbl might play a role in negative regulation of receptor tyrosine

kinase ( RTK ) signaling came from genetic screening studies in C. elegans. Analysis of

the Sli - 1 gene showed that deletion or mutation of Sli - 1 restored signaling through a

weakly active mutant Let - 23 , the C. elegans EGFR homolog ( Jongeward and others

1995 ; Yoon and others 1995 ) . Moreover , overexpression of Sli - 1 suppressed normal Let

23 signaling ( Jongeward and others 1995 ) , suggesting that Sli - 1 functions as a negative

regulator of Let - 23 signaling . Interestingly , mutation of Sli - 1 within the context of

normal Let - 23 did not exert any effect on Let - 23 signaling within the pathway for vulval

induction . However , in combination with a mutation in Unc - 101 , the C. elegans homolog

of the medium chain ( u ) clathrin adaptin protein , mutant Sli - 1 abrogated Let - 23 -mediated

vulval induction ( Jongeward and others 1995 ; Lee and others 1994 ) . As Unc - 101 is also

defined as a negative regulator of Let - 23 function on the basis of restoration of mutant

Let - 23 signaling , this finding suggests that Cbl and the clathrin pathway may intersect in

the negative regulation of RTK signaling .
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Further evidence for the role of Cbl as a negative regulator of RTK signaling comes from

studies showing that overexpression of D - Cbl in Drosophila compromises the

development of the R7 photoreceptor neuron , apparently by inhibiting EGFR signaling

( Meisner and others 1997 ) . Other investigators have shown that overexpression of Cbl in

mast cells suppresses FceRI - induced Syk kinase activity and blocks histamine and

serotonin release ( Ota and Samelson 1997 ) . Likewise , overexpression of Col in T - cells

decreases Ras - dependent activation of Erk and AP - 1 downstream from TCR ligation

( Rellahan and others 1997 ) . Cbl is further implicated in the Ras pathway by studies

showing that 70Z - Cbl induces transcriptional activation of NFAT , the nuclear factor of

activated T - cells , and that this activation is blocked by expression of dominant - negative

Ras (Liu and others 1997a ) . Finally , 70Z - Cbl and v - Cbl induce hyperphosphorylation of

the PDGF and EGF receptors , and induce hyperactivation of signaling downstream from

these receptors ( Bonita and others 1997 ; Thien and Langdon 1997b ) , suggesting that Cbl

loss - of - function and oncogenicity correlate with increased RTK signaling .

The phenotype of Cbl - null ( Cbl “.) mutant mice also supports a negative regulatory role

for this adaptor protein . These mice are viable and fertile , but exhibit increased mammary

growth , and increased levels of TCR expression and signaling . Moreover , Cbl " mice

exhibit lymphoid hyperplasia ( in which the lymph nodes are enlarged and filled with

increased numbers of T- and B - cells ) and primary splenic medullary hematopoiesis
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(marked by enlargement of the spleen and the presence of large numbers of

megakaryocytes and normoblasts within the parenchyma of the spleen ), consistent with

Cbl -mediated negative regulation of hematopoietic proliferation (Murphy and others

1998 ). In particular , the increase in megakaryocytes within the spleen likely represents

failure or dysregulation of an autocrine loop controlling megakaryocyte differentiation .

Cbl is a prominently phosphorylated target in thrombopoietin - stimulated cells , and is

implicated in the sustained activation of Erk that prompts myeloid cells to secrete a

megakaryocyte differentiation factor ( Racke and others 1997 ; Sasaki and others 1995 ) .

Likewise , the mammary hyperplasia that occurs in Cbl “ mice may be explained by

enhanced EGF signaling in the control of mammary branching and development

( Coleman and others 1988 ; Curtis and others 1996 ; Fowler and others 1995 ; Snedeker

and others 1991 ; Vonderhaar 1987 ) . Finally , enhanced TCR signaling within the Cbi "

mice may explain the proliferation of thymocytes occurring in these animals . While

development of a functional T - cell repertoire occurs normally in these mice , surface

expression of CD4 , CDs , and the TCR is dramatically increased on thymocytes. Also ,

there is dramatic hyperphosphorylation of many intracellular proteins following surface

receptor crosslinking , and Cbi " thymocytes respond to TCR -mediated signaling in the

absence of normally obligate coreceptor aggregation , suggesting that the increased

expression of TCR on the surface of these cells leads to hyper - responsiveness (Murphy

and others 1998 ) .
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Additional cellular evidence for a negative regulatory function of Cbl comes from studies

showing that antisense repression of Cbl expression in osteoclasts leads to inhibition of

bone resorption ( Tanaka and others 1996 ) . Interestingly , antisense repression of Src

expression elicits an identical phenotype , and in osteoclasts derived from Src - deficient

mice Cbl phosphorylation is greatly reduced and bone resorption and remodelling is

compromised , leading to an osteopetrotic phenotype ( Soriano and others 1991 ) . Hence ,

Cbl appears to function downstream of Src in controlling bone resorption by osteoclasts ,

a process that requires active endocytosis and vesicular transport of the degradation

products ( Blair 1998 ) .

The mechanism by which Cbl acts to negatively regulate RTK and immune receptor

signaling remains unclear . However , several lines of evidence suggest that Cbl may

enhance ligand - induced ubiquitination , internalization , and degradation of cell surface

receptors ( Lee and others 1999 ; Levkowitz and others 1998 ; Miyake and others 1998 ) .

For example , the increased surface expression of CD4 , CDs , and the TCR in Cbl mice

suggests that Cbl plays a role in removing these receptors from the plasma membrane .

More directly , evidence from CSF - 1 receptor ( CSFR ) signaling in macrophages indicates

that Cbl directly controls the polyubiquitination of CSFR and mediates an increase in the

rate of CSFR endocytosis ( Lee and others 1999 ) . Specifically , in Cbl “ macrophages ,
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CSFR was not polyubiquitinated in response to CSF , endocytosis of CSFR was 2-3 times

slower than in wildtype macrophages treated with CSF , and proliferation was markedly

increased in response to CSF , a phenomenon which was directly correlated with

persistance of CSFR signaling at the plasma membrane (Lee and others 1999 ) . Cbl was

also recently identified as a key mediator of surface downregulation of EGFR ( Levkowitz

and others 1998 ) . Within the context of EGFR overexpression in CHO cells ,

overexpression of Cbl led to an acceleration of EGFR internalization and degradation .

Moreover , expression of v - Cbl caused internalized EGFR to be shunted to a recycling

compartment which trafficked the receptor back to the plasma mebrane , resulting in a

failure to downregulate the receptor in response to ligand (Levkowitz and others 1998 ) .

In this same study , Cbl was localized to a vesicular compartment , and was fractionated

within an endosomal fraction following EGF treatment . Furthermore , Col was rapidly

recruited to EGFR - containing vesicles following EGFR internalization , suggesting that it

is involved in a sorting event that occurs mesial to endocytosis of the receptor ( Levkowitz

and others 1998 ) . Hence , Cbl is implicated in the ligand - induced internalization and

downregulation of several surface receptors , via a mechanism that is reversed by

mutations that render Cbl oncogenic . The data presented within this chapter suggest that

Cbl may participate in a Src - dependent mechanism that controls RTK internalization via

the clathrin pathway , and that Cbl , within the context of differentiative signaling

downstream from TrkA , acts to positively regulate neuritogenesis . They also suggest that
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Cbl may be an important integration point for convergence of neurotrophin signaling and

depolarization , a convergence that certainly has tremendous significance for the study of

learning- and memory - related plasticity . The remainder of this introduction will touch

briefly on the role of depolarization in the control of neurite outgrowth , and the reader is

refered to chapter 1 of this manuscript for a more detailed account of Src signaling and

neuritogenic signaling in PC12 cells , and to chapter 5 for a discussion of the role of

neurotrophins in neural plasticity .

Depolarization Enhances Neurite Outgrowth in Response to Suboptimal Levels of

NGF .

PC12 cells that overexpress Trka exhibit a low level of spontaneous neurite outgrowth ,

and respond to NGF by elongating neuritic processes much more quickly than normal

PC12 cells treated with NGF (Hempstead and others 1992 ) . This effect is recapitulated in

the response that NGF - primed PC12 cells exhibit following neurite stripping and

subsequent replating - essentially , the cells are poised to rapidly respond to NGF by

virtue of an increased complement of surface TrkA . Increased expression of TrkA at the

surface leads to spontaneous dimerization of the receptor in the absence of ligand , and

therefore to the spontaneous autophosphorylation of tyrosines within the intracellular

domain . A low level of such spontaneous receptor activation appears to be sufficient to

prime PC12 cells for further neuritogenic signaling in response to NGF . Interestingly ,
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Messing and colleagues discovered that K * -mediated depolarization of PC12 cells

overexpressing TrkA led to robust neurite outgrowth that exceeded the outgrowth

induced in normal PC12 cells in response to 2 nM NGF ( Solem and others 1995 ) . This

effect was maximal at 45 mM K + , and was dependent upon Ca2 + influx through voltage

gated Ca² + channels . On the other hand , depolarization of normal PC12 cells , even for

extended times , resulted in only a small percentage of cells elaborating only very short

processes . However , normal PC12 cells pretreated for 15 days with 20 PM NGF , a level

that by itself is insufficient to induce neurite outgrowth , were induced to grow extensive

neurites in response to depolarization with 45 mM K + ( Solem and others 1995 ) . These

findings are consistent with other work showing that K * -mediated depolarization

enhanced NGF - induced neurite outgrowth and increased NGF binding to surface

receptors ( Koike 1987a ; Koike 1987b ) , and with work showing that depolarization

maintains neurites after NGF withdrawal ( Teng and Greene 1993 ) . While Messing and

his colleagues suggest a model in which activation of TrkA or TrkA - induced signaling

cascades are not involved in depolarization - induced neurite outgrowth under conditions

of increased TrkA expression , other findings argue against this . For example , Greenberg

and colleagues have shown that depolarization leads to transient activation of Erk1 / 2 in

PC12 cells ( Rosen and others 1994 ) , while evidence from Koike that depolarization

induces more binding of NGF to surface receptors suggests that Trka signaling would be

increased by depolarization ( Koike 1987a ; Koike 1987b ) . Finally , the results presented
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within this chapter support a model in which depolarization leads to increased TrkA

internalization , increased Trka activation , and enhancement of neuritogenic signaling

cascades engaged by TrkA . However , the effects presented in this chapter occur within

minutes , while the effects examined by Messing and colleagues took place over many

days , suggesting that temporal considerations may be important in defining a complete

mechanistic basis for the effect of depolarization on neurite outgrowth .

Results

Depolarization Enhances NGF Internalization and Trka Activation .

As discussed above , previous work has suggested that potassium -mediated depolarization

of the rat PC12 pheochromacytoma cell line modulates NGF - induced differentiative

signaling via Trka ( Solem and others 1995 ) . To investigate the mechanism responsible

for this modulation , I asked whether depolarization enhanced the endocytosis of NGF .

PC12 cells on collagen - coated plates were treated with 1251 - NGF ( 100 PM ) for 1 hr at

37 ° C in depolarization buffer that contained either 5 mM K * ( equivalent to normal saline ,

hence undepolarized ) or 50 mM K + . Figure 4.1A shows that depolarization induced an

increase in the internalization of radiolabeled NGF to 192 % of the the undepolarized

value ( + 10 % ; n = 3 ; p < 0.005 ). This effect was dependent upon calcium - influx , as

depolarization in the absence of calcium and magnesium ( Figure 4.1A “ 50 mM - Ca2 + r )
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did not induce a statistically significant increase in 1251 -NGF internalization ( 107 % +

15 % ; n = 2 ; p = 0.63 ).

NGF internalization may occur predominantly via Trka ( CL Howe and AP Kruttgen ,

unpublished observations ). Hence , increased internalization of NGF may be correlated

with increased TrkA activation . To determine whether depolarization modulated NGF

induced tyrosine phosphorylation of TrkA , I treated PC12 cells with NGF ( 2 nM ) for 2

min at 37 ° C in depolarization buffer that contained 5 , 10 , 25 , 50 , or 100 mM K * ( Figure

4.1B ) . In the presence of physiologically normal K * levels ( 5 mM ), NGF induced a

typical increase in TrkA phosphorylation . Increasing concentrations of K + enhanced the

phosphorylation of TrkA in response to NGF , with the peak enhancement occurring at 50

mM K * . 100 mM K * was not as efficacious as 50 mM K * at increasing TrkA

phosphorylation . Because 50 mM K * induces a depolarization that is more physiological

relevant than that induced by 100 mM K + , this finding suggests that the effect of

depolarization on TrkA activation may have biological significance .

Using 50 mM K * as the optimal potassium concentration for depolarization , I next sought

to determine the time course over which depolarization enhanced TrkA activation . Under

normal conditions , NGF ( 2 nM ) treatment elicits Trka phosphorylation that is apparent

by 1 min , peaks at 2 min , and begins to return to baseline by 5 min . Figure 4.1C shows
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that treatment with NGF in the presence of 50 mM K + substantially increased TrkA

phosphorylation as early as 1 min . The effect was maximal at 2 min , coinciding with the

normal peak in Trka activation . By 5 min of NGF under depolarizing conditions , the

effect of K * was negligible . This finding indicates that depolarization acts to increase the

efficacy of TrkA activation at early timepoints without substantially altering the kinetics

of activation . This is important, as the initial finding that depolarization enhanced Trka

activation at 2 min could have been due to a shift in the timing of peak TrkA activation .

The finding that depolarization enhances TrkA activation at both 1 min and 2 min , and

that at 5 min there is no substantial difference with depolarization , suggests that K * may

be acting to increase the absolute number of TrkA receptors that become phosphorylated

in response to NGF . Verification of this suggestion will require further analysis of the

effect of depolarization on surface levels of Trka .

Finally , the effect of depolarization on TrkA activation was dependent upon extracellular

calcium . In the absence of both calcium and magnesium , 2 min of NGF ( 2 nM ) elicited

TrkA phosphorylation that was essentially identical to that elicited by NGF in the

presence of calcium and magnesium ( Figure 4.1D , lane 3 vs lane 1 ) . However , NGF plus

depolarization under calcium- and magnesium - free conditions did not elicit the enhanced

TrkA phosphorylation that was seen in the presence of calcium and magnesium ( Figure

4.1D , lane 4 vs lane 2 ) .
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Depolarization Modulates the Phosphorylation of Cbl Downstream From TrkA

Activation .

TrkA activation elicits several well - characterized signaling cascades that are necessary

for NGF - induced differentiation of PC12 cells . I wondered whether the effect of

depolarization on Trka activation translated into a similar enhancement or modulation of

downstream signaling elements . To test this , PC12 cells were treated for 5 min at 37 ° C

with 5 mM K + or 50 mM K * in depolarization buffer , or with NGF ( 2 nM ) in

depolarization buffer containing either 5 mM K + or 50 mM K + . Following treatment , cells

were lysed in sample buffer , and equivalent amounts of total protein were loaded onto

7.5 % SDS - polyacrylamide gels . After transfer , all tyrosine phosphorylated species were

detected . Figure 4.2A shows a protein of 120 kDa that was uniquely phosphorylated

under these conditions . In particular , this protein was shown to exhibit a modest level of

tyrosine phosphorylation in response to depolarization alone ( Figure 4.2A , lane 3 ) , a

large response to NGF alone ( Figure 4.2A , lane 5 ) , and a dramatically reduced response

to the combination of NGF and depolarization ( Figure 4.2A , lane 6 ) . This unique pattern

of activation prompted me to investigate this protein more thoroughly . I subsequently

identified the protein as Cbl , a 120 kDa adaptor protein that is generally considered a

negative regulator of receptor tyrosine kinase activity .
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To verify the effect of NGF on the phosphorylation state of Cbl and to ascertain the

temporal dynamics of the effect , I treated PC12 cells with NGF ( 2 nM ) at 37 ° C for

various times , then immunoprecipitated Cbl and probed for phospho -tyrosine . Figure

4.2B shows the result of an extended timecourse of NGF , while Figure 4.2C shows a

higher - resolution timecourse . Both figures indicate that NGF induces tyrosine

phosphorylation of Col that is detectable by 1 min of NGF , maximal by 5 min , and

decreased by 15 min . The timing of this phosphorylation corresponds to that seen for the

120 kDa band detected in lane 5 of Figure 4.2A .

I wondered whether the phosphorylation of Col in response to NGF treatment was

mediated by TrkA . To test this , I analyzed Cbl phosphorylation following 5 min of NGF

( 2 nM ) at 37 ° C in a variety of PC12 derivatives . P8 and 6.24 cells are PC12 cells that

overexpress human TrkA , while M1 - nnr5 and 22.7 - nnr5 cells express kinase - defective

TrkA within the context of very little endogenous wildtype TrkA . The 490 / 785 - nnr5

PC12 mutant expresses TrkA that lacks tyrosines 490 and 785 , again , within the context

of very little endogenous TrkA . Figure 4.2D ( lanes 9 and 10 ) shows that in KB PC12

cells NGF induces the same tyrosine phosphorylation of Cbl that was seen in Figures

4.2B and 4.2C . Moreover , in the TrkA overexpressors P8 and 6.24 , Cbl is robustly

phosphorylated in response to NGF ( Figure 4.2D , lanes 7 and 8 , and lanes 1 and 2 ,

respectively ). Note that in P8 cells a higher level of background Cbl phosphorylation
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exists in the absence of NGF treatment , suggesting that spontaneous TrkA activation in

the absence of ligand is inducing Cbl phosphorylation . Interestingly , Cbl phosphorylation

is not increased in response to NGF in any of the TrkA mutants , including the M1 - nnr5 ,

22.7 - nnr5 , and the 490 / 785 - nnr5 cell lines . The higher level of Cbl phosphorylation that

is seen in the untreated 490 / 785 - nnr5 cells is likely caused by a background level of

tyrosine phosphorylation that TrkA exhibits in these cells ( data not shown ) . Nonetheless ,

Cbl phosphorylation is not increased in these cells in response to NGF , suggesting that

one of these sites may mediate an interaction between Cbl and TrkA . Hence , NGF

induced Cbl tyrosine phosphorylation appears to be mediated by TrkA .

Based on the results of Figure 4.2A , I next sought to determine the effect of Kt -mediated

depolarization on Cul phosphorylation . I first asked whether depolarization alone led to

Cbl phosphorylation . In fact, I found that Cbl was tyrosine phosphorylated very rapidly in

response to 50 mM K + ( Figure 4.3A ) . 30 sec of depolarization was sufficient to induce

tyrosine phosphorylation of Cbl , with the peak of phosphorylation occuring by 1 min . By

5 min the level of Cbl phosphorylation was decreasing , and had returned almost to

baseline by 15 min . This finding explains the low level of Cbl phosphorylation that was

seen in lane 3 of Figure 4.2A - by 5 min of depolarization , the peak of Cbl

phosphorylation was already past .
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I next asked whether the effect of depolarization of Cbl phosphorylation was calcium

dependent. Figure 4.3B shows that in the absence of calcium and magnesium , 50 mM K +

was not able to elicit substantial phosphorylation of Cbl . While some phosphorylation

may be evident following 5 min of depolarization in the absence of divalent cations , the

amount is low compared to that seen in Figure 4.3A , and certainly does not fit the

timecourse of activation that occurs in the presence of calcium .

Figure 4.2A suggested that at 5 min of treatment, the amount of Col phosphorylated in

response to NGF was much greater than that which occurred in response to

depolarization . To ascertain the relative phosphorylation amplitude that occurs

throughout the timecourse , I compared depolarization to NGF ( 2 nM ) treatment at 30 sec ,

1 , 2 , and 5 min . Figure 4.3C shows that 30 sec of depolarization induced phosphorylation

of Cbl that was many - fold greater than the phosphorylation induced by 5 min of NGF

treatment . However , in keeping with the findings of Figure 4.2A , by 5 min of

depolarization , the relative phosphorylation of Cbl was several - fold less than that elicited

by 5 min of NGF . Hence , while both depolarization and NGF induce the tyrosine

phosphorylation of Cbl , they do so with dramatically different efficacies and temporal

kinetics .
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Finally , lane 6 of Figure 4.2A suggested that the combination of NGF and depolarization

had a dramatic effect on the phosphorylation state of Cbl , as compared to NGF alone .

This was confirmed by experiments in which PC12 cells were treated simultaneously

with 50 mM K * and NGF ( 2 nM ) at 37 ° C for various times . Figure 4.3D shows that , like

depolarization only , depolarization plus NGF elicited Cbl phosphorylation that was

maximal at 1 min , returning nearly to baseline by 5 min . Hence , the combination of NGF

and depolarization induces Cbl phosphorylation that exhibits the temporal dynamics of

depolarization alone .

Qualitative examination of the Col phosphorylation that was elicited by simultaneous

depolarization and NGF treatment suggested that even the maximal phosphorylation state

elicited by these two agents was less than that elicited by either alone . Figure 4.3E shows

that , in fact , NGF plus depolarization evoked only a modest phosphorylation of Cbl at 1

min , as compared to that evoked by either NGF or 50 mM K * . Thus , the combination of

depolarization and NGF exhibits the timecourse of depolarization only , but exhibits an

amplitude of Cbl phosphorylation that is significantly blunted in comparison to either

NGF or depolarization alone .
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The Effect of Depolarization and NGF on Cbl Phosphorylation may be Mediated by

Src .

Previous work in other cell types suggested that the non - receptor tyrosine kinase Src was

responsible for Cbl phosphorylation downstream from the activation of several different

receptor tyrosine kinases . To determine whether this was true for NGF - induced Cbl

phosphorylation in PC12 cells , I first asked whether Src was activated in response to

NGF . Figure 4.4A shows that Src was tyrosine phosphorylated in response to NGF , with

activation peaking between 2 and 5 min of NGF . It is interesting to note that the peak of

Trka phosphorylation precedes the peak in Src activation , and that both precede the peak

in Cbl phosphorylation . This strongly suggests that TrkA activates Src which then

phosphorylates Cbl .

Next , I asked whether pharmacological inhibition of Src could disrupt Cbl

phosphorylation in response to either NGF or depolarization . Cells were pretreated in

suspension for 15 min with PP1 ( 100 nM ) , a potent and selective inhibitor of Src family

kinases . Following pretreatment , cells were treated with either NGF ( 2 nM ) for 5 min or

50 mM K * for 1 min , or were left untreated . Figure 4.4B shows that PP1 preincubation

blocked the background Cbl phosphorylation that existed in untreated cells ( lanes 1 and

2 ) . Moreover , PP1 completely inhibited the phosphorylation of Col that was elicited by

either 5 min of NGF ( lanes 3 and 4 ) or 1 min of depolarization ( lanes 5 and 6 ) .
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Based on my earlier observation that depolarization enhanced NGF internalization , and

that depolarization modified NGF - induced signaling through TrkA and Cbl , I wondered

if inhibition of Src could reduce NGF internalization . To test this , I utilized srcDN2

PC12 cells , a cell line that expresses a dominant - negative mutant of Src . Src activity and

Cbl phosphorylation in response to NGF is significantly blunted in these cells ( data not

shown ) . Figure 4.4C shows that the specific activity ( cpm per ug of cellular protein ) of

1251 -NGF internalization was significantly reduced in the srcDN2 cells compared to

normal KB PC12 cells . This inhibition was seen even at early timepoints , but was most

dramatic following 1 hr of incubation at 37 ° C . In control experiments I determined that

the effect was also seen when normalized to a per cell basis , suggesting that the reduction

in internalization of radiolabeled NGF in the srcDN2 cells was in fact due to a defect in

uptake , not an artifact of cellular size or protein content differences elicited by the

mutation ( data not shown ) .

Cbl is Trafficked to Intracellular Membranes Distinct from Clathrin - Coated

Vesicles in Response to NGF Treatment .

Previous work has suggested that Src may play a role in the endocytosis of receptor

tyrosine kinases ( Wilde and others 1999 ) . Moreover , the experiments described above

indicate that NGF internalization is sensitive to the effects of dominant - interfering Src ,
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and that Cbl phosphorylation in response to either NGF or depolarization is blocked by

inhibition of Src . Therefore , I hypothesized that Cil may play a role in trafficking events

associated with Trka internalization . To test this hypothesis , I analyzed the association of

Cbl with various membrane fractions following NGF treatment .

Figure 4.5A shows that NGF induced the association of Cbl with a membrane - enriched

fraction generated by a 100000g centrifugation of PC12 cell homogenates . Briefly , PC12

cells were treated with NGF ( 2 nM ) for various times at 37 ° C , then chilled , and

homogenized by repeated passage through a Balch homogenizer . This generated a

homogenate that contained cytosol , released intracellular membranes and organelles ,

large sheets of plasma membrane , and largely intact cells with ruptured plasma

membranes (Grimes and others 1996 ) . In control experiments I showed that this

homogenization procedure resulted in essentially 100 % of cells failing to exclude trypan

blue ( data not shown ) . Hence , following homogenization , all cells were ruptured , with

many releasing intracellular membranes . Homogenates were then centrifuged at 100000g

for 1 hr at 4 ° C through a glycerol pad to separate membranes from cytosol . This

procedure effectively collects all membranes and organelles (Grimes and others 1996 ) .

The membrane - enriched fraction was then lysed and immunoprecipitated for Cbl .

Probing the resulting western blot with an anti - Cbl antibody indicated that NGF induced

the association of Col with membranes over an extended timecourse . The membrane
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association continued to increase out to 15 min , the longest timepoint examined . This

suggests that NGF induces a long -lasting recruitment of Col to membranes .

I next asked whether Cbl on these membranes was phosphorylated . Figure 4.5B shows

that there was a peak in tyrosine phosphorylation of Cbl in the membrane fraction

following 2 min of NGF treatment . Interestingly , the absolute level of phosphorylated

Cbl in this fraction was low compared to the level of phosphorylation elicited on

cytosolic Cbl ( Figure 4.5B ) . Moreover , cytosolic Cbl exhibited a timecourse of

phosphorylation that peaked very early , following 1 min of NGF . This is in clear

contradiction to the timing of Cbl phosphorylation in the whole cell . It suggests that Chl

may be differentially phosphorylated in the cytosol versus on membranes . In fact , these

data would suggest that Cbl may be phosphorylated very quickly in the cytosol , and may

then associate with membranes in this phosphorylated state . The summation of all

phosphorylated Cbl following NGF treatment may show peak activation between 2 and 5

min , but the phosphorylation of Cbl within specific cellular fractions may exhibit more

rapid kinetics . In addition , these findings are consistent with the idea that TrkA activation

in response to NGF leads to the activation of cytoplasmic Src , which then phosphorylates

Cbl . This phosphorylation may then target Cbl for trafficking to membranes , including

intracellular membranes and plasma membrane .
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To more fully explore the trafficking of Col in response to NGF , I asked whether

phosphorylated Cbl moved into specific intracellular membrane fractions . Previous work

has defined 2 fractions of intracellular membranes gathered from cellular homogenates

by differential centrifugation (Grimes and others 1996 ) . Briefly , cells were homogenized

as described above . These homogenates were then centrifuged at 1000g for 10 min to

remove large sheets of plasma membrane and whole cells . The supernatant from this

centrifugation was then centrifuged at 8000g for 35 min to collect a fraction , refered to as

P2 , enriched in large released intracellular membranes and organelles . Finally , the

supernatant from this centrifugation was spun at 100000g for 1 hr to collect small

released intracellular membranes . This fraction is refered to as P3 . Fractions P2 and P3

were then lysed and immunoprecipitated for Cbl . The resulting western blots were probed

for phospho -tyrosine. Figure 4.5C shows that 2 min of NGF ( 2 nM ) induced the

association of phosphorylated Cbl with both P2 and P3 . Interestingly , inhibition of Src by

pretreatment with PP1 did not alter the association of phospho - Cbl with the P2 fraction ,

but completely inhibited its association with P3 . This suggests that NGF - induced

activation of Src is required for the association of phosphorylated Cbl with small

intracellular membranes and organelles .

Finally , as discussed in chapter 3 of this manuscript, NGF and TrkA are internalized via

clathrin - coated vesicles ( CCVs ) , and many downstream signaling partners are induced to
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associate with CCVs following NGF treatment . The findings presented above led me to

wonder whether Cbl was also trafficked to CCVs in response to NGF . Surprisingly , I

found that quite the opposite occurred ( Figure 4.5D ) . Following 2 min of NGF there was

a dramatic decrease in the amount of Cbl that was associated with a highly - enriched CCV

fraction . This decrease is made all the more robust by the fact that following 2 min of

NGF there is nearly a doubling in the amount of CCVs that are recovered from cells

( Chapter 3 ) . The amount of Col in this fraction showed a small rise by 5 min of NGF , but

was certainly much less than the amount found in untreated cells . The association of Chl

with CCVs in untreated cells and the subsequent dramatic redistribution away from such

vesicles in response to NGF treatment is hard to explain . However , these findings point to

a surprisingly complex pattern of trafficking exhibited by Col in response to NGF , and

suggest that more work is necessary to understand the role such trafficking may play in

the cellular function of Cbl .

Clathrin Heavy Chain is Found in Complex With Cbl in Response to NGF and

Depolarization .

My earlier observations of Cbl immunoprecipitates isolated from NGF treated cells

suggested that a 180-190 kDa protein was induced to form a complex with Cbl . Based on

the trafficking results discussed above , I wondered whether this protein might be the

clathrin heavy chain ( CHC ) . In fact , Figure 4.6A shows that CHC was found in Cbl
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immunoprecipitates , and that the amount of CHC increased following NGF treatment .

The peak in association at 5 min coincided with the peak in Cbl phosphorylation evoked

in response to NGF treatment . Likewise , depolarization with 50 mM K * was found to

enhance the amount of CHC found in Cbl immunoprecipitates , with the peak in

association coinciding with the peak in Cbl phosphorylation elicited by this treatment

( Figure 4.6B ) . Hence , Cbl phosphorylation is correlated with increased association of

CHC .

I next asked whether Cbl within specific membrane fractions was associated with CHC .

Figure 4.6C shows that Cbl within the membrane - enriched fraction characterized in

Figure 4.5A is associated with CHC in untreated cells . Following 1 min of NGF

treatment the amount of CHC complexed with Col decreases dramatically . Interestingly ,

this decrease persists through 5 min of NGF , only beginning to increase at 15 min of

treatment . Comparing Figure 4.6C to Figure 4.5A shows that the decrease in CHC

associated with Cbl parallels the increase in Cbl association with the membrane - enriched

fraction . Thus , as Cbl is recruited to membranes in response to NGF , it ceases to be in

complex with CHC . Moreover , comparing Figure 4.6C to Figure 4.5B shows that the

decrease in CHC found in complex with Cbl exactly parallels the increase in membrane

associated phospho - Cbl , suggesting that the phosphorylation state of Col is controlling its

association with CHC . To summarize , unphosphorylated Cbl that is associated with
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membranes in untreated cells is in a complex with CHC . Following NGF treatment , Cbl

increases its association with membranes in parallel with an early increase in Cbl

phosphorylation . Phosphorylated Cbl associated with membranes is no longer in complex

with CHC , suggesting that Cbl phosphorylation state may control complex formation , at

least in terms of membrane -associated Cbl . As there is a correlation between Cul

phosphorylation and CHC association at the level of the whole cell , the findings for

membranes must represent a specific mechanism of control over complex formation .

As indicated in Figure 4.5C , NGF induces the recruitment of phospho - Cbl to the P2 and

P3 fractions . I wondered whether CHC was associated with Cbl in these fractions . Figure

4.6D shows that in untreated cells Col in the P2 fraction is associated with CHC , while

Cbl in the P3 fraction is not . Moreover , 2 min of NGF ( 2 nM ) led to a loss of CHC in

complex with Cbl within the P2 fraction , but an increase in CHC complexed with Cbl

within the P3 fraction . Comparing Figure 4.6D to Figure 4.5C shows that there is a

complete disconnect between the extent of Cbl phosphorylation and the amount of CHC

found in complex with Cbl . Cbl within the P2 fraction behaves in a manner akin to Cbl

within the total membrane fraction – as it becomes more phosphorylated , it ceases to be

associated with CHC . On the other hand , Cbl within the P3 fraction behaves in exactly

the opposite manner . As it becomes more phosphorylated , it increases its association with

CHC .
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The situation becomes even more complex when the role of Src is analyzed . Figure 4.6D

shows that inhibition of Src by preincubation with PP1 does not block the increase in

CHC found in complex with Cbl within the P2 fraction . This is consistent with the the

finding shown in Figure 4.5C that PP1 does not inhibit recruitment of phospho - Cbl to the

P2 fraction . Surprisingly , preincubation of cells with PP1 – a treatment which blocks the

recruitment of phospho - Cbl to P3 – has no effect on the amount of Cbl in complex with

CHC within the P3 fraction . Whether this means that PP1 does not block the recruitment

of total Cbl to the P3 fraction in response to NGF , and that therefore Cbl phosphorylation

state within the P3 fraction is unrelated to the extent of Cbl : CHC complex formation ,

remains to be determined . Further work is necessary to clarify the nature of Cbl

recruitment to various membrane fractions , the role that phosphorylation plays in

formation of a Cbl : CHC complex , and the functional role of such a complex within the

cell .

There are two possible explanations for the observation that CHC is found in Cbl

immunoprecipitates . The first is that Cbl is associated with an adaptor protein that binds

to CHC . The second is that Cbl itself exhibits a novel clathrin adaptor function , binding

directly to CHC . To test the first possibility , I looked for the presence of the plasma

membrane specific adaptor complex AP2 in Cbl immunoprecipitates following NGF
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treatment . Figure 4.6E shows that very little AP2 was found in complex with Cbl .

However , the AP2 that was detectable appeared to peak following 5 min of NGF

treatment – the same time that CHC peaks in association with Cbl . Hence , further

analysis is required to determine whether AP2 , or the Golgi - specific adaptor AP1 , may

mediate the association of Cbl with CHC . In addition , experiments in which Cbl is

mutated at specific sites in an attempt to block CHC association are needed to determine

whether Cbl can bind directly to clathrin .

Overexpression of Cbl Enhances Neurite Outgrowth in Response to NGF .

The finding that Cbl was a common and uniquely controlled substrate of NGF and

depolarization suggested that it might play a role in K -mediated enhancement of neurite

outgrowth . Also , the finding that depolarization and Src are both involved in control of

NGF internalization , and that Src is downstream of both NGF and depolarization in the

phosphorylation of Cbl , suggested that Cbl was more generally involved in differentiative

signaling and neurite outgrowth . To begin to address the role that Cbl might play in

neuritogenic signaling , I transfected PC12 cells with a Cbl expression vector . Several

stably transfected clones were isolated , and Figure 4.7A shows the level of Chl

expression in one such clone . Figure 4.7B shows that the overexpressed Cbl was robustly

phosphorylated in response to 5 min of NGF treatment. Finally , these cells were tested

for their ability to grow neurites in response to NGF treatment. KB PC12 cells or Cbl
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overexpressing PC12 cells ( Cbl - OX ) were treated with NGF at a concentration of either

0.1 nM or 1 nM for 1 or 2 days . Figure 4.7C shows untreated PC12 cells , and Figure 4.7F

shows untreated Cbl - OX cells . Note the presence of small neuritic projections in the

untreated overexpressors . Following treatment for 1 day with 0.1 nM NGF - an NGF

concentration that is normally ineffective in eliciting neurites – the Cbl - OX cells

exhibited increased neurite outgrowth ( Figure 4.7G ) , while normal PC12 cells were

unaffected ( Figure 4.7D ) . Likewise , 1.0 nM NGF had little effect on normal PC12 cells

after one day ( Figure 4.7E ) , but induced the formation of neurites in Cbl - OX cells . By 2

days of 1.0 nM NGF , both cell types exhibited neurites , though the Cbl - OX cells ( Figure

4.7J ) showed much more robust and complex neurite outgrowth than the KB PC12 cells

( Figure 4.71 ) . Thus , it appears that overexpression of Cbl enhanced neuritogenic signaling

induced by even very low levels of NGF . Further experiments addressing the effect of

Cbl overexpression on NGF internalization and Trka signaling are needed to determine

the mechanism of this effect , but the preliminary evidence presented herein suggests that

Cbl functions to control the internalization of TrkA , thereby promoting neuritogenic

signaling by enhancing TrkA signaling .

Discussion

The relationship between a presynaptic terminal and its postsynaptic target is

dynamically regulated by a host of anterograde and retrograde factors . In the anterograde
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direction , the presynaptic terminal controls ionic flux within the postsynaptic element by

releasing neurotransmitters that bind to specific postsynaptic receptors . Likewise , in the

retrograde direction , postsynaptic targets release neurotrophins that bind to presynaptic

neurotrophin receptors in order to control the morphological and biochemical complexion

of the presynaptic terminal . Obviously , within the brain , at any given synapse , there is a

complex interplay of these anterograde and retrograde signals . An interesting hypothesis

is that convergence of these signals at specific synapses may induce a synergism in the

connection between the presynaptic and postsynaptic elements that leads to an overall

strengthening in the connection . Such a strengthening may modify more widespread

network responses within the nervous system , leading to a global change in neuronal

activity that reflects a specific learning event . In other words , the strengthening ( and

conversely , the weakening ) of a synaptic connection may serve as the essential element

of memory . The convergence of anterograde and retrograde signals is therefore an

exciting arena to enter if we wish to better understand the mechanistic basis of memory .

In the work presented herein , I have shown that the convergence between depolarization

and neurotrophin signaling that occurs within the presynaptic terminal may be mediated

by specific intracellular proteins that are sensitive to regulation by ion flux and receptor

tyrosine kinase activity .
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Using PC12 cells as a model of the presynaptic terminal , I have shown that Cbl may

serve as a key integrator of calcium- and RTK -dependent signaling, and that this

integration is manifested within the control of neurotrophin receptor trafficking . I first

showed that depolarization enhanced the internalization of NGF and the activation of

TrkA in response to NGF ( Figure 4.1 ) . This finding supports previous work showing that

depolarization enhances neuritogenesis in response to low levels of NGF ( Solem and

others 1995 ) . It suggests that enhanced internalization of TrkA may promote neurite

outgrowth , a suggestion that is supported by a recent study showing that TrkA

internalization was involved in differentiative signaling induced by NGF ( Zhang and

others 2000 ). Further support for this idea comes from work showing that MAP kinase

signaling downstream from EGFR activation requires receptor internalization for

maximal efficacy ( Vieira and others 1996 ) , and from my own unpublished observation

that inhibition of clathrin -mediated endocytosis of Trka prevents NGF induction of

Erk1 / 2 phosphorylation within PC12 cells . Hence , receptor trafficking appears to be a

potential convergence point for depolarization and neurotrophin signaling .

I was intrigued by the possibility that depolarization and NGF might act through a

common intracellular agent that could signal to control TrkA trafficking . To screen for

such a protein , I asked about the tyrosine phosphorylation of total cellular proteins in

response to K * , NGF , or K * plus NGF . I discovered a prominently phosphorylated 120
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kDa protein that exhibited a unique pattern of phosphorylation in response to these

different treatments ( Figure 4.2 ) . Further analysis indicated that this protein was the

multi - adaptor Cbl . I showed that Cbl was phosphorylated by both NGF and K * , but that

these two treatments resulted in very different phosphorylation kinetics ( Figures 4.2 and

4.3 ) . NGF induced a slower , more prolonged phosphorylation of Cbl , while

depolarization led to a very rapid phosphorylation of Cul that peaked between 30 seconds

and 1 minute of treatment . Interestingly , depolarization plus NGF led to a

phosphorylation timecourse that was identical to that induced by depolarization only .

Moreover , the combination of depolarization and NGF dramatically reduced the

amplitude of Col phosphorylation . Hence , Cbl is a convergence point for signaling

initiated by both depolarization and NGF , and in combination these two factors may

uniquely control Cbl function . Further experimentation led to the discovery that Src may

mediate Cbl phosphorylation in response to depolarization and Trka signaling . I found

that pharmacological inhibition of Src activity abrogated the tyrosine phosphorylation of

Cbl that occurs in response to either K * or NGF ( Figure 4.4 ) . It is very interesting to note

that NGF internalization was defective in cells that express a dominant - interfering form

of Src . This finding links Src activity to TrkA internalization , and supports previous work

showing that EGF endocytosis is delayed or decreased in response to Src inhibition

(Wilde and others 1999 ). Furthermore , combining the finding that depolarization

increased NGF internalization and Cbl phosphorylation with evidence that Src inhibition
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decreased NGF internalization and blocked K * -induced Cbl phosphorylation , suggests a

model in which Src signals downstream from depolarization to elicit Cbl phosphorylation

and Cbl involvement in the endocytic pathway .

Further evidence for a role of Cbl in endocytosis comes from my finding that Cbl is

recruited to membranes in response to NGF treatment . The data provided in Figure 4.5

suggest that Cbl is phosphorylated in the cytosol following TrkA - mediated NGF - induced

activation of Src , and that it is subsequently recruited to membranes , including the

plasma membrane . Subfractionation of these membranes showed that phospho - Cbl is

recruited to a variety of intracellular membranes . Surprisingly , phospho - Cbl was still

found in the P2 fraction when Src was inactivated , even though on a whole cell lysate

basis , Cbl phosphorylation appears to be completely blocked . On the other hand ,

inhibition of Src did block the recruitment of phospho - Cbl to the small intracellular

membranes of the P3 fraction . These findings suggest either that there is Src - independent

phosphorylation of Cbl within a highly specific membrane fraction , or that a very low

level of Src activation that persists following treatment with inhibitor is sufficient to

specifically phosphorylate Cbl within an endosomal compartment. Further analysis of

the trafficking of total Cbl versus phosphorylated Cbl is needed to resolve the

complexities of Cbl trafficking .
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The trafficking issue is further complicated by the finding that while Col is induced to

rapidly move out of a clathrin - coated vesicle fraction ( Figure 4.5 ) , it is also induced to

associate with the clathrin heavy chain in response to both NGF and depolarization

( Figure 4.6 ) . It is unclear as to why at the whole cell level there is a correlation between

Cbl phosphorylation and CHC association , while at the level of specific membrane

fractions the relationship is inverted . Without further analysis of the association of CHC

with unphosphorylated Col in specific cellular compartments it is hard to interpret these

data . However , a few points are indicated : 1 ) phosphorylated Col in the whole cell is

associated with CHC ; 2 ) phosphorylated Cbl in association with total membranes is not

complexed with CHC ; 3 ) unphosphorylated Cbl associated with large intracellular

membranes is in complex with CHC , and this complex is broken upon phosphorylation of

Cbl , recapitulating the total membane fraction finding ; 4 ) unphosphorylated Cbl

associated with small intracellular membranes is not in complex with CHC , but is

induced to form a complex with CHC following phosphorylation , reflecting the whole

cell situation ; 5 ) Src has no effect on the loss of CHC in complex with Cbl in the P2

fraction , consistent with the finding that Cbl is still phosphorylated in this fraction after

inhibition of Src ; and 6 ) inhibition of Src , while blocking phosphorylation of Cbl within

the P3 fraction , has no effect on the Cbl : CHC complex within this fraction . These

findings are very interesting , but also incredibly confusing . They suggest that the

relationship between Cbl trafficking , Cbl phosphorylation , and formation of a Chl :CHC
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complex is very dynamic and very tightly regulated within highly specific cellular

compartments . Further work is obviously needed to clarify these relationships , but a

simplistic model of the data is offered in Figure 4.8 . This figure shows that K + and NGF

may converge at the level of Src activation and the phosphorylation of Cbl , possibly via

an increase in intracellular calcium - levels . Phosphorylation of Cbl may then lead to the

formation of a complex that contains Src , Cbl , and CHC . This complex may then be

recruited to the plasma membrane , permitting CHC to interact with Trka and increase

endocytosis of the receptor . Downstream from this event , Cbl may be trafficked to

specific endocytic fractions . The model suggests that Cbl and Src are key mediators of a

depolarization - induced increase in TrkA endocytosis , and that such endocytosis may

allow TrkA to signal more efficiently for the induction of neurite outgrowth .

In support of this model , I found that overexpression of Cbl primed PC12 cells for neurite

outgrowth in response to low levels of NGF ( Figure 4.7 ) . Importantly , PC12 cells

overexpressing Cbl exhibited small neuritic projections even in the absence of NGF , a

finding that is reminiscent of the effect of TrkA overexpression . Remarkably , cells

overexpressing Cbl elaborated very robust and highly branched neurites in response to

NGF treatment for 2 days . These neurites were qualitatively similar to the neurites

elicited in normal PC12 cells only after 1 week of NGF ( data not shown ) . Hence ,

overexpression of Col recapitulates the effects of Trka overexpression discussed in the
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introduction . Moreover , previous studies have shown that overexpression of Src led to

increased neurite outgrowth in response to NGF , while inhibition of Src blocked neurite

outgrowth or caused neurite retraction in cells that already had neurites ( D'Arcangelo and

Halegoua 1993 ; Rusanescu and others 1995 ; Thomas and others 1991 ) . These findings

support the model presented above , and suggest that Src and Cul are critically involved in

neuritogenic signaling . It is tempting to draw a parallel between the effects of Src and Cbl

on osteoclast bone resorption and the effects presented herein for Trka endocytosis and

neuritogenic signaling. Much of the data I have shown suggests that this parallel is valid ,

but further work is necessary to characterize the role of Cbl and Src in endocytosis and

differentiation . In particular, the internalization of NGF in cells overexpressing Cbl and

in cells expressing mutants of Cbl needs to be addressed , as does the correlation between

Trka endocytosis and Cbl : CHC complex formation .

Perhaps the strongest piece of data presented in this chapter is the formation of a complex

that contains Cbl and CHC in response to both NGF and depolarization ( Figure 4.6 ) . The

formation of such a complex suggests the exciting possibility that Cbl is a novel clathrin

adaptor protein that serves the same function for RTKs that ß - arrestin serves for G

protein coupled receptors (Kirchhausen 2000 ) ( also see chapter 1 ) . ß - arrestin participates

in the clathrin -mediated downregulation of G - protein coupled receptors that is part of

desensitization , and does so by adapting both CHC and AP2 to the receptor . Several lines
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of evidence suggest that Cbl may also bind CHC and AP2 . First, as indicated in Figure

4.6 , CHC and AP2 are both found in Cbl immunoprecipitates. Second , a tertiary

structure -based search of the Brookhaven protein data bank suggested that Cbl shares

structural homology with several CHC binding proteins, including AP2 and the novel

clathrin adaptor protein Nef ( VAST Search ; data not shown ) . Third , primary sequence

analysis of Col indicates that it has a number a potential clathrin and AP2 binding sites ,

including 4 dileucine motifs and several potential Yxx motifs ( for example , YMAF ,

starting at tyrosine 268 in human Cbl ) . Interestingly , the Cbl loss - of -function mutation

G306E disrupts a glycine that is adjacent to tyrosine 307. Such a glycine - tyrosine

dipeptide motif has been implicated in the trafficking of several different proteins,

including Igp and lamp glycoproteins , the HIV - 1 envelope glycoprotein , and the B

amyloid precursor protein ( Boge and others 1998 ; Harter and Mellman 1989 ; Kornfeld

and Mellman 1989 ; Lai and others 1995 ) . This suggests that the G306E loss - of - function

phenotype may involve a defect in Cbl - CHC interaction . Finally , as shown in Figures 4.9

and 4.10 , Cbl contains a potential “ clathrin box ” ( Kirchhausen 2000 ). This motif , which

is LIELD in B - arrestin and LLNLD in AP2 , is found in a number of clathrin interacting

proteins . In Cbl , the sequence LRPLD ( residues 708 to 712 in human Cbl ) fits the mold

of an LxxLD clathrin box consensus sequence , suggesting that this region within Cbl may

mediate direct binding to CHC . Further work is necessary to determine whether Cbl is , in
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fact , a novel clathrin adaptor protein , but the evidence presented herein makes a strong

case for such a role .

Conclusions .

The role of neurotrophin signaling in the genesis , maintenance , and plasticity of neuronal

connectivity has been recognized in recent years as a critical element of learning and

memory . However , while Hebb's concept of “ cells that fire together wire together ” has

helped shape our understanding of the role neuronal activity plays in learning and

memory ( Hebb 1949 ), no coherent guiding principle has been offered concerning the role

of neurotrophin signaling in these events . Much of the work in the field is still stuck in

the “ pharmacological ” phase , in which neurotrophins are given or taken away , and

changes in plasticity are cataloged . While such a Linnaean undertaking is certainly

useful, it does not address the root mechanistic question : how does neurotrophin

signaling control , shape , and modify activity -dependent plasticity within the central

nervous system ? If neurotrophins are to play more than just a cameo role in plasticity – if

they are to be instructive and determinantal – then a new paradigm is needed . Such a

paradigm will require at least two critical elements : 1 ) that neurotrophin availability

reflect synaptic activity , most likely through a mechanism of activity - dependent release

from the postsynaptic cell ; and 2 ) that neurotrophin responsiveness in the presynaptic

terminal be activity - dependent and synapse - specific . These criteria will intimately link
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neurotrophin signaling to the “ fire together , wire together ” conceptual framework . The

work described in this chapter is an attempt to address the second element of the new

neurotrophin paradigm – that neurotrophin responsiveness occur in an activity -dependent

manner . I have shown that depolarization controls NGF signaling , at least in part by

enhancing Trka trafficking. Moreover , I have shown that Cbl may serve as a key

integration point for signaling that occurs downstream of both depolarization and TrkA

activation , and that it may tune neurotrophin responsiveness to the level of activity by

controlling neurotrophin receptor trafficking . These studies are still in their infancy , but

they point to a new , more mechanistic model to explain the role of neurotrophins in

neuronal plasticity .

Methods

Antibodies

X22 , a mouse monoclonal against CHC , was from Affinity Bioreagents (Golden , CO ) .

100/2 , a mouse monoclonal against the A - subunit of AP2 , was from Sigma ( St. Louis ,

MO ) . 06574 , a rabbit polyclonal against TrkA , and 4G10 , a mouse monoclonal antibody

against phospho - tyrosine , were from Upstate Biotechnology ( Lake Placid , NY ) . The anti

Cbl rabbit polyclonal antibody SC170 and HRP - conjugated secondary antibodies were

from Santa Cruz Biotechnology ( Santa Cruz , CA ) . 327 , an anti - Src monoclonal antibody ,

was from Calbiochem ( La Jolla , CA ) .
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Chemicals and Other Reagents

Mouse NGF was prepared by ion - exchange chromatography as previously described

( Mobley and others 1976 ) . Ultralink immobilized protein A / G plus , BCA reagents , ECL

reagents , and lodogen precoated iodination tubes were from Pierce ( Rockford , IL ).

Protran nitrocellulose transfer membrane was from Schleicher and Schuell ( Keene , NH ) .

X - OMAT x - ray film was from Eastman Kodak Company (Rochester , NY ) . 125Iodine

( IMS - 30 ) , PD - 10 Sephadex G - 25M columns , and ECL - sensitive film were from

Amersham Pharmacia Biotech ( Piscataway , NJ ) . Dulbecco's modified Eagle's medium

(DMEM ), fetal bovine serum ( FBS ), penicillin - streptomycin , PBS , and calcium

magnesium - free PBS ( CMF - PBS ) were from Mediatech ( Herndon , VA ) . Horse serum

was from Tissue Culture Biologicals ( Tulare , CA ) . Geneticin was from GIBCO BRL

(Gaithersburg , MD ). Nonidet P40 (NP40 ) was from Fluka ( Switzerland ). PP1 was from

Calbiochem ( La Jolla , CA ) . All other chemical reagents were from Sigma ( St. Louis ,

MO ) .

Media and Buffers

Lysis buffer was composed of 20 mM Tris , 137 mM NaCl , 1 % NP40 , 0.5 % deoxycholic

acid ( DOC ), 10 % glycerol , 1 mM PMSF , 10 ug /mL aprotinin , 1 ug /mL leupeptin , 500

uM sodium orthovanadate , pH 8.0 . Sample buffer was 7 M urea , 125 mM Tris , 100 mm

EDTA , 0.1 % bromophenol blue , 2 % SDS , PH 6.95 . Blocking solution for western blots
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for all antibodies except 100/2 was 5 % BSA in TBS - T ( 20 mM Tris , 137 mM NaCl ,

0.2 % Tween 20 ). For 100/2 incubations , blots were blocked in 5 % milk in TBS - T . All

antibodies except 100/2 were diluted in TBS ( 20 mM Tris , 137 mM NaCl ) . 100/2 was

prepared in TBS plus 5 % milk . Tris iodination buffer was 25 mM Tris , 400 mM NaCI ,

pH 8.0 . Tris / BSA iodination buffer was 25 mM Tris , 400 mM NaCl , 0.25 % BSA , 5 mM

EDTA , 0.05 % sodium azide . The tyrosine scavenging buffer for iodinations was 10

mg /mL tyrosine in PBS , pH 7.4 . The acid strip for internalization experiments was 0.2 M

acetic acid and 0.5 M NaCl . CCV isolation buffer was 100 mM 2- [ N

morpholinoJethanesulfonic acid (MES ), 1 mM EGTA , 2 mM MgCl2 , 0.02 % sodium

azide , 1 mM beta - mercaptoethanol , 1 mM sodium orthovanadate , 1 mM PMSF , 10

ug / mL aprotinin , 1 ug /mL leupeptin , pH 6.5 . CCV isolation D20 sucrose pad was 100

mM MES , 8 % ultrapure sucrose , 1 mM EGTA , 2 mM MgCl2 , 1 mM sodium azide ,

prepared in D2O ( Sigma - Aldrich # 15188-2 , 99.9 % D ) . The MES - based buffer for

membrane fractionation experiments was 25 mM MES , 150 mM NaCl , 10 mM EDTA , 1

mM sodium orthovanadate , 1 mM PMSF , 10 ug /mL aprotinin , 1 ug /mL leupeptin , pH

6.5 . All cell treatments not involving depolarization were performed in PGBH , composed

of 1 mg /mL glucose , 1 mg /mL BSA , 10 mM HEPES , in PBS , PH 7.4 . Depolarization

buffer was 200 mg / L CaCl2 , 97.7 mg / L MgSO4 , 3.7 g / L NaHCO3, 4.5 g / L glucose , 584

mg / L L - glutamine , 400 mg / L KCI ( 5.4 mM ), 3.477 g / L NaCl ( 59.5 mM ; normal saline is

109.5 mM ), pH 7.6 . For depolarization experiments , non -depolarized samples ( that is 5
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MM K * ) were brought up to 109.5 mM NaCl by the addition of a concentrated NaCl

solution . For depolarized samples , an additional 45 umol of KCl was added to 1 mL of

depolarization buffer , bringing the final concentration of the solution to 50 mM K + , 59.5

mM Nat .

Cell Culture and Cell Treatments

KB PC12 cells ( gift of R. Kelly ) and srcDN2 PC12 cells ( gift of S. Halegoua ) were

maintained at 37 ° C and 5 % CO2 in DMEM supplemented with 10 % horse serum , 5 %

FBS , 100 U penicillin , and 100 ug /mL streptomycin . 6.24 PC12 cells , Ml -nnr5 , 22.7

nnr5 , P8 - nnr5 , and 490 /785 -nnr5 PC12 cells ( gift of D. Kaplan ) were maintained under

identical conditions , with the addition of 200 ug /mL geneticin . All cells were grown on

plastic . In preparation for all experiments , cell growth media was changed to DMEM

supplemented with 1 % horse serum 16-20 hours prior to experimentation . Immediately

prior to every experiment cells were removed from their plates with 37 ° C CMF - PBS ,

resuspended in 37 ° C PGBH , distributed into 1 mL aliquots , and rotated for 15 min to

equilibrate the cells prior to experimentation . All treatments were performed in

suspension , on equivalent numbers of cells , and incubated in a 37 ° C water bath , with

periodic gentle inversion of the tubes to keep the cells suspended . For all experiments not

involving depolarization ( 3-5 x 10 ' cells per condition ), 50 ng of NGF in 50 L PGBH

was added to each tube at 37 ° C for the appropriate time . For depolarization experiments ,
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cells ( 3-5 x 10 ' cells per condition ) were resuspended in depolarization buffer ,

equilibrated , and then the appropriate volume of a balanced K * /Nat solution was addded

to bring the buffer to the final K * concentration while maintaining osmolarity , essentially

as previously described ( Koike 1987a ; Koike 1987b ) . For experiments involving

pharmacological inhibitors , the appropriate concentration of the drug was added in a

small volume following the equilibration step , and the cell suspensions were then rotated

for an additional 15 min at 37 ° C . For all whole cell internalization experiments ( 1 x 107

cells per condition ), cells on collagen - coated plates were treated with 125I -NGF ( 2 nM ) at

37 ° C for the appropriate time . Following this incubation , cells were rapidly chilled by

floating the plates on a -5 ° C salt - ice water bath , then stripped in acid - stripping buffer and

lysed .

NGF Iodination

For iodinations , 5 ug of NGF in 100 uL tris iodination buffer was added to 1.0 mCi

12 % Iodine that had been activated for 9 min at RT in 100 uL of tris iodination buffer in a

Pierce lodo - Gen tube . This mixture was reacted for 9 minutes at RT , then quenched for 5

min at RT by the addition of 50 uL of tyrosine quench solution . The volume of this

mixture was then brought to 1 mL with tris /BSA iodination buffer . After removing 2 uL

for quantification of total reaction cpm , the remaining 998 uL were loaded onto a PD - 10

desalting column that had been pre - equilibrated with 20 mL of tris /BSA buffer . The
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column was then washed with tris /BSA solution , and five 1 mL fractions were collected ,

beginning with the first “ hot ” drop . The 2 uL removed from the reaction mixture , and 2

UL from each of the first 2 fractions , was diluted into 198 uL tris /BSA buffer , then 5 uL

of each of these dilutions was further diluted into 445 uL of ddH2O , while 5 uL of each of

fraction 3-5 was diluted straight into 445 uL ddH2O . To these final water dilutions was

added 50 uL of TCA ( prepared as 100 % TCA with 1 mg /mL DOC ) , and this precipitation

mixture was incubated on ice for 1 hr . These solutions were then centrifuged at 16000g

for 10 min at 4 ° C , the supernatants were separated from the pellets , and the cpm for each

was determined . After normalizing for the activity of the 125Iodine and for the dilution

factors , the specific activity of the radiolabeled NGF was determined . Typical iodinations

produced NGF with a specific activity of 150-200 cpm /pg .

Cell Fractionation

Membrane preparation one : total membranes .

Following treatment as described above , PC12 cells resuspended in 1 mL of 4 ° C MES

buffer were permeabilized in a Balch homogenizer , essentially as described in our

previous work ( Grimes and others 1997 ; Grimes and others 1996 ) . The suspension of

permeabilized cells ( cell ghosts ) , cellular contents , and unpermeabilized cells was

centrifuged at 100000g for 1 hr at 4 ° C to separate all membranes from cytosol .
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Membrane preparation two : 8000g isolation ( P2 ) .

PC12 cells were permeabilized as described above . The permeabilized suspension was

centrifuged at 1000g for 10 min to remove the cell ghosts and unpermeabilized cells , and

the supernatant was recentrifuged at 8000g for 35 min at 4 ° C , generating a pellet

equivalent to fractions P1 plus P2 from our earlier work ( Grimes and others 1997 ; Grimes

and others 1996 ) . This pellet, enriched in the heaviest cellular membranes and organelles ,

was washed once with fresh MES buffer , recentrifuged at 8000g for 35 min , and then

lysed and immunoprecipitated .

Membrane preparation three : 100000g isolation ( P3 ).

PC12 cells were permeabilized as described above . The permeabilized suspension was

centrifuged at 1000g for 10 min to remove the cell ghosts and unpermeabilized cells

( fraction P1 from our previous work ) ( Grimes and others 1997 ; Grimes and others 1996 )

from the released organelles and cytoplasm . The supernatant was then centrifuged at

8000g for 35 min to remove the P2 fraction . The resulting supernatant was diluted to 6

mL in MES buffer , then centrifuged at 100000g for 1 hr at 4 ° C , generating a pellet

equivalent to fraction P3 from our previous work ( Grimes and others 1997 ; Grimes and

others 1996 ) . This pellet , highly enriched in released vesicular structures ranging in

average size from 63 nm to 180 nm ( Grimes and others 1997 ; Grimes and others 1996 ) ,

was lysed , immunoprecipitated , and subjected to SDS - PAGE .

362



Clathrin coated vesicle isolation .

The isolation scheme used to purify clathrin coated vesicles is diagrammed in Figure 4A ,

and is a modification of an established protocol ( Maycox and others 1992 ) . Following

treatment as described above , cells were resuspended in 1 mL of CCV isolation buffer ,

triturated 2x with a 22 - gauge needle to get a single cell suspension , then permeabilized

by 5 complete passes through a Balch homogenizer . The resulting permeabilized cell

suspension was then centrifuged at 1000g for 10 min at 4 ° C in a microfuge . The

supernatant from this centrifugation , S1 , was diluted to 2 mL with fresh CCV buffer ,

layered onto a 500 UL 5 % glycerol pad made in CCV buffer , and centrifuged at 100000g

for 1 hr at 4 ° C in a Sorvall AH -650 rotor and a Beckman XL - 80 ultracentrifuge . The

pellet , P2 + P3 ( equivalent to P2 ' from (Grimes and others 1997 ) , was resuspended by

gentle trituration into 250 uL of CCV buffer . This suspension was mixed with 250 uL of

CCV buffer containing 12.5 % ( wt /vol ) ficoll and 12.5 % ( wt / vol ) sucrose , then

centrifuged at 40000g for 40 min at 4 ° C in an ultracentrifuge . S4 , the supernatant from

this centrifugation , was diluted 1 : 5 in fresh CCV buffer , and then centrifuged at 100000g

for 1 hr at 4 ° C in an ultracentrifuge . P5 , the pellet from this round of centrifugation , was

gently resuspended in 1 mL CCV buffer and centrifuged at 16000g for 20 min at 4 ° C in a

microfuge . The supernatant from this spin , S6 , was diluted to 2 mL with CCV buffer ,

layered onto a 500 ML 8 % ( wt /vol ) sucrose pad prepared in CCV buffer that had been
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made using D2O , and centrifuged at 112700g for 2 hr at 4 ° C in a Sorvall AH - 650 rotor

and a Beckman XL - 80 ultracentrifuge . The pellet resulting from this centrifugation , P7 ,

was highly enriched in markers of CCVs .

Immunoprecipitation and Western Blotting

All samples were immunoprecipitated in 1 mL lysis buffer plus 100 uL of a 50 % slurry of

protein A /G - sepharose in lysis buffer , and the following amounts of antibody : 15 ug /mL

06574 , 2 ug /mL SC170 , or 1 ug /mL 327. Immunoprecipitations were performed

overnight rotating at 4 ° C . The sepharose beads were then washed twice with lysis buffer ,

once with water , and then resuspended in 65 uL of sample buffer . Prior to loading 60 ML

on 7.5 % SDS polyacrylamide gels , samples were boiled for 5 min and then centrifuged

for 1 min at 16000g . After transfer to nitrocellulose in a tris - glycine based transfer buffer

with 20 % methanol , blots were blocked for 1 hr at RT as described above . Blots were

probed with the following antibody concentrations : 2.5 ug /mL TD.1 , 0.25 ug /mL 4610 ,

0.06 ug /mL 100/2 , or 0.2 ug /mL SC170 . HRP - conjugated secondaries were used for all

blots at 1 : 20000 dilution . For sequentially probing blots , the membranes were either

stripped by incubating for 15 min at RT in 0.2 N NaOH , or by incubating for 30 min at

RT in TBS pH 2.0 , followed by extensive washing in water and blocking for 1 hr at RT .
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Transfection

The Cbl - PGEM4Z construct was kindly provided by Wallace Langdon (Nedlands ,

Western Australia ). The Cbl insert was removed from the PGEM4Z backbone by Xbal

and Sall restriction cuts , and then inserted into the PALTER -MAX expression vector

( Promega , Madison , WI ) . For transfections, 15 ug of Cbl - paLT plasmid were incubated

at RT for 30 min with 75 uL of Lipo Fectamine ( Gibco BRL ) in 1.6 mL OptiMem media

( Gibco BRL ). Then 1x10'PC12 cells on collagen - coated 10 cm plates were washed 2x

with serum - free DMEM at 37 ° C , and the Lipo Fectamine /DNA complex in 6.4 mL

OptiPrep was added to the cells . These cells were incubated for 3 hr at 37 ° C , and then 50

mL of DMEM plus serum were added . After 2 d transfectants were selected with 400

ug /mL geneticin .
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Figure 4.1 Depolarization Enhances NGF Internalization and Trka Activation .

A ) PC12 cells were incubated with 1251 - NGF for 1 hr at 37 ° C under depolarizing ( 50 mM

Kt ) or non - depolarizing conditions ( 5 mM K + ) . Depolarization increased the amount of

internalized radiolableled NGF by nearly 2 - fold ( 192 % 10 % ; n = 3 ; * = statistically

significant , p < 0.005 ). The effect was dependent upon extracellular calcium , as

depolarization in the absence of calcium and magnesium did not elicit an increase in NGF
1

internalization .

B ) Depolarization enhances TrkA phosphorylation in response to NGF . Cells were

treated for 2 min with NGF ( 2 nM ) in the presence of various concentrations of K * . 50

mM K + elicited the maximal increase in TrkA phosphorylation .

1C ) Depolarization enhances Trka phosphorylation at early times , but has no effect at
1

later timepoints . 50 mM K * increased Trka phosphorylation in response to NGF ( 2 nM )

at 1 and 2 minutes , but did not alter the response to 5 min of NGF .

D ) The effect of depolarization on TrkA phosphorylation in response to NGF was

dependent upon extracellular calcium . 50 mM K * increased Trka phosphorylation in

response to 2 min of NGF ( 2 nM ) . The effect was abrogated when cells were treated in

the absence of calcium and magnesium .
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Figure 4.2 Cbl is Phosphorylated in Response to NGF Treatment .

A ) PC12 cells were treated with 5 or 50 mM K * for 5 min , or were treated with NGF ( 2

NM ) in the presence of 5 or 50 mM K * for 5 min . Total cellular lysates were resolved by

SDS - PAGE , and the resulting blot was probed for the presence of tyrosine

phosphorylated species . A 120 kDa band was phosphorylated in response to

depolarization and in response to NGF , but was less phosphorylated when NGF was

applied together with 50 mM K + .

B and C ) This protein was identified as Cbl . NGF ( 2 nM ) elicited tyrosine

phosphorylation of Cbl that peaked at 5 min .

D ) NGF - induced phosphorylation of Cbl was dependent upon TrkA kinase activity . Cells

were treated for 5 min with NGF ( 2 nM ) . KB PC12 cells show an increase in Cbl

phosphorylation in response to NGF , as indicated above . 6.24 and P8 -nnr5 cells

overexpressing TrkA exhibit increased phosphorylation of Col in response to NGF . MI

nnr5 and 22.7 - nnr5 cells expressing kinase - defective Trka do not show an increase in

Cbl phosphorylation in response to NGF . Likewise , 490 / 785 - nnr5 cells , which express

TrkA lacking 2 critical non -kinase domain tyrosines , also do not show an increase in Cbl

phosphorylation in response to NGF .
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Figure 4.3
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Figure 4.3 Cbl is Phosphorylated in Response to Depolarization .

A ) PC12 cells were treated for various times with 50 mM K +. Depolarization elicited

maximal tyrosine phosphorylation of Cbl at 1 min .

B ) The effect of depolarization on Cbl phosphorylation was dependent upon the presence

of extracellular calcium .

C ) Depolarization ( 50 mM K + ) elicited phosphorylation of Cbl that was several - fold

greater than that elicited by NGF ( 2 nM ) and occurred over an accelerated timecourse .

D ) NGF ( 2 nM ) plus depolarization led to Cbl phosphorylation that peaked by 1 min ,

recapitulating the timecourse that is elicited in response to K * only .

E ) NGF ( 2 nM ) plus depolarization led to maximal Cbl phosphorylation that was much

less intense than that elicited by either NGF or depolarization only .
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Figure 4.4
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Figure 4.4 Src Mediates Cbl Phosphorylation in Response to NGF and

Depolarization and is Involved in NGF Internalization .

A ) PC12 cells were treated for various times with NGF ( 2 nM ) . Src tyrosine

phosphorylation , a marker of Src activation , was maximal between 2 and 5 min of NGF

treatment .

B ) Inhibition of Src activity with 100 nM PP1 blocked Cbl phosphorylation in response

to NGF ( 2 nM ) and depolarization ( 50 mM K * ) , and also blocked all background Chl

phosphorylation .

C ) Internalization of 125I - NGF was reduced in srcDN2 - PC12 cells expressing a dominant

negative form of Src . NGF internalization was reduced at all timepoints considered . By

60 min , the amount of NGF internalized by srcDN2 - PC12 cells was half that internalized

by normal KB PC12 cells .
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Figure 4.5 Cbl is Trafficked to Specific Subcellular Membrane Fractions in

Response to NGF Treatment .

A ) NGF ( 2 nM ) induces the association of Cbl with a total cellular membrane fraction

that includes plasma membrane and most intracellular membranes .

B ) Col is rapidly and maximally phosphorylated in the cytosol , and is dephosphorylated

as it associates with total cellular membranes .

C ) Phosphorylated Cbl is recruited to the P2 and P3 fractions in response to 2 min of

NGF ( 2 nM ) . Such recruitment to P3 is blocked by inhibition of Src activity with 100 nM

PP1 , but is unaffected in the P2 fraction .

D ) Cbl is induced to leave a highly enriched clathrin coated vesicle fraction following

NGF treatment . Given that the absolute amount of clathrin coated vesicles isolated

following 2 and 5 min of NGF is 2 - fold greater than that isolated from untreated cells , the

amount of Cbl within this fraction following NGF treatment is actually even less in terms

of specific activity .
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Figure 4.6 Clathrin Heavy Chain is Found in Complex with Cbl Following NGF

Treatment and Depolarization .

A ) NGF ( 2 nM ) induces the association of CHC with Cbl . The association is maximal at

5 min , the same time that Cbl phosphorylation is maximal in response to NGF treatment.

B ) Depolarization also leads to the formation of a Cbl : CHC complex , and the peak in

association matches the peak of Cbl phosphorylation induced by 50 mM K * .

C ) CHC is associated with Cbl within a total membrane fraction in untreated cells .

However , following NGF ( 2 nM ) treatment , as Cbl is becoming more associated with

membranes and is becoming less phosphorylated , the Cbl : CHC complex is broken .

D ) As with total cellular membranes , Cbl within the P2 fraction is preassociated with

CHC . This association is broken by treatment with NGF ( 2 nM ) . This effect is blocked by

Src inhibition with PP1 . In contrast , a Cbl : CHC complex increases in the P3 fraction

following NGF treatment for 2 min . This increase is not blocked by inhibition of Src by

PP1 , even though Cbl phosphorylation is blocked .

E ) AP2 associates with Col in response to NGF treatment along a timecourse that

matches the increase in CHC found in Cbl immunoprecipitates .
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Figure 4.7
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Figure 4.7 Overexpression of Cbl Enhances Neurite Outgrowth in Response to NGF

Treatment .

A ) PC12 cells were transfected with a full - length Cbl expression vector .

B ) This Cbl is phosphorylated in response to NGF . Hence , transfectants respond to NGF

with dramatically enhanced Cbl phosphorylation .

C - J ) PC12 cells or cells overexpressing Cbl ( Cbl - OX ) were treated with NGF for 1 or 2

days . C ) Untreated PC12 cells . D ) PC12 cells treated with 0.1 nM NGF for 1 d do not

show neurite outgrowth . E ) PC12 cells treated with 1.0 nM NGF for 1 d also do not

exhibit neurites . F ) Untreated Cbl - OX cells show small neuritic processes . G ) In response

to 0.1 nM NGF for 1 d Cbl - OX cells exhibited increased neurite outgrowth . H ) 1.0 nM

NGF for 1 d elicits even greater neurite outgrowth in Cbl - OX cells . I ) PC12 cells treated

with 1.0 nM NGF for 2 d show a mixture of cells that exhibit neurites and cells that do

not . J ) In contrast , 2 d of 1.0 nM NGF causes all Chl - OX cells to exhibit robust and

highly branched neurites .
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Figure 4.8 Model of the Role Cbl and Src Play in Trka Internalization .

Both depolarization and NGF may lead to increases in intracellular calcium levels . Such

increases may result in activation of Src . Alternatively , depolarization and TrkA

activation may lead to Src activation via separate mechanisms. Once activated , Src

phosphorylates Cbl within the cytosol , inducing the formation of a complex that contains

Cbl and CHC , and may contain Src . This complex is recruited to the plasma membrane ,

bringing CHC into proximity of TrkA . Cbl may be dephosphorylated following

association with TrkA or the plasma membrane . Increased association of CHC with TrkA

may lead to internalization of the receptor into a variety of intracellular vesicles ,

including clathrin - coated vesicles and larger endosomal organelles . The trafficking of Cbl

and the Cbl : CHC complex to these membranes is not yet resolved .
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Figure 4.9 Sequence Alignment of the Clathrin Binding Domain of B - Arrestin and a

Small Fragment of Cbl .

The region of B - arrestin that mediates binding to clathrin contains an LIELD motif that is

critical to the binding interaction . This region aligns with an LRPLD sequence within

Cbl , suggesting that this region may share functional homology .
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Clathrin - Box Homology

* **

amphiphysini LLDLD
amphiphysin2 LLDLD

AP3LLDLD
epsinLVDLD

AP1 LLNLD
AP2 LLNLD
cbl LRPLD

beta - arrestin1 LIELD

consensus Lxx

407



Figure 4.10 Clathrin - Box Homology .

A number of proteins that bind clathrin contain a consensus sequence that mediates this

binding . Cbl contains an LRPLD sequence that may conform to an LxxLD clathrin -box

consensus motif .
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1. Introduction

The idea that diffusible trophic factors are important for the development of the

nervous system was first postulated around the turn of the century by such authors as

Shorey ( 292 , 293 ) and Ramon y Cajal ( 262 , 263 , 264 ). It was later extended by Levi

Montalcini and Hamburger , who showed that diffusible neurotrophic factors released by

targets of innervation act to enhance the survival and differentiation of developing

neurons ( 130 , 190 , 192 ) . In the years since , a role for neurotrophic factors in cell death ,

cell proliferation , cell maturation , cell differentiation , and synapse elimination has been

detailed and described by a host of authors ( 187 , 188 , 232 , 233 , 234 , 259 , 260 , 261 , 315 ) ,

and can be distilled into three basic principles described by the “ Neurotrophic Factor

Hypothesis ” ( 259 ) . These three principles are : 1 ) during development an excess of

connections are initially formed between neuronal populations and their target tissue ; 2 )

these projection neurons depend upon and compete with their neighbors for limiting

amounts of a neurotrophic factor (NTF ) produced by the cells of the target tissue ; 3 )

those neurons which most successfully compete for the NTF survive and thrive , while

those that are unsuccessful are eliminated ( Figure 5.1 ) . The Neurotrophic Factor

Hypothesis was initially developed in the context of the peripheral nervous system

( PNS ) , and especially with regard to the pre -eminent growth factor - nerve growth factor

( NGF ) .
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More Recently , the Neurotrophic Factor Hypothesis has been expanded to include

a role for growth factors in other aspects of nervous system development and

maintenance , including synaptic plasticity – the dynamic functional and morphological

modification of synaptic connections within the developing and mature central and

peripheral nervous systems . Neurotrophins have been shown to play key roles in the

generation and maintenance of synaptic events that are crucial to learning and memory .

Largely due to the use of only a few experimental paradigms and to a concentration on

the function of glutamatergic synapses , most research on the role of NTFs in synaptic

plasticity has focused on members of the neurotrophin family other than NGF .

Furthermore , NGF has proven relatively ineffective in current paradigms of learning and

memory plasticity ( e.g. long - term potentiation in hippocampal slice preparations ). We

think that this is the result of failing to effectively test the relationship between NGF and

primary synapses within the hippocampus and cortex . Trka , the receptor tyrosine kinase

for NGF , is not present on primary synaptic elements ( e.g. Schaffer collaterals and

dendrites of CA1 hippocampal pyramidal neurons ; thalamocortical afferent terminals and

cortical postsynaptic neurons ) . Rather , it is present on a highly specific population of

cholinergic afferents which play a critical role in modulating activity at primary

hippocampal and cortical synapses . It is interesting to speculate as to how NGF may

influence the biology of these synapses through its actions on cholinergic afferents . We

will offer a model in which NGF serves as a metamodulator of synaptic plasticity . In
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other words , while NGF does not directly modulate synaptic activity at primary

hippocampal and cortical synapses , it does powerfully and dynamically modulate the

efficacy of cholinergic innervation of these primary synapses , thereby controlling the

degree and nature of their synaptic plasticity ( Figure 5.2 ) . In fact , we propose that NGF

signaling through the TrkA receptor within the hippocampus and cortex serves to create a

plasticity space – a structural and functional domain in which the number or efficacy of

synapses can be changed ( Figure 5.3 ) . The size of this space , dynamically regulated by

NGF and NGF signaling , is envisioned as determining the extent to which learning and

memory can occur , and controlling the efficacy of experience -dependent plasticity . In

what follows, we will describe the history of NGF and the NTF family , the dynamic

relationship between NGF actions and the basal forebrain cholinergic system , the role of

this cholinergic system in learning , memory , and experience -dependent plasticity , and

finally , the role NGF plays in these same events . We will make the case that NGF plays

a central , critical role in the plasticity of cortical and hippocampal synapses .

II . The History of NGF and the Neurotrophin Family

NGF was first identified in landmark experiments performed by Rita Levi

Montalcini and Victor Hamburger in the late 1940's and early 1950's . In concert with

earlier observations , they identified the target of projection neurons as key to the
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development of those same neurons , and suggested that the target determined the size of

its neural ganglia , perhaps via “ metabolic exchange between the neurite and the substrate

in which it grows ” ( 130 ) . This idea of “ metabolic exchange ” was first proposed by

Marian Shorey in her work on motor neuron differentiation and survival ( 292 , 293 ) , and

by Santiago Ramón y Cajal in his work on neuroblast differentiation ( 262 ) , but wasn't

applied to a system which would permit identification of a specific factor ( s ) responsible

for the exchange until Bueker implanted a fragment of a mouse sarcoma into the body

wall of a 3 - day old chick embryo ( 35 ) . He discovered that the sarcoma induced a 20

40 % enlargement of the dorsal root ganglia ( DRG ) which innervated the graft , with no

apparent effect on motor neuron growth . Levi -Montalcini and Hamburger repeated these

experiments and discovered that , in addition to DRG enlargement, the sarcoma induced

extensive innervation of the graft by sympathetic neurons , and that these sympathetic

ganglia were also enlarged ( 190 ) . They hypothesized that the sarcoma released a soluble ,

diffusible factor which promoted the growth and differentiation of sensory and

sympathetic neurons , and called the agent the nerve growth factor ( NGF ) . With the

finding in 1954 that the mouse sarcoma could induce a growing halo of neurites from an

explanted sympathetic ganglion ( 192 ) , an in vitro bioassay was developed that made it

possible to purify and characterize NGF from snake venom ( 52 ) and from mouse

submandibular gland ( 51 ) .
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Due largely to the availability of significant amounts of purified NGF and of NGF

antibodies , the role of NGF in the development of sympathetic neurons and neural crest

derived sensory neurons was studied extensively . Indeed , for many years NGF was the

only well - defined NTF . Receptors for NGF are present on sensory and sympathetic axon

terminals at the time of their innervation of target tissues ( 61 , 340 ), and there is a strong

correlation between NGF levels in the target and the extent of innervation ( 178 , 291 ) .

Furthermore , delivery of anti - NGF serum during development leads to the death of

sympathetic neurons and elimination of sympathetic ganglia ( 51 ) . Thus , for sympathetic

and sensory neurons in the PNS , NGF appears to satisfy the requirements for a target

derived neurotrophic factor as predicted by the neurotrophic factor hypothesis .

Since the initial discovery of NGF , many other NTFs have been identified and

isolated ( Table 1 ) . NGF is now considered to be the first identified member of the

neurotrophin (NT ) gene family . This family also includes brain - derived neurotrophic

factor ( BDNF ) , neurotrophin - 3 ( NT - 3 ) , and neurotrophin - 4 / 5 ( NT - 4 / 5 ) . BDNF was

discovered as the result of experiments which showed that NGF supports only a subset of

neural crest - derived sensory neurons and does not support cranial ganglia - derived

sensory neurons , even though these neurons are completely dependent upon target

derived factors for survival . BDNF was originally isolated as a neurotrophic factor for

nodose ganglion neurons ( 13 , 89 , 184 ) , and its function was later extended to the central

nervous system ( 205 , 250 , 251 , 284 , 315 , 344 ). The discovery of BDNF catalyzed the
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cloning efforts that eventually identified NT - 3 and NT - 4 / 5 . NT - 3 was identified as a

specific factor required for survival of the large dorsal root ganglia sensory neurons that

innervate muscle and skin ( 91 , 146 , 208 ) , while NT - 4 / 5 was found to play a role in the

same systems as BDNF ( 151 , 204 ). Gene disruption studies have shown that each of the

neurotrophins , as well as other neurotrophic factors such as ciliary neurotrophic factor

( CNTF ) and glial - cell line - derived neurotrophic factor (GDNF ), do fulfill the role defined

by the original formulation of the neurotrophic factor hypothesis for specific neuronal

populations ( 193 ) ( Table 1 ) . Interestingly , however , their original role as survival

mediating target -derived factors has been extended to include a role in the functional

modification of synaptic connections within the central and peripheral nervous systems

( 23 , 28 , 205 , 307 ) . This is particularly well documented for BDNF , NT - 3 , NT - 4 / 5 , and

CNTF .

BDNF , NT - 3 , and CNTF have been shown to exert a potentiating effect on the

frequency of spontaneous synaptic currents when applied to developing Xenopus

neuromuscular junctions ( 206 , 306 ) . This effect was caused by enhancement of

neurotransmitter release , either by increasing the number of available synaptic vesicles ,

or by potentiating the probability of vesicular fusion and consequent transmitter release .

Furthermore , BDNF and CNTF were able to synergistically potentiate transmitter release

( 307 ), suggesting that coincident availability of multiple neurotrophic factors at

presynaptic terminals may generate complex effects on synaptic potentiation .
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A number of recent studies link the actions of NTFs to synaptic plasticity . NTF

secretion is increased by depolarization or synaptic activation ( 27 , 126 , 322 ) , and

neurotrophic factor expression within the central nervous system is regulated by electrical

activity ( 10 , 109 , 128 , 153 , 165 , 172 , 251 , 316 , 325 , 343 , 344 ). Moreover , there is

widespread cortical and hippocampal expression of neurotrophins and their cognate

receptors ( 11 , 29 , 143 , 168 , 252 , 324 ) . These findings suggest that neurotrophins may

play a role in synaptic plasticity within the central nervous system . Indeed , BDNF and

NT - 3 were shown to potentiate synaptic transmission at the synapse formed between

Schaffer collaterals and CA1 pyramidal neurons within the hippocampus ( 158 , 159 , 160 ,

161 , 180 , 181 , 195 , 196 ) . This neurotrophin - induced potentiation led to a decrease in

paired - pulse facilitation , an electrophysiological correlate of short - term plasticity ( 286 ) ,

indicating a presynaptic mechanism , and only partially occluded another form of synaptic

potentiation , termed long - term potentiation (LTP ), suggesting at least partial divergence

in potentiation mechanisms utilized by the neurotrophins and LTP . Interestingly , the

stimulation paradigm used to elicit LTP induces significant increases in BDNF and NT - 3

mRNA , suggesting that increased neurotrophin expression may play a role in LTP ( 251 ) .

This is supported by a significant impairment of LTP in mice with targeted disruption of

the BDNF gene ( 179 , 250 ) – an impairment which was rescued by acute treatment with

exogenous BDNF ( 250 ) or by adenovirus - mediated BDNF expression ( 179 ) .

Furthermore , inhibition of the BDNF receptor tyrosine kinase , TrkB , by application of a
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TrkB - IgG fusion protein , reduced the magnitude of LTP induced in hippocampal slices

( 97 ) . Finally , Erin Schuman and her colleagues have shown that different temporal

patterns of synaptic activity yielded forms of LTP that displayed differential sensitivity to

TrkB activation ( 161 ) , suggesting that the role of neurotrophins in synaptic plasticity is

dynamically regulated by the nature of synaptic activity . As will be discussed , while

NGF was shown to be ineffective in modifying LTP in these experiments , it does play a

significant role in modifying and modulating potentiation within the context of a highly

specific synaptic system involving cholinergic innervation arising from the basal

forebrain .

III . The Relationship Between NGF and Basal Forebrain Cholinergic Neurons

Basal forebrain cholinergic neurons ( BFCNs ) provide the best studied model for

the application of the neurotrophic factor hypothesis to the central nervous system ( CNS ) .

The cells of the basal forebrain project to specific targets within the hippocampus and

neocortex ( Figure 5.4 ) , and these targets produce NGF . BFCNs express both NGF

receptors : p75NTR , a single transmembrane glycoprotein that is homologous to

members of the tumor necrosis factor receptor family , and Trka , a receptor tyrosine

kinase that is coupled to several critical signaling cascades ( 123 ) . A significant amount
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of data indicate that NGF is a trophic factor for BFCNs . During development there is

tight correlation between NGF levels in the hippocampus and neocortex and elaboration

of choline acetyltransferase ( CHAT ) activity in the basal forebrain ( 7 , 183 , 327 ) .

Furthermore , intraventricular administration of NGF to postnatal and adult rats elicits a

robust and selective enhancement of ChaT activity in the basal forebrain and in the

targets of BFCN innervation ( 116 , 155 , 230 , 231 ) , and leads to increases in BFCN cell

size , and increased basal forebrain expression of ChAT , p75NTR , and TrkA mRNA ( 47 ,

194 , 346 ). Likewise , acetylcholine dynamically regulates expression of NGF mRNA in

hippocampal neurons (60 ) . Finally , intraventricular administration of anti - NGF

antibodies reduces BFCN CHAT activity , and reduces TrkA and ChaT gene expression

( 194 , 321 ) , while NGF heterozygous gene deletion leads to a reduction in BFCN cell

number and size ( 50 ) . Taken together , these data implicate NGF as a neurotrophic

molecule that is present in limiting amounts and for which BFCNs compete during

development.

Is there a role for NGF in adult BFCNs ? There are high levels of NGF mRNA

and protein in adult hippocampus ( 117 , 177 , 291 , 327 ) , and TrkA and p75NTR continue

to be expressed in adult BFCNs and to bind NGF . Furthermore , adult BFCNs respond to

intraventricular delivery of NGF by becoming hypertrophic and exhibiting increased gene

expression ( 144 ; see also 33 ) . Also , the axon terminals of adult BFCNs retrogradely

transport NGF from the hippocampus and cortex to the cell body ( 287 , 288 ) . Transection
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of the fimbria - fornix , which severs BFCN projection axons , results in elevation of

hippocampal NGF levels ( 113 , 323 ) without concomitant changes in NGF mRNA ,

suggesting that NGF is accumulating as a result of decreased retrograde transport .

BFCNs die following fimbria - fornix transection , but can be rescued by intraventricular

administration of NGF ( 136 , 176 , 182 , 333 ) . On the other hand , ablation of target

neurons in the hippocampus of adult animals with sparing of BFCN axons does not lead

to BFCN death , but only to cell shrinkage and decreased ChAT immunostaining ( 299 ,

300 , 312 ) , suggesting that intact adult BFCNs are dependent upon target - derived NGF for

maintenance of cholinergic phenotype , but not for survival . This is further supported by

recent evidence which shows that intracortical infusion of anti - NGF antibodies or a TrkA

antagonist quickly causes a reduction in the number and size of vesicular acetylcholine

transporter - immunoreactive sites , again suggesting a role for NGF in maintenance of

cholinergic phenotype ( 66 ) . These data indicate that a developmental switch occurs ,

whereupon BFCNs change from a dependence on NGF for survival and differentiation , to

a dependence on NGF for maintenance of phenotypic differentiation only . Axotomy may

reverse the switch , recreating in the axotomized neuron a dependency upon NGF for

survival. The NGF -dependent maintenance of mature CNS neurons was not anticipated

by the original neurotrophic factor hypothesis , but is a finding that is consistent with

continuing NGF actions in neurons of the PNS ( 118 ) .
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Why NGF is required to maintain mature BFCNs is unknown . However , we note

that these neurons play a critical role in modulating realtime cortical and hippocampal

processing involved in learning and memory . We propose that NGF , supplied by target

neurons , acts to modulate the activity of BFCN axon terminals . NGF may serve not only

to maintain the cholinergic phenotype of BFCNs , but also to influence synaptic biology

by dynamically modifying and modulating cholinergic synaptic efficacy and

connectivity . This property of NGF actions may exist during development and into

adulthood , creating a “ plasticity space ” in which cholinergic innervation dynamically

shapes , modifies , modulates , and facilitates learning and memory . In support of this

model , we will first analyze the role of cholinergic innervation in learning and memory ,

and then in experience -dependent plasticity . Then we will examine the role of NGF in

these same forms of plasticity , finally detailing a model which places NGF in the unique

position of regulating cholinergic modulation of hippocampal and cortical plasticity .

IV . Anatomy and Connectivity of Basal Forebrain Cholinergic Neurons

The anatomy of BFCN connectivity is both widespread and complex . BFCNs

project in a topographically organized manner to virtually all regions of the hippocampus ,

limbic system , and neocortex ( Figure 5.4 ) ( 228 , 229 ) , and form synaptic connections with
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virtually all classes of neurons . Cholinergic axons synapse onto dendrites and cell bodies

of target neurons , and onto presynaptic elements of intrinsic hippocampal and cortical

connections . The widespread nature of cholinergic innervation is further complicated by

the presence of a host of muscarinic and nicotinic acetylcholine receptor subtypes ( 53 ,

70 , 186 ) which mediate specific and sometimes disparate actions . However , BFCNs can

be grossly categorized on the basis of their anatomical location within the basal forebrain .

Four principle structures comprise the basal forebrain cholinergic system : the medial

septal nucleus ( MSN ) , the vertical nucleus of the diagonal band of Broca ( VDB ), the

horizontal nucleus of the diagonal band of Broca ( HDB ), and the nucleus basalis of

Meynert (NBM ), also known respectively as Ch1 , Ch2 , Ch3 , and Ch4 in the

nomenclature of Mesulam ( 228 , 229 ) .

The MSN is comprised of small cholinergic neurons which lie medially within the

medial septum . These neurons project primarily to the hippocampus, and exhibit a

topography which maps mediolateral position within the MSN to dorsoventral ( septal

temporal) position within the hippocampus ( 114 , 246 , 295 , 301 ) . Cholinergic neurons

within the VDB also project to the hippocampus , but also to cingulate cortex , the preoptic

area , and the hypothalamus ( 25 ) . The HDB contains cholinergic neurons which are

larger than those of the MSN and VDB , and which project to the entorhinal cortex , the

pyriform cortex , and the olfactory bulb ( 342 ) . Finally , the NBM contains magnocellular

cholinergic neurons which provide the principle cholinergic innervation of all neocortical
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regions , as well as of the basolateral nucleus of the amygdala ( 227 , 228 , 229 , 273 , 337 ) .

These four nuclei , MSN , VDB , HDB , and NBM , form a contiguous group of cholinergic

neurons which together serve to innervate the entire allo- and neocortex , and which

provide global modulation of intrinsic synaptic connections within virtually every region

involved in learning , memory , and adaptation .

V. The Role of Cholinergic Neurotransmission in Learning- and

Memory - related Plasticity

Theta rhythm , a physiologically relevant marker of cholinergic modulation , is an

oscillatory pattern generated in hippocampal and cortical neurons by cholinergic

innervation during periods of learning . Cholinergic - agonist induced theta oscillations

create a state of enhanced hippocampal plasticity during which synapses can be modified

by normally ineffective stimulation . This enhancement of plasticity is sensitive to the

temporal correlation between stimulation and oscillation , in that stimulation in - phase

with the theta oscillation is amplified , while out - of - phase inputs are depressed ( 149 ) . The

effects of cholinergically - induced theta rhythm on physiological measures of potentiation

are recapitulated in the relationship between muscarinic acetylcholine receptor (mACHR )

antagonism , memory impairment, and hippocampal theta rhythm . For example ,
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scopolamine , a mACHR antagonist, induces memory impairment as assessed by T -maze

alternation , and is accompanied by increased theta rhythm . This effect could be reversed

by carbachol, a muscarinic agonist , suggesting that loss of correlation between the

cholinergic rhythmic oscillations and behaviorally meaningful environmental stimuli led

to an inability to modify working memory ( 115 ) .

Cortical population potentials are also enhanced by cholinergic afferents . This

enhancement is correlated with acetylcholine ( ACh ) - or muscarinic agonist - induced

modification of long -term potentiation (LTP ), a form of synaptic potentiation which is

regarded as critical to learning and memory ( 16 , 42 , 73 , 152 , 255 , 305 ) . In neocortex , the

muscarinic agonist oxotremorine induces a short - term depression of evoked sensorimotor

cortical responses ( 200 ), followed by a slow - onset , progressively developing , long - lasting

potentiation of glutamate - evoked potentials . This potentiation is inhibited by pre

application of muscarinic antagonists such as atropine , pirenzepine, or gallamine ( 199 ) .

Furthermore , low concentrations of carbachol ( 0.01-0.1 uM ) attenuate tetanus -induced

LTP in the hippocampus without affecting pre - stimulus field excitatory post - synaptic

potential ( EPSP ) amplitude . This inhibitory effect is reduced by the M2 MACAR

subtype - specific antagonist AF -DX - 116 , but not by pirenzepine , an M1 mACHR specific

antagonist . In contrast , higher concentrations of carbachol ( 10 uM ) decrease the

amplitude of pre - stimulation field EPSPs , but significantly potentiate the magnitude of

LTP . This facilitation is sensitive to M1 mACHR antagonism , but not to AF - DX - 116
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antagonism of M2 mACHR . Hence , hippocampal mossy fiber - CA3 LTP is sensitive in a

concentration -dependent manner to either facilitation or inhibition by ACh acting through

M1 or M2 mACHR subtypes , respectively ( 186 , 210 ) . These data suggest that ACh plays

a significant role in modulating LTP , and that this modulation has behaviorally - relevant

consequences .

A role of ACh in memory formation is further supported by studies of ACH

synthesis . Increased hippocampal and cortical levels of choline acetyltransferase

( CHAT ) , the key synthetic enzyme for ACh , are correlated with accelerated Morris water

maze learning in rats ( 249 ) . In these experiments , rats were exposed to enriched

environments during the course of development . This exposure led to long - lasting

increases in ChaT activity and Ach synthesis , changes which may have accelerated

learning and memory formation in the hippocampus and cortex . This speculation is

supported by data showing that hippocampal ChaT activity levels in aged rats are

correlated with behavioral performance in the Morris water maze ( 79 ) . Aged rats with

elevated hippocampal ChaT activity performed better in a spatial learning task than age

matched rats with lower ChaT activity levels . Finally , Rylett and Schmidt have shown

that increased production of ChaT generates a long - lasting increase in ACh synthesis and

release . They suggest that this change enhances plasticity by priming the hippocampus

and cortex for memory formation ( 275 ) .
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How does enhanced ACh release lead to potentiation of hippocampal and cortical

plasticity ? Synchronization of ACh release from cholinergic terminals and glutamate

release at primary hippocampal or cortical synapses may facilitate signaling through

glutamate receptors in three ways . First , cholinergic stimulation may help relieve the

Mg2 + block of the NMDA glutamate receptor subtype (NMDAR ) by inducing Ca² + influx

or Ca’t release from internal stores (Figure 5.5 ) . Cholinergic facilitation of NMDAR

activation by Mg2 + relief may bring NMDAR -mediated coincidence detection

mechanisms into play , thereby enhancing learning and memory related potentiation

events ( 73 ) . A second potential mechanism of cholinergic facilitation may involve

interactions between downstream signaling cascades initiated by glutamate receptors and

mACHR ( Figure 5.5 ) . NMDAR and metabotropic glutamate receptors ( mGluR ) activate

several protein kinase signaling cascades in common with mACHR , including

calcium /calmodulin kinase II ( CamKII ) ( 107 , 140 , 242 , 313 ) , protein kinase C ( PKC ) ( 5 ,

30 , 106 , 319 , 339 ) , protein kinase A ( PKA ) ( 157 , 219 , 270 , 311 ) , phosphoinositide 3

kinase ( PI3 - K ) ( 207 , 345 ) , src ( 96 , 150 , 175 , 209 , 245 , 279 ) , and mitogen - activated

protein kinase (MAPK ) ( 85 , 86 , 131 , 164 , 245 , 338 ) . Each of these kinases have been

implicated in the induction of LTP , and facilitation or modulation of any or all of them by

coincident mACHR and glutamate receptor activation could enhance or accelerate

synaptic potentiation . Furthermore , several of these kinases appear to be involved in

feedback phosphorylation of NMDAR subunits , an event which has been implicated in
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modulation of NMDAR activity ( 19 , 140 , 310 , 326 ) . For example , carbachol

microinjection has been shown to induce tyrosine phosphorylation of the NMDAR 2B

subunit in a manner comparable to physiological stimulation ( 271 ) . Such cholinergically

mediated phosphorylation of NMDAR may be involved in potentiating synaptic plasticity

by facilitating NMDAR - dependent signaling or by modifying NMDAR and mGluR

trafficking ( 202 , 203 ) .

Finally , cholinergic afferents may also facilitate synaptic potentiation by

enhancing morphological modification of synapses in the hippocampus and cortex . It has

been suggested that mACHR -mediated stimulation of protein kinase pathways leading to

phosphorylation of microtubule - associated protein 2 (MAP - 2 ) might destabilize the

postsynaptic cytoskeleton and permit spine elaboration and elongation ( 336 ) . If so ,

potentiation could occur during a cycle of brief , permissive degradation of pre - existing

dendritic MAP - 2 networks , followed by a round of new MAP - 2 synthesis and

elaboration . The selective enrichment of mACHR and MAP - 2 in specific populations of

hippocampal and cortical neurons suggests that these cells could be primed for

cholinergically -mediated morphological plasticity ( 336 ) . Furthermore , it has been shown

that passive avoidance training enhances mACHR immunoreactivity , and that the neurons

enriched in mACHR are also enriched in PKC and MAP - 2 ( 319 ) . Moreover , mACHR

mediated PKA activation ( 311 ) leads to phosphorylation of MAP - 2 at sites which protect

it from calpain -mediated proteolysis ( 154 ) , an event that could promote the formation of
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new dendritic branches and spines , or restructure pre - existing synaptic structures . The

evidence discussed so far supports a role for ACh in learning and memory and in

potentiation of synaptic plasticity . If ACh is in fact a central element in synaptic

plasticity , then cholinergic innervation should play a key role in learning and memory .

We will now focus our attention on the role of cholinergic innervation in spatial

learning and experience - dependent plasticity of the visual cortex . Although it will not be

reviewed , there is also evidence for involvement of cholinergic innervation in other

systems such as auditory and somatosensory cortex plasticity ( 1 , 15 , 82 , 166 , 276 , 347 ) .

The majority of data regarding the role of cholinergic innervation in learning and

memory are culled from lesion studies . Lesions of the basal forebrain with ibotenic acid ,

quisqualic acid , AMPA , or IgG - saporin result in impairment of Morris water maze

acquisition and radial maze performance ( 54 , 74 , 185 , 213 , 214 , 278 , 281 ) . Furthermore ,

these impairments are alleviated by treatment with cholinergic agonists or by

transplantation of grafts that release ACh ( 80 , 98 , 141 , 142 , 335 ) .

BFCNs have also been shown to be involved in attentional processes which are

critical to learning and memory . One example is found in studies of visual attention . In

these studies , rats were trained to detect brief flashes of light presented randomly in a

five - choice serial reaction apparatus that consisted of five spatially discrete lights located

at one end of a chamber . The rats were trained to respond at the location of the most

recently presented light flash , run to the opposite end of the chamber to receive their
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reward , and then turn and attend to the light array for the next stimulus . This task was

shown to be impaired by ibotenic acid- , quisqualate- , and AMPA - induced lesions of the

NBM ( 237 , 238 , 239 , 268 , 269 ) , by direct infusion into basal forebrain of muscimol , a

GABA receptor agonist , ( 241 ) or by intraventricular infusion of hemicholinium ( 238 ) .

These defects appear to be specifically mediated by a cholinergic deficit , since

physostigmine , nicotine , and transplantation of ACh releasing fetal neurons all reversed

the impairments ( 238 , 240 ) .

VI . The Role of Cholinergic Neurotransmission in Experience - dependent

Visual Cortical Plasticity

ACh has been shown to play a role in experience -dependent modifications of the

visual cortex ( 18 ) . Experience - dependent plasticity of visual cortex is an extremely

useful system for analysis of factors putatively involved in learning and memory - related

synaptic modifications . This form of plasticity differs temporally from that of spatial

learning and memory - dependent attentional processes , in that the modifications occur

over days and weeks and within tightly defined windows of visual cortical development .

Monocular deprivation ( MD ) is the hallmark experimental manipulation in the

study of visual cortical experience - dependent plasticity . Hubel and Wiesel demonstrated

430



nearly forty years ago that the visual cortex of kittens is highly susceptible to use

dependent modification of both structural and functional architecture ( 147 , 148 , 329 , 330 ,

331 ) . At birth , the kitten visual cortex is still in a plastic , immature state in which most

neurons respond equally well to visual stimulation through either eye ( Figure 5.6A ) .

Over the course of the first two postnatal months , the functional connectivity of the visual

cortex gradually solidifies into a highly ordered state wherein eye - specific afferents from

the lateral geniculate nuclei ( LGN ) innervate alternating patches of the visual cortex

called ocular dominance columns ( ODCs ) ( Figure 5.6B ) . Neurons within any given ODC

are heavily biased to respond preferentially to stimulation through one eye or the other

( Figure 5.7A ) . As elegantly proven by Hubel and Wiesel , formation of ODCs in kitten

visual cortex is highly labile , and is malleable between approximately the third and eighth

weeks of postnatal development . MD via monocular lid suture within this so - called

critical period is sufficient to generate nearly complete reorganization of ODCs such that

the majority of visual cortical neurons lose their ability to respond to the deprived eye

(DE ) ( Figure 5.7B ) . This effect is marked anatomically by a reduction in cortical

territory occupied by terminals of DE LGN afferents , and a concomitant expansion in

territory occupied by non -deprived eye (NDE ) afferent terminals ( Figure 5.6C ) . Such

reorganization , or ODC plasticity , is thought to be the result of competition between

inputs from ipsilateral and contralateral LGN laminae for synaptic connectivity onto

binocular visual cortical neurons . This competition normally results in segregation into
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ODCs , but as a consequence of MD , the NDE comes to dominate cortical activity and

thereby cortical connectivity ( 58 , 119 , 289 , 308 ) .

The presumed mechanism for ODC reorganization is Hebbian plasticity ( 135 ,

304 ), in which synapses that receive appropriately correlated activity in the presynaptic

and postsynaptic elements are functionally and structurally strengthened , while synapses

which are inactive or inappropriately activated are weakened or disconnected ( 58 ) . The

current working hypothesis for mediating this Hebbian mechanism within visual cortex

utilizes the same cellular mechanisms of LTP and long - term depression ( LTD )

considered to be responsible for hippocampal forms of learning and memory ( 26 , 57 , 65 ,

105 , 167 ) . Potentiation and expansion of NDE synapses may be the result of increased

associativity , a key element of LTP . In other words , a decrease or loss of patterned

activity in DE pathways may make it more likely that NDE synaptic activity will be

correlated with activity of postsynaptic neurons , such that initially weak connections

between NDE terminals and cortical neurons will be strengthened . Alternatively or

simultaneously , loss of correlated activity between DE synaptic terminals and

postsynaptic neurons may promote LTD . This form of LTD is called homosynaptic

LTD , in that the lack of patterned activity at a given DE synapse can lead to

depotentiation or depression of that same synapse . It is also possible that potentiation of

NDE synapses leads in some way to a concomitant depotentiation or depression of

nearby inactive DE synapses , a process termed heterosynaptic LTD ( 38 ) .
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What role does cortical cholinergic innervation play in modifying ODC plasticity ?

Utilizing the anti -cholinergic and anti -noradrenergic drug 6 -hydroxydopamine ,

Kasamatsu and Pettigrew ( 162 , 163 ) showed that cholinergic and noradrenergic

neuromodulatory innervation was necessary for ODC plasticity . Simultaneous

destruction or inhibition of these two modulatory inputs reduced ODC plasticity . It has

also been shown that lesions of basal forebrain in adult cats massively reduces visual

cortical responsivity to visual stimuli ( 282 ) . Bear and Singer ( 18 ) further elucidated the

role of ACh in ODC plasticity , by showing that a lesion of either the noradrenergic or the

cholinergic projection alone was insufficient to block ODC plasticity , as loss of one

neuromodulator could apparently be compensated for by the other . However , Gu and

Singer ( 127 ) , in an effort to more precisely determine the role of cholinergic

neuromodulation in ODC plasticity , found that muscarinic antagonism via scopolamine

or pirenzepine was sufficient to significantly inhibit MD - induced ODC reorganization ,

while the nicotinic antagonists hexamethonium and mecamylamine were ineffective .

Furthermore , muscarinic receptor involvement appeared to be specific for Ml mACHR ,

as pirenzepine effectively reduced ODC plasticity while the M2 specific antagonist

gallamine was less effective . This is consistent with the idea that postsynaptic neuron

activation is necessary for ODC plasticity ( 266 ), as M1 mACHR are predominantly

expressed on cortical neurons ( 257 , 290 , 320 ), while M2 mACHR and NACHR are located

predominantly presynaptically on thalamocortical afferents ( 222 , 257 , 258 ) .
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As indicated earlier , MD - induced ODC plasticity involves not only the cortical

expansion of NDE inputs , but also loss of DE occupied territory . Hence , two

mechanisms must be operating simultaneously - one which inactivates or invalidates DE

synapses , and one which strengthens and expands NDE connections . It is possible that in

order to inactivate DE synapses on a given postsynaptic neuron , NDE synapses upon the

same neuron must first reach a critical threshold for NMDAR activation ( 121 , 122 ) . In

other words, loss of DE synaptic connectivity occurring via heterosynaptic depression or

depotentiation may require that NDE synapses on the same cells be activated to a critical

level that can only be attained if NDE afferents activate NMDAR - gated Ca2 +

conductances ( 17 , 171 ) . This idea is consistent with in vitro visual cortical slice data

indicating that LTD induction requires a transient elevation of postsynaptic intracellular

Ca2 + ( 31 , 32 ) . mACHR activation of cortical neurons reduces both voltage- and Ca2 +

dependent K * conductances ( 224 , 225 , 226 ) , which in turn increases the amplitude of

excitatory postsynaptic responses . Both carbachol and muscarine have been shown to

increase depolarizing responses of cortical pyramidal neurons upon high - frequency

stimulation of excitatory afferents in slices of rat visual cortex ( 31 ) . Moreover , this effect

is associated with activation of NMDAR - gated Ca² + conductances ( 32 ) . Hence , it is

possible that antagonism of M1 mACHR in the Gu and Singer ( 127 ) experiments reduced

the probability that NDE activity could generate sufficient postsynaptic depolarization to
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reach the threshold required to initiate heterosynaptic depression of DE synapses , and

therefore suppressed MD - induced ODC reorganization .

An effect of mACHR activation on NMDAR activation threshold could also be

involved in facilitation of NDE cortical expansion . Just as Ml mACHR activation would

increase the probability of NDE - induced heterosynaptic depression of DE inputs , so too

might mACHR activation increase the probability of LTP at NDE synapses .

Simultaneous loss of DE inputs via heterosynaptic LTD and facilitation of NDE inputs

via LTP would result in the characteristic pattern of MD - induced ODC reorganization .

Finally , ACh might facilitate ODC reorganization by directly modulating intracellular

Ca2 + levels via the inositol pathway . ACh raises intracellular Ca2 + via IP z -induced release

of Ca² + from intracellular stores , and this Ca2 + may increase the amplitude of NMDAR

dependent synaptic activity ( 217 ) , thereby facilitating both heterosynaptic depression of

DE inputs and potentiation of NDE inputs .

VII . The Role of NGF in Experience -dependent Visual Cortical Plasticity

If one places the concept of synaptic competition in the context of the role of

cholinergic modulation in visual cortical plasticity and the clear relationship between

NGF and BFCN function , one is inevitably drawn to apply the neurotrophic factor

hypothesis to ODC plasticity . While there is compelling evidence that LGN afferents
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compete for limiting amounts of the TrkB ligands BDNF or NT - 4 / 5 ( 39 , 40 41 ) , we wish

to concentrate on the role NGF may play in defining cholinergic facilitation of plasticity

at LGN synapses on visual cortical postsynaptic neurons .

Lamberto Maffei and his colleagues pioneered the analysis of NGF actions in

visual cortical plasticity . They asked whether supplying exogenous NGF to the

developing visual cortex of young rats or kittens could block MD - induced ODC

plasticity . They showed in rats that intraventricular injection of NGF every other day

throughout the critical period ( 272 ) , beginning on PD14 , just prior to eye opening , and

ending on PD44 , blocked the MD - induced ocular dominance shift toward the NDE ( 21 ,

211 ) . Similarly , chronic intraventricular infusion of NGF for two weeks during the

critical - period in kittens partially blocked ODC plasticity and maintained the number of

binocularly responsive neurons ( 46 ) . Furthermore , kittens that were initially monocularly

deprived , then exposed to binocular vision or binocular vision plus NGF , were shown to

recover more functional binocular connections when treated with NGF ( 46 ). In another

set of experiments , strabismus was surgically induced in rats . Under these conditions ,

visual cortical neurons would normally completely lack binocular responsiveness .

However , in rats treated with NGF , loss of binocular response in visual cortex was

inhibited , and the ocular dominance distribution appeared very similar to unoperated rats

( 78 ) . Complementing these findings , NGF appeared to preserve cortical responsiveness,

orientation selectivity , spontaneous discharge , and DE visual acuity and contrast
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sensitivity ( 21 , 46 , 75 , 78 , 99 , 211 , 256 ) . Furthermore , NGF - treatment prevented the

reduction of visual cortical parvalbumin immunoreactivity normally associated with MD

in rats ( 21 , 48 ) , and prevented the shrinkage of LGN cells in DE laminae following MD

( 46 , 77 ) . Thus , it appears that exogenous NGF is able to reduce or inhibit virtually all of

the changes that result from synaptic plasticity in response to MD in both rats and kittens .

In effect, NGF appears to substitute for visual experience ( 46 , 78 ) .

That endogenous NGF plays a role in MD - induced visual cortical plasticity was

suggested by the results of transplanting anti - NGF secreting hybridoma cells into the

lateral ventricle of rats . Such treatment induced dramatic shrinkage of LGN neurons ,

decreased the overall number of binocularly responsive cortical neurons , and impaired

visual acuity ( 20 ) . Significantly , transplanting anti -NGF - secreting cells into young rats

extended the critical period for MD ( 76 ) , suggesting that endogenous NGF regulates

maturation and synaptic plasticity in the visual cortex .

MD following the critical period in normal cats has no effect on ODC

organization , suggesting that maturational processes occur during development that lead

to the eventual solidification of synaptic connections . However , based on data that

suggest a role for ACh in normal adult visual cortical function ( 282 , 283 ) , it is interesting

to ask what effect NGF might have on visual cortical plasticity in the adult . Gu et al .

( 126 ) found that exogenous supply of NGF via minipump to the primary visual cortex of

adult cats for two weeks , paired with simultaneous monocular lid suture , induced an
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ODC shift toward the deprived eye - completely opposite to the ODC shift elicited by

MD during the critical period . While several interpretations are possible , the most

attractive mechanism to explain this result relies on the tight regulation of BFCNs by

NGF levels ( 194 , 300 ). NGF treatment of adult cat visual cortex induced an increase in

phosphorylated GAP -43 and synaptophysin ( 125 ) . These two proteins mark axonal

sprouting and new synapse formation ( 71 , 328 ) . Furthermore , it has been shown that

NGF facilitates cholinergic sprouting in the adult CNS ( 112 , 129 , 134 , 277 ) . As

mentioned earlier , cholinergic innervation potentiates NMDA -mediated glutamatergic

synaptic transmission , and increased cholinergic input induced by sprouting may raise the

overall level of visual cortical responsiveness . In effect, NGF - induced cholinergic

sprouting may make postsynaptic visual cortical neurons " twitchier ” , allowing them to

respond to suboptimal DE inputs as though they were normal . We believe that a

heightened response to suboptimal DE inputs plays a role in NGF effects on critical

period visual cortex , and we will return to this idea in more detail when we discuss our

model of NGF -mediated cholinergically -induced creation of a plasticity space within

hippocampus and cortex . We further speculate that this hypercholinergic state may cause

a hyper - reactive response to NDE inputs that results in synaptic regression . Decreased

NDE synaptic efficacy could be mediated by downregulating postsynaptic glutamate

receptors or by causing a long - lasting decrease in NDE terminal neurotransmitter release .

This model is supported by evidence that LTP - inducing tetanic stimulation , if followed
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by a continuous stimulus train , will actually induce LTD ( 14 , 303 ) . One prediction of

this model is that coinfusion of a cholinergic antagonist with NGF during MD in adult

cats would block the cholinergically -mediated change in postsynaptic neuronal

responsiveness , and thereby prevent selection of DE inputs over NDE inputs .

VIII . The Role of NGF in Learning and Memory - related Plasticity

Given the evidence presented earlier for a role of cholinergic innervation in

modulating learning and memory plasticity , it is not surprising that NGF is also involved

in these events . In the normal , uninjured adult rat CNS , biochemical data indicates that

chronic intraventricular infusion of NGF elicits increased hippocampal ChAT activity ,

high - affinity choline uptake activity , ACh synthesis , ACh release , and nitric oxide

synthase activity ( 108 , 274 ) . On the other hand , chronic administration of anti - NGF

antibodies decreased these parameters ( 317 ) . Electrophysiological data further support

these biochemical changes , indicating that chronic intraventricular NGF enhanced

markers of cholinergic function in the NBM - amygdala axis . Essentially , chronic NGF

increased the likelihood of generating a slow cholinergic EPSP in amygdalar pyramidal

neurons upon NBM stimulation , and increased cholinergically -mediated inhibition of a

Ca2 + -activated K * -mediated inhibitory afterhyperpolarization ( IAP ) ( 235 ) . In contrast ,

intraventricular infusion of anti -NGF antibodies impaired Morris water maze
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performance and induced hyperlocomotion . While water maze acquisition was

unimpaired , extinction and reversal performance were significantly reduced ( 317 ) , and

habituation was greatly attenuated ( 244 ). These behavioral data indicate that decreased

NGF in the normal adult rat CNS induces learning inflexibility , a hallmark of reduced

cholinergic function , and a situation which is mimicked by cholinergic antagonists ( 69 ,

132 ) . Finally , long - term intraventricular infusion of NGF in normal rats improved

performance in a conditioned taste aversion test . NGF treatment facilitated acquisition

and increased the resistance to extinction of a lithium chloride - induced aversion to

saccharin . This effect was directly correlated with NGF - induced elevation of BFCN

ChAT levels , indicating that NGF plays a role in cholinergically -mediated non -spatial ,

affective memory systems ( 201 ) . However , several studies have shown that exogenous

NGF administered to young rats or to unimpaired aged rats results in disruption of spatial

learning ( 9 , 49 , 215 ) , suggesting that NGF - induced cholinergic hypertrophy may , in some

behavioral contexts , lead to an inability to learn .

Data from NGF heterozygous knockout mice further support a role for NGF in

learning and memory plasticity . Heidi Phillips and her colleagues ( 50 ) tested spatial

learning and memory function in mice heterozygous for NGF gene disruption (ngf +/- ).

These mice exhibited decreased NGF mRNA and protein within the hippocampus , and

they showed a concomitant loss of approximately one - third of ChAT ( + ) or p75 ( + ) septal

neurons , as well as shrinkage of the remaining cholinergic neurons and loss of ChAT
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activity and cholinergic fiber density within the hippocampus ( 50 ) . In these same

animals , Morris water maze performance was significantly impaired in terms of

acquisition and retention . The ngf +/- mice performed as well as wildtype littermates on

the visible platform test , indicating that the acquisition and retention deficits observed in

the hidden platform task were specific to a learning and memory function . Furthermore ,

performance in a hidden platform task that did not require spatial memory was identical

to wildtype littermate performance , again supporting the argument that performance

deficits are the result of spatial memory problems , and not due to sensory , motor , or

motivational defects . Finally , deficiency of NGF within the CNS was directly implicated

in the spatial memory defect by the ability of chronic ( 5 week ) NGF infusion to rescue

the behavioral abnormality . As acute ( 3 day ) infusions of NGF were ineffective in

rescuing water maze performance , it is likely that the behavioral amelioration of long

term NGF treatment was mediated by NGF - induced recovery of BFCN function . This is

further supported by the fact that ngf +/- mice showed nearly complete recovery of

ACHE ( + ) fiber density to wildtype levels within the hippocampal formation following

NGF treatment ( 50 ) .

Additional data for a role of NGF in learning and memory plasticity come from

studies that used NGF to ameliorate age - related cognitive dysfunction . Aged rats , as with

aged humans , display age - dependent decreases in learning and memory parameters which

correlate with loss and dysfunction of BFCNs ( 4 , 68 , 101 , 110 , 145 , 173 , 174 , 218 ) . NGF
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infusion has been shown to reverse both acquisition and retention deficits in spatial

memory in aged rats , and these improvements are accompanied by reversal of BFCN

atrophy and dysfunction ( 9 , 100 , 101 , 103 , 104 , 215 , 216 , 220 , 221 ) . Moreover , chronic

intraventricular infusion of NGF in aged rats improves deficits in LTP , ameliorating

potentiation impairments to levels equivalent to young rats ( 22 ) . These data suggest that

NGF is able to elicit a functional recovery within the septohippocampal axis , an effect

that may be due to NGF - induced sprouting of cholinergic terminals within the

hippocampus, or to an NGF - induced reconnection of dysfunctional synapses .

Finally , NGF appears to play a role in controlling the maturation of behavioral

responses that are modulated by BFCN function . Single intraventricular injections of

NGF in suckling mice have been shown to enhance scopolamine - induced locomotor

hyperactivity ( 3 ) , and a single intrahippocampal NGF injection in young rat pups

accelerated the development of cholinergically -mediated spontaneous alternation by five

days ( 139 ) . Furthermore , intraventricular injections of NGF on postnatal days 2 and 4

were able to accelerate the appearance of scopolamine - induced hyperactivity by

approximately 15 days , from postnatal day 20 to postnatal day 5 ( 43 ) . Thus , it appears

that NGF not only regulates mature BFCN function , but also that it can accelerate the

developmental profile for cholinergic maturation .
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IX . The Metamodulatory Function of NGF in Plasticity

We propose that NGF serves a metamodulatory role within the hippocampus and

cortex . That is to say , while NGF itself does not directly modulate or modify

glutamatergic synaptic transmission within the hippocampus or cortex , it does modify the

efficacy of cholinergic modulation at hippocampal and cortical glutamatergic synapses .

By acting on cholinergic synapses , NGF indirectly controls the set - point for learning and

memory plasticity . Figure 5.3 illustrates the basic idea : plasticity occurs at the

intersection of cortical / hippocampal connectivity , cholinergic modulation , and NGF

control of cholinergic efficacy .

Three principle ideas lead to the metamodulatory role we propose for NGF . First ,

from the data presented , it is clear that NGF does not directly alter the synaptic efficacy

of hippocampal or cortical connections – i.e. NGF does not “ pharmacologically ” modify

plasticity . Second , NGF does modify cholinergic function . It directly and dynamically

controls the cholinergic phenotype of BFCNs , modulating both the extent of cholinergic

innervation and the efficacy of ACh release from cholinergic terminals . Third , Ach and

cholinergic innervation directly and specifically modulate potentiation and depotentiation

of cortical and hippocampal synapses . Thus , on the basis of these observations, we

conclude that NGF is in a unique position to indirectly control plasticity by directly

controlling cholinergic function .
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Our model fits the available evidence , and provides a framework for better

understanding learning and memory - related plasticity . Figure 5.8 describes in more

detail how we think NGF creates a plasticity space . Figure 5.8A shows the relationship

between NGF concentration in target regions and the degree of plasticity which is

available within hippocampus and cortex . There is a median , optimal concentration of

NGF within hippocampus and cortex that leads to a level of cholinergic innervation and

ACh release which is optimal for keeping hippocampal and cortical neurons primed to

respond to inputs – i.e. a level of ACh release which keeps postsynaptic neurons primed

for plasticity ( Figure 5.8A , 5.8B ) . Decreasing the available NGF by injecting anti -NGF

antibodies , or decreasing the ability of cholinergic terminals to respond to NGF ( perhaps

by disrupting retrograde transport of the NGF signal ( 124 ) or by inhibiting Trka

availability ) leads to a decrease in ACh release and a concomitant loss of plasticity

( Figure 5.8B ) . In such a state , the cortex or hippocampus is “ frozen ” in place , meaning

that there is a marked reduction in the ability to modify the number or efficacy of

glutamatergic synapses . This is evidenced by poor learning and perseveration of

behavior . On the other hand , increasing NGF levels also leads to a “ frozen ” state ( Figure

5.8B ) . Excess NGF leads to increased ACh release , which then makes postsynaptic

neurons hyper - reactive and responsive to any input , even uncorrelated input. This

effectively results in a loss of plasticity and a disruption of learning and memory ( 9,49 ,

215 , 277 ) . Finally , our model also offers two possible explanations for the ability of
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NGF to prevent the plasticity associated with monocular deprivation . Under conditions

of monocular lid suture , DE afferents in the visual cortex do not fire in a correlated

manner or with the robustness of NDE afferents , but they do fire spontaneously . Our

model suggests that exogenous NGF , by enhancing ACh release , potentiates DE inputs

and prevents the postsynaptic neuron from discriminating between inputs from either eye

on the basis of impotent or uncorrelated input . NGF effectively improves the probability

that DE inputs will be able to compete with NDE inputs for cortical territory . Another

possible explanation is that exogenous NGF accelerates the maturation of the visual

cortex by freezing plasticity and locking pre - existent input relationships in place . The Gu

results , in which excess NGF paired with MD in an adult cat led to cortical reorganization

in favor of the DE , suggests that the first explanation is more likely , and that a

developmental change occurs in the sensitivity of cortical plasticity to NGF levels , as

indicated in figure 5.8C . In other words , during development , cortical and hippocampal

plasticity is able to withstand higher NGF levels or a broader optimal concentration peak ,

and hence able to withstand greater cholinergic modulation than adult hippocampus and

cortex . Therefore , when excess NGF is given to a monocularly deprived juvenile it

potentiates DE inputs , but not at the expense of NDE inputs . Conversely , when excess

NGF is given to a deprived adult , it potentiates DE inputs while punishing NDE inputs .

The mechanistic basis for this developmental switch in sensitivity is unexplained , but it is

interesting to note that adult levels of cortical and hippocampal NGF are significantly
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lower than juvenile levels ( 7 ) , and this decrease occurs within the critical period . It is

conceivable that decreased NGF levels in cortex and hippocampus result from the switch

to a new setpoint for cholinergic modulation of plasticity . Finally , we offer a possible

experiment to determine whether NGF given during juvenile MD is potentiating weak

DE inputs or freezing visual cortical connectivity in place . We suggest that NGF

infusion be paired with MD generated by intraocular injection of TTX . Under these

conditions , DE afferents will be essentially completely silent , not even exhibiting

spontaneous activity . If NGF blocks ODC plasticity by potentiating suboptimal DE

inputs , then in this experiment NGF will fail to block ODC reorganization because there

will be no suboptimal activity to potentiate . If , on the other hand , NGF acts to accelerate

maturation of a pre -existing pattern of input , then activity in the DE pathway will be

irrelevant and NGF will successfully block ODC reorganization in the presence of

silenced DE inputs .

X. Nerve Growth Factor and Cholinergic Metamodulation in Alzheimer's Disease

Our model focuses attention on NGF actions at cholinergic synapses and the role

that cholinergic neurotransmission plays in attention , learning , and memory . Alzheimer's

Disease ( AD ) is characterized by devastating changes in cholinergic function , and by
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deficits in memory and other cognitive functions ( 56 , 248 ) . Among the most important

questions regarding AD biology , is whether it is possible to restore cholinergic

neurotransmission and improve cognition in AD patients . NGF acts to enhance

cholinergic markers in aged and lesioned BFCNs . Our model of NGF as a

metamodulator of hippocampal and cortical plasticity offers new hope for therapeutic

intervention . If NGF control of cholinergic function is a critical element in maintenance

of learning and memory plasticity , and if failed cholinergic neurotransmission is a critical

determinant of cognitive dysfunction in AD , then effective delivery of NGF to

cholinergic synapses in AD patients may induce reinvigoration of cholinergic function

and have beneficial effects on cognition . Though NGF has been given to AD patients

using intraventricular administration ( 88 ) , the trials conducted to date do not allow

conclusions to be drawn regarding its efficacy , or lack thereof . Additional trials

assessing the effects of human NGF in a large number of patients using standardized

protocols will be required . Important problems to be solved before such trials are

initiated are the pain experienced at even relatively small doses of NGF , and the

hypertrophy of Schwann cells and sprouting of sympathetic and sensory neurites in or

near the spaces bathed by CSF containing NGF ( 334 ) . The development of more

effective delivery methods may obviate these problems ( 198 , 212 ) . Finally , our model

strongly suggests that the focus of innovative therapeutics in AD should highlight

interventions that enhance ACh release and cholinergic potentiation of intrinsic
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hippocampal and cortical synapses , without overstimulating cholinergic

neurotransmission .
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Figure 5.1 .

Representation of the Neurotrophic Factor Hypothesis . Initially exuberant connections

between projection neurons and target tissue are lost during development as the result of

competition for limiting amounts of a neurotrophic factor ( red circles ) released by the

target .

505



Figure 5.1
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Figure 5.2 .

Diagram illustrating the metamodulatory role of NGF . Acetylcholine modulates the

efficacy and plasticity of the connection formed between presynaptic glutamatergic

terminals and postsynaptic hippocampal and cortical neurons . Acetylcholine is in turn

regulated and modulated by NGF . This places NGF in the role of indirectly but potently

modulating hippocampal and cortical connectivity .
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Figure 5.3 .

Creation of a plasticity space at the convergence of acetylcholine , NGF , and cortical and

hippocampal connectivity .

509



Figure 5.3

Plasticity
Space

ACH NGF

Cortical &
Hippocampal
Connectivity

510



Figure 5.4 .

Coronal ( A ) and sagittal ( B ) sections illustrating the general anatomical relationship

between nuclei of the basal forebrain , and the pattern of their projections to cortical and

hippocampal targets ( B ) . MSN , medial septal nucleus . VDB , vertical limb of the

diagonal band of Broca . HDB , horizontal limb of the diagonal band of Broca . NBM ,

nucleus basalis of Meynert .
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Figure 5.5 .

Synaptic relationships between cholinergic and glutamatergic inputs and postsynaptic

neurons in the hippocampus and neocortex . ( A ) Schematic representation of the

anatomical relationship between presynaptic and postsynaptic elements . ( B ) One

possible means by which cholinergic neurotransmission potentiates glutamatergic

neurotransmission . Acetylcholine is released by the cholinergic terminal and binds

receptors on the postsynaptic dendritic spine ( B.1 ) , stimulating an elevation in intraspine

calcium levels , either via calcium influx or release from intracellular stores ( B.2 ) .

Through an effect on membrane potential, the calcium acts to relieve the magnesium

block on the NMDA receptor ( B.3 ) , thereby potentiating a coincident response to

glutamate released by the presynaptic glutamatergic terminal ( B.4 ) .

( C ) Another possible modulatory interaction between a cholinergic terminal and a

primary synapse in the cortex or hippocampus. Acetylcholine released by the cholinergic

terminal ( C.1 ) activates acetylcholine receptors linked to kinase cascades ( C.2 ) which

lead either to phosphorylation of the NMDA receptor or to signaling pathways in

common with downstream signaling from the NMDAR ( C.3 ) . Phosphorylation of

NMDAR then potentiates the receptor's response to coincident release of glutamate by

the presynaptic glutamatergic terminal ( C.4 ) .
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Figure 5.6 .

Illustration of ocular dominance column development and plasticity . Thalamocortical

inputs are initially widespread and overlapping , but eventually organize into highly

patterned alternating regions of innervation within which cortical neurons respond

preferentially to one eye or the other . During a critical period within this developmental

sequence , depriving one eye of patterned input permits the non - deprived eye to acquire

cortical territory normally occupied by the deprived eye .
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Figure 5.7 .

Illustration of visual cortical neuron responsiveness after normal development ( A ) , and

following monocular deprivation (MD ) ( B ) . MD causes a predominant shift in

responsivity from the contralateral deprived eye ( DE ) to the ipsilateral non - deprived eye

( NDE ) . This shift , or ocular dominance plasticity , is prevented by treatment with NGF .
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Figure 5.7
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Figure 5.8 .

Schematic representation of the metamodulation model . ( A ) The degree of plasticity

within the hippocampus or cortex is dynamically dependent upon the concentration or

availability of NGF . At some optimal level of NGF , plasticity is maximal , while lower or

higher levels of NGF exhibit reduced plasticity ( B ).

( C ) Possible relationships between NGF and plasticity in juvenile hippocampus and

cortex versus adult hippocampus and cortex ( See text for discussion ) .
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Chapter 6

Conclusions and Future Directions
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Summary

The data presented in this thesis are the first evidence of purified signaling endosomes .

As such , this work significantly extends our understanding of the biology of neurotrophin

and growth factor signaling . In particular , these findings indicate that clathrin - coated

vesicles are nascent signaling endosomes that can propagate the NGF signal , suggesting

that the entire Ras signaling pathway is present and competent to signal from these

membranes . The implications of these findings are that discrete , membrane -bounded

signaling packets exist within cells and serve to transduce neurotrophic signaling from

the plasma membrane to the nucleus .

Conclusions and Future Directions

Trophic state communication from the target of innervation to the innervating neuron in

the developing and mature nervous system requires that a neurotrophin - induced signal be

conveyed from the presynaptic terminal to the cell body , where it can induce pleiotropic

effects on survival and differentiation . The means by which such a retrograde signal is

propagated is currently unresolved , but three possible mechanisms have been proposed ,

as discussed in Chapter 1. The first potential mechanism is that target - derived

neurotrophin is internalized at the presynaptic terminal and transported to the cell body ,

where it binds to receptors within the cytoplasm of the cell body to initiate local signaling

cascades . The second mechanism is that target -derived neurotrophins activate presynaptic
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neurotrophin receptors , and these receptors initiate signaling cascades that reach the cell

body in a wavelike fashion . The third potential mechanism for communicating the trophic

signal from axon terminals to neuron cell bodies involves activation of presynaptic

neurotrophin receptors by target - derived neurotrophin , followed by internalization of

these receptors in a ligand - bound manner into endocytic vesicles that are retrogradely

trafficked to the cell body . Upon arrival in the cell body these “ signaling endosomes ”

initiate local signal transduction cascades that mediate transcriptional events . As

discussed at length in Chapter 1 and Chapter 3 , evidence from several sources points to

the validity of the third model , the signaling endosome hypothesis . The work presented in

this thesis contributes to the body of evidence in support of the signaling endosome

hypothesis by proving that NGF induces the formation of endocytic vesicles that embody

the neurotrophin signal .

Based on previous work showing that activated TrkA within a gross endosomal fraction

is associated with several signaling cascade components ( Grimes and others 1996 , 1997 ) ,

I sought to isolate purified neurotrophic signaling endosomes and to address the

endocytic events proximal to the generation of these organelles . Endocytosis of cell

surface receptors for growth factors such as EGF and insulin via clathrin -mediated

pathways has long been associated with a role in receptor recycling and termination of

receptor signaling ( Sorkin and Waters 1993 ) . In the studies reported in this thesis , I
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addressed the novel possibility that clathrin -mediated pathways play an important

additional role in growth factor signaling - one that facilitates moving the signal from the

cell surface to internal membranes , thereby creating signaling endosomes that are capable

of undergoing retrograde transport from the axon tip to the cell body . In Chapter two , I

showed that NGF signaling through TrkA regulates the extent to which clathrin

assembles on surface membranes . In Chapter 3 I showed that NGF induces the formation

of complexes containing Trka together with AP2 and CHC , and induces the formation of

clathrin - coated vesicles . Furthermore , by isolating a highly purified clathrin - coated

vesicle fraction , I demonstrated that NGF signaling results in the formation of clathrin

coated vesicles containing NGF bound to activated TrkA receptors . Significantly , the

activated TrkA receptors present in the clathrin - coated vesicle fraction were found

together with activated Erk1 / 2 , and isolated NGF - induced clathrin -coated vesicles were

able to signal in a cell - free assay to phosphorylate Elk , a downstream target of the Erks .

On the basis of these findings , I conclude that NGF signaling upregulates the endocytic

machine to produce clathrin - coated vesicles that serve as signaling endosomes .

Whether the formation of signaling endosomes has a physiological role for signaling

from TrkA and other receptor tyrosine kinases will require additional studies . However ,

the speculation that signaling from internalized activated receptors does play a role is

supported by a number of recent observations . Studying the endocytosis of EGFR ,
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Schmid and colleagues found that receptor internalization was required for the full

spectrum of normal signaling events ascribed to EGF treatment ( Vieira and others 1996 ) .

In view of my finding that activated Erk was present in clathrin - coated vesicles isolated

from NGF treated cells , it is interesting that I have observed decreased activation of

Erk1 / 2 in cells that could not internalize TrkA through CCVs . It is conceivable that a

significant fraction of Erk1 / 2 signaling is mediated through internalized receptors .

Importantly , my findings would suggest that the receptors are present in highly organized

signaling complexes that facilitate Erk activation . Decreased signaling through this

pathway would be expected to have significant effects on cell growth and differentiation .

In fact , Trka internalization appears to be necessary for NGF induction of neurite

outgrowth in PC12 cells ( Zhang and others 2000 ). Moreover , the findings presented in

Chapter 4 of this manuscript support the idea that Trka endocytosis is a vital component

of differentiative signaling , and they highlight the need for better understanding of the

complex signaling pathways that converge upon control of receptor internalization .

Overall , then , the work discussed in this manuscript offers the first proof of the existence

of signaling endosomes , shows that these endosomes carry many active elements of the

Ras signaling pathway , and describes one mechanism by which signaling via these

endosomes may be controlled within the context of synaptic plasticity .
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The work presented herein is really just the beginning of a long road that needs to be

taken to understand not only the signaling events that initiate and control the generation

of signaling endosomes , but also the nature and composition of such signaling

endosomes . I propose that one of the most exciting avenues of exploration will be the

characterization of signaling endosomes derived from clathrin - coated vesicles and

signaling endosomes derived from other sources , within the context of signal

propagation . Isolating signaling endosomes and injecting them into naive cells is

potentially a very powerful means of characterizing the signaling potential contained

within these vesicles . The prospect of causing differentiative changes in cells that never

experienced external neurotrophic support simply by injecting signaling endosomes into

the cell body is very exciting . It is also exciting to think about characterizing the

signaling endosome proteome . In other words, describing all of the proteins associated

with signaling endosomes generated in response to different trophic signals . Such an

avenue of exploration may uncover a vast array of previously unrecognized signaling

elements that are concentrated within the signaling endosome . Changes in such elements

may go unnoticed or be averaged away within the large ocean of signaling mediators

contained within the cell , but within the more restricted confines of the signaling

endosome these elements may play critical roles . Finally , the creation of artificial

signaling endosomes may hold therapeutic potential - could a nanoscale signaling

machine be designed to propagate an artificial trophic signal within real neurons ? While
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highly speculative , such an idea is exciting , and holds within it the promise of ultimately

better understanding cellular signaling by understanding where the cell signals .
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A.1 Society for Neuroscience Annual Meeting Abstract 1998 .

ANALYSIS OF NGF RECEPTOR BINDING , TRAFFICKING ,

AND SIGNALING IN MOUSE SYNAPTOSOMES .

Charles L Howe and William C Mobley

Synaptosomes are self - contained synaptic terminals and boutons formed

by the pinching off of axonal membrane during homogenization in iso

osmotic sucrose . These membranes spontaneously reseal to form

spheres that contain mitochondria , synaptic vesicles , and cytosolic

components . Synaptosomes take up and metabolize glucose , and they

respire and synthesize ATP . Synaptosomes also have functional

transporters for neurotransmitter precursors such as choline and

tyrosine , and , because they maintain a resting membrane potential equal

to that of neurons , synaptosomes release various neurotransmitters in

response to K * - and transmitter - induced depolarization . Hence , the

synaptosome has seen wide application as a model synapse . We have

used mouse cortical and hippocampal synaptosomes to analyze nerve

growth factor receptor binding , signaling , and trafficking .
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Nerve growth factor ( NGF ) actions are mediated by two receptors , p75NTR and TrkA .

TrkA is a receptor tyrosine kinase whose activation by NGF elicits a signal transduction

cascade mediated by PLC - Y , SHC , and PI - 3 kinase . We have shown that synaptosomes

have surface TrkA and p75NTR , and that " 2SI -NGF can be crosslinked to these receptors .

Synaptosomal p75NTR and TrkA bind NGF , and NGF - receptor complexes are

endocytosed in response to high - affinity binding. Synaptosomes have high - affinity

binding sites for NGF that are comparable to PC12 cells . Finally , synaptosomal Trka is

activated by NGF with a time - course and dose response curve similar to PC12 cells . The

downstream signaling consequences of TrkA activation in synaptosomes are under

investigation , as is the use of synaptosomes to elucidate NGF signaling defects in mouse

models of neurologic disease . This research was supported by an HHMI Predoctoral

Fellowship ( CLH ) , NIH grant NS24054 , the Adler Foundation , and the McGowan

Charitable Trust .
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A.2 Society for Neuroscience Annual Meeting 1999

NGF - INDUCED TRKA -MEDIATED CLATHRIN COATED VESICLE

FORMATION MAY CONTRIBUTE TO THE GENERATION OF A

“ SIGNALING ENDOSOME . ”

Charles L Howe , EC Beattie , and William C Mobley .

Nerve growth factor ( NGF ) binding to the receptor tyrosine kinase TrkA signals to

promote the survival, differentiation , and phenotypic maintenance of specific neuronal

populations . The signaling endosome hypothesis postulates that the signaling cascades

responsible for these events may be initiated or mediated in part by endocytosis and

retrograde transport of vesicular structures containing activated Trka bound by NGF .

Using PC12 cells as a model , we tested the hypothesis that Trka , bound NGF , and

associated signaling complexes are internalized from the plasma membrane via clathrin

coated vesicles ( CCVs ) . Biochemical analyses of a highly purified CCV population

indicate that TrkA activation induces the formation of CCVs that contain TrkA ,

radiolabeled NGF , and several associated signaling molecules , including PLCy and PI3

kinase . These data are consistent with our previous observation that Trka signaling

induces membrane redistribution and phosphorylation of the clathrin heavy chain ( CHC ).

Extending these observations , we found that NGF induced an increase in the formation of
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complexes containing Trka , phosphorylated CHC , AP2 , and pp60src . The role of

pp60src in such complex formation was further elucidated by our finding that

internalization of radiolabeled NGF was significantly inhibited in cells over - expressing a

dominant -negative form of chicken pp60src ( src DN2 PC12 ) . Finally , disparity between

the absolute amount of internalized radiolabeled NGF and the extent of CCV formation

suggests that TrkA may regulate the internalization of other surface receptors via a global

increase in CCV trafficking. We propose a model in which TrkA signals to recruit

several proteins involved in CCV -mediated endocytosis to the plasma membrane to

create a signaling endosome in which internalized NGF and activated TrkA can be retro

gradely transported . Supported by a HHMI Predoctoral Fellowship ( CLH ) , the Adler

Found - ation , the McGowan Charitable Trust , Alzheimer's Assoc ., NS24054 , NS38869 ,

and AG16999 .
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A.3 Society for Neuroscience Annual Meeting 2000

Neurotrophic Signaling Endosomes and the Role of Internalization in Transmission

of the Neurotrophin Signal.

Charles Leon Howe and William C Mobley

Nerve growth factor ( NGF ) binding to TrkA signals to promote survival , differentiation ,

and phenotypic maintenance of specific neuronal populations . The “ signaling endosome”

hypothesis postulates that signaling cascades responsible for these events are initiated or

mediated in part by endocytosis and retrograde transport of vesicular structures

containing activated TrkA bound by NGF . Based on our observation that Trka signaling

induced membrane redistribution of clathrin , we tested the hypothesis that TrkA , bound

NGF , and associated signaling complexes are internalized from the plasma membrane via

clathrin coated vesicles ( CCVs ) . Biochemical analyses of a highly purified CCV

population indicated that NGF induced the formation of CCVs containing phosphorylated

Trka bound by NGF . NGF also induced the formation of complexes containing

phosphorylated Trka , clathrin heavy chain , and the clathrin adaptor protein , AP2 . We

also found that NGF - induced CCVs contained Shc , Ras , and activated ERK . Importantly ,

these CCVs were able to signal in vitro to phosphorylate ELK , a downstream target of

1activated ERKs that is proximal to nuclear signaling events . Furthermore , inhibitors of
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CCV formation decreased NGF endocytosis and concomitantly blocked NGF induction

of ERK activation , suggesting that TrkA internalization is necessary for appropriate

downstream signaling . We propose a model in which TrkA signals to recruit proteins

involved in CCV - mediated endocytosis to the plasma membrane to create a signaling

endosome in which internalized NGF , activated TrkA , and critical components of the

NGF signaling cascade can be retrogradely transported . Support: HHMI Predoc

Fellowship ( CLH ), Adler Foundation , McGowan Charitable Trust, Alzheimer's Assoc . ,

NS24054 , NS38869 , and AG16999 .
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A.4 American Society for Cell Biology Annual Meeting 1998

TRKA SIGNALING REGULATES CLATHRIN COATED PIT FORMATION .

EC Beattie , CL Howe , and WC Mobley

Nerve growth factor (NGF ) binding to the receptor tyrosine kinase TrkA signals to

promote the survival and differentiation of a subset of neurons in the central and

peripheral nervous system . This signaling is thought to be mediated in part by

endocytosis and retrograde transport of activated Trka bound by NGF . Using PC12 cells

as a model , we tested the hypothesis that TrkA and bound NGF are internalized from the

plasma membrane in clathrin coated pits ( CCP ) . Confocal and biochemical analyses of

various cell lines point to a role for clathrin in Trka internalization . Our data indicate

that Trka signaling is responsible for rapid NGF - induced redistribution of clathrin and

phosphorylation of the clathrin heavy chain ( CHC ) . These findings are consistent with

the earlier observation that NGF treatment caused an increase in CCP formation , and

suggest that TrkA activation may regulate the internalization of other surface receptors

via a general increase in CCP traffic . Moreover , we found that NGF caused an increase

in association of clathrin , including phosphorylated CHC , with TrkA , and formation of

complexes containing TrkA , AP2 , clathrin , and pp60src . This extends previous work by

Brodsky and Wilde , in collaboration with our lab , showing that pp60src overexpression
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increases phosphorylation of CHC . These data are the first to describe ligand - induced

tyrosine phosphorylation of CHC and the formation of a complex containing a growth

factor receptor , pp60src , and clathrin . We propose a model in which Trka interacts with

several proteins involved in CCP -mediated endocytosis to create a microdomain through

which the receptor can be rapidly internalized in response to ligand - binding .
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A.5 American Society for Cell Biology Annual Meeting 1999

The Role of p75NTR in the Internalization of NGF , BDNF , and NT - 3 .

Charles L Howe , Alex Krüttgen , Eric Shooter , and William C Mobley

The p75 neurotrophin receptor ( p75NTR ) is a low - affinity receptor for nerve growth

factor ( NGF ) , brain - derived neurotrophic factor (BDNF ), and neurotrophin - 3 (NT - 3 ) .

Trk tyrosine kinase receptors also bind the neurotrophins , but with varying degrees of

specificity ( Trka = NGF , TrkB = BDNF , TrkC = NT - 3 ). In contrast to Trk , little is

known about the biological function of p75NTR . We have found that the neurotrophins

exhibit differential surface binding on PC12 cells , which express p75NTR and Trka , but

not TrkB or TrkC , and that NGF , BDNF , and NT - 3 are specifically internalized by PC12

cells . Furthermore , internalization kinetics are slower for BDNF and NT - 3 than for NGF ,

and surface binding and internalization of BDNF and NT - 3 display unique anti -p75NTR

sensitivities in antibody blocking experiments . Moreover , crosslinking of radioiodinated

neurotrophin to PC12 cell surface receptors shows that while NGF and NT - 3 are

crosslinked to both TrkA and p75NTR , BDNF was only crosslinked to p75NTR , even at

high concentrations of BDNF . Hence , internalization of BDNF must be mediated by

p75NTR . Finally , internalized neurotrophins are found in highly purified clathrin coated

vesicle ( CCV ) preparations , suggesting that p75NTR is internalized via this pathway .
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CCV -mediated p75NTR internalization suggests formation of intracellular endosomes

which may participate in downstream signaling cascades . This work was supported by

HHMI ( CLH ) , NS04270 ( AK , EMS ) , NS24054 ( WCM ) .
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A.6 Society for Neuroscience Annual Meeting Historical Section 2000
E

Marian Lydia Shorey and the Early Foundations of the Neurotrophic Factor

Hypothesis .

Charles Leon Howe .

The Neurotrophic Factor Hypothesis postulates that neuronal survival and the

development and maintenance of neuronal connectivity is dependent upon competition

between axon terminals for a limited supply of target - derived trophic support . Neurons

and neuronal connections which compete successfully for this limited supply of trophic

factor survive and thrive , while those which fail , die . Early evidence in support of this

hypothesis can be found in the work of Braus , Harrison , and Detwiler , among others ,

culminating in the experiments of Hamburger and Levi - Montalcini . However , one of the

seminal observations supporting the Neurotrophic Factor Hypothesis was provided by

Marian Lydia Shorey in 1909 ( J Exp Zool 7 : 25-63 ) . By showing that removal of a chick

limb bud early in embryonic development resulted in a marked decrease in neuron

number within the spinal cord at later developmental stages , she provided the first

evidence that neuronal targets could influence the size of corresponding neural ganglia .

She went on in subsequent work ( J Exp Zool 9 : 85-93 , 1911 ) to suggest that a metabolic

product of the target is required for the formation and maintenance of neuronal
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connections , presaging later discoveries of target -derived neurotrophic factors like nerve
f

growth factor . While the prevailing theories of the time focused on control of neuronal

differentiation , Shorey's experiments had far - reaching influence on subsequent work by

Detwiler , Hamburger , and others , testing the role of the target in neuronal survival and

connectivity . Supported by an HHMI Predoctoral Fellowship and the McGowan

Charitable Trust .
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All Along the Watchtower Bob Dylan

There must be some kind of way out of here ,
said the Joker to the Thief .

There's too much confusion ,
I can't get no relief .

Business men they drink my wine ,
plowman dig my earth .
None of them along the line
know what any of it is worth .

No reason to get excited ,
the Thief , he kindly spoke .
There are many here among us
who feel that life is but a joke .

But you and I , we've been through that ,
and that is not our fate .

So let us stop talking falsely now ,
the hour is getting late .

All along the watchtower ,
princes kept the view .
While all the women came and went ,
barefoot servants , too .

Outside in the cold distance

a wildcat did growl.
Two riders were approaching ,
and the wind began to howl .
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