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Abstract

Motivation: Recently, many chromatin immunoprecipitation sequencing experiments have been carried out for a di-
verse group of transcription factors (TFs) in many different types of human cells. These experiments manifest large-
scale and dynamic changes in regulatory network connectivity (i.e. network ‘rewiring’), highlighting the different
regulatory programs operating in disparate cellular states. However, due to the dense and noisy nature of current
regulatory networks, directly comparing the gains and losses of targets of key TFs across cell states is often not in-
formative. Thus, here, we seek an abstracted, low-dimensional representation to understand the main features of
network change.

Results: We propose a method called TopicNet that applies latent Dirichlet allocation to extract functional topics for a
collection of genes regulated by a given TF. We then define a rewiring score to quantify regulatory-network changes in
terms of the topic changes for this TF. Using this framework, we can pinpoint particular TFs that change greatly in net-
work connectivity between different cellular states (such as observed in oncogenesis). Also, incorporating gene ex-
pression data, we define a topic activity score that measures the degree to which a given topic is active in a particular
cellular state. And we show how activity differences can indicate differential survival in various cancers.

Availability and Implementation: The TopicNet framework and related analysis were implemented using R and all
codes are available at https://github.com/gersteinlab/topicnet.

Contact: mark@gersteinlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, large-scale data on the interaction between proteins
and DNA has enabled the construction of complex transcriptional
regulatory networks (Liu et al., 2015; Zhang et al., 2014). These
networks model the molecular program for gene transcription by
representing genes and regulatory elements as nodes, and regulatory
relationships as edges. Transcription factors (TFs), a major class of
protein regulators in gene expression (Thompson et al., 2015), are
pivotal regulatory factors in these networks. Under different cellular
conditions, TFs may undergo dramatic functional changes (or ‘net-
work rewiring’) according to the gains and losses of their regulatory
target genes. These rewiring events provide insight into differential
cellular responses across conditions in the form of altered regulatory
programs. Studies have revealed that network rewiring events and
the altered regulatory programs they generate have strong phenotyp-
ic impacts (Assi et al., 2019; Bhardwaj et al., 2010).

However, quantification of network rewiring is challenging due
to the condensed and complex nature of regulatory networks
(Gerstein et al., 2012). Genes from various functional modules,
pathways and molecular complexes can play varying roles

depending on their local associations with other genes. As a result,
gains or losses of some gene connections may impact network altera-
tions in a functionally significant way, while others may not. This
indicates that identifying the gene functional subgroups and estimat-
ing the network rewiring at the subgroup level should be more ro-
bust and informative as compared to investigating changes of each
individual gene.

These low-dimensional representations of the functional sub-
groups that underlie network data resemble semantic topics in docu-
ments. Based on this consideration, the low-dimensional
representation can be constructed using topic modeling techniques,
including latent Dirichlet allocation (LDA). LDA was proposed by
Pritchard et al. (2000) for population genotype inference, and was
‘rediscovered’ by Blei et al. (2003) with applications in natural lan-
guage processing as a simple and efficient means to extract latent
topics from high-dimensional data. This approach has been success-
fully implemented in several biological scenarios that require decom-
position and dimensionality reduction of data (Pinoli et al., 2014;
Wang et al., 2011).

Here, we propose a method called TopicNet that makes use of
various features of the LDA model to measure the regulatory

VC The Author(s) 2020. Published by Oxford University Press. i474

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 36, 2020, i474–i481

doi: 10.1093/bioinformatics/btaa403

ISMB 2020

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/


potential, perturbation tolerance and intranetwork dynamics of TFs
in terms of their target gene ‘topics’. To apply LDA, we represent
the targets of a TF under a specific condition (cell line or tissue) as a
‘document’, with the TFs’ target genes as ‘words’ and latent func-
tional subgroups as gene ‘topics’ comprised these words. We applied
the procedure to a corpus including all of the regulatory networks
inferred from 863 chromatin immunoprecipitation-sequencing
(ChIP-seq) assays of the ENCODE dataset.

We first applied the LDA model to the regulatory network to
characterize gene topics in an unsupervised fashion. From the
trained model, the topic composition represents the distribution of
words for each topic, and the topic weights, in turn, are the distribu-
tion over topics in a given document. The topic compositions can be
further annotated for biological significance in terms of their rele-
vance to various biological pathways and processes. The change in
topic weights between documents can be used to quantify the net-
work rewiring between two cellular conditions (i.e. between differ-
ent cell types or different time points). Lastly, we defined a topic
activity score by combining the cell-specific expression of target
genes with the various topic compositions to characterize the overall
activity of each topic, and demonstrated that this quantity is useful
for predicting cancer survival.

In summary, our framework provides a straightforward quanti-
tative representation of a TF regulatory network with biological sig-
nificance, which could be further applied to many downstream
analyses.

2 Materials and methods

2.1 Data preprocessing and construction of the

regulatory network
We used 863 ChIP-seq experimental results for 387 TFs from the
ENCODE portal for model training due to their high-quality control
and consensus peak calling. In addition, we included ChIP-Atlas
data collections with more than 6000 ChIP-seq experimental results
to test the model. The number of target genes included in this data-
set ranges from hundreds to thousands (Supplementary Fig. S11),
and the TFs with the greatest availability among different cell lines
include CTCF, EP300, MYC and REST (Supplementary Fig. S12).

From each ChIP-seq experiment, the regulatory target genes of
specific TFs are defined as those with ChIP-seq peaks in proximal
regions (62500 bp) of their transcription start site. The cell type-
specific TRN is then defined based on these results.

2.2 TopicNet—topic modeling
Each regulatory network for a TF in a specific cell line is regarded as
an independent input document. We treat target genes that exist in
these documents as ‘words’, which collectively constitutes the ‘vo-
cabulary’ of the model. Based on existence of all genes as a regula-
tory target of the TF in the given condition, a document–gene
matrix is then constructed. This matrix is used as the input for the
LDA model. We use R package topicmodels for LDA learning and
inference.

Let M; K; V be the number of documents, the number of topics
and the vocabulary size, respectively. In this scenario, each docu-
ment is modeled as a mixture of topics, and each topic is a probabil-
istic distribution over genes. Each document i is represented as a
Ni-dimensional vector Wi, where Ni is the number of genes in the
document, and each element takes the value 1 . . . V. The probability
of observing a gene wij in a document Wi is determined by the mix-
ture of topic compositions within the document and the probabilis-
tic distribution of those topics. The existence of a word in a
document is modeled as follows (Fig. 1c):

Given two priors (a as the prior for document-topic distribution,
and b as the prior topic-gene distribution) we can sample

hi � DirichletðaÞ

as the probability of all topics appearing in a document i, which con-
stitutes the M� K matrix for document-topic distribution; and

uk � DirichletðbÞ

as the probability of all genes appearing in a topic k, which consti-
tutes the K� V matrix for topic-gene distribution.

We can then sample latent topic assignment of each word j in
document i as

zi;j � MultinomialðhiÞ

which is the topic that generates this gene. Each zi;j can take the
value 1 . . . K.

Given the membership of latent topics, the existence of genes in
a document can be drawn as

wi;j � Multinomialðuzi;j
Þ

which constitutes the observed document-word matrix, where
uzi;j

is the topic-word distribution for the sampled topic zi;j.

2.3 Model inference
Let W and Z be the collection of all aforementioned wi;j’s and zi;j’s
indexed by document and gene position pair. Gibbs sampling can be
performed on the Markov chain W;Zf g to obtain the estimation of
u and h. See Supplementary Methods for details.

For a stable and robust topic-gene composition matrix, we aver-
aged the results of 100 runs. As the topics learned by the LDA model
for each run were represented in randomized order, topics across
different samplings were first mapped against each other based on
the correlations of their composition. For any pair of outputs, each
topic from the first run was assigned with the same ID as the topic it
most strongly correlated with in the other run. We then produced

Pathway 1

(c)

(d)

zm,n

Topic assignment

K

…

Topic 2

…

Topic 1

…

Topic K

G
en

e 
2

G
en

e 
1

G
en

e 
3

G
en

e 
4

G
en

e 
5

G
en

e 
M…

…

Topic composition

wm,n

GeneTo
pi

c 
2

To
pi

c 
1

To
pi

c 
K

…

…

Topic distribution

To
pi

c

TF

Cells

…Cell1

Cell2
Cell3

&
Topic composition

Ta
rg

et
 g

en
e

Topic

Φ
Ta

rg
et

 g
en

e

TF

Cells

…
Cell1

Cell2
Cell3

TF regulatory network

x

Gene expression

Target gene

Sa
m

pl
e

Topic activity score

Survival analysis
Topic

Sa
m

pl
e

+

+

+
+

+
+

++++ +

+ +

+

+
+

+

+

+

+

+

Topic weight Topic rewiring score

…θ1 …θ2

SRew = D*KL(θ1, θ2)1: Cell1:TF1
2: Cell2:TFi

LDA

modelling

!

Transcription factors (TF)

1 2 3 4 5 ... 387

... ...

...B C D E F G H I J K L

Target genes

A

!

1 2 3 4 5 ... 387

...A B C D E F G H I J K L

... 50

Transcription factors (TF)

Target genes

Latent topics

(a) (b)

Pathway 2 Pathway 3

Pathway 1 Pathway 2 Pathway 3

1 2 3

Θ

Fig. 1. Overview of method and data. (a) An example of a TF–gene regulatory net-

work. (b) The high-dimensional regulatory network is decomposed into latent topics

related to certain biological pathways. (c) Diagram explaining the meanings and

biological relevance of the parameters in the LDA model. (d) General workflow of

our analytical framework

TopicNet i475

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data


the ensemble model by taking the median of the probability distribu-
tion over the composition for all topics that were mapped to the
same ID.

Once we obtained the model, we could apply it to unseen docu-
ments with the same vocabulary and determine their posterior distri-
bution over topics given the generative processes above.

2.4 Selection of topic numbers
The number of topics K used was selected using three criteria
implemented by the R package ldatuning’s FindTopicsNumber
method:

1. The posterior likelihood of the data given the LDA model of dif-

ferent number choices (Griffiths and Steyvers, 2004) (blue). A

higher value was preferred;

2. The Kullback–Leibler (KL) divergence of the document–gene

matrix (Arun et al., 2010b) (red). A lower value was preferred;

3. The average cosine distance r within topics (Cao et al., 2009)

(green). A lower value was preferred.

All three metrics reached optimal performance at around 50
topics (Supplementary Fig. S1). Based on these results, we used 50 as
the number of topics for downstream analysis.

2.5 Reconstructed correlations
We performed LDA, non-negative matrix factorization (NMF) and
K-means with 50 topics on each sample to obtain one 50-dimension-
al embedding vector of each sample for all three models. We repre-
sent the raw data for document i as a vector vi ¼ ½vi;1; vi;2; . . . ; vi;N �
with binary values, where N is the number of all genes in the vo-
cabulary. The embedding procedure for each method is as follows:

For LDA, we obtained the document-topic weight matrix H as
described above. For each document i, the embedding vector is the
weight of the 50 topics, which is the ith column of matrix H:

vLDA
i ¼ hi:

NMF decomposes the input matrix into two non-negative matri-
ces: the feature matrix W, and the coefficient matrix H. For a docu-
ment i, we use its weights as the embedding vector, which is the ith
column of matrix W:

vNMF
i ¼ wi:

K-means identifies k¼50 clusters from the dataset, and each
cluster is represented as its cluster centroid �v1; �v2; . . . ; �v50, which
is the average of all samples assigned to the respective cluster. Each
document i is represented as the Euclidean distances between the
raw vector and the 50 cluster centroids:

vKM
i ¼ ½d vi; �v1ð Þ; d vi; �v2ð Þ; . . . ; d vi; �v50ð Þ�:

For each document pair in the dataset, we could calculate the
Pearson correlation using the raw vectors and the 50-dimensional
embedded vectors of the three methods. To evaluate whether the
embedding retains correlations in the original data, the ‘recon-
structed’ correlation calculated from the embedding vectors was
then plotted against the ‘original’ correlation using the raw vectors.
Linear regression was also performed between the reconstructed and
original correlation for the three methods.

2.6 Evaluation of topic importance
The importance of the ensemble topics was evaluated by calculat-
ing the KL divergence between the topic weights of all of the
documents and a background uniform distribution. Given
the document-topic weight vector for all documents
h ¼ h1; h2; . . . ; hM½ � (where M is the number of documents), the
noise distribution is defined as:

hbackground ¼ ½1=M; 1=M; . . . ;1=M�:

The distance between the ensemble distribution and the null dis-
tribution is defined as the KL divergence:

DKL hjjhbackground

� �
¼
X

i
hið Þlog

hi

hbackgroundi

 !
:

2.7 Gene set enrichment analysis
We used topic composition as the statistic for gene set enrichment
analysis (GSEA). Gene sets in the C2, C5 and C6 categories from
Molecular Signatures Database (MSigDB) (Subramanian et al.,
2005) were used in the analysis. GSEA was performed with the R
package fgsea. The affinity between gene sets is defined by their
overlapping of gene sets.

2.8 Quantification of network rewiring: topic rewiring

score
For a pair of documents in a rewiring event of a given TF
ðX TF;cell1f g; X TF;cell2f gÞ, we can calculate the KL divergence between
their topic weight vectors h TF;cell1f g and h TF;cell2f g, here using the lat-
ter as reference:

DKL h TF;cell1f g jj h TF;cell2f g
� �

¼
X

i
h TF;cell1f g;i
� �

log
h TF;cell1f g;i
h TF;cell2f g;i

 !
:

Since KL divergence is asymmetric depending on which distribu-
tion is used as reference, we consider the symmetrized KL divergence
of the two directions to be a better metric for rewiring, which is:

D�KL h TF;cell1f g; h TF;cell2f g
� �

¼ 1

2
DKL h TF;cell1f g jjh TF;cell2f g

� ��
þ DKL h TF;cell2f g jjh TF;cell1f g

� �
Þ:

The rewiring score based on KL divergence identifies distinct clus-
ters for closely related cell types like GM cell lines and fibroblasts in
hierarchical clustering among CTCF-related documents as shown in
Supplementary Fig. S13. This indicates that KL divergence is more ro-
bust and interpretable than Jaccard distance on raw vectors.

2.9 Topic activity score
Gene expression data for BRCA, LAML, LIHC and GBM patient
samples from TCGA were obtained from GDC data portal (https://
portal.gdc.cancer.gov/). The gene expression levels of every sample
for each cancer type were formulated into an expression matrix E,
where rows represent genes and columns represent samples. For each
cancer type, the expression data was first quantile normalized. Only
genes that appeared in the topic-gene matrix were retained. We then
obtained the expression matrix E by first ranking the expression of
the genes for each sample, and then transformed the value for gene i
in the matrix of column j (corresponding to patient sample j) to
Ei;j ¼ 1=ranki;j, where ranki;j is the rank of gene i in sample j.

For a sample t with expression vector Et, the topic activity score
is calculated as SAct

t ¼ UTEt, where each element in the vector is the
activity score of the corresponding target.

2.10 Definition of gain or loss genes
Given two TF regulatory networks under two conditions, we arbitrar-
ily assigned one as an ‘altered condition’ and the other as the refer-
ence condition. We define ‘gain’ genes as those that are only regulated
by the TF in the altered condition but not the reference condition (for-
mally called ‘gain genes in the altered condition’) and the loss genes
vice versa (called ‘loss genes in the altered condition’). For annotation
of selected topics, we were particularly interested in the gain or loss
genes that are among the top-ranked genes of the topic (i.e. those that
have high values in the topic composition). We took the intersection
between these two sets and named the resulting set of genes as ‘top-
ranked gain/loss genes in the altered condition for topic k’.
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2.11 PPI network analysis of topic-related target genes
The genes in the corpus were first sorted according to their contribu-
tions to the topic. Among the top 500 genes, those that were directly
regulated by the given TF (i.e. bound by the TF in the corresponding
ChIP-seq experiment) were selected and provided to STRING
(Franceschini et al., 2012). The resulting interaction graph con-
tained the selected genes along with their first-layer neighbors.

2.12 Survival analysis
Clinical information for each patient regarding vital status, days to
last follow-up and days to death were downloaded from the GDC
data portal (https://portal.gdc.cancer.gov/). Records with missing in-
formation were discarded. Patients that were still alive in the record
were right censored. The values of all 50 topics were used as varia-
bles to perform Cox proportional hazards (coxph) regression and
implemented with the coxph function from R package survival, with
days to death (or days to last follow-up for censored living patients)
as the response.

We then selected the topics whose activity score achieved P-value
<0.05 in the coxph analysis, for further analysis. For each of these
candidate topics, the patients were then separated into two groups
by the median activity score. The survival curve was then estimated
using the Kaplan–Meier (KM) estimator. The topics that achieved
the lowest P-value were selected and shown.

3 Results

3.1 TopicNet framework
We used an LDA model to decompose the high-dimensional regula-
tory network into a selected number of latent topics related to cer-
tain biological pathways (Fig. 1a and b). Based on the results, we
constructed the TopicNet framework to include two parts: topic
rewiring score and topic activity score (Fig. 1c and d).

3.2 LDA model
In our study, we treated the regulatory targets of a TF under a specific
cellular condition as a ‘document’, denoted as W TF;cellf g. The target
genes act as ‘words’ and constitute the general ‘vocabulary’ of the cor-
pus. The LDA then identified functional topics from the genes in these
documents (see Fig. 1c). The analogy between topic modeling terms
and biological terms is elaborated in Supplementary Table S1.

We used published metrics to choose the number of topics K; in
particular, we used K¼50 as the optimal number for our model
(Supplementary Fig. S1; see Section 2). Two important matrices can
be inferred from the trained model:

1. The document-topic weight matrix H, which is cellular condi-

tion dependent, represents the weight of topics for all docu-

ments. Each column h TF;cellf g is a vector of the distribution over

topics for the corresponding document (note here fTF, cellg rep-

resents a single index), and the element h TF;cellf g;k represents the

weight of topic k in document W TF;cellf g.

2. The topic-gene composition matrix U, which is cell independent,

indicates the distribution over the target genes within the topics.

Each column uk represents the composition of a topic (i.e. the

distribution of target genes or the contribution of genes to the

topic). uk;j represents the contribution of gene j to topic k.

We further developed the topic rewiring score and topic activity
score based on these two matrices.

3.3 Topic rewiring score
Raw network rewiring can be described as the differences between
documents of the same TF in two cell types, W TF;cell1f g and
W TF;cell2f g. For comparisons between two documents in terms of
topics, we defined the network rewiring score as

SRew h TF1 ;cell1f g; h TF2 ;cell2f g
� �

as a symmetrized KL divergence be-
tween the topic weights

h TF1 ;cell1f g and h TF2 ;cell2f g: SRew h TF1 ;cell1f g; h TF2 ;cell2f g
� �

¼ D�KL ðh TF;cell1f g; h TF;cell2f gÞ:

3.4 Topic activity score
Note that H gives an effective weighting to topics in a given condi-
tion. However, often the cell type-specific regulatory network is
lacking but gene expression is available. In these cases, we can define
an effective topic activity score. Given a sample t with gene expres-
sion vector Et, we compute the vector of activity score for all topics
by multiplying the gene expression vector by the composition matrix

U (i.e. SAct
t ¼ UTEt).

3.5 Validation of the LDA model
We determined K¼50 as an optimal number of topics using several
metrics (Arun et al., 2010a; Cao et al., 2009; Griffiths and Steyvers,
2004). We then tested how similarities in the original data can be
preserved compared with two other algorithms, NMF and K-means,
using methods presented by Guo and Gifford (2017). Each method
gives a 50-dimensional representation of the samples. For every pair
of samples, we computed their correlation in terms of both the raw
data (‘raw’ correlation) and the 50-dimensional representation
(‘reconstructed’ correlation) from each method. Among the three
algorithms, LDA could reconstruct the raw correlations better than
the other two (Fig. 2a and Table 1). T-distributed stochastic neigh-
bor embedding (T-SNE) of the 50-dimensional representation also
demonstrates LDA’s ability to preserve similarities because samples
about the same TF tend to form distinct clusters in the embedding
space (Fig. 2b).

We also investigated the connection of models that were inferred
by the varying topic number K. We associated topics from models
with topic number K ¼ 5; 10; 20; 50 based on the correlation of
their topic-gene composition matrix, and observed a topic–subtopic
hierarchical structure among these models (Fig. 2c). This demon-
strates that topics may be further split into multiple subtopics when
increasing the total number of topics in the model.

The topics can be associated with protein complexes and func-
tional modules. We performed hierarchical clustering on all TF
documents in HeLa cells using their topic weights. We observed dis-
tinct clusters, indicating coactivation and collaborative binding
(Supplementary Fig. S2). Among them, we observed clustering of
nuclear transcription factor (NFY) subunits (NFYA and NFYB) and
FOS, which have been previously shown to colocalize extensively
(Fleming et al., 2013). We observed similar groupings for CTCF and
cohesin subunits SMC3 and RAD21, the latter of which frequently
cobinds with CTCF (Parelho et al., 2008; Rubio et al., 2008).

3.6 Functional annotation of identified gene topics
We calculated the importance of each topic by measuring the KL di-
vergence between the topic weights across all documents against a
background uniform distribution. Important topics should be more
specific and, therefore, only highly represented in some documents.
In contrast, the topics that show close to a uniform distribution
would have almost equal weights in most documents and would be
less interesting. The rank of all 50 topics’ importance is shown in
Figure 3a. Of particular interest are Topics 3 and 14: from the top
genes of these two topics, we identified several functional groups
such as transcription regulation, cell proliferation, metabolism and
mitosis (Fig. 3b).

To investigate the biological significance of each topic, we anno-
tated their functions using GSEA. For each topic, the probability dis-
tribution over target genes can be used directly as the statistics for
GSEA. Using C2 and C5 gene sets from the MsigDB (Subramanian
et al., 2005), Topic 3, which showed the highest importance, was
enriched with gene sets related to breast cancer and glioblastoma
tumors (Supplementary Fig. S3).

TopicNet i477

https://portal.gdc.cancer.gov/
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa403#supplementary-data


3.7 Quantification of TF regulation rewiring using topic

weights
For each TF, we calculated the pairwise topic rewiring score for all
available cell types. The average rewiring score for a TF reflects its
cell type specificity, as higher values correspond to greater difference
between cell lines (i.e. higher specificity) (Fig. 4a and Supplementary
Fig. S4). We observed that many TFs with higher cell specificity
were related to biological processes displaying highly variable regu-
latory activity across conditions, such as pluripotency, cell cycle
regulation, tumor suppression or tumorigenesis, including EP300
(Kim et al., 2013), BCL11A (Dong et al., 2017; Khaled et al., 2015),
ZBTB33 (Pozner et al., 2016) and JUND (Caffarel et al., 2008;
Millena et al., 2016). On the contrary, TFs with more constant roles
such as NR2C2 (O’Geen et al., 2010) showed very little difference
between cell types. Interestingly, ZNF274 and SIX5, which have
been shown to relate to CTCF binding sites (Hong and Kim, 2017),

also showed low specificity, similar to CTCF. Supplementary Figure
S5 lists the individual rewiring events with top values. Many of these
events involve TFs with high cell-type specificity, such as EP300,
SUZ12, ZBTB33 and FOS.

We pinpointed two cell lines, GM12878 and K562, and studied
specific rewiring events for several TFs. Among the 69 TFs shared in
both cell lines, ZBTB33 and EP300 showed the highest rewiring val-
ues. Specifically, Topic 49 and 16 showed the greatest difference in
the rewiring of ZBTB33 (Fig. 4b), and Topic 34 and 10 in that of
EP300 (Fig. 4f). For these topics, the majority of the top-ranked
genes are true targets in the respective cell line (Fig. 4c and g,
Supplementary Fig. S6).

Given a specific TF, we defined ‘gain’ target genes in K562 com-
pared to GM12878 as those that are exclusively present in the for-
mer, and ‘loss’ target genes as those exclusively present in the latter.
In this scenario, we were particularly interested in the gain or loss
genes among those with high contribution to the topic (i.e. the top-
ranked genes) that showed a major difference.

For ZBTB33, Topic 49 showed a very high weight in GM12878.
We found that the top-ranked loss genes in K562 for Topic 49 were
enriched in the gene set related to cell cycle and cell division function
(Fig. 4d). The loss of ZBTB33 regulation resulted in higher expres-
sion of its target genes in K562, corresponding to known deacyla-
tion and transcriptional suppressive roles of ZBTB33 (Pozner et al.,
2016; Fig. 4e). Another highly rewired TF, EP300 (a known

(a) (b)

(c)

Fig. 2. Tuning and performance evaluation of the LDA model. (a) Reproduced pairwise correlations after applying three-dimensionality reduction methods plotted against ori-

ginal correlations. (b) T-SNE embedding of topic weights (50 topic model) for data samples on CTCF, EZH2, POL2A and POL2AphosphoS5. (c) Left: Correlation between

topic compositions identified by LDA models with different topic numbers (5, 10, 20, 50). Right: Hierarchical structure of topics inferred from topic correlations (topic correl-

ation is ignored if it has value <0.4 and is not the maximum in its column)

Table 1. Linear regression of the reconstructed correlation against

the raw correlation

Method Correlation Linear regression slope Linear regression R2

K means 0.1047 0.3828 0.0110

NMF 0.4047 0.4365 0.1638

LDA 0.7886 1.3519 0.6219
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transcriptional activator), regulates a wide range of genes from dif-
ferent functional groups. In concordance with EP300’s function,
Topics 5 and 10 were deficient in K562 and the top-ranked loss
genes from these topics were significantly downregulated in K562.
For topics of EP300 that were highly represented in K562 (34, 36),
we observed an adverse trend (Fig. 4h and Supplementary Fig. S6).
To summarize, topics showing major differences in the rewiring of
these TFs were related to the TFs’ molecular functions.
Comparatively, TFs with low rewiring scores, like CTCF and
ZNF274, had almost identical topic distributions (Supplementary
Fig. S7).

These results further demonstrate the potential of using a
rewiring score derived from LDA as a quantitative measure of
change. The rewiring events with high scores could be associated
with previously reported biological significance of corresponding
TFs.

3.8 Network rewiring shows dynamic topic changes in a

time-course study
Temporal changes of topic weights could be used to represent dy-
namic responses in the cellular regulatory system. To demonstrate
this, we further applied our methods to the time series regulatory
networks for estrogen receptor (ESR1) in MCF-7 cell lines at 2, 5,
10, 40 and 160 min after estradiol treatment (Guertin et al., 2014).
The rewiring score between these time points showed a transition of
the topic weights across time points. The first few minutes after es-
tradiol treatment showed dramatic topic changes, followed by a
gradual trend to stability (Fig. 5a).

The time-course pattern of the topic membership demonstrated
that Topic 3 had the highest weight prior to treatment. Later,
Topic 4 became the most prominent topic after a short fluctuation,
which experienced a sharp increase at the 10 min time point and
then underwent a gradual decrease while remaining dominant until
completion (160 min) (Fig. 5b). We then studied the roles of ESR1
target genes that are related to these highly represented topics. At
0 min, true ESR1 target genes that were top-ranked in Topic 3
included genes that are most related to cell proliferation functions:
ribosomal functions, protein folding and mRNA splicing
(Supplementary Fig. S8). At the 10 min time point for Topic 4, top-
ranked target genes included genes related to signal transduction

and apoptosis, with some interacting directly with EP300. This re-
sult is consistent with a study demonstrating the redistribution of
EP300 target genes after the treatment of estradiol (Guertin et al.,
2014; Supplementary Fig. S8).

The treatment of estradiol turned the MCF-7 cell line’s topic
from Topics 3 to 4, which indicates the top-weighted genes in Topic
4, especially for the gained genes, may play a crucial role in the
treatment. We compared the nascent gene expression of 10 and
40 min with 0 min for the gained top-ranked genes in Topic 4. These
gained top-ranked genes showed significant (P-value <10�5) upre-
gulation in 10 and 40 min (Fig. 5c and d).

3.9 Topic activity score and its relationship to tumor

survival
The topic activity score incorporates cell type-independent topic
composition with cell type-specific gene expression and can be asso-
ciated with clinical significance. We used patient samples of three
cancer types with clinical information from The Cancer Genome
Atlas (TCGA) data portal for breast cancer (BRCA), acute myeloid
leukemia (LAML) and liver hepatocellular carcinoma (LIHC). We
evaluated the topic activity scores for each cancer type and used
them for survival analysis. We found that the activity scores of sev-
eral topics were associated with patient survival (Fig. 6). For each
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cancer type, we characterized the biological relevance of the most
predictive topic:

1. The activity score of Topic 10 was predictive for the survival of

BRCA patients (Fig. 6a). Correspondingly, Topic 10 was highly

represented in the document of fGATA3, MCF-7g (Zhang et al.,

2017), and its composition was enriched with the CtIP-associated

gene set (Supplementary Fig. S9a). GATA3 and CtIP are known

to interact with each other and functionally correlate with breast

cancer: GATA3 can regulate BRCA1 (Zhang et al., 2017) and CtIP

forms a repressor complex with BRCA1 whose removal accelerates

tumor growth (Furuta et al., 2006) (Supplementary Fig. S10a).

2. The activity score of Topic 26 was predictive of LAML patient

survival. For Topic 26, which was highly represented in the

document fNR2C2, K562g (Fig. 6b and Supplementary Fig.

S9b), its compositions were also enriched with genes upregulated

in response to activation of the cAMP signaling pathway (van

Staveren et al., 2006) (Supplementary Fig. S10b). NR2C2 can be

induced by cAMP (Liu et al., 2009) and has been found to be signifi-

cantly activated in almost all the cancer types (Falco et al., 2016).

3. The activity score of Topic 35 predicted survival outcome of

LIHC patients with high accuracy. Topic 35 was highly repre-

sented in documents fATF3, HepG2g and fJUN, HepG2g
(Fig. 6c and Supplementary Fig. S9c), and its composition was

enriched with gene sets that were upregulated in response to

overexpression of the proto-oncogene MYC (Bild et al., 2006)

(Supplementary Fig. S10c). Among these factors, ATF3 is a

cAMP-responsive element and acts as a tumor suppressor in

LIHC (Chen et al., 2018). JUN is a known oncogene and pro-

motes liver cancer (Maeda and Karin, 2003). MYC is also a

highly expressed oncogene and correlates with high proliferative

activity (Zheng et al., 2017).

In summary, we found associations between the survival-related
topics and their biological significance via the activity and function
of the TFs that regulate these topics. These results further validate
the biological relevance of the identified topics, indicating their po-
tential as prognostic markers and sources for biomarker discovery.

4 Discussion

Rewiring analysis of the regulatory network could provide critical in-
formation about the alteration of molecular programs across condi-
tions. Several attempts have been made to derive an effective
procedure for identifying network rewiring (Assi et al., 2019; Han
and Goetz, 2019; Shou et al., 2011; Xu et al., 2018). In this study, we
successfully developed the TopicNet framework. Our framework
extracts a low-dimensional representation of a network in the form of
functional topics and defines a network rewiring score and topic-
weighted activity score. We then demonstrated the application of our
framework and showed that the network rewiring score can aid in the
identification of the functional rewiring of TFs between cellular condi-
tions. Moreover, the topic-weighted activity score can be applied to
sample-specific cohort data for the prediction of patient survival.

To evaluate our framework, we also investigated the biological
meaning of the identified topics. We interpreted the learned topics
by utilizing two important matrices inferred from the model:
document-topic weight and topic-gene composition matrices. The
former demonstrates the activity of the topic as a distinctive func-
tional module, and the latter indicates possible biological functions
or pathways that the topic represents. Rewiring analysis using topic
weights is both efficient and highly interpretable with gene topics
serving as bridges between TFs and genes.

Our framework facilitates comparison between regulatory net-
works under different conditions from multiple sources. Thus, the
analysis can be extended to various studies where network changes
are of major interest. For example, time-course network changes,
such as those after treatment or during the cell cycle, could help pin-
point TFs, genes and pathways that play critical roles in these proc-
esses. Having demonstrated the potential application of our method
on time- course data, we expect our method to offer valuable
insights into network dynamics studies in the future.

Similar to the conclusion from our comparison, LDA has been
shown to be advantageous over some other common dimensional re-
duction techniques (e.g. NMF, SVD and pLSI) in terms of perform-
ance and interpretability (Liu et al., 2011; Stevens et al., 2012). The
most advantageous feature of LDA is the control of sparsity of low-
dimensional representations, which gives a robust representation for
the noise reduction.

Furthermore, several extensions could be introduced for future
studies. In our framework, we treated all TF–cell line pairs as inde-
pendent regardless of possible relationships between cell lines and
TFs. In addition, the low-dimensional gene topic defined by TopicNet
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is a simplified representation, which does not take into account the
complex and hierarchical gene–gene interactions. These relations can
be modeled by reorganizing the data into a cell–TF-target 3D tensor
and training on all three dimensions simultaneously. For example, a
recent study integrated the incomplete epigenome data as a cell-assay-
position 3D tensor and used an artificial neural network to impute
the missing data and find latent representations of the epigenome
(Schreiber et al., 2019). We are aware that recent advances in topic
modeling and other machine learning methods have enabled modeling
of more complex dependencies and structures (Blei and Lafferty,
2006; Momeni et al., 2018; Zhou et al., 2017). Though LDA could
capture some of these dependencies in an unsupervised fashion, we
expect incorporation of such information would help identify even
more meaningful patterns from the regulatory network.
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