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József Balogh∗1 and William Linz†2

1Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, IL, U.S.A.
jobal@illinois.edu

2Current Address: Department of Mathematics, University of South Carolina, Columbia, SC, U.S.A
Research performed while at: Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, IL, U.S.A.

wlinz@mailbox.sc.edu

Submitted: Apr 1, 2021; Accepted: Dec 10, 2023; Published: Jun 30, 2024
© The authors. Released under the CC BY license (International 4.0).

Abstract. In this note, we give short proofs of three theorems about intersection problems.
The first one is a determination of the maximum size of a nontrivial k-uniform, d-wise inter-
secting family forn ⩾

(
1 + d

2

)
(k−d+2), which improves the range ofn of a recent result of

O’Neill and Verstraëte. Our proof also extends to d-wise, t-intersecting families, and from
this result we obtain a version of the Erdős-Ko–Rado theorem for d-wise, t-intersecting
families.

Our second result partially proves a conjecture of Frankl and Tokushige about k-uniform
families with restricted pairwise intersection sizes.

Our third result is about intersecting families of graphs. Answering a question of Ellis,
we construct Ks,t-intersecting families of graphs which have size larger than the Erdős-Ko–
Rado-type construction, whenever t is sufficiently large in terms of s. The construction is
based on nontrivial (2s)-wise t-intersecting families of sets.
Keywords. Nontrivial intersecting family, Hilton–Milner, forbidden intersection, graph in-
tersection
Mathematics Subject Classifications. 05D05, 05D99

1. Introduction

Let F ⊆ 2[n] be a family of subsets of the set [n] := {1, 2, . . . , n}. The family F is d-wise
t-intersecting if for every F1, . . . , Fd ∈ F , we have |

⋂d
i=1 Fi| ⩾ t. The family F is nontriv-
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ial (d-wise) t-intersecting if F is (d-wise) t-intersecting and |
⋂

F∈F F | < t. If F ⊂
(
[n]
k

)
and L ⊂ [0, k − 1], then F is an (n, k, L)-system if |F ∩ F ′| ∈ L for all distinct F, F ′ ∈ F .

LetG ⊆ 2(
[n]
2 ) be a family of labelled graphs onn vertices. Given a fixed, unlabelled graphH ,

the family G is H-intersecting if for every pair of graphs G1, G2 ∈ G, the graph G1∩G2 contains
a copy of H (note that V (G1 ∩ G2) = V (G1) = V (G2) and E(G1 ∩ G2) = E(G1) ∩ E(G2)).
For a graph H , the Erdős-Ko–Rado-type (shortened hereafter to EKR-type) construction of an
H-intersecting family of graphs is the family H of graphs on n vertices which contain a fixed
copy of H . Notice that when H is EKR-type, then |H| = 2(

n
2)−|E(H)|. If the maximum-size

H-intersecting family of graphs is EKR-type, then we say the graph H has the EKR property.
In this note, we give short proofs of three results about set systems satisfying some intersec-

tion properties and about intersecting families of graphs. First, we determine the maximum size
of a nontrivial d-wise intersecting k-uniform family for n ⩾

(
1 + d

2

)
(k− d+2), which greatly

extends the range of a recent result of O’Neill and Verstraëte [OV21]. Our result also extends
to nontrivial d-wise, t-intersecting, k-uniform families, and from this we derive a version of the
Erdős-Ko–Rado theorem for d-wise, t-intersecting families.

Our second theorem partially settles a conjecture of Frankl and Tokushige [FT18] for a gen-
eral bound for the maximum size of an (n, k, L)-system when L = [0, ℓ− 1] ∪ [ℓ+ 1, k − 1].

Our third result is a construction of Ks,t-intersecting families whose size is larger than the
EKR-type construction for Ks,t, answering a question of Ellis [Ell22]. The construction is based
on nontrivial (2s)-wise t-intersecting families of sets.

1.1. Nontrivial intersecting families

We define a pair of nontrivial d-wise intersecting families A(n, k, d) and H(n, k, d).

Definition 1.1.
A(n, k, d) :=

{
A ∈

(
[n]

k

)
: |A ∩ [d+ 1]| ⩾ d

}
.

H(n, k, d) :=

{
A ∈

(
[n]

k

)
: [d− 1] ⊂ A,A ∩ [d, k + 1] ̸= ∅

}⋃{
[k + 1] \ i : i ∈ [d− 1]

}
.

Hilton and Milner [HM67] conjectured that one of the two families A(n, k, d) or H(n, k, d)
is the maximum-size k-uniform d-wise intersecting family, for n sufficiently large.

In the case d = 2, the classical result of Hilton and Milner [HM67] determines the maximum
size of a nontrivial intersecting k-uniform family.

Theorem 1.2 (Hilton–Milner [HM67]). Let F ⊂
(
[n]
k

)
be a nontrivial intersecting family.

For n > 2k, we have

|F| ⩽
(
n− 1

k − 1

)
−
(
n− k − 1

k − 1

)
+ 1.

Furthermore, equality holds for k > 3 only if F ∼= H(n, k, 2). If k = 3, then equality holds
only if F ∼= H(n, 3, 2) or F ∼= A(n, 3, 2).

For large n, O’Neill and Verstraëte [OV21] recently verified the conjecture of Hilton and
Milner [HM67] for nontrivial d-wise intersecting families.
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Theorem 1.3 (O’Neill–Verstraëte [OV21]). Let k and d be integers with 2 ⩽ d < k. Then, there
is an n0 = n0(k, d) such that for every n ⩾ n0, if F ⊂

(
[n]
k

)
is a nontrivial d-wise intersecting

family, then we have
|F| ⩽ max {|H(n, k, d)|, |A(n, k, d)|} .

O’Neill and Verstraëte [OV21] showed that one can choose n0(k, d) = d+e(k22k)2
k
(k−d).

If n < kd/(d− 1), then every F ⊂
(
[n]
k

)
is d-wise intersecting. O’Neill and Verstraëte [OV21]

conjectured that Theorem 1.3 holds for n ⩾ kd/(d− 1).

Conjecture 1.4 (O’Neill–Verstraëte [OV21]). In Theorem 1.3, one can choose

n0(k, d) =
kd

d− 1
.

We greatly extend the range of n for which Theorem 1.3 is known, and also give a counterex-
ample to the range conjectured in Conjecture 1.4 when n ∼ kd/(d− 1).

Theorem 1.5. If F ⊆
(
[n]
k

)
is a nontrivial d-wise intersecting family with 2 ⩽ d < k, then for

every n >
(
1 + d

2

)
(k − d+ 2), we have

|F| ⩽ max {|H(n, k, d)|, |A(n, k, d)|} .

Furthermore, equality holds only if F is isomorphic to one of A(n, k, d) or H(n, k, d).

In fact, our argument readily extends to provide a bound for the maximum size of a nontrivial
d-wise t-intersecting family.

Theorem 1.6. If F ⊆
(
[n]
k

)
is a nontrivial d-wise t-intersecting family with k ⩾ t+d−1, d ⩾ 2

and t ⩾ 1, then for n >
(
t+d+1

2

)
(k − t− d+ 3), we have

|F| ⩽ max {|H(n, k, t+ d− 1)|, |A(n, k, t+ d− 1)|} .

Furthermore, equality holds only if F is isomorphic to either A(n, k, t + d − 1)
or H(n, k, t+ d− 1).

The case d = 2 of Theorem 1.6 is part of the complete nontrivial intersection theorem of
Ahlswede and Khachatrian [AK96], which is a key part of our proofs of Theorems 1.5 and 1.6.
We state part of their result, for n > (t+ 1)(k − t+ 1).

Theorem 1.7 (Ahlswede–Khachatrian [AK96]). Let F ⊂
(
[n]
k

)
be a nontrivial t-intersecting

family. Then, for every n > (t+ 1)(k − t+ 1), the following holds:
(i) If k ⩽ 2t+ 1, then

|F| ⩽ |A(n, k, t+ 1)|,
and A(n, k, t+ 1) is up to isomorphism the unique optimal family.

(ii) If k > 2t+ 1, then

|F| ⩽ max{|A(n, k, t+ 1)|, |H(n, k, t+ 1)|},

and these are the only optimal families, up to isomorphism.
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We also use one case of the complete intersection theorem of Ahlswede and Khachatrian
[AK97, AK99] in the proof of Theorem 1.6.

Theorem 1.8 (Ahlswede–Khachatrian [AK97, AK99]). Let F ⊂
(
[n]
k

)
be a t-intersecting family

with k ⩾ t. Then, for (k − t+ 1)(2 + t−1
2
) < n < (k − t− 1)(t+ 1), we have

|F| ⩽ |A(n, k, t+ 1)|,

and A(n, k, t+ 1) is the unique optimal family, up to isomorphism.

Theorem 1.6 allows us to conclude a version of the Erdős-Ko–Rado theorem [EKR61] for
d-wise t-intersecting families.

Theorem 1.9. If F ⊆
(
[n]
k

)
is a d-wise t-intersecting family with k ⩾ t, d ⩾ 2 and t ⩾ 1, then

for n > (t+ d− 1)(k − t− d+ 3), we have

|F| ⩽
(
n− t

k − t

)
,

and equality holds only if F is isomorphic to {F ∈
(
[n]
k

)
: [t] ⊆ F}.

Note that the Erdős-Ko–Rado theorem is essentially the case d = 2, t = 1 of Theorem 1.9.
No version of the Erdős-Ko–Rado theorem for d-wise t-intersecting families with such an ex-
plicit range as n ⩾ Ck (where C depends only on t and d) has previously appeared in the
literature. There have been a number of results that are of a more asymptotic nature [Tok11]
or consider specific values of d or t. Tokushige [Tok07] proved that the maximum size of a
3-wise t-intersecting family is

(
n−t
k−t

)
for t ⩾ 26, n sufficiently large and the optimal range of

roughly n ⩾
√
tk.

The range for which Theorem 1.9 holds is certainly not optimal unless d = 2. We can show
that the conclusion of Theorem 1.9 holds for n ⩾ ck, where c = ct,d < t + d − 1 is a slightly
better constant (depending on t and d) and n is sufficiently large.

In order to state the result, we define the polynomial ft,d(x) = (1−x)t+d−3−xd−2 for t ⩾ 2
and d ⩾ 3. Let βt,d ∈ (0, 1

2
) be a root of ft,d, so that βt,d satisfies

(1− βt,d)
t+d−3 − βd−2

t,d = 0. (1.1)

It is easy to check that 1
t+1

< βt,d <
1
2

for d ⩾ 3 and t ⩾ 2.

Theorem 1.10. If F ⊆
(
[n]
k

)
is a d-wise t-intersecting family with k ⩾ t, d ⩾ 3 and t ⩾ 2, then

for any constant c with c > 1/βt,d, there exists an n0 such that if n ⩾ n0 and n ⩾ ck, we have

|F| ⩽
(
n− t

k − t

)
,

and equality holds only if F is isomorphic to {F ∈
(
[n]
k

)
: [t] ⊆ F}.
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For a set F ∈ 2[n], for 0 < p < 1, we define the product measure µp(F ) = p|F |(1− p)n−|F |,
and for a family F ⊂ 2[n], we define µp(F) =

∑
F∈F µp(F ). We also obtain a version of

Theorem 1.9 for d-wise, t-intersecting families for the measure µp from Theorem 1.10.

Theorem 1.11. Let F ⊂ 2[n] be a d-wise, t-intersecting family. Then, for 0 < p < βt,d,

µp(F) ⩽ pt.

Theorem 1.11 is a corollary of a general phenomenon whereby “discrete” k-uniform results
like Theorem 1.10 can often be boosted to “smooth” product measure results like Theorem 1.11
(see, for instance, [Tok05]).

1.2. Families missing one intersection

In [FT18, pg. 215], Frankl and Tokushige made the following conjecture.

Conjecture 1.12. Suppose F ⊂
(
[n]
k

)
satisfies |F ∩ F ′| ≠ ℓ for some 2ℓ < k, for every pair of

sets F, F ′ ∈ F . Then,

|F| ⩽
(

n

k − ℓ− 1

)
.

It is noted in [FT18] that this conjecture is true if k − ℓ is a prime power. Also, if Conjec-
ture 1.12 is true, then it is tight for k = 2ℓ+1 and infinitely many values of n; see Frankl [Fra83].

Our contribution is to note that for each fixed ℓ, Conjecture 1.12 is true for all but at most a
finite number of values of k.

Theorem 1.13. Suppose F ⊂
(
[n]
k

)
satisfies |F ∩ F ′| ̸= ℓ for some 2ℓ < k, for every pair of

sets F, F ′ ∈ F . If k − ℓ does not divide ℓ!, then

|F| ⩽
(

n

k − ℓ− 1

)
.

In particular, this holds when ℓ < log k/ log log k, where log is the natural logarithm.

1.3. H-intersecting families

Ellis [Ell22] asked which graphs H have the EKR property, and in particular whether H has
the EKR property whenever H is 2-connected. Ellis, Filmus and Friedgut [EFF12] proved that
the graph H = K3 has the EKR property, and Berger and Zhao [BZ23] recently proved the
same result for H = K4. On the other hand, Christofides [Chr] gave a construction of an H-
intersecting family of larger size than the EKR-type construction when H = P3, and the EKR-
type construction is also not optimal for disjoint unions of stars (unless H = K2) [AS16].

We give a construction ofKs,t-intersecting families which have size larger than the EKR-type
construction for Ks,t, whenever t is sufficiently large in terms of s. In particular, for every s ⩾ 1,
there are s-connected graphs H which do not have the EKR property, answering Ellis’s question.
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Theorem 1.14. Let s and t be positive integers with t > 22s − 2s − 1. Then there exists a
Ks,t-intersecting family of graphs F on n vertices with |F| > 2(

n
2)−st.

As all previously known examples of graphs without the EKR property are bipartite, a natural
question is: are there examples of graphsH withχ(H) > 2which do not have the EKR property?
We can modify the construction in Theorem 1.14 to give graphs with arbitrary large connectivity
and arbitrarily large chromatic number which do not have the EKR property.

Theorem 1.15. Let s1, s2, . . . , sr, t be integers with si ⩾ 1 for 1 ⩽ i ⩽ r and
t > 22

∑
i si − 2

∑
i si − 1. Then there exists a Ks1,...,sr,t-intersecting family of graphs H with

|H| > 2(
n
2)−

∑
1⩽i<j⩽r sisj−

∑r
i=1 sit.

1.4. Organization of the paper

Our proofs of Theorems 1.5 and 1.6 are presented in Section 2. The proofs of the EKR-type
results Theorems 1.9 and 1.11 are presented in Section 3. The counterexample to Conjecture 1.4
is described in Section 4. The proof of Theorem 1.13 is given in Section 5. The proof of
Theorem 1.14 appears in Section 6.

2. Proofs of Theorems 1.5 and 1.6

We begin with a simple observation about m-wise intersections in nontrivial d-wise t-inter-
secting families. This observation was noted in [OV21] in the case t = 1, and was proven at
least as early as [FT06].

Lemma 2.1. Suppose F is a nontrivial d-wise t-intersecting family. Let A1, . . . , Am ∈ F ,
where m ⩽ d. Then,

| ∩m
i=1 Ai| ⩾ t+ d−m.

Proof. Suppose that
⋂

A∈F A = {x1, . . . , xc}, where c ⩽ t−1, since F is a nontrivial intersect-
ing family. Suppose that

⋂m
i=1 Ai = {x1, . . . , xc}∪{y1, . . . , yℓ}, and assume for a contradiction

that c + ℓ ⩽ t + d − m − 1. For each element yi, there is a set Bi ∈ F such that yi /∈ Bi.
If ℓ ⩽ d−m, then |(∩ℓ

i=1Bi)
⋂
(∩m

i=1Ai)| = c ⩽ t−1, which contradicts the d-wise t-intersecting
property. On the other hand, if ℓ > d−m, then |(∩d−m

i=1 Bi)
⋂
(∩m

i=1Ai)| ⩽ c+ℓ−(d−m) ⩽ t−1,
which again contradicts the d-wise t-intersecting property.

By setting m = 2 in Lemma 2.1, we immediately obtain the following corollary.

Corollary 2.2. If F is a nontrivial d-wise t-intersecting family, then F is also a (t + d − 2)-
intersecting family.

We will only prove Theorem 1.6, as Theorem 1.5 follows from Theorem 1.6 by setting t = 1.
Theorem 1.6 is a straightforward consequence of Theorems 1.7 and 1.8 and Corollary 2.2.
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Proof of Theorem 1.6. If F ⊂
(
[n]
k

)
is a nontrivial d-wise t-intersecting family, then

|∩F∈F F | ⩽ t−1 < t+d−2, so by Corollary 2.2, F is also a nontrivial (t+d−2)-intersecting
family. Theorem 1.7 now immediately implies Theorem 1.6 when n ⩾ (t+d−1)(k−t−d+3).
If
(
t+d+1

2

)
(k − t − d + 3) < n < (t + d − 1)(k − t − d + 3), then Theorem 1.8 immediately

implies the result.

Remark 2.3. For n > 2k − t − d + 2, the complete intersection theorem of Ahlswede and
Khachatrian [AK97, AK99] also provides an upper bound on the maximum size of a non-
trivial d-wise t-intersecting family. However, the optimal (t + d − 2)-intersecting families
for n <

(
t+d+1

2

)
(k − t− d+ 3) in the complete intersection theorem are not nontrivial d-wise

t-intersecting.
O’Neill and Verstraëte [OV21, Theorem 2] additionally proved a stability result for nontrivial

d-wise intersecting families and sufficiently large values of n. Corollary 2.2 does not seem
to immediately imply their stability result. It would be interesting to obtain a similar stability
result for nontrivial d-wise t-intersecting families as a further extension of Theorem 1.6. In the
case d = 2 and t = 1, Han and Kohayakawa [HK17] (for all values of n) and Kostochka and
Mubayi [KM17] (for sufficiently large values of n) independently obtained stability results for
the Hilton–Milner theorem by determining the maximum size of a nontrivial intersecting family
that is not a subfamily of H(n, k, 2).

Note that Lemma 2.1 and Corollary 2.2 make no assumption on the sizes of the sets in F , so
one might wonder if these could be useful tools for the nonuniform case as well. Katona [Kat64]
determined the maximum size of a t-intersecting family F ⊂ 2[n]. In general, the extremal
families F are nontrivial and not d-wise, (t−d+1)-intersecting, so one cannot hope to obtain a
proof like that of Theorem 1.6. On the other hand, Frankl [Fra91] obtained a number of results
for nonuniform nontrivial d-wise, t-intersecting families, and one of the tools used is a version
of Corollary 2.2 (see also Section 4 of the survey of Frankl and Tokushige [FT16]).

Let us also mention that the nonuniform version of Theorem 1.6 in the case t = 1was already
proven by Brace and Daykin [BD71]. Brace and Daykin proved that if F ⊂ 2[n] is a nontrivial d-
wise intersecting family, then |F| ⩽ |A(n, d)|, where A(n, d) := {A ⊆ [n] : |A∩ [d+1]| ⩾ d}
is the nonuniform analogue of A(n, k, d).

3. The uniform and measure Erdős-Ko–Rado theorems

We now give a simple proof of Theorem 1.9 as a corollary of Corollary 2.2 and the Erdős-Ko–
Rado theorem for t-intersecting families.

Theorem 3.1 (Erdős-Ko–Rado for t-intersecting families). Let F ⊂
(
[n]
k

)
be a t-intersecting

family. Then, for n ⩾ (t+ 1)(k − t+ 1),

|F| ⩽
(
n− t

k − t

)
,

and for n > (t + 1)(k − t + 1), equality holds if and only if F is isomorphic
to {F ∈

(
[n]
k

)
: [t] ⊆ F}.
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Theorem 3.1 was proven by Frankl [Fra78] for t ⩾ 15 and by Wilson [Wil84] for all t.

Proof of Theorem 1.9. Let F ⊂
(
[n]
k

)
be a nontrivial d-wise, t-intersecting family. By Corol-

lary 2.2, F is also (t+ d− 2)-intersecting. Hence, by Theorem 3.1, for

n > (t+ d− 2 + 1)(k − (t+ d− 2) + 1) = (t+ d− 1)(k − t− d+ 3),

we have
|F| ⩽

(
n− t− d+ 2

k − t− d+ 2

)
⩽

(
n− t

k − t

)
.

If d ⩾ 3, then the second inequality is strict and so equality holds if and only if F is trivial.

Note that Theorem 1.9 is interesting if t+ d− 1 ⩽ k < 2t+ d− 2, as then

(t− d+ 1)(k − t− d+ 3) ⩽ (t+ 1)(k − t+ 1).

For k ⩾ 2t + d − 2, Theorem 1.9 can be deduced from Theorem 3.1 and the fact that d-wise
t-intersecting families are also (2-wise) t-intersecting families.

In order to improve the range for which Theorem 1.9 holds, we need to use a good upper
bound for the size of a t-intersecting family for smaller values of n. For simplicity, we use a
recent upper bound of Frankl [Fra20].

Theorem 3.2 (Frankl). Let F ⊂
(
[n]
k

)
be a t-intersecting family. Then, if n ⩾ 2k − t+ 1,

|F| ⩽
(
n− 1

k − t

)
.

We also need the following lemma for fixed values of k/n.

Lemma 3.3. Let t and d be integers with t ⩾ 2 and d ⩾ 3. Let p be a rational number
with 0 < p < βt,d, where βt,d is defined as in (1.1). Then, there exists n0 such that if n > n0

and k
n
= p, we have (

n− t

k − t

)
>

(
n− 1

k − t− d+ 2

)
.

Proof of Lemma 3.3. Expanding both binomial coefficients, we need to show that for n > n0,

(n− t)(n− t+ 1) · . . . · (n− k + 1)

(k − t)!
>

(n− 1)(n− 2) · . . . · (n− k + t+ d− 2)

(k − t− d+ 2)!
.

Rearranging, this is equivalent to

(n−k+ t+d−3) · . . . ·(n−k+1) > (n−1) · . . . ·(n− t+1)(k− t) · . . . ·(k− t−d+3). (3.1)

We now set k = pn. Both sides of (3.1) are polynomials in n of degree t + d − 3. The
coefficient of nt+d−3 on the left-hand side is (1− p)t+d−3, while the coefficient of nt+d−3 on the
right-hand side is pd−2. From the definition of βt,d in (1.1), it follows that (1− p)t+d−3 > pd−2

whenever 0 < p < βt,d. Hence, the conclusion of Lemma 3.3 holds if n is sufficiently large.
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Theorem 1.10 is now an immediate consequence of Corollary 2.2, Theorem 3.2 and
Lemma 3.3.

It is possible that further improvements on the range of the constant c in Theorem 1.10 could
be obtained by using the full statement of the complete intersection theorem of Ahlswede and
Khachatrian [AK97, AK99] in place of Theorem 3.2. However, the proof for such improvements
may be quite technical.

To obtain Theorem 1.11, we use the following theorem of Tokushige [Tok05, Theorem 1]
relating results about the maximum size of k-uniform d-wise t-intersecting families and the
maximum product measure of nonuniform d-wise t-intersecting families.

Theorem 3.4 (Tokushige). Let d ⩾ 2 and t ⩾ 1 be integers, and let p ∈ (0, 1). Then, state-
ment (i) implies statement (ii).

(i) Let F ⊂
(
[n]
k

)
be a d-wise t-intersecting family. Then there exist ϵ and n0 such that the

inequality

|F| ⩽
(
n− t

k − t

)
holds whenever n > n0 and | k

n
− p| ⩽ ϵ.

(ii) Let F ⊂ 2[n] be a d-wise t-intersecting family. Then,

µp(F) ⩽ pt

holds for all n ⩾ t.

Theorem 1.11 can be immediately deduced from Theorems 1.10 and 3.4.
It would be interesting to prove Theorem 1.11 without the use of Theorem 1.10. In the case of

t-intersecting families, Friedgut [Fri08] obtained the product measure version of Theorem 3.1 by
using a version of the Hoffman bound. Friedgut also obtained uniqueness and stability statements
and it would be interesting to have analogous statements for Theorem 1.11.

4. Counterexamples to Conjecture 1.4

We briefly return to nontrivial d-wise intersecting families, which initially motivated our re-
search. It is not difficult to show that |A(n, k, d)| ⩾ |H(n, k, d)| when n ⩽ d(k − d + 2), so
Conjecture 1.4 reduces to asking ifA(n, k, d) is the maximum size nontrivial d-wise intersecting
family for this range of values of n. We present some counterexamples to this conjecture.

Let n = 11 and k = 7, and consider the nontrivial 3-wise intersecting family

M(11, 7, 3, 3) := {F ∈
(
[11]

7

)
: 1 ∈ F, |F ∩ [2, 8]| ⩾ 4} ∪ {[2, 8]}.

It is easy to verify that |M(11, 7, 3, 3)|=176, while max{|A(11, 7, 3)|, |H(11, 7, 3)|}=175.
This family was originally discovered as the solution to an integer program solved by the Gurobi
optimization software [LLC20]; see Wagner [Wag20] for an illuminating discussion of this
method.
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In general, for 1 ⩽ r ⩽
⌊
k−1
d−1

⌋
, define

M(n, k, d, r) :=

{
F ∈

(
[n]

k

)
: 1 ∈ F, |F ∩ [2, 2 + (d− 1)r]| ⩾ 1 + (d− 2)r

}
⋃{

F ∈
(
[2, n]

k

)
: F ⊇ [2, 2 + (d− 1)r]

}
.

It is straightforward to verify that these families are nontrivial d-wise intersecting. Now, define

m(n, k, d) := max
1⩽r⩽⌊ k−1

d−1
⌋
|M(n, k, d, r)|.

Note A(n, k, d) ∼= M(n, k, d, 1). We conjecture that m(n, k, d) is the maximum size of a
nontrivial d-wise intersecting family for n in this range of values.

Conjecture 4.1. If F ⊆
(
[n]
k

)
is a nontrivial d-wise intersecting family, then for

k
d

d− 1
⩽ n ⩽

(
1 +

d

2

)
(k − d+ 2),

we have
|F| ⩽ m(n, k, d).

Furthermore, all extremal families are isomorphic to some M(n, k, d, r).

Potentially, an appropriate adaptation of the proof of Ahlswede and Khachatrian [AK96]
could be used to prove Conjecture 4.1. We managed to slightly extend the range for n over
Theorem 1.5, but could not prove the entire conjecture.

We do not have a precise guess as to which value of r gives the maximal |M(n, k, d, r)|,
nor for what values of n we should expect m(n, k, d) > |A(n, k, d)|. Computations indicate
that A(n, k, d) is maximal in the range n ⩾ k d−1

d−2
, while if n ∼ k d

d−1
and k is sufficiently large

in terms of (fixed) d, then A(n, k, d) will not be maximal. We formulate a question for further
study.

Question 4.2. Assuming Conjecture 4.1 is true, which M(n, k, d, r) would give the maximum
size family? When would A(n, k, d) be the maximum size family?

It would be interesting to know if this construction extends further to the case when t > 1.

Question 4.3. Let d ⩾ 3 and t ⩾ 2. Are there further examples of nontrivial d-wise t-
intersecting families F ⊂

(
[n]
k

)
with(

n− t

k − t

)
> |F| > max{|A(n, k, t+ d− 1)|, |H(n, k, t+ d− 1)|}

for some n > kd/(d− 1)− t?
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We have added the hypothesis |F| <
(
n−t
k−t

)
to Question 4.3 because such constructions would

be most interesting in cases where the maximum-size k-uniform d-wise t-intersecting family is
trivial.
Remark 4.4. Subsequent to our Conjecture 4.1, Tokushige [Tok23] constructed a collection of
nontrivial d-wise intersecting families that can be counterexamples to Conjecture 4.1. Namely,
for 0 ⩽ r ⩽ d− 1, he defined the families

T (n, k, d, r) :=

{
A ∈

(
[n]

k

)
: [r] ∈ A, |A ∩ [r + 1, k + 1]| ⩾ j0

}
⋃

{[k + 1] \ {i} : 1 ⩽ i ⩽ r} ,

where j0 = ⌊d−r−1
d−r

(k − r + 1)⌋+ 1. Note that T (n, k, d, d− 1) ∼= H(n, k, d). Similarly to the
definition for M, define

t(n, k, d) := max
0⩽r⩽d−1

|T (n, k, d, r)|.

One can check that, for example, t(120, 77, 4) > m(120, 77, 4).
Tokushige [Tok23, Problem 2] asks the following question:

Question 4.5 (Tokushige). Let F ⊂
(
[n]
k

)
be a nontrivial d-wise intersecting family. Is it true

that for n ⩾ kd/(d− 1),

|F| ⩽ max{|A(n, k, d)|, t(n, k, d)}?

The answer to Question 4.5 as stated is “no”, because there are examples where
m(n, k, d) > t(n, k, d) and m(n, k, d) > |A(n, k, d)|. The smallest example is n = 12, k = 8,
and d = 3, where m(12, 8, 3) = |M(12, 8, 3, 3)| = 299 > 261 = t(12, 8, 3). We therefore
propose a modified version of Tokushige’s question.

Question 4.6. Let F ⊂
(
[n]
k

)
be a nontrivial d-wise intersecting family. Is it true that

for n ⩾ kd/(d− 1),
|F| ⩽ max{m(n, k, d), t(n, k, d)}?

One reason to think that the answer to Question 4.6 might be “yes” is that M(n, k, d, r)
and T (n, k, d, r) are collections of families which include and generalize the families A(n, k, d)
and H(n, k, d). The families M(n, k, d, r) and T (n, k, d, r) may, in some sense, give a series
of families lying in between A(n, k, d) and H(n, k, d). As some supporting evidence for this
assertion, it may be checked that if d− 1 divides k − 1, then

M
(
n, k, d,

k − 1

d− 1

)
∼= T (n, k, d, 1).
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5. Proof of Theorem 1.13

As we noted in the Introduction, Conjecture 1.12 is true when k − ℓ is a prime power. This is a
consequence of a theorem of Frankl and Wilson [FW81].

Theorem 5.1 (Frankl–Wilson). Let p be a prime and let q = pe be a prime power. Suppose
that F ⊂

(
[n]
k

)
satisfies |F ∩ F ′| ̸≡ k (mod q) for distinct F, F ′ ∈ F . Then |F| ⩽

(
n

q−1

)
.

To prove Theorem 1.13, we use a theorem proven in [KMW06].

Theorem 5.2. Suppose that p is prime, k ∈ N, L ⊂ {0, . . . , k−1}, and f(x) is an integer valued
polynomial of degree d ⩽ k such that f(t) ≡ 0 (mod p) for every t ∈ L and f(k) ̸≡ 0 (mod p).
If F is a k-uniform L-intersecting set system on [n], then |F| ⩽

(
n
d

)
.

Keevash, Mubayi and Wilson [KMW06] used Theorem 5.2 to prove the case ℓ = 1 of Con-
jecture 1.12. We modify their argument to prove Theorem 1.13.

Proof of Theorem 1.13. We apply Theorem 5.2 with L = [0, k− 1]−{ℓ}. Let f(x) =
(
x−ℓ−1
k−ℓ−1

)
,

interpreted as a polynomial of degree k − ℓ − 1. Then f(i) = 0 for ℓ + 1 ⩽ i ⩽ k − 1
and f(k) = 1. For 0 ⩽ i ⩽ ℓ− 1, note that

f(i) =

(
i− ℓ− 1

k − ℓ− 1

)
= (−1)k−ℓ+1

(
k − i− 1

ℓ− i

)
= (−1)k−ℓ+1 (k − i− 1) · . . . · (k − ℓ)

(ℓ− i)!
.

If k − ℓ is not a divisor of ℓ!, then there is a prime p such that for some a ⩾ 1, pa divides k − ℓ,
but pa does not divide ℓ!. For this p, we can see that f(i) ≡ 0 (mod p) for 0 ⩽ i ⩽ ℓ− 1, so by
Theorem 5.2, |F| ⩽

(
n

k−ℓ−1

)
.

6. Proof of Theorem 1.14

Our construction of a Ks,t-intersecting family is based on the set families

Ai(n, d, t) = {A ⊂ 2[n] : |A ∩ [t+ di]| ⩾ t+ (d− 1)i}.

Note that each of these families is d-wise, t-intersecting. Frankl [Fra79] conjectures that the
maximum size d-wise, t-intersecting family on [n] is max{|Ai| : 0 ⩽ i ⩽ (n− t)/d}.

Proof of Theorem 1.14. Let S be a (labelled) set of s vertices, and R be a labelled set of t+ 2s
vertices such that R∩ S = ∅. For each i ∈ S, let dR(i) be the number of vertices in R adjacent
to i. Let F be the family of all labelled graphs on n vertices such that dR(i) ⩾ t + 2s − 1 for
every i ∈ S. The family F is Ks,t-intersecting, because if G1, G2 ∈ F , then the vertices in the
set S in G1 ∩G2 will have at least t common neighbors from R.

We count the graphs in F . Each vertex in S has t + 2s + 1 possible neighborhoods in R,
so there are (t + 2s + 1)s possible edge sets on S × R. Each edge of Kn that is not in S × R
(i.e. does not have one endpoint in S and the other one in R) can independently be or not be
in such a graph in F , so |F| = (t + 2s + 1)s2(

n
2)−st−2s2 . By assumption, t > 22s − 2s − 1,

so |F| > 2(
n
2)−st.
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The construction for Theorem 1.15 is quite similar. For 1 ⩽ i ⩽ r, letSi be a labelled set of si
vertices, and R be a labelled set of t + 2

∑
i si vertices such that S1, . . . , Sr and R are disjoint.

We chooseF to be the family of all labelled graphs on n vertices such that dR(i) ⩾ t+2
∑

i si−1
for every i ∈

⋃
Sj and which contain all edges between distinct parts Si and Sj . We omit the

rest of the details as they are similar to those in the proof of Theorem 1.14.
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