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Distinct genomic contexts predict gene presence–absence 
variation in different pathotypes of Magnaporthe oryzae
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Fungi use the accessory gene content of their pangenomes to adapt to their environments. While gene presence–absence variation con-
tributes to shaping accessory gene reservoirs, the genomic contexts that shape these events remain unclear. Since pangenome studies 
are typically species-wide and do not analyze different populations separately, it is yet to be uncovered whether presence–absence vari-
ation patterns and mechanisms are consistent across populations. Fungal plant pathogens are useful models for studying presence– 
absence variation because they rely on it to adapt to their hosts, and members of a species often infect distinct hosts. We analyzed 
gene presence–absence variation in the blast fungus, Magnaporthe oryzae (syn. Pyricularia oryzae), and found that presence–absence 
variation genes involved in host–pathogen and microbe–microbe interactions may drive the adaptation of the fungus to its environment. 
We then analyzed genomic and epigenomic features of presence–absence variation and observed that proximity to transposable ele-
ments, gene GC content, gene length, expression level in the host, and histone H3K27me3 marks were different between presence– 
absence variation genes and conserved genes. We used these features to construct a model that was able to predict whether a gene 
is likely to experience presence–absence variation with high precision (86.06%) and recall (92.88%) in M. oryzae. Finally, we found 
that presence–absence variation genes in the rice and wheat pathotypes of M. oryzae differed in their number and their genomic context. 
Our results suggest that genomic and epigenomic features of gene presence–absence variation can be used to better understand and 
predict fungal pangenome evolution. We also show that substantial intra-species variation can exist in these features.
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population genetics; comparative genomics; machine learning
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Introduction
Many microbial species have expansive pangenomes that allow 
them to adapt to their environments. While bacteria typically 
gain and lose genes in the form of large horizontal gene transfer 
events (McInerney et al. 2017), the accessory portions of fungal 
pangenomes, tend to be shaped by point mutations, small DNA in-
sertions and deletions (indels) which cause changes in gene se-
quences, and large indels which cause insertions or deletions of 
entire gene sequences, all of which contribute to gene presence– 
absence variation (PAV) (Martin 2017; McCarthy and Fitzpatrick 
2019). Many previous fungal pangenome studies have analyzed 
the differences between core and accessory genes and found 
that accessory genes tend to be enriched in functions important 
for rapid adaptation (McCarthy and Fitzpatrick 2019; Badet et al. 
2020; Kaushik et al. 2022; Moolhuijzen et al. 2022). Studying the fea-
tures and genomic contexts in which PAV occurs in fungal gen-
omes could therefore help us better understand and predict 
rapid evolution in these organisms. In pursuit of this understand-
ing, some studies have characterized an association of accessory 
genes with chromosome ends (subterminal regions) and transpos-
able elements (TEs) (McCarthy and Fitzpatrick 2019; Badet et al. 
2020). One recent study constructed models that could predict 

meiotically derived structural variation generation events in 
Zymoseptoria tritici, and identified TEs, histone marks and GC con-
tent as particularly important predictors (Badet et al. 2021). This 
research raises the exciting possibility that these models could 
be used to predict PAV events in other fungi and could help us bet-
ter understand fungal pangenome evolution. However, whether 
different mechanisms that generate gene PAV are associated 
with distinct genomic contexts remains an active area of research. 
Furthermore, it has remained unclear whether any patterns in 
genomic or epigenomic features of PAV events could be general-
ized to all populations of the same species, as pangenomes are 
typically assembled for entire species without consideration of 
differential evolution between populations.

Fungal plant pathogens are useful models for studying pangen-
ome evolution. They have dynamic pangenomes that allow them 
to adapt to their hosts and secrete a wide range of rapidly evolving 
effector proteins to cause disease (Badet et al. 2020; Kaushik et al. 
2022; Moolhuijzen et al. 2022). These effectors can become a disad-
vantage, however, when the immune receptors of their hosts 
acquire new recognition specificities which allow the receptors 
to detect these effectors and trigger an immune response 
(Tamborski and Krasileva 2020). Gene PAV plays an important 

GENETICS, 2024, 226(4), iyae012 

https://doi.org/10.1093/genetics/iyae012
Advance Access Publication Date: 30 January 2024 

Investigation

https://orcid.org/0000-0002-1679-0700
mailto:pierrej@berkeley.edu
mailto:kseniak@berkeley.edu
https://creativecommons.org/licenses/by/4.0/


role in avoiding this response (Sánchez-Vallet et al. 2018). Point mu-
tations in effectors also contribute to avoiding detection by the 
host. Therefore, effectors tend to be located in TE-dense and gene- 
poor regions of the genome, which helps effectors rapidly evolve 
and escape recognition, while slower evolution and house-keeping 
genes occur in TE-poor and gene-dense regions of the genome 
(Dong et al. 2015; Torres et al. 2020). This idea is often referred to 
as the “two-speed” genome concept. Effectors tend to be prone to 
PAV but it is currently unclear whether the two-speed genome con-
cept applies directly to gene PAV (Sánchez-Vallet et al. 2018). 
Finally, many fungal plant pathogen species are made up of popu-
lations that infect distinct hosts. The existence of these pathotypes 
makes fungal plant pathogens useful models for characterizing 
and comparing gene PAV across different populations of the 
same species and investigating how this PAV might affect differ-
ences in their phenotypes.

Magnaporthe oryzae (syn. Pyricularia oryzae) causes the blast dis-
ease of many grasses, including rice and wheat, and is amongst 
the most important and well-studied pathogens with hundreds 
of available genomes and next-generation sequencing datasets 
(Dean et al. 2012; Ceresini et al. 2019). The fungus has been re-
ported to experience substantial gene PAV but these analyses 
have been largely restricted to effectors, and the genomic and epi-
genomic features associated with these PAV events remain largely 
unexplored (Kim et al. 2019; Latorre et al. 2020; Thierry et al. 2022). 
Since M. oryzae is thought to be mostly clonal, the study of how its 
pangenome can evolve without substantial recombination is also 
possible within this species (Gladieux, Ravel, et al. 2018b; Thierry 
et al. 2022; Rahnama et al. 2023). The M. oryzae species is made 
up of many pathotypes and host-specificity is largely monophylet-
ic (Gladieux, Condon, et al. 2018). Exchange of genetic information 
between host-specific isolates is thought to be rare, though there 
is clear evidence of such exchanges (Gladieux, Condon, et al. 2018; 
Rahnama et al. 2023). The isolation of the different host-specific 
populations therefore enables the comparison of gene PAV be-
tween pathotypes within the M. oryzae species. While rice blast 
has been a long-standing threat, the rapid spread of wheat blast 
throughout the world as well as its particularly devastating effect 
on wheat crops has fueled research into the wheat-infecting 
pathotype of M. oryzae that causes this disease and especially 
how it was able to jump hosts from rice to wheat and become 
such a devastating pathogen (Ceresini et al. 2019). Therefore, it is 
especially important to investigate whether differences exist in 
gene PAV between these 2 pathotypes. Altogether, M. oryzae offers 
a unique opportunity to study gene PAV and the genomic and epi-
genomic features that shape these events as well as how these 
events vary within a species.

In this study, we sought to characterize and compare gene PAV 
in rice-infecting (MoO) and wheat-infecting M. oryzae (MoT). We 
first identified orthogroups experiencing PAV caused by large in-
dels that distinguished isolated MoO lineages and found that 
they were enriched in functions related to host–pathogen and 
microbe–microbe interactions. Next, we characterized the gen-
omic contexts in which these PAV events occur in MoO and MoT 
and found that TEs were often found in proximity to these genes. 
Additionally, we found that PAV genes were smaller, had a lower 
GC content, were less expressed and were more likely to show 
H3K27me3 histone mark sequencing signal than conserved genes. 
We used these features to construct a random forest classifier and 
found that the differences we observed were strong enough to pro-
duce a model that predicted whether a gene is likely to experience 
PAV with high precision (86.06%) and recall (92.88%). Finally, we 
found significant differences in the number of PAV events and 

the features that predict PAV in MoO and MoT, which could reflect 
their differing evolutionary history and could be evidence of dis-
tinct mechanisms contributing to PAV in the 2 recently diverged 
lineages.

Methods
Genome annotation, proteome orthogrouping, 
and phylogeny generation
The set of 123 MoO genomes was obtained from a previously pub-
lished study (Zhong et al. 2018; Pordel et al. 2020; Thierry et al. 
2022), while 36 MoT genomes as well as a single Magnaporthe grisea 
proteome (GCA004355905.1) were obtained from NCBI's GenBank 
(Supplementary Table 1). All genomes were verified to have more 
than 90% completeness using BUSCO version 5.2.2 and the “sor-
dariomycetes_odb10” option (Simão et al. 2015). Genomes were 
annotated using FunGAP (Min et al. 2017) version 1.1.0 and 
RNAseq data was obtained from Sequence Read Archive (SRA) ac-
cession ERR5875670. The “sordariomycetes_odb10” option was 
used for the busco_dataset argument and the “magnaporthe_gri-
sea” option was used for the augustus_species argument. For re-
peat masking, a TE library generated by combining the RepBase 
(Bao et al. 2015) fngrep version 25.10 with a de novo repeat library, 
generated by RepeatModeler (Flynn et al. 2020) version 2.0.1 run on 
the M. oryzae Guy11 genome (GCA002368485.1) with the LTRStruct 
option, was used for all genomes. Annotated proteomes were then 
used as input for OrthoFinder (Emms and Kelly 2019) version 2.5.4 
to form 2 separate sets of orthogroups, 1 for MoO proteomes and 1 
for MoT proteomes. The M. grisea proteome was included in both 
as an outgroup. Orthogrouping was performed using the “dia-
mond_ultra_sens” parameter for sequence search, the “mafft” 
parameter for species tree generation and the “fasttree” param-
eter for gene tree generation. Single copy orthologs (SCOs) were 
then obtained from the OrthoFinder output, aligned using mafft 
(Katoh and Standley 2013) version 7.487 with the –maxiterate 
1000 parameter and the –globalpair parameter, concatenated, 
and then trimmed using trimal (Capella-Gutiérrez et al. 2009) ver-
sion 1.4.rev22 and a 0.8 gap threshold parameter. Finally, fasttree 
(Price et al. 2010) version 2.1.10 with the gamma parameter was 
used to generate a phylogeny and ape (Paradis and Schliep 2019) 
version 5.5 was used to root each tree on the M. grisea outgroup.

Gene absence validation
A preliminary set of missing orthogroups in each genome was ob-
tained from the OrthoFinder outputs. Gene absences were vali-
dated by first using TBLASTN (Camacho et al. 2009) version 2.7.1+ 
with the -max_intron_length 3000 parameter to align all protein 
sequences from an orthogroup to the genome that was missing 
that orthogroup. Any orthogroup that resulted in 2 or more align-
ments with greater than 55% sequence identity, greater than 55% 
query coverage and an e-value smaller than 10−10 when aligned to 
the target genome were selected for further verification. TBLASTN 
hits were converted to GFF format using custom scripts (see Data 
availability) and then converted from GFF format to protein se-
quences using agat_sp_extract_sequences.pl version 0.9.1 from 
the AGAT toolkit (https://github.com/NBISweden/AGAT) with de-
fault settings, and aligned against all protein sequences in all 
orthogroups using BLASTP (Camacho et al. 2009) version 2.7.1+. 
Finally, the BLASTP alignments were ranked by e-value and the 
top 100 alignments were collected, as well as which orthogroup 
the matching protein sequence belonged to. The most common 
orthogroup within these 100 alignments was used to determine 
which orthogroup the sequence would have belonged to if it had 
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been annotated by FunGAP. If no TBLASTN hits were found or if 
the BLASTP hits did not match the original missing orthogroup, 
the absence was counted as a validated absence, otherwise it 
was removed from the set of missing orthogroups.

The filters and cutoffs used for this method were optimized by 
first re-running orthogrouping as previously described, without 
the proteome of the MoO isolate CH0043 (chosen at random). A 
list of orthogroups that were found in the CH0043 proteome in 
our full dataset orthogrouping was then used as test cases. Our 
pipeline was optimized by testing different cutoffs for sequence 
identity, query coverage and e-value, so that these cutoffs were 
as stringent as possible while still only incorrectly classifying 
less than 1% of these orthogroups as absent.

Effector annotation
Effectors were predicted in all proteomes by first selecting 
genes with signal peptides which were predicted using SignalP 
(Petersen et al. 2011) version 4.1 using the “euk” organism type 
and using 0.34 as a D-cutoff for both noTM and TM networks. 
Genes with predicted transmembrane domains from TMHMM 
(Krogh et al. 2001) version 2.0c were then excluded. Finally, 
EffectorP (Sperschneider and Dodds 2022) version 3.0 was used 
to predict effectors from this secreted gene set. Effector 
orthogroups were then called if at least half of the orthologs with-
in the orthogroup were annotated as predicted effectors.

Principal component analysis and identification of 
lineage-differentiating PAV orthogroups
The matrix of missing effector orthogroups for each MoO isolate 
was used for principal component analysis (PCA) using the 
prcomp function in R version 3.6.1. PCA was performed a second 
time using the matrix of all missing orthogroups. The get_pca_var 
function in R version 3.6.1 was used to obtain the amount that 
each orthogroup contributed to the variance of PCs 1 and 
2. Orthogroups that contributed more than 0.1% of this variance 
in either PC1 or PC2 were labeled lineage-differentiating PAV 
orthogroups. In total, these orthogroups explained 70.53% of the 
variance in PC1 and 62.17% of the variance in PC2.

Gene ontology and protein family enrichment 
analyses
All proteins were annotated for GO terms using the PANNZER2 
(Törönen et al. 2018) webserver and command line software 
SANSPANZ version 3 in October 2022. Only annotations with a posi-
tive predictive value greater than 0.6 and an ARGOT rank of 1 were 
kept. All GO terms assigned to genes within an orthogroup were 
then transferred to their orthogroup. GO term enrichment analysis 
was then performed using TopGO (Alexa and Rahnenfuhrer 2023) 
version 2.36.0 and enrichment was calculated using the Fisher's 
exact test and the “weight” algorithm. Only GO terms that were as-
signed to 3 or more lineage-differentiating PAV orthogroups and 
with enrichment P-values less than 0.05 were reported.

PFAM enrichment analysis was performed by annotating PFAM 
domains using pfam_scan.pl (Madeira et al. 2022) version 1.6–4 
and the PFAM-A database. The output from pfam_scan.pl was 
parsed using K-parse_Pfam_domains_v3.1.pl (https://github. 
com/krasileva-group/plant_rgenes) (Sarris et al. 2016) and an 
e-value cutoff of 0.001, and domain names were simplified by re-
moving numbers and additional letters attached to domain 
names. Orthogroups were called as containing a domain if at least 
half of their orthologs had that domain annotation. Fisher's exact 
test for enrichment was performed using the scipy.stats Python 
module (Virtanen et al. 2020) version 1.9.0. Only domains which 

were observed in 3 or more lineage-differentiating PAV orthologs 
and with enrichment P-values less than 0.05 were reported.

Identification of large indels
Illumina sequencing data were obtained from 117 datasets for 
MoO and 47 datasets for MoT from the SRA (Supplementary 
Files 1 and 2). Reads were mapped to the M. oryzae Guy11 genome 
(GCA002368485.1) for MoO datasets and to the M. oryzae B71 gen-
ome (GCA004785725.2) for MoT datasets using BWA MEM (Li 2013) 
version 0.7.17-r1188. Read duplicates were marked using Picard 
(https://broadinstitute.github.io/picard/) version 2.9.0. Structural 
variants were then called using smoove (https://github.com/ 
brentp/smoove) version 0.2.8, wham (Kronenberg et al. 2015) ver-
sion 1.7.0-311-g4e8c, Delly (Rausch et al. 2012) version 0.9.1, and 
Manta (Chen et al. 2016) version 1.6.0 using default settings. The 
Delly output was processed using bcftools (Danecek et al. 2021) 
version 1.6 to keep only called structural variants that passed 
Delly's quality control. Structural variants were then merged 
and filtered using SURVIVOR (Jeffares et al. 2017) version 1.0.7. 
Structural variants that were the same type, were on the same 
strand, and had breakpoints within 1,000 bp were merged. Only 
structural variants that were called by 3 or more callers and 
were larger than 50 bp were kept. Finally, the structural variants 
called for each dataset were all merged as before except break-
points within 100 bp were merged. From this list of all structural 
variants, only structural variants labeled as deletions were kept 
for further analysis.

Definition of PAV orthogroups and conserved 
groups
For each lineage, PAV orthogroups were defined by first taking the 
matrix of validated PAVs and filtering this matrix to orthogroups 
that were present in at least 2 isolates and absent in at least 2 iso-
lates. The SCO phylogeny of the lineage was then analyzed for 
each candidate PAV orthogroup. If the orthogroup was only ab-
sent in strains that formed a monophyletic group, the orthogroup 
was not considered to be a PAV orthogroup. Additionally, if the 
orthogroup was only found in strains that formed a monophyletic 
group, the orthogroup was not considered to be a PAV orthogroup 
either. All orthogroups that were therefore present in 2 independ-
ent groups and absent in 2 independent groups were labeled PAV 
orthogroups. All orthogroups that were missing in 1 or fewer 
strains were considered conserved orthogroups. All other 
orthogroups were considered “other”.

Transposable element annotation
TE annotation was performed using RepeatMasker (Smit et al. 
2013–2015) version 4.1.1 and a reference TE library for all patho-
types of M. oryzae generated by Nakamoto et al. (2023). The para-
meters -cutoff 250, -nolow, -no_is, and -norna were used for the 
RepeatMasker command.

Next-generation sequencing data and GC content 
analysis
RNAseq data for MoO were obtained from SRA (Supplementary File 
3) from a previously published study (Zhang et al. 2021) and mapped 
to the M. oryzae Guy11 genome (GCA002368485.1) for in culture data 
and the M. oryzae Guy11 genome combined with the Oryza sativa 
Nipponbare genome (GCA001433935.1) for the in planta data. 
RNAseq data for MoT were obtained from SRA accessions 
SRR9127598 through SRR9127602 from a previously published 
study (Peng et al. 2019) and mapped to the M. oryzae B71 genome 
(GCA004785725.2) for in culture data and the M. oryzae B71 genome 
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combined with the Triticum aestivum genome (GCA900519105.1) for 
the in planta data. Mapping was performed using STAR (Dobin et al. 
2013) version 2.7.1a and index files for mapping were made using 
the previously mentioned genomes and genome combinations 
along with corresponding gene annotation files obtained from 
FunGAP for the M. oryzae genomes and from GenBank for the rice 
and wheat genomes or using BED format files of indels identified 
in this study. Read counts for each gene or indel were calculated 
using the –quantMode GeneCounts parameter in STAR. These 
read counts were normalized to gene or indel size as reads per 
kilobase values (RPK), then the total number of RPKs were summed 
for each sample and divided by 1 million. This sum was used to nor-
malize read counts in each sample to obtain transcript per million 
(TPM) values for each sample. These TPM values were then aver-
aged across replicates.

Published ChIP-Seq data for H3K27me3, H3K27ac, and 
H3K36me3 histone marks were obtained from a study published 
by Zhang et al. (2021). Published eccDNA sequencing data were ob-
tained from a previous study by Joubert and Krasileva (2022). 
Reads were mapped to the M. oryzae Guy11 genome using BWA 
MEM (Li 2013) version 0.7.17-r1188. Read counts per gene or per in-
del were obtained using the coverage command from the BEDtools 
suite of tools (Quinlan and Hall 2010) version 2.28.0. Read counts 
were normalized for gene or indel size and library size and aver-
aged across replicates as for RNAseq data.

Methylation data from M. oryzae mycelium were obtained from 
a previous study published by Jeon et al. (2015). Reads were 
mapped to the M. oryzae genome and processed using the 
Bismark pipeline (Krueger and Andrews 2011) version 0.24.0. 
Methylation percentage for all cytosines was extracted while ig-
noring the first 2 bases of all reads. The percentage of methylated 
cytosines was then calculated for a gene or indel by averaging the 
methylation percentage of all cytosines in that gene or indel.

To assign signals from next-generation sequencing datasets to 
orthogroups, signals for all orthologs in M. oryzae Guy11 and M. or-
yzae B71 within each orthogroup were averaged. Any orthogroups 
that did not have orthologs from B71 and Guy11 within them were 
given a value equal to the median value for all other orthogroups. 
M. oryzae Guy11 was not included in the original orthogrouping so 
a separate set of orthogroups were generated which included the 
M. oryzae Guy11 proteome annotated using FunGAP (Min et al. 
2017) as previously described in order to transfer the next- 
generation sequencing data signals.

Finally, GC content values for genes, flanking regions, and in-
dels were calculated using the nuc command in BEDTools 
(Quinlan and Hall 2010) version 2.28.0.

Window-based density plots of gene and TE 
content for genomic regions
10 bp windows were first generated for each M. oryzae reference gen-
ome. The number of TEs and the number of genes in each window 
were then calculated using the coverage command in BEDTools 
(Quinlan and Hall 2010) version 2.28.0 and stored as bedgraph files. 
Bigwig files were generated from bedgraph files using the 
bedGraphToBigWig tool (https://www.encodeproject.org/software/ 
bedgraphtobigwig/) version 4. Finally, data for window-based 
density plots of indels were generated using the computeMatrix 
scale-regions and the plotProfile commands of the DeepTools 
suite of tools (Ramírez et al. 2016) version 3.5.1. Briefly, this tool 
scales all deletion regions to a set length (in this case, 1kbp) by 
stretching or compressing them and calculates the number of ele-
ments (TEs or genes) in each 10 bp window of these scaled regions. 
The counts per window are then averaged across all elements. 

This process is also done for the flanking regions (in this case, 
5kbp) except no scaling is done for these regions.

Random forest classification and feature 
importance calculation
Random forest classifiers were trained and performance statistics 
were calculated using the scikit-learn Python module (Pedregosa 
et al. 2011) version 1.1.1. The hyperparameters used to train the 
model were as follows: 2,000 estimators, a minimum of 2 samples 
to split a node, no minimum number of samples per leaf, no max-
imum tree depth, no maximum number of features per tree, and 
bootstrapping enabled. Classifiers were trained only on data for 
genes belonging to lineages 2 and 3 for MoO. Before training, all 
genes belonging to 4 genomes from each lineage were removed 
for them to be used as testing data. From the remaining data, 
50% of the genes not labeled as PAV were removed to improve 
the balance between PAV genes and non-PAV genes in the training 
data. The model was then trained and tested on the genes from 
the 8 genomes that were removed before training. The training 
and testing data split was repeated 100 times to generate average 
precision, recall, and F1 values as well as average number of true 
positives, false positives, true negatives, and false negatives for all 
models.

Feature importances were calculated according to methods de-
scribed within the rfpimp Python module (https://github.com/ 
parrt/random-forest-importances) (Parr et al. 2018). Briefly, a ran-
dom forest classifier was trained and tested as before to measure a 
baseline F1 statistic. Each variable in the testing data was then 
permuted in turn and a new F1 statistic for the model was gener-
ated on the permuted data. The difference between the baseline 
F1 and the new F1 were then calculated. This process was then re-
peated 100 times and the average decrease in the F1 statistic when 
each variable was permuted was reported.

Spearman and point biserial correlation coefficients between 
variables were calculated using the cor function in R version 
3.6.1. Phi correlation coefficients were calculated using the psych 
package (Revelle 2022) version 2.2.9. To calculate dependence sta-
tistics for each variable in the complete MoO model, a random for-
est classifier or a random forest regressor was used to predict each 
variable originally used to train the PAV gene prediction model 
using all remaining variables. The same hyperparameters and 
train–test split were used to train and test each model as for the 
original PAV gene prediction model. Baseline F1 or R2 values for 
each model were then calculated and the change in these values 
when each variable within the model was permuted was calcu-
lated as before. However, the results reported were only from a 
single run of this analysis.

Data processing and analysis
Data processing was performed in a RedHat Enterprise Linux en-
vironment with GNU bash version 4.2.46(20)-release. GNU coreu-
tils version 8.22, GNU grep version 2.20, GNU sed version 4.2.2, 
gzip version 1.5, and GNU awk version 4.0.2 were all used for pro-
cessing and handling. Conda (https://docs.conda.io/en/latest/) 
was used to facilitate installation of software and packages. 
Code parallelization was performed with GNU parallel (Tange 
2018) version 20180322. Previously published data were down-
loaded using curl version 7.65.3 (https://curl.se/) and sra-tools ver-
sion 2.10.4 (https://github.com/ncbi/sra-tools). BED format files 
were processed using BEDtools (Quinlan and Hall 2010) version 
2.28.0. VCF format files were processed using bcftools (Danecek 
et al. 2021) version 1.6. SAM and BAM format files were processed 
using SAMtools (Danecek et al. 2021) version 1.8. FASTA format 
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files were processed using seqtk (https://github.com/lh3/seqtk) 
version 1.2-r102-dirty.

Data processing and analysis were performed using custom 
Python scripts (see Data availability) written in Python version 
3.10.5 with the help of pandas (The pandas development team 
2020) version 1.4.3 and numpy (Harris et al. 2020) version 1.23.1. 
GFF format files were parsed in Python using BCBio GFF version 
0.6.9 (https://github.com/chapmanb/bcbb/tree/master/gff). FASTA 
format files were processed in Python using SeqIO from Biopython 
(Cock et al. 2009) version 1.80.

Data processing and analysis were also performed using cus-
tom R scripts (see Data availability) written in R version 3.6.1 with 
the help of data.table (Dowle and Srinivasan 2020) version 
1.13.6, tidyr (Wickham 2021) version 1.1.3, reshape2 (Wickham 
2007) version 1.4.4, and dplyr (Wickham et al. 2021) version 1.0.4. 
Plotting was performed using the ggplot2 package (Wickham 
2016) version 3.3.5 and the ggnewscale package (Campitelli 
2022) version 0.4.8. Phylogenies were analyzed and plotted using 
the ape (Paradis and Schliep 2019) package version 5.5 and the 
phytools package (Revell 2012) version 0.7.90.

Results
Genes associated with pathogenicity, 
non-self-recognition and antibiotic production, 
are enriched among orthogroups experiencing 
lineage-differentiating presence–absence 
variation in M. oryzae
Differences in gene PAV events between isolated lineages of 
M. oryzae could be evidence of local adaptation. MoO isolates 
can be grouped into 4 lineages, called lineages 1, 2, 3, and 4 
(Gladieux, Ravel, et al. 2018b). Lineages 2, 3, and 4 are monophylet-
ic within the MoO phylogeny and propagate clonally (Gladieux, 
Ravel, et al. 2018b). All lineages show evidence of local adaptation 
(Thierry et al. 2022). To generate a table of all gene PAV events in 
MoO, we analyzed 123 previously published genomes using a pipe-
line described in Supplementary Fig. 1a (Zhong et al. 2018; Pordel 
et al. 2020; Thierry et al. 2022). We first verified that all genomes 
were of good quality (Supplementary Table 1). Then, these gen-
omes were re-annotated, and the proteomes were clustered into 
13,820 orthogroups. We then constructed a phylogeny from a 
multiple-sequence alignment of all of our SCOs and found each 
of the 3 clonal MoO lineages formed separate monophyletic 
groups in our data, as previously observed (Supplementary Fig. 
2) (Gladieux, Ravel, et al. 2018b; Thierry et al. 2022). Using our 
orthogroups generated from the clustered proteomes, we were 
able to identify putative orthogroup absences in all genomes. 
These absences indicated that an entire orthogroup was missing 
from a genome, rather than single paralogs, which meant that 
our pipeline was focused on identifying whole-orthogroup PAV ra-
ther than within-orthogroup PAV. These putative orthogroup ab-
sences were then validated by using TBLASTN (Camacho et al. 
2009) against the genome and comparing hits to the missing 
orthogroup using BLASTP (Camachao et al. 2009). These validation 
steps helped ensure that gene absences were not annotation er-
rors. These steps also meant that our approach only counted an 
absence of an orthogroup when the DNA sequence of the 
orthogroup was fully missing from a genome and that these ab-
sences represented PAV caused by large, gene-sized indels, rather 
than pseudogenization or gene silencing because of point muta-
tions or small indels.

To identify whether differences in gene PAV events existed be-
tween the 3 clonal lineages of MoO, we performed a PCA on our 

table of PAV events. We found that the top 2 principal components 
(PCs) of our PCA clearly separated the lineages demonstrating that 
different PAV events had occurred in each lineage since their 
separation (Fig. 1a). Next, we identified 587 orthogroups that 
explained most of the variance in PCs 1 and 2. We called these 
orthogroups lineage-differentiating PAV orthogroups. We then 
identified, among all orthogroups, 594 putative effector 
orthogroups and found, as previously reported (Latorre et al. 
2020; Thierry et al. 2022), that PAV of effector orthogroups alone 
was sufficient to separate the MoO lineages in a follow-up PCA 
(Fig. 1b). Given that we identified 4.30% of all orthogroups as puta-
tive effectors, the fact that 8.67% of lineage-differentiating PAV 
orthogroups were effectors represented a clear enrichment (P <  
0.001, Fisher's exact test). However, non-effector orthogroups still 
represented 91.33% of lineage-differentiating PAV orthogroups, 
showing that many orthogroups besides effectors experience 
lineage-differentiating PAV (Fig. 1c).

To identify what other types of genes were enriched amongst 
lineage-differentiating PAV orthogroups, we performed gene 
ontology (GO) and protein family (PFAM) enrichment analysis. 
This analysis revealed that lineage-differentiating PAV 
orthogroups were enriched for GO terms related to secondary 
metabolite production and biosynthesis of membrane compo-
nents, among other terms (Fig. 2a). Lineage-differentiating PAV 
orthogroups were enriched for PFAM domains related to antibiotic 
production, among other domains (Fig. 2b). Genes without PFAM 
domains were also strongly enriched in lineage-differentiating 
PAV orthogroups (6,040 annotated, 407 observed, 256.55 expected, 
P < 0.001, Fisher's exact test). Notably, the HET domain, which is 
associated with heterokaryon incompatibility in fungi, was also 
enriched among these orthogroups (Fig. 2b). NACHT and 
NB-ARC domains are characteristic of NOD-like receptors (NLRs) 
which are involved in fungal self- and non-self-recognition 
(Dyrka et al. 2014). When we grouped these 2 domains together, 
we found that they were enriched amongst lineage-differentiating 
PAV orthogroups (23 annotated, 4 observed, 1.15 expected, P =  
0.026, Fisher's exact test). These results indicated that antibiotic 
production and non-self-recognition, in addition to effectors, 
may play an important role in driving adaptation in these 3 iso-
lated lineages of MoO.

Presence–absence variation genes are more 
common and spread out throughout the genome 
in MoT than in MoO
We next sought to identify whether there were specific patterns in 
the genomic contexts of PAV events in M. oryzae. To expand our 
analyses beyond lineage-differentiating orthogroups and to com-
pare PAV orthogroups with conserved orthogroups, we developed 
a systematic way to label PAV events. To avoid erroneously calling 
single gene gain or loss events as actual large-scale variation in 
presence and absence, we incorporated phylogenetic information 
in these definitions. Using this information, we identified PAV and 
conserved orthogroups for each clonal, monophyletic lineage of 
M. oryzae. In our data, orthogroups were labeled as PAV if they 
were present in all isolates of at least 2 subclades within a lineage 
and absent in all isolates of at least 2 subclades within a lineage. 
Subclades were defined as any monophyletic group of isolates 
that did not include all isolates within the lineage. This definition 
meant that at least 2 phylogenetically independent loss or gain 
events needed to be observed in our data for an orthogroup to 
be labeled PAV. All orthogroups that were present in all but 2 or 
fewer isolates in a lineage were labeled as conserved orthogroups. 
All orthogroups that did not fit either definition were labeled as 
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“other”. Genes belonging to PAV orthogroups or conserved 
orthogroups were labeled PAV genes and conserved genes, re-
spectively. We describe this pipeline in detail, with examples of 
what our pipeline labeled as PAV orthogroups in Supplementary 

Fig. 1b. This approach allowed us to label 1,269 and 1,029 PAV 
orthogroups in lineages 2 and 3 of MoO, respectively (Fig. 3a). 
We did not include lineage 4 in our analysis because of its small 
number of isolates and omitted lineage 1 because it is thought 

Fig. 1. PAV of effector and non-effector orthogroups differentiate the clonal lineages of MoO. a) Scatter plot of values for principal components (PCs) 1 and 
2 resulting from a PCA of orthogroup PAV. Each point represents 1 isolate. b) Scatter plot of values for PCs 1 and 2 resulting from a PCA of effector 
orthogroup PAV. Each point represents 1 isolate. c) Heat map representing which lineage-differentiating PAV orthogroups are present (color) or absent 
(white) in each genome. Effector orthogroups are separated from non-effector orthogroups by a black box. The phylogeny was generated using a 
multiple-sequence alignment of SCOs, fasttree and the full MoO phylogeny generated from our data, with lineage 1 omitted (Supplementary Fig. 2). In all 
panels, colors represent the clonal lineages of MoO. Blue represents lineage 2, orange represents lineage 3, and pink represents lineage 4. Lineages were 
named as previously described (Gladieux, Ravel, et al. 2018b).
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to be recombining and, in a recombining lineage, it would be im-
possible to differentiate 2 phylogenetically independent loss or 
gain events from a single loss or gain event followed by recombin-
ation into another monophyletic group (Gladieux, Ravel, et al. 
2018b).

To compare PAV across MoO and MoT, we annotated, called 
orthogroups and validated missing orthologs for 36 previously 
published MoT genomes. The majority of these genomes were of 
similar quality to our MoO genomes though some were of higher 
quality, with a few reaching chromosome and near-chromosome 
level quality (Supplementary Table 1). Unlike for MoO, only 1 

lineage of MoT has been clearly defined. This lineage is a pandem-
ic clonal lineage that recently spread from South America to Asia 
and Africa (Latorre et al. 2023). Given the small number of MoT 
genomes available for our analysis compared to MoO, we chose 
to include other MoT isolates and not to separate them into differ-
ent lineages for the most of our analyses (Supplementary Fig. 3). 
All MoT isolates are thought to have propagated clonally since 
their recent appearance which satisfied the assumptions made 
by our method for calling PAV orthogroups (Rahnama et al. 
2023). In all MoT isolates, we identified 1,570 PAV orthogroups 
which was substantially more than in the MoO lineages (Fig. 3a). 

Fig. 2. Lineage-differentiating PAV orthogroups in MoO contain many genes related to antibiotic production and non-self-recognition. a) Gene ontology 
(GO) enrichment analysis of lineage-differentiating PAV orthogroups. b) Protein family (PFAM) domain enrichment analysis of lineage-differentiating 
PAV orthogroups. P-values shown are the results of Fisher's exact tests. Only GO terms and domains that were assigned to 3 or more 
lineage-differentiating PAV orthogroups and with enrichment P-values less than 0.05 were reported in this figure.
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When we analyzed the isolates belonging to the pandemic clonal 
lineage alone, we identified only 789 PAV orthogroups. The smal-
ler number of isolates in the clonal pandemic lineage of MoT com-
pared to the MoO lineages (24 isolates vs 32 and 48) as well as 
differences in evolutionary distances between the MoO and MoT 
lineages may have influenced these results (Supplementary Figs. 
2 and 3).

To assess whether the contrast in the number of PAV 
orthogroups in MoO and MoT was also present in large indels, 
we used 117 MoO and 47 MoT Illumina whole-genome sequencing 
datasets, which represented all lineages of MoO and MoT, to call 
indels greater than 50 bp in length based on a high-quality refer-
ence genome for each pathotype (Supplementary Files 1 and 2). 
This approach allowed us to identify 1,870 indels in MoO and 

1,862 indels in MoT despite using more than double the number 
of datasets for MoO than MoT (Supplementary Files 4 and 5). We 
also found that indels were larger in MoO than in MoT, with a me-
dian length of 1,818 bp in MoO and 960 bp in MoT (Fig. 3b, 
Supplementary File 6).

Correspondingly, when we compared the density of PAV genes 
in MoO and MoT, we found that genes belonging to PAV 
orthogroups were closer to other genes belonging to PAV 
orthogroups in MoO than in MoT (Fig. 3c and d, Supplementary 
File 7). To check whether this result was sensitive to potential dif-
ferences in genome quality between MoO and MoT isolates, we 
also used a qualitative measurement of whether or not PAV genes 
were found within 1,000 bp of conserved and PAV genes in MoO 
and MoT (Fig. 3e, Supplementary File 8). Again, we found that 

Fig. 3. PAV genes are more common and more spread out throughout the genome in MoT than in MoO. a) Stacked barplot comparing the number of PAV 
orthogroups (OGs) and conserved orthogroups in MoO and MoT. “Other OGs” denote orthogroups that did not satisfy our definitions for either category. b) 
Distribution of the lengths of large indels (>50 bp) in MoO and MoT. c) Density plot showing the distribution of the distances to the nearest PAV gene for 
conserved and PAV genes in MoO and MoT. Dashed lines in density plots represent the median values for all genes in both pathotypes. d) Violin plot 
showing the distribution of the distances to the nearest PAV gene for conserved and PAV genes in MoO and MoT. e) Percentages and proportions of PAV 
and conserved genes that are within 1,000 bp of a PAV gene in MoO and MoT. Rectangles within violin plots represent interquartile ranges, dark lines 
represent medians, and dots represent the means with outliers removed. Statistics and statistical comparisons for data shown in panels b) through e) are 
listed in Supplementary Files 6, 7, 8, 9, and 10.
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PAV genes in MoO were more likely to be found near other PAV 
genes than in MoT. Taken together, these results indicated that 
large indels were more likely to involve multiple genes in MoO 
than in MoT. These results also hinted that gene PAV occurs in re-
gions of the genome that are more isolated from conserved genes 
in MoO than in MoT.

Genes prone to presence–absence variation in 
M. oryzae are closer to TEs than other genes
The two-speed genome hypothesis defines 2 genomic compart-
ments in fungal plant pathogens, 1 characterized by rapid evolu-
tion, few genes and many TEs, and the other characterized by slow 
evolution, many genes and few TEs (Dong et al. 2015; Torres et al. 
2020). We investigated whether orthogroups experiencing PAV 
followed this model in M. oryzae. We found that genes in PAV 
orthogroups were much closer to TEs than genes in conserved 
orthogroups in both MoO and MoT (Fig. 4a–c, Supplementary 
Files 9 and 10). While the differences in distance to the nearest 
gene between conserved and PAV orthogroups in MoO or MoT 
were typically quite small (median difference < 100 bp), we did 
find that genes in PAV orthogroups were less likely to be close to 
genes than conserved genes, though the effect was not as strong 
as for TEs (Supplementary Fig. 4a–c, Supplementary Files 9 and 
10). We also observed differences in these patterns for MoO and 
MoT. Specifically, we found that PAV orthogroups in MoO were 
more likely to be close to TEs than those in MoT (Fig. 4c, 
Supplementary Files 7 and 8). We also found that MoO PAV genes 
were more likely to be far away from genes than MoT PAV genes 
(Supplementary Fig. 4c, Supplementary Files 7 and 8).

To understand if these observations also applied to large indels 
in MoT and MoO, we measured TE and gene densities within the 

indels we previously identified and within their flanking regions. 
This analysis revealed that large indels and their flanking regions 
were enriched in TEs and depleted in genes, though the effect was 
stronger for TE density than for gene density and validated the 
fact that our pipeline had identified PAV events generated by large 
indels in our genomes (Supplementary Fig. 5).

Genes prone to presence–absence variation 
exhibit distinct genomic and epigenomic features 
compared to conserved genes in M. oryzae
A previous report has shown that MoO has a much greater TE con-
tent than MoT (Nakamoto et al. 2023). Given this fact and the in-
creased number of PAV orthogroups in MoT compared to MoO 
(Fig. 3a), it is unlikely that TEs alone define whether a gene is prone 
to PAV or not. We therefore chose to investigate whether we could 
identify other differences in genomic features between PAV genes 
and conserved genes in M. oryzae. We first looked at the GC content 
of these genes and the regions that flank them. PAV genes were 
more likely to have lower GC content than conserved genes 
(Fig. 5a, Supplementary File 11), as did the regions that flank them, 
though the effect was more subtle for the flanking regions 
(Supplementary Fig. 6a, Supplementary File 11). We also found 
that PAV genes were shorter than conserved genes (Fig. 5b, 
Supplementary File 11). We next performed various functional anno-
tations of PAV and conserved genes and found that PAV genes were 
more likely to be predicted effectors and less likely to have GO or 
PFAM annotations than conserved genes (Supplementary Fig. 7, 
Supplementary File 10).

Next, we gathered histone mark, transcription, methylation, 
and extrachromosomal circular DNA (eccDNA) sequencing 
data from the literature to further characterize PAV genes 

Fig. 4. PAV genes are more likely to be found near transposable elements (TEs) than conserved genes. a) Density plots showing the distribution of the 
distances to the nearest TE for conserved and PAV genes in MoO and MoT. b) Violin plot showing the distribution of the distances to the nearest TE for 
conserved and PAV genes in MoO and MoT. c) Percentages and proportions of PAV and conserved genes that are within 5,000 bp of a TE in MoO and MoT. 
Dashed lines in density plots represent the median values for all genes in both pathotypes. Rectangles within violin plots represent interquartile ranges, 
dark lines represent medians, and dots represent the means with outliers removed. Statistics and statistical comparisons for data shown are listed in 
Supplementary Files 7, 8, 9, and 10.
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(Supplementary File 3) (Jeon et al. 2015; Peng et al. 2019; Zhang et al. 
2021; Joubert and Krasileva 2022). Unfortunately, these datasets 
were only available for some strains of MoO or MoT but not for 
all. Therefore, we first generated values for these features for all 
genes in 1 reference strain per pathotype. We then averaged these 
values between orthologs to generate per-orthogroup values and 
transferred these per-orthogroup values to all other strains. 
Finally, we used the median value of all orthogroups when an 
orthogroup was missing from the reference strain. In contrast to 
MoO, only transcription data were available for MoT, so we were 
limited to analyzing only expression data for this pathotype. 
This analysis allowed us to observe that average expression was 
higher both in culture and in planta for conserved genes than 
for PAV genes (Fig. 5c and d and Supplementary File 11). 
Additionally, PAV genes were more likely to show signal from 
ChIP-Seq of H3K27me3 and H3K36me3 histone marks and less 
likely to show signal from H3K27ac histone marks (Fig. 5e, 

Supplementary Fig. 6b and c, and Supplementary File 11). We 
also looked at bisulfite sequencing data and found that PAV genes 
were less methylated and showed a greater variation in methyla-
tion percentage than conserved genes (Supplementary Fig. 6d and 
Supplementary File 11). Finally, we found that PAV genes had a 
distribution of eccDNA sequencing signal that had a much smal-
ler standard deviation and interquartile range than conserved 
genes (Supplementary Fig. 6e and Supplementary File 11). 
Overall, these results indicated clear differences in the genomic 
and epigenomic features of PAV genes compared to conserved 
genes.

We found many differences between PAV genes in MoO and 
MoT including differences in gene length, as PAV genes were 
smaller in MoT than MoO (Fig. 5b and Supplementary File 12), 
and differences in expression, as PAV genes in MoT showed lower 
expression on average than MoO PAV genes both in culture and in 
planta (Fig. 5c and d and Supplementary File 12). Additionally, 

Fig. 5. PAV genes are distinct from conserved genes in many ways beyond their proximity to TEs. Violin plots showing the distributions of a) gene GC 
content, b) gene lengths, c) expression in culture, d) expression in planta, and e) normalized H3K27me3 histone mark ChIP-Seq signal for PAV and 
conserved genes in MoO and MoT. In panel e), MoT genes were not included as these data are not available for MoT. Rectangles within violin plots 
represent interquartile ranges, dark lines represent medians, and dots represent the means with outliers removed. Statistics describing the distributions 
shown and statistical comparisons between these statistics are listed in Supplementary Files 11 and 12.
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PAV genes were more likely to have GO and PFAM annotations in 
MoO than in MoT (Supplementary Fig. 7e and f, Supplementary 
File 8). These observations further supported the idea that PAV 
may be occurring in different genomic contexts in MoO and MoT.

Finally, we analyzed a similar set of features in the indels we 
identified in MoT and MoO. We found that these large indels 
showed decreased GC content, decreased expression, decreased 
H3K27ac signal, increased H3K27me3 signal and decreased inter-
quartile range in their eccDNA sequencing signal distribution 
compared to a genomic baseline (Supplementary Fig. 8a–f, 
Supplementary File 13). We did not observe any difference be-
tween large indels and the genomic baseline in median 
H3K36me3 signal (Supplementary Fig. 8g, Supplementary File 
13). We also noticed increased methylation in these regions, 
which was contrary to our observations in PAV genes 
(Supplementary Fig. 8h, Supplementary File 13). Overall, these re-
sults matched our observations of PAV genes which validated the 
fact that our pipeline had identified PAV events generated by large 
indels.

Genomic and epigenomic features can be used 
to generate predictive models of gene  
presence–absence variation in MoO and MoT
Our previous results demonstrated the differences in genomic 
contexts between PAV genes and conserved genes. We therefore 
wanted to determine whether these features in aggregate could 
provide enough information to predict whether a gene was prone 
to PAV using a machine learning approach. To this end, we trained 
a random forest classifier on all features we described previously 
for MoO. We selected this algorithm because of its ease of imple-
mentation as well as its robustness to correlated features 
(Dormann et al. 2013). When we trained this model on data from 
all but 8 strains of MoO and tested the model on the remaining 
strains, we observed that the model performed very well and 
was able to predict PAV genes with 86.06% precision and 92.88% 
recall on average (F1 = 89.34%, Fig. 6a, Supplementary Fig. 9a). 
Our model also allowed us to determine how important each fea-
ture was in predicting PAV genes by calculating the decrease in 
the F1 statistic when the variable in our testing data was per-
muted. This approach identified histone H3K27me3 as being the 
most predictive feature of PAV genes in MoO (Fig. 6b). Feature im-
portances can be influenced by correlations between features 
(Parr et al. 2018). We therefore measured correlations between 
our features and found that many of them were correlated 
(Supplementary Fig. 10). We also found that many of these vari-
ables could be predicted by other variables (Supplementary Fig. 
11). The correlations and dependences between our variables 
therefore may have influenced the feature importances we ob-
served in our model.

Next, we trained a model to predict PAV genes in MoT using all 
available data for MoT, which unfortunately did not include his-
tone mark, methylation or eccDNA sequencing data, as previously 
discussed. Regardless, we found that the model still performed 
well, with a precision of 94.81% and a recall of 96.43% (F1 =  
95.61%, Supplementary Figs. 9b and 12a). In this model, gene ex-
pression in planta stood out as being particularly predictive of 
MoT PAV genes (Fig. 6c). Finally, we trained another MoO model 
using a reduced set of features that matched the data that was 
available for MoT, which we called the reduced MoO model. 
Here we found that the reduced MoO model still performed well 
with 86.11% precision and 92.21% recall (F1 = 89.05%, 
Supplementary Figs. 9c and 12b). The similar performance of 
the 2 MoO models could likely be explained by the high 

dependences of our variables, as previously mentioned 
(Supplementary Figs. 10 and 11). When comparing the reduced 
MoO model to the MoT model, we noticed some differences be-
tween the importances of the features in each model (Fig. 6c 
and d). For example, in culture expression and the presence of 
functional annotations was more important in the reduced MoO 
model than in the MoT model. These differences in importances 
may have been influenced by the previously described differences 
in the features of PAV genes in MoO and MoT, including the fact 
that PAV genes in MoT were less expressed than in MoO and 
that PAV genes were more likely to have functional annotations 
in MoO than MoT (Fig. 5c and d, Supplementary Fig. 7, 
Supplementary Files 8 and 12).

A predictive model trained on MoT data does not 
accurately predict presence–absence variation in 
MoO and vice versa
Finally, we tested if the model trained on MoT data could predict 
whether genes are prone to PAV in MoO and vice versa. The 
MoT model performed very poorly on MoO data, with a precision 
of 25.40% and a recall of 9.06% (F1 = 13.35%, Fig. 6e, 
Supplementary Fig. 9d). Similarly, the reduced MoO model per-
formed very poorly on the MoT data with a precision of 19.30% 
and a recall of 9.41% (F1 = 12.65%, Fig. 6f, Supplementary Fig. 
9e). This result could be explained by a variety of factors including 
differences in genomic features between the 2 pathotypes, differ-
ences in the importances of each feature in the models, and over-
fitting of each model. When we analyzed the conserved genes that 
the MoT model falsely labeled as PAV, we found that many of 
them were found in isolated regions far away from true PAV genes 
(Fig. 6g). Similarly, many of the PAV genes in MoT that were not 
detected by the MoO model were found in isolated regions 
(Fig. 6h). These results matched our previous observation that 
genes belonging to PAV orthogroups were closer to other genes be-
longing to PAV orthogroups in MoO than in MoT (Fig. 3c–e). Our ob-
servations, combined with the differences we observed in the 
genomic and epigenomic features of PAV genes in MoO and MoT 
described previously, indicated that the patterns and genomic 
contexts of PAV between the 2 pathotypes are significantly differ-
ent, despite being within the same species, and indicated that 
different PAV-generation mechanisms may be acting on these 2 
M. oryzae pathotypes.

Discussion
Gene PAV plays an important role in fungal pangenome evolution 
(McCarthy and Fitzpatrick 2019; Badet et al. 2020; Kaushik et al. 
2022; Moolhuijzen et al. 2022). To improve our understanding of 
these events, we designed a pipeline to identify orthogroups ex-
periencing PAV in M. oryzae. We focused our analysis on whole- 
orthogroup PAV events that were likely the result of large indels, 
rather than gene silencing or pseudogenization resulting from 
point mutations. It is therefore important to reiterate that the re-
sults of our analyses are only related to these types of events. 
These analyses should be extended with methods specific to 
point-mutations and methods that are more suited to track with-
in-orthogroup PAV in the future to see how these results apply to 
these other kinds of PAV, especially as a greater number of highly 
contiguous M. oryzae genomes become available.

Through our analyses of these PAV events, we found that these 
events differentiate isolated lineages of MoO, and found that these 
lineage-differentiating orthogroups are enriched for effectors, as 
previously published (Latorre et al. 2020; Thierry et al. 2022). We 
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Fig. 6. Random forest classifiers accurately identify PAV genes in MoO and MoT, but the models perform poorly on genes from the host they were not 
trained on. a) Confusion matrix showing average percentages for each classification outcome of the MoO random forest classifier when tested on MoO 
genes that it was not trained on. b) Decrease in the F1 statistic of the MoO random forest classifier when each feature is permuted in the testing data. 
Features described as questions are binary, all other features are continuous. c) Decrease in the F1 statistic of the MoT random forest classifier when each 
feature is permuted in the testing data. d) Decrease in the F1 statistic of the MoO random forest classifier trained on a subset of features (reduced MoO 
model) when each variable is permuted in the testing data. e) Confusion matrix showing average percentages for each classification outcome of the MoT 
random forest classifier when tested on MoO genes. f) Confusion matrix showing average percentages for each classification outcome of the MoO random 
forest classifier trained on a subset of features (reduced MoO model) when tested on MoT genes. g) Density plots showing the distribution of the distances 
to the nearest PAV gene for false positive and true positive predictions by the MoT random forest classifier when tested on MoO genes. h) Density plots 
showing the distribution of the distances to the nearest PAV gene for false negative and true positive predictions by the MoO random forest classifier 
trained on a subset of features (reduced MoO model) when tested on MoT genes.
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also found that genes related to both antibiotic production and 
non-self-recognition were enriched among lineage-differentiating 
PAV orthogroups. Given that multiple enriched PFAM and GO 
terms were related to these functions, and that these functions in-
cluded both defense against infection and external inhibition of 
bacterial growth, these results could point to the local and rice- 
associated microbiome playing an important role in M. oryzae's 
evolution. All 3 clonal lineages are geographically isolated and ex-
perience different climates (Thierry et al. 2022). They also tend to 
infect different rice varieties and cause disease of varying severity 
(Thierry et al. 2022). Geography and host genotype could have ma-
jor influences on the microbiome the fungus encounters as differ-
ent rice genotypes have been found to have different microbiomes 
(Xiong et al. 2021; Singh et al. 2022; Zhang et al. 2022). Further mi-
crobiome sampling of rice varieties used in these areas as well 
as the environmental microbiome could therefore give better in-
sight into the results we present here and how these microbiomes 
might shape the fungus’ fitness. Additionally, it is important to 
note that adaptation to the host microbiome and the environment 
in general are often forgotten when discussing fungal plant patho-
gen evolution. Our results point to the importance of considering 
these factors when studying the success of these pathogens. 
Unfortunately, we could not extend these analyses to MoT as 
lineages of MoT have not been as thoroughly characterized as 
MoO and therefore detailed information on their geography or 
host phenotypes is not yet available.

We then looked to find features of PAV orthogroups that might 
help us better understand where these events are occurring in the 
genome. We found that these events were associated with a high 
TE density and a low gene density, though the effect was stronger 
for TE density than gene density. We also found that PAV genes 
are shorter, have lower GC content, and are more likely to be effec-
tors. Finally, PAV genes are less expressed and display stronger 
histone H3K27me3 signal than conserved genes. When we com-
bined all of these features into a predictive model, we found 
that the model performed very well and predicted PAV genes 
with 86.06% precision and 92.88% recall, on average. We were 
also able to identify histone H3K27me3 as the most predictive fea-
ture, though gene length and GC content stood out as well. 
Although prediction accuracy by random forest classifiers is ro-
bust to correlated features (Dormann et al. 2013), the variable im-
portances we observed were likely influenced by the fact that 
several variables in our model were correlated with each other 
and that many showed high dependences, which meant that the 
information encoded in these variables could also be described 
by other variables in the model. These importances should there-
fore be interpreted with caution. Through reanalyzing previously 
published Illumina sequencing data, we were able to directly iden-
tify large indels in our M. oryzae isolates and compare their genom-
ic features to those of the rest of the genome. We found that this 
structural variation occurred frequently in TE-dense and gene- 
sparse areas of the genome, and that GC content, RNAseq signal, 
and H3K27me3 ChIP-Seq signal for these regions resembled that 
of our PAV genes. This result was evidence that our pipeline was 
successful in specifically identifying PAV events that were gener-
ated by large indels.

Many of the features that were particularly important in our 
classifier were related to the two-speed genome concept which 
supported the idea that gene PAV in M. oryzae is strongly asso-
ciated with the rapidly evolving compartment of the genome 
(Dong et al. 2015; Torres et al. 2020). Our findings support the 
idea that these features may play an important role in the evolu-
tion of the pathogen and reflect previous findings on the 

association between TEs and the evolution of the accessory por-
tion of fungal pangenomes (Badet et al. 2020). However, the fact 
that the presence of TEs were important features in our random 
forest classifier but not amongst the most important, supports 
the idea that the relationship between TEs and rapid evolution 
is not always a causal one and that complex correlations are at 
play. In short, other variables may be shaping the PAV-prone com-
partment of the M. oryzae genome and driving both rapid evolution 
and TE activity. This is also supported by the fact that, while TEs 
are more common in MoO (Nakamoto et al. 2023), we found that 
MoT appears to be experiencing PAV at a faster rate than MoO.

While the gene space for the genomes we analyzed were well 
assembled, most of the genomes we performed our analysis on 
were not chromosome-level assemblies. Therefore, although we 
observed features associated with subterminal regions in our 
PAV genes, such as the association of PAV genes with TEs, we 
could not confirm previous findings on the association between 
subterminal regions and accessory genes in other fungi 
(McCarthy and Fitzpatrick 2019). This analysis should be repeated 
once more high-quality genomes become available for M. oryzae to 
fully determine whether these findings apply to the blast fungus 
as well. Similarly, though the genomic and epigenomic features 
associated with PAV that we identified in this study should be 
kept in mind when studying other pangenomes, it is unclear 
whether the features of gene PAV we identified are applicable to 
other fungi, and therefore more in-depth studies of these genomic 
and epigenomic features are necessary to assess how broad these 
findings are as datasets become available for more fungi. 
Likewise, though our random forest classifier performed well, 
many of the data we used were only available for a reference 
M. oryzae isolate which likely affected how we ranked the impor-
tances of each variable in our model. To validate our results, our 
approach would need to be repeated using data for each isolate. 
However, a model using a subset of our features performed well, 
indicating that RNAseq data for each isolate may be enough to 
substantiate these results.

Our model showed that PAV genes can be identified using fea-
tures in the genome, therefore establishing a method to identify 
genes prone to PAV in M. oryzae without relying on phylogenetics. 
This method could therefore be useful for identifying genes prone 
to PAV in lineages of MoO with very few isolates, like lineage 4, or 
for studying PAV in groups of genes with complicated evolution-
ary relationships like sequence unrelated structurally similar 
(SUSS) effectors (Seong and Krasileva 2021). While our models per-
formed well, they also identified genes that had features of PAV 
genes but did not experience PAV. For example, our model trained 
on the full MoO dataset marked 0.45% of genes as PAV in our test-
ing data when they were conserved. These false positives could be 
caused by incomplete sampling of M. oryzae isolates in our dataset 
and therefore larger datasets should be considered to verify that 
these are biologically meaningful observations. If that were the 
case, these false positives could help us better understand which 
genes are under strong selection to be kept in the M. oryzae gen-
ome or which genes’ genomic contexts are changing to look 
more like conserved genes. Notably, our results support the excit-
ing possibility of using genomics to predict targets for disease- 
prevention strategies that will remain in the genome, therefore 
making these strategies more robust.

Finally, we found distinct patterns in the genomic contexts of 
PAV genes in MoO and MoT. Specifically, we found that PAV in 
MoT was more common and spread out throughout the genome 
than in MoO. The differences in evolutionary distances between 
isolates in the lineages of the 2 pathotypes as well as differences 
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in the number of isolates in each lineage may have contributed to 
the differences in the number of PAV orthogroups. Specifically, 
these differences may have contributed to the significant decrease 
in PAV orthogroups when we analyzed the clonal pandemic lineage 
of MoT alone. However, supporting evidence from our analysis of 
large indels, in which we analyzed sequencing data from all 
lineages of MoO and MoT, support our findings of increased PAV 
in MoT compared to MoO. We also found that many of the genomic 
and epigenomic features of PAV that we identified in MoO were dif-
ferent in MoT. These differences may have explained why our MoO 
random forest classifier performed poorly on MoT data and vice 
versa, since the patterns in the false positives and false negatives 
of these tests reflected the observed differences in PAV between 
MoO and MoT. These results in aggregate hint at differences in 
the evolution of the rice and wheat pathotypes of M. oryzae and es-
pecially differences in the mechanisms that generate PAV events in 
the 2 pathotypes.

The 2 M. oryzae pathotypes share some major differences in their 
TE content (Nakamoto et al. 2023) and very different life histories, 
with MoO originating 9,800 years ago (Gladieux, Ravel, et al. 2018b) 
and propagating mostly clonally since then, while MoT is thought 
to have emerged approximately 60 years ago from a multi-hybrid 
swarm of many different M. oryzae pathotypes (Ceresini et al. 2019; 
Rahnama et al. 2023). We propose that the differences in PAV across 
the 2 pathotypes reflect these life histories, with MoO exhibiting 
more of a stable equilibrium and much slower paced evolution, 
where PAV events happen in specifically defined compartments of 
the genome, while MoT is rapidly losing and gaining genes, even 
in areas of the genome where most of the conserved genes in 
MoO are located. It is unclear at this point whether MoT is heading 
toward an equilibrium that will resemble MoO, or whether there are 
key differences between the 2 pathotypes that are shaping their 
genomes beyond their evolutionary histories. MoT, which appears 
to be evolving more rapidly than MoO, will pose a significant chal-
lenge for disease prevention. A better understanding of these evolu-
tionary dynamics and the differences between MoO and MoT could 
help us better comprehend why MoT is such a devastating emerging 
pathogen and help us curb its threat. Finally, these results highlight 
the need to study isolated populations of a species separately as 
well as in aggregate to understand whether observations made for 
the pangenome applies to every population within a species, espe-
cially if they are adapted to different hosts or environments and if 
they have distinct evolutionary histories. It also highlights the fact 
that multiple types of PAV may be occurring in different popula-
tions of the same species and that more sensitive comparison of 
PAV events, for example those occurring due to various sizes of in-
dels, may be necessary in the future. These patterns in the genomic 
features associated with PAV could also be difficult to compare 
across species as different PAV mechanisms could be associated 
with distinct features.

Our study demonstrates that gene PAV can be associated with 
specific genomic and epigenomic features in fungi and that these 
associations can be predictive. We also show that major variation 
can exist in these features between different populations of the 
same species and that distinct mechanisms might generate PAV 
in these populations. This study highlights the need for more re-
search on fungal pangenomes and the genomic features and 
PAV mechanisms that define them to better understand how 
fungi adapt to their environments. These studies could also lead 
to a greater understanding of how fungal plant pathogens adapt 
to their hosts and predicting these adaptations could help us de-
velop more effective disease-prevention strategies. We propose 
that considering intra-species variation and evolutionary history 

of different populations is important to fully capture potential 
variations in PAV-generation mechanisms within the species.
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