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Reconstructing 3D objects from 2D images/videos is a fundamental yet challenging prob-

lem in computer vision, which can be applied to a wide range of applications such as

AR/VR, gaming, content creation, and autonomous driving. The goal of monocular 3D

reconstruction is to estimate the 3D pose and shape of an object in a single-view image or

video. Recently, supervised methods have achieved significant progress using various 3D

representations like voxel grids, deformable mesh, point clouds, and implicit functions.

However, these methods depend heavily on the ground-truth 3D shapes or multi-view im-

ages for training, either from synthetic data or human-labeled datasets. Considering the

big domain gap between synthetic and natural images as well as the difficulty to annotate

large-scale 3D datasets, we aim to develop methods that can utilize weak supervisory sig-

nals like the 2D silhouettes, canonical surface mapping, and generic skeleton. Specifically,

to produce robust and high-fidelity 3D shapes, we exploit the geometric priors of 3D ob-

ject parts and dense visibility, semantic consistency between images, as well as generative

priors from a Stable Diffusion model. In this thesis, we tackle the problem of monocular

3D reconstruction for three diverse categories: 1) general rigid objects, 2) human bodies,

and 3) articulated shapes.

First, we design a reconstruction network to predict the 3D shape of general rigid ob-

xviii



jects from single-view images. In order to alleviate the 3D ambiguity of 2D appearance,

we propose a part-based representation with multiple meshes and regularize the part shape

by geometric primitives. We demonstrate that the network can automatically discover use-

ful 3D parts while learning to reconstruct a whole object. In return, the discovered parts

can fit the object shape faithfully and help improve the overall reconstruction accuracy.

Moreover, the 3D parts enable interesting applications like shape interpolation and gener-

ation since they are consistent across instances of the same category.

Second, we learn dense human body estimation that is robust to partial observations.

While prior methods with model-based representations can perform reasonably well on

whole-body images, they often fail when parts of the body are occluded or outside the

frame. Instead, we adopt a heatmap-based representation and explicitly model the vis-

ibility of human joints and vertices. The visibility in x and y axes help distinguishing

out-of-frame cases, and the visibility in depth axis corresponds to occlusions (either self-

occlusions or occlusions by other objects). We show that visibility can serve as 1) an

additional signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a

regularization term when fitting a human body model to the predictions.

Finally, we propose a novel and practical problem setting to estimate 3D pose and

shape of articulated animal bodies given only a few (10-30) in-the-wild images of a par-

ticular animal class. Contrary to existing works that rely on pre-defined template shapes,

we do not assume any form of 2D or 3D ground-truth annotations, nor do we leverage

any multi-view or temporal information. Our key insight is that 3D parts have much

simpler shape compared to the overall animal and that they are robust w.r.t. animal

pose articulations. Following these insights, we propose three novel optimization frame-

works (LASSIE, Hi-LASSIE, and ARTIC3D) which discover 3D skeleton/parts in a self-

supervised manner by combining geometric, semantic, and generative priors.

xix



Chapter 1

Introduction

1.1 Monocular 3D Reconstruction

Recognizing and inferring objects surrounding us is essential for many computer vi-

sion systems. While deep learning models have been shown to perform well at recog-

nizing [60, 116, 40] and localizing [31, 106, 77] objects in a 2D image, reasoning 3D

attributes of objects from a single image remains a challenging task. 3D reasoning from

single-view images is fundamentally ill-posed due to several factors that cause ambiguous

object appearance in 2D images, e.g., camera pose, self-occlusions, lighting, and material

properties. In this thesis, we study the task of monocular 3D reconstruction, aiming to

estimate the 3D pose and shape of an object from a single-view image.

Recently, supervised methods have achieved significant progress in monocular 3D re-

construction using various 3D representations like voxel grids [17, 124, 121, 67], point

clouds [25, 45, 63, 92, 21], triangular mesh [129, 32] , and implicit functions [30, 83,

135, 37, 19, 29, 85]. However, most of them require ground-truth 3D shapes, multi-

view/temporal information, or large-scale (labeled) images for training. Considering the

difficulty to obtain these information as well as the big domain gap between synthetic and

natural data, our goal is to develop weakly-supervised or self-supervised methods using

1
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minimal ground-truth annotations.

Although 3D objects in general have complicated articulations and shapes, they can

usually be decomposed into parts that are easier to model since they have rather simple ge-

ometry and rigid motion. Furthermore, most object instances of a particular category share

similar part configurations, e.g., the head, torso, and 4 legs of quadrupedal animals. Based

on these insights, we demonstrate in this thesis how to learn high-fidelity 3D articulated

shapes by designing part-based representation and utilizing part-level weak supervision.

1.2 Thesis Overview

In Chapter 2, we tackle single-view 3D reconstruction of general rigid objects without

ground-truth 3D shapes as supervision. Reasoning 3D shapes from 2D images is an es-

sential yet challenging task, especially when only single-view images are at our disposal.

While an object can have a complicated shape, individual parts are usually close to ge-

ometric primitives and thus are easier to model. Furthermore, parts provide a mid-level

representation that is robust to appearance variations across objects in a particular cate-

gory. Instead of relying on manually annotated parts for supervision, we propose a self-

supervised approach, latent part discovery (LPD). Our key insight is to learn a novel part

shape prior that allows each part to fit an object shape faithfully while constrained to have

simple geometry. Extensive experiments on the synthetic ShapeNet [10], PartNet [86], and

real-world Pascal 3D+ [132] datasets show that our method discovers meaningful object

parts and achieves favorable reconstruction accuracy compared to the existing methods

with the same level of supervision.

In Chapter 3, we learn to estimate 3D human pose and shape from 2D images by

combining a statistical shape model (SMPL [78]) and heatmap-based representation [90].

While prior methods with model-based representations can perform reasonably well on

whole-body images, they often fail when parts of the body are occluded or outside the

frame. Moreover, these results usually do not faithfully capture the human silhouettes due
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to their limited representation power of deformable models (e.g., representing only the

naked body). An alternative approach is to estimate dense vertices of a predefined tem-

plate body in the image space, which is effective in localizing vertices within an image but

cannot handle out-of-frame body parts. In this chapter, we learn dense human body esti-

mation that is robust to partial observations. We explicitly model the visibility of human

joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help dis-

tinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions

(either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths

of visibility labels from dense UV correspondences and train a neural network to predict

visibility along with 3D coordinates. We show that visibility can serve as 1) an additional

signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regulariza-

tion term when fitting a human body model to the predictions. Extensive experiments on

multiple 3D human datasets demonstrate that visibility modeling significantly improves

the accuracy of human body estimation, especially for partial-body cases.

In Chapter 4, we propose a practical problem setting to estimate 3D pose and shape of

animals given only a few (10-30) in-the-wild images of a particular animal species (say,

horse). Contrary to existing works that rely on pre-defined template shapes, we do not

assume any form of 2D or 3D ground-truth annotations, nor do we leverage any multi-

view or temporal information. Moreover, each input image ensemble can contain animal

instances with varying poses, backgrounds, illuminations, and textures. Our key insight

is that 3D parts have much simpler shape compared to the overall animal and that they

are robust w.r.t. animal pose articulations. Following these insights, we propose LASSIE,

a novel optimization framework which discovers 3D parts in a self-supervised manner

with minimal user intervention. A key driving force behind LASSIE is the enforcing

of 2D-3D part consistency using self-supervisory deep features. Experiments on Pascal-

Part and self-collected in-the-wild animal datasets demonstrate considerably better 3D

reconstructions as well as both 2D and 3D part discovery compared to prior arts.

In Chapter 5, we propose Hi-LASSIE, which tackles a similar problem setting as
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LASSIE but makes two significant advances. First, instead of relying on a manually anno-

tated 3D skeleton, we automatically estimate a class-specific skeleton from the selected

reference image. Second, we improve the shape reconstructions with novel instance-

specific optimization strategies that allow reconstructions to faithful fit on each instance

while preserving the class-specific priors learned across all images. Experiments on in-

the-wild image ensembles show that Hi-LASSIE obtains higher fidelity state-of-the-art

3D reconstructions despite requiring minimum user input.

In Chapter 6, we introduce ARTIC3D, which is built upon Hi-LASSIE and further

guided by 2D diffusion priors from Stable Diffusion. First, we enhance the input images

with occlusions/truncation via 2D diffusion to obtain cleaner mask estimates and semantic

features. Second, we perform diffusion-guided 3D optimization to estimate shape and

texture that are of high-fidelity and faithful to input images. We also propose a novel

technique to calculate more stable image-level gradients via diffusion models compared to

existing alternatives. Finally, we produce realistic animations by fine-tuning the rendered

shape and texture under rigid part transformations. Extensive evaluations on multiple

existing datasets as well as newly introduced noisy web image collections with occlusions

and truncation demonstrate that ARTIC3D outputs are more robust to noisy images, higher

quality in terms of shape and texture details, and more realistic when animated.

In Chapter 7, we conclude the main contributions of this thesis. We also raise several

future research directions, including 1) generalizing ARTIC3D to more diverse animals

and articulated objects, and 2) improving the quality of 3D articulated shapes and anima-

tions by better combining 3D geometric and 2D generative priors.



Chapter 2

Discovering 3D Parts from Image

Collections

2.1 Overview

Reasoning 3D shapes from 2D images is an essential yet challenging task, especially

when only single-view images are at our disposal. While an object can have a complicated

shape, individual parts are usually close to geometric primitives and thus are easier to

model. Furthermore, parts provide a mid-level representation that is robust to appearance

variations across objects in a particular category. In this chapter, we tackle the problem of

3D part discovery from only 2D image collections. Instead of relying on manually anno-

tated parts for supervision, we propose a self-supervised approach, latent part discovery

(LPD). Our key insight is to learn a novel part shape prior that allows each part to fit an

object shape faithfully while constrained to have simple geometry. Extensive experiments

on the synthetic ShapeNet, PartNet, and real-world Pascal 3D+ datasets show that our

method discovers consistent object parts and achieves favorable reconstruction accuracy

compared to the existing methods with the same level of supervision.

5
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Figure 2.1: Discovering 3D parts form single-view image collections. Our method
(LPD) enables self-supervised 3D part discovery while learning to reconstruct object
shapes from single-view images. Compared to other methods using different part con-
straints, LPD discovers more faithful and consistent parts, which improve the reconstruc-
tion quality and allow part reasoning/manipulation.

2.2 Introduction

Recognizing and reasoning about objects surrounding us is essential for many com-

puter vision systems. While deep learning models have been shown to perform well at

recognizing [60, 116, 40] and localizing [31, 106, 77] objects in a 2D image, reasoning

3D attributes of objects from a single image remains a challenging task. Single-view 3D

reasoning is fundamentally ill-posed due to several factors that cause ambiguous object

appearance in 2D images, e.g., camera pose, self-occlusions, lighting, and material prop-

erties. Although objects in general have complicated shapes, they can usually be decom-

posed into parts that have simpler geometry and are relatively easy to model. Furthermore,

most object instances of a particular category share similar part configurations, e.g., the

wings, body, and tail of airplanes. In this chapter, we propose to tackle the problem by

discovering faithful and consistent 3D parts from 2D image collections. Compared to prior

single-view 3D reconstruction approaches that directly predict an object shape, we aim to

learn rich and dense part configurations which form an entire object when combined.

Although several recent methods [123, 80, 13, 28, 70, 79, 94, 52] leverage part-based

representations for 3D object reasoning, they rely on either 3D object shapes or explicit
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part annotations as supervision. Moreover, the learned parts only serve as additional in-

formation and are not exploited to improve 3D reconstruction. Considering that collecting

ground-truth 3D shapes and the corresponding part labels is labor intensive, we follow

a practical scenario where only single-view images, 2D object silhouettes, and camera

viewpoints are available for model training. In contrast to existing techniques, our method

automatically discovers 3D parts from image collections in a self-supervised manner.

A common practice to represent 3D parts is to use geometric primitives such as ellip-

soids or cuboids [123]. They provide a strong regularization of part shapes but are usually

too coarse to faithfully represent object parts. As an alternative, several approaches adopt

meshes [51, 129, 32, 50, 76, 42, 33, 69] or point-cloud [25, 45, 63, 92, 21] representations.

Although these representations are more expressive and can faithfully describe part shapes,

they lack part shape regularization that is particularly needed in a weakly-supervised or un-

supervised setting. The key insight of this chapter is to represent 3D parts with deep latent

embeddings. Specifically, we propose to learn a prior distribution of part shapes with a

variational auto-encoder (VAE) [54] that encodes part shapes as latent embeddings. We

call this network Part-VAE and pre-train it with a set of geometric primitives like cones,

cylinders, cuboids, and ellipsoids. We then learn a reconstruction network that takes an

input image and predicts part embeddings to obtain a 3D mesh by passing through the

decoder of Part-VAE. To further improve the quality of part discovery and reconstruction,

we propose a novel part adversarial loss which involves re-assembling parts from different

objects in the same category. We name the proposed method latent part discovery (LPD).

Figure 2.1 shows several reconstruction results with and without part prior, which demon-

strate that LPD can discover consistent parts and produce faithful reconstruction to the

input image.

We evaluate LPD on the synthetic ShapeNet [10], PartNet [86] and the real-world

Pascal 3D+ [132] datasets. Both quantitative and qualitative results demonstrate that our

approach achieves favorable performance against the state-of-the-art methods using the

same level of supervision. In addition to part discovery, our part representation enables
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object manipulation like selective part swapping, interpolation, and random shape genera-

tion from the latent space. In this work, we make the following contributions:

• We propose a part-based single-view 3D reasoning network which can automatically

discover object parts. To the best of our knowledge, this is the first work that discov-

ers 3D parts in a self-supervised manner without using any 3D shape or multi-view

supervision.

• We develop Part-VAE to learn a latent prior over part shapes. We show that training with

geometric primitives can learn useful part embeddings, allowing each part to faithfully

represent object shape while constrained to have simple geometry.

• We conduct extensive experiments on both synthetic and natural images. Qualitatively,

our method produces more faithful and consistent object parts compared to other part-

based methods. Quantitatively, the discovered parts improve whole-object reconstruc-

tion and achieve favorable accuracy against the state-of-the-art techniques. In addition,

our Part-VAE allows us to manipulate object parts for various applications.

2.3 Related Work

3D Reconstruction. While 3D representation has been widely studied for decades, the

best and unified way to represent general objects remains unclear. Voxel grids [17, 124,

121, 67], point clouds [25, 45, 63, 92, 21], and meshes [51, 129, 32, 50, 76, 11, 42, 33, 69]

are commonly used to represent object shapes. Several recent methods [30, 83, 135, 37,

19, 29] explore the possibilities to represent 3D shapes in a functional space. While fine-

grained voxels, point clouds, and local functions can represent complicated shapes, the

flexibility of representation demands strong 3D or multi-view supervision for training.

Meshes, on the other hand, are constrained to form a water-tight surface and are convenient

to render 2D images. By deforming from a simple template mesh like sphere or cuboid, it

is easier to apply shape regularization and thus can be applied to reconstruction scenarios

with weaker supervision. One can learn single-view mesh reconstruction from multi-view
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or single-view images using naive 2D projection or differentiable rendering [51, 76, 11].

For instance, Henderson et al. [42] generate background images and object rendering to

learn textured mesh reconstructions from natural images. Kato et al. [50] propose view

prior learning (VPL) to improve the reconstructed shapes from unseen views. Although

they are effective for compact and deformable objects, a single mesh cannot represent

complicated shapes with holes or disconnected parts. In this chapter, we exploit multi-

mesh part representation which allows disconnected parts in an object while each part can

be well-regularized.

Part Discovery. Parts provide a mid-level representation that is robust to appearance

variations across objects in the same category. Hung et al. [44] learn 2D co-part segmen-

tation on image collections with self-supervision. Lathuilière et al. [65] exploit motion

cues in videos for part discovery. In the 3D domain, Tulsiani et al. [123] use volumetric

cuboids as part abstractions to learn 3D reconstruction. Li et al. [70] assume known part

shapes and learn to assemble them given an input image. Using a point-cloud representa-

tion, Mandikal et al. [80] predict part-segmented 3D reconstructions from a single image

and Luo et al. [79] learn to form object parts by clustering 3D points. Paschalidou et

al. [94] propose hierarchical part decomposition (HPD) by constraining 3D points with

super-quadratic functions [96]. These methods require 3D ground-truth shape of a whole

object or its parts as supervision. Furthermore, the part shapes in [123, 94] are limited by

the expressiveness of their representations. Li et al. [69] leverage 2D semantic parts to

improve single-view 3D reconstruction, which, however, does not produce individual part

shapes. To the best of our knowledge, we propose the first 3D part reconstruction method

without any part annotations or ground-truth 3D shapes for training, and our latent part

representation enables each part to fit a given object shape faithfully.



10

Figure 2.2: Approach overview. (top) Our Part-VAE is trained with geometric primitives.
(bottom) Our reconstruction model shares the shape decoder with Part-VAE and predicts
object parts. We then composite the reconstructed parts to form a 3D object.

2.4 Approach

Reasoning 3D objects from single-view images is inherently ill-posed since the recon-

structed object can over-fit to a given view and be highly deformed in the unseen parts.

To address this, we propose LPD to represent an object with multiple latent parts. Our

intuition is that a complicated object shape can be expressed by assembling simple and

regularized parts. Consistent with some recent approaches [50, 42], we propose a method

under a weakly-supervised setting where only a single-view image, 2D object silhouette,

and its camera viewpoint are available for each object. That is, we do not assume any

3D shape or multi-view images to supervise part discovery or reconstruction. In order

to automatically discover underlying parts while reconstructing an object, we propose to

learn part embeddings with a variational auto-encoder [54] (VAE) named Part-VAE. We

train a reconstruction model that predicts part embeddings which are then decoded into

part meshes to compose the whole object. Figure 2.2 illustrates the proposed method with

two main modules: Part-VAE and reconstruction network.
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2.4.1 Learning Part Prior with Part-VAE

We propose Part-VAE to learn a latent shape prior for object parts. The proposed

method constrains parts with primitive shapes while allowing the flexibility to fit real-

world object parts. In addition, it enables smooth part-interpolation and novel shape gen-

eration by random sampling in the latent space. Figure 2.2 (top) illustrates the training

process of the Part-VAE with geometric primitives. We first collect a set of primitive

shapes such as ellipsoids, cylinders, cones, and cuboids, which are centered at origin but

with random scaling and rotation. The Part-VAE network consists of a shape encoder and

a shape decoder. The encoder transforms each given primitive shape to a low-dimensional

shape encoding, and the decoder reconstructs the input shape by predicting the vertex

deformations of a spherical template mesh. To supervise the Part-VAE pre-training, we

calculate the Chamfer distance between the input and output vertices as the loss function

since the point sets are unordered and not densely corresponding. Given the vertices of an

input shape Q and its reconstruction P , the Chamfer loss Lc can be expressed as:

Lc(P,Q) =
1

∥P∥
∑
p∈P

min
q∈Q

∥∥p− q
∥∥2

2
+

1

∥Q∥
∑
q∈Q

min
p∈P

∥∥p− q
∥∥2

2
. (2.1)

To encourage the continuity of latent shape distribution, we adopt a standard KL diver-

gence loss Lkl calculated between the shape embeddings and a standard normal distribu-

tion N ∼ (0, 1). The overall training loss of Part-VAE is: Lvae = Lc + λkl Lkl , where λkl
is a weight parameter.

2.4.2 Part Discovery by Learning to Reconstruct

Figure 2.2 (bottom) illustrates our reconstruction model. Instead of directly predicting

an object mesh, we learn an image encoder that takes an input image and predicts the 3D

part centroid, latent shape encodings, and surface texture for each part. The part encodings

are then passed through the shape decoder of Part-VAE to generate part meshes. To com-

pose an entire object, we simply shift the mesh vertices using the predicted part centroids
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Figure 2.3: Part and view adversarial learning. Given two images with different objects,
we randomly combine their reconstructed parts into a novel shape. The novel shape is
then rendered from a novel viewpoint, which we treat as a ‘fake’ sample. We train a
discriminator to distinguish the fake and real rendered images. By using a gradient reversal
layer (GRL), the reconstruction model learns to produce parts that can compose realistic
novel shapes.

and concatenate the vertices and surfaces of each part. In the remainder of the chapter, we

denote the reconstruction model as R(·), which takes an image as input and outputs a part-

composited mesh. The rendering function from viewpoint v is denoted as G(·, v), which

produces a rendered image of the input mesh. Note that each training image I includes a

silhouette channel Is and RGB color channels Ic. Likewise, the rendering function G can

be separated into Gs and Gc for silhouette projection and color rendering, respectively.

Shape Reconstruction Losses. To supervise shape reconstruction, we enforce the 2D

projection of a reconstructed shape to be close to the ground-truth silhouette. In particular,

we render the predicted meshes with input viewpoints using a differentiable renderer [76],

and calculate the intersection-over-union (IoU) ratio between the rendered and ground-

truth silhouettes. Then the silhouette loss Lsil is computed as:

Lsil(I, v) =
∥Is ⊙Gs(R(I), v)∥1

∥Is +Gs(R(I), v)∥1 − ∥Is ⊙Gs(R(I), v)∥1
, (2.2)

where ⊙ denotes element-wise multiplication. We further apply Laplacian regularization

Llap on the reconstructed mesh vertices:
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Llap(P ) =
1

∥P∥
∑
p∈P

∥∥∥ p− 1

∥N (p)∥
∑

q∈N (p)

q
∥∥∥2

2
, (2.3)

where N (p) denotes the neighboring vertices of vertex p. It aims to smooth the mesh

surfaces by pulling each vertex towards the center of its neighboring pixels. Note that

this regularization is applied on each part mesh individually so discontinuity between part

surfaces is allowed.

Color Reconstruction Loss. We further exploit the color information in input images by

generating textured reconstructions. Given the part encodings, our model predicts texture

flow to map the input image to a UV texture image. We then color the mesh surfaces by

sampling from the texture image using a pre-defined UV mapping function. The texture

flow is predicted per object part so each part has more coherent texture. We denote the

overall color rendering process as Gc and the color reconstruction loss Lcr is defined on

the semantic features of input and rendered images:

Lcr(I, v) = ∥F (Ic)− F (Gc(R(I), v))∥22, (2.4)

where F is the feature extractor of a fixed classification network. We use AlexNet [60]

pre-trained on the ImageNet dataset [60] and extract the output of multiple convolutional

layers as F . It encourages the rendered image to be perceptually similar to the input at

different levels.

2.4.3 Part and View Adversarial Learning

Unlike the multi-view or 3D-supervised settings, single-view training requires stronger

regularization to produce realistic 3D shapes and to discover meaningful parts. Based on

the intuition that object parts are interchangeable and they should look realistic from vari-

ous viewpoints, we extend the view adversarial learning in VPL [50] with part adversarial

learning. As illustrated in Figure 2.3, we assemble a novel shape by randomly combining

parts from different objects of the same class in a training batch, then render the novel
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Figure 2.4: Qualitative results on the ShapeNet dataset [10]. LPD models (ours) adopt
the proposed Part-VAE and adversarial learning. The 3-part free-form model reconstructs
a whole object with three fully-deformable meshes without any part prior. Compared to
the baselines, our approach can produce more faithful and consistent parts from diverse
objects.

shape from a novel viewpoint. To make the novel shape realistic, we treat the rendered

images of novel shapes as fake examples and those of original shapes as real ones. A

discriminator is then trained to classify each rendered image as real or fake. We train the

discriminator with a binary cross-entropy between the positive and negative samples:

Ladv(I, I
′, v) = −log(D(G(R(I), v)))− log(1−D(G(R′(I, I ′), v′))), (2.5)

where I ′ is a random image different from the input I , R′(·, ·) is the reconstruction model

with random part selection from two input images, v′ is a random novel view, and D is the

discriminator. To apply adversarial training, we add a gradient reversal layer (GRL) [27]

before the discriminator. As a result, the reconstruction model is trained to fool the dis-

criminator by generating novel objects with realistic shapes. Considering that different

object classes may have different view and shape prior, we condition the discriminator

with input class labels during training. Note that the class labels are not required during
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Table 2.1: Ablative evaluations on the ShapeNet dataset [10]. The base model re-
constructs an object shape with 3 meshes, each is fully-deformable as in SoftRas [76]
(PP: part prior, VA: view adversarial learning, PA: part adversarial learning, CR: color
reconstruction).

PP VA PA CR Airplane Bench Dresser Car Chair Display Lamp Speaker Rifle Sofa Table Phone Vessel All

✓ ✓ ✓ 56.7 34.4 56.0 68.3 43.1 34.8 47.2 59.9 50.6 48.5 41.1 42.7 53.4 49.0

✓ ✓ ✓ 57.2 36.2 60.7 72.2 44.1 39.8 48.2 63.6 51.9 49.6 43.3 51.5 55.1 51.8

✓ ✓ ✓ 57.1 35.8 61.4 73.7 45.1 39.4 48.5 63.7 52.7 49.3 43.9 52.5 54.9 52.2

✓ ✓ ✓ 57.1 36.0 61.0 74.1 45.2 39.7 48.5 63.8 53.0 49.7 43.9 52.2 55.1 52.3

✓ ✓ ✓ ✓ 57.3 37.3 60.9 75.2 45.5 40.8 49.6 63.3 54.5 50.1 44.3 52.7 56.2 52.9

inference. That is, for given data, we train a single part-discovery/reconstruction model

that operates across different object categories. This part-based adversarial learning ap-

proach is proposed as a semantic constraint to make the global part arrangements more

feasible and realistic.

2.4.4 Model Training and Inference

We first pre-train the Part-VAE with primitive shapes to minimize the loss Lvae. Next,

the Part-VAE and reconstruction network are jointly trained using image collections to-

gether with primitive shapes. The overall objective function of reconstruction network is

given by:

Lsil + λlap Llap + λcr Lcr − λadv Ladv, (2.6)

where (λlap, λcr, λadv) are weight parameters. The discriminator is trained to minimize

Ladv, whose gradients are reversed and back-propagated to the reconstruction network

to perform adversarial learning. Note that we still fine-tune the Part-VAE with primitive

shapes in this stage so that the shape decoder is regularized while adapting to various part

shapes in the training images. The Part-VAE, reconstruction network, and discriminator

are parametrized as deep neural networks, and the weights are optimized by mini-batch

gradient descent. In the model inference phase, we discard the Part-VAE encoder and

discriminator. An input image is simply passed through the image encoder and Part-VAE
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decoder to reconstruct the 3D parts. We represent each object part by a deformable mesh

with Nv = 642 vertices and Nf = 1280 faces. The size of texture image is 64×64. We

implement the proposed method in PyTorch [97] framework and use Adam optimizer [53]

for training. The hyper-parameters are tuned on a validation set.

2.5 Experiments

Metrics and Baselines. Evaluating self-supervised part discovery can be ambiguous and

subjective as the discovered parts need not correspond to human-annotated ones. Due to

the lack of standard metrics or benchmark for 3D part discovery, we qualitatively compare

the discovered parts with other methods. As a reference, we also quantitatively evaluate

the reconstruction accuracy at both object level and part level. We convert each predicted

mesh into a volume of 323 voxels and calculate the intersection-over-union (IoU) ratio

between the voxelized object and the ground-truth voxels. We report results of our model

with k = 3 parts and latent part embedding dimension of d = 64 if not specified other-

wise. Since our work is the first to discover 3D parts using single-view supervision, we

mainly compare LPD against three part-based baselines: cuboids, ellipsoids, and free-form

meshes. We implement the cuboid and ellipsoid models by reconstructing each object part

with a scalable cuboid/ellipsoid. The free-form model adopts fully-deformable meshes

without any part shape prior. For object-level reconstruction, we evaluate our method

against SoftRas [76] and VPL [50] as they adopt a similar training setting with single-view

images and known viewpoints. While there are several other methods for single-view 3D

reconstruction, we omit the comparison with them since whole-object reconstruction is not

the major focus of this thesis. We experiment on the synthetic ShapeNet [10], PartNet [86],

and real-world Pascal 3D+ [132] datasets.
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Car Lamp Rifle Table Watercraft

Figure 2.5: Generalization across classes. We show sample inputs (top) and LPD results
(bottom) of different ShapetNet classes.

2.5.1 Results on ShapeNet

We first conduct experiments with the synthetic dataset provided by Kar et al. [49],

which contains 43,784 objects in 13 classes from ShapeNet [10]. Each sample includes a

3D CAD model, 20 camera viewpoints for rendering, and the corresponding rendered im-

ages at a resolution of 224×224 pixels. We use the same training/validation/testing splits

as the original dataset. The training images are augmented by random shuffling the RGB

channels and horizontal flipping. We only use one view per object for training and evalu-

ate on all the 20 views in the test set (with independent single-view reconstruction on each

view). The ground-truth 3D shapes are only used for testing. We show some qualitative

results of our method and other baselines in Figure 2.4. More part reconstruction results

on car, lamp, rifle, table, and watercraft samples are shown in Figure 2.5 to demonstrate

that our method generalizes well across diverse object classes.

Ablations on the Proposed Models. We perform ablation studies on the proposed method

by removing each component at a time. As shown in Table 2.1, removing part prior learn-

ing causes a significant drop (3.9%) on the overall reconstruction accuracy. It shows that

the part prior provided by Part-VAE effectively improves the generalization of the dis-
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Table 2.2: Voxel IoU results on the ShapeNet dataset [10]. We compare our method
with the state-of-the-art single-view supervised and 3D supervised approaches.

Method Supervision Airplane Car Chair All

SIF [30] 3D shapes 53.0 65.7 38.9 49.9

OccNet [83] 3D shapes 57.1 73.7 50.1 57.1

CvxNet [19] 3D shapes 59.8 67.5 49.1 56.7

HPD [94] 3D shapes 52.9 70.2 52.6 58.0

SoftRas [76] Single-view 52.2 65.7 40.4 46.9

VPL [50] Single-view 53.1 70.1 45.4 51.3

LPD (ours) Single-view 57.3 75.2 45.5 52.9

covered parts. Without the use of adversarial learning and color reconstruction, we also

observe lower voxel IoU by a clear margin (0.6-1.1%).

Comparisons with the State-of-the-arts. Table 2.2 shows performance comparisons

against the state-of-the-art methods. With the single-view training setting, our method

performs favorably against the existing approaches. When compared to the 3D-supervised

methods, our model achieves competitive results on many object classes even though

we use weaker single-view supervision. Among the evaluated methods, SIF [30] and

CvxNet [19] can subdivide an object into fine-grained regions, and HPD [94] performs

hierarchical part reasoning. However, their shape representations require stronger super-

vision from 3D ground truths to produce faithful part shapes. The qualitative results in

Figure 2.4 demonstrate that our model discovers more faithful and consistent parts com-

pared to the baseline methods.

Ablations on Part Representations. We further compare 3D reconstruction methods that

use different part shape constraints. A majority of existing methods represent objects with

a single mesh [51, 129, 32, 50, 76, 42] and allow each shape to be fully deformable by

predicting the vertex deformations directly. On the other end of the spectrum, most part-

reasoning approaches represent parts with primitive shapes like cuboids [123] or super-
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Table 2.3: Quantitative evaluations on the ShapeNet dataset [10] using different met-
rics. LPD allows part reasoning and achieves higher accuracy in terms of all metrics.

Method Part 2D IoU ↑ SSIM ↑ CD ↓ Voxel IoU ↑

SoftRas [76] 80.5 86.7 4.76 46.9

VPL [50] 81.0 88.5 2.65 51.3

Free-form ✓ 81.1 87.9 3.83 48.1

Cuboids ✓ 72.5 67.3 6.12 39.7

LPD (ours) ✓ 83.6 91.0 2.37 52.9

quadratic surfaces [94]. Our method lies within these two extremes and enables variable

degree of freedom by adjusting the latent dimension of the part shape embedding. Ta-

ble 2.3 shows the quantitative comparisons between part representations like free-form

meshes, cuboid reconstructions, and our Part-VAE embedding via different evaluation

metrics. In addition to 3D voxel IoU, we calculate the 2D re-projection IoU, 2D struc-

tural similarity (SSIM), and Chamfer distance (CD) between the point sets sampled from

3D volumes. The results show that LPD achieves a better trade-off between the degree

of deformation and shape regularization among the part-based methods. To observe how

our method adapts to different object classes, we perform single-class training with dif-

ferent number of parts k on airplane, car, and chair images. As shown in Table 2.4, the

optimal number of parts k varies across object classes. This suggests that each class have

a distinct underlying part configuration to optimally represent the object shapes. Note that

LPD achieves higher accuracy than other methods on all three classes with more than one

part. Our main reconstruction model is class-agnostic and we use the same number of

parts for all classes, and yet the performance could be further improved if it is optimized

for each class separately.
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Table 2.4: Voxel IoU results with different number of parts k. Note that the models are
trained and tested on a single class.

Method k Airplane Car Chair

SoftRas [76] 1 54.1 69.5 43.1

VPL [50] 1 54.6 74.1 45.3

LPD (ours) 1 54.5 74.3 45.0

LPD (ours) 2 55.4 76.1 45.9

LPD (ours) 3 55.6 75.5 46.6

LPD (ours) 6 55.9 75.2 46.4

2.5.2 Results on PartNet

To evaluate the quality of the discovered parts, we compare our results with the la-

beled parts in PartNet dataset. The dataset contains hierarchical part annotations of several

ShapeNet models. We collect 111 chair samples that are in both the ShapeNet and PartNet

testing sets, then combine the annotated part models into chair back, seat, and base at the

coarsest level. Note that we do not use any 3D part supervision for training, so the PartNet

annotations are not ground-truths but a reference. Since the discovered parts are not se-

mantically labeled, we manually associate our parts to the closest corresponding PartNet

annotations. We report the quantitative voxel IoU in Table 2.5 and the qualitative results

in Figure 2.6. Compared to the baseline without part prior and other representations, our

method discovers more faithful parts and achieves considerably higher IoU with respect to

PartNet annotations.

2.5.3 Part Interpolation and Generation.

In addition to shape reconstruction, we demonstrate two applications of Part-VAE:

part-interpolation and random shape generation. Since the object parts discovered by our

models are consistent across instances, one can swap or interpolate parts to create new 3D
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Table 2.5: Voxel IoU results on the PartNet [86] chair samples.

Method Back Seat Base Avg

Free-form 16.8 19.5 10.3 15.5

Cuboids 22.3 23.4 10.7 18.8

LPD (ours) 30.4 46.0 16.2 30.9

Input Cuboids LPD (ours) Pseudo-GT

Figure 2.6: Qualitative results on the PartNet dataset [86]. We show the voxelized 3-
part results of our method and a cuboid baseline. Each part is specified with a color: chair
back→green, seat→yellow, base→blue. Our method discovers faithful and consistent
parts from diverse objects that are relatively closer to the pseudo-GT part annotations in
PartNet.

objects. In Figure 2.7, we linearly interpolate the latent encodings (u1, u2) of two objects

from different categories as: u = λu1 + (1− λ)u2. Compared to the baseline without part

prior, our method deforms each object part smoothly and results in more realistic shapes.

The Part-VAE can also be used as a generative model to create novel shapes. Specifically,

we fit a Gaussian Mixture Model (GMM) with k components on the latent shape vectors
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λ = 0.0 λ = 0.25 λ = 0.5 λ = 0.75 λ = 1.0

Figure 2.7: Cross-category interpolation. We perform interpolation on ShapeNet
airplane-rifle, lamp-display, and chair-table. We show the VPL [50] results (mesh in-
terpolation) in rows 1, 3, 5 and LPD results (latent interpolation) in rows 2, 4, 6.

of class-specific images. By sampling random vectors from individual GMM distribution,

we can generate k random parts and combine them into a new 3D shape. In Figure 2.8, we

show some randomly generated shapes of chairs and airplanes using the Part-VAE trained

on the ShapeNet dataset.
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Figure 2.8: Random shape generation of chairs and airplanes. We fit a GMM model
on the latent shape vectors and generate random parts by sampling from individual GMM
components.

2.5.4 Results on Pascal 3D+

We also evaluate the proposed method on the real-world images from the Pascal 3D+

dataset [132] processed by Tulsiani et al. [124]. It consists of images in Pascal VOC [24],

annotations of 3D models, silhouettes, and viewpoints in Pascal 3D+ [132], and addi-

tional images in ImageNet [111] with silhouettes and viewpoints automatically annotated

by [66]. This dataset is more challenging due to the complicated object shapes, image

background, occlusions, and noisy silhouette annotations. We train and evaluate our mod-

els with image resolution of 224×224. The quantitative and qualitative results are shown

in Table 2.6 and Figure 2.9, respectively. Despite the challenges, our method discovers

consistent object parts and achieves higher reconstruction accuracy than the state-of-the-

art approaches.

2.6 Conclusion

In this chapter, we propose LPD to discover 3D parts from single-view image col-

lections. By learning a part prior with Part-VAE, we demonstrate that each part can be
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Table 2.6: Voxel IoU results on the Pascal 3D+ dataset [132].

Method Part Aeroplane Car Chair Avg

SoftRas [76] 46.4 67.6 29.1 47.7

VPL [50] 47.5 67.9 30.4 48.6

Free-form ✓ 47.0 68.5 28.7 48.0

Cuboids ✓ 37.1 60.7 18.9 38.9

LPD (ours) ✓ 48.2 69.1 31.0 49.4

deformed to fit a realistic object shape while constrained to have simple geometry. With

the goal to compose an object with simple parts, our reconstruction model automatically

learns a latent part configuration. In turn, the discovered parts can alleviate shape ambi-

guity and improve the quality of full object reconstruction. Extensive experimental results

show that LPD can discover faithful parts from diverse object classes, and the parts are

consistent across different instances within a same category. Furthermore, we achieve the

state-of-the-art reconstruction accuracy in a single-view training setting. Our work opens

up the possibilities to learn, infer, and manipulate object parts without the need for any

ground-truth part labels or 3D shape supervision.
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Input View 1 View 2 View 1 View 2

Figure 2.9: Part and color reconstruction results on the Pascal 3D+ dataset [132].
Despite that the dataset contains complicated 3D objects in a realistic scene, our method
is able to discover consistent parts and effectively reconstruct the objects shapes.



Chapter 3

Learning Visibility for Robust Dense

Human Body Estimation

3.1 Overview

Estimating 3D human pose and shape from 2D images is a crucial yet challenging

task. While prior methods with model-based representations can perform reasonably well

on whole-body images, they often fail when parts of the body are occluded or outside the

frame. Moreover, these results usually do not faithfully capture the human silhouettes due

to their limited representation power of deformable models (e.g., representing only the

naked body). An alternative approach is to estimate dense vertices of a predefined tem-

plate body in the image space, which is effective in localizing vertices within an image but

cannot handle out-of-frame body parts. In this chapter, we learn dense human body esti-

mation that is robust to partial observations. We explicitly model the visibility of human

joints and vertices in the x, y, and z axes separately. The visibility in x and y axes help dis-

tinguishing out-of-frame cases, and the visibility in depth axis corresponds to occlusions

(either self-occlusions or occlusions by other objects). We obtain pseudo ground-truths

of visibility labels from dense UV correspondences and train a neural network to predict

26
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Figure 3.1: Dense human body estimation with/without visibility modeling. We pro-
pose to learn dense visibility to improve human body estimation in terms of faithfulness
to the input image and robustness to truncation (top) or occlusions (bottom). We show the
estimated meshes without/with visibility modeling in columns 2-3 and the vertex visibility
labels in columns 4-5 (purple:visible, orange:invisible).

visibility along with 3D coordinates. We show that visibility can serve as 1) an additional

signal to resolve depth ordering ambiguities of self-occluded vertices and 2) a regulariza-

tion term when fitting a human body model to the predictions. Extensive experiments on

multiple 3D human datasets demonstrate that visibility modeling significantly improves

the accuracy of human body estimation, especially for partial-body cases.

3.2 Introduction

Estimating 3D human pose and shape from monocular images is a crucial task for

various applications such as performance retargeting, virtual avatars, and human action

recognition. It is a fundamentally challenging problem due to the depth ambiguity and

the complex nature of human appearances that vary with articulation, clothing, lighting,
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viewpoint, and occlusions. To represent the complicated 3D human bodies via compact

parameters, model-based methods like SMPL [78] have been widely used in the commu-

nity. However, SMPL parameters represent human bodies in a holistic manner, causing

their limited flexibility to fit real-world images faithfully via direct regression. More im-

portantly, the regression-based methods tend to fail when a human body is not fully visible

in the image, e.g., occluded or out of frame [56]. In this work, we aim to learn human body

estimation that is faithful to the input images and robust to partial-body cases.

Instead of directly regressing SMPL parameters, we train a neural network to pre-

dict the coordinate heatmaps in three dimensions for each human joint and mesh vertex.

The dense heatmap-based representation can preserve the spatial relationship in the image

domain and model the uncertainty of predictions. It is shown to be effective in localiz-

ing visible joints/vertices and flexible to fit an input image faithfully [118, 88, 89, 90].

Nonetheless, the x and y-axis heatmaps are defined in the image coordinates, which can-

not represent the out-of-frame (i.e., truncated by image boundaries) body parts. In addi-

tion, occlusions by objects or the human body itself could cause ambiguity for depth-axis

predictions. Without knowing which joints/vertices are visible, the network tends to pro-

duce erroneous outputs on partial-body images. To address this, we propose Visibility-

aware Dense Body (VisDB), a heatmap-based dense representation augmented by visibil-

ity. Specifically, we train a network to predict binary truncation and occlusion labels along

with the heatmaps for each human joint and vertex. With the visibility modeling, the pro-

posed network can learn to make more accurate predictions based on the observable cues.

In addition, the vertex-level occlusion predictions can serve as a depth ordering signal

to constrain depth predictions. Finally, by using visibility as the confidence of 3D mesh

prediction, we demonstrate that VisDB is a powerful intermediate representation which

allows us to regress and/or optimize SMPL parameters more effectively. In Figure 3.1, we

show examples of truncation and occlusions as well as the dense human body estimations

with and without visibility modeling.

Considering that most existing 3D human datasets lack dense visibility annotations,
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we obtain pseudo ground-truths from dense UV estimations [35]. Given the estimated UV

map of an image, we calculate the pixel-to-vertex correspondence by minimizing the dis-

tance of their UV coordinates. Each vertex mapped to a human pixel is considered visible,

and vice versa. Note that this covers the cases of truncation, self-occlusions, and oc-

clusions by other objects. We further show that the dense vertex-to-pixel correspondence

provides a good supervisory signal to localize vertices in the image space. Since dense UV

estimations are based on part-wise segmentation masks which are robust to partial-body

images, the dense correspondence loss can mitigate the inaccurate pseudo ground-truth

meshes and better align the outputs with human silhouettes. To demonstrate the effective-

ness of our method, we conduct extensive experiments on multiple human datasets used by

prior arts. Both qualitative and quantitative results on the Human3.6M [46], 3DPW [128],

3DPW-OCC [128, 151], and 3DOH [151] datasets show that learning visibility signifi-

cantly improves the accuracy of dense human body estimation, especially on images with

truncated or occluded human bodies.

The main contributions of our work are:

• We propose VisDB, a heatmap-based human body representation augmented with dense

visibility. We train a neural network to predict the 3D coordinates of human joints and

vertices as well as their truncation and occlusion labels. We obtain pseudo ground-

truths of visibility labels from image-based dense UV estimates, which are also used as

additional supervision signal to better align our predictions with the input image.

• We show how the dense visibility predictions can be used for robust human body esti-

mation. First, we exploit occlusion labels to supervise vertex depth predictions. Second,

we regress and optimize SMPL parameters to fit VisDB (partial-body) outputs by using

visibility as confidence weighting.
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3.3 Related Work

Model-based human body estimation. Most existing methods on human body estimation

adopt a model-based representation. For instance, SMPL [78] is a widely-used statistical

human body model that maps a set of pose θ ∈ R72 and shape β ∈ R10 parameters to

a 3D human mesh V ∈ R6890×3. In SMPL, θ represents the axis-angle 3D rotations of

24 joints, and β is the top-10 PCA coefficients of a statistical human shape space. Early

methods iteratively optimize the SMPL parameters to fit the estimated 2D keypoints [5] or

silhouettes [64]. Several recent works [48, 100, 93, 99, 57, 59] train a deep neural network

to directly regress SMPL parameters from an input image. However, the SMPL represen-

tation is not always informative enough for a network to learn as it embeds the articulated

body shapes in a low dimensional space. The regression-based methods often fail on trun-

cation and occlusion cases since the networks tend to make holistic predictions based on

certain body parts only [56]. Instead, we show that localizing 3D vertices is a more suit-

able task to learn for such scenarios. The network needs to learn the relationship between

the parameters and the shape as well in order to estimate accurate SMPL parameters.

Dense human body representations. To fit the complicated shapes more faithfully, dense

human body representations have been proposed, including volumetric space [126], occu-

pancy field [113, 114], dense UV correspondence [1, 147], and 3D mesh [58, 15, 90, 72,

73]. Among these methods, I2L-MeshNet [90] proposes an efficient heatmap represen-

tation to estimate human joints and vertices in the image space and root-relative depth

axis. It can fit the input images accurately since heatmaps preserve the spatial relationship

in image features extracted by a convolutional neural network (CNN). Nonetheless, even

when certain body parts are not visible in the image, this model is designed to localize all

the joints and vertices within the image frame. We show that it can negatively affect the

model performance and emphasize the importance of additional visibility information.

Occlusion-aware methods. Several methods have been proposed to deal with the chal-

lenging scenarios where human bodies are partially truncated or occluded. Muller et
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al. [91] and Hassan et al. [38] introduce explicit modeling of human body self-contact

and human-scene interactions, respectively. These methods require ground-truth anno-

tations which are hard to obtain. Other methods leverage human-centric heatmaps, part

segmentation masks, or dense UV estimations [35], to increase the model robustness on

truncated images [108], crowded scenes (occluded by other people) [119] or general oc-

clusions [134, 34, 151, 56]. Although effective in particular scenarios, most of them di-

rectly regress SMPL parameters which still suffer from the limited representation strength.

To the best our our knowledge, the proposed VisDB representation is the first to explic-

itly model dense human body visibility (including truncation and all occlusion scenarios),

which is trained with pseudo ground-truth visibility labels from dense UV estimates.

3.4 Approach

We illustrate our overall framework in Figure 3.2. In Section 3.4.1, we describe a

heatmap-based representation which we build our method upon. Then, we introduce the

proposed Visibility-aware Dense Body (VisDB) in Section 3.4.2. Each human joint and

mesh vertex is represented by 1) three 1D heatmaps (x, y, z dimensions) which define

its 3D coordinate and 2) three binary labels indicating its visibility in three dimensions.

We train a network model to predict the dense heatmaps and visibility, which represents

a partial body faithful to the input image. The visibility estimations can be interpreted as

depth ordering signals or prediction confidence. In Section 3.4.3, we design a visibility-

guided depth ordering loss to self-supervise depth estimation. In Section 3.4.4, we show

that VisDB outputs can be used to fit SMPL models accurately and efficiently. We train a

regression network to estimate SMPL parameters based on the joint and vertex coordinates

as well as their visibility labels. During inference, we initialize the SMPL parameters by

the regressor and further optimize them to align with the VisDB predictions. Finally,

in Section 3.4.5, we exploit dense UV correspondence to obtain robust pseudo labels of

visibility and weakly supervise vertex localization in the image space.
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Figure 3.2: VisDB framework overview (best viewed in color). Given an input image,
the network extracts features in the image and depth coordinates, from where we predict
the x, y, z heatmaps for each human joint and vertex. In addition, we predict a binary vis-
ibility label (purple:visible, orange:invisible) of each axis, i.e., x-truncation, y-truncation,
z-occlusion. To obtain a more regularized and complete human body, we train a regression
network to estimate SMPL parameters based on the dense 3D coordinates and visibility.
At test time, we can further optimize the regressed SMPL parameters to fit the partial-body
predictions from heatmaps.

3.4.1 Preliminaries: Heatmap-based Representation

Given an input image, a prior heatmap-based method [90] estimates three 1D heatmaps

H = {Hx, Hy, Hz} for each human joint and mesh vertex. The x and y-axis heatmaps

Hx, Hy are defined in the image space, and the z-axis heatmaps Hz are defined in the

depth space relative to root joint. We denote the joint heatmaps as HJ ∈ RNJ×D×3 and

vertex heatmaps as HV ∈ RNV ×D×3, where NJ is the number of joints, NV is the number

of vertices, and D is the heatmap resolution. The heatmaps are predicted based on image
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features F ∈ Rc×h×w extracted by a backbone network as follows:

Hx = f 1D,x(avgy(f up(F ))),

Hy = f 1D,y(avgx(f up(F ))),

Hz = f 1D,z(ψ(avgx,y(F )))),

(3.1)

where f 1D,i is 1-by-1 1D convolution for the i-th axis heatmaps, avgi is i-axis marginaliza-

tion by averaging, f up denotes up-sampling by deconvolution, and ψ is a 1D convolution

layer followed by reshaping operation. Finally, the continuous 3D coordinates of joints

J ∈ RNJ×3 and vertices V ∈ RNV ×3 can be obtained by applying soft-argmax on the

discrete heatmaps HJ and HV , respectively.

3.4.2 Visibility-aware Dense Body

Heatmap-based representations are shown effective in estimating human bodies in the

image space. However, they often fail when the human bodies are occluded or truncated

since the predictions are based on spatial image features and limited by the image bound-

aries. Without knowing which joints/vertices are invisible, fitting a SMPL model on the

entire body tends to generate erroneous outputs. To deal with more practical scenarios

where only partial bodies are visible, we make the following adaptations to a heatmap-

based representation: 1) To augment the x and y-axis heatmaps, we predict binary trun-

cation labels Sx, Sy, indicating whether a joint or vertex is within the image frame, 2)

For the z-axis heatmaps, we predict a binary occlusion label Sz which specifies the depth-

wise visibility. The visibility labels are predicted in a similar fashion as the heatmaps in

Eq. (3.1):

Sx = σ(avgx(g1D,x(avgy(f up(F ))))),

Sy = σ(avgy(g1D,y(avgx(f up(F ))))),

Sz = σ(avgz(g1D,z(ψ(avgx,y(F ))))),

(3.2)



34

where g1D is a 1-by-1 1D convolutional layer similar to f 1D and σ is a sigmoid operator.

We then concatenate the {Sx, Sy, Sz} predictions to obtain joint visibility SJ ∈ RNJ×3

and vertex visibility SV ∈ RNV ×3. By applying the soft-argmax operators to the pre-

dicted 1D heatmaps, the final output of our network becomes {J, V, SJ , SV }, referred to as

Visibility-aware Dense Body (VisDB). With the visibility information, the network model

can learn to focus on the visible body parts and push the invisible parts towards the image

boundaries. In our experiments (Table 3.3), we demonstrate that visibility modeling sig-

nificantly reduces the errors of visible vertices. Moreover, the visibility labels can be seen

as the confidence of coordinate predictions, which are essential to mesh regularization and

completion via SMPL model fitting as described in Section 3.4.4.

We denote the ground-truth VisDB as {J∗, V ∗, SJ
∗, SV

∗} and train the network by

using the following losses. The joint coordinate loss Ljoint is defined as:

Ljoint = ∥J − J∗∥1. (3.3)

The vertex coordinate loss Lvert is defined as:

Lvert = ∥V − V ∗∥1. (3.4)

We also regress the joints from vertices using a pre-defined regressor W ∈ RNV ×NJ and

calculate a regressed-joint loss Lr−joint:

Lr−joint = ∥WV − J∗∥1. (3.5)

Similar to [90], we apply losses on the mesh surface normal and edge length as shape

regularization. The normal loss Lnorm and edge loss Ledge are:

Lnorm =
∑
f

∑
{vi,vj}⊂f

∣∣∣〈 vi − vj
∥vi − vj∥2

, nf
∗
〉∣∣∣, (3.6)

Ledge =
∑
f

∑
{vi,vj}⊂f

∣∣∣∥vi − vj∥2 − ∥vi∗ − vj
∗∥2

∣∣∣, (3.7)
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where f is a mesh surface, nf is the unit normal vector of f, and vi, vj are the coordinates

of vertex i and j, respectively. Finally, we define the joint and vertex visibility loss Lvis

with binary cross entropy (BCE):

Lvis = BCE(SJ , SJ
∗) + BCE(SV , SV

∗). (3.8)

The VisDB prediction is illustrated in Figure 3.2 (left).

3.4.3 Resolving Depth Ambiguity via Visibility

Vertex-level visibility can not only be seen as model confidence for SMPL fitting but

also provide depth ordering information. Intuitively, visible vertices should have lower

depth value compared to the invisible vertices projected to the same pixel. We observe that

VisDB network generally predicts accurate 2D coordinates and visibility, but sometimes

fails at depth predictions when the human body occludes itself and the pose is less common

in the training datasets. To resolve the depth ambiguity in self-occlusion cases, we propose

a depth ordering loss Ldepth based on vertex visibility as follows:

Ldepth =
∑
x

∑
y

ReLU
(

max
v∈Q(x,y)

vz − min
v∈Q(x,y)

vz
)
, (3.9)

whereQ(x, y) is the set of vertices projected to a discretized image coordinate (x, y) which

belong to the front (occluding) part, and Q contains the vertices of the back (occluded)

part(s). The definition can be written as:

Q(x, y) =
{
v
∣∣v 7→ (x, y) ∧ P (v) = p∗(x, y)

}
Q(x, y) =

{
v
∣∣v 7→ (x, y) ∧ P (v) ̸= p∗(x, y)

}
,

(3.10)

where 7→ denotes the discrete projection and P (v) is the part label of vertex v defined in

DensePose [35]. We define the front part p∗(x, y) by finding the vertex with highest z-axis

visibility score sz as:

p∗(x, y) = P
(
argmax
v 7→(x,y)

sv
z
)
. (3.11)
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Ldepth is designed to push the self-occluded part(s) Q to the back and non-occluded part Q

to the front, where the occlusion information is given by the z-axis visibility. Note that we

compare the maximum depth (back side) of Q and the minimum depth (front side) of Q,

and thus Ldepth will be nonzero if the depth ordering disagrees with occlusion prediction

and zero if the parts do not overlap anymore. Since this loss depends on accurate visibility

estimations, we only apply it during the fine-tuning stage.

3.4.4 SMPL Fitting from Visible Dense Body

From the VisDB predictions, we can obtain the 3D coordinates and visibility of human

joints and vertices. While the partial-body outputs are faithful to the input image from

the front view, they sometimes look abnormal from a side view or contain rough surfaces.

To regularize the body shape and complete the truncated parts, we perform model fitting

on the visible dense body predictions. Given the coordinates and visibility of joints and

vertices, we train a regression network to estimate SMPL pose θ ∈ R72 and shape β ∈
R10 parameters. The regressed parameters are then forwarded to the SMPL model to

generate the mesh coordinates denoted as SMPL(θ, β) ∈ RNV ×3. Unlike prior art [90]

which regresses a SMPL model from all the joints regardless of their visibility, our VisDB

representation allows us to fit the visible partial body only. The training objectives of the

SMPL regressor include SMPL parameter error, vertex error, joint error, and the negative

log-likelihood of a pose prior distribution. The SMPL parameter loss Lsmpl is defined as:

Lsmpl = ∥θ − θ∗∥1 + ∥β − β∗∥1, (3.12)

where θ∗ and β∗ are the ground-truth pose and shape parameters. The SMPL vertex loss

Lsmpl−vert and joint loss Lsmpl−joint are defined similarly as in Eq. (3.4) and (3.5) but

weighted by visibility SV , SJ as:

Lsmpl−vert = SV ⊙ ∥SMPL(θ, β)− Vc
∗∥1, (3.13)

Lsmpl−joint = SJ ⊙ ∥WSMPL(θ, β)− Jc
∗∥1, (3.14)
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where ⊙ denotes element-wise multiplication, and (Vc
∗, Jc

∗) are the ground-truth root-

relative coordinates of vertices and joints in the camera space. Ideally, the VisDB network

makes more confident predictions on the clearly visible joints and vertices. Hence, we

see the visibility labels as prediction confidence and use them to weight the coordinate

losses. In addition, we apply a pose prior loss Lprior using a fitted Gaussian Mixture

Model (GMM) provided by [98]:

Lprior = −log
(∑

i

Gi(θ)
)
, (3.15)

where Gi is the i-th component of GMM.

We observe that the regressed SMPL meshes roughly capture the human pose and

shape but do not always align with the VisDB predictions in details. Therefore, we use

the regressed parameters as initialization and propose efficient test-time optimization to

further optimize the SMPL parameters against VisDB predictions. For this optimization,

we apply similar losses as in Eq. (3.13)-(3.15), except that the ground-truths {Vc∗, Jc∗} are

replaced by the VisDB predictions converted into root-relative coordinates in the camera

space. Since we initialize the SMPL parameters by the regression network and the use

strong supervisory signal, i.e., 3D joint and vertex coordinates, the test-time optimization

only takes around 100 iterations to converge using an Adam optimizer [53]. We illustrate

the process of SMPL regression and optimization in Figure 3.2 (right).

3.4.5 Exploiting Dense UV Correspondence

Most existing 3D human datasets do not provide joint visibility labels, and none anno-

tates vertex visibility. To train our VisDB network, we obtain pseudo ground-truths from

the fitted SMPL meshes and dense UV estimations. For x and y-axis truncation, we can

simply identify the truncated joints/vertices by projecting the fitted mesh onto the image

plane. Occlusion, however, cannot be easily inferred from the input image or fitted mesh

alone. One can estimate self-occlusion by rendering a fitted mesh, but this does not capture
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Figure 3.3: Dense UV correspondence and visibility labels. Given an input image, we
obtain a fitted SMPL mesh and dense UV estimation from off-the-shelf algorithms. To
acquire the dense visibility labels for training, we identify the truncated vertices from the
fitted mesh. From the dense UV map, we calculate the pixel-to-vertex correspondence to
obtain pseudo ground-truths of vertex occlusions as well as image-space coordinates for
weak supervision.

occlusions by other objects. More importantly, the fitting algorithm used to get the pseudo

ground-truth meshes is not robust to partial-body cases. To address this, we propose to

exploit dense UV correspondence between the input image and a SMPL mesh. Dense UV

estimation provides the part-based segmentation mask of a human body as well as contin-

uous UV coordinates of each human pixel, which are robust to truncation and occlusions.

We calculate the UV coordinate of each pixel by applying an off-the-shelf dense UV esti-

mation method [35]. For each human pixel p, we then find the corresponding mesh vertex

v whose UV coordinate is closest to the pixel. The pixel-to-vertex MP and vertex-to-pixel

MV mappings can be expressed as:

MP =
{
p→ v

∣∣v = argminv′

∥∥UV(v′)− UV(p)
∥∥
2
∀p

}
MV =

{
v → {p′}

∣∣MP (p
′) = v∀v

}
.

(3.16)

A vertex mapped to at least one pixel is labeled as visible or occluded otherwise.
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Similar to [34, 134, 147], we also utilize the dense vertex-pixel correspondence as

weak supervision for better alignment with the human silhouettes. For each vertex v, we

calculate the center of its corresponding pixels MV (v) and define a UV correspondence

loss Luv as:

Luv =
∑
v

sv
z
∥∥∥vx,y − ∑

p∈MV (v)

p

|MV (v)|

∥∥∥
1
, (3.17)

where vx,y is the 2D projection of vertex v and sv
z is the binary occlusion label with

sv
z = 1 indicating that the vertex v is visible. The UV correspondence loss can not only

mitigate the inaccurate pseudo ground-truth meshes, but improve the faithfulness to human

silhouettes since it is based on segmentation mask predictions. We empirically discover

that this direct vertex-level supervision is more efficient and effective for VisDB training

compared to rendering-based losses [134, 23]. The proposed vertex-pixel correspondence

and visibility labeling are illustrated in Figure 3.3.

3.4.6 Model Training and Inference

We first train the VisDB network on 3D data with mesh annotations, then fine-tune it on

all training data by adding the depth ordering and UV correspondence losses. The regres-

sor network is trained to estimate the SMPL parameters based on the estimated coordinates

and visibility of joints and vertices. During inference, we apply optional optimization on

the regressed SMPL parameters to best align with the VisDB predicted mesh. For the

VisDB network backbone, we use a ResNet50 [40] model pre-trained on the ImageNet

dataset [20]. The weights are updated by the Adam optimizer [53] with a mini-batch size

of 64. We represent a human body by NJ = 30 joints and NV = 6890 vertices, and the

heatmap resolution D = 64. In addition, we use the ground-truth bounding boxes to crop

the human region from an input image and resize it to 256×256. The bounding boxes of

testing data are estimated by a pre-trained Mask R-CNN [39] model if not available in the

dataset. We apply common data augmentations such as random scaling (±25%), rotation

(±45°), horizontal flip, and color jittering (±20%) during training. Considering that trun-
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cation and occlusion examples are rare in most 3D human datasets, we include random

occlusion masks and bounding box shifting (±25%) as additional augmentations to in-

crease the partial-body/whole-body ratio. Our models are implemented with PyTorch [97]

and trained with NVIDIA Tesla V100 GPUs.

3.5 Experiments

3.5.1 Datasets and Metrics

Following most prior arts, we adopt mixed 2D-3D training on the MSCOCO [74],

Human3.6M [46], MuCo-3DHP [81], and 3DPW [128] datasets. The pseudo ground-

truth meshes of Human3.6M and MSCOCO are obtained by applying SMPLify-X [98]

to fit the joint annotations. We evaluate our models on the Human3.6M, 3DPW, 3DPW-

OCC [128, 151], and 3DOH [151] testing sets. Note that 3DOH is composed of images

with object occlusions and 3DPW-OCC contains a subset of 3DPW sequences where the

human bodies are partially occluded. For quantitative evaluation, we calculate the common

joint and vertex error metrics in the camera space and report them in millimeters (mm), in-

cluding MPJPE (mean per-joint position error) [46], PA-MPJPE (Procrustes-aligned mean

per-joint position error) [153], and MPVE (mean per-vertex error) [100].

3.5.2 Quantitative Comparisons

Human3.6M and 3DPW. In Table 3.1, we compare the performance of our method

and prior arts on the Human3.6M [46] and 3DPW [128] datasets. For VisDB and I2L-

MeshNet [90], we report the results of both heatmap-based mesh outputs (mesh) and

SMPL parameters (param). Our SMPL parameters are obtained from regression and test-

time optimization. Note that each method uses different network backbone, human body

representation, training datasets, and inference strategy. For instance, METRO [72] and

Mesh Graphormer [73] adopt a transformer-based [127] network while the others use CNN
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Table 3.1: Quantitative evaluations on Human3.6M [46] and 3DPW [128]. To align
the settings, we train our baseline, I2L-MeshNet [90], on the same datasets, and denote it
by I2L-MeshNet†. Both our mesh and SMPL parameter outputs perform favorably against
the prior state-of-the-arts.

Human3.6M 3DPW

Method Output MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPVE↓
GraphCMR [58] Mesh - 50.1 - 70.2 -
Pose2Mesh [15] Mesh 64.9 47.0 89.2 58.9 109.3
I2L-MeshNet [90] Mesh 55.7 41.1 93.2 57.7 109.2
I2L-MeshNet† [90] Mesh - - 84.5 51.1 98.2
METRO [72] Mesh 54.0 36.7 77.1 47.9 88.2
Mesh Graphormer [73] Mesh 51.2 34.5 74.7 45.6 87.7
VisDB (mesh) Mesh 51.0 34.5 73.5 44.9 85.5
NBF [93] Param - 59.9 - - -
HMR [48] Param 88.0 56.8 - 81.3 -
DenseRaC [134] Param 76.8 48.0 - - -
I2L-MeshNet [90] Param - - 100.0 60.0 121.5
OOH [151] Param - 41.7 - - -
SPIN [57] Param - 41.1 - 59.2 116.4
I2L-MeshNet† [90] Param - - 88.0 55.5 102.3
DSR [23] Param 60.9 40.3 85.7 51.7 99.5
VIBE [55] Param 65.6 41.4 82.0 51.9 99.1
TCMR [14] Param 62.3 41.1 - - -
DecoMR [147] Param 60.6 39.3 - - -
PARE [56] Param - - 79.1 46.4 94.2
VisDB (param) Param 50.0 33.8 72.1 44.1 83.5

backbones. VIBE [55] and TCMR [14] are video-based approaches whereas the others

only take images as input. Despite these differences, VisDB performs favorably against

prior methods in term of most evaluation metrics. Particularly, our method achieves larger

performance gains on the 3DPW dataset since it contains more truncation and occlusion

cases. The VisDB performance is most directly comparable with I2L-MeshNet [90] as we

adopt similar training settings. For fair comparisons, we re-train its model on the same

datasets and denote it as I2L-MeshNet†. The results demonstrate that our visibility learn-

ing improves both the mesh and SMPL outputs significantly. In prior literature, SMPL

parameters generally lead to higher errors compared to dense mesh outputs, which we

conjecture is caused by the difficulty to directly regress low-dimensional parameters. On
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Table 3.2: Quantitative evaluations on 3DOH [151] and 3DPW-OCC [128, 151]. We
compare VisDB with prior occlusion-aware methods to demonstrate its robustness on
partial-body cases. For VisDB and I2L-MeshNet† [90], We report both the mesh and
SMPL parameter (mesh/param) results.

3DOH 3DPW-OCC

Method MPJPE↓ PA-MPJPE↓ MPJPE↓ PA-MPJPE↓ MPVE↓

OOH [151] - 58.5 - 72.2 -

I2L-MeshNet† [90] 67.0/69.3 46.3/47.9 96.5/98.0 61.0/62.6 120.2/127.0

PARE [56] 63.3 44.3 91.4 57.4 115.3

VisDB 62.1/60.9 43.2/42.7 90.3/87.3 57.1/56.0 114.0/110.5

the contrary, VisDB is a powerful intermediate representation that provides dense 3D in-

formation of visible partial body, allowing us to regress and optimize SMPL parameters

more accurately. In our experiments, we observe that VisDB (mesh) captures the human

silhouettes better but VisDB (param) produces lower errors since the ground-truth meshes

are also regularized by SMPL representation.

3DPW-OCC and 3DOH. To emphasize the robustness on partial-body images, we further

evaluate on two occlusion datasets: 3DPW-OCC [128, 151] and 3DOH [151]. As shown

in Table 3.2, VisDB produces lower errors on both datasets compared to prior occlusion-

aware methods. While I2L-MeshNet† performs considerably worse on these images, the

errors by our model remain relatively low.

3.5.3 Ablation Studies

VisDB network training. To evaluate the contribution of individual components in our

method, we perform ablation studies on the 3DPW dataset [128]. Table 3.3 shows the

performance of VisDB mesh outputs with/without truncation modeling Lvis
x,y, occlusion

modeling Lvis
z, depth ordering loss Ldepth, and dense UV correspondence loss Luv. With-

out Lvis
x,y, Lvis

z, Ldepth, and Luv, the vertex error increases by 6.3mm, 3.1mm, 3.9mm,
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Table 3.3: Ablation studies of VisDB. We compare the joint/vertex errors of VisDB mesh
outputs on 3DPW [128] with/without individual components. The results show that trun-
cation modeling (Lvis

x,y), occlusion modeling (Lvis
z), depth ordering loss Ldepth, and UV

correspondence loss Luv each reduces the errors by a clear margin.

Lvis
x,y Lvis

z Ldepth Luv MPJPE PA-MPJPE MPVE

84.5 51.1 98.2

✓ ✓ ✓ 79.4 47.8 91.1

✓ ✓ ✓ 75.8 45.5 88.0

✓ ✓ ✓ 77.3 46.3 88.9

✓ ✓ ✓ 74.9 45.6 87.1

✓ ✓ ✓ ✓ 73.5 44.9 85.5

and 1.9mm, respectively. These results show that both visibility modeling and depth or-

dering loss play a crucial role in VisDB training.

SMPL parameter fitting. In Table 3.4, we quantitatively compare the SMPL models

obtained from different methods. Given an estimated VisDB mesh, we can regress the

SMPL parameters and/or optimize them during inference, and each process can be done

with/without dense visibility weighting (Eq. (3.13) and (3.14)). By using visibility, the

mean vertex error of regressed SMPL models drops by 8.7mm. With the proposed test-

time optimization, we can further reduce the error by 3.8mm.

3.5.4 Qualitative Results

Figure 3.4 shows sample results by VisDB and I2L-MeshNet [90] on the 3DPW dataset [128].

I2L-MeshNet [90] regresses SMPL parameters from the entire heatmap-based mesh out-

put, which leads to erroneous output meshes on truncated or occluded examples. VisDB

predicts accurate vertex visibility labels, improving both the image-space dense body es-

timation and SMPL parameter optimization. The results show that VisDB (mesh) out-

puts can fit the human silhouettes faithfully, and VisDB (params) further regularizes and
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Table 3.4: Ablation studies of SMPL models. We report the performance of SMPL
outputs on the 3DPW dataset [128], which shows the effectiveness of our optimization
and the importance of visibility in both regression and optimization work flows.

Regression Optimization MPJPE PA-MPJPE MPVE

- - 73.5 44.9 85.5

w/o vis - 79.0 48.8 96.2

w/o vis w/o vis 77.6 47.0 93.9

w/ vis - 74.9 45.3 87.3

w/ vis w/ vis 72.1 44.1 83.5

smooths the mesh surfaces.

3.6 Conclusion

In this chapter, we address the problem of dense human body estimation from monocu-

lar images. Particularly, we identify the limitations of existing model-based and heatmap-

based representations on truncated or occluded bodies. As such, we propose a visibility-

aware dense body representation, VisDB. We obtain visibility pseudo ground-truths from

dense UV correspondences and train a network to predict 3D coordinates as well as trunca-

tion and occlusion labels for each human joint and vertex. Extensive experimental results

show that visibility modeling can facilitate human body estimation and allow accurate

SMPL fitting from partial-body predictions.
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Input I2L-MeshNet [90] VisDB VisDB Visibility Visibility

(param) (mesh) (param) (front view) (side view)

Figure 3.4: Qualitative results on the 3DPW dataset [128]. For each example, we show
the results of I2L-MeshNet [90] SMPL model, our VisDB mesh, our optimized SMPL
model, as well as visibility predictions in the front and side views (purple:visible, or-
ange:invisible). When the human body is occluded (top two rows) or truncated (bottom
two rows), both our VisDB output and optimized SMPL mesh capture the human silhou-
ettes faithfully (e.g., the left hand in row 1 and the head region in rows 2,3,4).



Chapter 4

LASSIE: Learning Articulated Shapes

from Sparse Image Ensemble via 3D

Part Discovery

4.1 Overview

Creating high-quality articulated 3D models of animals is challenging either via man-

ual creation or using 3D scanning tools. Therefore, techniques to reconstruct articulated

3D objects from 2D images are crucial and highly useful. In this chapter, we propose

a practical problem setting to estimate 3D pose and shape of animals given only a few

(10-30) in-the-wild images of a particular animal species (say, horse). Contrary to exist-

ing works that rely on pre-defined template shapes, we do not assume any form of 2D

or 3D ground-truth annotations, nor do we leverage any multi-view or temporal informa-

tion. Moreover, each input image ensemble can contain animal instances with varying

poses, backgrounds, illuminations, and textures. Our key insight is that 3D parts have

much simpler shape compared to the overall animal and that they are robust w.r.t. animal

pose articulations. Following these insights, we propose LASSIE, a novel optimization

46
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framework which discovers 3D parts in a self-supervised manner with minimal user inter-

vention. A key driving force behind LASSIE is the enforcing of 2D-3D part consistency

using self-supervisory deep features. Experiments on Pascal-Part and self-collected in-

the-wild animal datasets demonstrate considerably better 3D reconstructions as well as

both 2D and 3D part discovery compared to prior arts.

4.2 Introduction

The last decade has witnessed significant advances in estimating human body pose and

shape from images [78, 5, 48, 58, 57, 98, 55]. Much progress is fueled by the availability

of rich datasets [46, 81, 128] with 3D human scans in a variety of shapes and poses. In

contrast, 3D scanning wild animals is quite challenging, and existing animal datasets such

as SMALR [155] rely on man-made animal shapes. Manually creating realistic animal

models for a wide diversity of animals (e.g. mammals and birds) is also challenging and

time-consuming. In this chapter, we propose to automatically estimate 3D shape and ar-

ticulation (pose) of animals from only a sparse set of image ensemble (collection) without

using any 2D or 3D ground-truth annotations. Our problem setting is highly practical as

each image ensemble consists of only a few (10-30) in-the-wild images of a specific an-

imal species. Fig. 4.1 shows sample zebra images which forms our input. In addition,

we assume a human-specified 3D skeleton (left in Fig. 4.1) that can be quite rough with

incorrect bone lengths and this mainly provides the connectivity of animal parts. For in-

stance, we use the same 3D skeleton for all the quadruped animals despite considerable

shape variations across species, e.g., giraffe vs. zebra vs. elephant. Manually specifying a

rough skeleton is a trivial task which only takes a few minutes.

Estimating articulated 3D shapes from in-the-wild image ensemble is a highly am-

biguous and challenging problem. There are several varying factors across images: back-

grounds; lighting; camera viewpoints; animal shape, pose and texture, etc. In addition, our

highly practical problem setting does not allow access to any 3D animal models, per-image
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Optimized and 
re-posed skeleton

Neural part surfaces

Image ensemble Part and textured outputs

Generic 3D 
skeleton

Additional examples

Figure 4.1: Articulated shape optimization from sparse images in-the-wild. Given
10-30 images of an articulated class and a generic 3D skeleton, we optimize the shared
skeleton and neural parts as well as the instance-specific camera viewpoint and bone trans-
formations. Our method is able to produce high-quality outputs without any pre-defined
shape model or instance-specific annotations. The part-based representation also allows
applications like texture and pose transfer, animation, etc.

annotations such as keypoints and silhouettes, or multi-view images.

In this chapter, we present LASSIE, an optimization technique to Learn Articulated

Shapes from Sparse Image Ensemble. Our key observation is that shapes are composed

of 3D parts with the following characteristics: 1) 3D parts are geometrically and semanti-

cally consistent across different instances. 2) Shapes of 3D parts remain relatively constant

w.r.t. changes in animal poses. 3) Despite the complex shape of overall animal body, 3D

parts are usually made of simple convex shapes. Following these observations, LASSIE

optimizes 3D parts and their articulation instead of directly optimizing the overall ani-

mal shape. Specifically, LASSIE optimizes a 3D skeleton and part shapes that are shared

across instances; while also optimizing instance-specific camera viewpoint, pose articu-

lation, and surface texture. To enforce semantic part consistency across different images,

we leverage deep features from a vision transformer [22] (DINO-ViT [9]) trained in a

self-supervised fashion. Recent methods [2, 125] demonstrate good 2D feature corre-
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spondences in DINO-ViT features and we make use of these correspondences for 3D part

discovery. To regularize part shapes, we constrain the optimized parts to a latent shape

manifold that is learned using 3D geometric primitives (spheres, cylinders, cones etc.).

Being self-supervised at the image level, LASSIE can easily generalize to a wide range of

animal species with minimal user intervention.

We conduct extensive experiments on image ensembles from the Pascal-Part Dataset [12]

with quantitative evaluations using 2D ground-truth part segmentation and keypoints. We

also collect in-the-wild web image ensembles with more animal species and annotate 2D

keypoints for evaluation. Both qualitative and quantitative results demonstrate consider-

ably better 3D reconstructions compared to the prior arts that use even more supervision.

In addition, estimation of explicit 3D parts enables easy editing and manipulation of ani-

mal parts. Fig. 4.1 shows sample 3D reconstructions with discovered parts from LASSIE.

The main contributions of this work are:

• To the best of our knowledge, this is the first work that recovers 3D articulated shapes

from in-the-wild image ensembles without using any pre-defined animal shape models

or instance-specific annotations like keypoints or silhouettes.

• We propose a novel optimization framework called LASSIE, where we incorporate sev-

eral useful properties of mid-level 3D part representation. LASSIE is category-agnostic

and can easily generalize to a wide range of animal species.

• LASSIE can produce high-quality 3D articulated shapes with state-of-the-art results on

existing benchmarks as well as self-collected in-the-wild web image ensembles.

4.3 Related Work

Animal shape and pose estimation. Estimating 3D pose and shape of animal bodies

from in-the-wild images is highly ill-posed and challenging due to large variations across

different classes, instances, viewpoints, articulations, etc. Most existing mesh reconstruc-

tion work [62, 69, 33, 122, 145] focus more on compact shapes like birds and cars, and thus
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cannot handle articulations of animal bodies. Recent articulation-aware methods, on the

other hand, deal with a simplified scenario by assuming a pre-defined class-level statistical

model, instance-specific images, or accessible human annotations. For instance, Zuffi et

al. [156] build a statistical shape model, SMAL, for common quadrupedal animals, similar

to the SMPL [78] model for human bodies. Follow-up work either optimize the SMAL pa-

rameters based on human annotated images [155] or train a neural network on large-scale

image datasets to directly regress the parameters [154, 110]. However, the output shapes

are limited by the SMAL shape space or training images which contain one or few animal

classes. Kulkarni et al. [61] propose A-CSM technique that align a known template mesh

with skinning weights to input 2D images. Other recent approaches [137, 136, 138] ex-

ploit the dense temporal correspondence in video frames to reconstruct articulated shapes.

In contrast to existing methods, we deal with a novel and practical problem setting: learn

without any pre-defined shape model, instance-level human annotations, or temporal in-

formation to leverage.

Part discovery from image collections. Deep feature factorization (DFF) [18] shows that

one could automatically obtain consistent part segments by clustering intermediate deep

features of a classification network trained on ImageNet. Inspired by DFF, SCOPS [44]

learns a 2D part segmentation network from image collections, which can be used as se-

mantic supervision for 3D reconstruction [69]. Choudury et al. [16] proposed to use con-

trastive learning for 2D part discovery. Lathuilière et al. [65] exploit motion cues in videos

for part discovery. Recently, Amir et al.[2] demonstrate that clustering self-supervisedly

learned vision transformers (ViT) such as DINO [9] features can provide good 2D part seg-

mentations. In this chapter, we make use of DINO features for 3D part discovery instead

of 2D segmentation. In the 3D domain, Tulsiani et al. [123] use volumetric cuboids as

part abstractions to learn 3D reconstruction. Mandikal et al. [80] predict part-segmented

3D reconstructions from a single image. In addition, Luo et al. [79] and Paschalidou et

al. [94, 95] learn to form object parts by clustering 3D points. Considering that most 3D

approaches require ground-truth 3D shape of a whole object or its parts as supervision,
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Yao et al. [140] propose to discover and reconstruct 3D parts automatically by learning a

primitive shape prior. Most of these works assume some form of supervision in terms of

3D shape or camera viewpoint. In this chapter, we aim to discover 3D parts of articulated

animals from image ensembles without any 2D or 3D annotations, which, to the best of

our knowledge, is unexplored in the literature.

3D reconstruction from sparse images. Optimizing a 3D scene or object from multi-

view images is one of the widely-studied problems in computer vision. The majority of

recent breakthroughs are based on the powerful Neural Radiance Field (NeRF) [85] repre-

sentation. Given a set of multi-view images, NeRF can learn a neural volume from which

one can render high-quality novel views. Closely related to our work, NeRS [148] opti-

mizes a neural surface representation from a sparse set of image collections and also only

requires rough camera initialization. In this chapter, we use a neural surface representa-

tion to represent animal parts. Existing methods assume multi-view images captured in

the same illumination setting and also the object appearance (texture) to be same across

images. Another set of work [6, 149, 8] propose neural reflectance decomposition on im-

age collections captured in varying illuminations. But they work on rigid objects with

ground-truth segmentation and known camera poses. A concurrent work, SAMURAI [7]

jointly reasons about camera pose along with shape and materials of rigid objects from

image collections. In contrast, the input for our method consists of in-the-wild animal

images with varying textures, viewpoints and pose articulations and captured in different

environments.

4.4 Approach

Given a generic 3D skeleton and few images of an articulated animal species, LASSIE

optimizes the camera viewpoint and articulation for each instance as well as the resting

canonical skeleton and part shapes that are shared across all instances. We introduce

our neural part representation in Section 4.4.1 and the optimization framework in Sec-
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Figure 4.2: Neural part surface representation. Based on an optimized 3D skeleton, we
reconstruct the articulated shape by optimizing the primitive latent codes and part defor-
mation decoders. The final output is the composition of neural part surfaces with textures
sampled from the input images.

tion 4.4.2. An overview of LASSIE is illustrated in Fig. 4.2.

4.4.1 Articulated Shapes with Neural Part Surfaces

3D skeleton. Constructing a template mesh or statistical shape model for specific animal

classes requires either the ground-truth 3D shapes or extensive human annotation, which

are both hard to obtain in real-world scenarios. A 3D skeleton, on the other hand, is easy

to annotate since it only contains a set of sparse joints connected by bones. Furthermore, it

generalizes well across classes, and one can effortlessly modify certain joints or bones to

adapt to distinct animal types (e.g., mammals vs. birds). Assuming a simple and generic

3D skeleton is given, we propose a part-based representation for articulated shapes. A

skeleton can be defined by a set of 3D joints P ∈ Rp×3 and bones B = {(Pi, Pj)}b in a

tree structure, where p and b = p − 1 are numbers of joints and bones/parts, respectively.
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For instance, we use the same base skeleton for all four-legged animals in our experiments.

The base skeleton specifies the connection of 16 joints and the initial joint coordinates in

the root-relative 3D space. The skeleton is shared by all instances in the same class and

can be optimized by scaling the bone lengths and rotating the bones with respect to the

parent joints. Unlike the linear or neural blend skinning models [136, 138] where bones

are unconstrained Gaussian components, our skeleton-based representation allows us to

regularize bone transformations, discover meaningful and connected parts, and produce

realistic shape animations.

Neural part surfaces. Given a skeleton which specifies the 3D joints and bones, we

represent the articulated shape as a composition of several neural parts. Specifically, each

part is defined as a neural surface wrapped around a skeleton bone. Motivated by object

representation in NeRS [148], we represent part surface as a multi-layer perceptron (MLP)

network that predicts the 3D deformation of a given continuous UV coordinate on the unit

sphere. A key advantage of modeling parts instead of whole animal is that part shapes

are usually of simple convex shapes and can be represented well with a deformed sphere.

Compared to explicit mesh representation, the neural representation enables efficient mesh

regularization on the output shapes while producing high resolution surfaces as MLPs can

work with meshes of arbitrary vertex resolution. Each part surface is first reconstructed

in the canonical space, then scaled by the corresponding bone length, rotated by the bone

orientation, and centered at the bone centroid. This ensures that the parts are connected

under various bone transformations and also easy to repose. Formally, let X ∈ R3×m

denote the m uniformly distributed 3D vertices on a unit sphere. Further let Ri ∈ R3×3,

ti ∈ R3 and si ∈ R denote the global rotation, translation and scaling of the ith part

(i ∈ {0, · · · , b}), where b denotes the number of parts. We first deform the sphere to

obtain part shape using the part MLP, X → Fi(X); followed by global transformation to

obtain part vertices Vi ∈ R3×m in the global coordinate frame:

Vi = siRiFi(X) + ti. (4.1)
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Latent part prior. Although fitting neural part surfaces on sparse images can produce

reasonable outputs that are faithful to the input view, we observe that part shapes tend

to be non-uniform or unrealistic from other novel views. To further regularize the part

shapes, we decompose the part MLP Fi into a prior MLP, Fp and a part deformation MLP,

F∆
i . The prior MLP is trained to produce the base shapes that are close to geometric

primitives such as spheres, cylinders, etc. The deformation MLP is then used to provide

additional deformations on top of the base shapes. Fig. 4.2 illustrates these two MLPs. As

shown in the figure, the prior MLP takes as input the surface coordinate as well as a d-

dimensional latent shape code ei ∈ Rd. Both the latent space and the prior MLP are trained

using geometric primitive shapes. Concretely, we train a Variational Auto-Encoder (VAE)

which takes a primitive mesh as input, predicts the latent shape encodings and reconstructs

the primitive through a conditional neural surface decoder which forms our prior MLP.

The primitive meshes in this chapter are randomly sampled geometric primitives (spheres,

ellipsoids, cylinders, and cones). With the use of prior and deformation MLPs, Eq. 4.1

now becomes:

Vi = siRi(Fp(X, ei) + F∆
i (X)) + ti, (4.2)

where ei denotes the latent shape encodings of part i.

4.4.2 Discovering 3D Neural Parts from Image Ensemble

Optimization setting. The input to our optimization is a sparse set (typically 20-30) of

n in-the-wild images {Ij}nj=1 along with a generic/rough 3D skeleton P ∈ Rp×3 that has

p joints and b bones/parts. The only image-level annotations for optimization are from

the self-supervisory DINO [9] features. All the instances in the input image ensemble are

of same species, but could have varying appearance due to texture, pose, camera angle,

lighting, etc. We also assume that the entire animal body is visible in each image without

truncated or occluded by another object although some degree of self-occlusion is allowed.

Let j denote the index over images j ∈ {1, ., n} and i denote the index over parts i ∈
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{1, ., b}. For each image, LASSIE optimizes the camera viewpoint πj = (R0, t0) and part

rotations Rj ∈ Rb×3×3. In addition, LASSIE optimizes these variables for each of the ith

part that are shared across all the animal instances: bone length scaling si ∈ R, latent

shape encodings ei ∈ Rd and part deformation MLPs F∆
i . That is, we assume that part

shapes are shared across all instances whereas their articulation (pose transformation) is

instance dependent. Although this may not be strictly valid in practice, this provides an

important constraint for our highly ill-posed optimization problem.

Analysis by synthesis. Since we do not have access to any form of 3D supervision, we

use analysis-by-synthesis to drive the optimization. That is, we use differentiable render-

ing to render the optimized 3D articulated shape and define loss functions w.r.t. input

images. Using Eq. 4.2, we first obtain the complete articulated shape for each image as

a combination of different part meshes. We then use a differentiable mesh renderer [76]

to project the 3D points onto 2D image space via the learnable camera viewpoints. A key

challenge is that we do not have access to any from of 2D annotations such as keypoints

or part segmentation.

Self-supervisory deep features to the rescue. Since different instances in the ensemble

can have different texture, we do not model and render image pixel values. Instead, we

rely on learned deep features for our self-supervisory analysis-by-synthesis framework.

Recent works [2, 36] demonstrate that deep features from DINO [9] vision transformer are

semantically descriptive, robust to appearance variations, and higher-resolution compared

to CNN features [2, 125]. In this chapter, we use the key features from the last layer

of the DINO network as semantic visual features for each image. We assume that these

DINO features are relatively similar for same parts across different instances. In addition

to using DINO features for consistent semantic features across images, we also compute

2D parts and foreground animal mask following similar steps as in [2]. Concretely, we

take the class tokens from the last layer, compute the mean attention of class tokens as

saliency maps, and sample the keys of image patches with high saliency scores. We then

collect the salient keys from all images and apply an off-the-shelf K-means clustering
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algorithm to form c semantic part clusters. Finally, we obtain foreground silhouettes by

simply thresholding the pixels with minimum distance to cluster centroids. Fig. 4.3 shows

the DINO part clusters on sample images from different image ensembles. We observe

that using 4 clusters works well in practice. With the use of self-supervised features (keys)

and rough silhouettes, we alleviate the dependency of ground-truth segmentation mask and

keypoint annotations in our optimization framework.

Silhouette loss. We compute the silhouette loss Lmask by rendering all part surfaces with a

differentiable renderer [76] and comparing with the pseudo ground-truth foreground masks

obtained via clustering DINO features: Lmask =
∑

j∥M j − M̂ j∥2, where M j and M̂ j

are the rendered and pseudo ground-truth silhouettes of instance j, respectively. Although

these silhouette-based losses encourage the overall shape to match the 2D silhouettes, their

supervisory signal is often too coarse to resolve the ambiguity caused by different camera

viewpoints and pose articulations. Therefore, we design a novel semantic consistency loss

to more densely supervise the reconstruction.

2D-3D semantic consistency. We propose a novel strategy to make use of the seman-

tically consistent 2D DINO features for 3D part discovery. At a high-level, we impose

the 2D feature consistency across the images via learned 3D parts. For this, we propose

an Expectation-Maximization (EM) like optimization strategy where we alternatively es-

timate the 3D part features (E-step) from image ensemble features and then use these

estimated 3D part features to update the parts (M-step). More formally, let Kj ∈ Rh×w×f

denote the f -dimensional DINO key features from jth image and Q ∈ Rm×f denote the

corresponding features on the 3D shape with total m vertices. In the E-step, we update

Q by projecting the 3D coordinates onto all the 2D image spaces via differentiable ren-

dering under the current estimated shape and camera viewpoints. We aggregate the 2D

image features from the image ensemble corresponding to each 3D vertex to estimate Q.

In the M-step, we optimize the 3D parts and camera viewpoints using a 2D-3D semantic

consistency loss Lsem. To define Lsem, we discretize the foreground 2D coordinates in

each image {p|M̂ j(p) = 1}. Likewise, we sample a set of points {v ∈ V j} on the 3D
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part surfaces and obtain their 2D projected coordinates πj(v). Lsem is then defined as the

Chamfer distance in a high-dimensional space:

Lsem =
∑
j

( ∑
p|M̂j(p)=1

min
v∈V j

D(p, v) +
∑
v∈V j

min
p|M̂j(p)=1

D(p, v)
)
. (4.3)

For each instance j, the distance D between an image point p and 3D surface point v is

defined as:

D(p, v) = ∥πj(v)− p∥2︸ ︷︷ ︸
Geometric distance

+ α ∥Q(v)−Kj(p)∥2︸ ︷︷ ︸
Semantic distance

, (4.4)

where α is a scalar weighting for semantic distance. In effect, Lsem optimizes the 3D part

shapes such that the aggregated 3D point features in the E-step would project closer to the

similar pixel features in the image ensemble. We alternate between E and M steps every

other iteration in the optimization process. In Eq. 4.4, the image coordinates p and seman-

tic features K,Q are fixed in each optimization iteration, hence Lsem can effectively push

the surface points towards their corresponding 2D coordinates by minimizing the overall

distance. Since this EM-style optimization is prone to local-minima as we jointly optimize

camera viewpoints, shapes and pose articulations, we find that a good initialization of 3D

features is important. For this, we manually map each part index i to one of the DINO

clusters (4 in our experiments) and then initialize the 3D features Q by assigning the av-

erage 2D cluster features to the corresponding 3D part vertices. This manual 3D part to

2D cluster assignment takes minimal effort since it is category-level (all instances share

the same 3D parts). Alternatively, one could roughly initialize the camera viewpoints like

in recent works such as NeRS [148] which allows the computation of initial Q features

from 2D features. Nonetheless, 2D-3D assignment is easier and faster compared to cam-

era viewpoint initialization as 2D-3D assignment only needs to be done once per image

ensemble whereas camera initialization is required for each instance in the ensemble. To

make the optimization process fully automatic, we also propose to use simple heuristics

for the 2D-3D part assignment using intuitions like animal head are usually above the torso

and legs at the bottom. We refer to the LASSIE optimization with this heuristic-based 3D
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feature initialization as ‘LASSIE-heuristic’.

Comparison to related methods. Our use of 2D-3D semantic consistency is closely re-

lated to prior works, UMR [69] and BANMo [138]. At a high-level, LASSIE and UMR

both start from 2D part segmentations and then lift them onto 3D. A key difference is

that LASSIE directly discovers parts in 3D using 2D feature consistency, whereas UMR

uses 2D part consistency via canonical UV maps. More specifically, UMR uses 2D parts

(not 2D features) and 2D UV maps as common canonical part representations. Instead,

LASSIE directly optimizes 3D part features with feature based loss (not 2D parts) and

LASSIE does not use UV maps like in UMR. We only use 2D parts for feature initializa-

tion and not during optimization. That is, we discover parts directly in 3D with skeleton

constraints, without much reliance on intermediate 2D part discovery. Hence, LASSIE is

less sensitive to the issues in 2D part segmentations compared to UMR. BANMo, on the

other hand, learns a canonical feature embedding by enforcing the consistency between

feature matching and geometric warping, which is made tractable by the dense tempo-

ral correspondence (optical flow) between video frames. The semantic loss in BanMo

enforces the 2D-3D cycle consistency between 2D coordinates and canonical 3D points.

Considering that our image ensemble is sparse and un-correlated, we coarsely initialize

and regularize the 3D surface features at the part-level. The proposed semantic loss al-

lows us to first localize the 3D parts then refine the detailed part shapes in our challenging

setting.

Regularization. Our skeleton-based representation allows us to conveniently impose pose

prior or regularization. Specifically, we calculate a pose prior loss Lpose to minimize the

bone rotation deviations from the resting pose as: Lpose =
∑

j∥Rj − R̄∥2, where Rj is the

bone rotations of instance j and R̄ denotes the bone rotations of shared resting pose. We

also impose a regularization Lang on joint angles on the animal legs to limit their sideway

rotations:

Lang =
∑
j

∑
i∈leg bones

∥Ri,y
j∥2 + ∥Ri,z

j∥2, (4.5)
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where Ri,y and Ri,z are the rotations of bone i with respect to y and z axes respectively.

Since the skeleton faces the +z direction in the canonical space (+x right, +y up, +z out),

minimizing the y and z-axis rotations essentially constrains the sideway movements of the

bones. Note that both Lpose and Lang are generic to all quadrupeds in our experiments,

which we find crucial to avoid unrealistic poses. Finally, we apply common mesh regular-

ization terms to encourage smooth surfaces, including the Laplacian loss Llap and surface

normal loss Lnorm. Llap regularizes 3D surfaces by pushing each vertex towards the cen-

ter of its neighbors, and Lnorm encourages neighboring mesh faces to have similar normal

vectors. Note that we apply regularization losses to each part surface individually since

the part shapes should be primitive-like and usually do not have sharp or pointy surfaces.

Optimization and textured outputs. The overall optimization objective is:

Lmask + λ1Lsem + λ2Lpose + λ3Lang + λ4Llap + λ5Lnorm, (4.6)

where {λi} are weighting hyper-parameters. We first pre-train the part prior MLP Fp with

3D geometric primitives and freeze it during the optimization on a given image ensemble.

For each image ensemble of an animal species, we perform multi-stage optimization on

the camera, pose, and shape parameters until convergence. That is, we update the camera

viewpoints and fix the rest first, then optimize the bone transformations, and finally the

latent part codes as well as part deformation MLPs. In each iteration, we first update the

semantic features of 3D surfaces, then use the updated features to update 3D surfaces,

forming an EM-style optimization. We implement the framework in PyTorch [97] and

update all the learnable parameters using an Adam optimizer [53]. To obtain the final tex-

tured outputs, we densely sample vertices from the optimized neural surfaces and directly

sample the colors of visible vertices from individual images via 2D projection, where

the visibility information is obtained from rasterization. For the invisible (self-occluded)

vertices, we assign the color by finding their left-right symmetries or nearest visible neigh-

bors.
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Figure 4.3: Qualitative results on the in-the-wild image collections. We show example
results of the baselines as well as the part and texture reconstruction by LASSIE on the
self-collected animal image ensembles. The results demonstrate the semantic consistency
of discovered parts across diverse classes and the high-quality shape reconstruction that
allows dense texture sampling.

4.5 Experiments

Datasets. Considering the novel problem of sparse-image optimization, we select a sub-

set of the Pascal-Part dataset [12] and collect web images of additional animal classes to

evaluate LASSIE and related prior arts. The Pascal-Part dataset contains diverse images of

several animal classes which are annotated with 2D part segmentation masks. We automat-

ically select images of horse, cow, or sheep with only one object covering 1-50% area of

the entire image, and find the keypoints by calculating the centers/corners of ground-truth

part masks. In addition, for analysis on more diverse animal categories, we collect sparse

image ensembles (with CC-licensed images) of some other animals from the internet and

manually annotate the 2D keypoints for evaluation. The classes include quadrupeds like

zebra, tiger, giraffe, elephant, as well as bipeds like kangaroo and penguin. We filter out
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the images where the animal body is heavily occluded or truncated, resulting in roughly 30

images per category. The LASSIE optimization and evaluations are performed on each im-

age ensemble separately. The self-collected data does not contain personally identifiable

information or offensive content, and will be released to public.

Baselines. Due to the lack of prior works on our problem setting (sparse image optimiza-

tion for articulated animal shapes), we mainly compare LASSIE with learning-based mesh

reconstruction methods. Among these methods, we find 3D Safari [154] and A-CSM [61]

to be most comparable to LASSIE since they also model articulation for animal classes of

our interest. Other recent mesh reconstruction methods, on the other hand, either cannot

handle articulations [62, 69, 33, 122, 145] or assume different inputs [68, 136, 138]. Note

that both 3D Safari and A-CSM are trained on large-scale image sets while LASSIE opti-

mizes on a sparse image ensemble. To evaluate their methods on our dataset, we use the

released models trained on the closest animal classes. For instance, the zebra model of 3D

Safari and the horse model of A-CSM are used to evaluate on similar quadrupeds.

Visual comparisons. Fig. 4.3 shows the qualitative results of LASSIE against 3D Safari

and A-CSM on the self-collected animal images. The 3D Safari [154] model is trained on

zebra images and does not generalize well to other animal classes. A-CSM [61] assumes

high-quality skinned model of an object category which enables detailed shapes of animal

bodies. However, its outputs do not align well with the given 2D images. Our results

demonstrate that LASSIE can effectively learn from sparse image ensemble to discover 3D

articulated parts that are high-quality, faithful to input images, and semantically consistent

across instances. Note that our 3D reconstructions also improve the 2D part segmentation

from DINO-ViT feature clustering [2].

Keypoint transfer metrics. As there is no ground-truth 3D annotation in our datasets, we

quantitatively evaluate using 2D keypoint transfer between each pair of images which is a

standard practice [154, 61]. We map a given set of 2D keypoints on a source image onto

the 3D part surfaces, and then project them to a target image using the optimized camera

viewpoints, shapes and pose articulations. Since this keypoint transfer goes through the
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Table 4.1: Keypoint transfer evaluations. We evaluate on all the source-target im-
age pairs and report the percentage of correct keypoints under two different thresholds
(PCK@0.1/ PCK@0.05).

Pascal-Part dataset Our dataset

Method Horse Cow Sheep Zebra Tiger Giraffe Elephant Kangaroo Penguin

3D Safari [154] 71.8/ 57.1 63.4/ 50.3 62.6/ 50.5 80.8/ 62.1 63.4/ 50.3 57.6/ 32.5 55.4/ 29.9 35.5/ 20.7 49.3/ 28.9

A-CSM [61] 69.3/ 55.3 68.8/ 60.5 67.4/ 54.7 78.5/ 60.3 69.1/ 55.7 71.2/ 52.2 67.3/ 39.5 42.1/ 26.9 53.7/ 33.0

LASSIE w/o Lsem 60.4/ 45.6 58.9/ 43.1 55.3/ 42.3 62.7/ 47.5 53.6/ 40.0 54.7/ 28.9 52.0/ 25.6 33.8/ 19.8 50.6/ 25.5

LASSIE w/o Fp 71.1/ 56.3 69.0/ 59.5 68.9/ 52.2 77.0/ 60.2 71.5/ 59.2 79.3/ 57.8 66.6/ 37.1 44.3/ 30.1 63.3/ 38.2

LASSIE 73.0/ 58.0 71.3/ 62.4 70.8/ 55.5 79.9/ 63.3 73.3/ 62.4 80.8/ 60.5 68.7/ 40.3 47.0/ 31.5 65.5/ 40.6

LASSIE-heuristic 72.1/ 57.0 69.5/ 61.1 69.7/ 55.3 78.9/ 61.9 71.9/ 60.0 80.4/ 60.1 66.5/ 38.7 45.6/ 30.9 60.8/ 37.6

2D-to-3D and 3D-to-2D mappings, a successful keypoint transfer requires accurate 3D re-

construction on both the source and target images. We calculate the percentage of correct

keypoints (PCK) under two different thresholds: 0.1×max(h,w) and 0.05×max(h,w),

where h and w are image height and width, respectively. Table 4.1 shows that LASSIE

achieves higher PCK on the Pascal-part [12] images and most other classes in our in-

the-wild image collections. We also show ablative results of LASSIE without using the

semantic feature consistency loss Lsem or part prior MLP Fp. Note that Lsem is essen-

tial to fit the skeleton and part surfaces faithfully to the input images, and Fp provides

effective regularization on part surfaces to generate realistic shapes from various view-

points. LASSIE-heuristic, by using automatic 3D feature initialization, achieves slightly

lower PCK but still performs favorably against prior arts overall. Example visual results

of keypoint transfer are shown in Fig. 4.5.

2D overall/part IOU metrics. Our part-based representation can generate realistic 3D

shapes and can even improve 2D part discovery compared to prior arts. In Table 4.2 and

Fig. 4.4, we show the qualitative and quantitative comparisons against prior 3D works

as well as 2D co-part discovery methods of SCOPS [44] and DINO clustering [2]. For

SCOPS [44] and DINO clustering [2], we set the number of parts Np = 4 (which we find

to be optimal for these techniques) and manually assign each discovered part to the best
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Input A-CSM [61] DINO [2] LASSIE GT [12]

Figure 4.4: 2D segmentations. We show the over-
all masks (A-CSM) and part masks (DINO clusters,
LASSIE results, and Pascal-part GT) overlaid on the
sample input images.

Source Target Transferred

Figure 4.5: Keypoint trans-
fer results using LASSIE from
source to target images.

matched part in the Pascal-part annotations. Note that higher part IOU against Pascal-part

annotations may not strictly indicate better part segmentation since the self-discovered

parts need not correspond to human annotations. Compared to prior arts on articulated

shape reconstruction, LASSIE results match the Pascal-part segmentation masks better

and achieves higher overall IOU. On co-part segmentation, our 3D reconstruction captures

the semantic parts in 2D while being more geometrically refined than DINO clustering.

Moreover, our results can separate parts with similar semantic features, e.g., 4 animal legs,

and thus resulting in much higher part IOU.

Part transfer. While keypoint transfer and part IOU are commonly used in the litera-

ture, we observe that they are either sparse, biased towards certain body parts (e.g., animal

faces), or not directly comparable due to part mismatch. To address this issue, we propose

a part transfer metric for better evaluation of 3D reconstruction consistency across image
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Table 4.2: Quantitative evaluations on the Pascal-part images. We report the overall
foreground IOU, part mask IOU, and percentage of correct pixels (PCP) under dense part
segmentation transfer between all pairs of source-target images.

Overall IOU Part IOU Part transfer (PCP)

Method Horse Cow Sheep Horse Cow Sheep Horse Cow Sheep

SCOPS [44] 62.9 67.7 63.2 23.0 19.1 26.8 - - -

DINO clustering [2] 81.3 85.1 83.9 26.3 21.8 30.8 - - -

3D Safari [154] 72.2 71.3 70.8 - - - 71.7 69.0 69.3

A-CSM [61] 72.5 73.4 71.9 - - - 73.8 71.1 72.5

LASSIE w/o Lsem 65.3 67.5 60.0 29.7 23.2 31.5 62.0 60.3 59.7

LASSIE w/o Fp 81.0 86.5 85.0 37.1 33.7 41.9 76.1 75.6 72.4

LASSIE 81.9 87.1 85.5 38.2 35.1 43.7 78.5 77.0 74.3

ensemble. This part transfer metric is similar to keypoint transfer but uses part segmenta-

tions. That is, we densely transfer the part segmentation in a source image to a target image

through forward and backward mapping between the 2D pixels and the canonical 3D sur-

faces. A pixel is considered transferred correctly if and only if it is mapped to the same

2D part in the target image as where it belongs in the source image. Similar to PCK in

keypoint transfer evaluation, we calculate the percentage of correct pixels (PCP) for each

source-target pair. Since the part segmentation only covers the visible surfaces and not the

occluded regions, we ignore the pixels mapped to a self-occluded surface when calculating

the PCP metric. The quantitative results are shown in Table 4.2, which demonstrate the

favorable performance of LASSIE against prior arts.

Applications. Our 3D neural part representation not only produces more faithful and re-

alistic shapes but also enables various applications like part manipulation, texture transfer,

motion re-targeting, etc. Specifically, we can generate a new shape by swapping or inter-

polating certain parts, transfer the sampled surface texture from one object class to another
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Pose transfer / motion re-targeting Texture transfer

(top: target pose, bottom: re-posed output) (top: target texture, bottom: re-textured output)

Figure 4.6: Applications of neural part surfaces. We use the LASSIE results of zebra
images (top) as target and apply pose transfer (bottom left) and texture transfer (bottom
right) to the giraffe shapes. These applications demonstrate the realistic part surfaces
discovered by LASSIE.

using the same base skeleton, or specify the bone rotations to produce desirable re-posed

shape or animation. We show some example results of pose transfer and texture transfer

between different animal classes in Fig. 4.6.

Limitations. LASSIE relies heavily on the 3D skeleton and strong pose and shape regu-

larization. As the first attempt to address this novel and highly ill-posed problem, we find

the proposed pose and shape constraints essential to produce good quality results and avoid

unrealistic outputs. Moreover, LASSIE can not handle image collections with heavy trun-

cation, occlusions, or extreme pose variations since we leverage self-supervisory DINO-

ViT features on sparse image ensemble as our main supervision. For instance, partial-body

or noisy DINO features can cause ambiguities in camera pose and part localization. Fi-

nally, we observe that LASSIE currently struggles with a) highly articulated parts like

elephant trucks and b) fluffy animals that appear with more instance variations and am-

biguous articulations.



66

4.6 Conclusion

In this chapter, we study a novel and practical problem of articulated shape optimiza-

tion of animals from sparse image collections in-the-wild. Instead of relying on pre-

defined shape models or human annotations like keypoints or segmentation masks, we

propose a neural part representation based on a generic 3D skeleton, which is robust to

appearance variations and generalizes well across different animal classes. In LASSIE,

our key insight is to reason about animal parts instead of whole shape as parts allow im-

posing several constraints. We leverage self-supervisory dense ViT features to provide

both silhouette and semantic part consistency for supervision. Both quantitative and qual-

itative results on Pascal-Part and our self-collected in-the-wild image ensembles show

that LASSIE can effectively learn from few in-the-wild images and produce high-quality

results. Our part-based representation also enables various applications such as pose in-

terpolation, texture transfer, and animation. We hope that this work will facilitate future

research efforts on learning, inferring, and manipulating articulated shapes from image

ensembles in the wild.



Chapter 5

Hi-LASSIE: High-Fidelity Articulated

Shape and Skeleton Discovery from

Sparse Image Ensemble

5.1 Overview

Automatically estimating 3D skeleton, shape, camera viewpoints, and part articulation

from sparse in-the-wild image ensembles is a severely under-constrained and challenging

problem. Most prior methods rely on large-scale image datasets, dense temporal corre-

spondence, or human annotations like camera pose, 2D keypoints, and shape templates.

We propose Hi-LASSIE, which performs 3D articulated reconstruction from only 20-30

online images in the wild without any user-defined shape or skeleton templates. We follow

the recent work of LASSIE that tackles a similar problem setting and make two significant

advances. First, instead of relying on a manually annotated 3D skeleton, we automatically

estimate a class-specific skeleton from the selected reference image. Second, we improve

the shape reconstructions with novel instance-specific optimization strategies that allow

reconstructions to faithful fit on each instance while preserving the class-specific priors

67
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Figure 5.1: Hi-LASSIE overview and sample reconstructions. Given 20-30 images of
an articulated animal class, we first discover a generic 3D skeleton, then jointly optimize
the camera viewpoints, skeleton articulations, as well as shared and instance-specific neu-
ral part shapes. Hi-LASSIE is able to produce high-fidelity shapes and texture without any
pre-defined shape model or 3D skeleton annotations. The part-based representation also
allows applications like animation and motion re-targeting.

learned across all images. Experiments on in-the-wild image ensembles show that Hi-

LASSIE obtains higher fidelity state-of-the-art 3D reconstructions despite requiring mini-

mum user input.

5.2 Introduction

3D assets of articulated animals enable numerous applications in games, movies, AR/VR,

etc. However, building high-fidelity 3D models of articulated shapes like animal bodies is

labor intensive either via manual creation or 3D scanning. Recent advances in deep learn-

ing and 3D representations have significantly improved the quality of 3D reconstruction

from images. Much of the success depends on the availability of either rich 3D annotations

or multi-view captures, both of which are not always available in a real-world scenario.

A more practical and scalable alternative is automatic 3D reconstruction from online im-
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ages as it is straightforward to obtain image ensembles of any animal category (e.g., image

search results). In this chapter, we tackle a practical problem setting introduced in a recent

work, LASSIE [141], where the aim is to automatically estimate articulated 3D shapes

with only a few (20-30) in-the-wild images of an animal species, without any image-level

2D or 3D annotations.

This problem is highly under-constrained and challenging due to a multitude of vari-

ations within image ensembles. In-the-wild images usually have diverse backgrounds,

lighting, and camera viewpoints. Moreover, different animal instances can have distinct

2D appearances due to pose articulations, shape variations, and surface texture variations

(skin colors, patterns, and lighting). As shown in Fig. 5.2, early approaches in this space

try to simplify the problem with some user-defined 3D templates, hurting the general-

ization of those techniques to classes where such templates are not always readily avail-

able. In addition, most of these methods (except LASSIE [141]) assume either large-scale

training images of each animal species [62, 61, 154] or per-image 2D keypoint annota-

tions [155], which also limits their scalability.

In this chapter, we propose a more practical technique that does not require any 3D

shape or skeleton templates. Instead, as illustrated in Fig. 5.2, the user simply has to se-

lect a reference image in the ensemble where all the animal parts are visible. We achieve

this by providing two key technical advances over LASSIE: 1) 3D skeleton discovery and

2) instance-specific optimization strategies. Our overall framework, named Hi-LASSIE,

can produce Higher-fidelity articulated shapes than LASSIE [141] while requiring mini-

mal human input. Our key insight is to exploit the 2D part-level correspondences for 3D

skeleton discovery. Recent works [2, 125] observe that the deep features extracted from a

self-supervised vision transformer (ViT) [22] like DINO-ViT [9] can provide good co-part

segmentation across images. We further exploit such features to reason about part visi-

bility and their symmetry. At a high level, we first obtain a 2D skeleton using the animal

silhouette and part clusters [2] obtained from DINO features [9]. We then uplift this 2D

skeleton into 3D using symmetric part information that is present in the deep DINO fea-
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tures. Fig. 5.1 shows the skeleton for zebra images discovered by Hi-LASSIE. Similar to

LASSIE [141], we leverage 3D part priors (learned from and shared across instances) and

the discovered 3D skeleton to regularize the articulated shape learning. Furthermore, we

design three novel modules to increase the quality of output shapes: 1) High-resolution

optimization by zooming in on individual parts, 2) Surface feature MLPs to densely su-

pervise the neural part surface learning, and 3) Frequency-based decomposition of part

surfaces for shared and instance-specific components. Note that Hi-LASSIE can gen-

eralize to diverse animal species easily as it does not require any image annotations or

category-specific templates.

We conduct extensive experiments on the Pascal-Part [12] and LASSIE [141] image

ensembles, which contain in-the-wild images of various animal species like horse, ele-

phant, and penguin. Compared with LASSIE and other baselines, we achieve higher re-

construction accuracy in terms of keypoint transfer, part transfer, and 2D IOU metrics.

Qualitatively, Hi-LASSIE reconstructions show considerable improvement on 3D geo-

metric and texture details as well as faithfulness to input images. Finally, we demonstrate

several applications like animation and motion re-targeting enabled by our 3D part repre-

sentation. Fig. 5.1 (right) shows some Hi-LASSIE 3D reconstructions for different animal

species. The main contributions of this work are:

• To our best knowledge, Hi-LASSIE is the first approach to discover 3D skeletons of

articulated animal bodies from in-the-wild image ensembles without using any image-

level annotations. We show that the discovered 3D skeleton can faithfully fit all in-

stances in the same class and effectively regularize the 3D shape optimization.

• Hi-LASSIE includes several novel optimization strategies that makes the output shapes

richer in 3D details and more faithful to each image instance than prior methods.

• Extensive results on multiple animal classes and datasets demonstrate the state-of-the-

art performance of Hi-LASSIE while requiring less user inputs than prior works.
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Figure 5.2: User inputs across different techniques for articulated animal reconstruc-
tion. Contrary to prior methods that leverage detailed 3D shapes or skeletons, Hi-LASSIE
only requires the user to select a reference image where most animal body parts are visible.

5.3 Related Work

Animal pose and shape estimation. 3D pose and shape estimation of animal bodies

from in-the-wild images is quite challenging considering the diverse 2D appearance across

different instances, viewpoints, and articulations, among others. Most mesh reconstruction

methods [62, 69, 33, 122, 145] mainly deal with objects with simple or rigid shapes (e.g.,

birds and cars), which cannot be applied to the highly-articulated animal bodies. Recent

articulation-aware approaches address a different (often simplified) scenario by leveraging

a pre-defined statistical model [156, 155, 154, 110], 3D shape/skeleton templates [61, 141],

or dense temporal correspondence in videos [137, 136, 138]. Without assuming any of

these annotations/data, Hi-LASSIE introduces a novel and practical framework to estimate

high-fidelity animal bodies by discovering 3D skeleton from a reference image.

Skeleton extraction and part discovery. 2D skeleton/outline extraction has been widely

studied and used as geometric context for shape/pattern recognition [4, 133, 3, 115, 41].

However, these methods often fail to identify separate skeleton bones/parts when they

overlap or self-occlude each other in an image. In this chapter, we propose to lift 2D skele-

tons to 3D for articulated shape learning by jointly considering the geometric and semantic

cues in 2D images. For part discovery, deep feature factorization (DFF) [18] and follow-

up works [44, 65, 16, 2] show that one could automatically obtain 2D corresponding part
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segments by clustering deep semantic features. In the 3D domain, the object parts can be

discovered by using volumetric cuboids [123], clustering 3D point clouds [79, 94, 95, 80],

or learning part prior [140]. These methods mainly assume some form of supervision like

3D shapes or camera viewpoints. In this chapter, we discover 3D parts of articulated an-

imals from image ensembles without any 2D or 3D annotations/templates, which, to the

best of our knowledge, is unexplored in the literature.

3D reconstruction from sparse images. Optimizing a 3D scene or object from multi-

view images is a fundamental problem in computer vision. The majority of recent break-

throughs are based on the powerful Neural Radiance Field (NeRF) [85] representation.

Given a set of multi-view images, NeRF learns a neural volume from which one can ren-

der high-quality novel views. NeRS [148] introduces a neural surface representation to

learn compact 3D shapes from a sparse image collection, which we find suitable to model

individual animal body parts. Another line of work [6, 149, 8] propose neural reflectance

decomposition on image collections captured in varying illuminations, but they operate

on rigid objects with ground-truth segmentation and known camera poses. SAMURAI [7]

jointly reasons about camera pose, shape, and materials from image collections of a sin-

gle rigid object. In contrast, our input consists of in-the-wild animal images with varying

textures, viewpoints, and pose articulations captured in different environments.

5.4 Approach

Given a sparse image ensemble of an animal species, Hi-LASSIE first discovers a

class-specific 3D skeleton that specifies the initial 3D joint coordinates and part connec-

tivity. Then, it jointly optimizes the camera viewpoint, pose articulation, and part shapes

for each instance. Before describing our approach, we briefly review the LASSIE [141]

method, where several parts are adopted in this chapter.
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Figure 5.3: 3D Skeleton Discovery. Given a reference image and its rough silhouette, we
first extract, filter, and connect the 2D candidate points to form a 2D skeleton graph. Then,
we find and split the symmetric parts by leveraging the 2D geometry and semantic cues.
Finally, we design a simple heuristic to initialize the 3D joints, part shapes, and surface
features.

5.4.1 Preliminaries: 3D Skeleton & Parts in LASSIE

Given a user-provided 3D skeleton template that specifies the 3D joints and bones,

LASSIE [141] represents an overall articulated shape by assembling several 3D parts. In

particular, each part is defined as a deformable neural surface [148] wrapped around a

skeleton bone. The part surfaces are parameterized by multi-layer perceptron networks

(MLPs) which predict the deformation of any 3D point on a surface template (e.g.unit

sphere). Formally, let X ∈ R3×m denote the m uniformly sampled 3D points on a unit

sphere, one can deform the 3D surface of the i-th part in the canonical space using the part

MLP as X 7→ Fi(X). The part surface is then rigidly transformed using the optimized 3D

skeleton with scaling si ∈ R, rotation Ri ∈ R3×3, and translation ti ∈ R3. The final part

surface points Vi in the global coordinate frame can be expressed as:

Vi = siRiFi(X) + ti. (5.1)

The rigid transformation of each part is defined by its corresponding bone length (scal-

ing), orientation (rotation), and centroid (translation). This skeleton-based representation

ensures that the connectivity of 3D parts under arbitrary articulations and easy to repose.
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Compared to explicit mesh representation, the neural surfaces also enable efficient mesh

regularization while producing high-resolution surfaces since the MLPs take continuous

surface coordinates as input. A key innovation of LASSIE is the use of part prior within

the part MLPs {Fi} that regularizes the part shapes to be close to convex primitive geo-

metric shapes like spheres, cones, etc. Please refer to [141] for further details. To take

advantage of these properties, we adopt a similar part-based representation in this chapter.

A key difference from LASSIE is that we alleviate the need for user-provided 3D skele-

ton template and instead discover the 3D skeleton automatically from a reference image

chosen from the ensemble. In addition, we propose several improvements to the neural

surfaces and the optimization process to address the limitations of LASSIE resulting in

higher-fidelity reconstructions.

5.4.2 Discovering 3D Skeleton

2D skeleton extraction. Fig. 5.3 illustrates our 3D skeleton discovery process from a

reference image. We first extract a set of 2D skeleton points from a reference silhouette

using a skeletonize/morphological thinning algorithm [152]. Specifically, we iteratively

remove pixels from the borders until none can be removed without altering the connec-

tivity. These 2D points can be seen as candidates of underlying skeleton joints and bones

through camera projection. Similar to prior 2D shape matching methods [133, 3], we cate-

gorize the skeleton points into junctions, endpoints, and connection points. Assuming that

each skeleton curve is one pixel wide, a skeleton point is called an endpoint if it has only

one adjacent point; a junction if it has three or more adjacent points; and a connection

point if it is neither an endpoint nor a junction. We sort the junctions and endpoints by

distance transform (2D distance to closest border) and identify the ‘root’ junction with the

largest distance to the border. Next, we find the shortest path (sequence of skeleton points)

between root and each endpoint by traversing though the graph. From these paths, we can

build a skeleton tree with 2D joints (junctions or endpoints) and bones (junction-junction
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Figure 5.4: Hi-LASSIE optimization framework. Based on the discovered 3D skeleton,
we reconstruct an articulated shape by optimizing the camera viewpoints, pose articula-
tions, and part shapes. We represent the 3D part shapes as neural surfaces, which are
decomposed into shared (low-frequency) and instance-specific (high-frequency) compo-
nents via positional encoding (PE) of input surface coordinates. The only image-level
annotation is from the self-supervisory DINO features, and the surface texture is sampled
from the input images.

connection or junction-endpoint connection). Since the silhouettes and skeleton points are

sometimes noisy, we filter those noisy 2D joints using non-maximal suppression. That is,

we remove a point is if it lies within the coverage (radius calculated by distance transform)

of its parent joint.

3D joint and part initialization. From the extracted 2D skeleton, one can roughly initial-

ize the simple part shapes and surface features using the reference image. However, all the

joints and bones would be initialized on a 2D plane (image plane) which is not sufficient

for later 3D shape and camera pose optimization across instances. To obtain a better 3D

skeleton initialization, we propose to find symmetric parts and separate them in the 3D

space w.r.t. the symmetry plane. Our key insight is that symmetric parts (e.g.left and right

legs/ears) share similar geometric and semantic features. Therefore, we design a heuristic

to calculate the symmetry score of each pair of joints/bones based on the their geometric
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and semantic feature distance. Specifically, we compute the following features for each

joint/bone: length, average radius, and the average DINO features [9] along the paths to

their common ancestor in the skeleton tree. Then, we identify pairs of joints that share

similar features, which usually correspond to the symmetric animal parts (e.g., left and

right leg). To uplift our 2D skeleton onto 3D, we set the z-coordinates of the each joint

pairs to be on opposite sides of the symmetry plane (z = 0) and offset by their average

radius (so that the initial 3D parts do not overlap). To better deal with overlapping parts in

2D silhouettes, we also split the parent of two symmetric parts if it has only two children.

See Fig. 5.3 (right) for an example of estimated 3D skeleton.

5.4.3 Learning High-fidelity Articulated Shapes

Optimization setting. Our optimization framework takes a sparse set of n (typically 20-

30) in-the-wild images {Ij}nj=1 as well as the discovered 3D skeleton P ∈ Rp×3 with p

joints and b bones/parts as input. The only image-level annotations like silhouettes and

semantic clusters are obtained from the clustering results of self-supervisory DINO [9]

features. All the images in an ensemble contain instances of the same species, but each

instance could vary in pose, shape, texture, camera viewpoint, etc. We assume that each

animal body is mostly visible in an image without severe truncation or occlusions by other

objects although self-occlusion is allowed. We use j to denote the index over images

j ∈ {1, ., n} and i the index over parts i ∈ {1, ., b}. For each instance, Hi-LASSIE

optimizes the camera viewpoint πj = (R0, t0), part rotations Rj ∈ Rb×3×3, and neural

part deformation MLPs. The overall framework is shown in Fig. 5.4, where we first per-

form pose articulation then progressively add more geometric details (from the shared part

shapes to instance-specific deformations).

Per-instance deformation by frequency decomposition. Unlike LASSIE where the part

shapes are shared across all instances, which limits the shape fidelity to input images, we

propose to learn instance-specific part shapes that can better account for instance-varying
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Figure 5.5: Frequency-decomposed part MLP for per-instance shape deformation.
We design a MLP network to represent the neural surfaces composed of varying amount of
details. By increasing the frequencies of input positional encoding, the outputs of deeper
layers can express more detailed deformation. The output and hidden layers are linear
layers.

and articulation-dependent deformations. Intuitively, instances of the same species should

share similar base part shapes and only deviate in high-frequency details (e.g.ears and

tail). Such detailed difference is usually caused by part articulations or instance variance.

We observe that naively fine-tuning the part surfaces on one instance tends to overfit to

that instance and nullify the 3D shape prior learned across all instances. For instance, the

part shapes can overfit to the target silhouette (input view) but look unrealistic in novel

views. To address this, we propose to decompose the surface deformations in the spa-

tial frequency space so that each instance can have high-frequency detail variations while

sharing the same low-frequency base part shapes. As shown in Fig. 5.5, we achieve this

by designing a part deformation MLP with frequency-decomposed input and output com-

ponents. In a forward pass through the MLP, we first apply positional encoding (PE) to

an input coordinate x ∈ R3 using sines with varying frequencies ω and phases ϕ: PEi(x)
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= sin(ωix + ϕi), where i = 0, ..., L, and L is the number of layers in the network. The

hidden activations zi and final outputs yi of layer i are computed as:

zi = PEi(x)⊗ (W h
i zi−1 + bh

i ) with z0 = PE0(x); (5.2)

yi = yi−1 + (W o
i zi + bo

i ) with y0 = 0; (5.3)

where ⊗ denotes the Hadamard (element-wise) product, (W h, bh) parametrize the hidden

linear layers, and (W o, bo) represent the output linear layers. This formulation leverages a

useful property that repeated Hadamard product of sines are equivalent to a sum of sines

with varying amplitude, frequency, and phase [26]. Therefore, with increasing PE frequen-

cies from shallow to deep layers, we can produce output shapes with increasing amount

of high-frequency details. This allows us to perform instance-specific optimization while

preserving the common base shapes by sharing the shallow layers of part MLPs across

instances and optimizing the deep layers to be instance-specific as shown in Fig. 5.5. Note

that our MLP network is inspired from band-limited coordinate networks (BACON) [75].

However, we add the cumulative sum of all previous outputs to the current output of each

layer since the high-frequencies details should be deformations from low-frequency based

shapes. Moreover, unlike BACON, that learns the frequencies of sine functions in PE to-

gether with other parameters, we pre-define and fix the input frequencies to improve the

optimization stability in our ill-posed problem and better control the separation of shared

and instance components.

Zoom in to parts for higher details. Similar to LASSIE, we perform analysis-by-synthesis

to supervise the overall shape reconstruction since we do not have access to any form of

3D supervision. We render the part surfaces via a differentiable renderer [76] and com-

pare them with the pseudo ground-truth masks obtained from DINO feature clustering.

The silhouette loss Lsil is written as: Lsil =
∑

j∥M j − M̂ j∥2 , where M j and M̂ j are the

rendered silhouette and pseudo ground-truth of instance j, respectively. To capture more

shape details in the images, we propose to render and compare the high-resolution silhou-

ettes by zooming in on individual parts during optimization. Concretely, we crop the 2D
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Figure 5.6: High-resolution rendering and optimization by zooming in on parts. Based
on the initial estimates of 2D part localization, we crop and upsample each part region to
perform shape optimization at higher resolution.

part masks estimated by Hi-LASSIE, upsample the cropped regions to higher resolution,

and calculate the part silhouette loss Lpart on the zoomed-in part masks as:

Lpart =
∑
i

∑
j

∥∥∥Γi
j(M j)− Γi

j(M̂ j)
∥∥∥2

, (5.4)

where Γi
j denotes the crop-and-upsample operation for part i on instance j. We show

some example outputs before and after zoomed-in optimization in Fig. 5.6.

2D-3D semantic consistency via feature MLPs. To densely enforce the 2D-3D semantic

consistency of part surfaces, we further introduce feature MLPs to improve the semantic

loss proposed in LASSIE. For each instance j, the semantic consistency loss is defined

as the Chamfer distance between the foreground pixels {p|M̂ j(p) = 1} and 3D surface

points {x ∈ X} in a high-dimensional space:

Lsem =
∑
j

(∑
p

min
x

D(p, x) +
∑
x

min
p

D(p, x)
)
. (5.5)

The high-dimensional distance D is defined as:

D(p, x) = ∥πj(x)− p∥2︸ ︷︷ ︸
Geometric distance

+ α ∥Q(x)−Kj(p)∥2︸ ︷︷ ︸
Semantic distance

, (5.6)

where α is a scalar weighting for semantic distance, Q(x) denotes the 3D surface features

of point x, and K(p) is the 2D image features at pixel p. In effect, Lsem optimizes the
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3D surface coordinates such that the aggregated 3D point features would project closer to

the similar pixel features in the image ensemble. In LASSIE, the 3D surface features are

maintained and updated for only a sparse set of surface points, which limits the capabilities

of Lsem to supervise part localization. Instead, we represent the 3D surface feature of

each part with an MLP (Fig 5.4), which is similar to the part shape MLPs shared by

all instances. Consequently, we can obtain the semantic features Q(x) given an arbitrary

surface coordinate x. We update the part surface and feature MLPs alternatively in an EM-

style optimization. That is, we update the feature MLPs by sampling 3D surface points

and projecting them onto 2D images in the E-step. In the M-step, we use the updated

features to optimize 3D surface MLPs via minimizing the semantic consistency loss.

Pose and shape regularizations. To constrain the output articulations and part shapes,

we apply the following pose and shape regularizations. First, we impose a part rotation

loss Lrot to limit the angle offsets from resting pose as: Lrot =
∑

j∥Rj − R̄∥2, where

Rj is the part rotations of instance j and R̄ denotes the part rotations of shared resting

pose. Moreover, we remove the side-way rotation constraint on animal legs in LASSIE

since the leg parts are not specified in our self-discovered skeletons. Instead, we propose

a more general regularization based on 3D symmetry prior. We define the symmetry loss

Lsym on the 3D joints to prevent overlapping parts or irregular poses as: Lsym =
∑

i∥Ji−
Ψ(Ji

⋆)∥2 where Ji⋆ is the symmetric joint of Ji and Ψ is the reflection operation w.r.t.

the symmetry plane. Finally, to encourage smooth part surfaces, we apply common mesh

regularizations like Laplacian loss Llap and surface normal loss Lnorm. Llap encourages

smooth 3D surfaces by pulling each vertex towards the center of its neighbors, and Lnorm

enforces neighboring mesh faces to have similar normal vectors. Note that all the pose and

shape regularizations are generic and applicable to a wide range of articulated shapes.

Optimization and texture sampling. The overall optimization objective is given by the

weighted sum of aforementioned losses (Lsil, Lpart, Lsem, Lrot, Lsym, Llap, Lnorm). We

optimize the camera, pose, and shape parameters in a multi-stage manner. Superficially,

we first estimate the camera viewpoints and fix the rest. Then, we optimize the part trans-
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Figure 5.7: Qualitative results on in-the-wild images. We show example results of prior
arts and Hi-LASSIE on the LASSIE [141] animal image ensembles as well as the reference
image and 3D skeleton discovered by Hi-LASSIE. The results demonstrate the effective-
ness of our 3D skeleton discovery and the high-fidelity shape/texture reconstruction across
diverse animal classes.

formations and shared part MLPs along with cameras until convergence. Finally, we freeze

shared part MLPs (shallow layers) and fine-tune the instance-specific part deformations

(deep layers) on each instance individually. Note that the surface feature MLPs are also

updated during all optimization stages in an EM-style. The final textured outputs are gen-

erated by densely sampling the colors of visible surface points from individual images.

The invisible (self-occluded) surfaces, on the other hand, are textured by their symmetric

surfaces or nearest visible neighbors.

5.5 Experiments

Datasets and baselines. We follow the same evaluation protocols as in LASSIE [141].
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That is, we optimize and evaluate Hi-LASSIE on individual image ensembles in the Pascal-

Part [12] and LASSIE [141] datasets. From the Pascal-Part dataset, we select the same set

of images of horse, cow, and sheep as in LASSIE. These image are annotated with 2D

part segmentation masks, which we use to automatically find 2D keypoints for evaluation.

The LASSIE dataset contains sparse image ensembles (with CC-licensed web images) of

some diverse animals (zebra, tiger, giraffe, elephant, kangaroo, and penguin) with 2D key-

points annotations for evaluation. Considering the novelty of this problem setting (sparse

image optimization for articulated animal shapes), we mainly compare Hi-LASSIE with

LASSIE as well as some learning-based mesh reconstruction methods. Most recent mesh

reconstruction methods either cannot handle articulations [62, 69, 33, 122, 145] or lever-

age different inputs [68, 136, 138]. 3D Safari [154] and A-CSM [61], on the other hand,

are more comparable to Hi-LASSIE since they explicitly model articulations for animal

classes of our interest. Since both 3D Safari and A-CSM require large-scale image sets for

training (not available in our setting), we use their released models of the closest animal

classes to evaluate on our datasets. For instance, we use the zebra model of 3D Safari and

the horse model of A-CSM to evaluate on similar quadrupeds.

Visual comparisons. Fig. 5.7 shows the qualitative results of Hi-LASSIE and prior meth-

ods on LASSIE dataset images. LASSIE results can fit the object silhouettes quite well

but lack shape details. Our results demonstrate that Hi-LASSIE can effectively discover a

good 3D skeleton that well explains other instance in the image ensemble. Moreover, the

output articulated parts are detailed, high-fidelity, and faithful to input images.

Keypoint transfer. Without ground-truth 3D annotations in our datasets, we follow a

common practice [154, 61] to evaluate 3D reconstruction by transferring 2D keypoints

from source to target images. That is, we map a set of 2D keypoints on a source image

onto the canonical 3D part surfaces, and project them to a target image via the estimated

camera, pose, and shape. Since the keypoints are transferred from 2D-to-3D and from 3D-

to-2D, a successful transfer indicates accurate 3D reconstruction on both the source and

target images. In Table 5.1, we report the percentage of correct keypoints (PCK) under a
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Table 5.1: Keypoint transfer evaluations on the Pascal-Part [12] and LASSIE [141]
image ensembles. For all pairs of images in each animal class, we report the average
percentage of correct keypoints (PCK@0.05).

Method Horse Cow Sheep Zebra Tiger Giraffe Elephant Kangaroo Penguin

3D Safari [154] 57.1 50.3 50.5 62.1 50.3 32.5 29.9 20.7 28.9

A-CSM [61] 55.3 60.5 54.7 60.3 55.7 52.2 39.5 26.9 33.0

LASSIE [141] 58.0 62.4 55.5 63.3 62.4 60.5 40.3 31.5 40.6

Hi-LASSIE w/o inst. MLPs 56.8 57.7 53.6 59.7 63.0 59.9 40.8 31.5 41.2

Hi-LASSIE w/o feat. MLPs 57.5 62.2 56.3 64.1 62.0 60.8 42.7 30.3 41.5

Hi-LASSIE w/o Lpart 58.8 62.8 55.9 63.8 62.8 61.1 41.5 33.3 42.5

Hi-LASSIE 59.6 63.1 56.2 64.2 63.1 61.6 42.7 35.0 44.4

Table 5.2: Quantitative evaluations on the Pascal-part images. We report the overall
2D IOU, part mask IOU, and percentage of correct pixels (PCP) under dense part mask
transfer between all source-target image pairs.

Overall IOU Part IOU Part transfer (PCP)

Method Horse Cow Sheep Horse Cow Sheep Horse Cow Sheep

SCOPS [44] 62.9 67.7 63.2 23.0 19.1 26.8 - - -

DINO clustering [2] 81.3 85.1 83.9 26.3 21.8 30.8 - - -

3D Safari [154] 72.2 71.3 70.8 - - - 71.7 69.0 69.3

A-CSM [61] 72.5 73.4 71.9 - - - 73.8 71.1 72.5

LASSIE 81.9 87.1 85.5 38.2 35.1 43.7 78.5 77.0 74.3

Hi-LASSIE w/o inst. MLPs 80.4 80.0 79.5 30.2 29.3 33.8 76.4 74.9 71.1

Hi-LASSIE w/o feat. MLPs 82.5 87.6 85.9 34.9 32.4 39.7 74.7 72.4 74.9

Hi-LASSIE w/o Lpart 81.6 84.7 83.8 38.6 35.2 43.6 79.2 77.4 72.0

Hi-LASSIE 83.4 88.1 86.3 39.0 35.3 43.4 79.9 77.8 75.5

tight threshold 0.05×max(h,w), where h and w are image height and width, respectively.

The results show that Hi-LASSIE achieves higher PCK on most animal image ensembles

compared to the baselines while requiring minimal user inputs. We also show ablative

results of Hi-LASSIE without the instance part MLPs (frequency decomposition), feature

MLPs, or zoomed-in part silhouette loss Lpart. All the proposed modules can effectively

increase the accuracy of keypoint transfer demonstrating their use.
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2D overall/part IOU. In addition to keypoint transfer accuracy, we compare Hi-LASSIE

with the baselines using different segmentation metrics (Overall/Part IOU) in Table 5.2.

For Hi-LASSIE and prior 2D co-part segmentation methods like SCOPS [44] and DINO

clustering [2], we manually assign each discovered part to the best matched part in the

Pascal-part annotations. Hi-LASSIE can produce accurate overall and part masks in 2D

by learning high-fidelity 3D shapes. Compared to prior methods, Hi-LASSIE outputs

match the Pascal-part segmentation better and achieves consistently higher overall IOU.

Part transfer. Finally, we show the results of part transfer accuracy in Table 5.2 using the

percentage of correct pixels (PCP) metric proposed in LASSIE [141]. The PCP metric is

designed similarly as PCK for keypoint transfer, but it uses 2D part segmentations to more

densely evaluate 3D reconstruction. In short, we densely transfer the part segmentation

from source to target images through mapping 2D pixels and 3D canonical surfaces. A

correct transfer is done when a pixel is mapped to the same 2D part in both the source

and target images. The PCP results further demonstrate the favorable performance of Hi-

LASSIE against prior arts.

Applications. Hi-LASSIE not only produces high-fidelity 3D shapes but also enables

various part-based applications due to explicit skeleton and part-based representation. For

instance, we can easily transfer/interpolate the 3D skeleton transformations to repose or

animate the output 3D shapes. Likewise, we can transfer the surface texture or part de-

formation from one animal species/instance to another. Due to their explicit nature, Hi-

LASSIE 3D shapes can also be used by graphics artists for downstream applications in

AR/VR/games.

5.6 Conclusion

We propose Hi-LASSIE, a technique for 3D articulated shape reconstruction from

sparse image ensemble without using any 2D/3D annotations or templates. Hi-LASSIE

automatically discovers 3D skeleton based on a single reference image from the input en-
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semble. We further design several optimization strategies to reconstruct high-resolution

and instance-varying details of 3D part shapes across the given ensemble. Our results on

Pascal-Part and LASSIE image ensembles demonstrate the favorable reconstructions of

Hi-LASSIE against prior arts despite using minimal user annotations. In future, we hope

to apply Hi-LASSIE on more general articulated objects in-the-wild.



Chapter 6

ARTIC3D: Learning Robust

Articulated 3D Shapes from Noisy Web

Image Collections

6.1 Overview

Estimating 3D articulated shapes like animal bodies from monocular images is inher-

ently challenging due to the ambiguities of camera viewpoint, pose, texture, lighting, etc.

We propose ARTIC3D [143], a self-supervised framework to reconstruct per-instance 3D

shapes from a sparse image collection in-the-wild. Specifically, ARTIC3D is built upon

a skeleton-based surface representation and is further guided by 2D diffusion priors from

Stable Diffusion. First, we enhance the input images with occlusions/truncation via 2D

diffusion to obtain cleaner mask estimates and semantic features. Second, we perform

diffusion-guided 3D optimization to estimate shape and texture that are of high-fidelity

and faithful to input images. We also propose a novel technique to calculate more sta-

ble image-level gradients via diffusion models compared to existing alternatives. Finally,

we produce realistic animations by fine-tuning the rendered shape and texture under rigid

86
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Figure 6.1: Learning articulated 3D shapes from noisy web images. We propose AR-
TIC3D, a diffusion-guided optimization framework to estimate the 3D shape and texture
of articulated animal bodies from sparse and noisy image in-the-wild. Results show that
ARTIC3D outputs are detailed, animatable, and robust to occlusions or truncation.

part transformations. Extensive evaluations on multiple existing datasets as well as newly

introduced noisy web image collections with occlusions and truncation demonstrate that

ARTIC3D outputs are more robust to noisy images, higher quality in terms of shape and

texture details, and more realistic when animated.

6.2 Introduction

Articulated 3D animal shapes are widely used in applications such as AR/VR, gam-

ing, and content creation. However, the articulated models are usually hard to obtain as

manually creating them is labor intensive and 3D scanning real animals in the lab settings

is highly infeasible. In this chapter, we aim to automatically estimate high-quality 3D

articulated animal shapes directly from sparse and noisy web image collections. This is

a highly ill-posed problem due to the variations across images with diverse backgrounds,

lighting, camera viewpoints, animal poses, shapes, and textures, etc. In addition, we do

not assume access to any 3D shape models or per-image annotations like keypoints and

camera viewpoints in our in-the-wild setting.



88

While several recent methods [141, 131, 142] can produce animatable 3D shapes us-

ing a skeleton-based neural surface or pre-defined mesh template, the success is largely

dependent on large-scale image datasets or manually-filtered clean images for training or

optimization. Moreover, the output 3D shapes and textures are usually unrealistic when

viewed from novel viewpoints or pose articulations. On the other hand, recent success

of generative diffusion models [105, 112, 109] shows that one can generate high-quality

images for a given text prompt. Several recent works [101, 71, 84, 103] further demon-

strate the possibility to produce 3D objects/scenes simply using 2D diffusion as multi-view

supervision. In this chapter, we leverage the powerful 2D diffusion prior to learn 3D ar-

ticulated shapes, aiming to reconstruct and animate 3D animals from sparse noisy online

images without any 2D or 3D annotations. Intuitively, one can improve the quality of

3D reconstructions by utilizing a diffusion prior similar to the score distillation sampling

(SDS) loss proposed in DreamFusion [101]. In our experiments, nonetheless, we observe

that naively applying the SDS loss on 3D surface optimization leads to unstable and inef-

ficient training, producing undesirable artifacts like noisy surfaces or ambiguous texture.

In this chapter, we present ARTIC3D (ARTiculated Image Collections in 3D), a diffusion-

guided optimization framework to learn articulated 3D shapes from sparse noisy image

collections. We use the articulated part surface and skeleton from Hi-LASSIE [142], which

allows explicit part manipulation and animation. We propose a novel Decoder-based Accu-

mulative Score Sampling (DASS) module that can effectively leverage 2D diffusion model

priors from Stable Diffusion [109] for 3D optimization. In contrast to existing works that

back-propagate image gradients through the latent encoder, we propose a decoder-based

multi-step strategy in DASS, which we find to provide more stable gradients for 3D op-

timization. To deal with noisy input images, we propose an input preprocessing scheme

that use diffusion model to reason about occluded or truncated regions. In addition, we

also propose techniques to create realistic animations from pose articulations.

We analyze ARTIC3D on the Pascal-Part [12] and LASSIE [141] datasets. To better

demonstrate the robustness to noisy images, we extend LASSIE animal dataset [141] with
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noisy web animal images where animals are occluded and truncated. Both qualitative and

quantitative results show that ARTIC3D produces 3D shapes and textures that are detailed,

faithful to input images, and robust to partial observations. Moreover, our 3D articulated

representation enables explicit pose transfer and realistic animation which are not feasible

for prior diffusion-guided methods with neural volumetric representations. Fig. 6.1 shows

sample 3D reconstructions and applications from ARTIC3D. The main contributions of

this work are:

• We propose a diffusion-guided optimization framework called ARTIC3D, where we

reconstruct 3D articulated shapes and textures from sparse noisy online images without

using any pre-defined shape templates or per-image annotations like camera viewpoint

or keypoints.

• We design several strategies to efficiently incorporate 2D diffusion priors in 3D surface

optimization, including input preprocessing, decoding diffused latents as image targets,

pose exploration, and animation fine-tuning.

• We introduce E-LASSIE, an extended LASSIE dataset [141], by collecting and annotat-

ing noisy web images with occlusions or truncation to evaluate model robustness. Both

qualitative and quantitative results show that ARTIC3D outputs have higher-fidelity

compared to prior arts in terms of 3D shape details, texture, and animation.

6.3 Related Work

Animal shape and pose estimation. Earlier techniques on animal shape estimation used

statistical body models [156, 154] that are learned either using animal figurines or a

large number of annotated animal images. Some other works [137, 136, 138, 139], use

video inputs to learn articulated shapes by exploiting dense correspondence information

in video. However, these methods rely on optical flow correspondences between video

frames, which are not available in our problem setting. Other techniques [62, 61] leverage

a parametric mesh model and learn a linear blend skinning from images to obtain a posed
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mesh for different animal categories. Most related to our work are LASSIE [141] and Hi-

LASSIE [142] which tackle the same problem setting of recovering 3D shape and texture

from a sparse collection of animal images in the wild using either a manually annotated

skeleton template, or by discovering category specific template from image collections.

MagicPony [131] learns a hybrid 3D representation of the animal instance from category

specific image collections. However, these approaches require carefully curated input data

and fail to handle image collections with partial occlusions, truncation or noise. By lever-

aging recent advances in diffusion models, we support reconstruction on a wider variety

of input images.

3D reconstruction from sparse images. Several recent works [120, 148, 146, 130, 104,

6, 149, 7] have used implicit representations [85] to learn geometry and appearance from

sparse image collections either by training in a category specific manner or assuming ac-

cess to multi-view consistent sparse images during inference. However, most of these

approaches demonstrate compelling results only on rigid objects. Zhang et al. [148] is

another closely related work that finds a neural surface representation from sparse image

collections but requires coarse camera initialization. By learning a part based mesh shape

and texture, our framework naturally lends itself to modeling and animating articulated

categories such as animals in the wild without any additional requirements on camera

parameters.

Diffusion prior for 3D. Diffusion models [109, 112, 150] have recently gained popular-

ity for generating high resolution images guided by various kinds of conditioning inputs.

Diffusion models capture the distribution of real data which can be used as score function

to guide 3D generation with score-distillation sampling (SDS) loss as first described in

DreamFusion [101]. Several recent approaches [84, 71, 82, 117, 107, 103] leverage the

SDS loss to generate 3D representations from either text or single or sparse image collec-

tions. Drawing inspiration from these lines of work, we propose a novel Decoder-based

accumulative Score Sampling (DASS) that exploits the high quality images synthesized

by the decoder and demonstrate improved performance over naive SDS loss.
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6.4 Approach

Given 10-30 noisy web images of an animal species, ARTIC3D first preprocesses the

images via 2D diffusion to obtain cleaner silhouette estimates, semantic features, and 3D

skeleton initialization. We then jointly optimizes the camera viewpoint, pose articula-

tion, part shapes and texture for each instance. Finally, we animate the 3D shapes with

rigid bone transformations followed by diffusion-guided fine-tuning. Before introducing

our diffusion-based strategies to improve the quality of 3D outputs, we briefly review

the skeleton-based surface representation similar to [141, 142], as well as Stable Diffu-

sion [109] that we use as diffusion prior.

6.4.1 Preliminaries

While most 3D generation methods optimizes a volumetric neural field to represent

3D rigid objects/scenes, we aim to produce 3D shapes that are articulated and animatable.

To enable explicit part manipulation and realistic animation, we adopt a skeleton-based

surface representation as in LASSIE [141] and Hi-LASSIE [142]. Unlike [141, 142] which

directly sample surface texture from images, we optimize per-part texture images to obtain

realistic instance textures from novel views.

3D Skeleton. Given a user-specified reference image in the collection, Hi-LASSIE [142]

automatically discovers a 3D skeleton based on the geometric and semantic cues from

DINO-ViT [9] feature clusters. The skeleton initializes a set of 3D joints and primitive

part shapes, providing a good constraint of part transformation and connectivity. In our

framework, we obtain cleaner feature clusters by diffusing input images, then applying

Hi-LASSIE as an off-the-shelf skeleton discovery method. For a fair comparison with

existing works, we use the same reference image for skeleton discovery as in [142] in our

experiments. Please refer to [142] for further details on skeleton discovery.

Neural part surfaces. Following [142], using the discovered 3D skeleton, we reconstruct

a 3D part corresponding to each skeleton bone via a deformable neural surface [148]. The
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neural surfaces are parameterized by multi-layer perceptron networks (MLPs), mapping

3D surface points on a unit sphere to their xyz deformation. Given m uniformly sampled

3D points X ∈ R3×m on a spherical surface, we can deform the 3D shape of the i-th part

through the part MLP as X 7→ Fi(X). Then, the part surfaces are rigidly transformed

by the scaling si ∈ R, rotation Ri ∈ R3×3, and translation ti ∈ R3 of each skeleton

part i. The transformed part surface points Vi in the global coordinate can be written as:

Vi = siRiFi(X) + ti . Please refer to [142] for further details.

Stable Diffusion architecture. Stable Diffusion (SD) [109] is a state-of-the-art text-to-

image generative model that can synthesize high-quality images given a text prompt. SD

mainly consists of 3 components: An image encoder E that encodes a given image x into

a latent code z; a decoder network D that converts the latent code back to image pixels;

and a U-Net denoiser ϵϕ that can iteratively denoise a noisy latent code. We use SD as a

diffusion prior in our framework.

6.4.2 Decoder-based Accumulative Score Sampling (DASS)

To leverage the 2D diffusion prior for 3D shape learning, DreamFusion [101] proposes

a score distillation sampling (SDS) loss to distill the images rendered from random views

and propagate the image-level gradients to Neural Radiance Field (NeRF) parameters. To

reduce the computational cost and improve training stability, recent works like Latent-

NeRF [84] and Magic3D [71] perform distillation on the low-resolution latent codes in

SD and back-propagate the gradients through the SD image encoder E . Formally, let x be

a rendered image from 3D model and z denote its latent codes from the SD image encoder

E . At each score distillation iteration, the latent codes z are noised to a random time step t,

denoted as zt, and denoised by the U-Net denoiser ϵϕ of the diffusion model. The image-

level SDS gradients can then be expressed as: ∇xLSDS = wt(ϵϕ(zt; y, t) − ϵ) ∂z
∂x

, where y

denotes the guiding text embedding, ϵ is the random noise added to the latent codes, and

wt is a constant multiplier which depends on diffusion timestep t. The denoiser ϵϕ uses
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Figure 6.2: ARTIC3D overview. Given sparse web images of an animal species, AR-
TIC3D estimates the camera viewpoint, articulated pose, 3D part shapes, and surface tex-
ture for each instance. We propose a novel DASS module to efficiently compute image-
level gradients from stable diffusion, which are applied in 1) input preprocessing, 2) shape
and texture optimization, and 3) animation.

a guidance scale wg to balance the text guidance and a classifier-free guidance [43] of an

unconditional model.

Although this common SDS loss is effective in generating NeRFs from text, we ob-

serve that naively applying it in our framework leads to unstable and inefficient training.

As shown in Fig. 6.3 (b), the SDS gradients back-propagated through the encoder are

often quite noisy, causing undesirable artifacts on 3D shapes and texture. Moreover, it

requires the extra computation and memory usage for gradient back propagation, limiting

the training batch size and thus decreasing stability.

To mitigate these issues, we propose a novel Decoder-based Accumulative Score Sam-

pling (DASS) module, an alternative to calculate pixel gradients that are cleaner and more

efficient. Fig. 6.2 illustrates the proposed DASS module. At a high level, given an input

image x, we obtain a denoised image x′ from the decoder as a reconstruction target, based
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on our observation that decoded outputs are generally less noisy. As shown in Fig. 6.2,

we pass a rendered image through the encoder E to obtain low-resolution latent codes,

update the latents for n steps via score distillation, then decode the updated latents with

the decoder D as an image target. Formally, instead of explicitly calculating the partial

derivative ∂z/∂x, we use x − D(z − ∇z) as a proxy to ∇x, where ∇z is the accumu-

lated latent gradients over n steps. This makes a linear assumption on D around latents z,

which we empirically find effective to approximate the pixel gradients. The target image

x′ = D(z −∇z) can be directly used as an updated input (Section 6.4.3) or to compute a

pixel-level DASS loss Ldass = ∥(x − D(z − ∇z))∥2 in 3D optimization (Section 6.4.4).

Since the DASS module only involves one forward pass of the encoder and decoder, it

costs roughly half the memory consumption during training compared to the original SDS

loss. The visualizations in Fig. 6.3 demonstrate that DASS produces cleaner images than

the original SDS loss in one training step (b), and that the accumulated gradients can ef-

fectively reduce noise and fill in the missing parts (c). Moreover, we show that adding

random noise to the background pixels can facilitate the shape completion by DASS (a).

We also perform ablative analyses on other diffusion parameters like noise timestep (d)

and guidance weight (e) in Fig. 6.3. In general, ARTIC3D favors moderate accumulation

steps n ∈ (3, 10) and lower timestep t ∈ (0.2, 0.5) since higher variance can lead to 3D

results that are not faithful to the input images. Also, we use a lower guidance weight

wg ∈ (10, 30) so that our results do not suffer from over saturation effects common in

prior works due to high guidance scale in SDS loss.

6.4.3 Input preprocessing for noisy images

Animal bodies in real-world images often have ambiguous appearance caused by noisy

texture, dim lighting, occlusions, or truncation, as shown in Fig. 6.4. To better deal with

noisy or partial observations, we propose a novel method to enhance the image quality

and complete the missing parts. Given a sparse image collection {Ij ∈ RH×W×3} (j ∈
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Figure 6.3: Ablative visualizations of the DASS method. From the example input im-
age (top left), we show the updated image after one optimization iteration using various
ways to obtain image-level gradients or parameter settings: (a) shows that noised back-
ground in the input image encourages DASS to hallucinate the missing parts; (b) compares
the standard SDS (back-propagate gradients through encoder) and our DASS (decoder-
based) losses; (c) justifies our accumulating latent gradient approach as it leads to cleaner
decoded output; (d) indicates that small timestep mostly modifies the texture, whereas
large timestep changes the geometry more (sometimes removes or creates body parts); (e)
demonstrates high-contrast colors and slightly disproportioned body with higher guidance
weight (diffusion prior is biased towards larger heads and frontal views). Note that (b)
uses the clean input in (a) for better visualization, whereas (c),(d),(e) are obtained from
the noised input.

{1, ..., N} and N is typically between 10-30) of an animal species, we aim to obtain ac-

curate silhouettes estimates {M̂j ∈ RH×W} and clean semantic features {Kj ∈ Rh×w×d}
for each instance. As shown in Fig. 6.2, we roughly estimate the foreground masks via

clustering salient features extracted by a trained DINO-ViT [9] network. Then, we apply

DASS to diffuse the background-masked images, resulting in animal bodies with cleaner

texture and complete shapes. Formally, we obtain an updated image I ′ by D(z − ∇z),
where z = E(I). Here, DASS serves as an image denoising and inpainting module, which

can effectively generate a high-quality version of a noisy input via n latent updates and a

single forward pass of D. Following the noise-and-denoise nature of diffusion models, we
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show in Fig. 6.3 (a) that manually adding Gaussian noise to the background pixels in an

input image encourages DASS to hallucinate the occluded parts while mostly preserving

the visible regions. Finally, we re-apply DINO-ViT feature extraction and clustering [2]

on the diffused images to obtain cleaner and more complete masks as well as semantic

features. Fig. 6.2 (left) shows sample noisy input images and the corresponding output

enhanced images and feature clusters. Note that Farm3D [47] uses SD [109] to generate

animal images from text for 3D training, which, however, often contain irregular shapes

(e.g., horses with 5 legs). On the contrary, our preprocessed images are more suitable for

the sparse-image optimization framework since our goal is to reconstruct 3D shape and

texture that are realistic and faithful to the input images.

6.4.4 Diffusion-guided optimization of shape and texture

Given the preprocessed images, silhouette estimates, and semantic features, we jointly

optimize the camera viewpoint, pose articulation, 3D part shapes, and texture. Since we do

not assume any 2D or 3D annotations, we follow Hi-LASSIE [142] and adopt an analysis-

by-synthesis approach to reconstruct 3D shape and texture that are faithful to the input

images. That is, we render the 3D part using a differentiable renderer [76] and com-

pare them with the 2D images, pseudo ground-truth silhouettes, and DINO-ViT features.

Fig. 6.2 (top) illustrates the shape and texture optimization.

LASSIE and Hi-LASSIE losses. Given the rendered silhouette M̃ j and pseudo ground-

truth M̂ j of instance j, the silhouette loss Lsil can be written as: Lsil =
∑

j∥M̃ j − M̂ j∥2.
LASSIE [141] and Hi-LASSIE [142] further leverage the 2D correspondence of DINO

features between images of the same animal class to define a semantic consistency loss

Lsem. Lsem can be interpreted as the Chamfer distance between 3D surface points and

2D pixels, enforcing the aggregated 3D point features to project closer to the similar pixel

features in all images. To regularize the pose articulations and part shapes, [141, 142] also

apply a part rotation loss Lrot, Laplacian mesh regularization Llap, and surface normal
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loss Lnorm. The part rotation loss Lrot =
∑

j∥Rj − R̄∥2 limits the angle offsets from

resting pose, where Rj is the part rotations of instance j and R̄ denotes the part rotations

of shared resting pose. Llap and Lnorm encourage smooth 3D surfaces by pulling each

vertex towards the center of its neighbors and enforcing neighboring faces to have similar

normals, respectively. We omit the details and refer the readers to [141, 142]. Considering

that the reconstruction (Lsil, Lsem) and regularization (Lrot, Llap, Lnorm) losses are generic

and effective on articulated shapes, we use them in ARTIC3D along with novel texture

reconstruction and DASS modules.

Texture reconstruction. Both [141, 142] directly sample texture from input RGB, re-

sulting in unrealistic textures in occluded regions. To obtain more realistic textures, we

also optimize a texture image Ti for each part. The vertex colors C ∈ R3×m are sampled

via the pre-defined UV mapping S of surface points X . Formally, the surface color sam-

pling of part i can be expressed as Ci = Ti(S(X)). The sampled surface texture are then

symmetrized according to the symmetry plane defined in the 3D skeleton. Note that the

texture images are optimized per instance since the animals in web images can have di-

verse texture. Similar to the Llap, we enforce the surface texture to be close to input image

when rendered from the estimated input view. The texture reconstruction loss is defined

as: Ltext =
∑

j∥M̂ j ⊙ (Îj − Ĩj)∥2 where Îj denotes the clean input image of instance j

after input preprocessing and M̂ j denotes the corresponding animal mask; Ĩj is the ren-

dered RGB image from the estimated 3D shape and texture; and ⊙ denotes element-wise

product. The reconstruction loss is masked by the estimated foreground silhouette so that

the surface texture optimization is only effected by the visible non-occluded animal pixels.

Distilling 3D reconstruction. In addition to the aforementioned losses, we propose to

increase the shape and texture details by distilling 3D reconstruction. Here, we use DASS

as a critic to evaluate how well a 3D reconstruction looks in its 2D renders, and calculate

pixel gradients from the image target. Similar to prior diffusion-based methods [101, 84,

71], we render the 3D surfaces with random viewpoints, lighting, and background colors

during training. Moreover, we design a pose exploration scheme to densify the articulation
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space in our sparse-image scenario. In particular, we randomly interpolate the estimated

bone rotation (Rj1 , Rj2) of two instances (j1, j2), and generate a new instance with novel

pose R′ = αRj1 +(1−α)Rj2 for rendering, where α ∈ (0, 1) is a random scalar. As such,

we can better constrain the part deformation by diffusion prior and prevent irregular shape

or disconnection between parts. As shown in Fig. 6.2, we then diffuse the latent codes

of rendered images and obtain pixel gradients from the DASS module. The resulting

gradients are back-propagated to update the part surface texture, deformation MLP, bone

transformation, and camera viewpoints. In our experiments, we observe that the RGB

gradients do not propagate well through the SoftRas [76] blending function, and we thus

modify it with a layered blending approach proposed in [87].

Optimization details. The overall optimization objective can be expressed as the weighted

sum of all the losses L =
∑

l∈L αlLl, where L = {sil, sem, rot, lap, norm, text, dass}
as described above. We optimize the shared and instance-specific shapes in two stages.

That is, we first update the shared part MLPs along with camera viewpoints and pose pa-

rameters. Then, we fine-tune the instance-specific part MLPs and optimize texture images

for each instance. All model parameters are updated using an Adam optimizer [53]. We

render the images at 512×512 resolution and at 128×128 for the part texture images.

6.4.5 Animation fine-tuning

One can easily animate the resulting 3D articulated animals by gradually rotating the

skeleton bones and their corresponding parts surfaces. However, the rigid part transfor-

mations often result in disconnected shapes or texture around the joints. To improve the

rendered animation in 2D, one can naively use DASS frame-by-frame on a sequence of

articulated shapes. However this can produce artifacts like color flickering and shape in-

consistency across the frames. As a remedy, we further propose a fine-tuning step, called

Temporal-DASS (T-DASS), to generate high-quality and temporally consistent 2D ani-

mations based on the ARTIC3D outputs. Given a sequence of part transformations from
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simple interpolation across instances or motion re-targeting, we render the 3D surfaces

as video frames {Jk ∈ RH×W×3(k ∈ {1, ..., K})} and encode them into latent codes

{zk ∈ Rh×w×3} through the SD encoder E . Then, we design a reconstruction loss Lrecon

and temporal consistency loss Ltemp to fine-tune the animation in the latent space. Similar

to DASS, we obtain the reconstruction targets {z′k} by accumulating latent SDS gradients

∇zk for multiple steps: z′k = zk − ∇zk. The reconstruction loss can then be written as:

Lrecon =
∑

t∥(zk − z′k)∥2. To enforce temporal consistency, we exploit our 3D surface

outputs and calculate accurate 2D correspondences across neighboring frames. Specifi-

cally, for each latent pixel in frame zk, we find the closest visible 3D surfaces via mesh

rasterization, then backtrack their 2D projection in frame zk−1, forming a dense 2D flow

field Fk ∈ Rh×w×2. Intuitively, the corresponding pixels should have similar latent codes.

Hence, we use Fk to perform temporal warpping on the latent codes zk−1, denoted as:

warp(zk−1, Fk), and define Ltemp as: Ltemp =
∑K

k=2∥(zk − warp(zk−1, Fk)∥2. We fine-

tune the latent codes {zk} with Lrecon and Ltemp, where {Fk} are pre-computed and {z′k}
are updated in each iteration. Finally, we can simply obtain the RGB video frames by

passing the optimized latent codes through the SD decoder {D(zk)}. The proposed Lrecon

encourages better shape and texture details in each frame, and Ltemp can effectively reg-

ularize latent updates temporally. Note that T-DASS optimizes the latent codes and takes

temporal consistency into account, which is different from DASS which operates on each

image individually.

6.5 Experiments

Datasets. Following [141, 142], we evaluate ARTIC3D on the Pascal-Part [12] and LASSIE [141]

images. From Pascal-Part, we obtain images of horse, cow, and sheep, as well as their 2D

keypoints automatically computed using the ground-truth 2D part masks. The LASSIE

dataset includes web images of other animal species (zebra, tiger, giraffe, elephant, kanga-

roo, and penguin) and 2D keypoint annotations. Each image collection contains roughly
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Figure 6.4: E-LASSIE samples. We extend LASSIE [141] image sets with 15 occluded
or truncated images per animal class and annotate the 2D keypoints for evaluation. These
noisy images pose great challenges to sparse-image optimization since the per-instance 3D
shapes can easily overfit to the visible parts and ignore the rest.

30 images of different instances with diverse appearances, which are manually filtered so

that the animal bodies are fully visible in the images. To evaluate the model robustness

in a more practical setting, we extend the LASSIE image sets with several noisy images

where the animals are occluded or truncated. In particular, we collect 15 additional web

images (CC-licensed) per class and annotate the 2D keypoints for evaluation. We call the

extended image sets E-LASSIE and show some examples in Fig. 6.4. For the experiments

on E-LASSIE, we optimize and evaluate on all the 45 images in each set.

Baselines. We mainly compare ARTIC3D with LASSIE [141] and Hi-LASSIE [142] as

we deal with the same problem setting, namely sparse image optimization for articulated

animal shapes. For reference, we also compare the results with several learning-based

methods like A-CSM [61], MagicPony [71], and Farm3D [47]. Note that these approaches

are not directly comparable to ARTIC3D since they train a feedforward network on large-

scale image sets (not available in our scenario). Although related, some other recent works

on 3D surface reconstruction either cannot handle articulations [62, 69, 33, 122, 145] or re-

quire different inputs [68, 136, 138]. As a stronger baseline, we implement Hi-LASSIE+,

incorporating the standard SDS loss as in [109, 71, 84] (back-propagate latent gradients

through encoder) during Hi-LASSIE [142] optimization for shape and texture.

Evaluation metrics. Considering the lack of ground-truth 3D annotations in our datasets,

we follow a common practice [154, 61, 141, 142] to use keypoint transfer accuracy as a

quantitative metric to evaluate 3D reconstruction. For each pair of images, we map the

annotated 2D keypoints on source image onto the canonical 3D surfaces, re-project them

to the target image via the estimated camera, pose, and shape, and compare the transferred
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keypoints with target annotations. To further evaluate the quality of textured outputs, we

compute CLIP [102] features of the 3D output renders under densely sampled viewpoints,

and calculate the feature similarity against text prompt as well as input images. While

most prior arts on 3D shape generation [101, 103] only evaluate the image-text similarity,

we also evaluate the image-image similarity since our outputs should be faithful to both

the category-level textual description as well as instance-specific input images. We use a

text prompt: “A photo of *” for each animal class “*” in our experiments. A CLIP ViT-

B/32 model is used to compute the average feature similarity over 36 uniformly sampled

azimuth renders at a fixed elevation of 30 degrees.

Qualitative results. Fig. 6.1 shows some sample outputs of ARTIC3D. In Fig. 6.5, we

compare the visual results of Hi-LASSIE, Hi-LASSIE+, and ARTIC3D on the E-LASSIE

images. Both Hi-LASSIE and Hi-LASSIE+ produce irregular pose and shape for the

invisible parts. Regarding surface texture, Hi-LASSIE reconstructs faithful texture from

the input view but noisy in novel views, since it naively samples vertex colors from the

input images. The output texture of Hi-LASSIE+ is generally less noisy thanks to the SDS

loss. By comparison, ARTIC3D accurately estimates the camera viewpoint, pose, shape,

and texture even with the presence of occlusions or truncation. The ARTIC3D outputs are

detailed, faithful to input images, and realistic from both input and novel views.

Quantitative comparisons. We show comparisons of the keypoint transfer accuracy

(PCK) in Tables 6.1. On both LASSIE and E-LASSIE image sets, Hi-LASSIE+ produces

a marginal PCK gain from Hi-LASSIE [142] by naively applying the SDS loss. AR-

TIC3D, on the other hand, achieves consistently higher PCK than the baselines, especially

on the noisy E-LASSIE images. The results demonstrate that our diffusion-guided strate-

gies can effectively learn more detailed, accurate, and robust 3D shapes. The Pascal-Part

results in Tab 6.2 further show that ARTIC3D performs favorably against the state-of-

the-art optimization-based methods and are comparable to learning-based approaches. In

Table 6.3, we show the CLIP similarity comparisons on the E-LASSIE images, which in-

dicate that our textured outputs are more faithful to both the input images (instance-level)
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Figure 6.5: Visual comparison of ARTIC3D and other baselines. For each input image,
we show the 3D textured outputs from input (upper) and novel (lower) views. The results
demonstrate that ARTIC3D is more robust to noisy images with occlusions or truncation,
producing 3D shape and texture that are detailed and faithful to the input images.

Table 6.1: Keypoint transfer evaluations on the
LASSIE [141] and E-LASSIE image sets. We re-
port the average PCK@0.05 (↑) on all pairs of images.
ARTIC3D performs favorably against the optimization-
based prior arts on all animal classes. The larger per-
formance gap in the E-LASSIE demonstrates that AR-
TIC3D is robust to noisy images.

Method Image set Elephant Giraffe Kangaroo Penguin Tiger Zebra

LASSIE [141] LASSIE 40.3 60.5 31.5 40.6 62.4 63.3

Hi-LASSIE [142] LASSIE 42.7 61.6 35.0 44.4 63.1 64.2

Hi-LASSIE+ LASSIE 43.3 61.5 35.5 44.6 63.4 64.0

ARTIC3D LASSIE 44.1 61.9 36.7 45.3 64.0 64.8

Hi-LASSIE [142] E-LASSIE 37.6 54.3 31.9 41.7 57.4 60.1

Hi-LASSIE+ E-LASSIE 38.3 54.8 32.8 41.8 57.7 61.3

ARTIC3D E-LASSIE 39.8 58.0 35.3 43.8 59.3 63.0

Table 6.2: Keypoint transfer
results on Pascal-Part [24].
We report the mean PCK@0.1
(↑) on all pairs of images. ∗

indicates learning-based mod-
els which are trained on a large-
scale image set.

Method Horse Cow Sheep

UMR∗ [69] 24.4 - -

A-CSM∗ [61] 32.9 26.3 28.6

MagicPony∗ [131] 42.9 42.5 26.2

Farm3D∗ [47] 42.5 40.2 32.8

LASSIE [141] 42.2 37.5 27.5

Hi-LASSIE [142] 43.7 42.1 29.9

Hi-LASSIE+ 43.3 42.3 30.5

ARTIC3D 44.4 43.0 31.9

and text prompt (class-level) for most animal classes.

Animation and texture transfer. In Fig. 6.6, we compare the animations before and af-
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Table 6.3: CLIP similarity (↑) evaluations on the E-LASSIE images. For each ani-
mal class, we calculate cosine similarities s1/s2, where s1 is the image-image similarity
(against masked input image) and s2 is the image-text similarity (against text prompt).

Method Elephant Giraffe Kangaroo Penguin Tiger Zebra

Hi-LASSIE [142] 80.0 / 26.3 85.2 / 29.6 77.4 / 25.6 85.8 / 30.8 79.7 / 25.6 83.8 / 27.4

Hi-LASSIE+ 79.0 / 27.7 84.7 / 30.2 78.3 / 29.1 82.9 / 32.3 75.3 / 25.3 81.9 / 27.6

ARTIC3D 82.6 / 28.4 85.3 / 30.7 81.6 / 29.9 85.5 / 33.1 80.0 / 27.8 84.1 / 29.4
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Figure 6.6: Animation fine-tuning.
Compared to the original animated out-
puts via rigid transformation (top), our
animation fine-tuning (bottom) effec-
tively improves the shape and texture de-
tails, especially around animal joints.
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Figure 6.7: Texture transfer. Our part surface
representation enables applications like pose
or texture transfer. Given a source shape and
target texture, we show the transferred texture
between instances (left) and animal species
(right).

ter our fine-tuning step via T-DASS. While the skeleton-based representation allows easy

animation via rigid part transformation, the output part shapes and texture are often dis-

connected and irregular around the joints. The results show that T-DASS can effectively

produce high-quality animations that are detailed in shape and texture and temporally

consistent between frames. In addition to animation, our 3D part surfaces also enables

convenient controllable syntheses like texture transfer and pose transfer between different

instance or animal classes. Several examples of texture transfer are shown in Fig. 6.7.

Limitations. ARTIC3D relies on the 3D skeleton discovered by Hi-LASSIE [142] to ini-

tialize the parts. If the animal bodies are occluded or truncated in most images, the skeleton

initialization tends to be inaccurate, and thus limiting ARTIC3D’s ability to form realistic

parts. Although our input preprocessing method can mitigate this issue to some extent,
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fluffy animals (e.g.sheep) with ambiguous skeletal configuration can still pose challenges

in skeleton discovery. In addition, the front-facing bias in diffusion models sometimes lead

to unrealistic texture like multiple faces, which also affects our reconstruction quality.

6.6 Conclusion

We propose ARTIC3D, a diffusion-guided framework to reconstruct 3D articulated

shapes and texture from sparse and noisy web images. Specifically, we design a novel

DASS module to efficiently calculate pixel gradients from score distillation for 3D surface

optimization and use it in the input preprocessing of noisy images; Shape and texture

optimization; as well as the animation fine-tuning. Results on both the existing datasets

as well as newly introduced noisy web images demonstrate that ARTIC3D produces more

robust, detailed, and realistic reconstructions against prior arts.



Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we introduce several methods to learn the 3D shapes of rigid objects,

human bodies, and articulated animal bodies from monocular images using weak supervi-

sory signals (e.g., 3D part/skeleton prior, visibility, semantic image features, 2D diffusion

prior, etc) Specifically, we propose:

• LPD [140]: a network that discovers and reconstructs 3D parts of general rigid

objects given single-view images for training. Our key idea is to learn a simple

shape prior from 3D primitives and use it to regularize the output part shapes. The

part-based representation not only improve the overall reconstruction accuracy but

enables applications like shape interpolation and generation.

• VisDB [144]: a model that learns robust human body estimation from mixed 2D-

3D data. We leverage the canonical surface mapping from DensePose as a weak

supervision for 2D vertex localization and dense surface visibility, which is used to

resolve truncation and occlusion ambiguities.

• LASSIE [141], Hi-LASSIE [142], and ARTIC3D [143]: a series of optimization

105
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frameworks that estimate the 3D pose, shape, and texture of articulated animal bod-

ies from sparse images in-the-wild. Our main contributions include 1) the new prob-

lem setting and datasets of sparse animal images online, 2) a novel skeleton-based

part surface representation, 3) several effective optimization strategies using geo-

metric priors and semantic consistency, and 4) incorporating 2D diffusion prior for

realistic 3D reconstruction and animation.

7.2 Future work

The five frameworks discussed in this thesis open up the possibilities of learning gen-

eral articulated shapes from monocular images, which can be further explored in the fol-

lowing future directions.

7.2.1 Generalization to diverse animal and articulated objects

As LASSIE, Hi-LASSIE, and ARTIC3D focus on common animal bodies, it would be

of great interest to generalize these methods to more diverse animal classes and articulated

objects whose 3D data is hard to obtain. Currently, these methods sometimes suffer from

2D ambiguities caused by noisy semantic features and partially visible skeletons on fluffy

animals or thin body parts. To facilitate the generalization, the key next steps include

automatic filtering of web images, robust 3D skeleton discovery by jointly considering all

images, and obtaining higher-quality dense correspondence between noisy images.

7.2.2 Towards realistic and animatable 3D articulated shapes

Another crucial future goal is to further improve the quality of 3D articulated shapes

and animations. To achieve this, one potential research direction is to combine implicit

and explicit/model-based representations if we want to generate high-resolution shapes

that are easily animatable and controllable. Also, we need to find a better balance between
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the realism of shape/texture and faithfulness to the input image, by carefully integrate 3D

geometric and 2D generative priors.
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