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Chronic Exposure to Cigarette Smoke Extract Upregulates 
Nicotinic Receptor Binding in Adult and Adolescent Rats

Michelle Cano, B.S.1,*, Daisy D. Reynaga, Ph.D.1, James D. Belluzzi, Ph.D.1, Sandra E. 
Loughlin, Ph.D.1, Frances Leslie, Ph.D.1

1Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA

Abstract

Heavy smokers display increased radioligand binding of nicotinic acetylcholine receptors 

(nAChRs). This “upregulation” is thought to be a contributing factor to tobacco dependence. 

Although cigarette smoke contains thousands of constituents that can contribute to nicotine 

dependence, it is not well understood whether non-nicotine constituents contribute to nAChR 

upregulation. In this study, we used an aqueous cigarette smoke extract (CSE), which contains 

nicotine and soluble constituents of cigarette smoke, to induce nAChR upregulation in adult and 

adolescent rats. To do this, male rats were exposed to nicotine or CSE (1.5 mg/kg/day nicotine 

equivalent, intravenously) daily for ten days. This experimental procedure produces equivalent 

levels of brain and plasma nicotine in nicotine- and CSE-treated animals. We then assessed 

nAChR upregulation using quantitative autoradiography to measure changes in three nAChR 

types. Adolescents were found to have consistently greater α4β2 nAChR binding than adults in 

many brain regions. Chronic nicotine exposure did not significantly increase nAChR binding in 

any brain region at either age. Chronic CSE exposure selectively increased α4β2 nAChR binding 

in adolescent medial amygdala and α7 binding in adolescent central amygdala and lateral 

hypothalamus. CSE also increased α3β4 nAChR binding in the medial habenula and 

interpeduncular nucleus, and α7 binding in the medial amygdala, independent of age. Overall, this 

work provides evidence that cigarette smoke constituents influence nAChR upregulation in an 

age-, nAChR type- and region-dependent manner.
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1. INTRODUCTION

Despite a recent decline in tobacco use, there are an estimated 34 million smokers in the 

United States, with 480,000 tobacco-related deaths each year (CDC, 2019). Furthermore, 

there has recently been a large increase in teen use of nicotine through e-cigarettes (Miech et 

al., 2019). Nicotine, the primary psychoactive component of cigarette smoke, targets 

nicotinic acetylcholine receptors (nAChRs) in the brain. These receptors are pentameric 

ligand-gated ion channels that consist of different combinations of α and β subunits, 

creating both heteromeric and homomeric nAChR types (Dani, 2015).

Heavy smokers show increased radioligand binding to nAChRs (Brody et al., 2013; 

Schwartz & Kellar, 1983). This “upregulation” of receptor binding has been implicated as a 

possible mechanism underlying the addictive potential of nicotine (Feduccia et al., 2012; 

Ngolab et al., 2015). Increased radioligand binding is also observed in preclinical models of 

in vitro (Perry et al., 2002) and in vivo (Doura et al., 2008; Fasoli et al., 2016; Govind et al., 

2009) chronic nicotine exposure, and has been shown to be dependent on nAChR subtype, 

brain area, nicotine dose, and treatment paradigm. Upregulation of α4β2 and α7 nAChRs 

after chronic nicotine is seen in a multitude of brain areas in adults, but is more limited in 

adolescents (Doura et al., 2008). This resistance to receptor upregulation may explain why 

adolescent rodents display less nicotine withdrawal than adults (Keeley et al., 2019; O’Dell 

et al., 2006).

Importantly, there is a discrepancy between these preclinical findings and clinical data which 

show that teenagers are more sensitive than adults to tobacco-related withdrawal (Prokhorov 

et al., 2001; Zhan et al., 2012). One possible reason is that most preclinical studies expose 

animals to nicotine alone, and not tobacco smoke. Tobacco smoke contains over 7000 

constituents including acetaldehyde and nicotine alkaloids that may augment nicotine’s 

effects (Clemens et al., 2009; USDHHS, 2014). In one prior study adolescent rats exposed to 

cigarette smoke display increased withdrawal symptoms compared to adult rats (De la Pena 

et al., 2016), indicating that non-nicotine tobacco constituents may influence dependence. 

Furthermore, rats exposed to whole tobacco smoke have been shown to have increased 

nAChR binding in the cortex, striatum, and cerebellum (Yates et al., 1995) and increased α7 

nAChR density in the hippocampal subregions, CA 2/3 and striatum oriens (Small et 

al.,2009).

In the present study we have evaluated the effects of chronic exposure to tobacco smoke 

constituents on nAChR binding using aqueous cigarette smoke extract (CSE), made by 

bubbling cigarette smoke through saline (Gellner et al., 2016a). We have previously shown 

that CSE is readily self-administered in both adult and adolescent rats (Costello et al., 2014; 

Gellner et al., 2016b). Furthermore, adult rats that self-administered CSE were more 

sensitive to stress- or drug-induced reinstatement than animals that self-administered 

nicotine alone, and exhibited differences in nAChR pharmacology (Costello et al., 2014; 

Cross et al., 2020). In this study we have analyzed differences in receptor binding levels 

after chronic exposure to cigarette smoke extract (CSE) or nicotine in adolescent and adult 

rats. With evidence to suggest non-nicotine constituents may contribute to nicotine’s 

addictive properties, we hypothesized that the change in nAChR binding after chronic CSE 
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treatment would be greater in both adult and adolescent rats as compared to nicotine- or 

saline-treated controls.

2. MATERIALS AND METHODS

2.1. Animals

Male Sprague Dawley rats (Charles River Labs, Hollister CA) arrived at postnatal day (P) 17 

with dam (n = 45), or at P81 (n = 36), and were housed 2 per cage (after weaning at P21 for 

adolescents) in an AALAC-accredited vivarium on a 12-h light/dark cycle. All experimental 

procedures were done during the light cycle. After one day of acclimation, animals were 

handled for two days prior to catheterization surgery, in order to reduce surgical stress. 

Animals were kept at a 95% free-feeding weight throughout the study. All procedures were 

in compliance with NIH guidelines and were approved by the Institutional Animal Care and 

Use Committee of the University of California, Irvine.

2.2. Drugs

Nicotine hydrogen tartrate (Sigma, St. Louis, MO) was dissolved in sterile saline and 

adjusted to pH 7.2–7.4. All nicotine doses were calculated as free base amounts. CSE was 

made daily by bubbling the smoke from eight unfiltered commercial cigarettes (Camel 

unfiltered, R.J. Reynolds Co.; 1.7 mg nicotine per cigarette; Ouyang et al., 2000) through 35 

ml of sterile saline solution with a 50 ml glass syringe (35ml puffs over 2 s, repeated every 

30 s) and the final solution was adjusted to pH 7.2–7.4, as described previously (Costello et 

al., 2014; Gellner et al., 2016a). The desired nicotine concentration of CSE is 150 μg/ml 

(Gellner et al., 2016a). Methyllycaconitine (MLA) (Sigma, St. Louis, MO) and cytisine 

(Sigma, St. Louis, MO) were dissolved in sterile H2O.

2.3. Surgery

Adult (P85–87) and adolescent (P26–28) animals were anesthetized with equithesin (0.0035 

ml/g body weight) and implanted with indwelling jugular vein catheters into the right vein 

using previously published methods (Belluzzi et al, 2005). During the 2–3 day recovery 

period, and for the remainder of the study, animals were flushed daily with heparinized 

saline solution (1 ml of 1000 units/ml heparin into 30 ml bacteriostatic saline). Catheter 

patency was verified by infusing 0.1 ml of propofol (Abbott Laboratories, Chicago, IL) for 

rapid anesthesia 24 hrs before the last infusion. If catheter patency failed animals were 

excluded from analysis.

2.4. Drug Treatment

Following recovery from surgery, adult (P89–91) and adolescent rats (P30–32) were 

weighed daily and given passive intravenous injections of saline, nicotine or CSE in an 

operant chamber programmed to deliver one injection per minute for 15 minutes (15 

infusions per session), to yield a total of 0.5 mg/kg nicotine (free base) or CSE nicotine 

content per session (33.33 μg/kg nicotine content/infusion ; 70μl/infusion in 3.92 sec for 

adults and adolescents 35 μl/infusion in 1.96 sec). Rats received three daily sessions (9am, 

12pm, 3pm) totaling 1.5mg/kg/day of nicotine content for 10 consecutive days. The 1.5 

mg/kg/ day dose produces blood nicotine levels equivalent to humans who smoke a pack of 
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cigarettes a day (Murrin et al., 1987). We used an intermittent paradigm of exposure instead 

of the more commonly used osmotic pump to ensure stability of the cigarette smoke 

constituents. Additionally, by preparing the drug solution daily we could compensate for 

adolescent animals’ growth. We have previously shown that this experimental method 

produces equivalent levels of brain and plasma nicotine in nicotine- and CSE-treated animals 

(Costello et al., 2014).

2.5. Autoradiography

Rat brains were extracted one hour after the last drug infusion and flash-frozen in 2-

methylbutane at −20°C for 30 sec before being stored at −80°C until processing. Twenty μm 

sections were cut in a cryostat and thaw-mounted onto 4°C positively charged slides (Fisher 

Scientific, Waltham, MA). Mounted slides were dried and stored at −20°C with desiccant 

until processing the next day. Receptor binding was measured in brains using 125I-

epibatidine or 125I-α-bungarotoxin (Perkin-Elmer, Waltham, MA). For 125I-epibatidine, 

slides were removed from the freezer and allowed to thaw at room temperature, then pre-

incubated for 10 min in room temperature buffer (50 mM Tris, 120 mM NaCl, 5 mM KCl, 

2.5 mM CaCl2, 1 mM MgCl2, pH 7.4). Binding conditions were varied to selectively label 

different nAChR types (Costello et al., 2014; Perry et al., 2002). In the α4β2 nAChR 

binding condition, slides were incubated with 0.08 nM 125I-epibatidine. Since 125I-

epibatidine also has affinity for other nAChR types, α4β2 nAChR binding was analyzed in 

brain areas shown to contain at least 85% expression of α4β2 (Perry, et al. 2002). For α3β4 

nAChRs, the binding conditions were identical except that 200 nM cytisine was added to the 

incubation solution to block binding to α4β2 nAChRs. In both conditions, nonspecific 

binding was determined in the presence of 300μM nicotine. For 125I-α-bungarotoxin binding 

to label α7 nAChRs, similar conditions were used, except the buffer was 50 mM Tris HCl 

with 120 mM NaCl at pH 7.4. Slides were pre-incubated for 15 min in room temperature 

buffer, then incubated for 2 hrs with 5 nM 125I-α-bungarotoxin (Perkin-Elmer, Waltham, 

MA). Nonspecific binding was determined in the presence of 10 μM MLA (Ospina, et al., 

1998). All slides were then washed twice for 10 min in ice-cold buffer, dipped briefly in ice-

cold water, and blown dry. The dried slides were placed in light-tight cassettes with 14C 

standards of known radioactivity and exposed to Kodak BioMax MR film (Sigma, St. Louis, 

MO) for 6–18 hrs for the 125I-epibatidine-treated slides, or 30 hrs for the 125I-α-

bungarotoxin-treated slides. Autoradiograms were quantified using a MicroComputer 

Imaging Device (MCID) computer-based imaging system (Imaging Research, St. Catherine, 

Ontario) based on the standards exposed with the slides. Non-specific binding in an adjacent 

section was subtracted from the total binding in the equivalent anatomical section to 

calculate specific binding. Data were not collected from brain tissue that was damaged 

during collection or processing.

Brain areas were chosen based on an a priori hypothesis that they may regulate negative 

emotional and other aversive states associated with nicotine dependence, with the focus on 

areas that contained high populations of the specific nAChR type being studied, according to 

previous reports (Doura et al., 2008; Perry et al., 2002). These areas included subregions of 

the striatum, the limbic system, and the medial habenula and interpeduncular nucleus circuit. 

Both β2* (* indicates the possible presence of other nAChR subunits) and α7 nAChR 
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subunits are highly expressed throughout the brain, including the striatum and limbic system 

(Doura et al., 2008; Klink et al., 2001; Perry et al., 2002; Wada et al., 1989). For α4β2 

nAChRs, binding was analyzed in the nucleus accumbens core and shell (AcbC, AcbSh), 

cingulate cortex (Cg), caudate-putamen (CPu), bed nucleus of the stria terminalis (BNST), 

substantia nigra (SN), and raphe magnus (MnR). For both α4β2 and α7 nAChRs, binding 

was analyzed in amygdala nuclei, including basolateral (BLA), central (CeA), and medial 

(MeA), and in lateral hypothalamus (LH). β4* nAChRs are highly expressed in the 

habenula-interpeduncular pathway (Hb-IPN), with no mRNA observed in the LHb by in situ 
hybridization techniques (Gotti et al., 2009; Grady et al., 2009; Quik et al., 2000). Co-

distribution of the β4 nAChR subunit with the α3 nAChR subunit has been shown in 

abundance (Winzer-Serhan & Leslie, 1997). Thus for α3β4, binding was analyzed in the 

medial habenula (MHb), and interpeduncular nucleus (IPN). Brain regions were defined by 

the “The Rat Atlas” (Paxinos & Watson, 1997).

2.6. Data Analysis

Means for weight by drug treatment were determined for animals chronically treated with 

saline, nicotine, and CSE, and were analyzed with a three-way ANOVA for Age, Drug, and 

Day with repeated measures on days. Means for regional binding to each nAChR type were 

determined for animals chronically treated with saline, nicotine, and CSE, and were 

analyzed with a two-way ANOVA for Age and Drug. Post hoc analyses were conducted 

when there were significant main effects (Wei et al., 2011). Age comparisons were analyzed 

further with unpaired t-test. Drug comparisons were analyzed further with Bonferroni-

corrected paired t-test. Receptor upregulation was defined as a significant increase in 

binding from saline treated controls. Exclusion criterion for statistical outliers was 

determined as two standard deviations from the mean.

3. RESULTS

3.1. CSE drug treatment does not alter weight in adolescent and adult rats

Adolescent and adult rats did not display differences in weight with chronic CSE treatment 

compared to nicotine or saline treated animals (Figure 1). There was an overall main effect 

of Age (F1,70 = 3568.27, p = 0.0001) and Day (F9,630 = 82.97, p=0.0001) and a Day x Age 

interaction (F9,630 = 122.58, p=0.0001), but no Drug effect.

3.2. 125I-epibatidine binding to α4β2 nAChRs is higher in adolescents than adults

Adolescents show higher levels of 125I-epibatidine binding to α4β2 nAChRs than adults in a 

majority of areas analyzed (Table 1). The following areas showed significant Age, but not 

Drug, effects (Table 1): AcbSh (F1,54 = 18.317, p < 0.0001 ), AcbC (F1,54 = 16.557, p < 

0.0001), Cg (F1,45 = 14.877, p < 0.0001), CPu (F1,54= 12.242, p = 0.001), BLA (F1,52 = 

18.764, p < 0.0001), CeA (F1,52 = 7.820, p = 0.007), LH (F1,53 = 9.204, p = 0.004), and 

MnR (F1,47 = 11.215, p = 0.002). There were no overall Age or Drug effects for 125I-

epibatidine binding to α4β2 nAChRs in the BNST.
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3.3. CSE-induced increase in α4β2 nAChR binding in adolescent MeA

Whereas the MeA and SN did not show significant age differences in binding to saline-

treated controls, there was a significant effect of CSE treatment on binding to α4β2 nAChRs 

in the MeA (Figure 2). In the MeA, there was an overall effect of Age (F1,51 = 14.483, p < 

0.0001), Drug (F2, 51 = 7.09, p = 0.002), and an Age x Drug interaction (F2, 51 = 3.880, p = 

0.027). Adolescents treated with CSE or nicotine showed higher binding than adults ( t(18) 

= 3.0429, p = 0.007 and t(16) = 2.7245, p = 0.015, respectively). Furthermore, adolescents, 

but not adults, showed an overall effect of Drug (F2,23 = 5.294, p = 0.013), with those treated 

with CSE showing significantly higher binding than saline-treated controls (t(15) = 2.9467, 

p = 0.01).

In the SN, there were overall main effects of Age (F1,52 = 22.012, p < 0.0001) and Drug 

(F2,52 = 3.489, p = 0.038). Adolescents treated with CSE and nicotine showed significantly 

higher binding than adults (t(18) = 2.9272, p = 0.009 and t(16) = 3.252, p = 0.005, 

respectively). However, there were no significant differences in binding after CSE or 

nicotine treatment when ages were analyzed separately.

3.4. CSE-induced upregulation of α3β4 nAChRs in the MHb and IPN independent of age

CSE treatment resulted in significant upregulation of α3β4 nAChR binding in the MHb and 

IPN (Figure 3). In the MHb, there was an overall effect of Drug (F2,72 = 3.853, p = 0.026), 

but not Age and no Age*Drug interaction. CSE treatment resulted in higher binding than 

saline-treated controls, in both age groups combined (t(50) = 2.4692, p = 0.017). In the IPN, 

there were overall effects of Age (F1,68 = 5.420, p = 0.023) and Drug (F2, 68 = 5.657, p = 

0.005). In adolescents, there was a significant Drug effect (F2,38 = 3.242, p = 0.05), where 

CSE treatment resulted in higher binding compared to controls (t(26) = 2.1061, p = 0.045). 

There was also a significant Drug effect in adults (F2, 30 = 3.644, p = 0.038) where CSE 

treatment upregulated binding as compared to controls (t(20) = 2.1276, p = 0.046).

3.5. CSE-induced increase in α7 nAChR binding in hypothalamus and amygdala

In general, adolescents showed higher levels of 125I-α-bungarotoxin binding than adults in a 

treatment-specific manner in the majority of the areas analyzed (Figure 4). In the LH, there 

were overall effects of Age (F1,60 = 4.594, p = 0.036) and Drug (F2, 60 = 6.951, p = 0.002). 

In adolescents, there was an overall Drug effect (F2,24 = 5.080, p = 0.014), where CSE 

treatment resulted in higher binding than nicotine-treated (t(15) = 2.5106, p = 0.024) or 

control (t(17) = 2.1308, p = 0.048) animals. Adolescents treated with CSE also showed 

higher binding than adults treated with CSE (t(20) = 2.6314, p = 0.016). There were no Drug 

effects in adult LH.

Whereas an age-specific effect of CSE treatment was seen in the LH, those in amygdaloid 

nuclei were more complex. In the BLA, there were main effects of Age (F1,65 = 23.748, p < 

0.0001) and Drug (F2, 65 = 4.077, p = 0.021), with adolescents showing higher binding than 

adults across all treatment groups (CSE t(22) = 2.7383, p = 0.012, nicotine t(21) = 2.1894, p 

= 0.040, saline t(22) = 3.505, p = 0.002). Adults showed a significant Drug effect (F2,36 = 

4.157, p = 0.024), where CSE treatment induced significantly upregulated binding as 

compared to controls (t(24) = 2.4491, p = 0.022). There were no significant drug effects in 
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adolescents. In the CeA, there was an overall effect of Age (F1,64 = 15.632, p < 0.0001) and 

Drug (F2, 64 = 6.563, p = 0.003). Adolescents showed higher binding than adults across all 

treatments (CSE t(22) = 2.7027, p = 0.013, nicotine t(20) = 2.1169, p = 0.047, saline t(22) = 

2.5823, p = 0.017). In adolescents, there was also an overall Drug effect (F2, 28 = 4.158, p = 

0.026), with CSE treatment resulting in higher binding than controls (t(20) = 2.2482, p = 

0.036). No significant drug effect was seen in adult CeA. In the MeA, there was an overall 

effect of Age (F1,65 = 23.990, p < 0.0001) and Drug (F2, 65 = 4.516, p = 0.015). Adolescents 

showed higher binding than adults across all treatments (CSE t(22) = 4.7361, p < 0.0001, 

nicotine t(21) = 2.6493, p = 0.015, saline t(22) = 2.0838, p = 0.049). No individual Drug 

differences were observed when adults and adolescents were analyzed separately. When 

ages were combined, animals treated with CSE showed higher binding than those treated 

with nicotine (t(45) = 2.4554, p = 0.018).

4. DISCUSSION

The present study is the first to show that cigarette smoke constituents enhance nicotine-

induced upregulation of nAChR radioligand binding in both adult and adolescent rodents. 

Although prior studies in both adolescent and adult rats have shown nicotine to reduce 

weight gain (Trauth et al., 1999; Winders & Grunberg, 1990), we found that adolescent rat 

growth was not impacted by either nicotine or CSE and that adult animals maintained steady 

weight independent of drug treatment. In agreement with earlier studies (Counotte et al., 

2012, Doura et al., 2008, Trauth et al., 1999), age differences in radioligand binding were 

apparent in saline-treated control animals, with adolescents showing higher binding than 

their adult counterparts in many regions. However, in contrast to earlier findings in which 

adolescents demonstrated a limited nAChR upregulation as compared to adults (Doura et al., 

2008), here we demonstrate that adolescents chronically treated with CSE show higher 

upregulation in many regions than their adult counterparts. This is consistent with a prior 

finding that tobacco smoke exposure increased nAChR expression in adolescent mouse brain 

even at low levels of nicotine (Abreu-Villaça et al., 2016). This suggests that nAChR 

pharmacology differs between adult and adolescents, and may differentially influence 

networks that mediate drug-associated behaviors.

In contrast to other studies (Govind et al., 2009; Doura et al., 2008), chronic nicotine did not 

induce significant upregulation of nAChRs. This discrepancy may be due to different drug 

exposure paradigms. Typically, studies of chronic nicotine exposure use osmotic pumps, but 

here we use intermittent intravenous injections. This method allowed us to prepare CSE 

daily which contains various constituents of unknown stability, and permitted control for 

nicotine dose in growing adolescent animals. It has been shown that the method of exposure, 

as well as nicotine dose, can influence the rate and level of receptor upregulation (Semenova 

et al., 2018). For instance, transient exposure to high dose nicotine seems to favor α6β2 

nAChR upregulation rather than α4β2 upregulation, which is induced by prolonged 

exposure to low dose nicotine (Nashmi et al., 2007). Since our animals received a 

moderately high dose (1.5 mg/kg nicotine content per day) in three daily intravenous 

sessions for 10 days, it is possible that not all nAChRs were responsive to the effects of 

nicotine using this schedule of drug exposure. Nevertheless, the inclusion of cigarette smoke 

constituents resulted in increased nAChR upregulation using this exposure method, although 
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in most regions CSE-induced binding was significantly different from saline-treated, not 

nicotine-treated, animals. Exceptions were found in the adolescent LH and MeA of both 

ages, where α7 nAChR binding in CSE-treated animals was significantly higher than in 

those treated with nicotine.

An important goal of this study was to get a deeper understanding of the 

neuropharmacological adaptive mechanisms within circuits that mediate the transition from 

initial tobacco use to dependence. Thus, the focus was to examine nicotine- and CSE-

induced upregulation of nAChR binding in brain areas involved in addiction and negative 

emotional states. In summary, CSE-induced upregulation was observed in the amygdala, LH, 

MHb, and IPN. The anatomical connections between these areas and how they influence the 

withdrawal syndrome, as well as our findings, are summarized in Figure 5 and are discussed 

further below.

The change from positive to negative reinforcing effects of drugs of abuse are mediated by 

neurotransmitter systems in the striatum, either directly or via indirect actions in the ventral 

tegmental area (VTA) and SN (Koob & Volkow, 2010; Koob, 2008; Koob & Le Moal, 2008). 

Drug-induced upregulation of nAChR binding, however, was not observed in the Acb or 

CPu, as is consistent with an earlier study using a non-contingent, intermittent exposure 

paradigm (Semenova et al., 2018). Additionally, methodological limitations did not allow for 

the analysis of nAChR binding in the VTA, and significant drug-induced upregulation of 

α4β2 nAChRs was not observed in SN at either age. Several other areas modulate the 

negative aversive state of nicotine dependence, including the amygdala, LH, and MB-IPN 

circuit (Kenny & Markou, 2001; Natividad et al., 2010; Zhang et al., 2012; Antolin-Fontes et 

al., 2015). In these areas, drug-induced binding upregulation was observed in a nAChR 

subtype- and age-specific manner. Adolescents, but not adults, displayed CSE-induced 

upregulation of α4β2 nAChRs in the MeA and α7 nAChRs in the CeA and LH, areas that 

mediate the shift to negative reinforcement and the negative emotional state of withdrawal 

that is a key factor in dependence (Antolin-Fontes et al., 2015; Koob & Volkow, 2010; 

Narita, 2006). Adults, but not adolescents, displayed a CSE-induced upregulation of α7 

nAChRs in the BLA which is involved in craving, a component of withdrawal that often 

leads to relapse (Koob & Volkow, 2010). Lastly, CSE-induced upregulation of α3β4 

nAChRs was seen in both age groups in the MHb and IPN, two regions that have been 

critically implicated in nicotine withdrawal (Salas et al., 2009; Shih et al., 2015).

There are many mechanistic possibilities as to how the non-nicotine constituents in CSE 

may enhance nicotine-induced upregulation of nAChRs. The term “upregulation” may 

explain phenomena beyond just receptor number. Increased binding may be due to increases 

in affinity resulting from changes in conformation or stoichiometry of the receptor, reduction 

in turnover rate, or an increase in trafficking of nAChR proteins intracellularly, or a 

combination of these (Govind et al., 2012; Henderson & Lester, 2015; Nelson et al., 2003). 

Since there are many constituents in CSE, it is possible that they may be acting both directly 

on the receptor or intracellularly. Further studies will be needed to address this issue. Future 

studies should also investigate sex differences in the effects of CSE and nicotine on nAChR 

upregulation since clinical and preclinical studies have shown females are more susceptible 

to nicotine/tobacco craving and withdrawal (Conti et al., 2020; Torres et al., 2013). 
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Furthermore, denicotinized tobacco produces greater alleviation of withdrawal symptoms in 

women than men, implicating an important sex-dependent role of non-nicotine tobacco 

constituents (Barrett, 2010).

There are a few limitations in these experiments. One of the major challenges in studying 

smoking in animals is using a model that best mimics smoking in humans. CSE is no 

exception. The composition of the CSE solution does not allow for the use of the more 

commonly used osmotic minipump, thus preventing us from fully comparing our findings 

with other studies, as the route of administration largely differs. Nevertheless, passive 

intravenous administration of CSE is a valid model of smoking, as the time it takes for the 

drug to reach the brain is comparable to that of a smoker (Benowitz et al., 2009). Another 

limitation is the composition of CSE. Due to the fact that it is made in saline, an aqueous 

solvent, CSE contains only the aqueous constituents of cigarette smoke, hence we are not 

accounting for the other ~ 60% of non-aqueous constituents of cigarette smoke (Schumacher 

et al., 1977). The extracts commonly used in tobacco research are prepared in an organic 

solvent in order to dissolve the tar phase of the smoke (Ambrose et al., 2007; Brennan et al., 

2014; Danielson et al., 2014). However, given that our experimental paradigm requires 

intravenous infusion of CSE, an organic solvent was not practical. In spite of these 

limitations, aqueous CSE is a reliable and improved tool to model tobacco dependence in 

rodents, and can produce upregulation of nAChR binding in both adult and adolescent rats. 

Together, the current report supports the increased validity of using CSE over nicotine alone 

in preclinical models of tobacco dependence.

5. CONCLUSION

In summary, chronic treatment of CSE results in an upregulation of α4β2, α7, and α3β4 

nAChRs binding and, in some cases, to a significantly greater extent than chronic nicotine 

treatment. We have also confirmed prior reports that nAChR binding is higher in adolescent 

than adult rats (Counotte et al., 2012, Doura et al., 2008, Trauth et al., 1999). However, both 

age groups were susceptible to upregulation of nAChR binding after chronic CSE treatment, 

although changes were age-, subtype- and region-dependent. Overall, upregulation was 

observed in amygdala nuclei, LH, and the MHb-IPN; brain areas critical for mediating the 

aversive aspects of nicotine. The regions of upregulation suggest an increased drug 

dependence potential of cigarette smoke compared to nicotine alone (Morean et al., 2018; 

Shiffman & Sembower, 2020). In conclusion, these results provide evidence that the non-

nicotinic constituents in CSE can uniquely influence nAChR pharmacology across 

development. A better understanding of how these constituents enhance nAChR 

upregulation will assist in the development of nAChR-based pharmacotherapies for smoking 

cessation, and potentially improve efficacy and specificity for different age groups.
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Highlights

• Adolescents display higher nAChR binding compared to adults in many of the 

same regions

• Cigarette smoke extract upregulates nAChR binding in an age-, subtype- and 

region-dependent manner

• Chronic cigarette smoke extract produces greater changes to nAChRs 

compared to chronic nicotine alone
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Figure 1. 
Mean body weight +/− SEM throughout ten day drug exposure. Neither adolescent nor adult 

weights were impacted by drug treatment. Dashed lines represent adolescent data; Solid 

lines represent adult data. black circles = saline; blue triangles = nicotine; pink squares = 

CSE; *** = p ≤ 0.001 vs adolescent group. n = 11 – 13 per adult group. n = 15 per 

adolescent group.
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Figure 2. 
α4β2 nAChR binding in the MeA and SN. In the MeA, adolescents display a significant 

CSE-induced upregulation. CSE and nicotine treated adolescent animals display 

significantly higher binding than adults in the MeA and SN. Circles represent adolescent 

data; triangles represent adult data. MeA = medial amygdala, SN = substantia nigra. ** = p 

≤ 0.05 vs saline group. ^ = p ≤ 0.05, ^^ = p ≤ 0.01 vs. adult group. n = 8 – 11 per group.
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Figure 3. 
CSE-induced upregulation of α3β4 nAChR in the MHb and IPN. CSE treated animals show 

significantly higher binding compared to saline controls in MHb and IPN. In the IPN, 

adolescents show higher overall binding compared to adults. Circles represent adolescent 

data; triangles represent adult data. MHb = medial habenula, IPN = Interpeduncular nucleus. 

* = p ≤ 0.05 vs. saline group. ^ = p ≤ 0.05 vs. adult group. MHb n = 26 per group. IPN n = 

11 – 14 per group.
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Figure 4. 
α7 nAChR binding in the hypothalamus and amygdala. Overall adolescents have higher 

binding than adults in the amygdala. In the BLA, CSE treated adults show higher binding 

than saline treated controls. In the CeA, adolescent CSE treated animals displayed higher 

nAChR binding compared to saline controls. Adolescent CSE treated animals show 

increased binding in the LH compared to nicotine and saline treated animals. Circles 

represent adolescent data, triangles represent adult data. BLA = basolateral amygdala, CeA 

= central amygdala, MeA = medial amygdala, LH = lateral hypothalamus * = p ≤ 0.05 vs. 

saline group. ^ = p ≤ 0.05 vs. adult group. n = 8 – 13 per group.
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Figure 5. 
Anatomical connections within the limbic system and HB-IPN circuit that mediate 

withdrawal. Black circles represent brain areas where nAChR upregulation was observed. 

The table summarizes areas of increased binding to nAChRs seen after chronic CSE 

exposure. * denotes a significant increase from nicotine treated rats.
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Table 1.

Binding to α4β2 nAChRs. Overall there was a significant age effect, where adolescents had higher binding in 

α4β2-rich regions independent of drug treatment, denoted by the gray boxes. AcbSh = accumbens shell, AcbC 

= accumbens core, Cg= cingulate cortex, CPu = caudate putamen (striatum), BNST= bed nucleus of the stria 

terminalis, BLA = basolateral amygdala, CeA = central amygdala, LH = lateral hypothalamus, MnR = median 

raphe. Gray boxes = p ≤ 0.01 vs. adult group. n = 8 – 11 per group.

Brain Region

Adults Adolescents

Saline Nicotine CSE Saline Nicotine CSE

Mean ± SEM (DPM/mg) Mean ± SEM (DPM/mg)

Binding of [125I]epibatidine to α4β2

AcbC 600.29 ± 83.66 606.74 ± 79.93 693.20 ± 99.06 987.48 ± 142.14 1049.70 ± 154.48 1022.01 ± 144.49

AcbSh 462.18 ± 69.87 539.78 ± 93.38 557.34 ± 92.49 815.50 ± 113.69 967.65 ± 127.79 992.68 ± 192.03

Cg 630.14 ± 99.76 609.00 ± 92.33 801.94 ± 86.97 968.55 ± 139.17 1290.76 ± 208.38 1376.50 ± 260.37

Cpu 650.30 ± 84.30 755.31 ± 87.54 746.82 ± 90.51 1133.87 ± 198.75 1040.19 ± 128.70 1131.51 ± 208.03

BNST 457.98 ± 75.24 581.90 ± 107.79 648.13 ± 101.26 440.10 ± 60.89 511.96 ± 90.20 574.05 ± 93.76

BLA 396.70 ± 81.47 523.68 ± 104.09 530.09 ± 85.55 748.17 ± 143.61 936.25 ± 87.58 939.56 ± 160.27

CeA 354.75 ± 65.65 345.08 ± 69.14 381.39 ± 60.82 480.08 ± 90.73 619.03 ± 92.72 542.20 ± 112.75

LH 270.46 ± 49.67 324.71 ± 47.94 399.06 ± 55.08 481.05 ± 120.96 548.81 ± 83.84 529.77 ± 104.48

MnR 573.15 ± 87.82 653.84 ± 83.99 644.40 ± 130.36 884.58 ± 256.82 1515.39 ± 356.61 1116.36 ± 282.41
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