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Review of evidence implicating the plasminogen activator 
system in blood-brain barrier dysfunction associated with 
Alzheimer’s disease

Mei-Yun Tang1, Fredric A. Gorin1,2, Pamela J. Lein1

1Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 
Davis, CA 95616, USA.

2Department of Neurology, School of Medicine, University of California, Davis, CA 95616, USA.

Abstract

Elucidating the pathogenic mechanisms of Alzheimer’s disease (AD) to identify therapeutic 

targets has been the focus of many decades of research. While deposition of extracellular 

amyloid-beta plaques and intraneuronal neurofibrillary tangles of hyperphosphorylated tau have 

historically been the two characteristic hallmarks of AD pathology, therapeutic strategies 

targeting these proteinopathies have not been successful in the clinics. Neuroinflammation has 

been gaining more attention as a therapeutic target because increasing evidence implicates 

neuroinflammation as a key factor in the early onset of AD disease progression. The peripheral 

immune response has emerged as an important contributor to the chronic neuroinflammation 

associated with AD pathophysiology. In this context, the plasminogen activator system (PAS), 

also referred to as the vasculature’s fibrinolytic system, is emerging as a potential factor in AD 

pathogenesis. Evolving evidence suggests that the PAS plays a role in linking chronic peripheral 

inflammatory conditions to neuroinflammation in the brain. While the PAS is better known 

for its peripheral functions, components of the PAS are expressed in the brain and have been 

demonstrated to alter neuroinflammation and blood-brain barrier (BBB) permeation. Here, we 

review plasmin-dependent and -independent mechanisms by which the PAS modulates the BBB in 

AD pathogenesis and discuss therapeutic implications of these observations.
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INTRODUCTION

Alzheimer’s disease (AD) is recognized as the most common cause of dementia in the 

elderly, and over 6 million Americans are currently living with this disorder. In the United 

States, AD is the sixth leading single cause of death and the second most common 

contributing cause of death. The hallmark neuropathologic characteristic of AD is abnormal 

extracellular protein accumulation in the brain, notably the extracellular deposition of 

amyloid-β (Aβ) peptide generated from the improper cleavage of amyloid precursor protein 

(APP) that gives rise to Aβ monomers that aggregate into oligomeric Aβ fibrils and plaques, 

and intraneuronal neurofibrillary tangles (NF) comprised largely of hyperphosphorylated 

tau. These proteinopathies are associated with the loss of synapses and subsequent neuronal 

cell loss in the entorhinal cortex, hippocampus, and frontal cortex[1–3], and currently, the 

biomarkers most commonly used in human AD studies are beta-amyloid 42, tau, and 

phospho-tau proteins in the cerebrospinal fluid. More recently, blood p-tau181 has been 

reported as being a useful biomarker for distinguishing AD from other dementias[4]. Thus, 

it has been widely posited that Aβ plaques and/or abnormal hyperphosphorylated tau 

protein accumulation are causally linked to the behavioral and neurologic symptoms of AD. 

However, therapeutic strategies for decreasing Aβ plaque load[5,6], reducing Aβ production 

with BACE-1 inhibitors[7], or inhibiting hyperphosphorylated tau aggregation[8], have been 

largely unsuccessful in clinical trials over the past several years[3]. These failed clinical 

trials coupled with observations of age-related increases in Aβ deposition in cognitively 

intact individuals as well as evidence that Aβ plaque load does not closely correspond with 

cognitive decline in AD patients[1,9] and neurofibrillary tangles are associated with severe 

cognitive impairment characteristic of late stages of AD[10,11], have prompted research into 

alternative pathogenic mechanisms of AD.

It is now recognized that the extracellular deposition of Aβ and hyperphosphorylated 

tau triggers proinflammatory responses in microglia and astrocytes[12–14]. The 

neuroinflammatory response in AD has been described in detail in several recent 

reviews[14,15], and it appears that neuroinflammation plays an important role in the early 

progression of AD[16,17]. Multiple investigators have shown that Aβ monofibrils, oligomers, 

and plaques activate gene expression of pro-inflammatory mediators in microglia and 

astrocytes[13,16,18,19]. While microglial phagocytosis of amyloid may be neuroprotective 

in the early stages of AD by promoting Aβ clearance[20,21], microglial activation in 

later stages may promote the progression of AD[1,16]. Network-based integrative analysis 

of whole-genome gene-expression profiling and genotypic data obtained from late-onset 

AD and non-demented control brains identified the immune/microglia module as the 

molecular system most strongly associated with the pathophysiology of AD, and in 

particular, late-onset AD[22]. Microglial activation is thought to promote AD progression 

by (1) complement-mediated phagocytosis of synaptic structures to promote synapse loss; 
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and/or (2) release of nitric oxide (NO) and proinflammatory cytokines, including TNF-α, 

IL-6, and IL-1β, that act as soluble synaptotoxic factors and induce “A1” neurotoxic 

astrocytes[23–26]. In support of these proposed mechanisms, microglial activation has been 

linked to increased synaptic loss and neurodegeneration in AD[2,24,27], and pharmacologic 

inhibition of microglial proliferation in the APP/PS1 mouse effectively shifted microglia to 

an anti-inflammatory phenotype that was associated with decreased synaptic degeneration 

and improved memory[28]. In Alzheimer mouse models, early synaptic loss is associated 

with C1q complement tightly bound to AB plaques surrounded by neuronal atrophy from 

microglial phagocytosis[29]. Mononuclear phagocytes enter the central nervous system 

(CNS) signaled by chemokines (CXCL1), while the innate immune system also appears 

to contribute to the neuroinflammatory response to activated microglia in AD models[30].

While the initial focus on the role of the immune response in AD pathogenesis has been 

on the brain’s intrinsic neuroinflammatory response, attention is now being directed to 

multiple systemic inflammatory disorders that accelerate or in some instances may be the 

primary trigger for neuroinflammatory responses that initiate and/or promote AD and other 

dementias[31–34]. Some of the observations that have stimulated this shift in focus include 

reports that young children chronically exposed to high levels of air pollution were found 

to have neuropathological hallmarks of AD upon incidental autopsy[35,36], and evidence that 

type 2 diabetes/ metabolic syndrome and inflammatory bowel disease are associated with 

increased risk of developing AD[15,37,38]. The causal factors linking peripheral inflammatory 

conditions to AD are likely multifactorial and have not yet been clearly delineated; however, 

several mechanisms are emerging. Peripheral inflammatory conditions have been shown 

to (1) generate inflammatory cytokines that facilitate access of peripheral inflammatory 

lymphocytes into the CNS, most notably TNFα, IL-1β, and IL-6; (2) cause dysfunction 

of the blood-brain barrier (BBB); and (3) activate the plasminogen activator system (PAS), 

which has direct effects on the CNS and further facilitates BBB dysfunction. The remainder 

of this review will investigate the role of the PAS in mediating inflammatory crosstalk 

between the periphery and the brain and its potential role in AD pathogenesis.

PLASMINOGEN ACTIVATOR SYSTEM

The plasminogen activator system (PAS) is comprised of a group of serine proteases, 

inhibitors, and binding proteins that control the activity of the serine protease plasmin 

[Figure 1][39]. Plasmin plays a key role in the fibrinolysis cascade, catalyzing the 

final degradation of fibrin and various extracellular matrix proteins[40,41]. The zymogen 

plasminogen (PlG) is converted to activated plasmin by plasmin activators, which include 

tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA). 

tPA is primarily involved in intravascular fibrinolysis, activating plasminogen that is bound 

to polymerized fibrin. In contrast, uPA is secreted as a pro-enzyme whose active form is 

primarily localized on cell surfaces where it binds to the uPA receptor (uPAR). Plasminogen 

conversion by tPA and uPA in both the periphery and the CNS is tightly regulated by 

serine protease inhibitors (serpins). Serpins represent a superfamily of proteins with similar 

structures. Most relevant to this discussion are plasminogen activator inhibitor type 1 

(PAI-1) and neuroserpin (NSP). PAI-1 irreversibly inhibits uPA or tPA by undergoing a 

large conformational change upon binding uPA or tPA that disrupts the active site of the 
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plasmin activator and of PAI-1. In contrast, NSP preferentially inhibits tPA by forming an 

unstable complex that can release active tPA[42]. Reflecting the need for stringent regulation 

of the plasminogen cascade, free forms of activated plasmin activators, PAI-1, and NSP exist 

at very low concentrations with half lives in the order of minutes[43,44].

PAS in the periphery

The peripheral PAS plays a central role in mediating fibrinolysis, extracellular migration, 

cell signaling, cellular migration, and tumor growth, which has been reviewed in detail 

elsewhere[45,46]. The PAS converts inactive plasminogen to plasmin, a trypsin-like serine 

protease, via the catalytic activity of PA[41]. Plasminogen is primarily present in platelets in 

the plasma and liver. However, in mice, plasminogen mRNA has been found in the adrenal, 

kidney, brain, testis, heart, lung, uterus, spleen, thymus, and gut[40,47]. In the periphery, 

PAI-1 serves as the main suppressor of plasma fibrinolytic activity[40]. In the bloodstream, 

PAI-1 exists on its own in an active form, or as part of a complex with tPA or vitronectin, 

a glycoprotein that can convert PAI-1 into its active form. Elevated levels of PAI-1 are 

associated with metabolic syndrome and associated with increased risk of atherothrombosis 

and stroke[48,49].

PAS in the CNS

In the CNS, plasminogen is expressed at low levels by neurons in the hippocampus, 

cortex, cerebellum, as well as neuroendocrine tissues, but it is primarily transported to the 

brain via systemic circulation[12,50,51]. Plasminogen has been localized to the extracellular 

space, while the plasmin activators, tPA and uPA, have been localized to not only the 

extracellular space, but also to neurons and astrocytes. Both plasmin activators have 

been shown to modulate synaptic function when released into the synaptic cleft[52–54]. 

Membrane depolarization induces the rapid release of tPA from cerebral cortical neurons, 

which modulates neuronal plasticity, learning, stress-induced anxiety, and visual cortex 

plasticity[55]. tPA and uPA activities have been localized to well-defined areas of the 

brain[56–59] and shown to participate in intracellular signaling that is independent of 

plasminogen activation (see below). tPA is the principal plasmin activator in the CNS with 

PAI-1 regulating its activity primarily in the extracellular space. NSP is primarily localized 

in neurons in the developing brain with very low levels detected in the mature CNS[60], 

where it preferentially binds to and inhibits tPA[61]. Interestingly, mutations of NSP are 

associated with rare familial dementia characterized by neuronal inclusion bodies that are 

biochemically comprised of polymers of NSP[62].

Plasmin activity has been shown to be upregulated in axonal growth and synaptic pruning, 

suggesting a role in brain development and regeneration that is not yet well understood[50]. 

While both tPA and uPA can mediate plasminogen activation in the CNS, plasminogen 

activation is primarily controlled by the tight regulation between tPA and PAI-1[51]. uPA 

has a low baseline expression in specific neurons and astrocytes in the normal brain, but 

is upregulated in pathologically inflammatory environments, such as multiple sclerosis and 

epilepsy[50,51]. Endothelial cells of microvessels in the brain contribute to the production 

of tPA, but tPA can also be expressed by glial cells, neurons, and infiltrating leukocytes, 

implicating a broad spectrum of tPA involvement in the brain. While tPA in the mature 
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brain is detected primarily in neurons, its enzymatic activity is primarily restricted to the 

hippocampus, amygdala and hypothalamus[63,64]. The discrepancy between the expression 

of tPA mRNA and its areas of enzymatic activity is consistent with its trafficking and 

transport to mossy fiber tracts[63,64].

The plasmin activators, tPA and uPA have been shown to play an important role 

in CNS function and dysfunction with some of their functions being independent 

of plasminogen[65,66]. Extracellular tPA participates in cerebellar motor learning[67], 

remodeling in various nonneural tissues[67], and neuronal regeneration following ischemic 

injury[68]. tPA also participates in the regulation of BBB permeability[69,70]. Neuronal uPA 

is present in lower levels than tPA, participating in neurogenesis in the developing brain[71]. 

Its release in the mature central nervous system triggers astrocytic activation[53] and, like 

tPA, uPA promotes axonal and synaptic recovery following different forms of injury[72]. 

Both tPA and uPA are found in pre-synaptic vesicles that are released by calcium-dependent 

mechanisms[52,54,55].

The PAS is altered in AD

There has been longstanding interest in the role of the PAS in AD beginning with early 

reports that active plasmin efficiently digests Aβ peptides[73–77] both in vitro and in rodent 

AD models[19,73,74,76–81]. In the AD brain, tPA is highly expressed in regions of AD 

plaques, and in AD models where tPA is genetically inactivated, there is an increased 

accumulation of Aβ, synaptic dysfunction and memory deficits[78]. However, the enzymatic 

ability of brain tPA and uPA to activate plasmin in vivo is thought to be prevented by 

irreversible binding to high levels of extracellular PAI-1 secreted by immune-activated 

microglia and astrocytes[18]. PAI-1 is minimally expressed in the normal brain or cerebral 

vasculature, but does increase with senescence[82–84]. Brain levels of PAI-1 are also 

markedly increased in APP/PS1 mice[66] and the serum levels of PAI-1 are positively 

correlated with cognitive impairment in AD patients[85]. Consistent with the hypothesis that 

PAI-1 promotes AD pathology, genetic knockdown or small molecule inhibitors of PAI-1 

reduced plaque formation in AD rodent models, and the small molecule PAI-1 inhibitor, 

PAZ-417, was shown to significantly improve hippocampal LTP and cognitive function in 

AD mice[73,74,86,87]. This finding was confirmed recently in an APP/PS1 AD mouse model 

using another small molecule PAI-1 inhibitor[86].

Whether tPA primarily plays a beneficial or detrimental role in AD progression is debated. 

Several studies have demonstrated that tPA activation of plasmin enzymatically reduces Aβ 
accumulation[78]. Conversely, tPA has been shown to mediate excitotoxic neurodegeneration 

by activating plasmin and causing subsequent laminin degradation[66,78]. Independent of 

plasmin activation, tPA causes GSK3 activation, tau hyperphosphorylation, microtubule 

destabilization, and neurotoxicity in rodent hippocampal neurons[88]. It has also been 

shown to mediate amyloid-induced microglial activation[89]. Based on such observations, 

it has been proposed that tPA contributes to neurotoxicity, microglial activation, and tau 

hyperphosphorylation as part of a feed-forward inflammatory pathway[73,88,89].

PAI-1 expression has been reported to be increased in the plasma[85,90,91] and brain tissues 

of AD patients[76]. PAI-1 expression is not detected in normal healthy human brains 
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but is sporadically present in aged brains[84,92], and possibly linked to cerebrovascular 

disease. PAI-1 is the primary regulator of tPA in the CNS extracellular space and is 

a proinflammatory biomarker. Cytokines upregulate PAI-1 expression in microglia and 

astrocytes in human and animal models of AD[18,93]. The PAI-1 promoter is activated by 

TNF-α via an NFκB 5′ upstream element and directly activated by TGF-β1 via SMAD2/3 

promoter binding sites[82,94,95]. When PAI-1 is complexed with low density lipoprotein 

receptor-related protein-1 (LRP-1), it signals changes in microglial morphology and motility 

that are consistent with microglial activation[96–98]. In patients with AD, plasminogen 

activator activity is reduced while PAI-1 and NSP are upregulated[99]. However, there are 

contradictory findings regarding measurements of PAI-1 and tPA in the CSF and serum of 

patients with AD[76,92,100].

Congophilic amyloid angiopathy (CAA) is a vascular complication of AD in which 

Aβ40 plaques accumulate within the brain endothelium of cerebral arteries, arterioles 

and capillaries[101]. CAA can result in intracranial hemorrhages, cognitive impairment, 

or subacute inflammatory encephalopathy. tPA activation of endothelial NMDA receptors 

has been shown to regulate neurovascular coupling via nitric oxide-mediated regulation of 

cerebral blood flow. Elevated levels of brain PAI-1 impairs this tPA-dependent neurovascular 

coupling in Tg2576 AD mice, and pharmacologic inhibition of PAI-1 was shown to improve 

cognition in this animal model by selectively restoring neurovascular function while not 

affecting cortical amyloid plaques[102].

PAS modulates BBB integrity in AD

There is increasing evidence identifying BBB leakage as an early sign of cognitive 

dysfunction, as well as evidence linking BBB dysfunction to AD pathogenesis[103,104] 

and its neuroinflammatory pathology[33,105]. However, the mechanisms underlying BBB 

dysfunction in AD are currently not well-elucidated. The BBB is part of the neurovascular 

unit (NVU) in the brain, which consists of endothelial cells (ECs), mural cells, including 

vascular smooth muscle cells and pericytes, basement membrane, glia cells including 

astrocytes and microglia, and neurons [Figure 2]. The ECs of the BBB are a distinct 

characteristic of the NVU due to their tight junctions and lack of fenestrae. This allows the 

ECs to regulate the selective transport and metabolism of substances from blood to brain and 

vice versa, thereby separating the microenvironment of the brain parenchyma from changes 

in circulating ion and metabolite concentrations in the systemic circulation[105].

In CNS injury, there are several potential mechanisms by which tPA is able to mediate 

changes in the permeability of the BBB [Figure 3], which in turn further exacerbates CNS 

injury by promoting neuroinflammation. AD is associated with BBB dysfunction in humans 

and animal models. Amyloid deposition activates gliosis that can alter the morphology 

of astrocytic endfeet, which are integral to the integrity of the neurovascular unit. As 

described previously with CAA, amyloid deposition can also injure the brain endothelium, 

which can additionally impair BBB integrity[106]. Finally, Aβ oligomers stimulate fibrin 

production that complexes with amyloid plaques, and fibrin has been shown to be increased 

in the parenchyma and vasculature of AD brains[107,108]. This fibrin-Aβ complex promotes 

further neuroinflammation and neurodegeneration. tPA is conformationally activated by 
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fibrin deposition, but its enzymatic activity is inhibited by the elevated levels of PAI-1 

found in AD parenchyma. However, as summarized in Figure 3, activated tPA has multiple 

plasmin-independent mechanisms by which it can compromise BBB integrity.

tPA in the CNS directly alters BBB integrity—tPA has long been known to play 

a significant role in the NVU, mostly in the context of stroke[109–111]. tPA has been 

reported to directly alter the BBB integrity by triggering activation of LRP-1 on the 

surface of astrocytes[12]. LRP-1 is a multifunctional signaling receptor that functions in 

receptor-mediated endocytosis and cellular signaling. LRP-1 binds many ligands, including 

tPA and amyloid-beta[112], which thereby facilitates Aβ endocytosis across endothelial 

cells of the BBB[113]. Aβ oligomers may compromise BBB integrity via activation 

of matrix metalloproteinases (MMPs)[113]. Alternatively, tPA may cleave LRP-1 at its 

substrate binding ectodomain, activating NF-κB, which promotes the synthesis of matrix 

metalloproteinases MMP-3 and MMP-9, leading to matrix protein degradation and BBB 

leakage[12]. tPA-induced activation of LRP-1 shedding from astrocytic endfeet also promotes 

detachment of endfeet projections from tight junctions of the endothelial cells of the 

neurovascular unit, further compromising the BBB[12]. Additionally, tPA can directly alter 

BBB integrity via platelet-derived growth factor PDGF-CC[114]. Upregulated neuronal 

expression of tPA expression induced by CNS disease or injury results in the release of 

tPA into the extracellular matrix of the brain, where it cleaves complement subcomponents 

C1r/C1s, urchin EGF-like protein, and bone-morphogenic protein-1 (CUB) from PDGF-CC 

forming an active ligand that binds to PDGF receptor-α (PDGFR-α). PDGFR-α promotes 

BBB leakage that worsens cerebral edema, neuroinflammation and neuronal death[114]. 

One study found this tPA-mediated activation of PDGF-CC to be inefficient in an in vitro 
stroke model[115]. However, in vivo, the Mac-1 integrin expressed on microglia works 

cooperatively with the endocytic receptor LRP-1 to promote tPA-mediated activation of 

PDGF-CC[115]. Multiple studies have also implicated tPA in binding amyloid-beta, thereby 

facilitating Aβ endocytosis across endothelial cells of the BBB[113].

Peripheral tPA alters BBB—In addition to its endogenous effects within the CNS, 

peripheral tPA can cross the intact BBB[116], phosphorylate claudin-5 and occludin, 

thereby weakening endothelial tight junctions and increasing BBB permeability by 

plasmin-independent mechanisms[117,118]. Chronic release of plasma tPA can induce a 

hyperfibrinolytic state that also directly increases vascular permeability of the BBB. 

Resultant plasmin activation by tPA also triggers bradykinin (BK) production[119,120]. 

BK is a peptide mediator generated from its circulating precursor, high molecular weight 

kininogen (HMWK), and is known for its ability to induce vascular permeability and 

cause vasodilation of arteries and veins[119]. It is a pro-inflammatory mediator, and its 

role as a neuromediator was identified in clinical conditions including AD[119]. While it 

is still debated as to how the PAS triggers BK generation, two primary pathways have 

been proposed [Figure 3]. A direct mechanism identified using an in vitro model involves 

tPA-mediated conversion of plasminogen to plasmin, which then cleaves HMWK into 

BK. BK acts through the bradykinin 2 receptor (B2R) on endothelial cells, triggering 

a signaling cascade that promotes intracellular calcium release and downregulation of 

claudin-5, a critical protein involved in maintaining EC tight junctions[120]. B2R activation 
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can additionally induce tPA release from endothelial cells, further amplifying additional 

BK generation[121]. The PAS alternatively can indirectly trigger BK formation through a 

plasmin-dependent pathway where plasmin activated by tPA then converts Factor XII (FXII) 

into Factor XIIa (FXIIa), which then converts plasma pre-kallikrein into plasma kallikrein 

(PKal)[121]. PKal then serves to cleave HMWK, leading to BK formation and B2R signaling 

activation [Figure 3]. This indirect mechanism was demonstrated ex vivo and in vivo with 

the former using human plasma incubated with tPA, which resulted in the formation of 

active PKal; the latter demonstrating that intravenous injection of tPA in mice increased 

PKal activity[121,122].

AD has been shown to produce BBB dysfunction in humans and animal models. Amyloid 

deposition activates gliosis that can alter the morphology of astrocytic endfeet, which 

are integral to the integrity of the neurovascular unit. As described previously with 

CAA, amyloid deposition can injure the brain endothelium, which can additionally impair 

BBB integrity[106]. Finally, Aβ oligomers stimulate fibrin production that complexes with 

amyloid plaques and has been shown to be increased in the parenchyma and vasculature 

of AD brains[107]. This fibrin-Aβ complex promotes further neuroinflammation and 

neurodegeneration. tPA is conformationally activated by fibrin deposition, but its enzymatic 

activity is inhibited by the elevated levels of PAI-1 found in AD parenchyma. However, as 

summarized in Figure 3, activated tPA has multiple plasmin-independent mechanisms by 

which it can compromise BBB integrity.

CONCLUSION

Over the past two decades following initial reports of histologic evidence of Aβ deposition 

in the brains of children chronically exposed to severe air pollution[123], it has become 

clear that chronic peripheral inflammatory conditions, including those that involve lung, 

gut, liver, and metabolic syndrome, exacerbate or initiate neuroinflammatory disorders. This 

has been supported by epidemiologic findings of a positive association between chronic 

peripheral inflammatory conditions and increased incidence of dementia, including AD. 

More recently, there has been increased interest in the contribution of the peripheral PAS 

to the neuroinflammatory component of AD. Recently, it has become recognized that the 

risk of blood clots, increased mortality, and persistent neuroinflammatory complications 

of COVID 19 viral infections are also associated with pre-existing systemic inflammatory 

disorders shown to chronically activate components of the PAS[124]. With respect to AD, the 

available evidence suggests that the peripheral PAS may modulate the neuroinflammatory 

response via multiple mechanisms[12,51]. Besides fostering the transcytosis of inflammatory 

cells across the BBB, components of the PAS have been shown to decrease BBB integrity 

and increase BBB permeability, consequences that have been independently linked to early 

cognitive dysfunction[125] including progressive stages of AD[126] perhaps in association 

with concomitant vascular disease[127]. Overall, the means by which the PAS modulates 

BBB integrity by tPA and plasmin-dependent mechanisms is complex and requires further 

validation and investigation. tPA in the CNS has been shown to alter BBB permeability 

by LRP-1 and PDGF-CC-dependent mechanisms, while tPA produced from peripheral 

inflammation can cross the BBB where it may work in tandem with the kinin system to 

directly generate BK via plasmin, or indirectly by increased PKal. It is likely that tPA works 
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multifactorially and that these mechanisms are not mutually exclusive [Figure 2][118]. Based 

on what is currently known, further studies investigating the role of the PAS in AD and other 

dementias are certainly warranted.
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Figure 1. 
Schematic diagram of the molecular mechanisms of the plasminogen activator system. 

PAI-1: Plasminogen activator inhibitor-1; NSP: neuroserpin; uPA: urokinase-type 

plasminogen activator; tPA: tissue-type plasminogen activator; PLG: plasminogen; PLM: 

plasmin. Created with BioRender.com.
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Figure 2. 
Cross-section of the neurovascular unit (NVU) in a normal brain vs. an Alzheimer’s disease 

(AD) brain. The blood-brain barrier (BBB) consists of endothelial cells joined by tight 

junctions, basement membrane, mural cells (i.e., pericytes and vascular smooth muscle 

cells), enclosed by astrocytic endfeet. Neurons and microglia closely associate with the 

BBB. In the AD brain, the NVU undergoes morphological and structural changes due to AD 

pathology. Amyloid-beta plaques complexed to fibrin result in neuroinflammation and BBB 

disruption, including activated microglia, swollen astrocytic endfeet, and compromised tight 

junctions. Created with BioRender.com.

Tang et al. Page 17

Ageing Neurodegener Dis. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioRender.com


Figure 3. 
Mechanisms by which tPA may disrupt the blood-brain barrier. (1) tissue-type plasminogen 

activator(tPA) released from neurons cleaves lipoprotein receptor-related protein-1 (LRP-1) 

to activate an NF-κB signaling cascade resulting in the production of MMP-9. tPA and 

LRP-1 can bind amyloid beta, which facilitates Aβ endocytosis across the blood-brain 

barrier (BBB). (2) Neuronal tPA degrades platelet-derived growth factor-CC (PDGF-CC) to 

release the active ligand for PDGF receptor-α (PDGFR-α) on astrocytic endfeet, causing 

them to retract from endothelial cells. (3) Plasma tPA activates plasmin to directly produce 

bradykinin that activates bradykinin 2 receptor (B2R) receptor on endothelial cells. (4) 

Plasma tPA cleaves plasminogen to generate plasmin that indirectly upregulates bradykinin 

expression through plasma kallikrein (PKal). Created with BioRender.com.
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