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Abstract

The Adolescent Brain Cognitive Development Study is a 10-year longitudinal study of children 

recruited at ages 9 and 10. A battery of neuroimaging tasks are administered biennially to 

track neurodevelopment and identify individual differences in brain function. This study reports 

activation patterns from fMRI tasks completed at baseline, designed to measure cognitive impulse 

control with a Stop Signal task (n=5,547), reward anticipation and receipt with a Monetary 

Incentive Delay task (n=6,657), and working memory and emotion reactivity with an emotional 

N-back task (n=6,009). Further, we report the spatial reproducibility of activation patterns by 

assessing between-group vertex/voxelwise correlations of BOLD activation. Analyses reveal 

robust brain activations that are consistent with the published literature, vary across fMRI tasks/

contrasts and slightly correlated with individual behavioral performance on the tasks. These 

results establish the pre-adolescent brain function baseline, guide interpretation of cross-sectional 

analyses, and will enable the investigation of longitudinal changes during adolescent development.

Introduction

The Adolescent Brain Cognitive Development (ABCD) Study aims to characterize 

adolescent development and evaluate many influences that might shape developmental 

trajectories. While numerous factors are plausibly associated with neurodevelopment 

(e.g., nutrition, sleep, exercise, head injuries, substance use), we have a limited 

understanding of the magnitude of their effects, their interactions with one another, and 
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the moderating influences of other risk or resilience factors. The longitudinal ABCD 

Study (www.ABCDstudy.org) aims to address these matters with an especially large, 

demographically diverse sample that is richly characterized with extensive phenotyping and 

genotyping. It realizes an open science model through which data are fully shared with the 

research community.

This manuscript describes the ABCD baseline assessment of brain function in 9- and 

10-year-olds. As the bulk of the human neuroimaging literature has focused on adult 

functioning, less is known about brain function in childhood and, particularly, in pre-

adolescent children. Neurodevelopment from ages 10 to 20 is, however, of particular interest 

as these ages are associated with notable brain, cognitive, and emotional maturation, as well 

as the emergence of many prevalent mental health disorders 1. Consequently, there is great 

interest in understanding the etiology and neurobiology of psychological processes thought 

to be risk factors for the development of mental and physical health challenges, including 

cognitive control, reward, working memory, and social/emotional function.

Cognitive control is often assessed using inhibitory tasks such as the Stop Signal Task 

(SST), in which a motor response must be countermanded 2. Inhibitory tasks including 

the SST are known to elicit activation in the dorsal anterior cingulate (dACC), inferior 

frontal gyrus (IFG), dorsolateral prefrontal cortex (dlPFC), and insula 3. Studies of these 

processes in children and adolescents have typically found similar regional activation during 

inhibitory tasks 4. Consistent results have been found for fMRI and EEG studies showing 

that from childhood to adolescence there is an increase in brain activity in the dACC 5, 

which corresponds to improved inhibitory control 6. However, this pattern may not be 

consistent across the brain, as there have been mixed findings regarding whether activation 

in the dlPFC and IFG increases with age and improved inhibitory control 5–7, with more 

recent findings suggesting that activation in the prefrontal cortex may decrease throughout 

adolescence paralleling improved inhibitory control 4,8,9.

Functional neuroimaging investigations of working memory also demonstrate substantial 

concordance between adults and children in neural responses, as well as some notable 

differences 10–12. A recent meta-analysis of verbal and visuospatial N-back tasks (in which 

one indicates if a currently presented stimulus is the same as a stimulus presented n 
items earlier in a serial stream of stimuli) found that adults and children show consistent 

patterns of activation in the dlPFC, posterior parietal cortex (PPC), supplementary motor 

area (SMA), and insula 10. However, similar to the SST, regional levels of activation during 

the N-back have been shown to differ between children and adults, mirroring improvements 

in working memory ability 13–15. In the largest study to date to examine change in functional 

activation during the N-back across adolescence (N = 951), Satterthwaite et al. 13 found 

increases in activation in the dlPFC, SMA, and PPC from age 8 to 22. Interestingly, they 

also found decreased activation in the default mode network (DMN), suggesting improved 

segregation of the cognitive control and DMN regions with advancing age and improving 

performance on the task. One study using a subset from the ABCD baseline assessment 

found that frontoparietal activity during the 2-Back (relative to 0-Back) relates to working 

memory performance measured out of the scanner using the list sort task, suggesting that 

brain activity during the N-Back functions as a general index of working memory ability 16.
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Importantly, by varying the stimuli, psychological tasks can also implicitly probe social 

and emotional processes. A recent meta-analysis of affective working memory tasks in 

adolescents and adults found that there was little effect on working memory performance 

from using affective stimuli and that the differences that were observed were more 

concentrated among older adults (Schweizer et al. 17; 165 studies, N=7,433). However, this 

analysis did find differences in brain activation associated with affective working memory 

stimuli (33 fMRI studies, n=683), with affective stimuli more likely to elicit activation in the 

ventromedial prefrontal cortex (vmPFC), amygdala, temporal cortex, and occipital cortex. 

While this analysis did not examine emotional faces specifically, studies of emotional faces 

were included, likely explaining the observed temporal/occipital activations. In other studies, 

working memory tasks utilizing facial stimuli have been found to elicit differential patterns 

of activation in the temporal/occipital cortices, specifically in the fusiform face area (FFA) 

and the occipital face area (OFA) 18,19. A recent large study by Fuhrman et al. 20 (N = 

661) found that the ability to distinguish faces is still developing until age 16, confirming 

prior smaller studies 21. Scherf et al. 22 found that adolescents aged 11–14 showed similar 

but attenuated patterns of face-related activation compared to adults. In one of the largest 

studies of adolescents to date (N=1,100), Tahmasebi et al. 23 found similar regions activated 

in 13–15-yearolds by facial stimuli including the FFA, OFA, and STS. However, this study 

included neither younger children nor older adult comparison groups. While the primary 

regions elicited by facial recognition tasks are likely similar throughout development, there 

is evidence that activation in core facial recognition regions (i.e., FFA, OFA, and superior 

temporal sulcus) increases in response to these tasks throughout development starting 

at age 7–8 24. Additionally, work by Kadosh et al. found that complementary regions 

supporting the primary facial recognition regions change throughout development (N=42) 
25. When considering young children (aged 5–8), Scherf et al. 26 found that children did 

not demonstrate these characteristic patterns of activation to faces at all, lacking activation 

in the FFA, OFA, and STS (N=30), although their activation to place stimuli in the 

parahippocampal area was similar to that of adults. Indeed, several other studies concluded 

that the FFA is not consistently activated in children under the age of 8 (for review, see 

Scherf et al. 22).

With regard to reward-related processes such as reward anticipation and receipt, many 

studies have suggested similar task-related fMRI activation in children and adolescents aged 

12–17 as in adults, with a network of reward anticipation regions including the ventral and 

dorsal striatum, the insula, SMA, premotor cortex, thalamus, and amygdala and a network of 

reward receipt regions including the ventral striatum (VS), amygdala, vmPFC, and posterior 

cingulate cortex (PCC) 27–29.

Overall, investigations into these key neurocognitive processes suggest qualitatively similar 

patterns of activation in children and adults, with some inconsistencies across studies, likely 

due, in part, to small samples of convenience. Indeed, low reproducibility in psychological 

and clinical neuroimaging studies due to small sample sizes is now acknowledged to be 

a critical concern in the field 30–32. While Thirion et al. 33 suggested that 20 or more 

participants are required for reliable task-based fMRI inferences, Turner et al. 34 recently 

pointed out using the large fMRI dataset of the Human Connectome Project (HCP) 35 that 

such recommendations are outdated. Indeed, Turner et al. report that even datasets with 100 
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or more participants can produce results that do not replicate, suggesting that larger sample 

sizes are necessary for task-based fMRI 34.

Here, we report cortical and subcortical analyses of the ABCD task fMRI battery 

assessing response inhibition, working memory, and reward processing, assayed via the 

SST, Emotional N-back (EN-back) and MID tasks (Figure 1), respectively, at the study’s 

first acquisition time point. We focus on: a) the patterns and magnitude of brain activity 

as predicted by prior research in adolescent samples; b) the reproducibility of activation 

patterns, including an assessment of group-level reproducibility as a function of sample size; 

and (c) the relationships between activation magnitudes and individual differences in task 

abilities during response inhibition and working memory. We hypothesized that the three 

fMRI tasks would show robust patterns of activation consistent with those identified in 

prior studies in children mentioned in the literature review above, including cortico-striatal 

activations associated with motor response inhibition 3,4, frontoparietal activation associated 

with working memory performance 10,36, and dopaminergically rich subcortical regions 

associated with reward processes 27–29. Additionally, we hypothesized that patterns of 

associations between task performance and task activation would mirror activation patterns, 

as has been found in prior literature. Further, we hypothesized that reproducible group-level 

activation maps would likely differ among tasks (being biggest on the block design primary 

EN-Back contrasts) and likely requiring more participants to reproduce effects than are 

included in typical neuroimaging studies.

The analyses that are reported were designed to provide a largely descriptive account of 

the patterns of activation present in the ABCD sample. For instance, we report all analyses 

in effect sizes and do not threshold by statistical significance. The goal of the present 

paper is to provide a baseline reference (task activation magnitudes, sensitivity to individual 

differences in performance, reproducibility) for researchers using the ABCD task fMRI data 

to address their questions of interest regarding adolescent brain development.

Results

After applying the exclusion criteria (see Table 1 and Methods for details), the resulting 

sample sizes and demographics among the fMRI tasks were as follows: SST (N=5,547, 

mean age=9.96±0.63, 49.82% male), EN-back (N=6,009, mean age=9.96±0.63, 50.77% 

male), and MID (N=6,657, mean age=9.95±0.63, 50.43% males). Table 2 presents the 

demographic composition of both samples who were included and who were excluded from 

the current study (see Methods for details).

Individual behavior performance measures and task-fMRI beta-weights

Performance on the SST was in the anticipated range (mean [SD] SSRT = 302.6 [67.1]; Go 

RT = 529.9 [77.4]), with a rate of correct inhibitions of 51.4% (0.06). The distributions 

for EN-back D’ were as expected, with children performing better (p<0.001) on the 

0-back task (D’=2.51 [0.9]) than the 2-back task (D’=2.0 [0.3]). D’ mean [SD] from 

the postscan recognition memory test were: 0.94 [0.63] for happy faces, 0.92 [0.63] for 

fearful faces, 0.85 [0.61] for neutral faces and 1.34 [0.82] for places. The distributions 

of SSRT and D’ behavioral performance measures are shown in Figure 2. Paralleling the 
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individual differences in performance, task activations in relevant task ROIs also show 

large interindividual variation: Figure 2 shows the distribution of average local maxima 

beta-weights within task-specific regions known to be involved in SST (Figure 2-d,e), 

EN-back (Figure 2-f), and MID (Figure 2-g) tasks. An ANCOVA assessing the correlation 

between D’ values from the post-scan recognition memory test and EN-back beta-weights 

in bilateral dlPFC showed significant associations across contrasts and conditions, yet with 

small correlation coefficients, with the most important association observed between the 

happy faces condition and the 2-back vs. 0-back contrast (p=0.0001 and r=0.17).

Task activation Cohen’s d

Cortical and subcortical Cohen’s d maps of contrasts for each task are represented in 

composite figures 3-a,b, 4-a,b, 5a,b and 6-a,b. In addition, static and 3D dynamic views of 

both thresholded and unthresholded Cohen’s d maps are available online (download required 

to display the dynamic maps) at https://drive.google.com/drive/folders/1VPnY8SS68JYis-

AI-mt8_BJqc4r6GD5D. Task-fMRI activation maps generated from the ABCD dataset 

are provided in “Supplementary Data 1” for the research community to use as taskfMRI 

activation templates in children, and are available online as manuscript files and can be 

downloaded as highresolution mgz images.

As shown in Figure 3, the SST showed robust activation for both correct Stop vs correct 

Go and incorrect Stop vs correct Go conditions in multiple fronto-parietal, temporal, insular 

and occipital regions of the cortex. Key nodes of the response inhibition circuitry, such 

as the IFG, dACC, pre-SMA and, subcortically, putamen, and caudate were activated. 

Deactivations were observed in left postcentral somato-sensorimotor cortex (presumably 

reflecting the motor response that is present on Go trials and absent on successful 

inhibitions) and in DMN centers including precuneus and vmPFC.

As shown in Figure 4, the 0-back versus fixation and 2-back versus fixation contrasts 

of the EN-back task produced widespread robust activation in bilateral regions including 

parts of the superior, middle and inferior frontal gyri, inferior parietal lobule, dACC/SMA, 

the precentral gyrus, and the occipital pole. Substantial deactivations were also observed 

within a number of bilateral regions, including the pre-central and post-central gyri, superior 

parietal lobule, lingual gyrus, precuneus/PCC, the rostral ACC/vmPFC, and the posterior 

insula. The 2 back versus 0 back subtraction showed more circumscribed activity in the 

middle and superior frontal gyri, inferior parietal gyrus, precuneus, and dACC, as well 

as focal deactivations in the vmPFC/rostral ACC, PCC, precentral gyrus, and posterior 

insula. As expected, the Faces versus Places contrast revealed dissociable activations: face 

stimuli produced elevated activation in the FFA, OFA and bilateral amygdalae, while place 

stimuli robustly activated large portions of occipital cortex in addition to hippocampal and 

parahippocampal regions. The negative and positive faces contrasted to neutral faces (Figure 

5) showed reduced activations compared to the other contrasts, with the most notable effects 

being activation in the amygdalae for negative vs. neutral faces, and deactivation in bilateral 

putamen for positive vs. neutral faces.

As shown in Figure 6, anticipation of potential wins and losses on the MID task produced 

largely similar patterns of activation in parts of the ACC, precentral gyrus, inferior parietal 
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lobule, frontal and occipital gyri, as well as in bilateral anterior insula (AI) and extensive 

subcortical regions. The feedback contrasts showed that negative outcomes (failing to win 

a reward and failing to avoid a loss) produced robust activity in AI as well as in temporal 

and temporo-parietal regions. Subcortically, a post hoc ROI-level analysis showed that 

the anticipation of rewards produced more activation than did the anticipation of losses 

including robust ventromedial striatal activity (Cohen’s d in ventromedial striatum was 

significantly different, p<10−4, between the two contrasts), while the putamen showed an 

opposite pattern for feedback with more activation when avoiding a loss than winning a 

reward (Cohen’s d in putamen was significantly different, p<0.0003).

We also calculated the absolute maximum Pearson’s correlation coefficient for cortical and 

subcortical activation measures for a single voxel and vertex per contrast and the variables 

age, puberty, education, and scanner site. Overall, the vertex/voxel wise univariate analyses 

did not explain more than 1% of the variance associated with task activation (see Tables S1 

& S2 and supplementary notes 1 & 2 for more details). We also assessed the relationship 

between cortical thickness and functional brain activation in activated cortical regions for 

each fMRI task, and found that cortical thickness did not explain more than 0.5% of the 

variance associated with BOLD activation in one single activated regions (see Figure S1 and 

supplementary note 3 for more details). In addition, we computed the correlation of BOLD 

activation across the three fMRI tasks and found very small associations among them (see 

Figure S2 and supplementary note 4 for more details). Finally, to determine if framewise 

displacement (FD) and the number of censored frames contaminates the activation estimates 

of each task, we computed the Pearson correlation coefficient between the Cohen’s d maps 

as produced with our original set of covariates and Cohen’s d maps computed when degrees 

of freedom (DoF) and FD, calculated per participant, were added as covariates. Activation 

maps were highly correlated after adding either DoF or FD (see Table S3, Figure S3 and 

supplementary note 5 for more details).

Between-group task spatial reproducibility

Cortical and subcortical Cohen’s d correlation coefficients are shown for each task and 

contrast in Figures 3-e, 4-e, 5-c, and 6-c as a function of sample size. In addition, an HTML 

dynamic tool to display the correlation coefficients as a function of sample size is available 

for download in “Supplementary Data 2”, with a usage demo provided in Figure S4.

The cognitive, working memory contrasts of the EN-back task showed the strongest 

between-group spatial reproducibility, requiring a sample size of n=18 for cortical and n=56 

for subcortical maps on average to reach a correlation coefficient of 0.8 or more across 

contrasts. Meanwhile, the emotional contrasts reached a maximum correlation coefficient 

of 0.75 with n=2500, except for cortical maps of the negative vs. neutral faces contrast 

requiring n=1285 to reach a correlation coefficient of 0.8 or more (Fig 4-e, 5-c). Group-level 

spatial reproducibility for the primary SST contrasts required a sample size of n=32 for 

cortical and n=80 for subcortical maps on average to reach a correlation coefficient of 0.8 

or more across contrasts (Fig 3-e). Finally, the MID task required a sample size of n=112 

for cortical and n=143 for subcortical maps on average to reach a correlation coefficient 

of 0.8 or more across the primary contrasts (Fig 6-c). Meanwhile, the secondary contrasts 
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(anticipation of large vs. small rewards and anticipation of large vs. small losses) required 

a sample size of n=775 for cortical and n=1027 on average for subcortical maps to reach a 

correlation coefficient of 0.8 or more (Fig 6-c).

Individual Differences

Cortical and subcortical performance correlation maps of SST and EN-back contrasts 

are shown in Figures 3-c,d and 4c,d. In addition, static and 3D dynamic views of 

correlation coefficient maps are available online at the following address (download required 

to display the interactive maps): https://drive.google.com/drive/folders/1VPnY8SS68JYis-

AImt8_BJqc4r6GD5D).

The correlation analyses between the SST beta-weights and SSRT revealed that activation in 

individual vertices/voxels explained up to 2% of the individual performance differences in 

response inhibition. Whereas correlations were largely negative for the correct Stop contrast 

(faster SSRT accompanied by greater stop-related activation), a more varied pattern of 

positive and negative correlations was observed for the incorrect Stop contrast.

The performance correlation maps of the EN-back task largely recapitulated the task 

activation maps insofar as the correlations tended to be the largest where task activation 

was strongest. Activation in individual vertices/voxels explained up to 2.2% of individual 

performance differences in working memory as measured by the EN-back D’ accuracy 

metric.

In addition, we assessed performance correlation between EN-back and SST and found 

significant negative correlations, albeit with small coefficients of determination, between 

SSRT and D’ for 0-back and 2-back (see Figure S2 and supplementary note 4 for more 

details).

Finally, the spatial reproducibility of these brain-performance correlation maps is shown in 

Figures 3-e and 4-e. The reproducibility of these maps is notably smaller than the group 

activation maps with up to 2,500 participants being insufficient in most cases to reach an 

asymptote of 0.8.

Discussion

In this work, we reported fMRI activation patterns for SST, EN-back, and MID tasks 

from the baseline assessment of the ABCD Study cohort. Further, we reported both the 

group-level spatial reproducibility of activation patterns as a function of sample size and the 

sensitivity of the activation maps to individual differences in behavioral task performance.

Overall, the task-activation patterns observed in this study are consistent with the extant 

literature on adolescents and adults. The SST activation patterns replicate previous task-

fMRI SST data and meta-analyses in adults, adolescents, and children, insofar as it 

robustly activated regions known to play an important role in inhibitory control, such as 

the insula, superior/middle/inferior frontal gyrus, dACC/SMA, dlPFC, PPC, thalamus, and 

basal ganglia (Rae et al.37; N=331; Hung et al., 38; N=1447; Swick et al.39; N=440). The 

correct and incorrect Stop maps were largely similar, likely indicating that the response 
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inhibition circuitry is engaged even when the attempt to inhibit fails, which previous EEG 

data links to motor inhibition circuitry being activated, albeit too slowly, on commission 

errors 40. The incorrect Stop maps do show greater activations than correct Stops in left 

postcentral somato-sensorimotor gyrus, the anterior insula, and the dACC (mean Cohen’s 

d significantly different at p<0.001), reflecting amplified right-handed motor and salience 

network activations when committing a commission error.

The regions activated by the 0-back versus fixation, 2-back versus fixation, and 2-back 

versus 0-back conditions of the EN-back task included the dlPFC, PPC, SMA, and anterior 

insula. This activation pattern has been consistently observed across different N-back 

stimulus types and contrasts 41 as well as in an analysis, using the largest sample to date 

(N=1064), of the EN-back task in the HCP 18,36. The activation patterns are consistent 

with other tasks of working memory and executive functioning 42, and may constitute a 

unified cognitive control network 43. Additionally, consistent with the deactivations we 

report, the EN-back has been shown to reliably deactivate the DMN 18,44 relative to 

both resting and active baselines. This task was also shown to provide a useful probe of 

the intrinsic anticorrelation that has been proposed between cognitive control and DMN 

regions 45. In line with our findings, a recent paper investigating the associations between 

working memory, cognitive abilities, and functional MRI activation in data from over 4,000 

9–10-year-olds enrolled in the ABCD study 16, working memory function was significantly 

related to 2-back vs. 0-back (i.e., high vs. low memory load) activation in regions of frontal 

and parietal cortex including bilateral intraparietal sulci, dorsal premotor cortex/frontal 

eye fields, dlPFC, AI, dACC extending into the pre-SMA, and precuneus. The results 

also revealed that working memory was not significantly associated with emotion-related 

activation during the EN-back task, inhibitory control-related activation during the SST, 

or reward-related activation during the MID task. The faces versus places contrast yielded 

stimulus-specific activation in amygdala, hippocampus, precuneus, and in different regions 

of visual cortex including FFA and OFA, consistent with evidence linking face viewing 

to the FFA and OFA 22,26 and place processing to the precuneus and hippocampus 46,47. 

The contrasts identifying differential responses to emotional faces, when compared with 

neutral faces, showed smaller Cohen’s d effect-sizes, but have specific value by assaying 

social/emotional and memory processes (e.g., heightened amygdalar response to negative 

faces) secondary to the primary focus on working memory.

The regions activated during reward anticipation in the MID task included the striatum, 

dACC, AI, and parietal and occipital gyri, which is consistent with large studies (N>830) in 

children and adults, providing evidence that these regions are robustly associated with the 

reward anticipation condition of the MID 27,28,48. Similarly, the feedback contrasts showing 

activations in PCC, vmPFC, and VS are also consistent with this literature. However, in 

the large study by Cao et al. 28 using the IMAGEN dataset, only vmPFC was activated 

by reward outcomes. When Silverman et al. 27 directly contrasted positive and negative 

valence events, they found positive events to be associated with greater activation in VS, 

PCC, subcallosal gyrus, and lateral occipital cortex. However, that study did not distinguish 

between anticipation and outcome phases. Subcortically, the present results showed higher 

activation in ventromedial striatum for reward anticipation than loss anticipation. In addition, 

there was higher activation when avoiding a loss (negative reinforcement) than winning 
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a reward in the ventrolateral striatum. These distinct reinforcement-related effects are 

consistent with a recent Activation Likelihood Estimation meta-analysis of the MID task in 

1,271 adults across 50 studies, which reported greater activation during reward anticipation 

than for reward outcome in the VS, insula, and SMA; this meta-analysis also found greater 

activation for reward outcome compared to reward anticipation in the vmPFC and PCC 29. 

Comparing activation during the anticipation phase for large and small reward, we observe 

a noticeable gradation in response, with a markedly lower activation across subcortical 

regions, dorsomedial prefrontal, cingulate, and right inferior frontal cortex when anticipating 

smaller rewards. In contrast, we observe much less gradation of response during anticipation 

of loss. Though broader activation in subcortex, and right inferior frontal cortex during 

anticipation of large (as opposed to small) loss is apparent, the gradation is less pronounced 

than for reward anticipation. These observations are consistent with a more general aversion 

to loss, in contrast to a more value-dependent neural response in anticipation of reward.

Group-level task spatial reproducibility

The group-level spatial reproducibility plots demonstrated that group activation patterns for 

the primary contrasts of interest tend to be highly consistent across individuals for the SST, 

EN-back, and MID tasks, highlighting the robust processes of interest involved in response 

inhibition, working memory, and reward processing. The highest spatial reproducibility 

was observed in the EN-back task, particularly in working memory and faces vs. places 

contrasts; this may reflect both the robustness of the cognitive processes it engages as well 

as task design features. Specifically, the ENback task employs a block-design, as opposed to 

the event-related designs of the SST and MID tasks and does not require as fine-grained a 

decomposition of the time-series data like that required, for example, by the more numerous 

regressors (i.e., more conditions) of the MID task. Moreover, another factor influencing 

reproducibility is the number of trials per condition for any given participant, which is 

lower for the MID and emotional EN-back contrasts, where lower spatial reproducibility 

coefficients are observed.

It is important to note that these analyses describe the spatial reproducibility of task-fMRI 

with a focus on group-level data in which we varied sample size. Thus, these results 

speak to the ability of tasks to generate the same activation patterns across separate 

groups of participants. They should not be interpreted as findings of test-retest reliability, 

which concerns whether individual differences in task activation are similar across different 

scanning sessions. Test-retest reliability is also an essential task design feature for a 

longitudinal study 49. It cannot be assessed with just the single ABCD baseline assessment 

and the subsequent biennial assessments introduce potential confounding associated with 

developmental changes and perhaps even practice effects. However, this is a matter that can 

potentially be addressed with subsequent data releases. For example, there is variation in 

both the ages at which the baseline assessments were obtained (from 9 to 10) and variation 

in the intervals between the baseline and second assessments (scheduled for two years 

but this can vary between one and three years) which, combined, may make it possible 

to estimate age and practice effects separately, and consequently assess task test-retest 

reliability.
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The present paper’s group reproducibility findings may help inform the neuroscientific 

community on which tasks/contrasts from the ABCD dataset provide the most consistent 

maps for mean group statistics which can, in turn, inform investigations comparing groups 

hypothesized to show activation differences.

Task sensitivity to individual differences in performance

The range in task performance and in ROI-level activation shown in Figure 2 suggest that the 

tasks are suitable for exploring inter-individual differences. The SST performance analyses 

showed that brain activations when successfully inhibiting were inversely correlated with 

SSRT but that these vertex/voxelwise relationships were modest, explaining a maximum of 

2% (r=−0.14) (lateral thalamic voxels) of the individual behavioral performance differences. 

It is noteworthy that more varied correlation patterns were observed for activity during 

incorrect Stops, with better inhibitors (i.e., faster SSRT) showing greater activation in parts 

of the insula and the dlPFC. The areas showing these positive correlations with SSRT were 

those that likely reflect error-related processes (i.e., more activation for incorrect Stops than 

correct Stops), suggesting a greater interoceptive and cognitive control response to errors 

in better inhibitors. Boehler et al. 50 previously reported the left AI to be the sole region 

showing a strong relationship between brain activity during stopping and SSRT (r=−0.69 

and −0.58, depending on how SSRT was measured), albeit with a sample size of just 15 

participants. In the ENback task, performance analyses showed that brain activations were 

positively correlated with D’ measures, explaining a maximum of 2.2% (r=0.15) of the 

individual behavioral performance differences (the strongest associations were observed in 

medial thalamic voxels).

The relatively small correlations between brain activation and performance on these two 

cognitive tasks spotlight a fundamental challenge that motivates the ABCD Study. Namely, 

the size and scope of the ABCD Study provides an opportunity for a deep exploration of 

the mechanisms linking brain function to individual differences in numerous phenotypic 

measures and in individual developmental trajectories. Future research avenues include 

expanding beyond vertex/voxel-wise associations to incorporate multivariate approaches, 

and including other brain metrics such as task connectivity, intrinsic connectivity, 

brain structure, and anatomical connectivity. Improved assessments of behavior (e.g., 

computational modeling of task performance) and brain (e.g., incorporating individual 

differences in brain shape and function localization) may improve our ability to detect 

brain-behavior associations. Distal factors such as genetics or in utero exposures and current 

factors such as exercise, sleep, education and other intellectual pursuits may all contribute 

to the magnitude and patterns of brain-behavior associations. Consequently, incorporating 

heterogeneity across participants (e.g., biotyping) and exploiting the longitudinal aspects 

of the study wherein within-participant changes in behavior can be associated with within-

participant neuro-developmental changes may prove especially sensitive approaches for 

linking brain to behavior.

The large sample size of the ABCD Study enables researchers to move beyond group-level 

phenomena towards understanding inter-individual differences and will, as the children age 

and repeat assessments, elucidate intra-individual differences in brain function. Obtaining 
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sensitive measurements of brain function will enable researchers to track changes in function 

reliably through development, assess how brain function co-develops with brain structure, 

and identify what factors (genetic, environmental) affect brain development. Importantly, 

robust and reliable measures at the pre-adolescent stage will enable researchers to assess 

if future outcomes of interest (e.g., mental health problems, substance use, academic 

excellence, resilience) can be predicted by baseline brain function, thereby informing 

etiological mechanisms. In addition, through the parallel assessment of behavior and any 

lagged changes that might be observed in relationship to brain function, researchers can 

identify plausible causal influences of those behaviors on brain development, and vice versa.

Conclusions

The present results demonstrate robust fMRI activation patterns in tasks that engage 

inhibitory control, working memory, and reward processing. They establish a well-

characterized baseline from which to follow the children in the ABCD Study throughout 

adolescent development. Overall, the task-activation patterns observed in this report are 

consistent with prior studies and underscore the value of the ABCD study as a scientific 

resource for tracking changes in brain function during adolescence and into early adulthood. 

In addition to enabling cross-sectional analyses of inter-individual and group differences, 

these activation patterns offer the potential for examining baseline predictors of future 

development and behavior and for quantifying changes in brain function that may arise from 

the numerous influences expected to affect development and behavior.

Methods

Sample

The ABCD sample was largely recruited through public, private, and charter elementary 

schools. ABCD adopted a population neuroscience approach to recruitment 30,51 by 

employing epidemiologically informed procedures to ensure demographic variation in its 

sample that would mirror the variation in the US population of 9- and 10-year-olds 52. 

A probability sampling of schools was conducted within the defined catchment areas of 

the study’s nationally distributed set of 21 recruitment sites. All children in each sampled 

school were invited to participate following classroom-based presentations, distribution of 

study materials, and telephone screening for eligibility. Exclusions included common MRI 

contraindications (such as cardiac pacemakers and defibrillators, internal pacing wires, 

cochlear and metallic implants and Swan-Ganz catheters), inability to understand or speak 

English fluently, uncorrected vision, hearing or sensorimotor impairments, a history of 

major neurological disorders, gestational age <28 weeks, birth weight <1,200 grams, birth 

complications that resulted in hospitalization for more than one month, current diagnosis 

of schizophrenia, moderate or severe autism spectrum disorder, a history of traumatic brain 

injury, or unwillingness to complete assessments. The ABCD sample also includes 2105 

monozygotic and dizygotic twins. Consent (parents) and assent (children) were obtained 

from all participants and the ABCD study was approved by the appropriate institutional 

review boards. Data collection and analyses were not performed blind to the conditions 

of the experiments. The ABCD Study’s anonymized and curated data, including all 
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assessment domains, is released annually to the research community. The ABCD study 

is a single cohort, observational and longitudinal design that has not randomization of 

participants to groups. Information on how to access ABCD data through the NIMH Data 

Archive (NDA) is available on the ABCD study data sharing webpage: https://abcdstudy.org/

scientists_data_sharing.html. Further information on research design is available in the Life 

Sciences Reporting Summary linked to this article.

Inclusion criteria for the current study were predetermined by the ABCD DAIRC53. In brief, 

participants were included if they had 1) two fMRI runs per task, 2) cortical vertex and 

subcortical voxel data available at the time of analysis, 3) hemispheric mean beta-weights 

within two standard deviations of the sample mean for each task, 4) at least 200 degrees 

of freedom over the two scan runs, 5) had mean FD < 0.9 mm for both runs, 6) met 

task-specific performance criteria (described in “Behavioral task-performance”), and 7) 

had complete information for covariates of interest (age, sex, scanner serial number, race, 

puberty54) and highest parent education (see Table 1 for details on datapoints that were 

excluded from analyses, their rationale, and the number of participants remaining after 

each step of exclusions). This resulted in varying sample sizes and demographics among 

the fMRI tasks, which were as follows: SST (N=5,024, mean age=9.96±0.63, 49.82% 

male), EN-back (N=6,009, mean age=9.96±0.63, 50.77% male), and MID (N=6,657, mean 

age=9.95±0.63, 50.43% males). No statistical methods were used to pre-determine sample 

sizes, but our sample sizes exceed those reported in previous publications 18,28,35. Given 

these large sample sizes, data distribution was assumed to be normal, though this was not 

formally tested (see Figure 2 for details on data distributions).

Task fMRI data for 1512 participants obtained on Philips scanners were also excluded 

from this paper due to incorrect post-processing. Corrected data will be available in the 

ABCD Data Release 3.0. An official statement providing more details is available on 

the ABCD study website (https://abcdstudy.org/scientists/data-sharing/). An R script is 

available at https://github.com/ABCD-STUDY/fMRI-cleanup to remove Philips fMRI data 

from tabulated data. Table 2 presents the demographic composition of both samples who 

were included and who were excluded from the current study. Although the differences 

between these two samples are statistically significant, which is not surprising with over 

10,000 participants in the analyses, the effect sizes were small (Cramer’s V ≤.16) and, 

most importantly, the fMRI samples showed considerable demographic diversity (and in 

this regard are very similar to the full sample). In addition, propensity weighting scores are 

available in the ABCD Data Analysis and Exploration Portal (DEAP), for researchers who 

wish to adjust sample estimates to population-level demographics.

fMRI Tasks

The ABCD Study’s fMRI behavioral tasks include the SST, EN-Back, and MID tasks. These 

tasks were selected to probe inhibitory control, emotion processing and working memory, 

and reward processing 53. Participants practiced the three tasks prior to scanning to ensure 

that they understood the instructions and were familiar with the response collection device. 

While the fMRI tasks were always collected last as part of the fixed order of the scanning 

session, the order in which the fMRI tasks occurred was randomized across subjects, as well 
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as the ordering of the event-related fMRI task’s trials. There were 12 trial-order variations 

(pseudorandomized) of the MID and SST tasks. Siblings were given the same order of scans 

and trial-order version of the MID and SST tasks to minimize within-family variability. For 

further details, see Casey et. al 53. The ABCD imaging protocol was designed to extend the 

benefits of high temporal and spatial resolution of imaging protocols of the HCP 55 with the 

multiple scanner systems of participating sites 56.

Stop Signal Task (SST)

The SST 57 presented leftward and rightward facing arrows in serial order (“Go” stimuli). 

Participants indicated the direction of the arrows using a two-button response box (left and 

right buttons). Participants were instructed to respond as quickly and accurately as possible 

but were told not to respond on trials in which a left or right arrow was followed by an arrow 

pointing upward (the “Stop” signal).

The SST had an event-related design with two runs. Each had 180 trials, of which 30 

were “Stop” trials, yielding a total of 60 “Stop” trials and 300 “Go” trials. Each trial 

lasted 1sec. The time between the “Go” and “Stop” signals (the StopSignal Delay; SSD) 

varied dynamically based on a participant’s success on the prior trial so as to achieve a 

50% success rate (starting at 50 msec, the SSD increased by 50 msec if the participant 

successfully stopped on the previous trial, and decreased by 50 msec if he/she responded; 

see Figure 1-a).

Emotional N-back Task

The EN-back task was a modified version of a traditional N-back task 18,58 using a block 

design that added elements of facial and emotional processing. This task was designed so 

that through fMRI contrast subtraction it would be possible to investigate working memory, 

facial recognition, and emotional processes independently or to investigate the interaction 

between working memory, faces, and emotion. The current analysis focused on contrasts 

that isolated working memory and facial recognition/emotion; these contrasts were shown 

to be effective in eliciting neural responses consistent with standard working memory, facial 

recognition, and emotion in adults in the task’s original usage in the HCP 18. Participants 

saw a series of stimuli and indicated whether each one was the same or different than 

the stimulus N items earlier (i.e., “N back”). The EN-back task had two conditions: a 

2-back as the active condition and a 0-back as the baseline condition, which included 

similar visuo-motor demands but lower working memory load. In the 0-back condition, 

participants indicated if each stimulus matched a single target presented at the beginning of 

the block, thereby obviating the need to maintain and update a two-item working memory 

load throughout the task. Responses on the 2back and 0-back were input on a two-button 

keypad, with one button indicating the stimulus was a match and the other indicating no 

match (see Figure 1-b).

The EN-back consisted of two runs, each containing eight blocks of trials and four 15 sec 

periods containing just a fixation cross. Blocks contained 10 trials lasting 2.5 sec each and 

were preceded by a 2.5 sec instruction screen indicating the condition for the upcoming 

block. Of the 10 trials in each block, 2 were targets, 2–3 were non-target lures, and the 
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remainder were non-lures (i.e., stimuli only presented once). There are 160 trials in total 

with 96 unique stimuli of 4 different stimulus types (24 unique stimuli per type). Three-

quarters of the stimuli types were human faces, demonstrating happy, fearful, or neutral 

facial expressions, with facial expression stimulus type held constant within each block. 

The faces used were all adult faces, which was considered ideal given previous research 

suggesting that children demonstrate similar, but stronger neural responses to adult faces 

relative to child faces 59,60. Faces were racially diverse and derived from two pre-existing 

collections: the NimStim emotional stimulus set 61 and the Racially Diverse Affective 

Expressions (RADIATE) set of stimuli 62. Additionally, images of places were used as a 

fourth stimulus type. The place stimuli were taken from prior visual perception studies 
63,64. For the working memory component, the main contrast is a block design analysis 

contrasting 2-back and 0-back (8 blocks each). Finally, a post-scan recognition memory test 

was performed 18,53 to measure memory processes associated with hippocampal functioning. 

The task included 48 old stimuli presented during the EN-back task and 48 new stimuli, with 

equal numbers of each stimulus type in the old and new stimulus sets (12 each of happy, 

fearful, and neutral facial expressions as well as places in each set). A total of 96 pictures 

were presented during the recognition memory test. Participants were asked to rate each 

picture as either “Old” or “New”. Each picture was presented for 2s followed immediately 

by a 1s presentation of a fixation cross. The task assessed memory for stimuli presented 

during the EN-back and took approximately 5–10 min.

Monetary Incentive Delay (MID) Task

The MID task included both anticipation and receipt of reward and loss 65,66. Participants 

attempted to win or avoid losing money by quickly responding to cued stimuli using a 

response box in their dominant hand. This task is entirely focused on response time rather 

than response choice; hence there was only one response option on this task. For “win” 

trials, participants could “win” or “not win” $5.00 or $.20 depending on whether they 

responded in the time allotted. For “lose” trials, they could either “not lose” or “lose” 

the same amounts by responding within the time frame. In “neutral” trials participants 

completed the same action but with no money available to be won or lost (see Figure 1-c).

The MID had an event-related design. The specific sequence of each trial was as follows: 

participants saw a cue denoting the trial type (2s), with “win” trials shown in a pink circle, 

“lose” trials shown in a yellow square, and “neutral” trials shown in a blue triangle. Then, 

participants viewed a fixation cross of jittered duration (1.5–4 sec), followed by a signal 

to respond, denoted by a black shape that corresponded to the trial type. The duration 

in which participants were able to respond (i.e., duration of the response signal) varied 

between trials (0.15–0.5 sec). The time allowed to respond at the beginning of the task 

was determined by the participant’s performance during a practice session prior to scanning 

and, during scanning, was adjusted after every third incentivized trial based on the overall 

accuracy rate of the previous six trials in order to produce a 60% accuracy rate across 

the task. If the participant’s accuracy fell below the target accuracy level, the duration 

of the target was lengthened. If the participant’s accuracy was above the target accuracy 

level, the target duration was shortened. Immediately after responding, participants received 

written feedback (e.g., “You won $5”) which was presented for 2s minus the duration of 
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the response target. Each run consisted of 50 contiguous trials (10 per trial type) presented 

in pseudorandom order and lasted 5:42. Participants were compensated based on their 

performance on the task with mean earnings being $20 and maximum possible earnings 

being $60.

fMRI acquisition and preprocessing

High spatial and temporal resolution simultaneous multi-slice/multiband EPI task-based 

fMRI scans, with fast integrated distortion correction, were acquired to examine functional 

activity. For Siemens and GE 3 tesla scanners, the scanning parameters were: matrix of 90 

× 90, 60 slices, FOV= 216 × 216, TE/TR (msec) = 800/30, flip angle= 52 degrees, and 

resolution (mm) = 2.4 × 2.4 × 2.4. The fMRI acquisitions (2.4 mm isotropic, TR = 800 ms) 

used multiband EPI with slice acceleration factor 6. The order of the three fMRI tasks was 

randomized across participants. The full details of the imaging acquisition protocol were 

previously described in Casey et al. 53. The ABCD Data Analysis, Informatics, & Resource 

Center (DAIRC) performed centralized initial quality control and processing of the fMRI 

data. All MRI assessments were reviewed by a neuroradiologist for incidental findings. 

Using a combination of automated and manual methods, the fMRI datasets were quality 

controlled for problems such as acquisition protocol compliance, imaging artifacts, motion 

or file corruption. Processing steps subsequent to fMRI preprocessing include the removal 

of initial frames to ensure equilibration of the T1w signal and normalization of voxel time 

series by dividing by the mean across time of each voxel. The fMRI preprocessing pipeline 

started with a within-volume head motion estimation and correction by computing rigid 

body transformations between the first time point and each subsequent one. Scans were 

further processed for image distortions resulting from B0 field inhomogeneity, within voxel 

field gradients and gradient nonlinearities. 2.4 mm isotropic resampling was performed in 

order to align fMRI volumes across each participant, and a registration matrix computed 

with the T1w image. Estimates of task-related activation strength were computed at the 

individual subject level using a AFNI’s 3dDeconvolve (Cox, 1996), which implemented a 

general linear model (GLM) applied to each voxel’s time-series with additional nuisance 

regressors and motion estimates. Hemodynamic response functions are modelled with two 

parameters using a gamma variate basis function plus its temporal derivative (using AFNI’s 

‘SPMG’ option within 3dDeconvolve). Fast oscillatory signals within the motion estimates 

related to respiration, between 0.31 to .043 Hz, were temporally filtered with an infinite 

impulse response filter. Framewise displacement (FD) was then calculated from the filtered 

motion estimates, and frames with FD >0.9 mm were censored. Preprocessed time courses 

were sampled onto the cortical surface for each individual subject, and then registered to 

the standard FreeSurfer surface atlas (fsaverage). After projecting to the surface, the data 

were smoothed along the cortical surface (5 mm). Voxels containing cortical gray matter 

were projected onto the surface by sampling values 1 mm from the gray/white boundary, 

into cortical gray matter, at each vertex (using FreeSurfer’s mri_vol2surf with “white” 

surface, “-projdist 1” option, and default “nearest” interpolation). Average beta coefficients 

and standard errors were then computed for each of the two runs of each task and for each 

participant, weighted by the nominal degrees of freedom (number of frames remaining after 

motion censoring minus number of model parameters). Data used in the current study were 

derived from the data included in the ABCD data release 2.0.1, and included GLM beta 
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coefficients and standard errors of the mean (SEM; calculated from the ratio of the beta and 

t statistic) calculated for each voxel and vertex. The full details of the task fMRI quality 

control and processing pipelines were previously described 53,56.

Task models included stimulus timing for each condition and linear contrasts of conditions 
56. For MID and SST analyses, events were modelled as instantaneous. The EN-back was 

programmed as a block design. The SST model included regressors for successful Go 

trials (“Correct Go”), failed Go trials (“Incorrect Go”), successful Stop trials (“Correct 

Stop”), and failed Stop trials (“Incorrect Stop”), creating contrasts of interest correct Stop 

vs correct Go and incorrect Stop vs correct Go. The EN-back model included separate 

regressors for the 0-back faces, 2-back faces, 0-back places, and 2-back places conditions; 

the contrasts of interest were 0-back vs. Fixation, 2-back vs. Fixation, 2-back vs. 0-back, 

Faces vs. Places, negative vs neutral faces and positive vs neutral faces. The MID model 

contained separate regressors for the different anticipation periods (large and small rewards 

or losses and no incentive (“neutral”) trials) and large and small win and loss feedback. 

MID computed contrasts of interest were large reward versus neutral anticipation, small 

reward versus neutral anticipation, large loss versus neutral anticipation, small loss versus 

neutral anticipation, reward positive versus negative feedback, loss positive versus negative 

feedback.

Behavioral task-performance

Poor performance on the SST leading to exclusion was determined by: fewer than 150 Go 

trials, less than 60% correct on Go trials, incorrect Go trials greater than 30%, late Go trials 

(across correct and incorrect trials) greater than 30%, no response on Go trials greater than 

30%, fewer than 30 Stop trials, and Stop trial accuracy lower than 20% or greater than 

80%. The SST used an adaptive algorithm to achieve a 50% success rate. To accomplish 

this, the onset between the Go and Stop signal was varied based on individual performance. 

The adaptive algorithm allowed for calculation of the Stop Signal Reaction Time (SSRT, 

the time required to inhibit the motor response 57), which was used as the performance 

variable in analyses assessing individual differences in response inhibition ability. The SSRT 

was computed by subtracting the median stop signal delay of all stop trials from the nth 

percentile Go reaction time, where n represents the percentage of successful inhibitions 

(for details on the theoretical underpinnings for this estimation, see Logan and Cowan 67). 

Participants with SSRT < 50 msec were excluded from the analysis.

For the EN-back, D’ was computed for both the 2-back and 0-back conditions by calculating 

each participant’s hit rate, the proportion of targets for which the participant correctly 

indicated a match, and false alarm rate, the proportion of nontargets for which the participant 

incorrectly indicated a match or did not respond. The hit and false alarm rates were then 

z-transformed. D’ was calculated as the z-transformed hit rate minus the z-transformed 

false alarm rate. D’ for the postscan recognition memory test was also calculated for 

each participant in the EN-back fMRI sample as the z-transformed hit rate minus the 

z-transformed false alarm rate. Children were excluded from the analyses if D’ was less than 

0.
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The MID task used an adaptive algorithm to maintain accuracy at 60%. To be included in 

the analysis, across the two runs, children had to have at least four events for each trial type, 

including positive and negative feedback.

Participant inclusion criteria

Inclusion criteria for the tasks were predetermined by the ABCD DAIRC 53. In brief, 

participants were included if they had 1) two fMRI runs per task, 2) cortical vertex and 

subcortical voxel data available at the time of analysis, 3) hemispheric mean beta-weights 

within two standard deviations of the sample mean for each task, 4) at least 200 degrees 

of freedom over the two scan runs, 5) had mean framewise displacement < 0.9 mm 

for both runs, 6) met task-specific performance criteria (described above), and 7) had 

complete information for covariates of interest (age, sex, scanner serial number, race, 

puberty (Peterson et al. 54) and highest parent education). The quality control and inclusion 

criteria as well as the number of participants remaining after each step of exclusions are 

detailed in Table 1.

Statistical Analyses

Task activation maps—The Permutation Analysis of Linear Models (PALM)’s GLM 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/ was used to generate cortical and subcortical 

task-specific functional activation maps, contrasting the fMRI beta weights against zero, 

with age (months), sex, scanner serial number, race, puberty and highest parent education 

included as nuisance covariates. Scanner serial number and ethnicity were entered as dummy 

coded variables. All covariates were demeaned. The calculations accommodated the non-

independence of the participants by incorporating information on sibling status into the 

exchangeability blocks of the permutation analyses. Cohen’s d effect sizes were computed 

for each voxel/vertex as the mean of the residualized betas of the contrast divided by the 

standard deviation of the residualized betas:

Coℎen′s d =
Mean residualized betas

Standard deviation residualized betas

Thus, a Cohen’s d effect size of 1 indicates that the mean beta weight differs from zero by 

one standard deviation. A threshold of d ≥ 0.2 was applied to the task activation maps in 

figures 3,4,5 and 6.

Participants with one or two siblings raise the issue of having dependent and independent 

participants in the analyses, and implies that the data are not homoscedastic, i.e., all 

observations do not share the same variance as there are three variance groups determined 

by family information (0, 1, or 2 siblings). To account for family dependence and adjust 

the Cohen’s d values accordingly, we computed first, for each task, a t statistic map using 

permutation analyses (N=100,000) with the same covariates mentioned above. Next, we 

repeated the same permutation analysis after adding sibling status as a dummy-coded 

variable (each family received a unique value, shared by the siblings of that family) 

implemented with PALM’s exchangeability blocks structure 68, consisting of two columns, 

with each column indicating a deeper level of dependence (i.e. a unique dummy coding 
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system where indices on one level indicate how the unique sub-indices of the next level 

should be shuffled). This restricts the shuffling to only occur among the observations 

that share the same family index, i.e., within block only. In this kind of permutation, 

variances are estimated for each block, and the AspinWelch v statistics that are robust to 

heteroscedasticity are computed, instead of t statistics, for each voxel/vertex. Finally, cortical 

and subcortical Cohen’s d maps are weighted by the t statistic/v statistic ratio to generate 

another set of Cohen’s d maps adjusted for family information. Only the latter maps are 

reported in the results.

To get an estimate of inter-individual variation in activation maps, beta-weights were 

extracted from relevant task-specific ROIs known to show robust task-specific activation. 

These ROIs included bilateral IFG for the SST, bilateral dlPFC for the EN-back task and 

bilateral AI for the MID task. To create the IFG ROI, we combined the pars orbitalis, 

triangularis and opercularis parcels from the aparc2009 FreeSurfer atlas 69. To create the 

dlPFC ROI, we combined the bilateral middle frontal gyrus and the inferior frontal sulcus 

parcels from the same atlas.

Performance correlations.—To assess the sensitivity of activation patterns to individual 

differences in behavioral performance, vertex and voxelwise whole brain correlation 

analyses were calculated with PALM, with performance measures included as the 

independent variables in the design matrices and the same covariates as used above. 

In addition, beta-weights were extracted from relevant ROIs known to show robust task-

specific activation. These ROIs included bilateral inferior frontal and cingulate gyri for 

the SST and bilateral dlPFC for the EN-back task. For the SST contrasts (correct Stop 

vs. correct Go and incorrect Stop vs. correct Go), Pearson’s correlation coefficients were 

computed between beta-weights and SSRT measures. For the 0-back versus fixation and 

2-back versus fixation contrasts of the EN-back task, whole-brain Pearson’s correlation 

coefficients were computed between beta-weights and D’ measures derived from the 0-

back and 2-back conditions, respectively. For the MID task, as its individualized adaptive 

algorithm does not yield a suitable performance measure directly assessing sensitivity to 

reward,

we went beyond the task performance measures (used with the SST and EN-back tasks) 

to search for correlates. We describe the relationship between MID activation and several 

measures assessing sensitivity to reward in Supplementary note 6.

Group-level spatial reproducibility—To assess the spatial reproducibility of group 

activation maps and performance correlation maps (for SST and EN-back), we calculated 

the vertexwise/voxelwise correlation between a “gold standard” map and independent 

samples of varying sizes. First, we split the participants into two equally sized independent 

groups, stratified by sex and scanner. Separately for each of the two groups we calculated 

residualized beta weights according to a linear regression model fit on the following 

demeaned variables: age, sex, scanner serial number, race, puberty score and highest parent 

education. One group was designated the “gold standard” from which we calculated a 

single group activation map by computing the Cohen’s d measure of effect size from all 

its participants, in addition to Pearson’s correlation coefficients between betaweights and 
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performance measures. In the second group, we sampled random subsets, from n=2 to 

n=2,500 with 2,000 repetitions at each size and generated a Cohen’s d activation map. Each 

subset was sampled from the entire second group.

We calculated vertex/voxelwise Pearson’s correlation coefficients between each of these 

generated activation maps and the independent “gold standard” activation map. Average 

correlations by sample size were generated by computing the mean correlation over the 

2,000 repetitions at each size. These calculations were applied to both cortical vertices and 

subcortical voxels. Python 3 was used to carry out this analysis. The Python 3 codes are 

available in the “Supplementary Software ” linked to the article.

Code availability—The Python codes used to compute reproducibility curves undertaken 

as part of this study and which generate the figures are openly available in 

‘Supplementary Data’ and at https://github.com/sahahn/ABCD_Consortium_Analysis. The 

following additional software packages used for this study are freely and openly available: 

PALM (v.alpha116): https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM/

Data Availability—The ABCD Study anonymized data including all assessment domains 

is released annually to the research community. Information on how to access ABCD data 

through the NIMH Data Archive (NDA) is available on the ABCD study data sharing 

webpage: https://abcdstudy.org/scientists_data_sharing.html. Instructions on how to create 

an NDA study are available at https://nda.nih.gov/training/modules/study.html). The ABCD 

data repository grows and changes over time.

The ABCD data used in this report came from 10.15154/1520620. DOIs can be found at 

https://dx.doi.org/10.15154/1520620. The ABCD data used in this report also came from the 

fast-track data release. The raw data are available at https://nda.nih.gov/edit_collection.html?

id=2573. Activation maps and spatial reproducibility data are available in ‘Supplementary 

Data 1’ and ‘Supplementary Data 2’, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematics of the Stop Signal Task (a), the Emotional N-back task (b) and the Monetary 

Incentive Delay Task (c) (from Casey et al., 2018). ITI = Inter-trial interval; RT = Reaction 

time; SSD = Stop signal delay; SS = Stop signal.
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Figure 2. 
The distribution of behavioral performance measures and beta weights in the sample. Top 

quadrants: The distribution of Stop Signal Reaction Time (SSRT) (a) and 0-back and 2-back 

and D-prime (b,c) behavioral performance measures in the sample. Bottom quadrants: The 

distribution of average local maxima beta weights in the sample within task-specific regions 

commonly known to be involved in SST (d,e), EN-back (f) and MID (g) tasks. Sample 

Sizes: SST (N=5,547), EN-back (N=6,009), and MID (N=6,657).
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Figure 3. 
SST’s activation maps, performance correlation maps and group-level spatial consistency at 

cortical and subcortical levels. Cohen’s d maps are thresholded at ≥ 0.2 in magnitude to only 

display small, medium, and large effect sizes. No thresholding is applied to the correlation 

maps. N=5,547.
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Figure 4. 
EN-back’s working memory activation maps, performance correlation maps and group-level 

spatial consistency at cortical and subcortical levels. Cohen’s d maps are thresholded at ≥ 

0.2 in magnitude to only display small, medium, and large effect sizes. No thresholding is 

applied to the correlation maps. N=6,009.
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Figure 5. 
EN-back’s emotional activation maps, performance correlation maps and group-level spatial 

consistency at cortical and subcortical levels. Cohen’s d maps are thresholded at ≥ 0.2 in 

magnitude to only display small, medium, and large effect sizes. No thresholding is applied 

to the correlation maps. N=6,009.
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Figure 6. 
MID’s activation maps and group-level spatial consistency at cortical and subcortical levels. 

Cohen’s d maps are thresholded at ≥ 0.2 in magnitude to only display small, medium, and 

large effect sizes. N=6,657.
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Table 1.

Inclusion criteria in the task-fMRI analyses and number of participants remaining after each step of 

exclusions. Covariates include age, sex, education, puberty, race, family, and scanner ID. MID: Monetary 

incentive Delay; SST: Stop Signal Task; MRI: Magnetic Resonance Imaging; FD: Framewise Displacement; 

QC: Quality Control.

Criteria\Task EN-Back SST MID

Total number scanned participants 10,189 10,294 10,385

Two runs that passed MRI quality control 8,981 9,035 9,140

Data available excluding Philips scans 8,163 8,140 8,201

Mutual vertex and voxel data availability 7,969 7,288 7,427

Motion censoring (mean FD < 0.9 mm) 7,680 7,000 7,239

Degrees of Freedom across runs > 200 7,680 7,000 7,225

Beta-weights outlier detection 6,666 6,995 7,214

Passed behavioral performance QC 6,085 5,116 6,753

No missing covariates 6,009 5,547 6,657
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