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Abstract. Ensemble Kalman Inversion (EKI) has been proposed as an efficient

method for the approximate solution of Bayesian inverse problems with expensive

forward models. However, when applied to the Bayesian inverse problem EKI is only

exact in the regime of Gaussian target measures and linear forward models. In this

work we propose embedding EKI and Flow Annealed Kalman Inversion (FAKI), its

normalizing flow (NF) preconditioned variant, within a Bayesian annealing scheme

as part of an adaptive implementation of the t-preconditioned Crank-Nicolson (tpCN)

sampler. The tpCN sampler differs from standard pCN in that its proposal is reversible

with respect to the multivariate t-distribution. The more flexible tail behaviour

allows for better adaptation to sampling from non-Gaussian targets. Within our

Sequential Kalman Tuning (SKT) adaptation scheme, EKI is used to initialize and

precondition the tpCN sampler for each annealed target. The subsequent tpCN

iterations ensure particles are correctly distributed according to each annealed target,

avoiding the accumulation of errors that would otherwise impact EKI. We demonstrate

the performance of SKT for tpCN on three challenging numerical benchmarks, showing

significant improvements in the rate of convergence compared to adaptation within

standard SMC with importance weighted resampling at each temperature level, and

compared to similar adaptive implementations of standard pCN. The SKT scheme

applied to tpCN offers an efficient, practical solution for solving the Bayesian inverse

problem when gradients of the forward model are not available. Code implementing

the SKT schemes for tpCN is available at https://github.com/RichardGrumitt/

KalmanMC.

Keywords: Inverse Problems, Bayesian Inference, Ensemble Kalman Inversion,
Sequential Monte Carlo, Normalizing Flows
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1. Introduction

Many scientific inference tasks can be viewed within the Bayesian inverse problem

framework. In the Gaussian inverse problem setting, we can write the forward problem

as

y = F(x) + η, (1)

where y ∈ Rny is the data vector, F is a forward model that maps the parameters

x ∈ Rd to our observables, and η ∼ N (0,Γ) is additive Gaussian noise with fixed noise

covariance Γ ∈ Rny×ny . For the Bayesian inverse problem we assign some prior over the

parameters x ∼ π0(x), with the goal then being to recover the posterior distribution

π(x|y) = π(y|x)π0(x)

Z
, (2)

where Z is some generally unknown normalizing constant and π(y|x) = N (y|F(x),Γ)
[1, 2].

The particular regime we are concerned with for this work is where we do not have

access to gradients of a typically expensive forward model. This is a common setting for

scientific inverse problems, where evaluating the forward model often involves running

some black-box solver for which gradients cannot be easily and/or accurately obtained

e.g., cosmological Boltzmann solvers [3, 4], computational fluid dynamics simulators [5],

etc. Non-differentiable forward models can also be a result of inherently discontinuous

physics, e.g., in cloud modelling [6]. Given the forward problem definition in Equation

1, we are restricted to Bayesian inference tasks with Gaussian likelihoods. However,

this still encompasses a large number of scientific inverse problems, and is the regime

for which the Ensemble Kalman methods we exploit in this work have been developed

[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In addition to this, we are concerned with

developing methods that can reliably obtain low bias estimates of posterior moments.

This is critical for many scientific inference tasks where we require accurate uncertainty

quantification on any model parameter constraints.

A typical approach to solving Bayesian inverse problems involves exploiting some

form of sampling algorithm. This covers a wide range of methods, e.g., Markov Chain

Monte Carlo (MCMC) algorithms [19, 20, 21, 22], simulating interacting particle systems

[23, 24, 25, 26, 27, 28] etc. In MCMC algorithms, we seek to construct some transition,

T (x′,x) that preserves the target, π(x|y) as an invariant distribution, i.e.,

π(x|y) =
∫

T (x′,x)π(x′|y) dx′. (3)

Appropriately constructed, such methods enjoy target invariance and ergodicity

properties. However, especially in the gradient-free regime we consider in this work,

this often comes at the cost of requiring ≳ O(104) serial model evaluations [16], quickly

rendering such algorithms intractable for expensive and high dimensional models.
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An alternative class of method involves constructing some coupling scheme, where

we have a transition C(x′,x), that moves us from the prior, π0(x) to the target π(x|y),
i.e.,

π(x|y) =
∫

C(x′,x)π0(x) dx. (4)

Examples of coupling methods include the Ensemble Kalman Filter (EKF) [29, 30, 31],

Ensemble Kalman Inversion (EKI) [7, 10, 11, 12, 13, 17], and Sequential Monte Carlo

(SMC) [32, 33, 34, 35].

In addition to developing methods for solving Bayesian inverse problems, it is crucial

to consider adaptation strategies that allow for efficient, tuning-free implementations

of these methods that can used by practitioners. Extensive work has been done on

the development of tuning-free implementations of gradient-based algorithms such as

Hamiltonian Monte Carlo (HMC) [36, 37, 38, 39, 40], including in the context of SMC

[41]. For gradient-free algorithms a notable adaptive method is Preconditioned Monte

Carlo (PMC), implemented in the PocoMC library [35, 42], which uses normalizing

flow (NF) [43, 44, 45, 46] preconditioning within sequential Monte Carlo (SMC) to

accelerate gradient-free sampling.

1.1. Our Contributions

• We develop an adaptive, tuning-free implementation of the t-preconditioned Crank-

Nicolson (tpCN) algorithm, designed for performing efficient gradient-free inference

in Bayesian inverse problems. The tpCN algorithm preserves the exact target

distribution as its invariant measure, allowing for accurate posterior moment

estimation when faced with non-Gaussian targets and nonlinear forward models,

which is critical for scientific inference tasks. Compared to the standard pCN

algorithm, the tpCN algorithm is found to have significantly improved performance

on non-Gaussian targets.

• Our adaptive scheme exploits the natural connection between EKI and Bayesian

annealing approaches, by using EKI within an SMC sampling scheme. Controlling

the transition between temperature levels as we move from the prior to the posterior

in SMC allows us to apply EKI updates treating the target at the previous

temperature level as an effective prior. EKI then provides a highly effective

initialization and preconditioner for the tpCN updates. The tpCN updates help

to ensure we correctly converge on the target at each temperature level, preventing

the accumulation of errors that would result from applying EKI alone within an

annealing scheme to the Bayesian inverse problem.

• We demonstrate the empirical performance of our adaptive sampling scheme on

three challenging inverse problem benchmarks. We show that tpCN significantly

outperforms standard pCN. We also show that the use of EKI as an initialization

and preconditioner within a Bayesian annealing scheme for the exact tpCN updates

yields significant performance improvements compared to using the standard
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importance resampling step in SMC.

The structure of the paper is as follows: In Section 2 we describe the tpCN sampling

algorithm we propose developing an adaptive implementation of in this work. In Section

3 we describe essential background regarding the methods used for adapting the tpCN

sampler. In Section 4 we describe the Sequential Kalman Tuning (SKT) adaptation

scheme for the tpCN algorithm, and its NF preconditioned variant NF-SKT, proposed

in this work for rapid gradient-free Bayesian inference. In Section 5 we present numerical

results comparing the performance of the adaptive SKT samplers against adaptation in

standard SMC using importance weighted resampling, and we conclude in Section 6.

Code implementing the adaptive SKT samplers presented in this work is available at

https://github.com/RichardGrumitt/KalmanMC.

2. t-preconditioned Crank-Nicolson Algorithm

In this work we consider the adaptation of the tpCN sampling algorithm within SMC,

which has been implemented in the context of NF preconditioned SMC in the pocoMC

sampling package‡. At its core, tpCN modifies the standard pCN proposal such that it is

reversible with respect to the multivariate t-distribution, as opposed to the multivariate

Gaussian distribution for the pCN proposal. In [47] the mixed preconditioned Crank-

Nicolson (MpCN) algorithm was proposed, which uses a proposal that is reversible with

respect to the σ-finite measure p̄(dx) = ∥x∥−d
2 dx. Detailed theoretical studies of the

MpCN algorithm were performed in [48, 47], which showed improved convergence results

for MpCN on heavy tailed targets compared to pCN. However, in our own numerical

studies we found that the MpCN algorithm could not be easily adapted for sampling

on the non-Gaussian targets we consider in this work. Whilst the base t-distribution

in tpCN can be adapted for each target, adjusting the corresponding tail behaviour of

the proposal, the base distribution of MpCN is not so readily adaptable. Even after

pre-whitening of the target, we found the MpCN acceptance rate was typically close to

zero. We therefore do not consider it further as a numerical benchmark in this work.

A similarly detailed theoretical study of the tpCN algorithm as in [48, 47] is beyond

the scope of this work, where we focus on its practicable adaptive implementation.

However, we do show that the tpCN algorithm has superior empirical performance

compared to standard pCN on a range of challenging benchmarks, when allowing for

similar adaptation in their sampling hyper-parameters. In the remainder of this section

we describe the pCN and tpCN algorithms.

2.1. pCN algorithm

Consider some target measure with probability density function (PDF) p(x). The

standard pCN algorithm generates samples from the target by iterating over the

procedure described in Algorithm 1. We denote the PDF of the multivariate Gaussian

‡ https://github.com/minaskar/pocomc/

https://github.com/RichardGrumitt/KalmanMC
https://github.com/minaskar/pocomc/
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distribution at some location x as φN (x;µ, C), where µ is the Gaussian mean and C is

the Gaussian covariance.

Algorithm 1 pCN update

1: Input: Current particle location xm−1, pCN proposal reference mean µ, pCN

proposal reference covariance C, pCN step size ρ, target density p(x).

2: Draw Wm ∼ N (0, C).
3: x′

m = µ+
√

1− ρ2(xm−1 − µ) + ρWm.

4: Update particle location,

xm =

{
x′
m, with probabilityα(x′

m,xm−1),

xm−1, with probability 1− α(x′
m,xm−1),

(5)

where

α(x′
m,xm−1) = min

{
1,

p(x′
m)φN (xm−1;µ, C)

p(xm−1)φN (x′
m;µ, C)

}
. (6)

5: Output: New particle location xm.

The pCN step size parameter, ρ controls the extent to which a proposal sample

is correlated with the previous sample. In the limit where ρ → 1, the pCN proposal

reduces to an independent proposal drawn from N (µ, C). The proposal kernel for pCN

as defined in Algorithm 1 is given by

K(x, dx′) = N (µ+
√

1− ρ2(x− µ), ρ2C), (7)

which is reversible with respect to the Gaussian distribution N (µ, C) i.e.,

φN (x;µ, C)dxK(x, dx′) = φN (x′;µ, C)dx′K(x′, dx). (8)

The pCN algorithm has been shown to exhibit a dimension independent spectral gap

for large class of target measures which are the finite dimensional approximations of

densities defined with respect to some Gaussian reference measure i.e., for some target

posterior measure π we have the Radon-Nikodym derivative

dπ

dπ0

(x) ∝ exp(−Φ(x)), (9)

where the reference prior measure π0 is taken to be the Gaussian N (µ, C) and Φ(x)

is the likelihood potential [22, 49]. The pCN algorithm performs well when the target

measure is close to Gaussian. However, for non-Gaussian targets and targets with heavy

tails the performance of the algorithm can be severely degraded. Indeed, in [47] it was

shown that pCN performs worse than Random Walk Metropolis-Hastings (RWHM) on a

family of heavy tailed targets. This presents a problem for many scientific inference tasks

where the target distribution can be expected to show some degree of non-Gaussianity.
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2.2. tpCN algorithm

To develop an adaptive sampling scheme that will perform well against non-Gaussian

targets we consider the tpCN algorithm. Instead of using a Gaussian base distribution

to generate a proposal, as with standard pCN, the tpCN algorithm uses a multivariate

t-distribution tνs(µs, Cs), where νs > 0 denotes the degrees of freedom, µs is the mean

and Cs is the scale matrix. A simple non-adaptive variant of tpCN has previously

been used in the estimation of drift and diffusion parameters for stochastic differential

equations in [50]. The tpCN algorithm generates samples by iterating over the procedure

in Algorithm 2. For brevity in the discussion below we use the inner product notation

⟨x1,x2⟩s = (x1 − µs)
⊺C−1

s (x2 − µs).

Algorithm 2 tpCN update

1: Input: Current particle location xm−1, t-distribution mean µs, t-distribution scale

matrix Cs, t-distribution degrees of freedom νs, pCN step size ρ, target density p(x).

2: Draw Z−1
m ∼ Gamma(k = 1

2
(d + νs), θ = 2/(νs + ⟨xm−1,xm−1⟩s)) and Wm ∼

N (0, Cs).
3: x′

m = µs +
√

1− ρ2(xm−1 − µs) + ρ
√
ZmWm.

4: Update particle location,

xm =

{
x′
m, with probabilityα(x′

m,xm−1),

xm−1, with probability 1− α(x′
m,xm−1),

(10)

where

α(x′
m,xm−1) = min

{
1,

p(x′
m)(1 + ⟨xm−1,xm−1⟩s/νs)−(d+νs)/2

p(xm−1)(1 + ⟨x′
m,x

′
m⟩s/νs)−(d+νs)/2

}
. (11)

5: Output: New particle location xm.

It can be shown that the tpCN proposal is reversible with respect to the multivariate

t-distribution tνs(µs, Cs). The reversibility and acceptance rate properties of the tpCN

algorithm are stated in Lemma 2.1, with the corresponding proof given in Appendix A.

Lemma 2.1. The proposal transition kernel of the tpCN algorithm is reversible

with respect to the multivariate t-distribution tνs(µs, Cs) and the proposal acceptance

probability is given by Equation 11.

Similarly to the MpCN algorithm, the tpCN proposal is reversible with respect to a

distribution that will generally have heavier tails than the standard pCN algorithm. One

may therefore expect that it will show similarly improved performance on heavy tailed

targets. A key difference between the tpCN and MpCN algorithms is the ability to tune

the degrees of freedom νs, which controls the tail behaviour of the tpCN proposal.



Sequential Kalman Tuning 7

However, it is worth emphasising that the benefits of using the t-distribution as a

base distribution extend beyond heavy tailed targets to non-Gaussian targets more

generally. The ability to tune the parameters of the more flexible t-distribution to

the target allows for improved sampling of non-Gaussian targets, as observed in our

numerical experiments in Section 5. The multivariate t-distribution has been exploited

in the development of adaptive elliptical slice sampling implementations in [51], where

the increased flexibility of the multivariate t-distribution in approximating the target

distribution was found to yield significant performance gains compared to standard

elliptical slice sampling.

For targets with strong non-Gaussianity, the performance of tpCN can be futher

improved through NF preconditioning. In this case the tpCN updates are performed on

the NF latent space particles, z = f(x) with the corresponding latent space acceptance

probability being given by

α(z, z′) = min

{
1,

π0(f
−1
n (z′))π(y|f−1(z′))βn+1|detDf−1(z′)|(1 + ⟨z, z⟩s/νs)−(d+νs)/2

π0(f−1(z))π(y|f−1(z))βn+1 |detDf−1(z)|(1 + ⟨z′, z′⟩s/νs)−(d+νs)/2

}
,

(12)

where Df−1(z) = ∂f−1(z)/∂z is the Jacobian of the inverse NF transformation. The

use of NF preconditioning within our adaptation scheme is discussed in detail in Section

3.4.

3. Background Methods

In this section we introduce essential background regarding the methods we use for

implementing an adaptive tpCN sampler, targeted at solving the Bayesian inverse

problem. In Section 3.1 we give a brief description of EKI as applied to the Bayesian

inverse problem and its connection to Bayesian annealing, in order to motivate its use

within our adaptation scheme. In Section 3.2 we describe the SMC sampling scheme

within which we embed our adaptation procedures. In Section 3.3 we describe the

temperature schedule adaptation, and in Section 3.4 we describe the use of NFs for

additional preconditioning.

3.1. Ensemble Kalman Inversion

EKI is a coupling-based algorithm that leverages ideas from EKF to construct iterative

particle ensemble updates for the solution of inverse problems [7, 8, 9, 10, 11, 12, 13, 17].

In its standard setting, EKI seeks to solve the variational inverse problem i.e., finding

parameter values that minimize the misfit functional

Φ(x) =
1

2

∥∥Γ−1/2(y −F(x))
∥∥2
2
. (13)

In this optimization setting, the EKI ensemble will collapse to a single solution [7], and

can also be applied rigorously to problems with nonlinear forward models [17]. However,

EKI has also been applied to the solution of the Bayesian inverse problem, where we
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seek to obtain an approximation to the full target posterior [13, 18]. In this setting, EKI

is only exact when applied to linear forward models with Gaussian targets, providing

an uncontrolled posterior approximation outside this regime.

In this work we consider leveraging the EKI target approximation within the context

of Bayesian annealing to initialize and precondition tpCN sampling iterations. It is

worth noting that EKI has previously been used in the context of preconditioning for

sampling in [26], where the Ensemble Kalman Sampler (EKS) was developed based on

the EKI ensemble structure. However, this sampling scheme is only exact for linear

forward models, and can otherwise give highly biased posterior moment estimates. A

key difference in our work is in the direct use of EKI updates to intialize and precondition

the tpCN sampling scheme, which preserves the exact target as its invariant measure.

For adaptive MCMC schemes based within Bayesian annealing this achieves significant

convergence acceleration whilst allowing for accurate posterior moment estimation

outside the regime of linear forward models and Gaussian targets. In Appendix G

we demonstrate the performance of EKS on our numerical experiments, showing that it

fails to recover accurate posterior moment estimates.

Following [13], we can motivate EKI applied to the solution of Bayesian inverse

problems within the context of a Bayesian annealing scheme. Given a prior measure

π0(x), EKI proceeds by constructing a sequence of Gaussian ensemble approximations

to the intermediate measures

πn(dx) ∝ π0(dx)N (y|F(x), β−1
n Γ), (14)

where the inverse temperatures satisfy 0 ≡ β0 < β1 < . . . < βN < βN+1 ≡ 1. From

Equation 14 we can obtain the recursion

πn+1(dx)

πn(dx)
∝ N (y|F(x), αnΓ), (15)

where the annealing step size αn = (βn+1 − βn)
−1. The step size can be viewed as a

regularization parameter [8, 12, 13], which can be selected such that we make a gradual

transition from the prior to the posterior.

The ensemble updates for EKI can be derived by assuming we have some Gaussian

approximation to the prior measure π̃0 = N (m0, C0), proceeding to move through a

sequence of Gaussian approximations, π̃n = N (mn, Cn) using the recursion

π̃n+1(dx)

π̃n(dx)
∝ N

(
y|F(mn) +

∂Fn

∂x
(x−mn), αnΓ

)
. (16)

The forward model has been linearized around the approximation mean, F(x) ≈
F(mn) − ∂Fn/∂x(x −mn), where ∂Fn/∂x = ∂F/∂x|x=mn . From Equation 16 we

can obtain recursions for the approximation means and covariances,

mn+1 = mn + Cn
∂F∗

n

∂x

(
∂Fn

∂x
Cn

∂F∗
n

∂x
+ αnΓ

)−1

(y −F(mn)), (17)

Cn+1 = Cn − Cn
∂F∗

n

∂x

(
∂Fn

∂x
Cn

∂F∗
n

∂x
+ αnΓ

)−1
∂Fn

∂x
Cn, (18)
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where ∂F∗
n/∂x is the adjoint of ∂Fn/∂x. Using the linearized forward model, the terms

involving derivatives can be approximated as

Cn
∂F∗

n

∂x
≈ En[(xn −mn)⊗ (F(xn)− En[F(xn)])], (19)

∂Fn

∂x
Cn

∂F∗
n

∂x
≈ En[(F(xn)− En[F(xn)])⊗ (F(xn)− En[F(xn)])], (20)

where En denotes the expectation with respect to π̃n. These expectations cannot be

computed in closed form. To overcome this, EKI exploits an ensemble approximation.

Given an initial particle ensemble {xi
0 ∼ π0(x)}Ji=1, EKI applies embarrassingly parallel

recursive updates using the expression

xi
n+1 = xi

n + CxF
n

(
CFF

n + αnΓ
)−1 (

y −F(xi
n) +

√
αnξ

i
n

)
, (21)

where ξin ∼ N (0,Γ) is a Gaussian noise vector [13]. The empirical covariances are given

by

CxF
n =

1

J − 1

J∑
i=1

(xi
n − ⟨xn⟩)⊗ (F(xi

n)− ⟨Fn⟩), (22)

CFF
n =

1

J − 1

J∑
i=1

(F(xi
n)− ⟨Fn⟩)⊗ (F(xi

n)− ⟨Fn⟩), (23)

where ⟨xn⟩ = 1
J

∑J
i=1 x

i
n and ⟨Fn⟩ = 1

J

∑J
i=1F(xi

n). It can be shown that the

ensemble means and covariances obtained through the EKI updates approximate those

in Equations 17 and 18 as J →∞ [52, 13].

Applied to the Bayesian inverse problem, EKI enjoys rapid convergence properties,

typically converging in O(10) iterations [16]. For the case of Gaussian targets with linear

forward models the particle ensemble will be distributed according to the target posterior

as the ensemble size J → ∞ [13], otherwise giving an uncontrolled approximation.

In [18], NF maps were learned at each temperature level in the EKI iterations. By

learning an NF map, one can map the particle distribution at a given temperature level

to a Gaussian latent space and perform the EKI update in this latent space. Whilst

this can improve the stability of EKI when faced with non-Gaussian targets, it does

not address the linearity assumptions used in deriving EKI. Further, the NF map can

introduce additional nonlinearity in the forward model evaluation due to the need to

apply the inverse transformation when evaluating the forward model at each latent

space location. These problems can result in the converged particle ensemble being a

poor approximation to the true posterior, which poses a major drawback for scientific

inference tasks where we desire accurate estimation of the first and second moments of

the target posterior.

Despite the limitations of EKI when applied to the solution of the Bayesian inverse

problem alone, we can exploit its natural connection with Bayesian annealing to form

part of an adaptive SMC sampling scheme. The core idea here is that an EKI update
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can be used at each temperature level to target the next temperature level. The updated

ensemble provides both an initialization and preconditioner for the subsequent sampling

iterations.

3.2. Sequential Monte Carlo

SMC encompasses a class of sampling methods that move through a sequence of

probability measures {πn(x)}N+1
n=1 in order to sample from the final target measure

πN+1(x) [32]. The method has seen extensive applications in sequential Bayesian

inference where one has a set of sequential observations {yt}Tt=1 e.g., time series data

[53]. In this case SMC moves through targets πn(x) = p(x|y1, ...,yn), where at each

iteration an additional observation is added. Ensemble Kalman methods have previously

been exploited for SMC in sequential Bayesian inference in [33], where the EKF update

was used to construct an efficient importance sampling proposal for SMC.

An alternative setting involves moving from some tractable density π0(x), through

a sequence of intermediate measures towards the final target. In this work, we consider

the situation where π0(x) is the prior and we move through a sequence of temperature

annealed targets πn(x) ∝ π0(x)π(y|x)βn where π(y|x) is the likelihood. As with EKI,

the inverse temperatures satisfy 0 ≡ β0 < β1 < . . . < βN < βN+1 ≡ 1, with β0 = 0

corresponding to the prior and βN+1 = 1 corresponding to the full posterior.

Consider a particle ensemble at the inverse temperature βn. Assuming the ensemble

is distributed according to the annealed target πn(x) ∝ π0(x)π(y|x)βn , we can calculate

the unnormalized importance weights corresponding to the next temperature level,

wn(x
i
n) =

π(y|xi
n)

βn+1

π(y|xi
n)

βn
. (24)

From this we obtain an estimator for expectations of test functions f(x) with respect

to the subsequent annealed target given by

Eπn+1 [f(x)] =

∑J
i=1 f(x

i
n)wn(x

i
n)∑J

i=1wn(xi
n)

. (25)

If the importance sampling proposal distribution, in this case πn(x), is not close to

the target, the importance sampling estimator can have very high variance, scaling

approximately with the variance of the importance weights [32].

Direct application of importance weighting through the annealed targets in SMC

can quickly result in weight collapse, where all the importance weight is assigned

to a single particle in the ensemble. This issue can be partially addressed through

resampling, where the particle ensemble is resampled according to their importance

weights, duplicating particles with high weight and removing particles with low weight

[54]. This also gives an equal weight particle ensemble that is approximately distributed

according to the annealed target. We discuss the exact resampling scheme used in this

work in Appendix B.
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In order to further improve the quality of the MC approximation given by the

particle ensemble, one can perform sampling updates at each temperature level. If

resampling has been performed, this also helps to disperse particles and remove

duplicates in the ensemble. Typically, this will involve the application of some πn+1(x)

invariant MCMC kernel, Kn(x
′|x) for several iterations such that the particle ensemble

is distributed according to πn+1(x). Pseudocode for the SMC algorithms we use as

benchmarks in this work is given in Appendix C.

In principle, SMC can produce a particle ensemble that provides asymptotically

unbiased approximations to posterior marginal moments, without the limitations of

EKI in only being exact for Gaussian targets with linear forward models. However, in

order to attain low bias on these moment estimates in practice we must run multiple

iterations of the MCMC updates at each temperature level [35]. For scientific inverse

problems with expensive forward models we would like to minimize the number of

MCMC iterations required to achieve low bias. Previous works have leveraged ideas

from EKF within MCMC, with examples including [55], where a proposal kernel was

developed based on the analysis step in the EKF update, and [56] which used EKF to

accelerate pseudo-marginal MCMC in state space models. In this work we propose using

EKI as part of an adaptation scheme for the tpCN sampler, replacing the resampling

step in SMC by instead using the EKI update as an initialization and preconditioner

for each intermediate target.

3.3. Temperature Adaptation

The choice of temperature schedule is crucial to both EKI and SMC. We wish to take

steps in inverse temperature that are neither too small, which would unnecessarily

increase the number of model evaluations, nor too large, which would render the particle

ensemble obtained at the previous temperature level of limited use in adapting the

MCMC kernel used for the next target temperature. This is particularly relevant when

we learn NF maps for preconditioning, where we rely on the particle distribution from

the previous temperature level to inform our preconditioning.

In this work we select temperature levels by estimating the effective sample size

(ESS) of the particle ensemble and choosing a value of β such that we attain some

fractional ESS target. The ESS in targeting some βn+1 from βn can be estimated by

calculating the importance weights given by

wi
n = exp

(
−1

2
(βn+1 − βn)

∥∥Γ−1/2
(
y −F(xi

n)
)∥∥2

2

)
. (26)

The value of the target inverse temperature can then be obtained by solving for βn+1

in, (
J∑

i=1

wi
n(βn+1)

2

)−1( J∑
i=1

wi
n(βn+1)

)2

= τJ, (27)

where 0 < τ < 1 is the fractional ESS threshold. The value of τ controls the size of

the steps in β, with larger values of τ resulting in smaller steps. This method has seen
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extensive application in adaptive SMC and EKI implementations due to the ability to

control the ensemble ESS, which is crucial for effective resampling [57, 9].

Alternative temperature adaption schemes can be used, for example if one was

seeking to use a more aggressive temperature schedule [13]. However, more agressive

temperature schedules can be unstable for standard SMC, which uses importance

resampling at each temperature level, if the ESS becomes very low. In order to make

more direct comparisons between SKT algorithms and standard SMC algorithms in this

work, we only consider the ESS-based criterion expressed in Equation 27. It is worth

noting that such temperature adaptation renders SMC a biased but consistent method.

However, this bias is typically negligible, and the ability to adapt the temperature

schedule to each problem offers significant advantages in avoiding the need to manually

select an appropriate schedule, hence the widespread use of adaptive temperature

schedules in SMC [58, 59].

3.4. Normalizing Flow Preconditioning

In this paper we leverage NFs in two contexts; learning a map to a Gaussian latent

space at each temperature level to improve the fidelity of the EKI target approximation

[18], and to act as a preconditioner for the subsequent tpCN sampling iterations.

NFs are generative models where one learns a bijective map between some original

data space, x ∈ Rd and a simple latent space, z ∈ Rd. They can be used for highly

expressive density estimation and allow efficient sampling from the learned generative

model [43, 44, 45, 46]. The full bijective map, z = f(x) proceeds through a sequence

of invertible transformations f = f1 ◦ . . . ◦ fnL
, with the latent space base distribution

typically chosen to be the standard Gaussian such that z ∼ pz(z) = N (0, Id), where

Id denotes the d× d identity matrix. Data space samples can be obtained from the NF

distribution by drawing samples from the latent space base distribution and evaluating

the inverse transformation x = f−1(z).

The learned NF density, q(x) can be evaluated using the standard change of

variables formula,

q(x) = pz(f(x)) |detDf(x)| = pz(f(x))

nL∏
l=1

|detDfl(x)| , (28)

where Df(x) = ∂f(x)/∂x is the Jacobian for the NF transformation. In this work we

use neural spline flows (NSF) [60] as implemented in the FlowMC package [61, 62],

which have been found to be highly expressive flow architectures able to capture complex

target geometries. In the numerical experiments performed in this work we were able

use a single set of default configurations across the test models without the need for

extensive NSF hyper-parameter searches.

The impact of the NF in the annealing schemes considered in this work can be seen

by considering the recursive expression for the target with inverse temperature βn+1,

πn+1(x) ∝ πn(x)N (y|F(x), αnΓ). (29)
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We can view πn(x) as a pseudo-prior for πn+1(x), with the likelihood contribution

being controlled by αn. By fitting an NF to the particle ensemble obtained for βn,

and assuming the particle ensemble is correctly distributed as πn(x), we can map the

pseudo-prior to an approximately Gaussian space. In the NF latent space, the βn+1

target is given by

πn+1(z) ∝ πn(f
−1
n (z))|detDf−1

n (z)|N (y|F(f−1
n (z)), αnΓ). (30)

The latent space pseudo-prior is approximately the standard Gaussian. For EKI updates

performed in the NF latent space, we can view this as single step EKI with prior

πn(z) = πn(f
−1
n (z))|detDf−1

n (z)| and target posterior πn+1(z). Provided the particle

ensemble for βn was correctly distributed according πn(x), by performing the EKI

update in the latent space we have a Gaussian prior ensemble. If the value of αn

is chosen to be sufficiently large (i.e., small step size in β) such that πn(z) is prior

dominated, we are able to effectively relax the Gaussian ansatz of EKI.

Whilst the use to NFs in EKI has been found to improve robustness against non-

Gaussianity [18], the NF maps do not address the assumption that the forward model

is linear. If the forward model is nonlinear the EKI update will not be exact, even

when performed in the Gaussian latent space. This means the particle ensemble will

not be correctly distributed according to the subsequent tempered target. When this

is then treated as the pseudo-prior for the next temperature level, the NF will map the

incorrect particle ensemble to a Gaussian latent space which does not correspond to the

correct pseudo-prior distribution. These errors can accumulate as one progresses from

the prior to the posterior, resulting in a low fidelity ensemble approximation to the final

posterior.

Nonetheless, within our adaptive sampling scheme NF preconditioning has the

benefit of helping to stabilize EKI/Flow Annealed Kalman Inversion (FAKI) updates,

and acting as a nonlinear preconditioner for the tpCN updates. Considering again

Equation 30, if the particle ensemble obtained for βn can be mapped to a Gaussian

latent space, and the value of αn is chosen such that the βn+1 target is dominated

by the pseudo-prior, the NF provides a highly effective preconditioner that is able to

account for local variations in the target geometry. Mapping to a Gaussian latent space

has the additional advantage of allowing us to use scaling relations derived for samplers

with Gaussian targets when selecting sampling hyper-parameters [20, 63, 64]. The use of

NFs as preconditioners has seen several applications for sampling, including in MCMC

[65, 61], with interacting particle systems [28] and in SMC [35, 42].

4. Adaptation of tpCN with Ensemble Kalman Inversion in Sequential

Monte Carlo

In this section we describe the SKT adaptation procedure we propose for tpCN. In

essence, EKI is used within a Bayesian annealing scheme, with the core performance

improvements arising from the ability of the EKI updates to provide an effective
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initialization and preconditioner for the tpCN sampling iterations at each temperature

level. The tpCN iterations are then able to efficiently converge on the target at each

temperature level, allowing for accurate posterior moment estimation. In Section 4.1

we describe the procedure for adapting the tpCN kernel parameters, and a method for

selecting the number of tpCN iterations to perform at each temperature level. We then

provide pseudocode outlining the full adaptive sampling algorithm in Section 4.2.

4.1. Adaptation of tpCN kernel parameters

At each temperature level we need to select values of the tpCN kernel parameters

such that the base t-distribution approximates the target distribution well. In [51],

a parallel adaptation scheme for elliptical slice sampling was used where the parameters

of the proposal t-distribution were obtained by dividing a particle ensemble into two

groups. The parameters for the proposal in one group were then obtained by fitting

a t-distribution to the particles in the other group. For the adaptive SMC scheme we

consider in this work we do not need to divide the ensemble into groups, instead using the

particle ensemble prior to sampling at each temperature level to fit for the t-distribution

parameters. This also means we do not need to alternate the tpCN updates between

groups as in [51], instead relying on control of the transition between temperature levels

and the quality of the EKI target approximation to provide an effective tpCN kernel.

To select the t-distribution parameters at each temperature level we use the

expectation maximization (EM) algorithm [66, 67], described in Algorithm 4 of [51].

This is a stable choice provided the size of the particle ensemble J ≥ 2d, where d is the

target dimension. As noted in [51], more sophisticated procedures could be used in high

dimensions, although the structure of our adaptation scheme would be largely the same.

The t-distribution parameters are fitted to the ensemble after applying the EKI update,

such that it approximates the target distribution. Similarly, for the standard SMC

benchmarks we fit the t-distribution parameters to the resampled particle ensemble.

In addition to selecting appropriate parameters for the tpCN kernel, it is also

important to run a sufficient number of tpCN iterations at each temperature level to

ensure particles are distributed according to each intermediate target. In this work we

study both the sampling performance using a fixed number of sampling iterations at each

temperature level, in order to more directly assess the impact of the EKI adaptation step

compared to resampling, and also present numerical results when selecting the number

of tpCN iterations based on autocorrelation statistics. Such an approach has previously

been used in the context of adaptive SMC, for example in [41] the number of MCMC

iterations was selected by monitoring the component-wise first-order autocorrelation of

the statistic xi
n,m(j) + xi

n,m(j)
2, where i denotes the ensemble member, n denotes the

temperature level, m denotes the MCMC iteration number and j denotes the component

of xi
n,m. This statistic monitors the correlation of the first and second moments of

the ensemble. In this work we present numerical results where MCMC iterations are

performed at each temperature level until the product of the first-order autocorrelations
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falls below some threshold τcorr for all dimensions i.e.,

M∏
m=1

ρ̂m(j) < τcorr ∀j, (31)

where ρ̂m(j) is the autocorrelation statistic calculated over the ensemble for successive

states {xi
n,m−1}Ji=1 and {xi

n,m}Ji=1.

An important difference to note between the adaptive SKT samplers we propose

here and standard SMC is that, for a fixed number of MCMC iterations at each

temperature level, the SMC particle ensemble will converge asymptotically to the

target posterior as the ensemble size J → ∞ [32]. In contrast, the SKT algorithm

requires sufficient MCMC iterations to be performed at each temperature level such

that we converge on each intermediate target. However, in the practical settings we

consider in this work, where the ensemble size is some multiple of the target dimension,

standard SMC still requires a large number of MCMC iterations at each temperature

level to ensure we obtain low bias posterior moment estimates. This is required

to ensure the particle ensemble does not collapse through the repeated resampling

steps, and to remove duplicates from the resampled ensembles that can otherwise

provide high variance posterior moment estimates. In Section 5 we provide numerical

results demonstrating both the need for a large number of MCMC iterations at each

temperature level in SMC, and the ability of the EKI adaptation step to accelerate the

convergence of the MCMC iterations.

4.2. Sequential Kalman Tuning for tpCN

All of the procedures we have outlined thus far can be combined to produce the SKT

adaptive sampling scheme for tpCN. The core of the SKT approach lies in replacing the

importance resampling step of SMC with an EKI update. That is, given an ensemble

of particles {xi
n}Ji=1 distributed according to the target at inverse temperature βn, we

apply the EKI update in Equation 21 to obtain a particle ensemble that approximates

the target at βn+1, which acts as an initialization and preconditioner for subsequent

sampling updates. We can then fit for the parameters of the t-distribution reference

measure before performing tpCN updates to correctly distribute the particle ensemble

according to the target at βn+1. In addition to performing the EKI update at each

temperature level, we can also use NF preconditioning to improve the stability of EKI

when approximating non-Gaussian measures, and to act as a nonlinear preconditioner

for the tpCN sampling. Pseudocode for SKT with NF preconditioning is given in

Algorithm 3. For SKT without NF preconditioning, the structure of the algorithm is

largely identical, without any NF fits being performed such that EKI and tpCN updates

are performed in the original data space. For completeness, we provide pseudocode

describing the benchmark SMC implementations used in this work in Appendix C.

The use of EKI as an adaptation step within an annealed sampling scheme has

two core benefits. Compared to applying EKI directly to solving the Bayesian inverse
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Algorithm 3 Flow Preconditioned Sequential Kalman Tuning

1: Input: Set of J samples from the prior {xi
0 ∼ π0(x)}Ji=1, data y, observation

covariance Γ, target fractional ESS τ , maximum number of tpCN iterations to

perform at each temperature level M , initial tpCN step size ρ, target tpCN

acceptance rate α⋆, tpCN autocorrelation threshold τcorr.

2: Set β0 = 0 and iteration counter n = 0.

3: while βn < 1 do

4: Solve for target inverse temperature βn+1 in Equation 27.

5: if βn+1 = 1 then

6: n∗ ← n+ 1

7: end if

8: αn ← βn+1 − βn

9: Fit NF map, z = fn(x) to current particle locations {xi
n}Ji=1.

10: Obtain latent space particle locations {zi
n = fn(x

i
n)}Ji=1.

11: for i = 1, . . . , J do

12: Update latent space particle ensemble with

zi
n+1 = zi

n + CzF
n

(
CFF

n + αnΓ
)−1 (

y −F(f−1
n (zi

n)) +
√
αnξ

i
n

)
, (32)

where CzF
n and CFF

n are defined analogously to Equations 22 and 23

respectively in the NF latent space, and ξin ∼ N (0,Γ).

13: end for

14: Fit the multivariate t-distribution, tνs(µs, Cs) to the latent space particle ensemble

{zi
n+1}Ji=1 with an EM algorithm. Set component-wise autocorrelations ρ̂0(j) =

1 ∀j.
15: for m = 1, . . . ,M do

16: for i = 1, . . . , J do

17: Update particle state zi
n+1 using Algorithm 2 in NF latent space.

18: end for

19: log ρ← log ρ+ (⟨α⟩ − α⋆)/m

20: µs ← µs + (⟨zn+1⟩ − µs)/m

21: Calculate component-wise autocorrelations ρ̂m(j).

22: if
∏m

l=1 ρ̂l(j) < τcorr ∀j then

23: End tpCN iterations.

24: end if

25: end for

26: Map particle ensemble back to the original data space {xi
n+1 = f−1

n (zi
n+1)}Ji=1

27: n← n+ 1

28: end while

29: Output: Converged particle ensemble {xi
n∗}Ji=1.
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problem, using it as an adaptation step for the tpCN sampler that preserves the target

measure as its invariant measure, we are able to obtain low bias posterior moment

estimates outside the linear, Gaussian setting where standard EKI can otherwise give

highly biased results. Beyond allowing us to correct the errors in direct EKI and

FAKI, the EKI adaptation significantly accelerates tpCN sampling. The EKI update

distributes particles approximately according to the target measure. When used to

fit the reference t-distribution for tpCN, we are able to more closely capture the

target geometry. Coupled with NF preconditioning, we obtain a doubly preconditioned

sampler, with the NF mapping us to an approximately Gaussian latent target space, and

the t-preconditioning in tpCN giving improved performance in sampling any residual

non-Gaussianity in the target.

For the tpCN implementations, both with the SKT adaptation and the benchmark

SMC adaptation, we perform diminishing adaptation [68] of the tpCN step size ρ, and

the reference t-distribution mean µs. For some sampling iteration m, the tpCN kernel

parameters at iteration m+ 1 are given by

log ρm+1 = log ρm +
⟨αm⟩ − α⋆

m
, (33)

µm+1
s = µm

s +
⟨xm⟩ − µm

s

m
, (34)

where ⟨αm⟩ is the mean tpCN acceptance probability at iteration m, α⋆ is some target

acceptance probability and ⟨xm⟩ is the mean of the particle ensemble at iteration m.

Performing diminishing adaptation in this way helps to ensure the robust performance of

the tpCN algorithm across all the adaptive sampling schemes, with similar adaptation

previously being implemented in the pocoMC package for NF preconditioned SMC

[35, 42].

5. Numerical Experiments

In this section we present the results from three numerical experiments. In Section

5.1, we study the recovery of an initial temperature field evolving under the heat

equation. In Section 5.2, we study the recovery of an underlying density field from

surface measurements of the gravitational field. Finally, in Section 5.3, we study the

recovery of a source term from observations of a signal evolving under the reaction-

diffusion equation.

We compare the performance of the adaptive SKT scheme against adaptation with

importance resampling SMC, both with and without NF preconditioning. For the

purposes of labelling the results from each adaptation algorithm we use the following

acronyms:

(i) SKT: The SKT algorithm without NF preconditioning, analogous to Algorithm 3

without the NF steps.

(ii) NF-SKT: The SKT algorithm with NF preconditioning, as described in Algorithm

3.
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(iii) SMC: Importance resampling SMC without NF preconditioning, analogous to

Algorithm 5 without the NF steps.

(iv) NF-SMC: Importance resampling SMC with NF preconditioning, as described in

Algorithm 5.

Alongside testing the performance of the adaptation algorithms for the tpCN sampler,

we also provide results for standard pCN. When adapting the pCN sampler, we fit for

the mean and covariance of the Gaussian base distribution using the empirical mean

and covariance of the particle ensemble prior to sampling at each temperature level.

Learning the NF maps at each temperature level took approximately 10 seconds for

each of the experiments we consider here. This could likely be further improved by

implementing e.g., early stopping based on the NF validation loss [42]. However, in

general, we expect that learning each NF map will take of order seconds of wall time

at each temperature level up to O(100) dimensions. For problems where the cost of a

single forward model evaluation is comparable, the NF training cost becomes negligible

compared to the need to apply repeated sampling updates at each temperature level.

However, we find that obtaining high quality NF fits requires scaling both the number of

particles and the complexity of the NF maps with dimension, which will quickly render

NF training prohibitive as we move to O(103) dimensions.

To quantify the performance of the samplers we compare the squared bias on the

estimated first and second moments of the target posterior, averaged over the target

dimensions, which has previously been used in studying the rate of convergence of

MCMC algorithms [65, 39]. The dimension averaged squared bias, normalized by the

posterior variance, on the estimate for some quantity g(x) is given by

⟨b2g⟩ =

〈
(Eβ=1[gk(x)]− Eπ[gk(x)])

2

σ2
g,k

〉
k∈d

, (35)

where Eβ=1[gk(x)] = J−1
∑J

i=1 gk(x
i
n⋆) is the mean of g(x) for the dimension k, evaluated

over the final particle ensemble {xi
n⋆}Ji=1, Eπ[gk(x)] is the expectation value of g(x) for

the dimension k, evaluated with respect to the true target posterior, σ2
g,k is the true

posterior variance of g(x) for the dimension k, and ⟨·⟩k∈d denotes the average over

the dimensions. We estimate Eπ[gk(x)] and σ2
g,k for each problem from long runs of

Hamiltonian Monte Carlo (HMC), using the No-U-Turn Sampler implementation in the

numpyro library [69, 70]. We denote the dimension averaged squared bias on the first

moment (gk(x) = xk) as ⟨b21⟩ and on the second moment (gk(x) = x2
k) as ⟨b22⟩, where

xk is the element of x corresponding to the dimension k.

Given N independent samples from the posterior {x̂i}Ni=1, we have the estimator

Eπ[gk(x)] = N−1
∑N

i=1 gk(x̂i). Invoking the central limit theorem, the squared error on

this estimator will be of the order ∼ σ2
g,k/N [39]. Whilst we do not have independent

samples from the posterior from HMC, we ensure that we run chains sufficiently long

such that the estimated effective sample size (ESS) ≳ 103. These heuristics can

also be used to define a regime for low bias where ⟨b2g⟩ < 10−2, which corresponds
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approximately with a dimension averaged squared bias less than one hundredth of the

posterior variance.

In comparing the performance of each adaptive algorithm, we consider two sets

of tests. In the first we run the SKT and NF-SKT algorithms with 10 tpCN (pCN)

iterations at each temperature level, and the SMC and NF-SMC algorithms with 11

tpCN (pCN) iterations at each temperature level. The fixed computational budget at

each temperature level allows for a more direct assessment of the performance of the

EKI adaptation step. The additional tpCN (pCN) iteration for SMC and NF-SMC is

to account for the additional set of forward model evaluations used for the EKI updates

in SKT and NF-SKT. We report results for ensemble sizes J ∈ {2d, 4d, 6d, 8d, 10d},
where d is the target dimension of each model. In the second set of tests we compare

the performance of each algorithm using an adaptive number of sampling iterations at

each temperature level, with a correlation threshold of τcorr = 0.1 and an ensemble size

J = 10d. To avoid excessive computation, we set the maximum number of sampling

iterations at each temperature level to 50 for SKT and NF-SKT, and 51 for SMC

and NF-SMC. For the results presented in this section we use a target tpCN (pCN)

acceptance rate of α⋆ = 0.234, an initial tpCN (pCN) step size of ρ = 1 and a fractional

target ESS of τ = 0.5 when adapting the annealing schedule. Each algorithm is run over

ten different random seeds to estimate the corresponding variation in performance. For

completeness, we also provide corner plots comparing the converged particle ensembles

obtained with each adaptation method against reference HMC samples in Appendix E.

In Appendix F, we demonstrate the performance of EKI and FAKI on our numerical

benchmarks without embedding them as part of an annealed sampling scheme. Each

of the numerical experiments we consider in this work show varying degrees of non-

Gaussianity, which results in highly biased posterior inferences for EKI and FAKI.

Whilst both methods converge on their final ensembles with ∼ 30− 50 embarrassingly

parallel model evaluations, the highly biased posterior moment estimates mean such

methods are unsuitable for many scientific inference tasks when applied alone.

In addition to the bias on posterior moment estimates, one may also be interested

in the field reconstructions obtained with each method. In Appendix D we show the

relevant field and source term reconstructions for each experiment obtained with each

algorithm. For FAKI and EKI there are clear discrepancies between the reconstructed

fields and source terms and the reference reconstruction from HMC. This is to be

expected given the highly biased final ensembles obtained with these methods. For each

of the adaptive sampling schemes considered in this work the qualitative reconstruction

of the initial fields and source terms was largely comparable to the recovery with

HMC, both applied to tpCN and pCN. However, the ability of each method to obtain

comparable field and source term recoveries does not fully reflect the ability of the

various algorithms in accurately approximating marginal posterior moments, which are

the key object of study for many scientific inference tasks.
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5.1. Heat Equation

The heat equation is a partial differential equation (PDE) describing the evolution

of some field u(x, t) over time. For our experiment we consider the case of a two-

dimensional temperature field evolving according to

∂u(x, t)

∂t
= D∇2u(x, t) = D

(
∂2u(x, t)

∂x2
1

+
∂2u(x, t)

∂x2
2

)
, (36)

where we set the thermal diffusivity constant D = 0.5. The temperature field is

taken to be on a square plate, with the length of a side set to L = 10. We impose

Dirichlet boundary conditions on the domain Ω ⊂ R2, such that u(x, t) = 0,∀x ∈ ∂Ω.

The forward model consists in solving Equation 36 for the evolution of some initial

temperature field u(x, t = 0) up to a time tf = 1. We solve the heat equation using

the forward time centered space (FTCS) method [71] on a 64× 64 grid, with 1000 time

steps.

For our simulated data, we consider the situation where measurements of the

temperature field are made at time tf on a low resolution 8× 8 grid, with the signal in

a low resolution grid pixel being the average of the temperature signal from the 64× 64

grid pixels contained within it. The observation noise was taken to be independent

in each pixel, with a Gaussian noise standard deviation of ση = 0.2. The true initial

temperature field was generated from the Karhunen-Loeve (KL) expansion of a Gaussian

random field (GRF) with a squared exponential covariance kernel

C(x,x′) = exp

(
−∥x− x′∥22

2ℓ2

)
, (37)

where ℓ is the GRF length scale. The KL expansion, up to some order R, for the GRF

is given by

u(x, t = 0) = µK + σK

R∑
k=1

√
λkϕk(x)θk, (38)

where µK is the GRF mean, σ2
K is the GRF variance, {λk}Rk=1 is a sequence of strictly

decreasing, real and positive eigenvalues for the covariance kernel in Equation 37,

{ϕk(x)}Rk=1 are the set of corresponding eigenfunctions of the covariance kernel, and

{θk ∼ N (0, 1)}Rk=1 are a set of standard Gaussian random variables. To generate the

true field for this numerical study we set µ = 0, σ2 = 1, ℓ = 0.1 and generate R = 200

standard Gaussian random variables {θk}200k=1. The simulated data are then generated

by solving for the time evolution of u(x, t) up to time tf = 1, averaging the signal onto

the low resolution grid and adding Gaussian noise realizations to each pixel. The true

initial temperature field and the low resolution observed field are shown in Figure 1.

For the test model, we consider recovering the R = 100 leading modes of the KL

expansion, along with the thermal diffusivity constant. Defining θ = (θ1, . . . , θ100)
⊺, the
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Figure 1: The initial temperature field u(x, t = 0) (left panel), shown alongside the low

resolution observed temperature field at time tf = 1 (right panel).

full model is given by

D ∼ |N (µ = 0, σ2 = 0.52)|, (39)

µK ∼ N (µ = 0, σ = 0.1), (40)

σK ∼ |N (µ = 0, σ2 = 1.0)|, (41)

θ ∼ N (0, I100), (42)

y ∼ N (FH(D,µK , σK ,θ), σ
2
ηI64), (43)

where |N (µ = 0, σ2)| is the Half-Normal distribution with scale σ and FH(D,µK , σK ,θ)

denotes the forward model for the heat equation, mapping from the initial temperature

field to the low resolution observations y at time tf = 1. For performing inference

we apply log-transformations to D and σK to map the all the parameters to an

unconstrained space, modifying the the target distribution with the corresponding

Jacobian factors. The target dimension for this problem is d = 103.

The first set of results are provided when running each adaptive algorithm with a

fixed computational budget at each temperature level. In Figure 2 we show the results

for ⟨b21⟩ obtained with the final particle ensembles for each algorithm, with the box plots

showing the variation over the 10 runs. Similarly, Figure 3 shows the results for ⟨b22⟩
obtained for each algorithm with a fixed computational budget at each temperature

level. The mean and standard deviation of ⟨b21⟩ and ⟨b22⟩ for each algorithm over their

10 runs are reported in Table 1 for tpCN and in Table 2 for pCN, alongside the number

of temperature levels, Nβ used by each algorithm. For the second set of results, where

the number of sampling iterations at each temperature level is chosen by monitoring

sample autocorrelations, we report the mean and standard deviation of ⟨b21⟩ and ⟨b22⟩ for
each algorithm over their 10 runs in Table 3, alongside the number of forward model

evaluations divided by the ensemble size Neval/J , which corresponds to the number of

embarrassingly parallel forward model evaluations.
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Figure 2: Final dimension averaged squared bias on the first moment for the heat

equation model, plotted against the ensemble size J expressed as a multiple of the

target dimension d = 103. Results are shown for each adaptation algorithm applied to

the tpCN and pCN samplers.
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Figure 3: Final dimension averaged squared bias on the second moment for the heat

equation model, plotted against the ensemble size J expressed as a multiple of the

target dimension d = 103. Results are shown for each adaptation algorithm applied to

the tpCN and pCN samplers.
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Beginning with comparisons where we use a fixed computational budget at each

temperature level, we find that tpCN achieves lower squared bias on the first and second

moments compared to pCN. Given the same adaptive SKT and SMC schemes, the

greater flexibility in the base t-distribution means tpCN is able to better adapt to

the non-Gaussian targets, resulting in more rapid convergence to the target at each

temperature level.

Comparing SKT and SMC adaptation schemes, we can see that SKT obtains

lower values for ⟨b21⟩ and ⟨b22⟩ for all ensemble sizes. The number of temperature

levels used by both algorithms is comparable. It is apparent from these tests using

SKT adaptation we are able to converge more rapidly at each temperature level,

indicating that the EKI update provides a better initialization for the tpCN updates

than the importance resampling used in SMC. The EKI update also helps to provide

improved preconditioning for the tpCN updates, with the t-distribution being fitted to

the annealed target particle approximation obtained via the EKI update.

A similar pattern is observed when comparing NF-SKT and NF-SMC. In comparing

each with SKT and SMC respectively, we see that the improvement from NF

preconditioning becomes more pronounced as the ensemble size is increased. For J = 2d

there are not enough particles for the NF to learn a useful map between between the

original data space and a Gaussian latent space. Indeed, in this regime the NF can

degrade performance by failing to map to a latent space where the target is effectively

Gaussianized, and in the case of NF-SKT introducing additional non-linearity in the

forward model evaluation for the EKI update. For larger ensemble sizes (J ≥ 6d) the

use of NF transformations reduces the final bias for both the NF-SKT and NF-SMC

algorithms. The effect is more pronounced for NF-SKT, where the NF acts to both

relax the Gaussian ansatz of EKI and provide nonlinear preconditioning for the tpCN

updates. However, it is worth noting that SKT was able to achieve low bias without

NF preconditioning, demonstrating the potential of the EKI update as an adaptation

step for tpCN by both initializing and preconditioning the sampling updates within an

annealing scheme.

When we select the number of sampling iterations at each temperature level based

on the first order autocorrelations, we see that for the NF-SKT and SKT adaptation

schemes, the tpCN sampler is able to reach the low bias regime (⟨b2g⟩ < 10−2). This is not

the case for the NF-SMC and SMC samplers. From the tests using a fixed computational

budget at each temperature level, we expect these adaptation schemes to require more

tpCN iterations at each temperature level. Despite this, the tpCN sampling updates

are terminated earlier for the NF-SMC and SMC adaptation schemes, indicating that

a lower value of τcorr is required. For pCN, we do not reach the low bias regime for all

adaptation schemes, again indicating a more stringent requirement on the number of

sampling iterations is necessary.
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 10d 15.0± 0.0 0.0029± 0.0006 0.0029± 0.0007

NF-SKT tpCN 8d 15.0± 0.0 0.0048± 0.0008 0.0045± 0.0005

NF-SKT tpCN 6d 15.0± 0.0 0.0065± 0.001 0.0060± 0.001

NF-SKT tpCN 4d 15.0± 0.0 0.0084± 0.001 0.010± 0.007

NF-SKT tpCN 2d 14.8± 0.4 0.040± 0.009 0.072± 0.006

SKT tpCN 10d 15.0± 0.0 0.0056± 0.001 0.0053± 0.001

SKT tpCN 8d 15.0± 0.0 0.0071± 0.001 0.0062± 0.001

SKT tpCN 6d 15.0± 0.0 0.0094± 0.001 0.0080± 0.001

SKT tpCN 4d 15.0± 0.0 0.011± 0.002 0.011± 0.002

SKT tpCN 2d 15.0± 0.0 0.038± 0.003 0.064± 0.007

NF-SMC tpCN 10d 15.2± 0.4 0.021± 0.004 0.021± 0.005

NF-SMC tpCN 8d 15.7± 0.5 0.025± 0.004 0.026± 0.004

NF-SMC tpCN 6d 15.4± 0.5 0.029± 0.005 0.028± 0.005

NF-SMC tpCN 4d 15.5± 0.5 0.041± 0.007 0.055± 0.008

NF-SMC tpCN 2d 14.9± 0.3 0.11± 0.02 0.15± 0.009

SMC tpCN 10d 15.3± 0.5 0.032± 0.004 0.036± 0.004

SMC tpCN 8d 15.5± 0.5 0.034± 0.005 0.037± 0.007

SMC tpCN 6d 15.7± 0.5 0.036± 0.004 0.038± 0.004

SMC tpCN 4d 15.6± 0.5 0.033± 0.006 0.039± 0.004

SMC tpCN 2d 15.1± 0.3 0.094± 0.02 0.14± 0.009

Table 1: Results for the number of temperature levels used by each algorithm Nβ and

squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for each

algorithm when performing inference on the heat equation example, adapting the tpCN

sampler. We report the mean and standard deviation for each statistic over the 10

algorithm runs, and show results for each of the tested ensemble sizes J . The number

of parallelized model evaluations is given by 11Nβ for each algorithm, with the total

number of model evaluations being given by 11JNβ. The target dimension is d = 103.

5.2. Gravity Survey

For this problem we adapt the two-dimensional gravity surveying problem presented in

[72]. We have some mass density field ϱ(x), located at a depth δ from the surface at

which measurements of the vertical component of the gravitational field are made. The

vertical component of the gravitational field at some point s at the surface is given by

ζ(s) =

∫∫
X

δ

∥s− x∥32
ϱ(x)dx, (44)

where X = [0, 1]2 is the domain ϱ(x). The forward model therefore consists in solving

the integral in Equation 44. We follow [72] in evaluating this integral using midpoint
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT pCN 10d 13.2± 0.4 0.056± 0.008 0.15± 0.006

NF-SKT pCN 8d 13.0± 0.0 0.072± 0.006 0.18± 0.0004

NF-SKT pCN 6d 13.0± 0.0 0.10± 0.01 0.21± 0.007

NF-SKT pCN 4d 13.0± 0.0 0.18± 0.02 0.28± 0.01

NF-SKT pCN 2d 13.2± 0.4 0.056± 0.008 0.15± 0.006

SKT pCN 10d 15.9± 0.3 0.074± 0.008 0.083± 0.005

SKT pCN 8d 15.9± 0.3 0.097± 0.001 0.11± 0.006

SKT pCN 6d 15.9± 0.3 0.15± 0.02 0.16± 0.01

SKT pCN 4d 15.7± 0.5 0.26± 0.02 0.25± 0.01

SKT pCN 2d 15.2± 0.4 0.61± 0.05 0.41± 0.02

NF-SMC pCN 10d 15.0± 0.0 0.073± 0.009 0.20± 0.006

NF-SMC pCN 8d 15.1± 0.3 0.12± 0.01 0.24± 0.006

NF-SMC pCN 6d 15.9± 0.3 0.20± 0.01 0.29± 0.02

NF-SMC pCN 4d 17.4± 0.5 0.33± 0.03 0.34± 0.02

NF-SMC pCN 2d 20.6± 0.4 0.67± 0.12 0.48± 0.03

SMC pCN 10d 18.2± 0.4 0.21± 0.03 0.15± 0.008

SMC pCN 8d 19.2± 0.4 0.23± 0.03 0.19± 0.01

SMC pCN 6d 17.4± 0.5 0.33± 0.04 0.22± 0.01

SMC pCN 4d 21.2± 0.4 0.48± 0.06 0.30± 0.01

SMC pCN 2d 14.6± 0.5 1.36± 0.16 0.88± 0.26

Table 2: Results for the number of temperature levels used by each algorithm Nβ and

squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for each

algorithm when performing inference on the heat equation example, adapting the pCN

sampler. We report the mean and standard deviation for each statistic over the 10

algorithm runs, and show results for each of the tested ensemble sizes J . The number

of parallelized model evaluations is given by 11Nβ for each algorithm, with the total

number of model evaluations being given by 11JNβ. The target dimension is d = 103.

quadrature. Using Q quadrature points along each dimension, the integral expression

becomes

ζ(si) =

Q∑
l=1

ωl

Q∑
k=1

ωk
δ

∥si − xk,l∥32
ϱ̂(xk,l) =

Q2∑
j=1

ωj
δ

∥si − xj∥32
ϱ̂(xj), (45)

where ωj = 1/Q2,∀j are the quadrature weights, ϱ̂(xj) is the approximate subsurface

density at the quadrature point xj, and ζ(si) is the vertical component of the

gravitational field at the collocation point on the surface si, i ∈ {1, . . . , N2}.
The simulated data was obtained by generating a ground truth subsurface density
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Algorithm (τcorr = 0.1) Neval/J ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 210± 140 0.0029± 0.0005 0.0028± 0.0004

NF-SKT pCN 320± 210 0.056± 0.008 0.15± 0.006

SKT tpCN 390± 180 0.0031± 0.0007 0.0034± 0.0009

SKT pCN 790± 24 0.069± 0.008 0.079± 0.005

NF-SMC tpCN 165± 31 0.030± 0.005 0.033± 0.006

NF-SMC pCN 170± 22 0.093± 0.012 0.19± 0.009

SMC tpCN 180± 22 0.039± 0.003 0.045± 0.004

SMC pCN 930± 24 0.19± 0.03 0.15± 0.0007

Table 3: Results for the number of embarrassingly parallel model evaluations Neval/J ,

and squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for

each algorithm when adapting the number of sampling iterations at each temperature

level using τcorr = 0.1, as applied to the heat equation example. We show results when

adapting both the tpCN and pCN samplers with an ensemble size of J = 10d, where

the target dimension is d = 103.

field with profile given by

ϱ(x) ∝ sin(πx1) + sin(3πx2) + x2 + 1, x1, x2 ∈ [0, 1] (46)

normalized to have a maximum value of 1. This signal was projected onto a 64×64 grid.

The surface signal was evaluated using Equation 45 on a 10 × 10 grid, with Gaussian

white noise with standard deviation ση = 0.1 being added to each surface pixel to give

the simulated data. The true subsurface mass density, and the corresponding surface

gravitational field measurements used in this example are shown in Figure 4.
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Figure 4: The true subsurface mass density field ϱ(x) (left panel), shown alongside the

low resolution measurements of the gravitational field at the surface ζ(x) (right panel).

For the inference task we model the subsurface density as a GRF with a Matérn
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3/2 covariance kernel,

C(x,x′) =

(
1 +

√
3 ∥x− x′∥2

ℓ

)
exp

(
−
√
3 ∥x− x′∥2

ℓ

)
, (47)

where ℓ is the correlation length scale. The subsurface density field is parameterized

using a KL expansion of the R = 60 leading eigenmodes,

ϱ(x) = µK + σK

R=60∑
k=1

√
λkϕk(x)θk, (48)

where µK and σ2
K are the field mean and variance respectively, {λk}R=60

k=1 is a

sequence of strictly decreasing, real and positive eigenvalues of the covariance kernel

in Equation 47, ϕk(x) are the corresponding eigenfunctions of the covariance kernel

and {θk ∼ N (0, 1)}R=60
k=1 are a set of standard Gaussian random variables. Defining

θ = (θ1, . . . , θ60)
⊺, the full model for this example is given by

µK ∼ N (µ = 0, σ2 = 12), (49)

σK ∼ |N (µ = 0, σ2 = 0.22)|, (50)

θ ∼ N (0, I60), (51)

y ∼ N (Fζ(µK , σK ,θ), σ
2
ηI100) (52)

where Fζ(µK , σK ,θ) denotes the full gravity survey forward model, mapping from

the subsurface mass density field to the low resolution surface measurements of the

gravitational field y. When performing inference a log-transformation is applied to σK

such that all parameters are in an unconstrained space, with the target distribution

being modified by the corresponding Jacobian. The target dimension for this problem

is d = 62.

We start again with tests where we enforce a fixed computational budget at each

temperature level. In Figures 5 and 6 we show the recovered estimates for ⟨b21⟩ and
⟨b22⟩ respectively, with box plots again showing the variation over the 10 runs for each

algorithm and ensemble size, using a fixed computational budget at each temperature

level. The mean and standard deviation for ⟨b21⟩ and ⟨b22⟩, along with the number of

temperature levels used by each each algorithm over the 10 runs are reported in Table

4 for tpCN and Table 5 for pCN. We report the mean and standard deviation for ⟨b21⟩
and ⟨b22⟩, along with the number of embarrassingly parallel model evaluations Neval/J ,

for the second set of tests, where we select the number of sampling iterations adaptively,

in Table 6.

Given a fixed computational budget at each temperature level, we see again that

tpCN is able to achieve a lower squared bias on the final ensembles for all adaptation

methods. For SMC applied to tpCN, we find that the values for ⟨b21⟩ and ⟨b22⟩ are high and

largely independent of the ensemble size. In this case, SMC requires significantly more

tpCN iterations at each temperature level in order to correctly distribute the particle
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ensemble after the importance resampling step. In comparison, SKT is able to achieve

a lower bias with the same computational budget being used at each temperature level.

The particle ensemble obtained by the EKI update provides a better initialization and

preconditioner for the tpCN updates compared to the importance resampled particle

ensemble, achieving lower bias with fewer model evaluations.

A similar pattern is again observed when comparing the NF-SKT and NF-SMC

algorithms. For larger ensemble sizes the NF is able to map the effective prior at

each temperature level to a Gaussian latent space, where the target is approximately

Gaussian. For the same computational budget at each temperature level, the NF

preconditioning more rapidly distributes particles according to the given target, with

the low bias threshold being reached for an ensemble size of J = 10d for the NF-SKT

algorithm. For smaller ensemble sizes, the NF is unable to learn useful non-Gaussian

features in the geometry of the effective prior, meaning we do not obtain an improvement

from NF preconditioning.

When we allow for adaptive selection of the number of sampling iterations we again

find that we are able to reach the low bias regime with NF-SKT and SKT adaptation

of the tpCN sampler. This is not the case for NF-SMC and SMC adaptation applied to

tpCN, or for the pCN sampler using all adaptation algorithms. In these cases, a more

stringent adaptation criterion is again required to achieve low bias estimates of posterior

moments.

5.3. Reaction-Diffusion Equation

We consider a reaction-diffusion system in one spatial dimension, where some quantity

s(x, t) varies with time under the action of some source term u(x). This time evolution

is described by a nonlinear reaction-diffusion equation of the form

∂s(x, t)

∂t
= D

∂2s(x, t)

∂x2
+ γs2(x, t) + u(x), x ∈ Ω = [0, 1], (53)

where D = 0.1 is the diffusion constant and γ = 0.1 is the reaction rate. For

this problem, we study the recovery of the source function u(x) from observations

of s(x, t). To solve Equation 53 we use the implicit, second-order finite difference

scheme implemented in [73]. We assume Dirichlet boundary conditions such that

s(x, t) = 0, ∀x ∈ ∂Ω, and the initial condition s(x, t = 0) = 0. The solution to Equation

53 is evaluated on a 100× 100 grid in (x, t), up to a final time tf = 1.

We parameterize the source term using the Hilbert space expansion of a Gaussian

Process (GP) [74] with a squared exponential kernel,

u(x) = µH +
R∑

j=1

[
SΘ

(√
λj

)]1/2
ϕj(x)θj, (54)

where µH is the Hilbert space GP mean, SΘ(ω) = αH

√
2πℓH exp(−ℓ2Hω2/2) is the

squared exponential kernel spectral density function, Θ = (αH , ℓH) denotes the kernel
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Figure 5: Final dimension averaged squared bias on the first moment for the gravity

survey model, plotted against the ensemble size J expressed as a multiple of the target

dimension d = 62. Results are shown for each adaptation algorithm applied to the tpCN

and pCN samplers.
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Figure 6: Final dimension averaged squared bias on the second moment for the gravity

survey model, plotted against the ensemble size J expressed as a multiple of the target

dimension d = 62. Results are shown for each adaptation algorithm applied to the tpCN

and pCN samplers.
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 10d 22.6± 0.5 0.0098± 0.0024 0.0089± 0.0025

NF-SKT tpCN 8d 23.0± 0.0 0.017± 0.004 0.017± 0.003

NF-SKT tpCN 6d 23.0± 0.0 0.027± 0.009 0.025± 0.007

NF-SKT tpCN 4d 23.0± 0.0 0.058± 0.011 0.056± 0.008

NF-SKT tpCN 2d 23.2± 0.4 0.14± 0.03 0.13± 0.02

SKT tpCN 10d 23.1± 0.3 0.024± 0.005 0.022± 0.004

SKT tpCN 8d 23.0± 0.0 0.028± 0.006 0.024± 0.004

SKT tpCN 6d 23.2± 0.4 0.032± 0.009 0.027± 0.008

SKT tpCN 4d 23.3± 0.5 0.050± 0.010 0.049± 0.009

SKT tpCN 2d 23.4± 0.5 0.17± 0.03 0.16± 0.02

NF-SMC tpCN 10d 23.0± 0.0 0.11± 0.03 0.11± 0.03

NF-SMC tpCN 8d 23.8± 0.4 0.17± 0.05 0.19± 0.05

NF-SMC tpCN 6d 24.0± 0.0 0.22± 0.05 0.23± 0.06

NF-SMC tpCN 4d 24.1± 0.3 0.22± 0.07 0.21± 0.07

NF-SMC tpCN 2d 23.2± 0.3 0.31± 0.07 0.23± 0.08

SMC tpCN 10d 23.9± 0.3 0.35± 0.05 0.42± 0.07

SMC tpCN 8d 24.0± 0.0 0.35± 0.05 0.42± 0.06

SMC tpCN 6d 24.2± 0.4 0.34± 0.07 0.39± 0.10

SMC tpCN 4d 24.0± 0.6 0.31± 0.06 0.34± 0.08

SMC tpCN 2d 23.5± 0.5 0.32± 0.07 0.25± 0.06

Table 4: Results for the number of temperature levels used by each algorithm Nβ

and squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for

each algorithm, when performing inference on the gravity survey example. We report

the mean and standard deviation for each statistic over the 10 algorithm runs, and

show results for each of the tested ensemble sizes J . The number of parallelized

model evaluations is given by 11Nβ for each algorithm, with the total number of model

evaluations being given by 11JNβ. The target dimension is d = 62.

hyperparmeters i.e., the kernel variance αH and length scale ℓH , {λj}∞j=1 and {ϕj(x)}∞j=1

are the eigenvalues and eigenfunctions of the Laplacian operator on some domain

ΩL = [−L,L] respectively, and θj ∼ N (0, 1) are a set of standard Gaussian random

variables. The eigenvalues and eigenfunctions of the Laplacian operator are given by

λj =

(
jπ

2L

)2

, (55)

ϕj(x) =

√
1

L
sin
(√

λj(x+ L)
)
. (56)

Without loss of generality, we can evaluate u(x) on the symmetric interval [−0.5, 0.5],
choosing the domain for the Laplacian operator ΩL = [−1, 1] such that it contains the
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT pCN 10d 20.0± 0.0 0.040± 0.010 0.12± 0.01

NF-SKT pCN 8d 19.7± 0.5 0.070± 0.020 0.16± 0.02

NF-SKT pCN 6d 19.3± 0.5 0.13± 0.03 0.20± 0.02

NF-SKT pCN 4d 19.3± 0.5 0.33± 0.06 0.35± 0.04

NF-SKT pCN 2d 18.4± 0.5 0.69± 0.11 0.48± 0.08

SKT pCN 10d 24.6± 0.5 0.095± 0.014 0.16± 0.02

SKT pCN 8d 24.4± 0.5 0.13± 0.03 0.13± 0.02

SKT pCN 6d 23.6± 0.5 0.22± 0.03 0.18± 0.01

SKT pCN 4d 23.5± 0.5 0.34± 0.08 0.23± 0.03

SKT pCN 2d 22.0± 0.4 0.94± 0.15 0.52± 0.08

NF-SMC pCN 10d 21.0± 0.0 0.19± 0.04 0.22± 0.02

NF-SMC pCN 8d 21.5± 0.5 0.25± 0.04 0.26± 0.02

NF-SMC pCN 6d 22.3± 0.5 0.40± 0.10 0.32± 0.03

NF-SMC pCN 4d 23.7± 0.5 0.69± 0.14 0.44± 0.07

NF-SMC pCN 2d 29.2± 1.1 1.82± 0.58 1.27± 0.82

SMC pCN 10d 27.3± 0.6 0.69± 0.09 0.48± 0.09

SMC pCN 8d 28.2± 0.4 0.65± 0.07 0.34± 0.07

SMC pCN 6d 29.1± 0.5 1.05± 0.24 0.58± 0.15

SMC pCN 4d 31.4± 1.2 1.63± 0.45 1.11± 0.65

SMC pCN 2d 9.4± 1.6 8.28± 2.86 50.8± 51.0

Table 5: Results for the number of temperature levels used by each algorithm Nβ

and squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for

each algorithm, when performing inference on the gravity survey example. We report

the mean and standard deviation for each statistic over the 10 algorithm runs, and

show results for each of the tested ensemble sizes J . The number of parallelized

model evaluations is given by 11Nβ for each algorithm, with the total number of model

evaluations being given by 11JNβ. The target dimension is d = 62.

full spatial domain of u(x) [74].

To generate a simulated data set, we obtain a realisation of u(x) from Equation 54

with µH = 0, αH = 1 and ℓH = 0.1. We solve for s(x, t) subject to the corresponding

Dirichlet boundary conditions, up to a time tf = 1 on the 100× 100 grid in (x, t). The

field s(x, t) is then observed at 10 equally spaced spatial locations, at 10 equally spaced

times, with Gaussian observation noise corresponding to a noise standard deviation of

ση = 0.01. The true source function is shown in Figure 7, alongside the corresponding

solution for s(x, t) and the locations of the s(x, t) measurements.

For the inference task here we consider recovering the first R = 50 terms in the
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Algorithm (τcorr = 0.1) Neval/J ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 350± 100 0.0078± 0.0032 0.0072± 0.0032

NF-SKT pCN 420± 230 0.059± 0.011 0.12± 0.01

SKT tpCN 810± 90 0.0055± 0.0010 0.0060± 0.0012

SKT pCN 1200± 26 0.15± 0.03 0.12± 0.01

NF-SMC tpCN 320± 73 0.046± 0.023 0.046± 0.024

NF-SMC pCN 190± 6.6 0.15± 0.03 0.12± 0.01

SMC tpCN 630± 14 0.036± 0.008 0.037± 0.010

SMC pCN 1400± 43 0.69± 0.11 0.49± 0.09

Table 6: Results for the number of embarrassingly parallel model evaluations Neval/J ,

and squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for

each algorithm when adapting the number of sampling iterations at each temperature

level using τcorr = 0.1, as applied to the gravity survey example. We show results when

adapting both the tpCN and pCN samplers with an ensemble size of J = 10d, where

the target dimension is d = 62.
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Figure 7: The true source term u(x) (left panel), shown alongside the corresponding

solution for s(x, t) (right panel). White circles on the right panel denote the locations

where measurements of s(x, t) were made.

Hilbert space expansion. Denoting θ = (θ1, . . . , θ50)
⊺, the full model is given by

µH ∼ N (µ = 0, σ2 = 0.12), (57)

αH ∼ |N (µ = 0, σ2 = 12)|, (58)

ℓH ∼ InverseGamma(α = 4, β = 0.3), (59)

θ ∼ N (0, I50), (60)

y ∼ N (FRD(µH , αH , ℓH ,θ), σ
2
ηI100), (61)

where FRD(µH , αH , ℓH ,θ) denotes the full forward model, mapping from the source

function u(x) to the s(x, t) observations y. When running our set of inference algorithms,

we apply log-transformations to αH and ℓH such that all parameters are mapped to an
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unconstrained space, making the corresponding Jacobian adjustments to the target.

The target dimension for this problem is d = 53.

For the first set of results we apply a fixed computational budget at each

temperature level. In Figures 8 and 9 we show the recovered estimates for ⟨b21⟩ and ⟨b22⟩
respectively, with box plots showing the variation over the 10 runs for each algorithm

and ensemble size. We report the corresponding mean and standard deviation for ⟨b21⟩
and ⟨b22⟩, along with the mean and standard deviation on the number of temperature

levels used by each algorithm over the 10 runs in Table 7 for tpCN, and in Table 8 for

pCN. In Table 9 we report the mean and standard deviation for ⟨b21⟩ and ⟨b22⟩, along
with the number of embarrassingly parallel model evaluations Neval/J , for the second

set of tests where we select the number of sampling iterations at each temperature level

adaptively.

Whilst the values of ⟨b21⟩ are comparable for tpCN and pCN on this example,

the values for ⟨b22⟩ are significantly lower for tpCN. The tpCN sampler is still able to

better adapt to the targets at each temperature level, despite the target being closer

to Gaussian. Comparing SKT with SMC, we can see that SKT is able to achieve

significantly lower bias with the final particle ensemble using the same computational

budget at each temperature level. This again indicates the the SKT update provides

a better initialization and preconditioner for the subsequent tpCN iteration than the

importance resampled ensemble in SMC. For this problem, we only obtain a small

improvement in the final bias with NF preconditioning for larger ensemble sizes (J ≥ 6d).

The target posterior for this problem is close to Gaussian, meaning the NF map does not

introduce a latent space where the target geometry is such that sampling is significantly

easier.

When we make an adaptive selection of the number of sampling iterations, we find

that we are able to reach the low bias regime for the tpCN sampler using the NF-

SKT and SKT adaptation algorithms. This is not the case for the NF-SMC and SMC

adaptation algorithms, or for the pCN sampler using any adaptation method. It is

worth noting here that for pCN using SKT adaptation, for one of the random seeds the

resultant pCN sampler was very poorly adapted to the target, resulting in high values

for the mean and standard deviation of ⟨b22⟩. For NF-SMC and SMC adaptation applied

to tpCN, and any adaptation method applied to pCN, we would again require a more

stringent criterion for selecting the number of sampling iterations at each temperature

level.

6. Conclusions

In this work we have considered the problem of performing Bayesian inference on inverse

problems where the forward model is expensive to evaluate and we do not have access

to derivatives of the forward model. In such a situation, standard sampling methods

such as MCMC and SMC algorithms can quickly become intractable, requiring a large

number of serial model evaluations to attain low bias estimates of posterior moments
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Figure 8: Final dimension averaged squared bias on the first moment for the reaction-

diffusion model, plotted against the ensemble size J expressed as a multiple of the target

dimension d = 53. Results are shown for each adaptation algorithm applied to the tpCN

and pCN samplers.
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Figure 9: Final dimension averaged squared bias on the second moment for the reaction-

diffusion model, plotted against the ensemble size J expressed as a multiple of the target

dimension d = 53. Results are shown for each adaptation algorithm applied to the tpCN

and pCN samplers.
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 10d 17.0± 0.0 0.017± 0.002 0.015± 0.002

NF-SKT tpCN 8d 17.0± 0.0 0.018± 0.003 0.018± 0.002

NF-SKT tpCN 6d 17.8± 0.4 0.029± 0.004 0.032± 0.002

NF-SKT tpCN 4d 18.0± 0.0 0.040± 0.010 0.049± 0.004

NF-SKT tpCN 2d 19.1± 0.3 0.076± 0.016 0.13± 0.01

SKT tpCN 10d 17.0± 0.0 0.020± 0.003 0.016± 0.002

SKT tpCN 8d 17.1± 0.3 0.028± 0.004 0.021± 0.002

SKT tpCN 6d 17.6± 0.5 0.033± 0.007 0.032± 0.004

SKT tpCN 4d 18.0± 0.0 0.038± 0.004 0.046± 0.003

SKT tpCN 2d 19.0± 0.4 0.072± 0.013 0.12± 0.007

NF-SMC tpCN 10d 18.0± 0.0 0.072± 0.007 0.072± 0.008

NF-SMC tpCN 8d 18.6± 0.5 0.084± 0.010 0.093± 0.015

NF-SMC tpCN 6d 19.0± 0.0 0.11± 0.009 0.13± 0.01

NF-SMC tpCN 4d 19.8± 0.4 0.14± 0.02 0.18± 0.03

NF-SMC tpCN 2d 21.3± 0.5 0.21± 0.02 0.25± 0.03

SMC tpCN 10d 18.0± 0.0 0.11± 0.01 0.11± 0.02

SMC tpCN 8d 18.1± 0.3 0.13± 0.03 0.12± 0.03

SMC tpCN 6d 18.9± 0.3 0.13± 0.02 0.13± 0.02

SMC tpCN 4d 19.5± 0.5 0.15± 0.01 0.18± 0.02

SMC tpCN 2d 21.1± 0.5 0.20± 0.04 0.24± 0.07

Table 7: Results for the number of temperature levels used by each algorithm Nβ and

squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for each

algorithm, when performing inference on the reaction-diffusion example. We report

the mean and standard deviation for each statistic over the 10 algorithm runs, and

show results for each of the tested ensemble sizes J . The number of parallelized

model evaluations is given by 11Nβ for each algorithm, with the total number of model

evaluations being given by 11JNβ. The target dimension is d = 53.

[16]. In contrast, EKI methods have been proposed that can rapidly converge on

an ensemble approximation to the target posterior. However, EKI as applied to the

Bayesian inverse problem is only exact in the regime of Gaussian targets and linear

forward models, otherwise giving an uncontrolled approximation. This is insufficient for

many scientific inference tasks where we seek accurate uncertainty estimates and hence

low bias estimates for higher order posterior moments.

To address this shortcoming, we proposed integrating EKI updates within an

adaptive SMC framework, replacing the standard importance resampling step at each

temperature level with an EKI update. Instead of relying solely on the EKI updates

to approximate the posterior, it was used to adapt the proposal kernel of the t-

preconditioned Crank-Nicolson (tpCN) sampler. In this way, the EKI approximation at
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Algorithm J Nβ ⟨b21⟩ ⟨b22⟩
NF-SKT pCN 10d 16.0± 0.0 0.015± 0.002 0.11± 0.003

NF-SKT pCN 8d 16.0± 0.0 0.018± 0.003 0.13± 0.006

NF-SKT pCN 6d 15.9± 0.3 0.022± 0.004 0.16± 0.008

NF-SKT pCN 4d 15.5± 0.5 0.042± 0.005 0.23± 0.006

NF-SKT pCN 2d 14.9± 0.5 0.14± 0.04 0.30± 0.01

SKT pCN 10d 21.0± 0.9 0.038± 0.007 0.79± 0.32

SKT pCN 8d 21.4± 2.0 0.041± 0.008 0.23± 0.01

SKT pCN 6d 19.9± 1.0 0.082± 0.016 0.22± 0.25

SKT pCN 4d 18.6± 0.5 0.10± 0.02 0.13± 0.04

SKT pCN 2d 17.7± 0.6 0.25± 0.06 0.28± 0.02

NF-SMC pCN 10d 16.7± 0.5 0.018± 0.003 0.13± 0.006

NF-SMC pCN 8d 17.0± 0.0 0.041± 0.008 0.23± 0.01

NF-SMC pCN 6d 17.9± 0.5 0.061± 0.022 0.27± 0.008

NF-SMC pCN 4d 18.9± 0.7 0.11± 0.04 0.30± 0.02

NF-SMC pCN 2d 24.7± 0.8 0.35± 0.10 0.32± 0.03

SMC pCN 10d 19.8± 0.4 0.11± 0.02 0.14± 0.007

SMC pCN 8d 20.9± 0.7 0.14± 0.03 0.18± 0.005

SMC pCN 6d 21.5± 0.7 0.23± 0.06 0.21± 0.02

SMC pCN 4d 24.2± 1.0 0.10± 0.02 0.28± 0.03

SMC pCN 2d 11.1± 1.0 1.28± 0.49 0.86± 0.48

Table 8: Results for the number of temperature levels used by each algorithm Nβ and

squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for each

algorithm, when performing inference on the reaction-diffusion example. We report

the mean and standard deviation for each statistic over the 10 algorithm runs, and

show results for each of the tested ensemble sizes J . The number of parallelized

model evaluations is given by 11Nβ for each algorithm, with the total number of model

evaluations being given by 11JNβ. The target dimension is d = 53.

each temperature level provides a highly effective initialization and preconditioner for

the tpCN sampler. Moreover, performing tpCN sampling prevents the accumulation of

errors that would result in EKI using the incorrect prior ensemble to approximate each

annealed target. The tpCN proposal kernel is reversible with respect to the multivariate

t-distribution, in contrast to the standard pCN proposal which is reversible with respect

to the multivariate Gaussian. In this paper we have proposed the Sequential Kalman

Tuning (SKT) adaptation scheme for tpCN, and its NF preconditioned variant NF-

SKT, that provides an efficient, tuning-free sampler for the solution of Bayesian inverse

problems.

We compared the performance of the SKT and NF-SKT adaptation schemes,

applied to tpCN and pCN, with standard importance resampling SMC and NF-SMC,
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Algorithm (τcorr = 0.1) Neval/J ⟨b21⟩ ⟨b22⟩
NF-SKT tpCN 510± 43 0.0089± 0.0010 0.0082± 0.0009

NF-SKT pCN 450± 140 0.013± 0.004 0.12± 0.003

SKT tpCN 600± 43 0.0094± 0.0008 0.0095± 0.0013

SKT pCN 980± 15 0.039± 0.011 0.76± 2.08

NF-SMC tpCN 430± 19 0.031± 0.005 0.024± 0.004

NF-SMC pCN 420± 62 0.039± 0.011 0.22± 0.009

SMC tpCN 700± 18 0.022± 0.005 0.033± 0.006

SMC pCN 1000± 0.0 0.12± 0.03 0.14± 0.008

Table 9: Results for the number of embarrassingly parallel model evaluations Neval/J ,

and squared bias results, ⟨b21⟩ and ⟨b22⟩, obtained with the final particle ensemble for each

algorithm when adapting the number of sampling iterations at each temperature level,

as applied to the reaction-diffusion example. We show results when adapting both the

tpCN and pCN samplers with an ensemble size of J = 10d, where the target dimension

is d = 53.

running each algorithm on three Bayesian inverse problems. Across our numerical

experiments the tpCN sampler out-performed standard pCN for all the adaptation

schemes we considered. The more flexible tail behaviour behaviour of the tpCN kernel

means it can be more readily adapted for sampling from non-Gaussian targets. When

using the same computational budget at each temperature level, the SKT and NF-

SKT adaptation schemes resulted in lower bias estimates for the first and second

posterior moments, compared to adapting the tpCN kernel within a standard SMC

or NF-SMC scheme. When we selected the number of sampling iterations adaptively

the tpCN sampler was able to rapidly reach low bias when using the SKT and NF-SKT

adaptation schemes. For adaptation in SMC and NF-SMC the tpCN sampler was not

able to reach low bias, and the pCN sampler failed to reach low bias for all adaptation

schemes. In these cases a more stringent criterion would need to be imposed when

selecting the number of sampling iterations and therefore significantly more forward

model evaluations.

It is worth noting that we achieved lower bias adapting tpCN with the SKT scheme

compared to using NF-SMC, demonstrating the ability of the EKI ensemble update to

provide an effective initialization and preconditioner for the subsequent sampling steps.

This is particularly promising for regimes where learning high fidelity NF maps becomes

intractable e.g., moving beyond O(100) dimensions, or where one wishes to avoid the

additional computational overhead from NF training. When using SKT adaptation, NF

preconditioning is primarily useful for inverse problems where the cost of NF training

(typically of order seconds up to O(100) dimensions), is insignificant compared to the

cost of forward model evaluations during sampling, and where one can afford ensemble

sizes that are sufficiently large to learn nonlinear features in the target geometry.
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Several avenues exist for extending this work. In the first instance we plan to

incorporate SKT and NF-SKT adaptation for tpCN within the pocoMC sampling

package [35, 42], which currently implements adaptive variants of SMC and NF-

SMC for tpCN. It would be interesting to explore alternative NF architectures that

are able to learn useful features in the target geometry with smaller ensemble sizes

[46], and waste-free SMC methods that allow us to exploit the full sampling history

in the SMC framework [34]. In this work we have only considered one variant of

the EKI-type updates within SMC. It would be worth studying the performance of

deterministic ensemble updates [14, 16], which have been shown to have superior

empirical performance compared to the stochastic EKI update used in this work [16].

It would also be useful to consider extensions allowing for parameter dependent noise

covariances [75] and general likelihoods [76].

One could also consider adaptation schemes for tpCN that fall outside the Bayesian

annealing framework e.g., ensemble sampling schemes that directly target the full

posterior [25], leveraging ideas from measure transport [77], directly fitting for NF

approximations to the target [61] etc. However, such adaptation schemes would require

careful study to ensure stable kernel tuning during the burn-in phase where samples

are far from the typical set. This problem is avoided in our sequential approach, where

transitioning through a sequence of annealed targets allows for stable tuning of the

tpCN kernel. This is particularly enhanced by the use of EKI updates as part of the

adaptation. Moving to a non-sequential approach would require modification if we still

wished to exploit Kalman-based approximations as part of the adaptation process, for

example leveraging the proposed update rules in [16].
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Appendix A. Proof of Lemma 2.1

Proof. Consider the current location x and the proposal location x′ = µs+
√
1− ρ2(x−

µs) + ρ
√
ZW , where Z−1 ∼ Gamma(k = 1

2
(d + νs), θ = 2/(νs + ⟨x,x⟩s)) and

W ∼ N (0, Cs).
We have that √

(d+ νs)Z

νs + ⟨x,x⟩s
W ∼ td+νs(0, Cs). (A.1)
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Using the change of variables formula, we obtain the proposal transition kernel for the

tpCN algorithm as

Kt(x, dx
′) =

γ1
ρd

(
d+ νs

νs + ⟨x,x⟩s

)d/2

[1+

(ρ2(νs + ⟨x,x⟩s))−1(⟨x′,x′⟩s + (1− ρ2)⟨x,x⟩s − 2
√

1− ρ2⟨x,x′⟩s)
]−(2d+νs)/2

dx′,

(A.2)

where γ1 is a normalizing constant. Considering the multivariate t-measure

ps(dx) = γ2

[
1 +
⟨x,x⟩s

νs

]−(d+νs)/2

dx, (A.3)

where γ2 is a normalizing constant, we have that

ps(dx)Kt(x, dx
′) = γ1γ2ν

(d+νs)/2
s (d+ νs)

d/2ρd+νs
[
ρ2νs + ⟨x′,x′⟩s + ⟨x,x⟩s

−2
√

1− ρ2⟨x,x′⟩s
]−(2d+νs)/2

dxdx′ = ps(dx
′)Kt(x

′, dx). (A.4)

The variables x and x′ are exchangeable in Equation A.4. Therefore the tpCN proposal

transition kernel is reversible with respect to the multivariate t-distribution tνs(µs, Cs).
The tpCN acceptance probability follows from the fact that for some general

proposal kernel, K(x, dx′) with probability density function κ(x,x′), the Metropolis-

Hastings (MH) acceptance probability is given by

α(x,x′) = min

{
1,

p(x′)κ(x′,x)

p(x)κ(x,x′)

}
. (A.5)

From the reversibility expression in Equation A.4 we have that

κt(x
′,x)

κt(x,x′)
=

ps(x)

ps(x′)
=

(1 + ⟨x,x⟩s/νs)−(d+νs)/2

(1 + ⟨x′,x′⟩s/νs)−(d+νs)/2
, (A.6)

which gives the MH acceptance probability in Equation 11.

Appendix B. Importance Resampling

Given a set of samples and associated normalized importance weights {xi
n, w̃n(x

i
n)}

J
i=1,

where w̃n(x
i
n) = wn(x

i
n)/
∑J

k=1 wn(x
k
n), we can apply a resampling algorithm to

obtain a set of equal weight samples. A simple approach would be to apply

multinomial resampling, where the duplication counts for each member of the

ensemble {N1, . . . , NJ} are obtained by sampling from the multinomial distribution

Mult(J ; w̃n(x
1
n), . . . , w̃n(x

J
n)). Whilst multinomial resampling is straightforward, lower

variance methods are available [54]. In this work we use systematic resampling for all

our importance resampling SMC benchmarks. The systematic resampling algorithm

pseudocode is given in Algorithm 4.
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Algorithm 4 Systematic Resampling

1: Input: Set of J samples and corresponding normalized importance weights

{xi, w̃i}Ji=1.

2: Draw uniform random variable U ∼ Unif(0, 1).

3: Set U i = U + (i− 1)/J , i ∈ {1, . . . , J}.
4: Set Dw = w̃0.

5: Set index counter k = 1

6: for i = 1, . . . , J do

7: while U i > Dw do

8: k ← k + 1

9: Dw ← Dw + w̃k

10: end while

11: Set x̃i = xk.

12: end for

13: Output: Equal weight particle ensemble {x̃i}Ji=1.

Appendix C. Sequential Monte Carlo Implementations

In Algorithm 5 we give the pseudocode for the normalizing flow preconditioned SMC

implementation, used as a benchmark for comparing the performance of the SKT

samplers. The SMC implementation without NF preconditioning follows the same

structure as Algorithm 5, without the NF fits such that the tpCN iterations are

performed in the original data space. Similarly to the SKT samplers, we perform

diminishing adaptation of the tpCN step size and reference measure mean at each

temperature level.

Appendix D. Field and Source Term Reconstructions

In Figure D1 we show the true initial temperature field from the heat equation example

in Section 5.1, alongside the reconstructed initial field from HMC samples, and the field

reconstructions obtained by evaluating the average over the final particle ensembles for

each of the NF-SKT, NF-SMC, SKT and SMC adaptation algorithms as applied to

tpCN and pCN, for a single random seed initialization with an ensemble size J = 10d.

We also show reconstructed fields obtained with the final FAKI and EKI ensembles.

In Figure D2 we similarly show the true and reconstructed subsurface density fields

for the gravity survey example in Section 5.2, and in Figure D3 we show the true and

reconstructed source functions, u(x) for the reaction-diffusion example in Section 5.3.

Appendix E. Converged Ensemble Corner Plots

In this section we provide corner plots showing the final particle ensembles over the

first 4 dimensions, obtained by running each adaptation method on the tpCN and pCN
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Algorithm 5 Flow Preconditioned Sequential Monte Carlo

1: Input: Set of J samples from the prior {xi
0 ∼ π0(x)}Ji=1, data y, observation

covariance Γ, target fractional ESS τ , number of tpCN iterations to perform at each

temperature levelM , initial tpCN step size ρ, target tpCN acceptance rate α⋆, tpCN

autocorrelation threshold τcorr.

2: Set β0 = 0 and iteration counter n = 0.

3: while βn < 1 do

4: Solve for target inverse temperature βn+1 in Equation 27.

5: wn(x
i
n)← π(y|xi

n)
βn+1/π(y|xi

n)
βn , i ∈ {1, . . . , J}.

6: if βn+1 = 1 then

7: n∗ ← n+ 1

8: end if

9: Fit NF map, z = fn(x) to current particle locations {xi
n}Ji=1.

10: Obtain latent space particle locations {zi
n = fn(x

i
n)}Ji=1.

11: Resample weighted particles {zi
n, wn(x

i
n = f−1

n (zi
n))} using systematic resampling

to give equal weight ensemble {zi
n+1}Ji=1.

12: Fit the multivariate t-distribution, tνs(µs, Cs) to the latent space particle ensemble

{zi
n+1}Ji=1 with an EM algorithm. Set component-wise autocorrelations ρ̂0(j) =

1 ∀j.
13: for m = 1, . . . ,M do

14: for i = 1, . . . , J do

15: Update particle state zi
n+1 using Algorithm 2 in NF latent space.

16: end for

17: log ρ← log ρ+ (⟨α⟩ − α⋆)/m

18: µs ← µs + (⟨zn+1⟩ − µs)/m

19: Calculate component-wise autocorrelations ρ̂m(j).

20: if
∏m

l=1 ρ̂l(j) < τcorr ∀j then

21: End tpCN iterations.

22: end if

23: end for

24: Map particle ensemble back to the original data space {xi
n+1 = f−1

n (zi
n+1)}Ji=1

25: n← n+ 1

26: end while

27: Output: Converged particle ensemble {xi
n∗}Ji=1.
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Figure D1: True initial temperature field u(x, t = 0) for the heat equation example

(Section 5.1), plotted alongside the initial field reconstructions obtained using samples

from HMC, which is treated as the target posterior predictive mean, and from the final

particle ensembles of the FAKI, EKI, NF-SKT, NF-SMC, SKT and SMC algorithms

(where results are shown for an ensemble size J = 10d, and for a single random seed

initialization). Results for the adaptation algorithms are shown as applied to tpCN and

pCN.

samplers, plotted alongside reference HMC samples. All the ensembles shown in this

section were obtained using an ensemble size of J = 10d and selecting the number of

sampling iterations adaptively using an autocorrelation threshold of τcorr = 0.1. The

figures included in this section are as follows:

• Figure E1: Corner plot showing the final ensembles for the heat equation example,

using NF-SKT and SKT adaptation applied to the tpCN and pCN samplers.

• Figure E2: Corner plot showing the final ensembles for the heat equation example,

using NF-SMC and SMC adaptation applied to the tpCN and pCN samplers.

• Figure E3: Corner plot showing the final ensembles for the gravity survey example,

using NF-SKT and SKT adaptation applied to the tpCN and pCN samplers.

• Figure E4: Corner plot showing the final ensembles for the gravity survey example,
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Figure D2: True subsurface mass density field ϱ(x) for the gravity survey example

(Section 5.2), plotted alongside the density field reconstructions obtained using samples

from HMC, which is treated as the target posterior predictive mean, and from the final

particle ensembles of the FAKI, EKI, NF-SKT, NF-SMC, SKT and SMC algorithms

(where results are shown for an ensemble size J = 10d, and for a single random seed

initialization). Results for the adaptation algorithms are shown as applied to tpCN and

pCN.

using NF-SMC and SMC adaptation applied to the tpCN and pCN samplers.

• Figure E5: Corner plot showing the final ensembles for the reaction-diffusion

example, using NF-SKT and SKT adaptation applied to the tpCN and pCN

samplers.

• Figure E6: Corner plot showing the final ensembles for the reaction-diffusion

example, using NF-SMC and SMC adaptation applied to the tpCN and pCN

samplers.
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Figure D3: True source function u(x) for the reaction-diffusion example (Section 5.3),

plotted alongside posterior predictive samples obtained with HMC, which are treated

as true posterior predictive samples, and from the final particle ensembles of the FAKI,

EKI, NF-SKT, NF-SMC, SKT and SMC algorithms (where results are shown for an

ensemble size J = 10d, and for a single random seed initialization). For each algorithm

we show 100 posterior predictive samples, with the dark red line showing the estimated

posterior predictive mean in each case. Results for the adaptation algorithms are shown

as applied to tpCN and pCN.

Appendix F. Flow Annealed Kalman Inversion and Ensemble Kalman

Inversion Ablation

In Figures F1, F2 and F3 we show corner plots of the recovered particle distributions

from running EKI and FAKI on the heat equation, gravity survey and reaction-diffusion

examples respectively. For all plots we also show the sample distributions from our

reference HMC samples. We use an ensemble size of J = 10d throughout for EKI and

FAKI, set τ = 0.5 for temperature level adaptation, and show the particle distributions

over the first 4 dimensions for illustrative purposes. In Table F1 we state the average
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Figure E1: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using NF-SKT and SKT adaptation applied to the tpCN and pCN samplers,

plotted alongside reference HMC samples for the heat equation example. The ensemble

size was J = 10d, where d = 103.

number of iterations and bias-squared results for EKI and FAKI over 10 runs for each

of the numerical examples.

From these corner plots, we can immediately see that the particle distributions from

EKI and FAKI are strongly offset from the reference HMC sample distributions, which

manifests in the high bias results reported in Table F1. For our numerical examples,

we break the core assumptions underlying EKI. This means that in moving from the

prior to the first annealed target, the updated ensemble will not be correctly distributed

according to the annealed target. When updating the particles for the next temperature

level, we do not have the correct effective prior ensemble, meaning these errors will

accumulate as we move from the prior to the posterior. For FAKI, we still have these

problems, given that the NF maps do not address any errors arising due to nonlinearity.

If the particle ensemble is not correctly distributed at a given temperature level, the NF

will not Gaussianize the correct effective prior, meaning we lose the additional benefits

from mapping the particle ensemble to a Gaussian latent space at each iteration. These
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Figure E2: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using NF-SMC and SMC adaptation applied to the tpCN and pCN samplers,

plotted alongside reference HMC samples for the heat equation example. The ensemble

size was J = 10d, where d = 103.

results all demonstrate the importance of using the sampling iterations in SMC to correct

the EKI and FAKI updates in order to obtain reliable estimates for posterior moments.

Appendix G. Ensemble Kalman Sampler

The idea of exploiting the EKI ensemble structure for preconditioning in sampling has

previously been used in the Ensemble Kalman Sampler (EKS) [26]. Assuming that we

have a Gaussian prior such that x ∼ N (0,Γ0), EKS iterates over ensemble updates for

the particle j given by,

x̂j
n+1 = xj

n −
∆tn
J

J∑
k=1

(
F(xk

n)− F̄n

)⊺
Γ−1

(
F(xj

n)− y
)
xk
n +

d+ 1

J

(
xj
n − x̄n

)
−∆tnC

x,x
n Γ−1

0 x̂j
n, (G.1)
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Figure E3: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using NF-SKT and SKT adaptation applied to the tpCN and pCN samplers,

plotted alongside reference HMC samples for the gravity survey example. The ensemble

size was J = 10d, where d = 62.

xj
n+1 = x̂j

n +

√
2∆tnC

x,x
n ξjn, (G.2)

where F̄n = J−1
∑J

k=1F(xk
n), x̄n = J−1

∑J
k=1 x

k
n, ξ

j
n ∼ N (0, Id) and

Cx,x
n =

1

J

J∑
k=1

(
xk
n − x̄n

)
⊗
(
xk
n − x̄n

)
. (G.3)

Following [26] the time step may be chosen adaptively such that

∆tn =
∆t0

∥Dn∥F + ϵ
, (G.4)

where ∥·∥F denotes the Frobenius norm, ∆t0 = 1 and ϵ = 10−5. The matrix Dn ∈ RJ×J

is defined as

Dn =
1

J
(Fn − F̄n)Γ

−1(Fn − Y )⊺, (G.5)



Sequential Kalman Tuning 51

1.6
1.4
1.2
1.0
0.8

lo
g

2
1
0
1
2
3
4

1

0.0 0.5 1.0
0.6
0.5
0.4
0.3
0.2

2

1.5 1.0
log

2 0 2 4
1

0.6 0.4 0.2
2

Labels
HMC
NF-SMC tpCN

1.6
1.4
1.2
1.0
0.8

lo
g

2
1
0
1
2
3
4

1

0.0 0.5 1.0

0.6
0.5
0.4
0.3
0.2

2

1.5 1.0
log

2 0 2 4
1

0.6 0.4 0.2
2

Labels
HMC
SMC tpCN

1.75
1.50
1.25
1.00
0.75

lo
g

2

0

2

1

0.0 0.5 1.0
0.6
0.5
0.4
0.3
0.2

2

1.5 1.0
log

2 0 2
1

0.6 0.4 0.2
2

Labels
HMC
NF-SMC pCN

1.75
1.50
1.25
1.00
0.75

lo
g

2

0

2

1

0.0 0.5 1.0

0.6
0.5
0.4
0.3
0.2

2

1.5 1.0
log

2 0 2
1

0.6 0.4 0.2
2

Labels
HMC
SMC pCN

Figure E4: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using NF-SMC and SMC adaptation applied to the tpCN and pCN samplers,

plotted alongside reference HMC samples for the gravity survey example. The ensemble

size was J = 10d, where d = 62.

where Fn ∈ RJ×ny is a matrix where row k contains the vector F(xk
n), F̄n ∈ RJ×ny is a

matrix where every row contains the vector F̄n, and Y ∈ RJ×ny is a matrix where every

row contains the data vector y.

The EKS ensemble will converge to an approximation of the posterior, which is only

exact for linear forward models. In contrast to EKI, the prior is explicitly accounted

for in the update equations, and noise is added in parameter space as opposed to data

space. We ran EKS on each of our heat equation, gravity survey and reaction-diffusion

examples. Given the EKS updates assume a Gaussian prior, we began by fitting an NF

to the prior samples before performing EKS updates in the NF latent space. The EKS

sampler was run with an ensemble size of J = 100d for each problem. This very large

ensemble size was required to ensure the numerical stability of the EKS updates over a

large number of iterations. Using an ensemble size of e.g., J = 10d resulted in serious

numerical instabilities that meant the update procedure failed within ∼ 10 iterations.

In Figure G1 we show corner plots comparing the ensemble distributions obtained
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Figure E5: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using NF-SKT and SKT adaptation applied to the tpCN and pCN samplers,

plotted alongside reference HMC samples for the reaction-diffusion example. The

ensemble size was J = 10d, where d = 53.

with EKS after 100 iterations with reference samples obtained using HMC. For all

three experiments EKS converges on a highly biased approximation to the posterior. In

contrast, the tpCN sampler is able to preserve the exact target as its invariant measure,

and when run with the SKT scheme is able to rapidly converge on low bias estimates of

posterior moments.
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Figure F1: Corner plots showing the final particle ensemble for the first 4 dimensions,

obtained using EKI (left panel) and FAKI (right panel), plotted alongside reference

HMC samples for the heat equation example. The ensemble size was J = 10d, where

d = 103.
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obtained using EKI (left panel) and FAKI (right panel), plotted alongside reference
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d = 62.
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reaction-diffusion example.

[34] Dau H D and Chopin N 2022 Journal of the Royal Statistical Society Series B: Statistical

Methodology 84 114–148

[35] Karamanis M, Beutler F, Peacock J A, Nabergoj D and Seljak U 2022 Monthly Notices of the

Royal Astronomical Society 516 1644–1653

[36] Hoffman M D, Gelman A et al. 2014 Journal of Machine Learning Research 15 1593–1623

[37] Hoffman M, Radul A and Sountsov P 2021 An adaptive-mcmc scheme for setting trajectory lengths

in hamiltonian monte carlo Proceedings of The 24th International Conference on Artificial

Intelligence and Statistics (Proceedings of Machine Learning Research vol 130) ed Banerjee

A and Fukumizu K (PMLR) pp 3907–3915

[38] Sountsov P and Hoffman M D 2021 arXiv preprint arXiv:2110.11576

[39] Hoffman M D and Sountsov P 2022 Tuning-free generalized hamiltonian monte carlo Proceedings



Sequential Kalman Tuning 57

of The 25th International Conference on Artificial Intelligence and Statistics (Proceedings of

Machine Learning Research vol 151) ed Camps-Valls G, Ruiz F J R and Valera I (PMLR) pp

7799–7813

[40] Riou-Durand L, Sountsov P, Vogrinc J, Margossian C and Power S 2023 Adaptive tuning for

metropolis adjusted langevin trajectories International Conference on Artificial Intelligence and

Statistics (PMLR) pp 8102–8116

[41] Buchholz A, Chopin N and Jacob P E 2021 Bayesian Analysis 16 745–771

[42] Karamanis M, Nabergoj D, Beutler F, Peacock J and Seljak U 2022 The Journal of Open Source

Software 7 4634 (Preprint 2207.05660)

[43] Dinh L, Sohl-Dickstein J and Bengio S 2017 Density estimation using real NVP 5th International

Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,

Conference Track Proceedings (OpenReview.net)

[44] Papamakarios G, Murray I and Pavlakou T 2017 Masked autoregressive flow for density

estimation Advances in Neural Information Processing Systems 30: Annual Conference on

Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA ed

Guyon I, von Luxburg U, Bengio S, Wallach H M, Fergus R, Vishwanathan S V N and Garnett

R pp 2338–2347

[45] Kingma D P and Dhariwal P 2018 Glow: Generative flow with invertible 1x1 convolutions Advances

in Neural Information Processing Systems 31: Annual Conference on Neural Information

Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada ed Bengio
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