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 Over the past decades the dramatic increase in computational resources coupled with the 

advent of machine learning and artificial intelligence has profoundly impacted sensor technology. 

Together, these trends present a new opportunity for data-driven computational sensor design, 

where acquisition hardware is fundamentally changed to “lock-in” to the optimal sensing data with 

respect to a user defined cost function. This dissertation addresses this emerging opportunity, 

referred to herein as computational sensing, with a focus on applications in biophotonics and 

diagnostics where there is currently high-demand for cost-effective and  

compact sensing systems for democratizing global health. Therefore, several examples of 

computational sensing systems will be presented, all of which leverage machine learning and data-
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driven design principles to enable low-cost, compact, and sparse implementations well-suited for 

the point-of-care among other settings.  

 Firstly, I will discuss a multiplexed paper-based vertical flow assay and reader for biomarker 

quantification at the point-of-care. I will show how deep learning and statistical analysis of the 

multiplexed sensor response can be leveraged to improve accuracy, dynamic range, and limit-of-

detection, greatly enhancing the sensing capabilities beyond that of the traditionally employed 

lateral flow assay. Additionally, I will demonstrate feature selection techniques which can serve 

as a toolbox for iterative assay development, sensor design, and cost-performance optimization. 

Two applications in point-of-care diagnostics will be presented with this platform, one being a 

clinical study for early-stage Lyme Disease diagnoses, and the other, a clinical study for cardio-

vascular risk assessment by the high-sensitivity C-Reactive Protein test. Secondly, Localized 

plasmon resonance (LSPR) sensors and their corresponding readers will be discussed as 

computational sensing systems for label-free biomolecular sensing. Through machine learning of 

spectral characteristics, I will present how the corresponding LSPR sensor reader can be jointly 

designed with the LSPR sensor to optimize read-out accuracy while minimizing cost by 

computationally selecting from cost effective illumination optics. Lastly, a fundamentally different 

hardware design for spectroscopy, enabled by deep learning, will be demonstrated and discussed 

for application-specific performance advantages in terms of  acquisition rate, form factor, and cost. 
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Chapter 1. Introduction to computational sensing and machine learning 

 Computational sensing, as an analogue to computational imaging, is defined by the joint 

engineering of sensing system hardware and software at all levels of operation, from acquisition 

to the reporting of results. In this dissertation, I report several computational sensing approaches 

for applications in bio-photonics and point-of-care diagnostics, with each chapter being a seperate 

contained study. 

 After a brief discussion on computational sensing as a whole in Chapter 1, Chapter 2 begins 

by proposing an emerging point-of-care sensing technology, multiplexed paper-based 

immunoassays as a computational sensing platform, detailing a proof-of-concept clinical study 

performed for a common cardiac health assessment test. Chapter 3 further expands upon the 

potential of this paper-based computational point-of-care sensor, by introducing a multi-antigen 

test and deep-learning diagnostic algorithm for early-stage Lyme Disease. Both chapters showcase 

the benefits to cost and performance resulting from the computational sensing approach, and 

discuss how machine learning, specifically neural networks, can be best harnessed to combat real-

world sources of noise inherent in biosensing.  

 Chapter 4 explores computational design of the read-out instrumentation for emerging 

plasmonic sensing applications, where the final hardware contains computationally selected 

illumination bands. Chapter 4 shows how data-driven analysis of low-cost plasmonic sensors 

fabricated across multiple batches, can produce more accurate read-out instrumentation that can 

learn statistical variation inherent in the fabrication tolerances of the corresponding sensors.  

 Lastly, Chapter 5 proposes a fundamentally different spectrometer design enabled by deep 

learning. Utilizing the low-cost fabrication of plasmonic filters discussed in chapter 4, here I 
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demonstrate an encoder-based approach to optical spectroscopy, where deep learning is used for 

spectral reconstruction from the encoded features. 

 

1.1 Background 

 Computation has profoundly shaped the way we approach sensing. In the realm of bio-sensing, 

for example, signals are acquired, often at high cost, with various sources of noise including the 

stochastic behavior of molecular interactions, imperfections in fabrication, chemical and/or optical 

signal transduction mechanisms, and human variation in terms of sample handling as well as 

physiological differences and natural variations inherent in large populations under test. With such 

noisy and sparse sensing landscapes, computational methods have evolved helping us garner 

meaningful information from raw sensor data. Naturally, as Moore’s law has progressed, and 

computation has become more powerful, cheaper, and widely accessible, it has in many ways 

handled an even larger share of the noise burden when compared to the sensing hardware itself.  

For example, Support Vector Machine (SVM) based algorithms have more and more been 

employed in numerous sensing fields such as remote hyperspectral imaging for geological and 

environmental mapping and classification, cross-reactive sensor arrays for e.g. 

‘electronic/optoelectronic nose’ sensors for identification of trace amounts of explosives and 

toxins among other analytes, as well as for diagnostics and genomics applications, including 

pattern recognition of biological pathways for cancer and disease prediction [1]–[3]. More 

recently, deep learning and the implementation of Neural Networks (NNs) have shown immense 

promise in computer vision and image processing, beyond the capabilities of traditional machine 

learning approaches, inferring complex nonlinear patterns in high-dimensional data [2], [4], [5]. 

Furthermore, the feed-forward nature of NNs provide a major advantage in computational speed 
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compared other traditional signal recovery approaches based on e.g., compressive sampling, and 

can be readily integrated into common processors on mobile phones and tablet PCs, paving the 

way for cost-effective, mobile and yet powerful deep-learning enabled sensing and diagnostic 

systems [6], [7]. 

 Despite all this progress in the field of sensing at large, there is an important opportunity that 

has not been extensively explored yet: computation and machine learning methods can 

fundamentally change the hardware designs of traditional sensors and can be used to holistically 

design intelligent sensor systems. In such designs, computation and statistical learning tools need 

to be utilized at the design phase of the sensing instrument, carefully taking into account various 

sources of noise inherent in a given application of interest in order to design a smart read-out 

instrument, also impacting the signal generation and decoding schemes that are employed. In many 

of the examples listed earlier, this is not the case: the sensing framework has been designed based 

on a “sequential” merger of the hardware output and computational analysis applied on this output, 

following its acquisition with a traditional sensor hardware. This is a natural result of the analog 

to digital transition, where conventional sensor designs were, later in the sensing scheme, 

empowered by computers and computational analysis. Though this is an exciting and extensive 

field of sensing it falls outside the scope of this Dissertation. Here I specifically focus on an 

emerging opportunity, namely, “computational sensing systems” that merge computation and 

machine learning based statistical analysis of signals as a fundamental part of their hardware 

design to optimize sensing performance based on the full integration of computational processing, 

feature optimization and statistical learning at the hardware level. These systems that are of 

interest for my Dissertation try to answer the following question: if today’s powerful computers, 

computational resources and algorithms had existed before a well-known traditional sensor system 
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or instrument was designed, how would it have fundamentally changed and improved the sensing 

system?  

 One can ask the same question for e.g., imaging systems and microscopes/nanoscopes, the 

answers of which fall under the category of computational imaging field. While computational 

imaging field will be left outside the scope of this Dissertation in general, one exemplary answer 

to the former question that I posed is given by the design of a single pixel camera/imager [8]. This 

single pixel imaging system that is based on a compressive sampling framework, has entirely 

changed the design of a traditional imaging system based on the merger of computation at the 

hardware level, drastically simplifying the imaging hardware, in addition to efficiently releasing 

the requirement for a focal-plane array in an imager, which is especially important for designing 

cameras that operate at longer wavelengths. There are other examples from computational imaging 

field highlighting this emerging opportunity to use computational techniques and statistical 

learning for designing intelligent imaging systems; however in the in the following chapters, I will 

specifically focus on how the same underlying principles can manifest a transformation in the 

design and operation principles of computational sensing systems.  

 

1.2 Discussion on computational sensing systems  

 Computational sensing, in some ways is analogous to ‘inverse’ design methodology. With 

inverse design, a desired performance ‘target’ is first defined, then computation is utilized to 

converge to a given set or subset of parameters, which most accurately yield this target. Such a 

computational design methodology can drastically improve the overall performance of a given 

system, through the implementation of locally optimal, but perhaps non-intuitive design choices. 

Additionally, inverse design can be used to rapidly provide a blueprint for a dedicated device that 
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can out-perform, sometimes at a lower cost, a more general purpose device design that has perhaps 

been modified to execute a given sensing task. Examples of inverse design can be found in 

mechanics, antenna design, and nanophotonics, among other engineering disciplines. For example, 

wavelength demultiplexers for telecommunications applications and recently metasurface gratings 

have been shown to benefit from topological optimization methods in-line with the inverse design 

methodology [9], [10]. This approach has important implications for designing sensing hardware 

and sub-components, specifically for nanophotonic sensors, where the electric field patterns are 

complex and delicate functions of 3D device geometry, fabrication artifacts and tolerances, 

interacting wave properties and material dispersion, among others. All these variables need to be 

taken account, along with their statistical variation, in the design of intelligent sensor hardware 

and signal decoding strategies.   

 One powerful mathematical framework that can be used for this purpose is compressive 

sensing (also known as compressive sampling). The general goal of compressive sensing is to 

‘encode’ a given signal, 𝑥, with a sparse sampling operator, 𝜃. By solving an under-determined 

matrix equation representing this sparse sampling/sensing operation, i.e., 𝑦 =  𝜃𝑥, the original 

signal (𝑥) can be reconstructed from a fewer number of measurements (compared to what is 

dictated by the Nyquist sampling theorem) assuming that the signal can be represented as a sparse 

vector in some mathematical domain, such as the wavelet domain [11].  The field of spectroscopy 

exemplifies how this compressive signal recovery framework can transform traditional grating and 

line-scan CCD based spectrum analyzer designs into much more compact computational 

spectroscopy tools, which use e.g., Liquid Crystal Displays (LCDs), and even disordered 

diffractive nano-structures to encode a given spectral signal and then computationally reconstruct 
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it with a minimum number of measurements [12], [13]. This approach saves measurement time 

while bringing in compactness advantages to the final instrument design.  

 These previously mentioned frameworks showcase powerful examples of how new sensing 

hardware, with clear engineering advantages, can be enabled by computation; however they are 

also limited by their inability to learn and properly take into account characteristic noise inherent 

in real-world sensing systems. Therefore, other computational sensing approaches based on 

statistical learning (and data-centric training) must be evoked to tackle this noise problem [14]. 

Such learning frameworks rely on large, statistically significant sets of sensing data, often acquired 

by ‘gold-standard’ sensing systems used in the training phase of the system design. This acquired 

training data set is then mapped to a verified target, and a mathematical cost function, 𝐽(𝒚, 𝒚’), is 

defined based on the difference between the verified target (gold standard, 𝒚) and the algorithmic 

output of the sensor that is being explored and designed, i.e. 𝒚′. This cost function can be iteratively 

minimized while the design of the sensor evolves based on the target criteria, budget and 

performance expectations. Statistical learning and modern machine learning approaches, including 

deep learning techniques, provide powerful tools for this purpose, helping design intelligent sensor 

systems that learn how to digitally separate out noise features from the target sensing signal by 

using large numbers of well-characterized training data. 

 While quite powerful in general, one has to be careful when using such a data-driven 

instrument or sensor design approach: sometimes, the high dimensional space of training data 

might drown-out the meaningful correlations to the target sensing information. This phenomenon, 

which is also referred to as ‘the curse of dimensionality’, presents design engineers with an 

ultimatum to either acquire exponentially larger training data sets, or to reduce the dimensionality 

of their sensing systems. Machine learning inspired sensor design, therefore, attempts to 
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systematically prioritize or select potential measurement features, in terms of their statistical 

values/contributions for accurately predicting the desired sensor output. This process, known as 

‘feature selection’ can be thought of as an ‘elite democracy’ of measurement features, which 

computational sensing systems can use as optimal building blocks in subsequent iterations of the 

sensing hardware, fully realizing the merger of computation, statistical learning and sensor 

hardware and read-out design. Optimization and engineering of this feature selection process 

(determining the voting power of individuals in an elite democracy, following the same analogy) 

can benefit sensing systems in a myriad of ways: by reducing the complexity, cost, bulkiness and 

weight of the sensing instrument, while also mitigating various noise sources as well as the data 

acquisition burden, which is increasingly becoming an issue with the proliferation of high-

throughput sensor systems driven by the internet of things (IoT) and the related ‘big data’ paradigm 

[15].  

 Some of these emerging ideas have already started to be used in the field of spectroscopy, by 

incorporating feature selection as a computational sensing tool. Several learning algorithms such 

as Genetic Algorithms (GAs), SVMs, as well as L-1 norm based regularization methods, have been 

investigated as means with which to select an optimal subset of spectral bands from a larger 

hyperspectral data set for remote sensing applications, empowering classification algorithms as 

well as subsequent designs for targeted applications [2], [16], [17]. Stated differently, data-driven 

designs can in general outperform intuitive designs, especially if well-characterized training data 

are available to engineer and select features that can statistically separate out various noise terms 

from the target signal of interest for the sensor. Such frameworks can naturally be extended to 

other spectroscopy applications including fluorescence-based sensing systems, comprised of e.g., 

a complex mixture of spectrally overlapping, multiplexed exogenous fluorophores, as well as 
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endogenous auto-fluorescent or absorbing media for sub-dermal, noninvasive and wearable bio-

sensing applications, among others [18].  

 It is important to note that feature selection is not solely a computational approach used for 

improving sensor component performance. In fact, utilizing a subset of the physically measurable 

features can sometimes, especially in low-dimensional feature spaces, lead to poorer sensor 

performance due to the information discarded during the exclusive selection process. However, 

performance trade-offs such as this are inherent in most engineering applications, and should be 

considered on a case-by-case basis, ultimately converging to design choices that embody the most 

appropriate sensing technology given a set of performance and budget constraints of the target 

application. Furthermore, the above described data-driven design methods can quantify such trade-

offs in performance and help optimize the engineering of the sensor system. For example, some 

sensing systems, especially those used for environmental monitoring, are much more powerful and 

useful, provided they can operate in a widely distributed format. Therefore, the added benefit of 

the expanded spatio-temporal data collection capability in such a distributed sensing network 

might practically outweigh the decrease in performance for an individual sensing node. Cost-

sensitive feature selection implementations can therefore exist as a systematic way of making such 

design choices, given an appropriately defined threshold of needed resolution, sampling rate, 

power requirement, etc. Furthermore, constraining systems to be constructed from existing 

commercial electronics (such as e.g., mobile phones, low cost LEDs) can benefit from the 

economies of scale and greatly reduce costs, improve accessibility and throughput of these sensing 

systems, broadly benefiting the overall sensing goal [19]–[21].  

 Also of strong interest are computational sensing systems which can re-configure on demand 

e.g., their sensing architecture and/or path to best suite a specific application. Such dynamic and 
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intelligent sensor designs can be applied to environmental monitoring with distributed sensing 

networks that can autonomously decide where to sample and how to sense (e.g., which modality 

to use), whether they are doing so under a supervised learning framework with a concrete sensing 

goal (e.g., a well-defined cost function to map hydrocarbons and other pollutants in the air or ocean 

after anthropogenic disturbances), or in an unsupervised capacity for general discovery or 

surveillance [25]. Similarly, wearable sensors can greatly benefit from reconfigurable 

computational sensing designs as a means to optimize signal acquisition for different body types, 

motion artifacts, and health states [26]. Specifically, optical or bio-impedance based sensor arrays 

for e.g., blood pressure monitoring could quickly be computationally reconfigured, by optimizing 

the relative weights of different signals within the array to converge to a reliable and accurate read-

out for photoplethysmogram (PPG) or electro-cardio gram (ECG) signals. Additionally, systems 

for outpatient monitoring, for example, can incorporate dynamic configurability for extending the 

monitoring life-time by autonomously adjusting the sampling rate, or activating key sensor 

functions only in instances where the patient is deviating from a nominal or pre-defined health 

state. Furthermore, such computational sensing systems, if connected in a widely distributed and 

cost-effective manner, as part of an IoT network, will have the major advantage of collectively 

learning ‘on-line’ from evidence based sensing outcomes, thereby solving and converging to 

sensing solutions otherwise intractable with a single sensing unit [27], [28].  
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Chapter 2. Deep learning-enabled point-of-care sensing using multiplexed 

paper-based sensors 

 This chapter introduces a new paper-based point-of-care sensor which utilizes traditional 

colorimetric based immunochemistry, but is uniquely well-equipped as a computational sensor 

due to its multiplexed, vertical flow format.  This chapter shows how multiplexed sensors can be 

iteratively developed through data-driven computational design to improve performance, expand 

the dynamic range, and lower the cost per-test. As a use-case, we demonstrate a low-cost and rapid 

paper-based vertical flow assay (VFA) for high sensitivity C-Reactive Protein (hsCRP) testing, 

commonly used for assessing risk of cardio-vascular disease (CVD). A machine learning-based 

framework was developed to (1) determine an optimal configuration of immunoreaction spots and 

conditions, spatially-multiplexed on a sensing membrane, and (2) to accurately infer target analyte 

concentration. Using a custom-designed handheld VFA reader, a clinical study with 85 human 

samples showed a competitive coefficient of variation of 11.2% and linearity of R2 = 0.95 among 

blindly-tested VFAs in the hsCRP range (i.e., 0-10 mg/L). We also demonstrate a mitigation of 

the hook-effect due to the multiplexed immunoreactions on the sensing membrane. This paper-

based computational VFA could expand access to CVD testing, and the presented framework can 

be broadly used to design cost-effective and mobile sensors. 

 This chapter is part of a manuscript which is currently under review, and is currently on-line 

in pre-print form:  Z. Ballard, H.A. Joung, A. Goncharov, J. Liang, K. Nugroho, D. Di Carlo, O. 

B. Garner, A. Ozcan, “Deep Learning-Enabled Point-of-Care Sensing Using Multiplexed Paper-

Based Sensors,” bioRxiv, p. 667436, Jun. 2019. (doi: http://dx.doi.org/10.1101/667436.) 
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2.1 Introduction 

 Computation has great potential for improving diagnostics. By identifying complex and 

nonlinear patterns from noisy inputs, computational tools present an opportunity for automated 

and robust inference of medical data. For example, several studies have shown deep learning as a 

method to automatically identify tumors from an image, potentially enabling diagnostics in low-

resource settings that lack a trained diagnostician [1]–[3].  Additionally, computational solutions 

have been demonstrated earlier in the diagnostics pipeline to virtually stain pathology slides and 

enhance image resolution through the use of convolutional neural networks [4]–[6]. Though much 

of this recent success is within the field of imaging, diagnostics that rely on biosensing can 

similarly leverage computational tools to improve sensing results and design future systems. 

 Point-of-care (POC) testing can especially benefit from computational sensing approaches. 

Due to their low-cost materials, compact designs, and requirement for rapid and user-friendly 

operation, POC tests are often less accurate when compared to traditional laboratory tests and 

assays [7]–[12]. For example, paper-based immuno-assays such as rapid diagnostic tests (RDTs) 

offer an affordable and user-friendly class of POC tests which have been developed for malaria, 

HIV-1/2, and cancer screening, among other uses [13]–[17]. However, these RDTs lack the 

sensitivity and specificity needed for certain diagnostic applications largely due to issues of reagent 

stability, fabrication and operational variability, as well as matrix effects present in complex 

samples such as blood [15], [16], [18]. Additionally, a well-known competitive binding 

phenomenon called the hook-effect can lead to false reporting of results, specifically in instances 

where the sensing analyte can be present over a large dynamic range [19]–[24].  Therefore, 

computational tools alongside portable and cost-effective assay readers present a unique 

opportunity to compensate for some of these constraints [25]–[31]. By quantifying the signals 



14 

 

generated on paper-based substrates, machine learning algorithms have the potential to 

significantly improve the performance of POC sensors, without a significant hardware cost or 

increased complexity to the assay protocol. 

 As a unique demonstration of this emerging opportunity at the intersection of computational 

sensing and machine learning, here we report a computational paper-based vertical flow assay 

(VFA) for cost-effective high-sensitivity C-Reactive Protein (hsCRP) testing, also referred to as 

cardiac CRP testing (cCRP) [32]. This low-cost and rapid (< 12 min) VFA uses a multiplexed 

sensing membrane and diagnostic algorithm based on neural networks to accurately quantify CRP 

concentration in the high-sensitivity range (i.e. 0-10 mg/L), as well as to identify samples outside 

of this range despite the presence of the hook-effect.  

 CRP is a general biomarker of inflammation, however slightly elevated CRP levels in blood 

can be an indicator of atherosclerosis, and have been shown to be a predictor for heart attacks, 

stroke, and sudden cardiac death for patients with and without a history of CVD [33]–[36]. 

Therefore, the hsCRP test is a quantitative test commonly ordered by cardiologists to stratify 

certain patients into low, intermediate, and high risk groups for CVD based off of clinically defined 

cut-offs: below 1 mg/L is considered low risk, between 1 and 3 mg/L is intermediate risk, and 

above 3 mg/L is high-risk [37]. As a result, the hsCRP test requires a high degree of accuracy and 

precision, especially around the clinical cut offs, putting it out-of-reach of traditional paper-based 

systems [38]. Additionally, in the presence of infection, tissue injury, or other acute inflammatory 

events, CRP levels can rise nearly three orders of magnitude, making hsCRP testing with immuno- 

and nephelometric- assays vulnerable to the hook-effect [34], [36], [39]. As a result, samples with 

greatly elevated CRP levels can be falsely reported as within the hsCRP range (i.e., < 10 mg/mL), 

and therefore wrongly interpreted for CVD risk stratification.  
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To address these existing challenges of POC hsCRP testing, in this work we implemented a 

computational VFA-based sensing framework to jointly develop the CRP quantification algorithm 

and multiplexed sensing membrane configuration, computationally selecting the most robust 

subset of sensing channels with which we accurately infer the CRP concentration. We performed 

a clinical study with 85 patient serum samples and >250 VFA tests created over multiple 

fabrication batches, and compared the sensor performance to an FDA-approved assay and 

nephelometric reader (Dimension Vista System, Siemens). Our blind testing results yielded an 

average coefficient of variation (CV) of 11.2% and a coefficient of determination (R2) of 0.95 over 

an analytical measurement range of 0 mg/L to 10 mg/L. It is important to note that although there 

is no FDA-approved POC hsCRP sensor, various systems have been demonstrated in the 

literature[40]–[44]. However, the tests which report accurate quantification in the high-sensitivity 

range employ fluorescent-based chemical assays and benchtop readers to overcome the 

performance limits of their traditional colorimetric counterparts. In contrast, this work uniquely 

demonstrates a new data-driven sensor design and read-out framework, powered by deep learning, 

for improving POC testing. We applied this machine learning-enabled sensing framework to a 

colorimetric paper-based multiplexed test for quantification of hsCRP as a use-case, and 

demonstrated its competitive quantitative performance using a mobile reader, without the need for 

more advanced and sensitive molecular assays and their corresponding benchtop read-out systems. 

 We believe that the presented POC hsCRP sensor platform could provide a rapid and cost-

effective means to obtain valuable diagnostic and prognostic information for CVD, expanding 

access to actionable health information, especially for at-risk populations that often go underserved 

(34,35). Broadly, our results also highlight computational sensing as an emerging opportunity for 

iterative assay and sensor development. Given a training data set, machine learning-based feature 
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selection algorithms can be implemented to determine the most robust sensing channels for a given 

multiplexed system such as protein micro-array, well-plate assay, or multi-channel fluidic device, 

among others. This can therefore lead to optimized and cost-effective implementations of 

multiplexed bio-sensing systems for future POC diagnostic applications. 

 

2.2 Materials and methods  

Multiplexed VFA 

Overview 

 The multiplexed VFA platform is comprised of functional paper layers stacked within a 3D-

printed plastic cassette. These layers contain different paper materials and wax printed structures 

which have been optimized to support uniform vertical flow of serum across a two-dimensional 

nitrocellulose sensing membrane (Fig. 2.1a, Table S1). Similar to conventional paper-based 

immunoassays, the VFA works by immobilizing a target analyte onto a paper substrate through 

binding to a complimentary capture antigen or antibody previously adsorbed within the porous 

structure [45]. Gold nanoparticles conjugated with a secondary antibody are then introduced and 

bound to the immobilized analyte in a sandwich structure, resulting in a color signal on the sensing 

membrane. The operation of our VFA test involves three sequential injection steps: 1) the running 

buffer, 2) the sample serum and nanoparticle conjugate, and 3) the washing buffer (Fig. 2.1c). 

After a 10-minute wait-period, the assay is complete and the VFA cassette is opened by twisting 

apart the top and bottom case, revealing the multiplexed sensing membrane on the top layer of the 

bottom case (Fig. 2.1c). This bottom case is then inserted into a custom-designed mobile-phone 

reader. An image of the activated multiplexed sensing membrane is subsequently captured and 
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analyzed via a fully-automated image processing and deep learning-based CRP quantification 

algorithm (Fig. 2.1d). 

 

Multiplexed sensing membrane fabrication and VFA assembly 

 The multiplexed sensing membrane contains up to 81 spatially isolated immunoreaction spots 

that are each defined by a ‘spotting condition’ which refers to the capture protein and the associated 

buffer dispensed onto the nitrocellulose sensing membrane prior to assembly and activation. 

Therefore, to design the multiplexed sensing membrane for computational analysis, a custom spot-

assignment algorithm was developed to generate a ‘spot map’ within the active area of the sensor. 

Based on a given grid spacing and number of spotting conditions, the assignment algorithm 

distributes spotting conditions such that no single spotting condition is disproportionately 

positioned near the center or the edge of the sensing membrane. Because the vertical flow rate can 

vary radially across the sensing membrane, leading to variations of each immunoreaction across 

the sensor area, this step mitigates a potential bias on any given spotting condition. With seven 

spotting conditions (see Table 2.2.) in a 9x9 grid format (1.3 mm periodicity), the spot-assignment 

algorithm produced the map shown in Figure 2.1c, which was implemented as the initial design 

for this study. 

 An automated liquid dispenser (MANTIS, Formulatrix®) was used to deposit 0.1 μL of the 

different protein conditions directly onto a nitrocellulose (NC) membrane in the algorithmically 

determined pattern shown in Fig. 2.1c. During the spotting process, up to 24 NC sensing 

membranes were produced on a single connected sheet, constituting one fabrication batch, and up 

to three batches were produced on a given day.  In order to evaluate batch-to-batch variations, we 

intentionally produced sensing membranes over multiple fabrication batches as well as with two 
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reagent batches (i.e. sets of reagents which had unique storage times and/or lot numbers). Each 

sensing membrane was therefore tagged with a corresponding fabrication batch ID (FID, e.g., 1, 2 

or 3,) and reagent batch ID (RID, e.g., 1 or 2). 

 Following the automated spotting procedure, the NC sheets were incubated at room 

temperature for 4 hours after which they were submerged in 1% BSA blocking solution and 

allowed to incubate at room temperature for 30 min. The NC sheets were then dried in an oven at 

37oC for 10 min, after which they were cut into individual sensing membranes (1.2 x 1.2 cm) using 

a razor. The remaining paper materials contained in the VFA were produced following the methods 

outlined in a previous publication [45]. All the paper materials, including the NC sensing 

membrane were then assembled within the top and bottom cases of a 3-D printed VFA cassette, 

with foam tape holding together the paper stack (see Table 2.1). 

 

Figure 2.1. The multiplexed vertical flow assay (VFA) (a) The VFA cassette cross-section and mobile-phone reader 

with the inserted VFA cassette to be tested. (b) The multiplexed sensing membrane contained within the VFA cassette. 

The algorithmically determined immunoreaction spot layout (right) contains seven unique spotting conditions, each 
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of which uniquely reacts with the sensed analyte and the signal-forming Au NPs. A raw image of an activated sensing 

membrane taken with the mobile-phone reader is shown to the left. (c) (i) The VFA assay operation protocol (ii) The 

VFA cassette and mobile phone reader after the assay completion. The VFA cassette inserted into the mobile phone 

reader from the (iii) bottom and (iv) top view.  (d) Block diagram of the computational analysis, showing the input 

features 𝑋𝐼𝑁 which contain, the average signals from like-spotting conditions along with the reagent batch ID (RID) 

and the fabrication batch ID (FID).  

 

hsCRP assay procedures  

 Each hsCRP measurement with our VFA test is performed as follows: first 5 µL of serum 

sample is diluted 10 times in a running buffer (3% tween 20, 1.6% BSA in PBS) resulting in a 50 

µL sample solution. Then 200 µL of running buffer is injected into the VFA inlet and allowed to 

absorb. After absorption into the VFA paper-stack (~ 30 sec), 50 μL of sample solution is mixed 

with 50 μL of the gold-nanoparticle (Au NP) conjugate solution (see Appendix for synthesis), and 

the mixture is pipetted into the inlet and allowed to absorb. Lastly, after absorption of the sample 

solution, 400 μL of the running buffer is added to wash away the nonspecifically bound proteins 

and Au NPs. After a 10-minute reaction time, the VFA cassette is then opened, and inserted into 

the bottom of the mobile-phone reader (Fig. 2.1a.). This mobile reader images the multiplexed 

sensing membrane using the standard Android camera app (ISO: 50, shutter at 1/125, autofocused), 

and saves a raw image of the VFA sensing membrane (.dng file) for subsequent processing and 

quantification of the CRP concentration.  
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Data processing 

 Custom image processing software was developed to automatically detect and segment the 

immunoreaction spots in each mobile-phone image of the activated VFA cassette (see Appendix, 

Fig. 2.5). After segmentation, the pixel average of each spot is calculated and subtracted by the 

pixel-average of a locally defined background containing BSA blocked NC membrane. Each 

background-subtracted spot signal is then normalized to the sum of all the spots on the sensing 

membrane. The final spot signal 𝑠′𝑚,𝑝 is therefore described by, 

s′m,p =
sm,p−bm,p

∑ ∑ (sm,p−bm,p)m𝑝
                                                 Eq. 2.1 

where 𝑚 represents the spotting condition, and the 𝑝 represents the 𝑝th redundancy on the VFA 

per condition. 𝑠𝑚,𝑝 is the pixel average of a given segmented spot, and 𝑏𝑚,𝑝 is the local background 

signal. The final VFA signal per condition can then be calculated as:  

  xm =
1

Pm
∑ sm,p

′Pm
p=1                                                      Eq. 2.2 

where 𝑃𝑚 is the number of redundancies for a given spotting condition. The normalization step in 

Eq. (1) helps us to account for sensor-to-sensor variations borne out of pipetting errors, fabrication 

tolerances, as well as operational variances. 

 

Clinical testing  

 We procured remnant human serum samples (under UCLA IRB #19-000172) for hsCRP 

testing using our VFA platform. Each clinical sample was previously measured within the standard 

clinical workflow as part of the UCLA Health System using the CardioPhase hsCRP Flex® reagent 

cartridge (Cat. No. K7046, Siemens) and Dimension Vista System (Siemens). In total, we 

measured 85 clinical samples in triplicate with our VFA sensors. All but one sample was within 
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the standard hsCRP range of 0 to 10 mg/L, with the outlier having a concentration of 83.6 mg/L. 

In addition to testing these clinical samples, nine CRP-free serum samples (Fitzgerald Industries 

International, 90R-100) were measured as well as nine artificial samples created by spiking 200, 

500, and 1000 mg/L CRP into CRP-free serum samples. These artificial samples were tested to 

simulate serum samples from patients undergoing acute inflammatory events. Though relatively 

rare in the context of hsCRP testing, such high concentration samples can be falsely reported as 

having a low CRP concentration due to the hook-effect. Therefore, these samples were included 

to test if our multiplexed computational VFA could avoid such false reporting. Among different 

batches of 273 fabricated VFA sensors, we removed one VFA test from the data-set due to a 

fabrication error (misalignment, see Appendix, Fig. 2.6a), and removed two triplicates due to 

abnormally high levels of non-specific binding, which was immediately obvious in the low signals 

on the sensing membrane and unusual pink color observed on the top case (Appendix, Fig. 2.6b). 

 

Computational VFA sensor analysis 

 After the clinical study was completed the image data from the activated VFA tests were 

partitioned into a training set (Ntrain = 209) and testing set (Ntest = 57). This data partition was 

structured to ensure that the testing samples would be distributed linearly over the hsCRP range, 

and that samples were pulled proportionally from the different fabrication batches within each 

cardiovascular risk stratification group. The raw background-subtracted pixel average values are 

shown in the Appendix (Fig. 2.7), where the marker color and shape indicate the fabrication batch 

ID and the reagent batch ID, respectively. 
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Model and cost function selection 

 The training set was analyzed via a k-fold cross-validation (k=5) to determine the optimal 

learning algorithm for quantification of CRP concentration from the inputs 𝑋𝐼𝑁. We evaluated 

different fully connected networks through a random hyper-parameter search, where the number 

of nodes, layers, regularization, dropout, batch-size, and cost-function were each randomly 

selected from a user-constrained list. A tiered neural network architecture (see Appendix, Fig. 2.8) 

with a cost function of mean-squared logarithmic error (MSLE) yielded the best performance over 

the random iterations of the cross-validation. As an alternative, a single neural network with 

multiple hidden layers, in contrast to the tiered structure, could also be used in providing an 

accurate and generalizable model. 

 

2.3 Results 

Optimization of VFA spots and conditions using machine learning  

 Machine learning-based optimization and feature selection of our VFA platform was 

performed in two distinct steps: spatial spot selection and condition selection, illustrated in Figure 

2.2a and Figure 2.2b, respectively. For the spot selection process, a cost function, 𝑗𝑚,𝑝 , was defined 

per sensing spot to represent the normalized distance from the mean of like-spots (i.e. spots that 

share the same condition) averaged over the samples in the training set, 

                       𝑗𝑚,𝑝 = ∑
|𝑠′𝑚,𝑛,𝑝 − 𝑠′̅𝑚,𝑛 |

𝑠′̅𝑚,𝑛

𝑁𝑇𝑟𝑎𝑖𝑛

𝑛=1

 Eq. 2.3 
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where 𝑠’𝑚,𝑛,𝑝 is defined in Eq. 2.1 with the added index 𝑛 indicating the 𝑛th sample in the training 

set.  𝑠′̅𝑚,𝑛is the spot signal averaged over each condition within a single test, i.e.  𝑠′̅𝑚,𝑛 =

1

𝑃𝑚
∑ 𝑠′𝑚,𝑛,𝑝
𝑃𝑚
𝑝=1 . 

 The heat map in Figure 2.2a, which is interpolated from a 9x9 matrix of the cost function 

defined at each spot of the VFA, visualizes the statistically robust active areas of the VFA sensing 

membrane. To select a subset of spots from the 9x9 grid configuration, we then performed a k-

fold (k=5) cross-validation. The cross validation was performed over 75 iterations where the input 

to the neural network, 𝑋𝐼𝑁, was defined by incrementally smaller subsets of the original 81 spots 

for each iteration. The spot with the maximum cost  𝑗𝑚,𝑝 was eliminated at each iteration, resulting 

in the last iteration containing a subset of 7 spots, each corresponding to a different condition. The 

MSLE value from the cross validation was then plotted for every iteration to visualize the trade-

off between the number of spots and the error of the network inference (Fig. 2.2a). Due to the 

random training process of the neural network, there is noise associated with this curve, however 

a clear performance benefit can be seen after the elimination of the first 30 to 40 spots 

corresponding to the highest 𝑗𝑚,𝑝. It is also clear that further reducing the number of spots results 

in substantial increase in quantification error. Therefore, the approximate minimum of the MSLE 

curve was used to define a subset of 38 spots for subsequent analysis. 

 After this initial spot selection (Fig. 2.2a), this subset of 38 spots was further subject to a 

condition selection step to further optimize the performance of our computational VFA for hsCRP. 

This second phase of the feature selection aims to select the most robust sensing channels as 

defined by the unique chemistry attributed to the different spotting conditions. To this end, we 

performed a second iterative k-fold (k=5) cross-validation analysis, eliminating one spotting 
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condition each iteration and tracking the cross-validation error as a result of each elimination. This 

process was repeated for incrementally smaller subsets of conditions defined by the minimum 

MSLE result from the previous iteration. Resulting from this analysis, Fig. 2.2b reports the MSLE 

and coefficient of determination as function of the number of spotting conditions, suggesting that 

eliminating the Mix 1 and Ag-low condition can lead to slightly better or equivalent performance 

when compared to the inclusion of all the original spotting conditions.  

 Taken together, this machine learning-based optimization of the VFA leads to the statistical 

selection of the best combination of spots and conditions (Fig. 2.2c inset) that can computationally 

determine the analyte concentration. The cross-validation results, compared to the gold standard 

hsCRP measurements, are also reported in Figs. 2.2c and d. Here the inputs to the neural network, 

𝑋𝐼𝑁, are defined by the optimal spot configuration as determined by the spot and condition 

selection (see Fig. 2.2c inset), and also include two additional integer features which correspond 

to the reagent ID (𝑅𝐼𝐷 ∈ {0,1} ) and the fabrication batch ID, (𝐹𝐼𝐷 ∈ {1,2,3}). 
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Figure 2.2. Cross-validation and feature selection analysis using the training data set of clinical samples (NTrain 

= 209) (a) The spot selection process. A heat-map (top left) is generated by plotting the cost function 𝑗𝑚,𝑝 across the 

sensing membrane. The cross-validation performance, both MSLE and the coefficient of variation (R2), is then plotted 

against the number of spots selected based off of 𝑗𝑚,𝑝 (bottom). The optimal subset of spots (top right) is then selected 

based off the optimal quantification performance indicated by the solid red marker. (b) The condition selection 

process. Conditions are ranked based off of an iterative elimination method (top left), and the cross-validation 

performance is plotted against the number of conditions input into the quantification network. The optimal subset of 

conditions (top right) is then selected based off the optimal quantification performance indicated by the solid red 

marker. (c) The cross validation results using the selected features, where the ground truth CRP concentration is plotted 

against the predicted CRP concentration. The marker color and shape represent the different reagent batch ID (RID) 

and the fabrication batch ID (FID), respectively. (d) Bland-Altman plot of the same cross-validation results, where the 

dashed red lines represent the ± standard deviation of the measurement difference from the tested VFAs. 
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 After this feature selection and cross-validation analysis reported in Figure 2.2, the final CRP 

quantification algorithm was trained using the entire training set (Ntrain=209) and the optimal spot 

configuration (Fig. 2.2c inset). In addition to the CRP quantification algorithm, a second 

classification algorithm was trained to identify the CRP samples representing an acute 

inflammation event, with a CRP concentration of > 10 mg/L (�̂�𝑡𝑟𝑎𝑖𝑛= 6, �̂�𝑡𝑒𝑠𝑡 = 6) (Fig. 2.1d). 

Next, we report our blind testing results using this optimized CRP VFA platform. 

 

Validation of computational VFA performance for CRP measurements 

 Our computational VFA results from the blind testing set (Ntest=57) correlated well to the 

quantification results of the gold-standard hsCRP Flex cartridge run on the Dimension Vista 

System (see Fig. 2.3). These samples were analyzed using only the pixel information contained 

within the computationally determined subset of 28 spots and 5 conditions (Fig. 2.3a). The 𝑥𝑚 

signals (Eq. 2) along with the FID and RID of each test sample were first classified by an initial 

neural network to determine if the test was in the hsCRP range (<10 mg/L) or the acute 

inflammation range (> 10 mg/L); we achieved 100% classification accuracy, and correctly 

classified 6 samples as acute and the rest (51 samples) as in the hsCRP range. The samples 

classified in the hsCRP range were then routed to a quantification neural network, whereas the 

acute samples were simply reported as acute along with a confidence score, as summarized in Fig. 

2.3c.  

 The quantification accuracy of the hsCRP samples using our computational VFA was 

characterized by a direct comparison to the gold-standard values (Fig. 2.3b-c). With 51 tests 

quantified in the hsCRP range, the R2 value was found to be 0.95, with a slope and intercept of the 
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linear best-fit line being 0.98 and 0.074 respectively. The overall average CV of the blind testing 

data was found to be 11.2% with the average CV for the low-risk, intermediate-risk, and high-risk 

stratified samples quantified as 11.5%, 10.1%, and 12.2 %, respectively.  As a reference point, the 

FDA review criteria for hsCRP testing state an acceptance criterion of ≤ 20% overall CV, with a 

specific CV of ≤ 10% for samples in the low risk category (i.e. < 1 mg/L) [38]. 

 

Figure 2.3. Blind testing results of clinical samples (Ntest = 57) (a) The features selected from the cross-validation 

analysis are extracted from a blind testing image and input into the neural network-based processing which infers the 

final CRP concentration. The clinical cutoffs for stratifying patients in terms of cardiovascular disease (CVD) risk are 

shown on the right. (b) The ground truth CRP concentration plotted against the VFA predicted CRP concentration 

(left y-axis) from blindly tested clinical samples. The dotted line represents a perfect match (y = x) and the red line 

represents the linear best fit. The confidence score is plotted (right y-axis) for the samples classified as acute. The 

marker color and shape represent the different reagent batch ID (RID) and fabrication batch ID (FID), respectively. 
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(c) The blind testing results for the low and intermediate CVD risk regimes, where the dotted lines represent the 

clinical cutoffs at 1 and 3 mg/L. 

 

2.4 Discussion 

 Our VFA-based hsCRP test benefits from machine learning in several ways. Firstly, using 

neural networks to select optimal spots and infer analyte concentration from the highly multiplexed 

sensing channels greatly improves our quantification accuracy when compared to e.g. a standard 

multi-variable regression (see Appendix, Fig. 2.9). Deep learning algorithms such as the fully-

connected network architecture used in this work, contain a much larger number of learned/trained 

coefficients along with multiple layers of linear operations and non-linear activation functions 

when compared to standard linear regression models. These added degrees of freedom enable 

neural networks to converge to robust models which can learn non-obvious patterns from a 

confounding set of variables, making them a powerful computational tool for assay interpretation 

and calibration. However, one concern with deep learning approaches is the possibility of 

overfitting to the given training set, especially in the instance of limited data. To mitigate this issue, 

we incorporated regularization terms in the hyper-parameter search (both L2 regularization and 

dropout), and found via cross-validation that the lowest error model employed the maximum 

degree of dropout regularization (i.e. 50%) [46], [47]. However, we observed better quantification 

results in the blindly tested samples when compared to the cross validation analysis, suggesting 

that our model appropriately generalized over the operational range of the hsCRP sensor. 

 Secondly, by incorporating fabrication information using 𝑅𝐼𝐷 and 𝐹𝐼𝐷 input features, the 

neural network was able to learn from batch-specific patterns and signals. This resulted in a 12.9% 

reduction in the blindly tested MSLE when compared to the performance of a network trained 
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without these fabrication batch input features. Similarly, incorporating the fabrication information 

reduced the overall CV from 16.64% to 11.2% and increased R2 value from 0.92 to 0.95. It is 

important to note that these VFA tests (N=273) were fabricated without the use of industry-grade 

production equipment such as humidity and temperature controlled chambers, and in addition, 

several fabrication steps involved manual assembly. Taken together, these simple input features 

can benefit the performance and quality assurance of future computational POC tests following 

the methodology of this work. For example, the fabrication information could be included for each 

test in the form of a Quick Response (QR) code or could alternatively be logged into a GUI by the 

user before the measurement data are sent to the quantification network (running on a local or 

remote computer). 

 Another benefit of our computational VFA platform is the mitigation of false sensor response 

due to the hook effect. The VFA format importantly enables rapid computational analysis of highly 

multiplexed immunoreaction spots with minimal cross talk or interference among spots, which is 

inevitable for the case of standard lateral flow assays or RDTs. The multiplexed information 

reported by the different spotting conditions therefore allows for unique combinatorial signals to 

be generated over a large dynamic range (see Fig. 2.3b). The hook effect is clearly seen in our raw 

sensor data, exhibited by the capture antibody (Ab) condition (see Appendix Fig. 2.4, Fig. 2.7), 

illustrating how this condition alone can lead to false reporting of high analyte concentrations, i.e. 

in the case of acute inflammation. Therefore, without the incorporation of the monotonically 

responsive CRP antigen (Ag) spotting condition as one of the multiplexed channels in the VFA, 

high-concentration CRP samples can be falsely reported as low concentration due to the hook 

effect. This conclusion would still be true even if we trained another neural network that used a 

limited number of conditions as input; for example, by re-training the classification network using 



30 

 

only the Ab and Secondary Ab spotting conditions as inputs, we found that the 83.6, 200, and 1000 

mg/L samples are falsely reported as having CRP concentrations of 7.81, 7.34, and 3.84 mg/L 

respectively.  In the case of analyzing only the Ab channel, all of the high-concentration CRP 

samples would have been falsely reported as having concentrations below 10 mg/L. These results 

highlight the importance of multiplexed sensing in our computational VFA platform to mitigate 

the limitations induced by the hook effect in order to algorithmically enhance the dynamic range 

of our sensor. 

 A comparison of the computational xVFA to other commercially available hsCRP tests is 

shown in Table 2.3 in the Supporting Materials, highlighting comparable performance along with 

some major advantages of our platform such as its portability, low-cost, low sample-volume, and 

significantly extended dynamic range. It is important to note that though there are commercially 

available tests, no FDA approved POC test exists for CRP.  

 

Computational sensing for assay development 

 Computational sensing broadly refers to the joint design and optimization of sensing hardware 

and software, and as implemented in this study, provides a framework for data-driven assay 

development where the diagnostic or quantification algorithm informs the multiplexed sensor 

design and vice versa. As detailed in the Methods section, the computational sensing approach 

begins with the selection of a neural network architecture and associated cost function. This first 

step is paramount to the computational sensor design, as it defines the model and error metric with 

which the subsequent feature selection is performed. The determination of the cost function 

therefore poses an interesting question for future computational sensors and diagnostic tests: 

because the selection of the cost function defines the training of a neural network, what are the 
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most clinically appropriate error functions with which one should design a computational sensing 

system? For example, in the case of cardiovascular risk stratification with the hsCRP test, an error 

of ± 0.1 mg/L is more problematic for samples that are in the range of the clinically defined cutoffs 

(i.e. 1 and 3 mg/L) when compared to samples with relatively higher CRP concentrations, such as 

8 mg/L.  Therefore, a traditional cost function for regression such as the mean-squared-error may 

not be as appropriate as the mean-squared-logarithmic-error or mean-absolute-percentage error, 

which take into account the relative ground-truth concentration for each error calculation. 

Therefore, special consideration must be given to the cost functions employed, and custom cost 

functions defined jointly by physicians/clinicians and engineers should be considered. 

 Feature selection and machine learning based optimization can similarly be used to inform the 

sensing membrane design. POC sensors can especially benefit from feature selection to circumvent 

noise borne out of their low-cost materials (such as paper used in our VFA) and operational 

variations. For example, the heat-map in Fig. 2.2a very well reveals how the immunoreaction spots 

closest to the edges of the sensing membrane contain the most variation in their normalized signals. 

This most likely results from the position-dependent vertical flow variations inherent in the 

inexpensive VFA format, which uses paper materials totaling <$0.2 per CRP test (Table. 2.1). 

These areas can therefore be avoided in future iterations of the sensor development, saving reagent 

costs and fabrication time, while also preserving robust sensing channels. Furthermore, identifying 

these areas of statistical variation can also inform the fabrication process. For example, Fig. 2.2a 

also shows that the top edge of the VFA sensing membrane as statistically more robust than the 

bottom and sides of the sensing membrane. Therefore, this spot selection analysis indicates a 

unidirectional fabrication bias in the lateral alignment of the sensing membrane within the VFA 

stack, which can be addressed in future iterations of the batch fabrication process. 
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 Complementing the spot selection, the statistical condition selection process investigates the 

efficacy of the sensing channels and the unique immunoreactions defined by their spotting 

condition. Inherent complexities of the underlying chemistry such as the stochastic arrangement 

of the capture proteins within the porous NC membrane, as well as the effects of steric hindrance, 

pH, humidity, and temperature can obscure intuition behind the selection of spotting conditions 

for a given sensing application. Therefore, computational sensing systems can benefit from data-

driven selection of sensing channels. For example, Fig. 2.2b shows that the quantification 

performance improves slightly upon the out-right elimination of the Mix 1 and Ag-low conditions. 

This suggests that their signal response is redundant or less stable when compared to the other 

conditions, and is confirmed by the poor repeatability of the Ag signal between the reagent and 

fabrication batches (see Appendix, Fig. 2.7). Such a feature selection procedure in a highly 

multiplexed format like the VFA could therefore be used to computationally screen spotting 

conditions from a large number of differing capture chemistries including, but not limited to, 

different structures of capture antibodies/antigens (i.e., polyclonal vs. monoclonal) as well as 

varying buffer conditions and reagent concentrations. Conditions which do not empirically benefit 

sensor performance can be replaced by new conditions in another iteration of the development 

phase, or be replaced by additional redundancies of effective conditions in order to benefit from 

signal averaging.  

 Additionally, this statistical feature selection process can inform cost-performance trade-offs 

to help design the most robust and cost-effective implementations of POC assays. For example, 

the reagent cost for the immunoreaction spots contained in the hsCRP VFA test is reduced by 62%, 

from $2.61 to $0.97 per test, by implementing only the computationally selected chemistries.  

Additionally, certain spotting conditions might have an optimal capture protein concentration due 
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to steric hindrance effects or higher degrees of nonspecific binding. Therefore, in a computational 

sensor, reagent costs can be significantly reduced without sacrificing assay performance by 

employing these statistically optimized capture-protein concentrations. One should also note here 

that these reagent costs per test would be significantly reduced under large scale manufacturing, 

benefiting from economies of scale, which is expected to bring the total cost per test (including all 

the materials and reagents) to <$0.5. 

 Taken together, we showed a data-driven sensor design and read-out framework, enabled by 

deep learning, for improving POC tests. As a use-case scenario, we demonstrated hsCRP testing 

with a colorimetric paper-based multiplexed VFA and clinical samples covering a large dynamic 

range. The multiplexed sensing membrane contained in the VFA was jointly developed with a 

quantification algorithm based on a fully-connected neural network architecture. First, a training 

data-set was formed by measuring human serum samples with the VFA. Then, through cross-

validation of the training set, the most robust subset of sensing channels was selected from the 

multiplexed sensing membrane and used to train a CRP quantification network. The network was 

then blindly tested with additional clinical samples and compared to the gold standard CRP 

measurements, showing very good agreement in terms of quantification accuracy and precision. 

Additionally, the multiplexed channels and computational analysis helped us overcome limitations 

to the operational range of the CRP test borne out of the hook-effect.  Our results demonstrate how 

a computational sensing framework and multiplexed sensor design can be used to engineer robust 

and cost-effective POC tests that have the potential to democratize diagnostics and expand access 

to care. 
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2.5 Appendix 

 The gold nanoparticle-C-Reactive Protein antibody (AuNP-antiCRP) conjugate is synthesized 

using the following protocol: 

1. Mix 900 μl of 40 nm AuNP solution (Ted Pella Inc., 15707-1), 100 μl 0.1M Borate buffer 

(pH 8.5), and 5 μl anti-CRP mouse IgG antibody (Abcam, ab8278). Incubate the mixture 

at 25oC for 1hr.  

2. Following the 1-hour incubation, add 100 μl of 1% BSA in PBS solution and mix by 

vortexing. Then incubate the mixture at 25oC for 30 minutes. 

3. Transfer the mixture to the fridge and incubate at 4℃ for 2 hours. 

4. Centrifuge the mixture in a tube at 8000 rpm at 4 ℃ for 15 minutes.  

5. After centrifugation, open the tube and discard the supernatant. 

6. Add 1 ml of 10 mM tris buffer (pH 7.4) to the microcentrifuge tube containing the AuNP-

antCRP mixture and mix by vortexing. 

7. Repeat the centrifugation and wash steps (steps 4,5,6) twice to enhance the purity of the 

mixture.  

8. Add 100 μL of storage buffer (0.1 M borate buffers, pH 8.5 with 0.1% BSA and 1% 

sucrose) to the supernatant and mix via pipetting. 

The final concentration of AuNP antibody conjugates (5 OD) was confirmed by optical density 

measurements at 525 nm. 
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Supplementary Figures 

 

Figure 2.4. Response of the multiplexed sensing channels to different analyte concentrations. (a) Black-and-

white images from the mobile-reader of the sensing membranes activated at different CRP concentrations. CRP was 

spiked into CRP-free serum and run without dilution. The spot-map corresponding to these sensing membranes is 

shown on the right with a color-coded legend below. (b) The normalized raw signals of five different spotting 

conditions implemented into the VFA as the sensors are activated with varying CRP concentrations, which were spiked 

into CRP-free serum. The following spotting conditions were used within PBS buffer: 1) Primary CRP antibody (Ab) 

at 1 mg/mL; 2) the CRP antigen itself (Ag) at 2.1 mg/mL; 3) A mixture of the CPR Ab and Ag at 0.8 and 0.08 mg/L, 

respectively; 4) A mixture of the CPR Ab and Ag at 0.8 and 0.24 mg/mL; and 5) the CRP secondary Ab at 0.2 mg/mL. 
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Figure 2.5. Overview of the image processing. i) The image of the sensing membrane is normalized to a universal 

blank background image (a blank NC membrane), and ii) the green channel is taken. iii) The spots are segmented 

through an automated algorithm and a local background is taken in a donut-shape outside of the segmented area. iv) 

The average pixel intensity of the local background 𝑏𝑘𝑔
𝑘,𝑙

 is subtracted from the average pixel intensity of the 

segmented spot 𝑠𝑘,𝑙 and normalized to the sum of all the background subtracted spot signals. Here, the indices 𝑘 and 

𝑙 correspond to the row and column locations of the spots on the 9x9 grid, respectively. 

 

 

Figure 2.6. Rejected samples from the clinical testing. (a) A misaligned sensing membrane (fabrication error). (b) 

High non-specific binding in two clinical serum samples which resulted in a pink-color to the paper-layers in the top 

case and a low overall signal on the sensing membrane (bottom-case). A comparison to a representative top and bottom 

case for a normal test is shown to the right.  
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Figure 2.7. Raw data from the training data set of clinical samples. The background-subtracted pixel averages of 

the immunoreaction spots are plotted against the CRP concentration. Each data point represents the average of like-

spots and plotted per spotting condition. The marker color and shape represent the different reagent batch ID (RID) 

and the fabrication batch ID (FID), respectively. 

 

Figure 2.8. The quantification algorithm with a tiered network structure used for cross-validation. The first part 

of the algorithm (left, in grey) classifies a given sample, defined by the input 𝑋𝐼𝑁, into the high, intermediate, or low 

risk hsCRP regime based off of the clinical cut-offs of 1 and 3 mg/L. The second part of the algorithm then uses 

separate networks trained with samples within each regime to quantify the CRP concentration of the sample. To avoid 

edge effects, each quantification network is trained with samples within their cut-off as well as with samples within 
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±50% of the corresponding cut-off value. Each layer was trained with 50% dropout, ReLu (Rectified Linear Unit) 

activation function, and a batch size of 22, as determined via a hyper-parameter search. For simplicity, every neural 

network used the same architecture and hyper-parameters, differing only in the output layer (i.e. classification or 

quantification) and the training data. 

 

 

Figure 2.9. Blind testing results of the clinical samples using a multi-variable regression trained on the full 𝑥𝑚 

inputs (i.e. input data defined by all the 81 spots). (shown here for comparison to our approach detailed in the main 

text). (a) The ground truth CRP concentration plotted against the predicted CRP concentration from blindly tested 

clinical samples. The marker color and shape represent the different reagent batch ID (RID) and the fabrication batch 

ID (FID), respectively. (b) The blind testing results for the low and intermediate CVD risk regime, where the dotted 

lines represent the clinical cut-offs at 1 and 3 mg/L. (c) Table comparing the % coefficient of variation (%CV) and 

coefficient of determination (R2) between the neural network based analysis (results show in Figure 2.3 of the main 

text) and the multivariable regression, which clearly demonstrate the major advantages of the deep learning based 

neural net infer. 

 

Supplementary Tables 

Table 2.1. Material specification and cost breakdown of the dry VFA contents. A cross-sectional diagram of the 

paper layers contained in the VFA is shown on the left with numbers corresponding to the different materials in the 

table. The multiplexed sensing membrane of the VFA is denoted by the blue dotted outline, contained on the top layer 

of the bottom case.   
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Table 2.2. The seven spotting conditions implemented for the clinical testing with our computational VFA 

platform (right). The algorithmically determined spot map of the multiplexed sensing membrane (left). Specific colors 

encode the conditions. 

 

 

Table 2.3. Comparison of point-of-care (POC) xVFA to other high-sensitivity CRP (hsCRP) testing systems. It 

is important to note that thought these tests (besides the xVFA) are commercially available, there is no FDA approved 

POC test for hsCRP. A to-scale comparison of the readers and tests is also shown (bottom) along with hyperlinks to 

the references (Ref) cited in the last column. Table Hyperlinks: [1] PATHFAST package insert, [2] PATHFAST retail 

https://www.pathfast.eu/sites/default/files/download/PF_Folder_Emergency_MCE_0819_web.pdf
https://www.google.com/search?biw=1848&bih=710&tbm=shop&sxsrf=ACYBGNTEJXABLs54a9yS-B6aku2XDQBT8Q:1568087749699&ei=xR53XZSgKoKJ-gSWxr6oBA&q=PATHFAST+analyzer&oq=PATHFAST+analyzer&gs_l=psy-ab-sh.3...1487.13606.0.13819.155.43.1.0.0.0.121.3321.18j16.34.0....0...1c.1.64.psy-ab-sh..136.7.583...0.0.f0mW-ARBWwo
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cost, [3] Eurolyser package insert, [4] Eurolyser retail cost, [5] QuickSens package insert, [6] GP 1100 Analyzer 

package insert, [7] GP 1100 Analyzer retail cost  
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Chapter 3. Point-of-care serodiagnostic test for early-stage Lyme disease using 

a multiplexed paper-based immunoassay and machine learning  

 In this chapter, I describe another use-case for the VFA computational sensor platform. Similar 

to Chapter 2, I discuss the methodology behind computational assay development of another 

diagnostic tests followed by a validation study with clinical samples. However, in this chapter, the 

assay is for Lyme Disease, i.e. requiring a binary positive/negative result, and in contrast to CRP 

quantification relies on the detection of numerous different analytes for accurate patient 

assessment. Here I will discuss the results of a large fully blinded clinical study performed in 

collaboration with the Lyme Disease Biobank, the results of which show immense promise for 

computational sensing to enable new and in-demand point-of-care technologies. In addition, this 

chapter discusses how computational sensing systems can account for drift in the multiplexed 

inputs that may not be accounted for in the fabrication batch information and training data set, i.e. 

changes that might occur naturally due to instabilities in the stored reagents.  

 Caused by the tick-borne spirochete, Borrelia burgdorferi, Lyme disease (LD) is the most 

common vector-borne infectious disease in North America and Europe. Though timely diagnosis 

and treatment are effective in preventing disease progression, current tests are insensitive in early-

stage LD, with a sensitivity <50%. Additionally, the serological testing currently recommended 

by the US Center for Disease Control has high costs (>$400/test) and extended sample-to-answer 

timelines (>24 hrs). To address these challenges, we created a cost-effective and rapid point-of-

care (POC) test for early-stage LD that assays for antibodies specific to nine Borrelia antigens and 

a synthetic peptide in a paper-based multiplexed vertical flow assay (xVFA). We trained a deep 

learning-based diagnostic algorithm to select an optimal subset of antigen/peptide targets, and then 
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blindly-tested our xVFA using human samples (𝑁(+) = 42, 𝑁(−)= 54), achieving an area-under-the-

curve (AUC), sensitivity, and specificity of 0.950, 90.5%, and 87.0% respectively, outperforming 

previous LD POC tests. With batch-specific standardization and threshold tuning, the specificity 

of our blind-testing performance improved to 96.3%, with an AUC and sensitivity of 0.963 and 

85.7%, respectively. 

 Part of this chapter has been drafted as a manuscript and is currently in peer-review: Z. Ballard, 

H. A. Joung, J. Wu, D. Tseng, H. Teshome, L. Zhang, E. J. Horn, P. M. Arnaboldi, R. J. Dattwyler, 

O. B. Garner, D. Dicarlo, A. Ozcan, “Point-of-care serodiagnostic test for early-stage Lyme 

disease using a multiplexed paper-based immunoassay and machine learning,” (In review, Nature 

Biomedical Engineering). 

3.1 Introduction 

 Lyme disease (LD) is the most common vector-borne infectious disease in both North America 

and Europe, causing ~300,000 infections annually in the United States[1], [2]. It is caused by 

infection with the spirochete Borrelia burgdorferi (Bb) transmitted by black-legged ticks (Ixodes 

genus). Early disease is associated with a characteristic skin lesion, erythema migrans (EM) along 

with other symptoms[3]–[5].  If not diagnosed and treated with appropriate antibiotics, the 

infection can disseminate to distal sites including the nervous system, heart, and joints causing an 

array of symptoms, including e.g., lymphocytic meningitis, cranial neuropathy, facial nerve palsy, 

radiculopathy, A/V node heart block [3], [6], [7], and arthritis[4], [8]. 

 Although a presenting EM is diagnostic, the characteristic lesion is absent in 10-20% of 

infected persons and is frequently atypical thus escaping recognition. This makes laboratory testing 

critical to confirm the diagnosis and guide treatment[3], [5], [6], [9] Despite recent advances in 

direct detection of Bb through e.g. Nucleic Acid Amplification Testing (NAAT), these methods 
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remain inadequate due to the low concentration and transient presence of Bb in the blood. 

Culturing Bb is also not practical due the slow growth of the bacteria, as well as the need for 

specialized growth media [9]–[11].  Therefore, current testing methods work indirectly by 

detecting specific antibodies produced by the body’s immune response to the infection. 

 The United States Center for Disease Control and Prevention (CDC) recommends a ‘two-tier’ 

testing method, where the first-tier consists of a sensitive Enzyme Immunoassay (EIA) or 

immunofluorescence assay (IFA). If the first-tier is positive or equivocal, a Western Blot (WB) is 

then recommended for confirming the presence of 2 of 3 Immunoglobulin M (IgM) antibodies 

and/or 5 of 10 Immunoglobulin G (IgG) antibodies targeting Bb associated antigens[12]. A number 

of reports have also showed the efficacy of a modified two-tier test (MTTT) format, where the WB 

is replaced by a second complimentary EIA, and as a result, the FDA has recently approved the 

use of some EIAs as viable tests for the second tier[13]–[17]. 

 Despite being the standard for the laboratory diagnosis of LD, the two-tier serological testing 

method has multiple drawbacks. Although there is a high specificity (>98%) and sensitivity (70-

100%) in late LD, the two-tier test has poor sensitivity in early-stage LD, seldom exceeding 50% 

at the time when most patients seek medical care[6], [9], [14], [18], [19].  This is also the time 

when treatment is the least costly and most effective at preventing disease sequela. The poor 

sensitivity can be attributed to the underdeveloped immune response within the first weeks of 

infection in which a limited IgM antibody response is followed by an IgG antibody response. 

However, it is also exacerbated by the limited number of antigen-targets in the first tier test that 

may miss detection of antibodies produced during the earliest stage of infection.[20] Specifically, 

the earliest responses are to Flagellin B (FlaB) and p66 with responses to a number of additional 
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antigens such as OspC (25kd), VlsE, BBK32, FlaA (37kd), BmpA (39kd) and DbpA proteins 

developing as B. burgdorferi disseminates[20]–[23] .  

 The two-tier testing method also suffers from slow turn-around time (>24 hrs) and high costs 

(>$400/test), with estimated expenses exceeding $492 million annually just in the United 

States[24]. Additionally, the standard testing used in the two-tier format must be performed in a 

centralized testing facility by trained technicians, requiring bulky and expensive clinical analyzers. 

These drawbacks therefore limit accessibility to accurate LD testing, especially impacting 

populations far from clinical laboratories as well as populations in rural and forested areas where 

tick bites are common. Therefore, accurate and affordable LD testing methods for use at the point-

of-care (POC) are in high demand[13], [18].  

 Paper-based lateral flow assays (LFAs), also known as Rapid Diagnostic Tests (RDTs), are 

appealing for POC serological analysis due to their low-cost, ease-of-use, and rapid nature[25]–

[27]. These tests use e.g., colorimetric or fluorescent conjugates embedded in one-time-use 

cassettes to rapidly and cost-effectively detect the presence of antibodies specific to disease. LFAs 

however, are not conducive to the detection of multiple analytes due to their in-line geometry, 

measuring only one or two antibodies in a single test[28]. This restrictive design inherently limits 

the potential sensitivity and specificity of traditional RDTs for LD. For example, tests that rely on 

single antibody measurements (like many EIAs in the first tier) can be less robust to false positive 

results due to antigens (p66 and FlaB in particular) which contain epitopes that are highly cross-

reactive with epitopes found in multiple other bacteria[29], [30].  They can also have low 

sensitivity if the target antigen is mismatched with the underlying immunodominance. This 

paradigm is the reason that the performance of the two-tier algorithm can depend on which EIA is 
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used in the first tier, as well as what strain of Bb the EIA test was designed against, B31 being the 

most common[31].  

 Therefore, to overcome this limitation, large-scale screening efforts alongside new epitope 

mapping and peptide synthesis are focused on developing a universal multi-antigen detection 

panel, with e.g. 5 to 10 LD-specific antigen targets being suggested for improving diagnostic 

performance for early LD[17], [32], [33]. Consequently, we have a unique opportunity to leverage 

advances in computation and machine learning, to train novel serodiagnostic algorithms with these 

rich, multi-antigen measurements derived from well-characterized clinical samples, to ultimately 

create new decision algorithms that outperform the traditional two-tier test[32]–[34]. Deep 

learning, which refers to the use of artificial neural networks with multiple hidden-layers, can be 

especially effective in developing nonlinear yet robust inference models from noisy data-sets with 

complex and confounding variables[35]–[37].  

 Here, we introduce a paper-based multi-antigen POC test powered by deep learning for 

serological diagnosis of early-stage LD. Our test is a multiplexed vertical flow assay (xVFA), 

composed of a stack of functional paper layers, which in contrast to the more common LFA, allows 

for a multi-antigen detection panel for measuring an array of LD-specific antibodies on a single 

sensing membrane. Containing 13 spatially-separated immunoreaction spots, the sensing 

membrane is functionalized with Bb-specific antigens (OspC, BmpA, P41, DbpB, Crasp1, P35, 

Erpd/Arp37) as well as a peptide (Mod-C6) composed of a C6-like epitope linked to a specific p41 

epitope. The xVFA can be operated in 15 min, after which the assay cassette is opened and the 

sensing membrane is imaged by a custom-designed mobile-phone based reader. Computational 

analysis then quantifies the colorimetric signals on the sensing membrane through automated 

image processing, and a neural network is used to automatically infer a diagnosis from the 
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multiplexed immunoreactions. The diagnostic algorithm in this work was trained with 50 human 

serum samples (25 early-stage LD and 25 endemic controls), obtained from the Lyme Disease 

Biobank (LDB), run in duplicate for both IgM and IgG antibodies, resulting in 200 individually-

activated xVFAs composing the training data-set. This training data-set was also used to 

computationally select a subset of detection antigens from the larger panel using a feature selection 

technique, improving the diagnostic performance and reducing the per-test cost. The 

computational xVFA was evaluated through blind testing of an additional 50 human serum 

samples (25 early stage LD and 25 endemic controls), obtained fully-blinded by the LDB. Testing 

entirely early-stage LD samples, we achieved an AUC of 0.95, and by equally weighing the false 

positive and false negative results, we obtained a sensitivity and specificity of 90.5% and 87.0% 

with respect to the gold-standard two-tier serological testing. By adjusting the diagnostic cut-off 

value to favor high-specificity during the training phase and incorporating batch-specific 

standardization for the network inputs, our blind testing specificity improved to 96.3%, with a 

small drop in our sensitivity (85.7%) in relation to the gold-standard two-tier serological testing. 

 There is currently a first tier POC LD test, but no FDA-approved POC test for LD that can 

serve as a replacement to the two-tier method[28], [38]. However, development of a POC two-tier 

replacement test will allow for more rapid diagnosis and better treatment outcomes. This is 

especially important as LD is projected to increase over the next decades as the geographic areas 

of tick-populations continue to expand [39]–[41]. Although multi-target POC sensing approaches 

for LD have been explored in the literature, the methods proposed either exhibited poor 

performance or have not undergone validation with a clinical study[28], [42]. We believe our 

platform demonstrates a leapfrog improvement over existing POC LD testing approaches, 
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reporting a cost-effective and rapid (15 min) paper-based multiplexed assay powered by deep 

learning for serological diagnosis of early-stage LD at the POC.  

 

3.2 Materials and Methods 

The multiplexed vertical flow assay (xVFA) 

Overview 

 Our multi-target vertical flow assay (xVFA) is composed of a stack of functional paper layers 

and a sensing membrane contained within a 3-D printed plastic cassette. The cassette is divided 

into a top and bottom-case which can be separated through a twisting mechanism, revealing the 

multiplexed sensing membrane on the top layer of the bottom-case. The sensing membrane 

contains 13 immunoreaction spots defined by a black wax-printed barrier, where each spot is pre-

loaded with a different capture-antigen or antigen epitope-containing peptide as well as proteins 

serving as positive- and negative-controls to enable multiplexed sensing information within a 

single test (Fig. 3.1B). For each xVFA, there are two top-cases used during the operation (Fig. 

3.1C). The first top-case facilitates the uniform flow of a serum sample from the loading inlet to 

the sensing membrane, where LD-specific antibodies are bound to the detection antigens 

immobilized on the nitrocellulose surface. The second top-case is then used for color signal 

generation, where a conjugate pad, upon wetting, releases embedded gold-nanoparticles (AuNPs) 

conjugated to anti-human IgM or IgG antibodies. The AuNPs then bind to the LD-specific IgM or 

IgG antibodies previously captured on the sensing membrane, resulting in a color signal in 

response to the captured amount. After completion of these sandwich immunoreactions, both IgM 

and IgG running in parallel, the sensing membrane is immediately imaged by a custom-designed 

mobile-phone reader (Fig. 3.1D-E), which captures the background image (taken before the assay 
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operation) and the signal image (taken after the assay operation) of the sensing membrane for 

subsequent analysis in a computer, where a neural network is used to ultimately determine the final 

result (seropositive or seronegative). The general concept of paper-based vertical flow design was 

reported in our previous work[43]; a detailed breakdown of the functional paper layers and assay 

reagents can be found in the Appendix (Fig. 3.6, Table 3.1, 3.2) along with further discussion on 

the wax-printed sensing membrane design and optimized operational protocol (Fig. 3.7).  
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Figure 3.1. Overview of POC Lyme disease diagnostic testing using xVFA and machine learning, shown in (A). 

(B) Illustration of the multiplexed immunoreactions which occur on the sensing membrane during the xVFA operation. 

(C) Exploded diagram of the paper materials within the xVFA showing the sample loading top-case (in blue) and the 

signal generating top-case (in red). The bottom-case is shown below with the sensing membrane containing the multi-

antigen panel. (D) Photograph of the mobile-phone reader with an opened xVFA cassette and example images of the 

sensing membrane (shown to the right). (E) Cross-section of the xVFA mobile-phone reader with an inset showing 

the illumination of the sensing membrane using an inexpensive opto-mechanical attachment to the smartphone. 

 The mobile phone-based assay reader (Fig. 3.1D-E) is constructed from a smartphone (LG 

G4H810) and 3-D printed (Dimension Elite, Stratasys) attachment containing four 525 nm 

wavelength light emitting diodes (LEDs) for even illumination of the sensing membrane. An 

external lens was also mounted in the 3-D printed attachment below the built-in phone camera lens 

system for enabling an in-focus field of view. All the images were obtained in raw dng format 

using the standard Android camera app of the smartphone. 

 

Assay operation 

 First, a background image of the blank sensing membrane is taken with our mobile-phone 

reader.  Then the first top-case is mated with the bottom-case, and 200 µL of running buffer is 

introduced to fully wet the paper layers in the xVFA. After the buffer is absorbed fully into the 

xVFA cassette (~20 seconds), 20 µL of serum sample is pipetted into the loading inlet and allowed 

to absorb. Then, a second addition of running buffer is introduced to the loading inlet, followed by 

a 6-minute wait period, during which the serum sample reacts with the sensing membrane and the 

unreacted sample is washed away to the lower absorbent pads. The first top-case is then exchanged 

with the second top-case, and 450 µL of running buffer is added to release the AuNP conjugates 
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responsible for color signal generation. After an 8-minute wait period, the xVFA cassette is opened 

and imaged by the mobile-phone reader to get the multiplexed signal.   

 Separate xVFAs are run in parallel for IgM and IgG antibody detection, where the only 

difference between the two xVFAs is in the conjugate pad, i.e. one conjugate pad contains AuNPs 

conjugated to anti-IgM antibodies and the other contains AuNPs conjugated to anti-IgG antibodies 

(Fig. 3.2A). 

 
 

Figure 3.2. Overview of xVFA Lyme Disease assay operation (A) Detailed xVFA operation for the IgM and IgG 

assays, which are performed in parallel. A depiction of the IgM and IgG immunoassays is shown to the right. (B) 

Image processing (left), capture antigen panel (middle), and deep learning-based analysis (right) of the multiplexed 

sensing membrane.  

Image processing and deep learning-based analysis 
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 Raw dng images, captured by our mobile reader, of the sensing membrane taken before 

(background image) and after (signal image) the assay are converted to tiff format. The green 

pixels are then extracted, and the background and signal images are registered to each other via a 

rigid-transformation. The immunoreaction spots are then identified in the background image and 

a fixed-radius mask is defined per-spot at approximately 80% of the immunoreaction spot area. 

The pixel intensity within this immunoreaction spot mask is then calculated for the registered 

signal image and normalized by the pixel average of the corresponding immunoreaction spot in 

the registered background image,    

 

𝑅𝑚 = 
∑ 𝐼𝑠𝑖𝑔𝑛𝑎𝑙𝑥,𝑦 𝜖 Ω𝑚

(𝑥, 𝑦)

∑ 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑥,𝑦 𝜖 Ω𝑚
(𝑥, 𝑦)

 

where 𝑅𝑚 defines the normalized signal per immunoreaction spot (𝑚) and Ω𝑚 defines the x-y 

bounds of the fixed-radius mask per immunoreaction spot. This background normalization 

procedure helps account for non-uniformities in the illumination as well as local defects that might 

exist within the immunoreaction spots on each xVFA sensing membrane. Immunoreaction spots 

functionalized by the same capture antigen are averaged together, and each of the unique 𝑅𝑚 

signals, derived from both the IgM and IgG xVFAs, are then used for deep learning analysis (Fig. 

3.2B). 

 Lastly, before being input into the diagnostic decision neural network, the 𝑅𝑚 signals from 

both the IgM and IgG xVFAs are standardized to the mean, 𝑅𝑚
̅̅ ̅̅  , and standard deviation, 𝜎𝑚 taken 

over the training set, 

𝑅𝑚
′ = 

𝑅𝑚 − 𝑅𝑚
̅̅ ̅̅

𝜎𝑚 
 . 

Eq. 3.1 

Eq. 3.2 
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 The decision neural network contains an input layer with M nodes (e.g., M = 20 with the full 

IgM/IgG antigen panel), three fully connected hidden layers with 128, 64, and 32 nodes, in the 

first, second, and third layers, respectively. Each layer contains batch normalization, a 50% 

dropout, and a Rectified Linear Unit (ReLU) activation function, defined by 𝑓(𝑥) =  max (0, 𝑥), 

with the exception of the final output layer, which uses a sigmoid activation function, yielding a 

network output as a numerical value between 0 and 1. A final binary diagnosis is then made by 

evaluating this numerical output with a blind cutoff value of 0.5. A binary cross-entropy cost 

function, defined as: 

𝐻(𝒚, 𝒚′) = −
1

𝑁
∑[𝑦𝑛 log 𝑦′𝑛 + (1 − 𝑦𝑛) log(1 − 𝑦′

𝑛
)]

𝑁

𝑛=1

 

was used during the training phase (learning rate = 0.001, batch-size = 32) with the two-tier based 

seropositive and seronegative diagnosis used as the gold-standard label, 𝑦𝑛 𝜖 {0,1}. Here, 𝑁 

represents the number of training samples, and 𝑦′𝑛 𝜖 (0,1) represents the neural network 

prediction. The hyper-parameters mentioned above (except the diagnostic threshold) were 

determined by a random parameter optimization in which 2 and 3 hidden layers with varying 

number of nodes were tested via k-fold cross-validation (k =5) along with different dropout, 

learning rate, and batch size parameters randomly selected from a predefined list. All networks 

were trained for up to 1000 epochs with early stopping criterion defined by the stagnation of 

training accuracy not exceeding a change of 0.1% over 100 training epochs. The network weights 

at the last epoch (defined by the early stopping criterion) were then stored in the final model. 

 

 

 

Eq. 3.3 
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Clinical study 

 In total, 106 unique human serum samples were obtained from the LDB (collected under 

Advarra IRB Pro00012408). Out of these sample, 50 were used for training, 50 for blind testing, 

with the additional 6 used for precision evaluation. All the samples used were early-stage LD, 

having been obtained < 30 days since symptoms or the initial tick bite. All the cases and endemic 

controls were confirmed to be Lyme-positive or negative through standard two-tier testing 

methods, or in some cases quantitative Polymerase Chain Reaction (qPCR) or convalescent draws 

(seroconversion). For the first tier, a combination of Whole Cell Lysate Enzyme-linked 

Immunosorbent Assay (ELISA), C6 Peptide EIA, or VlsE/PepC10 ELISA testing was used. The 

second tier, performed regardless of the first-tier results, was comprised of the standard IgM and 

IgG WB. For this work, samples were considered seropositive if any of the three EIA tests in the 

first tier had a positive or equivocal (borderline) result and the second tier had a positive result for 

either the IgM or IgG WB as defined by the CDC recommendation (≥ 2 of 3 bands for IgM WB, 

and ≥ 5 of 10 bands for IgG)[9]. Samples were also considered seropositive by MTTT guidelines, 

where a seropositive diagnosis was called from two positive or equivocal EIA tests along with the 

presence of EM, without the need for a positive WB result[16], [31]. Additionally, all samples 

were confirmed negative for coinfections of Anaplasmosis and Babesia, both of which are 

infections also transmitted by the Ixodes tick and can produce similar constitutional symptoms to 

LD. 

 The clinical samples used for training and testing were obtained and tested in two separate 

sample-pulls. The first sample-pull contained 25 LD cases and 25 endemic controls from a 

collection site in East Hampton, New York between 2014 and 2016 (see Table 3.3). 24 of the 25 

LD cases were seropositive, with the one exception confirmed Lyme-positive through B. 
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burgdorferi qPCR. All seropositive samples were early-stage LD, with 3 out of 24 being early 

disseminated, defined by the presence of multiple EMs. All samples in the first sample-pull were 

tested with the IgM and IgG xVFAs in duplicate and used as the training data-set (𝑁(+) = 48, 𝑁(−)= 

52). We should emphasize that since our training ground truth for this work is the two-tier test 

(which we aim to replace using our paper-based POC xVFA), one of the Lyme-positive samples 

here (tested in duplicate) has been added to the negative set (𝑁(−)= 52) since it was seronegative 

(although being qPCR positive).  

 The second sample-pull, used for blind testing of our platform, also contained 25 LD cases and 

25 endemic controls, but was obtained fully blinded (i.e. without case and control labels), and 

tested with our xVFAs and the associated serodiagnostic algorithm three months after the first 

sample-pull (see Table 3.4). The second sample-pull also contained cases and endemic controls 

from collection sites in East Hampton (USA), New York (USA), but also included samples from 

several sites in Wisconsin (USA), which were not included in our training phase. In this blind 

testing set, 23 of the 25 LD cases were seropositive, with the two exceptions confirmed Lyme-

positive through a convalescent blood-draw taken approximately 3 months after the first draw that 

revealed seroconversion via two-tier testing methods. All seropositive samples were early-stage 

LD, with 9 out of 23 being early disseminated. All the samples in the second sample-pull were 

tested with the IgM and IgG xVFAs in duplicate and used as a blinded test set (𝑁(+) = 42, 𝑁(−)= 

54), with four IgM tests removed due to fabrication error (see Appendix, Fig. 3.8). The seropositive 

and negative diagnostic predictions resulting from our xVFA testing and machine learning 

algorithm were blindly sent to the LDB prior to receiving the gold-standard testing labels (to 

determine our blind testing performance). Six sensing membranes were additionally processed 

(compared to other activated xVFAs) using an affine image transformation to correct 
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misalignments resulting from unforeseen expansion and/or contraction of the nitrocellulose pad, 

during the automated image registration step (see Appendix, Fig. 3.9). 

 Lastly six separate serum samples, obtained at the same time as the second sample pull were 

used for precision evaluation performed by a single assay operator as well as multiple, newly 

trained personnel. In summary, 106 unique human serum samples obtained from the LDB have 

been used for training, testing and further inspection of our xVFA LD detection platform. 

 

3.3 Results 

Training and cross-validation 

 The first sample-pull (𝑁(+) = 48, 𝑁(−)= 52) was used entirely for cross-validation and training 

of our xVFA platform. Figure 3.3 summarizes the signals from the multi-antigen detection panel 

across all the seropositive samples in the training set, with the raw (1 − 𝑅) signals of all the tests 

shown in Figure 3.10 (Appendix). The statistical performance of each antigen in terms of its t-

score (Appendix, Eq. 3.5) is also shown, with the Mod-C6 peptide and OspC antigen being the 

top-ranked immunoreaction spots for the IgG and IgM sensing membranes respectively. As will 

be detailed and discussed later on, the individual performance and therefore the value of different 

antigen-targets as a single disease discriminator is highly-limited in the context of LD diagnosis, 

and our multiplexed xVFA platform computationally selects a complementary set of antigen-

targets that collectively diagnose early-stage LD, providing a cost-effective and rapid POC 

replacement for the two-tier test.  

 Before training the final serodiagnostic algorithm to be used for the detection of early-stage 

LD, the training set was used for selecting an optimal subset of antigens. We implemented a 

sequential forward feature selection (SFFS) method where the signals from each sensing channel 
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were added one at a time, into the input layer of the neural network and then trained via k-fold 

(k=5) cross-validation. After the addition of each input feature, the performance of the network 

was evaluated based off a mean square error cost function, i.e., 

𝐽(𝒚, 𝒚′) =  
1

𝑁
∑ ∑ (𝑦𝑖,𝑘 − 𝑦𝑖,𝑘

′ )
2

𝑁

5

𝑖=1
5
𝑘=1                                      Eq. 3.4 

where 𝑦𝑖,𝑘 𝜖 {0,1} is the ground truth binary result (i.e. seropositive or negative) and 𝑦𝑖,𝑘
′ 𝜖 (0,1) is 

the numerical output of the network for the ith test in the kth fold of the k-fold cross validation 

(k=5). 𝑁 is the number of tests in the training data-set. The input feature which yielded the best 

network performance for that iteration was then kept as an input feature until all the 20 sensing 

channels were included as inputs (for ranking of their collective value for LD diagnosis); see e.g., 

Fig. 3.4C.  

 

 
Figure 3.3. The xVFA training data set (A) The sensing membrane of our xVFA and the map of the multi-antigen 

panel. (B) Example images of IgM (left) and IgG (right) sensing membranes after activated by a human serum sample 
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(sample #7) under ambient lighting conditions and using the mobile-phone reader (under green illumination). (C) The 

t-score (Appendix, Eq. 3.5) of the multi-antigen channel calculated over the training data-set for the IgM (left) and 

IgG (right) sensing membranes ranked in descending order. (D) A heat map showing the signals from the multi-antigen 

panel of the IgM (left) and IgG (right) sensing membranes activated by the seropositive samples in the training set. 

The color bar represents the (1-R) signal of each sensing channel normalized to the mean signal of the same sensing 

channel across all the seronegative samples in the training data-set. The normalized IgM and IgG signals for sample 

#7 are outlined by the orange and blue boxes respectively. 

 

 Figure 3.4 shows the area under the receiver operator characteristic (ROC) curve (i.e., AUC) 

at each round of the SFFS antigen-selection algorithm, revealing a local maximum (AUC = 0.969) 

created by a panel of 6 antigens and the 3 control spots: OspC, P41, and the positive control spot 

(anti-mouse IgM) from the IgM sensing membrane, as well as the Mod-C6 peptide, Crasp1, 

BmpA, P41, positive control spot (anti-mouse IgG), and the negative control spot (Bovine Serum 

Albumin, BSA) from the IgG sensing membrane. Using this subset of sensing channels as the 

detection panel, a sensitivity of 91.7% and specificity of 96.2% was found via the cross-validation 

analysis (Fig. 3.4A, inset). The final LD diagnosis network was then trained using this 

computationally-selected subset as the antigen panel (M = 9), incorporating the tests (i.e., 100 

activated xVFAs) from the first sample-pull (NTrain = 100, i.e., 𝑁(+) = 48 and 𝑁(−)= 52), using the 

same network parameters outlined in the Methods. 
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Figure 3.4. The feature selection process for the xVFA IgM and IgG antigen panel. (A) Receiver operator 

characteristic (ROC) curves resulting from the neural network inference during cross validation. The color bar 

represents the output from networks trained with different number of input features. The inset defined by the red dotted 

line shows the confusion matrix for all the samples in the training set predicted during cross-validation using the 9 

antigen inputs shown in (B), which is selected based on the optimization reported in (C). (C) The area-under-the-

curve (AUC) plotted for various networks trained with a different number of inputs of the multi-antigen panel (also 

see (A)). Each bar plot corresponds to the ROC curves shown in A, and is color-coded to represent which members 

of the multi-antigen panel are included as the inputs with the left and right side of each bar showing the members from 

the IgM and IgG sensing membrane, respectively. The red-dotted line shows the local optimum AUC (0.969) and the 

resulting 9 selected features. The error bars show the standard deviation between 4 different training instances of the 

same network. (D) The reagent cost of the sensing membrane versus the number of selected members in the multi-

antigen panel as they are included in the order shown in (C). Under large-volume manufacturing the reagent cost per 
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test is expected to drop by more than an order of magnitude. The red-dotted line represents the reagent cost for the 9 

selected antigens, and the grey-dotted line shows the reagent cost of the whole antigen panel before feature selection. 

 

Clinical blind testing 

 The second sample-pull (𝑁(+) = 42, 𝑁(−)= 54) was then entirely used for blind testing the 

performance of our xVFA diagnostic platform, yielding an AUC of 0.950, sensitivity of 90.5%, 

and specificity of 87.0% with respect to the seropositive and seronegative results, as summarized 

in Figure 3.5. This reported diagnostic performance of our xVFA platform achieved during the 

blind testing phase, to the best of our knowledge, exceeds previous POC tests for early-stage 

LD[31], [42]. As a point of reference, Table 3.5 shows a comparison with the recently FDA-

approved POC test from Quidel, which can be used as a first-tier test, detecting IgM and IgG 

antibodies using the C6 antigen. Though FDA-approved, the Quidel test is not recommended as a 

replacement of the two-tier testing. The performance of our xVFA also outperforms a number of 

previous clinical studies investigating diagnostic performance of standard two-tier as well as 

modified two-tier testing with respect to the ultimate clinical diagnosis[9], [17], [38]. 
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Figure 3.5. ROC curve for the blind testing data (NTest = 96) as output from the neural network trained with the 9 

selected antigens (see Fig. 3.4) from the training set (NTrain = 100). The inset shows the confusion matrix and area 

under the ROC curve (AUC). The table to the right summarizes the performance over the blindly-tested LD human 

serum samples with respect to the two-tier testing method. 

 Next, to achieve higher specificity, we tuned the decision threshold of the diagnostic network 

during the training phase such that the cross-validation specificity reached > 98%, resulting in a 

decision threshold of 0.66. Implementing this threshold in the blind testing phase (with 192 

activated xVFAs), along with batch-specific standardization (also see the Discussion section), we 

achieved an AUC, sensitivity and specificity of 0.963, 85.7% and 96.3% with respect to the two-

tier serology results (see Table 3.6). Such optimization of the decision biases can be utilized to 

achieve a desired false-positive and false-negative trade-off, depending on the clinical setting 

where the LD test is administered.  

 With this fine-tuned decision threshold, we achieved two false positive and six false negative 

results out of the 96 individual tests run through our xVFA platform, reaching an overall accuracy 

of 91.7%. Interestingly, some intuitive reasoning can be attributed to these instances of 

misdiagnosed tests. For example, four out of the six the instances of false negative tests were from 
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two patients that self-reported the shortest duration of LD symptoms (≤ 1 day) indicating that these 

samples may have the least developed immune response in our blind testing set. Additionally, one 

of these two false-negative duplicate pairs (LD188, see Table 3.4) was clinically positive in the 

first-tier due only to an equivocal result in the VlsE/PepC10 EIA. Because VlsE was eliminated 

from our multi-antigen detection panel during the pre-screening process (see Appendix, Fig. 3.11), 

our xVFA is incapable of detecting antibodies to VlsE. This can be addressed in the future by 

further optimizing the binding properties of VlsE antigen in the nitrocellulose substrate as well as 

expanding the number of diverse sera in the training set prior to the computational antigen 

selection.  

 It is also important to note that two seropositive samples in our testing set, i.e., LD185 and 

LD158 (see Table 3.4), were considered negative through standard two-tier testing (STTT), i.e. 

where the second-tier is IgG/IgM WB. Nevertheless, our POC test correctly called these samples 

positive with respect to the MTTT gold-standard label, which has demonstrated greater efficacy 

compared to the STTT in recent reports and has in fact lead the CDC to amend their 

recommendation for LD testing[16,17,38]. 

 Lastly, half of the misclassified samples (4 out of 8) are from single discordant tests among 

the duplicate pairs. Therefore, to shed more light on this result, precision testing was performed 

with an additional six samples (N(+) = 3, N(-) = 3) obtained from the LDB, where each sample was 

measured with six repeated xVFA tests following the same operational protocol as in the training 

and testing phases (see Appendix, Fig. 3.12, 3.13, Table 3.7). To more realistically assess how the 

xVFA performs as a POC test, we also examined the precision between three different 

users/operators, two of which were new to xVFA operation and given only 5 minutes of training. 

With the batch-specific standardization and threshold tuning, the overall accuracy during this 
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precision testing, 91.7%, exactly matched the accuracy obtained during the blind testing. 

Additionally, no difference in accuracy was observed between the precision testing from a single 

operator and the testing completed by the multiple newly trained operators (Table 3.7). The 

precision of the individual immunoreactions was also investigated, yielding an average coefficient 

of variation of 8.9% for the same operator and 9.3% for the various newly trained operators 

(Appendix, Fig. 3.12, 3.13). While this shows good overall repeatability in the underlying 

immunochemistry, some antigen spots exhibited a coefficient of variation exceeding 20% which 

can ultimately lead to poor precision in the output of the decision algorithm.  Therefore, despite 

the demonstration of interoperability, these testing results suggest that precision might be a 

limiting factor of our performance. Further improvements can be made by automating the 

fabrication processes and implementing humidity and temperature controlled environments, in 

order to improve the coefficient of variation of the individual immunoreactions as part of our 

xVFA. Additionally, ensuring that a large number of samples are used during the batch-specific 

standardization could potentially further improve our testing precision. 

 

3.4 Discussion 

Optimization of antigen selection in early-stage LD xVFA platform 

 Computationally selecting the detection panel from a larger set of antigen/peptide targets 

improves the performance of the serodiagnostic algorithm. The capture antigens functionalized to 

the sensing membrane produce varying degrees of statistical variance in their optical signals, 

especially over different batches of fabricated sensors. This can stem from fabrication tolerances 

borne out of the low-cost materials, or from operational variance. Some capture antigens can also 

exhibit varying degrees of cross-reactivity with other antibodies native to human sera. Our feature 
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selection procedure helps eliminate the least reliable discriminators while conserving an ensemble 

of reactions that can most reliably detect the immune response. A very good example of this 

phenomenon can be seen in this comparison: when forgoing the feature selection process and 

implementing the full antigen selection panel (M = 20) as inputs to the network, the cross-

validation testing reveals that AUC, sensitivity and specificity are 0.894, 72.9% and 92.3% 

respectively, compared to 0.969, 91.7% and 96.2% respectively, from the network trained on the 

computationally-selected subset of 9 features (see Table 3.8 and Fig. 3.4); this clearly emphasizes 

that the use of more antigen-targets does not offer a better solution for LD diagnosis. Interestingly, 

using the single antigen with the highest t-score (the Mod-C6 like in the IgG membrane) alone as 

an input to the network, results in an AUC of 0.850 and a sensitivity and specificity of 77.1% and 

98.1%, respectively. Such performance for early-stage LD samples is characteristic of EIAs that 

detect only a single antibody, as the antigen-targets employed, such as the Mod-C6, can be 

synthesized to limit the presence of cross-reactive epitopes while failing to detect less prevalent 

antibodies, such as OspC or BmpA that may be produced at the beginning of the infection, albeit 

at lower concentratrions[20], [44]. The significant benefit of the computationally-determined 

multi-antigen panel is also clearly reflected in the blind testing set, showing the highest AUC when 

compared to networks trained with the full antigen panel and the Mod-C6 alone (see Table 3.8). 

 It is also important to note that the SFFS method implemented in this work, which is referred 

to as a wrapper feature selection technique, does not simply select the top individual discriminators 

(i.e. the sensing channels with the highest t-score). Instead, it iteratively adds input features and 

assesses their performance as an ensemble of inputs to a neural network. We should emphasize 

that filtering the input features based on the top 9 individual t-scores results in poorer cross-

validation performance (AUC = 0.900, Sensitivity = 79.2%, Specificity = 92.3%) when compared 
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to a network with 9 features selected by our SFFS method. This can be partly attributed to the 

relative unimportance of redundant information. In other words, antigen-targets associated with 

the same patient population or stage of infection as an already implemented antigen-target are of 

less value to the diagnostic performance, despite having good performance as a single 

discriminator; in fact, this is a very important conclusion for the design of multiplexed sensors in 

general, which certainly applies to our early-stage LD xVFA platform.   

 Additionally, the positive and negative control spots, while not intended for unilaterally 

discriminating seropositive and negative samples can contain pertinent relative information for a 

computational POC sensor. For example, the relative concentration of AuNPs in the conjugation 

pad as well as instances of strong non-specific binding from matrix effects inherent in human sera 

can be represented by the positive and negative control immunoreactions and thus factored into 

the logistical classifier.  

 Alternative to the wrapper SFFS technique used here, a global search could potentially be 

implemented in which the network is trained by every combination of possible sensing channels. 

However, this requires training a network for every possible subset of M sensing channels, 

multiplied by the number of folds in the k-fold cross validation, i.e. 𝑘 ∗ ∑
𝑀!

𝑟!(𝑀−𝑟)!
𝑀
𝑟=1 . With our 

multiplexed xVFA platform (M = 20) and 5-fold validation, this results in over 5.2 million training 

instances, which was prohibitive due to the computation time required (> 10,000 hours at 7.2 

seconds per training instance on an NVIDIA GeForce FTX1080 Ti GPU).  

 In addition to the performance advantages discussed above, our feature selection process can 

also be used to reduce the cost per-test. For example, the reagent cost for the full antigen panel 

(M=20) would be reduced by 44% by implementing the subset of 9 immunoreaction spots selected 

during the training phase (Fig. 3.4D). Although not considered here, future methodologies could 
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even incorporate reagent cost into the feature selection cost function, 𝐽(𝒚, 𝒚′) to better illustrate 

cost-performance trade-offs. Additionally, immunoreaction spots with antigen-targets that were 

not computationally selected could be replaced in future sensing membrane designs by 

redundancies of positive and negative control spots as well as already selected capture antigens, 

or even alternative antigen-targets not yet tested. This type of data-driven iterative assay 

development is universally applicable, and could be a powerful framework for improving 

multiplexed sensors, especially for complex diagnoses like LD as well as for POC tests that must 

balance cost and performance. 

 

Optimization of the false-positive and false-negative rate 

 Another important aspect of the training and feature selection phase is the degree of trade-off 

between sensitivity and specificity. The diagnostic algorithm can be influenced during the training 

phase by penalizing instances of false negatives more heavily than instances of false positives, e.g. 

through tunable weights on the two terms in the binary cross-entropy cost function used to train 

the network (Eq. 3.3), or by adjusting the threshold which discriminates between positive and 

negative samples. In practice, it may be more beneficial for a POC assay that is intended to be used 

at the first line of patient assessment, to have a greater portion of false positives over false 

negatives, especially in the case of contagious diseases. However, another important consideration 

is the pre-test likelihood, which can be low for samples submitted for serological LD testing 

(<20%)[24], [45]. Therefore, it may also be important to ensure a lower portion of false positives 

in order to reduce the overall number of misdiagnoses. Ultimately however, due to the small 

number of misclassified samples observed during the training phase of this work (only 6), we did 

not implement any of these possible adjustments before the initial blind testing. With larger data-
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sets, where the empirical effect of tuning the bias can be better modeled, these approaches should 

be considered and jointly investigated with experts in diagnostic testing. 

 

Batch-specific standardization 

 Although our blind testing sensitivity is comparable to the cross-validation sensitivity during 

the training phase, indicating that our deep learning-based diagnostic algorithm did not over-fit to 

the training data-set, the network did exhibit a drift in its numerical output from the training phase 

to the testing set (see Appendix Fig. 3.14). The mean output for negative samples shifted from 

0.060 ± 0.156 to 0.278 ± 0.246 (mean ± SD) between the training and testing samples (also shown 

in Fig. 3.14). This effect is likely due to the instability of the antigen-targets, which produced 

underlying statistical differences of the 𝑅𝑚 signals between the training and testing phases of the 

clinical study, which were conducted 3 months apart due to sample availability from the LDB. 

Additionally, differences in temperature and humidity at the time of manual fabrication among 

other variables can impact repeatability across fabrication batches. Such issues are also pervasive 

in commercial assays, demanding production-grade equipment to establish environmental controls 

during automated fabrication as well as rigorous quality assurance to verify performance standards. 

 To mitigate such issues, future batches of sensors can be standardized to sample means (𝑅𝑚
̅̅ ̅̅ ) 

and standard deviations (𝜎𝑚) as a characteristic signature of their fabrication batch (see Eq. 3.2).  

For example, during the initial blind testing phase reported in this work, the mean and standard 

deviation of the training data were used for the input standardization. This resulted in a drift of the 

𝑅𝑚′ inputs away from zero, which can in turn manifest as a drift in the network output. Therefore, 

by standardizing the blind testing inputs to the sample mean and standard deviation of the testing 

batch, the drift in negative sample outputs is reduced by over 80% (see Appendix Fig. 3.14). As a 
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result, three of the false positive samples are subsequently classified as true negatives (with a 

decision threshold of 0.5), increasing the specificity from 87.0% to 92.6% and the AUC from 0.950 

to 0.963 with respect to the two-tier serology, while only incurring one extra false negative sample. 

Practically, batch-specific sample means and standard deviations could be calculated as a running 

average of the activated sensors in a batch, and could even be exclusively determined using 

endemic control sera, which is more readily available. An alternative approach is to include 

fabrication batch information as inputs to the network in the form of external labels[46]. In this 

case, the network could learn inherent batch-to-batch variations and compensate for these 

differences through its internal tunable parameters.  

 

Outlook 

 In conclusion, we demonstrated a paper-based computational multi-antigen xVFA platform 

capable of diagnosing early-stage LD at the POC. Our xVFA has a material cost of $0.42 per-test 

and can be performed in 15 min by an individual with minimal training. A low-cost and handheld 

optical reader enables automated analysis to quantify colorimetric signals generated on a 

nitrocellulose membrane, followed by analysis with a neural network for inferring a diagnosis from 

the multi-antigen sensing information. By computationally selecting a panel of detection antigens 

for IgM and IgG antibodies specific to LD and performing a fully-blinded clinical study with early-

stage LD samples, we report an AUC, sensitivity, and specificity of 0.950, 90.5%, and 87.0%, 

respectively, with respect to the two-tier serological testing. Using batch-specific standardization 

and threshold tuning, we improved the specificity of our blind-testing performance to 96.3%, with 

an AUC and sensitivity of 0.963 and 85.7%, respectively. 



71 

 

 The multi-target and POC nature of the computational xVFA make it uniquely suited for LD 

diagnostics, presenting major advantages in terms of time, cost, and performance when compared 

to (first-tier) EIAs with single antigen-targets as well as standard two-tier testing methods that are 

rather costly (e.g., >$400/test) and slow (>24 hours for results). 

 Future work can incorporate dual-mode read-out and operation for measuring IgM and IgG 

antibodies in a single test. Additionally, the computational framework outlined here can be used 

for iteratively designing more competitive versions of our xVFA that incorporate statistically more 

stable, sensitive, and specific capture molecules such as synthetic peptides with epitopes 

engineered for high capture-affinity and low cross-reactivity[32].  

 

3.5 Appendix 

Materials 

 Borrelia burgdorferi recombinant antigens were purchased from Prospec Inc ((OspC (BOR-

004), BmpA (BOR-006), P41(BOR-001), DbpB (BOR-007) and OspA(BOR-013)), Rockland 

Immunochemicals Inc (Crsasp1 (000-001-C18), ErpD (000-001-C09), P35 (000-001-C12)), and 

MyBioSource, Inc. (VlsE1 (MBS145939)) The modified-C6 and specific p41 epitope containing 

peptide (Mod-C6) was obtained from Biopeptides Corp. Anti-Human IgG/IgM 

(ab99741/ab99770) were purchased from Abcam. Anti-mouse IgG (1036-01) was purchased from 

SouthernBiotech. Blocker™ Bovine Serum Albumin (BSA) (37525) was purchased from Bio-

Rad. Nitrocellulose membranes (0.22μm (11327) and 0.45μm (11036)) were purchased from 

Sartorius Stedim North America Inc. A vivid plasma separation membrane (grade GX) was 

purchased from Pall Co., and the sample pad (CF7) as well as the conjugation pad (Grade Standard 

14) were sourced from GE Healthcare Biosciences Corp. The absorbent pad (Whatman Grade 707) 
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was acquired from OpticsPlanet, Inc. The gold colloidal solution (40 nm colloid, 15707-1) was 

purchased from Ted Pella, Inc. Foam tape (Super-Cushioning Food-Grade Polyethylene Foam 

Sheets 1/16") was purchased from McMaster-Carr.  A summary of the purchased materials can be 

found in Tables 3.1 and 3.2. 

 

Fabrication of the multiplexed vertical flow assay (xVFA) 

Preparation of antibody–AuNPs complexes and conjugate pads 

 Complexes of mouse anti-human IgM/IgG on AuNPs were achieved by adding 100 μL 0.1M 

borate buffer (pH 8.4) and 20 μL of antibody (0.5 mg mL-1) to 1 mL gold nanoparticle solution 

(40 nm, 1 OD) in a sterile Eppendorf tube. The mixture was incubated for one hour at room 

temperature, then 100 μL of 1% BSA in phosphate-buffered saline (PBS) was added as a blocking 

buffer. After blocking for 30 minutes at 25 oC, the mixture was incubated at 4 ℃ for one hour. To 

remove excess mouse anti-human IgG/IgM, the complexes were centrifuged at 4 ℃ for 15 min at 

8000 rpm, and washed 3 times by 1 mL washing buffer (10 mM Tris buffer (pH 7.2)). The 

supernatant was then re-suspended in 100 μL 0.1 M pH 8.5 borate buffer, containing 0.1% BSA 

and 1% sucrose. The final concentration of the antibody–AuNPs complexes was determined by 

optical density measurement at 525 nm using a well-plate reader (Synergy 2 Multi-Mode 

Microplate Reader, BioTek Instruments, Inc.). Only the complexes which had 2 OD were applied 

to the conjugate pad. 70 μL of the conjugate solution was then pipetted onto each conjugation pad 

(1.15 X 1.15 cm), which had previously been blocked by 1 % BSA in 0.1 M borate buffer (pH 

8.5). The pads were dried at 37°C for 30 min. 
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Preparation of multiplexed sensing membrane and functional paper layers  

 The multiplexed sensing membrane was produced using a 0.22 µm NC membrane and wax 

printer (Colorqube 8580DN, Xerox). Thirteen spatially isolated immunoreaction spots were 

defined by wax-printed barriers, allowing for different capture antigens to be spotted on the 

nitrocellulose membrane. After printing, the sensing membranes were incubated for 30 sec at 120 

oC in an oven to allow the printed wax to melt and diffuse downward into the nitro-cellulose. Each 

of the 13 isolated sensing spots was then loaded by hand-pipetting 0.8 μL of 0.1 mg mL-1 capture-

antigen solution (1 mg mL-1 for Mod-C6), and allowed to dry for 30 minutes at room temperature. 

The membrane was then submerged in 1% BSA in PBS solution for 30 min to block non-specific 

binding, and again dried for 10 min at 37 C in a convection dry oven. The supporting layer (0.22 

μm pore-size NC membrane) and vertical flow diffuser (0.45 μm pore-size) were also patterned 

with a wax printer, and the BSA blocking procedure was performed for these paper layers 

following the same procedure as for the multiplexed sensing membrane. The absorbent pad (1.2 × 

1.2 cm), foam tape (1.7 × 1.7 cm for outside, 1.2 × 1.2 cm for inside dimensions), and asymmetric 

membrane (1.2 × 1.2 cm for absorption layer and 1st spreading layer and 1.4 × 1.4 cm for 2nd 

spreading layer) were all laser-cut (60W Speedy 100 CO2 laser from Trotec) to achieve precise 

dimensions.  

Assembly of the multiplexed vertical flow assay (xVFA) 

 A 3-D printed cassette, which opens, closes, and locks through a simple twisting mechanism 

was custom-developed for housing the vertical stack of paper layers. Prepared paper materials 

were stacked inside of the cassette as follows; for the top-case; asymmetric membrane (absorption 

layer), vertical flow diffuser, 1st spreading layer, conjugate pad (only for 2nd top-case), sample pad, 

asymmetric membrane (2nd spreading layer) and supporting layer, for the bottom case; multiplexed 
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sensing membrane and five absorbent pads (Figure 3.6). In case of absorption layer, the face with 

the smaller pore-size was contacted with lower layer, with the stacking reversed for the 1st and 2nd 

spreading layers. The outer edges of the supporting layer in the top-case and the multiplexed sensor 

in the bottom case were secured with foam tape to protect the sensing membrane from potential 

shifting or damage. 

 

Figure 3.6. Expanded diagram of the multiplexed vertical flow assay (xVFA) detailing the different paper layers 

contained within the 3-D printed cassette (right). A quarter is show in the bottom right image for scale. 

 

Characterization of the vertical fluid flow in xVFA design  

 The vertical flow properties of the xVFA were evaluated to better understand the underlying 

performance of the test as well as to optimize the operational protocol. Specifically, we 

investigated the signal strength versus the flow rate and the incubation time with a design 

constraint of 15 min assay time in order to be on-par with standard POC tests and lateral flow 

assays (LFAs). 
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Flow rate and signal intensity versus wax-coverage of sensing membrane 

 The vertical flow rate in the xVFA cassette is limited by the flow-through area (void area) of 

the multiplexed sensing membrane (i.e. the space absent from the wax-printed barrier) and as a 

result has a clear effect on the colorimetric signal intensity. To empirically understand this 

relationship, sensing membranes with four open reaction spots, yet different proportions of wax 

coverage (60%, 80%, 90%, and 95% of the 2-D membrane area) were tested in the xVFA (see Fig. 

3.7A, B). By loading increments of fixed-volumes of the running buffer into the first top-case and 

recording the time it took for the fluid to absorb completely, the flow rate of the sensors was 

calculated for xVFA containing membranes with different wax coverage. The signal strength was 

then evaluated by the (1-R) signals (see Eq. 3.2, Section 3.2) produced by immunoreaction spots 

functionalized with the positive control proteins (Rabbit anti-Mouse IgG). The ratio of the control 

protein solution volume to each spot’s area, 0.7 μL mm-2, was conserved for the different sensing 

membranes.  

 At the beginning of the sample injection, the flow rate is at its fastest before it slows, 

converging to near constant flow rate that is limited by the flow-through area of the wax-printed 

sensing membrane. As shown in Figure 3.7B, the 95% wax printed membrane shows the highest 

signal intensity with the most steady flow rate over time. However, due the slower overall flow 

rate this sensing membrane design requires around 10 min to fully absorb the running buffer, 

sample, and washing buffer. In contrast, 60%, and 80% wax-coverage on the sensing membrane 

can complete absorption within 3 min, but with less uniformity in the sample flow over time. 

Therefore, due to this time-uniformity trade-off, the sensing membranes with 90% wax-coverage 

were utilized for the clinical study reported in sections 3.2-3.4 of this chapter. 
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Flow rate and signal intensity versus loading time 

 The flow rate and signal intensity (1-R) for the first top-case (sample loader) was recorded 

over time as described in the previous section (Fig. 3.7 C,D). The flow rate and signal intensity for 

the second top-case (signal generator) was also determined, however prior to analysis, the xVFA 

was assembled with the first-top-case and run according the standard protocol outline in the section 

3.2 of this chapter. The xVFA cassette was then opened and the sampler top-case was exchanged 

with the signal generator top-case. The flow rate over time was recorded following the same 

procedure for the first top-case, with a sensing membrane containing 90% wax-coverage (Fig.  3.7 

C-D).  

 As shown in Figure 3.7D, the sample loader top-case reached a steady flow rate and signal 

intensity after approximately 6 min, while it took nearly 8 min for the signal generator top-case. 

Based on these observations, we chose a 6 min and 8 min incubation time for the first and second 

top-case respectively to help support the flow and signal repeatability as well as rapid assay time 

(15 min). 
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Figure 3.7. Vertical flow rate analysis of the xVFA. (A) The vertical flow rate at the loading inlet versus time shown 

for sensing membranes with different percentage of wax coverage. (B) Colorimetric signal intensity and vertical flow 

rate versus different percentage of wax coverage. (C) Vertical flow rate at the loading inlet verses time for the 1st top-

case (sample loader) and 2nd top-case (signal generator) with a sensing membrane containing 90% wax coverage. (D) 

Colorimetric signal intensity versus time of the positive and negative control immunoreaction spots.  

xVFA fabrication issues that were observed 

 In the second sample-pull testing, four IgM sensing membranes exhibited failed positive 

control spots, due to the accidental incorporation of non-functionalized (blank) sensing membranes 

during the xVFA assembly. This fabrication error was identified through qualitative observations 

at the time of testing, and was also self-evident in an analysis of the positive control spots 

distributions (see Fig. 3.8).  As a result, these four xVFA tests were discarded from the testing 

analysis.  
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Figure 3.8. Failed xVFA tests due to fabrication error. (A) Histogram of the IgM and (B) IgG positive control 

immunoreaction spot over the training data-set. (C) An example image taken with the mobile phone reader of a sensing 

membrane with a working IgM control spot (right).  (D) Histogram of the IgM and (E) IgG positive control 

immunoreaction spots over the blind testing data-set, showing 4 outliers (IgM shown in D) due to fabrication error. 

These control spot signals are below the test-failure cutoff denoted by the vertical red line at (1 − 𝑅)𝐹𝐴𝐼𝐿𝑈𝑅𝐸 = 0.25. 

(F) An example image of a sensing membrane with a failed (blank) IgM control spot (right), which does not show any 

nanoparticle-based binding signal; for comparison also see C for an example of a working IgM control spot.   

 

 Additionally, in the second sample-pull testing set, three IgM and three IgG sensing 

membranes had a scaling mismatch between the background image (taken before the assay) and 

signal image (taken after the assay) possibly due to an expansion of the sensing membrane during 

the assay operation. This scale mismatch in the registration can lead to misaligned immunoreaction 

spot sampling, as the background and signal images are sampled with the same mask. Therefore, 

all sensing membranes which exhibited a scaling-factor greater than 2% as defined by an affine-
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mapping (six in total) were automatically re-processed with an affine-transformation for correct 

registration and spot analysis (see Fig. 3.9).  

 

Figure 3.9. Misalignment error due to membrane expansion. (A) Example of failed image registration between 

the background and signal image using the rigid transformation. Here the background (before image) and signal (after 

image) are tinted pink and green respectively and overlaid to better illustrate the degree of misalignment. The inset 

(upper right) shows the misalignment of a single immunoreaction spot outlined by the dotted yellow line. (B) The red 

circles show the fixed-radius masks used for sampling the immunoreaction spots on the signal sensing membrane 

using the misaligned image. (C) Registered background and signal images after applying an affine transformation, 

which incorporates a scaling factor. (D) Correctly-sampled immunoreaction spots in the sensing membrane after the 

registration correction. (E) The (1-R) colorimetric signals of the immunoreaction spots before (blue) and after (red) 

the image registration correction. For simplicity, only the immunoreaction signals used as inputs to the final neural 

network are shown.  
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Figure 3.10. Heat-map of the raw colorimetric signals from the training data set. (A) The (1-R) signals from the 

IgM sensing membranes for the seropositive (left) and negative (right) tests. (B) The (1-R) signals for the IgG sensing 

membranes for the seropositive (left) and negative tests (right). The x-axis and y-axis for each heat-map is in the same 

order as Figure 3.3B of section 3.3 of this chapter. 

 

Multi-antigen panel pre-selection 

 Prior to our clinical study, 15 clinical samples (8 cases and 7 endemic controls, also obtained 

from the Lyme Disease Biobank) were tested in duplicate to screen the following 9 antigens and 

on synthetic peptide (Mod-C6) for both IgM and IgG antibody detection: OspC, BmpA, P41, 

ErpD, Crasp1, OspA, DbpB, VlsE, P35 and Mod-C6. The 25-spot multiplexed-sensing membrane 

was employed for antigen screening with the antigens immobilized into the reaction spot following 

the same methods in the clinical study (see Fig. 3.11A). Samples loaded into the xVFA undergo 

complex immunoreactions that depend greatly on the conditions in the nitrocellulose matrix where 

the capture antigens are immobilized. Such an environment is significantly different from 
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conventional Enzyme-linked Immunosorbent Assays (ELISA) and Western blotting (WB) 

therefore, each antigen was assessed within the paper-based sensor before being implemented in 

the detection panel used for the clinical evaluation.  

Figure 3.11 shows the results of antigen pre-screening. The t-score of each detection antigen was 

ranked, where the t-score was defined by Welch’s t-test, 

𝑡𝑚 = 
𝑋𝑚(+)− 𝑋𝑚(−)

√
𝑠𝑚(+)

2

𝑁(+)
 + 

𝑠𝑚(−)
2

𝑁(−)

          Eq. 3.5 

Here 𝑋𝑚 and 𝑠𝑚
2  represent the mean and variance of the (1 − 𝑅𝑚) signal respectively for the 

seropositive and negative samples as denoted by the (+) and (-) subscripts. 𝑁 represents the number 

of seropositive or negative samples. The capture antigens were therefore classified into three 

regimes: I, II, III (Fig. 3.11B). Regime III shows the worst discriminators, VlsE and OspA, 

exhibiting a t-score < 1. Despite OspA and VlsE being known to be effective detection antigens 

for LD, no signals were derived from their immunoreactions within the xVFA system. This could 

be due to poor antigen immobilization due to weak charge interaction as well as interference 

caused by the nitrocellulose matrix, as well as due to an absence of antibodies for VlsE and OspA 

in the samples tested. Therefore, these antigens that fell into Regime III were not included in the 

panel used for our clinical study. The antigen targets in Regime II were each kept as a single 

immunoreaction spots on the final 13 spot multiplexed-sensing membrane, while the antigen 

targets in Regime I, which exhibited the best discriminatory ability (t-score > 2.0), were therefore 

each given an additional (redundant) immunoreaction spot, in the place of the eliminated antigens 

from Regime III.  

 This strategy resulted in the final multi-antigen panel for the clinical study: two-spots in the 

panel for Regime I (OspC, DbpB and Mod-C6), and single spots for Regime II (Crasp1, Erpd, P41, 
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BmpA and P35) along with single spots for the positive and negative control proteins which were 

anti-mouse IgM/IgG and BSA respectively (Fig. 3.3A, Section 3.3). 

It is important to note that the 10 antigens employed in this study, though commonly used for LD 

serology testing, are a subset of the much larger number of target antigens which have been 

evaluated and developed for LD diagnosis. Future iterations of the multi-antigen detection panel 

within the xVFA can therefore incorporate novel antigen targets produced through e.g. epitope 

mapping or other large-scale screening efforts. 

 

 

Figure 3.11. Pre-screening antigens for the xVFA sensing membrane. (A) Spot map for the antigen screening 

process including 10 capture antigens. (B) The t-scores (Eq. 3.2, Section 3.2) of the 10 antigens in the pre-screening 

panel. Three regimes are defined (shaded with different colors); antigens in regime I are given two spots within the 

testing antigen panel, antigens in regime II are given one spot in the panel, and antigens in regime III are not included 

in the testing antigen panel. (C) The IgM and (D) IgG sensing membrane colorimetric signal for each Lyme positive 

(left) and Lyme negative (right) human serum sample in the pre-screening cohort. 
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Precision Testing 

 A precision evaluation was performed using the same assay operation and analysis described 

above. Two additional seropositive samples and two endemic control samples, were blindly tested 

with six repeat 10:35measurements by the same operator. To test the inter-operability of the xVFA, 

two volunteers who had no experience with the xVFA operation were trained for 5 minutes by one 

of the authors (Dr. Hyou-Arm Joung) before each performing duplicate measurements with one 

seropositive sample and one endemic control. 

The importance of the batch-specific standardization (see Section 3.4) is especially highlighted by 

this precision testing which similarly shows a drift in the network output without batch-specific 

standardization. However, by performing the input standardization with the mean and standard 

deviation of the batch used for precision testing, the overall accuracy during the precision testing 

results falls in line with the blind-testing performance, and showed no apparent instability between 

the operators (Table 3.7).  

 The individual immunoreactions were also examined in terms of their precision (Fig. 3.12, 

3.13) as discussed in the section 3.4 of this chapter. 
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Figure 3.12. Real pictures of sensing membranes during precision study (A)-(D) Pictures (under ambient light 

conditions) of the IgM and IgG sensing membranes activated by two seropositive samples and two endemic controls, 

with six repeat measurements for each sample performed by the same operator. 

 

Figure 3.13. Precision analysis of the immunoreactions of the multi-antigen panel. (A) The mean (1-R) signals 

and standard deviations of the two seropositive (POS1 and POS2) and two seronegative (Control 1 and 2) for the IgM 

and (B) IgG sensing membrane. (C) The coefficient of variation (%CV) of each immunoreaction spot for the repeated 

tests. (D) Summary of the %CV over all the immunoreaction spots broken down by the seropositive and seronegative 

samples as well as the IgM and IgG sensing membrane. 
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Figure 3.14. The network output from the initial blind testing set comparing different batch-specific 

standardizations. The network output shown, S(x), is the sigmoid activation function where x represents the output 

of the final hidden layer of the network before this final nonlinear activation. (A) The network output from the blind 

testing set where the inputs are standardized to the mean and standard deviation over the training set. The blue and 

red markers represent the seronegative and positive samples respectively and the solid blue and red lines (left plot) 

indicate the mean network output of the seronegative and positive samples, respectively. The boxplot to the right 

shows the median (solid red line) of the network output of the seronegative and positive samples, with the blue box 

representing the 25th and 75th percentile, and the black whiskers designating the most extreme data points not 

considered as outliers. The outliers are shown with the red crosses. (B) Histogram of the network output, x, before the 

nonlinear activation S(x) where the solid blue and red bars represent the mean value for the seronegative and positive 

samples respectively. C-D) A comparison to (A) and (B) of the blind testing set where the inputs are standardized to 

the mean and standard deviation over the testing set. 
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Supplemental Tables 

Table 3.1. Itemized list of the different paper layers included in the xVFA along with their per-test cost. The 

total material cost (excluding the plastic cassette) is $0.42 per test. 

 

 

Table 3.2. Itemized list of the different reagents employed in the xVFA along with their per-test cost. The 

modified-C6 peptide was synthesized at Biopeptides Corp. and was provided without charge as part of a collaboration. 

For Figure 3.4 in the Section 3.3, the Mod-C6 cost was estimated to be $0.51 per test, which is the average per-test 

cost of the other 7 antigens included in the testing panel.  

 

 

Table 3.3. Clinical testing results of the serum samples which constitute the training data set (i.e. samples from 

the first sample-pull). All samples were provided by the Lyme Disease Biobank, and collected at a clinical site in East 
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Hampton. All testing was performed at Stony Brook labs. Abbreviations: EM- Erythema Migrans rash, WB - Western 

Blot, BL- borderline, EQV- Equivocal, POS- positive, NEG-negative, IT- indeterminate, i.e. a WB that contains 

specific bands but does not meet the positive CDC criteria, NR- Non-Reactive. Note that ‘Two-tier Positive’ 

corresponds to the standard testing using EIA and Western Blotting in the first and second tier, respectively, whereas 

‘Serology Positive’ encompasses the modified two-tier testing (MTTT) definition described in section 3.2. 
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Table 3.4. Clinical testing results of the serum samples which constitute the blind testing data-set (i.e. samples 

from the second sample-pull). All samples were provided by the Lyme Disease Biobank, and collected at clinical sites 

in East Hampton as well as Wisconsin. All testing for the samples collected from East Hampton was performed at 

Stony Brook labs and samples collected from Wisconsin were performed at the Mayo clinic. The initial, blinded 

network predictions are shown in the right most columns, with the grey boxes corresponding to the 4 xVFA tests with 

failed IgM control spots. Abbreviations: EM- Erythema Migrans rash, WB - Western Blot, i.e. a WB that contains 

specific bands but does not meet the positive CDC criteria, BL- borderline, EQV- Equivocal, POS- positive, NEG-

negative, IT- indeterminate, NR- Non-Reactive. Note that ‘Two-tier Positive’ corresponds to the standard testing 

using EIA and Western Blotting in the first and second tier, respectively, whereas ‘Serology Positive’ encompasses 

the modified two-tier testing (MTTT) definition described in section 3.2. 
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Table 3.5.  Comparison between the xVFA and the recently FDA cleared POC Sofia Lyme test from Quidel, 

which can be used as a first tier test, but is not recommended as a replacement of the two-tier testing. (A) Initial blind 

testing results using our xVFA (i.e. using a diagnostic threshold of 0.5) as well as blind testing results of the xVFA 

when implementing batch-specific standardization and a threshold of 0.66 determined during the training phase. The 

right most column shows the performance of the standard (CDC recommended) two-tier serology (i.e. with WB in the 

second tier). All sensitivities and specificities reported here are with respect to the ultimate clinical diagnosis (which 
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includes diagnosis through qPCR and seroconversion, in addition to the standard and modified two-tier testing 

methods). (B) Blind testing results using a CDC panel of human sera, reported in the Quidel Sofia Lyme package 

insert (Sofia Lyme FIA | Quidel. Available at: https://www.quidel.com/immunoassays/rapid-lyme-tests/sofia-lyme-

fia. (Accessed: 13th September 2019). 

 

 

Table 3.6. Comparison of the initial blind testing xVFA performance (i.e. with a threshold value of 0.5) to blind 

testing with batch-specific standardization and threshold of 0.66 determined during the training phase. A 

comparison is also made between the performance compared to two-tier testing serology (including the MTTT 

method) as well as the ultimate clinical diagnosis (confirmed through Two-Tier testing, PCR, or seroconversion).  



91 

 

 

Table 3.7. Precision testing results of three seropositive samples and three endemic controls repeated 6 times and 

by different operators. Here the inputs to the network were standardized to the mean and standard deviation of the 

batch of sensors used for precision testing, and a decision threshold of 0.66 was used as determined during the training 

phase.  

 

 

 

Table 3.8. Comparison of the performance of different antigen detection panels during the training and testing 

phase. The number of False Negatives (FN) and False Positives (FP) in the testing batches is displayed in parenthesis.  
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Chapter 4. Computational Sensing Using Low-Cost and Mobile Plasmonic 

Readers Designed by Machine Learning 

 This chapter, breaking with chapters 2 and 3 discusses applications of computational sensing 

in emerging plasmominc sensors. Though the previously discussed VFA platform uses plasmonic 

nanoparticles for color signal generation through immuno-labels, new photonic crystal structures 

have enabled more sensitive plasmonic sensors to work via label-free surface chemistry, with the 

ability to detect mid-sized proteins in the pg/mL range in whole blood. Emerging nano-fabrication 

techniques have also enabled these sensors to be cost-effectively mass-manufactured onto various 

types of substrates. To accompany these advances, major improvements in sensor read-out devices 

must also be achieved to fully realize the broad impact of plasmonic nano-sensors. In this chapter, 

I propose a machine learning framework which can be used to design low-cost and mobile multi-

spectral plasmonic readers that do not use traditionally employed bulky and expensive stabilized 

light-sources or high-resolution spectrometers. By training a feature selection model over a large 

set of fabricated plasmonic nano-sensors, we select the optimal set of illumination light-emitting-

diodes needed to create a minimum-error refractive index prediction model, which statistically 

takes into account the varied spectral responses and fabrication-induced variability of a given 

sensor design. This computational sensing approach was experimentally validated using a modular 

mobile plasmonic reader. We tested different plasmonic sensors with hexagonal and square 

periodicity nano-hole arrays, and revealed that the optimal illumination bands differ from those 

that are ‘intuitively’ selected based on the spectral features of the sensor, e.g., transmission peaks 

or valleys. This framework provides a universal tool for the plasmonics community to design low-

cost and mobile multi-spectral readers, helping the translation of nano-sensing technologies to 
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various emerging applications such as wearable sensing, personalized medicine, and point-of-care 

diagnostics. Beyond plasmonics, other types of sensors that operate based on spectral changes can 

broadly benefit from this approach, including e.g., aptamer-enabled nanoparticle assays and 

graphene-based sensors, among others. 

 Part of this chapter has been previously published: Adapted with permission from (Z. S. 

Ballard, D. Shir, A. Bhardwaj, S. Bazargan, S. Sathianathan, and A. Ozcan, “Computational 

Sensing Using Low-Cost and Mobile Plasmonic Readers Designed by Machine Learning,” ACS 

Nano, vol. 11, no. 2, pp. 2266–2274, Feb. 2017). Copyright (2017) American Chemical Society."  

 

4.1 Introduction 

 Localized Surface Plasmon Resonance (LSPR) is at the heart of a class of biological and 

chemical sensors which operate by supporting resonances of collective electron oscillations that 

respond to changes of refractive index within their near field [1]–[3]. In these types of sensors, 

plasmonic resonances occur when light interacts with sub-wavelength metal nanostructures and 

can be interrogated via far-field optics in the visible part of the spectrum. Typically, a characteristic 

Lorentzian peak or trough in the reflection or transmission spectrum can be tracked in response to 

changes in the near-field refractive index [3]–[5]. For example, when a target analyte such as a 

protein or a virus is brought into the near-field of the plasmonic sensor structure, the effective 

refractive index is altered, and the characteristic peak undergoes a spectral shift. This resonance 

shift is particularly sensitive to surface binding events, making it a powerful tool to probe 

biological or chemical interactions near or at the sensor surface. LSPR sensors have already 

extensively been demonstrated in the literature as effective biological and chemical sensors, used 

for e.g., measuring DNA hybridization, heavy metal ion concentration, cancer bio-marker 



97 

 

detection, quantification of protein concentration, and even viral load measurement in unprocessed 

blood samples [6]–[21]. Furthermore, recent advances in nano-fabrication technologies such as 

colloidal self-assembly, soft lithography, and imprint molding have enabled high-throughput, low-

cost, and scalable production of flexible, large-area, plasmonic sensors with a variety of different 

2D and 3D nanostructure designs including nano-hole arrays, dome arrays, cross arrays, and many 

other exotic geometries [8], [22]–[32]. This recent and exciting trend now extends the applications 

of plasmonic sensors beyond laboratory settings for use as wearable sensors or as disposable point-

of-care sensors, and also permits their integration into existing medical equipment such as 

intravenous tubes, syringes, blood bags, bandages, or medical garments [5], [30], [33]–[37].  

 However, with the proliferation of these low-cost and flexible LSPR-based sensors, new and 

innovative designs for the corresponding read-out devices must also be considered. Field 

portability, low-cost, ease-of-use, and network connectivity are all desired design features for 

ensuring widespread adoption of these sensing systems [33], [38], [39]. Currently, the most 

common read-out and quantification scheme for LSPR sensors employs a stable, broad-band light 

source for illumination and a high resolution optical spectrometer for recording the transmission 

or reflection spectra [3], [6], [40]–[43]. Alternatively, a tunable light source and a single 

photodiode can be used to obtain the same spectral information. Although a ‘peak/valley tracking’ 

based detection approach is quite effective in accurately registering and quantifying the sensor 

response, it requires optical hardware which can retrieve comprehensive spectral information, over 

a broad wavelength range of e.g., 400-700 nm. The inclusion of the above mentioned optical 

components can result in spectral read-out devices which are prohibitively bulky and expensive 

for many applications, especially in field and resource limited settings. Therefore, in an effort to 

engineer cost-effective and mobile plasmonic read-out devices, inexpensive optical components 
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such as LEDs, complementary metal–oxide–semiconductor (CMOS) imagers or single 

photodiodes along with mobile-phone based designs can be considered. Some recent work has 

showcased such design considerations [44], [45]. However, in designing these mobile devices, one 

must select a strategic set of bands to be able to sensitively register the spectral response of the 

plasmonic sensor design. This LED selection process is crucial to the performance of the 

plasmonic read-out device, and is influenced by many factors such as the spectral location of the 

plasmonic resonances, as well as the responsivity of the CMOS imager or the photodiode. 

Additionally, the optical signal resulting from the selected set of LEDs must contribute to a 

mathematical sensing model that is tolerant to the inherent fabrication variability of the plasmonic 

chips, which is unavoidable especially when using some of the emerging large-area, low-cost 

nano-fabrication techniques [46], [47]. Finally, these LSPR sensors should be ‘plug and play’ and 

not need an individualized calibration procedure per sensor chip that is often performed in the 

literature.  

 In this work we demonstrate a machine-learning based computational sensing framework 

which can be used to design the most optimum and yet cost-effective plasmonic read-out device 

that is suitable for various mobile sensing applications in field and resource-poor settings (see Fig. 

4.1). Our computational sensing framework implements a statistical approach to determine the 

optimal set of illumination LEDs needed to create a minimum error refractive index prediction 

model by taking into account the varied spectral responses as well as the fabrication variability of 

the plasmonic sensor design of interest. To demonstrate this approach, ‘training data’ were taken 

over a statistically significant number of individual sensors (N>30) for two different plasmonic 

sensor designs (hexagonal and square periodicity nano-hole arrays, see Fig. 4.2), fabricated using 

a large-area nano-imprint molding approach, to learn the spectral response of each plasmonic 
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design due to refractive index changes. This data set was then used to train a machine learning 

algorithm with pre-defined constraints in order to form a computational model which accurately 

predicts the bulk refractive index of unknown test samples, without the need for an individualized 

calibration procedure per test.  

 

Figure 4.1. Modular design of our mobile, multi-spectral plasmonic reader. (a) Schematic illustration of the 

components of the reader. (b) 3D-printed prototype of the plasmonic reader used in this work. 

 This proposed computational sensing framework can be generally used by the plasmonic 

sensing community to design optimized LSPR read-out devices which aim for cost-effectiveness, 

mobility, and robustness. Our approach can be broadly applied to any LSPR sensor geometry, and 

can accommodate any set of practical design constraints. Beyond the scope of LSPR sensors, this 

computational sensing and design framework can also be employed by any type of biochemical 

sensor which operates via a spectrum change or shift. Emerging sensing elements such as aptamer-

enabled nanoparticle assays, plasmonic interferometers, dynamically tunable plasmonic sensors, 

and graphene-based materials, with engineered physical properties and responses can similarly be 
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analyzed by this framework in order to determine the optimal mobile read-out and computational 

sensing scheme [24], [48]–[54]. Taken together, this proposed framework can be used as a robust 

engineering tool to design next generation plasmonic read-out and sensing devices for e.g., 

wearable and embedded sensing systems, personalized medicine applications, and point-of-care 

diagnostics, among various others. 

 

Figure 4.2. Optical and SEM images of the plasmonic sensors consisting of hexagonal and square array of nano-

holes and their corresponding transmission spectra in differing refractive index environments (right). 

 

4.2 Results and Discussion 

Computational sensing and design framework for multi-spectral mobile plasmonic read-out 

using machine learning 
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 The machine learning approach used in this work selects the optimal sub-set of LEDs from a 

pre-defined library, and aims to produce the minimum error refractive index prediction model for 

a given plasmonic nano-structure design and nano-fabrication method. To generate the initial 

‘training data’ set, our plasmonic sensors, equipped with fluidic channels, were placed on a 

transmission stage and illuminated by a fiber-coupled broadband stabilized light source (Thor 

Labs, SLS201) as outlined in Figure 4.3.  

 

Figure 4.3. Schematic illustration of the fluidics set-up for collecting training data. The inset shows a 

representative transmission spectrum shift as the surrounding bulk refractive index was increased. 

 This training process needs to be performed only once for a given plasmonic sensor design and 

nano-fabrication method, and it aims to infer the statistical spectral variations of the sensor design, 

as a function of bulk refractive index as well as fabrication tolerances and imperfections. After a 

‘spectral stack’ was recorded for every chip in the training set (N = 33 for both the hexagonal and 

square periodicity nano-hole arrays, Fig. 2), each spectrum was normalized to its ‘reference 

spectrum’, which in this case was taken to be the plasmonic transmission spectrum in de-ionized 
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water (RIU = 1.3325). It is important to note that the resulting normalized ‘contrast spectra’, as 

shown in Figure 4.4, were normalized to their own characteristic references. A global reference 

would not properly zero the contrast information from the LEDs for every trained chip and 

therefore was not used. Next, a custom-built LED library (refer to the Materials and Methods 

Section for details) was utilized to simulate every possible LED transmission through the sensor. 

By defining the spectral output of each LED in terms of the peak wavelength and line-width 

specified in their respective data sheet, the overlap integral of the LED spectra with the plasmonic 

contrast spectra was numerically calculated. Applying this procedure for each sensor in the training 

data set yielded a matrix, 𝑋𝐿𝑖𝑏, which contained the simulated contrast values of all the LEDs in 

the pre-defined LED library for each bulk refractive index that was sampled during the training 

experiments (see Fig. 4.4). Specifically, the number of rows in this matrix is defined by the product 

of the number of plasmonic nano-sensors trained (N=33) and the number of transmission spectra 

sampled per sensor during the bulk refractive index modulation, which for our data set was 13, 

i.e., 33 x 13 = 429 rows exist in 𝑋𝐿𝑖𝑏. The number of columns is defined by the number of LED 

contrast features (i.e., the number of entries in our LED library, denoted with n in Fig. 4.4) plus 

one, where an additional column of ones is concatenated onto the LED contrast feature matrix to 

provide a constant term in the linear model. Quite importantly, 𝑋𝐿𝑖𝑏 contains spectral data from 

multiple plasmonic sensor chips, and therefore has the appropriate statistical information of how 

each sensor’s spectral response varies due nano-fabrication variability and imperfections.  

 This training data matrix, 𝑋𝐿𝑖𝑏, was then used as an input into an L1-norm regularization 

algorithm (i.e., LASSO, least absolute shrinkage and selection operator) which aims to find a 

regularized least-squares solution between the output of a linear model and the measured ‘gold-

standard’ refractive index values, y, [55]–[58], i.e., 
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where the vector 𝑏 is the variable which is solved for, 𝑏∗ being the optimal solution for 

computational sensing, corresponding to the n + 1 optimal coefficients, which define the linear 

model. λ is the regularization parameter, which in this manuscript is typically set to be between 

10-4 and 10-7
 as discussed later in the manuscript.  

 

Figure 4.4. Schematic illustration of the machine learning framework.  

  

 Based on the above described statistical framework, in order to determine the optimal set of 

LEDs to be used in our computational mobile plasmonic reader, we used a ‘leave-one-sample-out 

cross validation’ (LOOCV) procedure with the training data set (N=33). For each iteration, the 33 

samples were partitioned; 32 samples as training data and 1 sample being used a testing sample. 

The regularization parameter was selected by performing a nested LOOCV within that iteration’s 

set of 32 training samples, revealing what range of parameters yielded the minimum error model, 

𝑏 𝜖 ℝ𝑛+1 
𝑏∗ =  𝑎𝑟𝑔𝑚𝑖𝑛    𝑋𝐿𝑖𝑏𝑏 − 𝑦 

ℓ2

2
+  𝜆 𝑏 ℓ1 Eq. 4.1 
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which for these training sets was typically between 10-4 and 10-7. It is also important to note that 

as the regularization parameter is varied over this range, the mean-squared-error of the nested 

LOOCV remains within one standard deviation of the minimum error and the features with 

corresponding non-zero coefficients in the linear models remain constant (see Appendix Fig. 4.7). 

This analysis indicates that no large bias or over-fitting permeates the linear models with this 

selection of the regularization parameter. 

 During this LED selection process and LOOCV procedure, 33 different linear models were 

generated using the LASSO (Eq. 4.1) and all the non-zero coefficients in each resulting 𝑏∗ solution 

were recorded every iteration, revealing which LEDs were statistically favored out of our LED 

library for forming the optimal linear model. The top four LEDs utilized most in these linear 

models were then selected for the testing process. A detailed ranking of these LEDs is shown in 

Appendix Figure 4.8. For the case of the square periodicity nano-hole array (see Fig. 4.2), the 

fourth ranked LED (λpeak = 735 nm) was replaced by an LED with λpeak = 660 nm so that in the 

blind validation step we could directly compare our optimal linear model to a model created with 

LEDs directly to the left and right of the dominant plasmonic spectral feature as discussed later. 

 After this LED selection process, the optimal set of LEDs that we inferred were installed into 

our field-portable plasmonic reader device (Figure 4.1), the modular optical hardware of which 

will be detailed in the next sub-section. To ensure an accurate refractive index prediction model, 

the exact output spectra of the selected LEDs were also measured and used in our computational 

sensing step to mitigate any error which might occur due to slight differences between the modeled 

and actual spectra of the selected LEDs. The final refractive index prediction model was then 

generated by inputting the entire training data set into the same L1-norm regularized LASSO 

algorithm, this time with the training data matrix, 𝑋𝑂𝑝𝑡𝐿𝐸𝐷, consisting of 5 columns (4 columns 
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corresponding to the optimal set of 4 LEDs installed in the portable reader, plus the column of 

ones as before), i.e.,  

 

  

 

where the regularization parameter (λ) was determined to be 1.15 x 10-6 and 4.78 x 10-7 for the 

hexagonal and square periodicity implementation of the algorithm, respectively. This selection 

was based off a secondary LOOCV, which determined the λ needed to achieve the minimum error 

solution over the training set. This secondary cross-validation step also elucidates the degree to 

which over-fitting might occur with the final linear model. Parametrically sweeping the 

regularization parameter over a logarithmic range of 10-7 to 100 assures there no over-fitting 

tendencies with the selection of a small regularization parameter in the range 10-7 to 10-4. This is 

because our set of LED contrast features are highly correlated to the change in bulk refractive 

index, especially given the optimal set of LEDs which exclude the features that yield high variance 

across multiple fabricated chips.  The optimal solution for our mobile plasmonic reader design, 

𝑏𝑚𝑜𝑏𝑖𝑙𝑒
∗ , was then used as the vector of coefficients in the final computational sensing step to 

predict the refractive index (RIU) of the sample using the mobile reader device, i.e., 

 

where each row of 𝑋𝑡𝑒𝑠𝑡 refers to an independent sensing measurement or multi-spectral test made 

with our mobile plasmonic reader. 

 

Modular optical design of a low-cost and mobile multi-spectral plasmonic reader  

 Figure 4.1 shows the LED-based mobile multi-spectral plasmonic reader hardware used to 

 𝑏𝑚𝑜𝑏𝑖𝑙𝑒
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛        𝑋𝑂𝑝𝑡𝐿𝐸𝐷𝑏𝑚𝑜𝑏𝑖𝑙𝑒 − 𝑦 

ℓ2

2
+  𝜆 𝑏𝑚𝑜𝑏𝑖𝑙𝑒 ℓ1 

𝑏𝑚𝑜𝑏𝑖𝑙𝑒𝜖ℝ
𝑛+1 

𝑅𝐼𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑡𝑒𝑠𝑡𝑏𝑚𝑜𝑏𝑖𝑙𝑒
∗  Eq 4.3 

Eq. 4.2 
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validate our framework. This modular device is compact (6.5 x 6.5 x 7.5 cm), light weight (< 160 

g), and cost effective, utilizing multiple LEDs for illumination and a CMOS imager (Basler dart 

series, daA1280-54µm USB 3.0) for the capture of the transmitted light from a plasmonic sensor 

of interest. An Arduino micro-controller was programmed to sequentially power on the LEDs and 

trigger the camera for image capture.  The resulting device was prototyped via 3-D printing, and 

can be powered either through a USB cable or by battery. This device was specifically designed 

to accommodate interchangeable LEDs (up to a maximum of 4), consisting of a detachable 3-D 

printed cap which holds the selected LEDs and allows for convenient substitution of each LED 

depending on the design of the plasmonic chip. In this work, we used plasmonic nanostructures in 

the form of hexagonal and square array of holes with periodicity, relief depth, and hole diameter 

of 500 nm, 300 nm, and 380 nm, respectively, as shown in Figure 4.2. These plasmonic sensors 

were fabricated using soft imprint lithography, a process that is low-cost, scalable, and high-

throughput, as detailed in the Materials and Methods section. During the device operation, the 

LEDs are turned on sequentially and their output light is guided through a conical light-guide onto 

a diffuser and then into a 1 mm pinhole. This novel design allows for up to four LEDs to mutually 

illuminate the LSPR sensor at approximately normal incidence angle. Additionally, this design 

records multi-pixel optical transmission information over a field of view of >17 mm2, as opposed 

to the hyper-spectral yet single-pixel information obtained by a traditionally employed 

spectrometer. This unique difference in our field portable design allows for a multiplexed sensor 

read out, simultaneously reading transmission information from multiple surface functionalized 

regions targeting e.g., a panel of analytes. For the purposes of this study and to illustrate the proof-

of-concept of our proposed computational sensing framework, we calculated a single transmission 

value from each CMOS image for a given illumination LED and bulk refractive index by averaging 



107 

 

the pixel intensity of a centrally located binned region (i.e., 100 x 100 pixels). Lastly, the 

incorporation of a CMOS imager provides a robust, easy-to-align and yet compact design with 

simple light-coupling as a result of the in-line lensless imaging-based computational detection 

scheme. 

 

Blind testing and validation of the machine learning and computational sensing framework 

using a modular mobile plasmonic reader 

 For independent validation of our computational sensing framework, our low-cost and field-

portable plasmonic reader was used to blindly test a set of LSPR sensors, i.e., the plasmonic sensors 

being tested had not previously been used in our training data, preventing any sort of data 

contamination or artificial overfitting in the final linear model. Eight chips (N = 8) were tested 

with M=13 refractive index measurements sampled for each plasmonic chip, using the same 

fluidics mixing set-up illustrated in Figure 4.2. To illustrate the generality of this framework, both 

the hexagonal and square periodicity nano-hole arrays were tested (see Fig. 2), and the mean error 

of the RIU predictions resulting from our computational sensing framework (Eq. 4.3) was 

calculated using,      

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =  
1

𝑁 𝑀
∑∑|𝑅𝐼𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑝 − 𝑦𝑖
𝑝|

𝑀

𝑖=1

𝑁

𝑝=1

 

where, 𝑅𝐼𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑝 and 𝑦𝑖
𝑝
 represent the predicted and the gold standard refractive index values, 

respectively, for a given measurement, 𝑖, and a given testing chip, 𝑝. 

 Figure 4.5 compares three distinct linear models for our plasmonic sensors, for both the 

hexagonal (Fig 4.5 a-c) and square nano-hole array designs (Fig 4.5 d-f). The first linear model 

(dark blue) uses a single LED feature closest to the dominant plasmonic spectral feature (located 

Eq. 4.4 
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at 590 nm and 700 nm for the hexagonal and square periodicity nano-hole arrays, respectively). 

The second linear model (light blue) uses a pair of LEDs directly to the right and left of the 

dominant plasmonic spectral feature. Lastly, the third linear model (green) uses the LEDs chosen 

through the feature selection process based on our machine learning framework. Previously 

published LED based field-portable plasmonic reader designs often use the second linear model 

(i.e., a ratio-metric approach) to measure and quantify sensor responses (45). However, this type 

of a design does not necessarily provide the most accurate results. For example, in the case of the 

hexagonal nano-hole array LSPR sensor, a linear model using LEDs that are closest to the main 

spectral feature, i.e. 595 nm and 527 nm LEDs to the right and to the left of the LSPR peak, 

respectively, resulted in ~5 times higher mean error compared to a linear model using LEDs (525 

nm and 611 nm) selected based on our machine learning approach (see Fig 4.5). This reduction in 

mean error enabled by our machine learning approach is largely due to the inherent fabrication 

variability of large-area, low-cost, and scalable nano-fabrication techniques. This fabrication 

variability can be evidenced by varied microscopic and macroscopic defect rates, differing cured 

photo-polymer thickness, non-uniform topography, which might cause slight deviations from 

perfectly normal illumination thus altering the coupling conditions, as well as deformation of the 

desired cylindrical non-hole array structure. The advantages gained in scalability and cost-

effectiveness of nano-fabrication can adversely result in subtle differences in peak locations of the 

main LSPR resonance from chip to chip (1-2 nm difference in peak location) as well as varying 

line-widths of the resonance. Therefore, when LEDs are ‘intuitively’ chosen based on their 

proximity to the dominant spectral features of the plasmonic sensor, they can yield large variances 

in their contrast values during the analyte-induced spectral shift. Therefore, such features should 

be avoided when designing a robust read-out model, especially when dealing with a large number 
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of sensors that will naturally exhibit fabrication-related variations in their spectral response, as 

detailed earlier. Here we illuminate an important trade-off in which signal strength (i.e., absolute 

LED contrast) is sacrificed for features which yield lower variance from chip to chip. In other 

words, more stable features exist from LEDs which only have partial spectral overlap (and thus 

less contrast) with the dominant spectral features. Our machine learning-based computational 

sensing approach ultimately selects the optimal compromise in this trade-off for a given plasmonic 

design and fabrication method.  

 

Figure 4.5. Comparison of different LED linear models. LEDs used in linear models (a), (d) for the two plasmonic 

sensors; hexagonal and square periodicity nano-hole arrays, respectively. (b), (e) Comparison between the refractive 

index prediction and gold standard values for the three models used in (a) and (d), respectively. Each LED model is 

color coded for better visualization, and the third linear model (green) uses the LEDs chosen through the feature 

selection process based on our machine learning framework. Mean error comparison is provided in (c) and (f) for the 

three linear models. Please refer to the Appendix Information for additional performance comparisons among different 

models. 
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 In the case of the hexagonal plasmonic sensor, the feature selection property of the L1-norm 

regularized LASSO algorithm recognized the large variance of the 595 nm LED contrast values 

and therefore forced this coefficient in the linear model to zero, instead selecting the 611 nm LED 

as a more stable spectral feature. A similar, albeit less dramatic effect, can be seen with the square 

periodicity plasmonic sensor. For this testing data, a model which utilized four LED contrast 

features proved more robust than using the two ‘intuitive’ LEDs located to the right and left (730 

nm and 656 nm, respectfully) of the dominant LSPR spectral feature. Of particular importance is 

the inclusion of the 500 nm LED into the optimal model which reduced the refractive index 

prediction error in the testing data by 50%. This LED would not necessarily have been chosen by 

intuition because it is almost completely removed from the main LSPR spectral feature.  

 In summary, by ‘learning’ from the training data, which needs to be performed only once for 

a given plasmonic chip design and fabrication method, this machine learning and computational 

sensing framework identifies the spectral regions with a consistent response, differentiating them 

from the spectral regions with a varied response, and accordingly adjusts the computational 

sensing linear model to select the most stable features by divulging the optimal set of spectral 

bands (LEDs) and their corresponding weights. For completeness, the testing errors corresponding 

to all the possible linear models which could be made with the 4 selected LEDs and training data 

sets were also calculated and compared to each other for both of our plasmonic sensor designs (see 

Appendix Tables 4.1-4.2.) In this comparison, we selected linear models which are solutions of 

the L-1 norm LASSO regularization, the L-2 norm Tikhonov regularization[59], and a 

multivariable least squares solution based on QR decomposition, which contains no regularization 

term[60].  
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 Lastly, in an effort to realistically address the role of future plasmonic read-out devices for 

various emerging sensing applications it must be emphasized that the plasmonic sensors used in 

this study were fabricated with techniques which allow for high-throughput, low-cost, and scalable 

sensor production. For example, the vapor deposited ‘non-stick’ layer on the silicon master 

(detailed in the Materials and Methods section) lasts for many iterations of the fabrication 

procedure, only needing to be reapplied after every 30-40 uses as a mold. Although the production 

of the initial silicon master requires the use of conventional photolithography tools and procedures, 

each silicon master can be used indefinitely with proper care and treatment, producing hundreds 

to thousands of soft molds, thereby dramatically reducing the fabrication cost of each quasi-3D 

nanostructure. Additionally, the subsequent imprint molding process can be performed by 

individuals with minimal training and equipment, requiring only basic tools and a standard UV 

lamp. This process can also be highly parallelized, only being limited by the number of silicon 

masters available for the initial soft mold fabrication. Each soft mold can be used upwards of 20 

times without incurring significant defects. The metal deposition is the only step in this procedure 

which requires a clean-room facility, however, each metal deposition run can produce thousands 

of plasmonic sensors, depending on the tool configuration. For example, with the metal deposition 

tool (CHA Solution Electron Beam Evaporator) used in this work, approximately 1,400  plasmonic 

sensors can undergo metal deposition at once, assuming each sensor has an area of 5x5 mm and 

seven four-inch wafers can be loaded into the evaporator per run (as in our case).  The material 

costs are also minimal, with ~0.4 grams of gold being used per run for a 50 nm coating. 
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Conclusions 

 We developed and validated a universal machine learning and computational sensing 

framework, which brings mobility and cost-effectiveness to plasmonic sensor read-out device 

design. This computational sensing approach is especially valuable in designing multi-spectral 

readers where the selection of optimal low-cost illumination bands is critical. This framework is 

truly a ‘black-box’, compatible with any arbitrary plasmonic sensor geometry, and any 

illumination library based off of user-defined design constraints. As a result of this, the presented 

framework can be extended to broadly benefit any optical sensor which operates based on spectral 

changes in its transmission or reflection response. Also, because any illumination library can be 

used, more targeted libraries which include the spectral output from combinations of filters and 

LEDs can be explored along with the rolling addition of emerging illumination sources. Taken 

together, we believe this framework can be used by the plasmonic sensing community to design 

and optimize low-cost mobile readers for quantification of e.g., protein concentration, ion 

detection, and even whole-virus quantification with minimum error. Furthermore, coupled with 

the advances in scalable and low-cost plasmonic sensor fabrication techniques, our computational 

sensing approach holds significant potential to advance emerging applications for wearable 

sensors, personalized medicine, and point-of-care diagnostics. 

 

4.3 Materials and Methods 

Nano-fabrication of plasmonic sensors 

  The fabrication process of our plasmonic sensors (depicted in Appendix, Fig. 4.6) involved 

first generating a silicon ‘master,’ through a one-time photo-lithography process, which contained 

the desired nanostructures such as our hexagonal and square periodicity nano-hole arrays. Next, a 
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monolayer of Tridecafluoro, 1, 1,2,2-Trtrahydrooctyl-1-trichlorosilane (Gelest, Inc.) was 

deposited via vapor deposition to form a ‘non-stick’ layer for the subsequent nano-imprint molding 

process. The masters were then used as molds by casting a drop of UV curable polyurethane 

acrylate (PUA-311RM, Minuta Technology, Inc.) onto the surface. A flexible cellulose-acetate 

film was used to disperse and flatten the liquid droplet over the silicon master, before being placed 

under a UV lamp (UV-A, 4W, 800 μW/cm2, Thermo Fisher) for 2 hours to cure. After UV curing, 

the cellulose-acetate film was peeled from the master, completing the fabrication process of the 

‘soft mold’. These soft molds therefore consist of the inverse geometries of that on the silicon 

master, and must be used for a secondary imprint molding process in order to recover the desired 

nano-hole array structure. The soft mold was then used to imprint its relief features onto liquid 

precursor of photo-curable polymer (NOA 81) deposited onto an oxygen plasma cleaned glass 

slide. After 25 minutes of curing time under the UV lamp, the soft mold was peeled away from the 

glass backed photo-polymer, completing the fabrication process of the desired quasi-3D nano-hole 

array. Finally, a bi-layer of 5 nm chromium and 50 nm gold was deposited onto the nanostructures 

by Electron Beam Evaporation (CHA Solution Electron Beam Evaporator) at a deposition rate of 

2 Å/s and 3 Å/s, respectively, to complete the fabrication of the plasmonic sensor. Once the final 

plasmonic sensor was fabricated, a fluidic channel made of Polydimethysiloxane (PDMS) with a 

300 μm height and 3 mm width was placed onto the surface with inlet and outlet holes to allow for 

unidirectional flow over the plasmonic sensor surface. 

 

Experimental training data 

  A high resolution spectrometer (Ocean Optics, HR2000+) was used to continuously capture 

the transmission spectra of the plasmonic sensors as the bulk refractive index in the fluidic channel 
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was modulated over time. To ensure accurate and consistent bulk refractive index modulation 

during the training experiments, two programmable syringe pumps were employed (Chemyx, 

Fusion 100 Infusion). The first syringe pump contained filtered de-ionized water, and the second 

contained 0.3 g/mL glucose solution in water. The syringe pumps each fed into a T-connector 

where their contents were combined and mixed through diffusion in a fluidic channel with a length 

of 60 cm. During the course of these training experiments, the combined flow rate of the two 

syringe pumps was held constant at 30 µL/min, while the flow rate of the first syringe pump 

containing water was programmatically decreased and the flow rate of the second syringe pump 

containing the glucose solution was programmatically increased, ensuring a continuous and 

consistent gradient of bulk refractive index over the plasmonic sensor surface. These continuous 

spectral measurements of the transmission formed a ‘spectral stack’ which describes the individual 

plasmonic sensor’s spectral evolution in response to increasing bulk refractive index. To ensure 

the bulk refractive index modulation was appropriately being executed, bulk refractive index 

samples were taken at the experimental time-points and verified with a refractometer (Bausch and 

Lomb, Abbe refractometer). For each plasmonic nano-structure design, we measured the 

transmission spectra of N = 33 individual plasmonic sensors, which provided sufficient statistical 

information on spectral variations due to fabrication tolerances, as already discussed in the Results 

and Discussion section. 

 

Formation of the LED library 

  A library of possible illumination LEDs was generated by applying constraints to the available 

LEDs in the ‘LED Indication-Discrete’ database on the Digi-Key website (i.e., ~21,000 

LEDs)[61]. The on-line database was filtered using the following design constraints:  465 nm < 
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λpeak < 700 nm, millicandela rating > 10,000 mCd, and a requirement of through-hole mounting 

type. These design constraints ensured that the necessary plasmonic spectral region was covered, 

and that each LED had sufficient brightness for image capture. The following surface mount LEDs 

were also added to our LED library ad-hoc to cover the spectral region to the right of the dominant 

plasmonic feature of the square periodicity sensor: 656 nm (DigiKey part number: 475-3008-1-

ND), 660 nm (DigiKey part number: 1214-1436-1-ND), 730 nm (DigiKey part number: 1214-

1440-1-ND), 735 nm (DigiKey part number: 1416-1913-1-ND). Our final LED library consisted 

of 28 LEDs as depicted with color representation in Figure 4.4. 

 

4.4 Appendix 

Supplementary Figures  

 

 
Figure 4.6.  The imprint mold fabrication procedure for plasmonic sensor fabrication (a)-(f) starting from the 

one-time produced silicon master which is molded with a polyurethane acrylate (a) and (b). This initial mold is then 

peeled from master and used in a secondary imprint process (c)-(e) with a UV curable polymer (NOA 81) before the 

final gold deposition procedure (f). SEM images (g) show the hexagonal and square periodicity nano-hole array 

structures with the side-wall profile characteristic of the line-of-sight Electron Beam Evaporator deposition. The final 

plasmonic sensors (h) fabricated on a flexible mylar backing layer.  



116 

 

 

 

 

Figure 4.7.  Feature selection through L-1 regularization tuning. (a) The mean squared error (MSE) and (b) the 

standardized coefficients as a function of regularization parameter for a representative set of 32 training samples within 

the cross validation LED selection procedure. The regularization parameter for the minimum MSE is found by 

analyzing the error from a nested LOOCV performed on the 32 training samples. This regularization parameter is then 

selected for the corresponding linear model. 
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Figure 4.8. Ranking of LEDs in terms of the number of times they are used in linear models during the LASSO cross 

validation step for (a) the hexagonal and (b) square periodicity nano-hole array plasmonic sensors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



118 

 

Supplementary Tables  

Table 4.1. Hexagonal periodicity plasmonic sensor testing error (RIU). 

 

Table 4.2. Square periodicity plasmonic sensor testing error (RIU). 
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Discussion 

 Supplementary Tables 4.1-4.2 not only compare the performances of the linear models solved using 

these three techniques, but also illustrate comprehensively how our ‘optimal model,’ 𝑏𝑚𝑜𝑏𝑖𝑙𝑒
∗ , compares to 

other linear models made with all the combinations of the LEDs that could be installed in our modular 

mobile plasmonic reader.  More specifically, the Tikhonov regularization is similar to the LASSO 

regularization (Eq. 4.1), differing only in the L-2 norm or the Euclidian norm,  ∙ ℓ2, i.e., 

 

 

which, similar to Eq. 4.3,  can be used for computational sensing of the bulk refractive index: 

 

 

The Tikhonov matrix, 𝛤, in Eq. 4.5 is generally employed as the regularization term and can be chosen in 

some cases to be a multiple of the identity matrix (𝐼), i.e.  𝛤 =  𝜆𝐼, where 𝜆 is a scalar term referred to as 

the regularization parameter. The use of such regularization terms in both the Tikhonov and LASSO 

solutions allows for a computational sensing model which is tolerant to outliers while also accounting for 

the statistical variance (e.g., due to fabrication) and average of the inputted features. The LASSO, however, 

is a very powerful optimization tool, because it forces many of the coefficients in the linear model to zero, 

due to the L-1 norm term. This process is often referred to as ‘feature selection,’ and in the context of this 

work discriminates the optimal subset of LEDs from the larger LED library. This feature selection property 

is precisely why many of the entries in the LASSO column of Supplementary Tables 4.1 and 4.2 are empty. 

When the LED features are inputted into the LASSO model, it sometimes forces the LED weights to zero, 

yielding a linear model that does not include all the inputted features (and is therefore not applicable for 

that specific entry of the comparison table). It is also evident from the testing data reported in 

Supplementary Tables 4.1-4.2 that the Tikhonov regularization, similar to LASSO, is effective in designing 

low error computational sensing models. However, it should be noted that the Tikhonov regression cannot 

 𝑡𝑚𝑜𝑏𝑖𝑙𝑒
∗ =  𝑎𝑟𝑔𝑚𝑖𝑛        𝑋𝑂𝑝𝑡𝐿𝐸𝐷𝑡𝑚𝑜𝑏𝑖𝑙𝑒  − 𝑦 

ℓ2

2
+   𝛤𝑡𝑚𝑜𝑏𝑖𝑙𝑒 ℓ2, 

𝑡𝑚𝑜𝑏𝑖𝑙𝑒𝜖ℝ
𝑛+1 

𝑅𝐼𝑈𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 = 𝑋𝑡𝑒𝑠𝑡𝑡𝑚𝑜𝑏𝑖𝑙𝑒
∗ , 

Eq. 4.5 

Eq. 4.6 
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replace the feature selection properties of LASSO, and therefore cannot explicitly be used to determine an 

optimal subset of features from a larger non-sparse set of features. 
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Chapter 5. Deep-learning spectroscopy  

 After showing computational sensing approaches to iterative assay development and band 

selection for spectroscopic-based sensing, I will now discuss a more fundamental biophotonic 

sensing platform: the spectrometer. This chapter introduces a deep learning based approach to 

spectroscopy, enabling fundamentally different optical hardware. This computational approach 

can pose unique advantages for certain applications in terms of performance, cost, and size over 

the traditional grating and CCD based designs due to its radically different design principles. 

Furthermore, this approach to spectroscopy opens the doors for computational design of future 

spectrometers through a user-defined cost function that e.g. optimized around application-specific 

spectral bands, or perhaps trained to classify different classes of spectral signals.  

 This work is currently in the stages of being drafted for peer-review: Z. Ballard, C. Brown, A. 

Goncharov, M. Fordham, A. Clemens, Y. Rivenson, A. Ozcan, “Deep learning spectroscopy” (In 

preparation).  

5.1 Introduction 

  Spectroscopy is a fundamental tool in biophotonics, and is the cornerstone read-out 

instrumentation for optical sensors which exhibit a spectral response upon interaction with a 

sensing analyte. Spectrometers are a well-established measurement tool which rely on a grating to 

separate different wavelengths of light and project this spatial information onto a photosensor 

(typically a line-CCD). Though simple and effective, this grating based design poses some 

limitations to the sensing hardware. For example, it requires photodetectors which are specialized 

in their design (as opposed to the ubiquitous CMOS) resulting in more expensive manufacturing 

costs. Additionally, the diffraction properties of the grating can be restrictive for compact, high-
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resolution designs at longer wavelengths leading to the development of compressive spectroscopy 

designs [1], [2]. Therefore, leveraging recent trends in deep-learning, I propose an alternative 

spectroscopic design which works through encoding optical spectra through a spatially 

multiplexed plasmonic-filter chip, and reconstructing the spectra using the encoded components 

and a trained neural network.   

 

5.2 Materials and Methods 

 The proposed deep learning spectrometer is shown in Figure 5.1a. An arbitrary spectrum is 

coupled into a large core fiber, which outputs the light onto a spectral encoding chip (inset Figure 

5.1a.) containing a number of geometrically unique (in terms of periodicity and diameter) nano-

hole array tiles (each 100x100 um). The light is then sampled with a monochrome CMOS camera 

(Basler Dart, daA1280-54um) after being transmitted through the spectral encoding chip, resulting 

in a raw image which is pixel-binned in order to recover the encoded spectral signal (Figure 5.1b 

and c). A neural network is then used to reconstruct the input spectra using the pixel binned 

encoded spectral signals. 
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Figure 5.1. Overview of the spectral encoder (a) The hardware set up for deep-learning spectroscopy, including a 

large-core multimode fiber to sample input spectra, along with the spectral encoding chip (details shown on the inset 

to the right) and monochrome CMOS sensor for acquisition. The inset shows a stitched bright field image of the 

spectral encoding chip including taken with a 4x objective in transmission mode. The 4x field-of-view (FOV) is shown 

with the dotted yellow line. The SEM images to the right show a sampling of the geometrically diverse nanohole 

arrays created on the spectral encoding chip. (b) The silicon wafer (grey) fabrication for the spectral encoder. The step 

outlined in red can be performed outside of a clean room in high-throughput as a result of the soft lithography process.   

The spectral encoder 

 The spectral encoding step demonstrated in this work is similar to a few compressive-sensing 

based spectrometers reported in the literature except that here the encoding step is performed 

completely passively and statically, requiring no dynamic or mechanical scanning components. 

Furthermore the acquisition step is performed in a snap-shot which leverages the ultra-wide field 

of view of the on-chip imaging configuration show in Figure 5.1a [1]–[3]. Additionally, the 
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spectral coder is fabricated by a scalable and high-throughput fabrication technique, i.e. soft-

lithography (red-dotted line, Figure 5.1b), which is described in the Appendix of Chapter 4. 

Therefore, with large-scale patterning through imprint molding and only one metallization step 

(i.e. sputter coating), the encoder can be made to be ultra-low cost, leaving the limiting cost-factor 

for this spectrometer to be the CMOS sensor, a ubiquitous technology that benefits from economies 

of scale.  

 These added practical benefits of the spectral encoder do however come with a caveat; the 

spectral encoding chip is a less-than ideal encoder in terms of the linearly independent basis with 

which it samples input spectra. Specifically the localized plasmon resonance filters used in this 

work exhibit broad pass-bands with considerable overlap of their transmission functions. To 

overcome this restraint the deep learning framework is used as an alternative to the well-

established compressive sensing frameworks, in order to achieve more accurate spectral 

reconstructions (Figure 5.1.d). 

 

Training the deep learning spectrometer 

 Encoded spectral information is acquired over eight, fixed exposure times spanning 100,000 

µs to 312.5 µs (decreasing by 50% over each acquired image in the set). These images are then 

converted to a single High Dynamic Range (HDR) image and pixel-binned with a square mask 

(60x60 pixels) centered about each encoder tile. Each mask is then further subdivided into a 3 by 

3 configuration of 20x20 pixel masks, and each feature space is sampled through pixel-averaging, 

yielding M = 2,268 input features from 252 encoder tiles each dived into 3x3-feature spaces. These 

features are then input into a neural network with three fully connected hidden layers, each with 

2048 nodes (Figure 5.2). A dropout of 0.2 was determined empirically through its minimum 
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validation loss compared to 0, 0.1, 0.3, 0.4 and 0.5 dropout. Each layer of the network includes 

batch normalization, and Rectified Linear Units (ReLU) activation at its output, defined by 𝑓(𝑥) =

 max (0, 𝑥),  the input layer contains a standardization to the mean gm and standard 

deviation, 𝜎𝑚, of the training set, 

𝑔𝑚
′ = 

𝑔𝑚 − 𝑔𝑚̅̅ ̅̅

𝜎𝑚 
, 

where 𝑔𝑚 represents the encoded signal from the mth input feature. The output layer of the network 

includes 1315 nodes representing each pixel on the ground-truth spectrometer. 

  The network is trained by a mean squared error cost function, 

𝐽(𝒔, 𝒔′) =  
1

𝑁
∑∑(𝑠𝑖,𝑝 − 𝑠𝑖,𝑝

′ )
2

𝑃

𝑝=1

𝑁

𝑖=1

 

where 𝒔𝒊 is the ground truth spectral information for the ith spectra in the validation set. P represents 

the number of pixels in the output layer (i.e. P = 1315) as recorded by a commercial spectrometer 

in the case of 𝒔𝒊.  𝒔′𝒊 is the predicted spectral output from the network. 

 

Figure 5.2 Deep-learning processing of encoded spectra (a) Raw image captured by the CMOS sensor of the input 

spectra after it is transmitted through the spectral encoding chip. The neural network inputs and outputs are shown 

Eq. 5.2 

Eq. 5.1 
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and denoted as �⃑� and 𝑠′⃑⃑⃑ ⃑ respectively. (b) A representative example of the spectral reconstruction (orange) as compared 

to the ground truth spectra (blue) measured with a standard 0.2 nm spectrometer. 

The deep-learning spectrometer was introduced to over 40,00 randomly generated spectra over 48 

hours produced by a super continuum laser (Fianium) with up to eight bands, each 3 nm in 

bandwidth, spanning 450 to 750 nm (Figure 5.3). Each input spectra is recorded in real-time by a 

standard spectrometer (ThorLabs, CCS100) alongside the acquired images containing the encoded 

spectra. The images are then processed as previously describe, and the neural network is then 

trained over 60 hours using an NVIDIA GeForce FTX1080 Ti GPU with a learning rate of 0.0001 

and batch size of 1024.  

 

Figure 5.3 The deep learning spectroscopy training procedure. Examples of randomly generated input spectrum 

(show in different colors, left) used for training the neural network. The randomly generated spectra are produced by 

a super-continuum laser (shown in red), and the input signal is split into the deep-learning spectrometer as well as a 

standard spectrometer for recording the ground-truth data. 

5.3 Results and future work 

 The blindly tested spectral reconstructions are shown in Figure 5.4. Overall the reconstructed 

spectra fit very well to the ground truth data not only in terms of their intensity, but also their peak 
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localization. Over 10,000 blindly tested input spectra, the average peak localization accuracy was 

calculated to be ± 0.253 nm, which is within 10% of the resolution of the ground-truth spectrometer 

(0.23 nm). Additionally a minimum of 3.8 nm was found to be the smallest resolvable distance 

between neighboring peaks.  

 

Figure 5.4. Spectral reconstructions via deep learning spectroscopy. (a)-(d) Various randomly generate spectrum 

where the ground-truth spectrometer is shown in blue and the deep learning reconstructions are overlaid in green. A 

zoomed-in view of key bands is shown to the right of each graph. The red line shows the difference between the 

ground-truth and deep learning output. 

 For future work, the stability over time of the deep learning algorithm must be addressed. 

Minute changes in temperature or alignment can cause changes in the transmission properties of 

the plasmonic tiles, as well as sub-pixel shifts between the input aperture, spectral encoder, and 

CMOS camera. The quality of spectral reconstructions must be robust to these inevitable sources 

of drift and noise in order to overcome impending practical sensing challenges. Dynamic 
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registration that occurs after a set ‘calibration period’ can be implemented to computationally 

correct for any minor changes in alignment. Additionally, on-line learning can be utilized to fine-

tune the weights of the network based on a recurring set of fixed input spectra. Such an approach 

would be similar to current calibration methods used for standard spectrometers in which the line-

scan CCD camera must be digitally adjusted against some gold-standard input spectrum in order 

to obtain subsequent accurate readings.  

 Additionally, new encoder designs can be considered which more densely pack the plasmonic 

filter encoding elements, and perhaps lead to novel designs for hyperspectral imaging applications, 

along with other computationally determined designs configured against a user-defined cost 

function and training set for targeted applications. 
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Chapter 6. Conclusions 

 Computationally designed sensing systems will provide various exciting opportunities, 

however, like any emerging technology, there exist inherent challenges which must be understood 

and addressed. Specifically, sensing systems designed by statistical learning approaches inevitably 

share the well-known pitfalls of machine learning. For example, access to large amounts of 

rigorously vetted, well-characterized, and diverse training data can sometimes be infeasible for a 

given sensing system. In the field of bio-sensing, for instance, where cost-per-test can be 

sometimes high, sensing outcome can depend on a myriad of potentially un-accounted and 

confounding factors such as the choice of vendor, shelf-life of reagents, ambient conditions (e.g., 

temperature, humidity etc.), and cross contamination, among other factors. Therefore, it becomes 

a central challenge to ensure that the training data sets are not biased or severely contaminated by 

noise sources characteristic of only the training set.  Such scenarios would lead to overfitting, 

where learned algorithms can fail to generalize, sometimes catastrophically upon the introduction 

of sensing inputs that deviate only slightly from what has already been explicitly ‘learned.’ 

Overfitting can also occur when training data sets are not appropriately diversified in terms of e.g., 

dynamic range, resolution or sensor-to sensor performance variability, among others. To combat 

this issue, Chapters 2 and 3 discuss the inclusion of batch-specific information to be input into the 

network, along with on-line batch-specific standardization to account for statistical drift in the 

inputs. I have showed that even with modest data sets (~100 tests, i.e. training instances), deep 

learning networks can lock-on to meaningful signals without overfitting. It is important to note 

that, to achieve this, the networks implemented in chapter 2 and 3 utilized the maximum amount 

of drop-out rate, which helps regularize the model during the training process. The training data 
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sets were also cross-validated across multiple k-fold validation sets, that included sensors made 

from a diverse set of fabrication batches.  

 Discussion of some of these challenges may lead the reader to believe that a properly executed 

learning-based computational sensing approach is prohibitively time and resource intensive for the 

design phase of a given intelligent sensing system. However, the computational sensor design 

methods highlighted in this Dissertation can always be implemented in the subsequent iterations 

of the design, i.e., they need not be implemented as a first step of prototyping. In fact, these 

statistical learning methods are ideal for iterative and adaptive design strategies as they converge 

to locally optimal, cost-effective solutions for application specific sensing scenarios, without the 

need for a complete understanding of noise contributions, physical principles and their complex 

interactions and modelling. For example, a computational sensor that makes a catastrophic sensing 

error, such as missing a significant event or analyte, or simply missing a “small data” related outlier 

event, could be mended by readjusting and optimizing its measurement features and their relative 

weights once such errors are identified. At the iterative design phase of a computational sensor, 

one can redefine or adjust the cost function of the sensor design framework to appropriately put 

weights to avoid (or highly penalize) certain classes of errors that might lead to catastrophic 

outcomes. The same is true for correcting the failures or errors introduced by new uses of a sensor 

in a region of the world that it was not initially designed for. Therefore, this Dissertation suggests 

that data-driven computational sensor design approaches provide a scalable, cost-effective and 

dynamic framework that can easily be adjusted on the go as new data sets are created. Stated 

differently, such computational sensors can learn, evolve and become more robust as they are 

being used more and more.  
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 Taken together, I envision the methodologies discussed in this Dissertation permeating the 

design phase of biosensing hardware, thereby fundamentally changing and challenging traditional, 

intuition-driven sensor and read-out designs, in favor of application-targeted and perhaps non-

intuitive implementations. Such computational sensors can therefore enable new and widely 

distributed applications that will benefit from ‘big data’ analytics and IoT solutions to create 

powerful sensing networks, impacting fields of biomedical diagnostics, environmental sensing, 

and global health, among others.  

 




