
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Inferring Local and Global Properties in Knowledge Graphs

Permalink
https://escholarship.org/uc/item/8pq2q37r

Author
Embar, Varun Ravikumar

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8pq2q37r
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

INFERRING LOCAL AND GLOBAL PROPERTIES IN
KNOWLEDGE GRAPHS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Varun R Embar

December 2021

The Dissertation of Varun R Embar
is approved:

Lise Getoor, Chair

Jeffrey Flanigan

Christos Faloutsos

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Varun R Embar

2021

Table of Contents

List of Figures vi

List of Tables viii

Abstract xi

Acknowledgments xiii

1 Introduction 1
1.1 Opportunities . 2
1.2 Challenges . 5
1.3 Contributions . 7
1.4 Organization . 10

2 Background 11
2.1 Knowledge Graphs . 11
2.2 Statistical Relational Learning . 14

2.2.1 Markov Logic Networks 17
2.2.2 Probabilistic Soft Logic . 18

2.3 Graph Neural Networks . 19
2.3.1 Graph Convolutional Networks 20
2.3.2 Graph Attention Networks 20
2.3.3 Graph Markov Neural Networks 21

3 Data Alignment in Knowledge Graphs 22
3.1 Introduction . 22
3.2 Preliminaries . 26
3.3 Contrastive Entity Linkage . 27

3.3.1 Contrast Features . 27
3.3.2 Overview of VarSpot . 28
3.3.3 Phase 1: Identifying Potential Variations 29
3.3.4 Phase 2: Extracting Contrast Features 30

iii

3.3.5 Contrastive Entity Linkage 32
3.4 Experimental Validation . 33

3.4.1 Data . 33
3.4.2 Approaches . 34
3.4.3 Performance metrics . 36
3.4.4 Experimental Results . 36
3.4.5 Analysis of Entity Linkage 41
3.4.6 Hyperparameter Tuning 42

3.5 Related Work . 43
3.5.1 Entity linkage for products 43
3.5.2 Attribute value extraction 44

3.6 Conclusion and Future Work . 45

4 Fine-grained Data Alignment in Knowledge Graphs 46
4.1 Introduction . 46
4.2 Preliminaries . 50

4.2.1 Problem Definition . 50
4.2.2 Discriminative Attribute Extraction Approaches 51

4.3 Multitask approach using DiffXtract 56
4.3.1 Discriminative attribute identification 58
4.3.2 Attribute Value Extraction task 59
4.3.3 Multitask Learning . 62

4.4 Experimental Validation . 62
4.4.1 Data . 63
4.4.2 Approaches . 64
4.4.3 Performance Metrics . 66
4.4.4 RQ1: Discriminative Attribute Extraction Performance . 66
4.4.5 RQ2: Analysis of Attribute Identification Task 69
4.4.6 RQ3: Product Attribute Extraction Task 71
4.4.7 RQ4: Sensitivity to λ . 71

4.5 Related Work . 72
4.5.1 Product attribute extraction 72
4.5.2 Discriminative attribute extraction 73

4.6 Conclusion and Future Work . 74

5 Aggregate Graph Queries in Knowledge Graphs 75
5.1 Introduction . 75
5.2 Preliminaries . 77

5.2.1 Statistical Relational Learning 77
5.2.2 Graph Neural Networks 79

5.3 Problem Definition . 82
5.4 Aggregate Graph Queries . 84

iv

5.5 Estimating Aggregate Graph Queries 87
5.5.1 Point Estimation Approach 87
5.5.2 Expectation-Based Approach 88

5.6 Analysis of the Estimation Approaches 89
5.7 Expectation-Based Approach for PSL 91
5.8 Experimental Validation . 93

5.8.1 Data . 93
5.8.2 Approaches . 94
5.8.3 Performance Metrics . 96
5.8.4 Performance on AGQs . 97
5.8.5 Effect of Training Data . 99
5.8.6 Trade-off between Estimating AGQs and Locally Decom-

posable Metrics . 99
5.8.7 Runtime Comparisons . 101

5.9 Conclusion and Future Work . 102

6 Model Discovery in Knowledge Graphs 104
6.1 Introduction . 104
6.2 Preliminaries . 106
6.3 Explainable Templated Graphical Models 108
6.4 Structure Learning for Templated Graphical Models 110

6.4.1 Piecewise pseudolikelihood 114
6.5 Explainabilty . 116

6.5.1 End-User Explainability and Accuracy Trade-off 117
6.5.2 Stability of the explanation function 118

6.6 Experimental Evaluation . 123
6.6.1 Data . 124
6.6.2 Approaches . 126
6.6.3 Predictive performance of ESMS 127
6.6.4 Trade-off between predictive accuracy and explainability . 128
6.6.5 Timing Experiment . 130

6.7 Related Work . 131
6.7.1 Structure Learning: . 131
6.7.2 Explainability: . 131

6.8 Conclusion and Future Work . 132

7 Conclusion and Future Work 133
7.1 Summary of Contributions . 134
7.2 Future Work . 136

Bibliography 138

v

List of Figures

3.1 Entity variations: Variations for the tablet base entity. The base

attributes include company, brand and screen size. Color, storage

and option are variational attributes. 23

3.2 Variation histogram: The distribution of grocery product pairs

which are duplicates, variations and distinct across Jaccard similar-

ity computed on title. Even for high similarity (between (0.8,1.0]),

about 70% of the pairs are actually variations. 24

3.3 Sensitivity Analysis: Plot of entity linkage and variant linkage

metrics as we vary the hyperparameters. Our approach is robust

to changes in these hyperparameters. 42

4.1 Product variations: Two wristwatches with different finishes and

colors . 46

4.2 Performance for the baseline and DiffXtract: The baseline mis-

classifies finish as color for 70% of the pairs. Similarly, it misclassi-

fies length as size for 40% of the pairs. The proposed DiffXtract

approach identifies them accurately. 47

4.3 DiffXtract: Discriminative Attribute Extraction Model 57

4.4 Confusion matrix for Dict . 68

4.5 Confusion matrix for DiffXtract 69

vi

4.6 t-SNE plot: Plot shows the hidden states of [CLS] tokens from

both the products. Each attribute forms a distinct cluster. 70

4.7 Sensitivity to λ: The model is robust to different values of λ. . . 72

5.1 Figures shows the accuracy and homophily error of different ap-

proaches on all three datasets as the number of training data in-

creases. 100

5.2 Effect of training data on average query error (AQE) for various

approaches. 103

6.1 MEP vs MSE for LastFM: As we increase γ we generate more

explainable models that have a slightly higher MSE 128

6.2 MEP for LastFM: MEP increases for all approaches as we in-

crease K. ESMS with γ > 0.7 outperforms BOOSTand PRA. . 129

6.3 Running time for weight learning: Runtime increase exponen-

tially for MLE but increases linearly for PPLL. 130

vii

List of Tables

3.1 CEL extracts variational attributes and identifies both duplicates

and variations. 25

3.2 List of symbols used in this chapter along with their definitions. . 27

3.3 Data statistics: Number of entities in each catalog, blocked pairs

and label distribution for the three domains. 36

3.4 Identifying entity variations: Examples of the variations of en-

tities linked by VarSpot algorithm for software, groceries and mu-

sic domains. In these examples, edition is different for software,

flavor and pack size is different for groceries, and versions are dif-

ferent for music. 37

3.5 Extracted contrast features: Extracted contrast features for

the three domains. Most correspond to variational attributes. . . 38

3.6 Interpretability of contrast features: We observe that con-

trast features explain about 40% of variations correctly. Frequent

phrases only explain variations partially. 38

3.7 Contrast features improve performance: Models with con-

trast features (CEL) significantly outperform models without con-

trast features (Magellan) for both tasks across domains. 39

viii

3.8 F1 score and APS for the task of identifying duplicates. We observe

that models with contrast features (CF) outperform models without

contrast features across domains. 40

3.9 Confusion matrix: Models with contrast features correctly iden-

tify duplicates which are classified as variations by models without

contrast features. 41

4.1 discriminative attribute extraction approaches: The proposed Dif-

fXtract approach jointly identifies the attribute and extracts their

values . 56

4.2 Attribute distribution: The table show the distribution of discrimi-

native attribute across train, validation and test splits. Here, ASIN

refers to Amazon Standard Identification Number and UPC refers

to Universal Product Code. 64

4.3 Performance metrics: The table shows the precision, recall and

F1 scores for the attribute identification and value extraction tasks.

We observe that the DiffXtract approach outperforms all other

approaches. 67

4.4 Attribute extraction: Metrics for attribute extraction. We ob-

serve that providing the ground-truth improves the attribute ex-

traction task F1 performance by 8%. 71

5.1 Statistics for the three datasets: Cora, Pubmed and Citeseer. . . 94

5.2 Query error obtained for all queries on the three datasets and the

average query error (AQE) across queries. The lowest error is in-

dicated in bold and the second lowest error is underlined. 98

5.3 Table showing runtimes for each of the approaches on the three

datasets. 101

ix

6.1 Metrics: Our ESMS approach significantly outperforms other ap-

proaches on recommendation datasets and is comparable to BOOST on

Cora. Numbers in bold are statistically significant with p < 0.05. 123

6.2 Entity resolution predicates: List of predicated for the entity

resolution datasets. 124

6.3 Expainable predicates: List of explainable predicated for the

recommendation datasets. 125

6.4 Non-expainable predicates: List of non-explainable predicated

for the recommendation datasets. 125

x

Abstract

Inferring local and global properties in Knowledge Graphs

by

Varun R Embar

Understanding the meaning, semantics and nuances of entities and the relation-

ships between entities is crucial for enabling future generations of AI systems to go

beyond keyword-based pattern matching. Knowledge bases provide AI systems

with a structured representation of entities, their attributes and their relation-

ships. Knowledge graphs (KGs) are a type of knowledge base that uses a graph

to store information. They have become ubiquitous as they provide efficient stor-

age and retrieval. A wide range of systems such as search engines, intelligent

agents, contextual recommender systems and fake news detection applications

use KGs as a knowledge source. To perform effectively, these systems need to

extract latent patterns in the KG that are novel, valid and useful, a task known

as knowledge discovery. In my thesis, I examine three key tasks of knowledge

discovery - data alignment, which involves inferring relationships between entities

of the same type, computing aggregate graph queries, which involves estimating

recurring subgraphs in the absence of information and model discovery, a data-

driven way of discovering and combining rules to reason in a KG. These tasks

are challenging because: (1) KGs contain a rich set of entities and relations that

have very different characteristics and also highly correlated (2) KGs are large,

containing millions of entities, and at the same time incomplete, missing many

entities and relationships (3) lack of training data and hard to generate negative

instances for training various approaches.

In this dissertation, I develop robust and scalable knowledge discovery algo-

rithms to address these challenges. First, I develop a data alignment approach

xi

that identifies both entities that are exactly the same, and also variations. Vari-

ations are entity that are similar in most aspects but differ in a few aspects. The

proposed approach is a scalable and unsupervised. Using empirical evaluation in

three different domains I show the generality of this approach. Second, I pro-

pose a fine-grained data alignment approach to identify discriminating attributes

between variations. The proposed approach can identify a rich variety of discrim-

inating attributes for different entity types. The framework models the semantics

of the attributes enabling it to scale to a large number of attributes with little

training data. Third, I develop a scalable framework to estimate global graph

properties using complex graph queries. The proposed approach estimates these

queries when there is missing information, such as node labels. I analyse two

different approaches, point estimate and expectation-based approaches, for this

task both empirically and theoretically. Finally, I present a framework to perform

model discovery in knowledge graphs. The framework can also generate expla-

nations for the model’s prediction. To discovery these models efficiently, I first

propose a template-based rule mining technique that can efficiently search the

space of rules. I then propose a new scoring function that enables the framework

to learn the relative importance of these rules efficiently. Finally, I prove the sta-

bility of that the generated explanations. Together my work expands the scope

of knowledge discovery tasks on knowledge graphs.

xii

Acknowledgments

First and foremost, I would like to thank my advisor, Lise Getoor, who has been

a constant pillar of support, and without whom this PhD would not have been

possible. Her counsel and encouragement have been my constant companions even

before the start of my PhD. I still fondly remember the conversation that I had

with her when I was deciding between universities for my PhD. If I have been

able to navigate the hard times during my PhD, it is only because I was standing

on her giant shoulders. Her constant feedback and comments, attention to details

and the push to give my best, have not only made me a better researcher, but

also greatly improved me as a person. It is only after interacting with Lise have

I come to truly appreciate the Sanskrit hymn “acharya devo bhava”.

Special thanks to my advancement committee members Snigdha Chaturvedi,

Luna Dong and Jim Whitehead. Your feedback and guidance were the foundation

blocks on which this dissertation was built. I would also like to thank Jeffrey

Flanigan and Christos Faloutsos for accepting to be part of my defense committee.

Christos, in particular, has been a constant mentor throughout my PhD.

Next, I would like to thank my collaborators both in the LINQS lab and at

Amazon, without whom my PhD would not have shaped the way it has. The

summer internships at Seattle provided me the first real breakthrough during

my PhD. I am fortunate to have worked under the able guidance of Luna Dong,

Bunyamin Sisman, Hao Wei, Christos Faloutsos and Andrey Kan. They were

incredibly patient and allowed me explore different avenues during my internships.

I would like to express my gratitude to Sriram Srinivasan who has instrumental

in helping me break the gridlocks in my research. My work on aggregate graph

queries and structure learning would not have seen the light of day if it weren’t

for him. The late night conversations and coding sessions were instrumental in

xiii

meeting the deadlines. I would also like to thank Jay Pujara, Dhanya Sridhar and

Golnoosh Farnadi for their mentorship during the early days of my PhD.

I was able to navigate this new country only due to the help of LINQS lab

members. I would like to thank Eriq Augustine, Charles Dickens, Connor Pryor,

Vibin Vijay, Shresta B.S, Vihang Godbole, Sabina Tomkins, Pigi Kouki, Rishika

Singh, Caleb Levy, Niharika Srivastav, Alex Miller, Kyle Fredrickson, Yatong

Chen, Jason Ting, Dhawal Jhorapurkar, Nikhil Kini, Johnnie Chang, Hung Ju

and Shobeir Fakhraei for your constant companionship. I knew I could always

reach to Eriq when I couldn’t get my code to work as intended. I have learned

a lot from you and hope to code like you someday. I would be ignorant of many

board games if it weren’t for Connor’s board game nights. My proofs wouldn’t

be correct if Charles hadn’t gone over them. Special thanks to Cynthia Mccarley

without whom I would have drowned in paper work.

I would like to thank my roommates Sriram Srinivasan and Parameshwaran

Raman for all the late night technical and non-technical conversations, and for

putting up with my cooking. I would also like to thank Rohini, Prashanth, Vishnu,

Achyuth, Meera, Vasu, Omshree, Rajat, Pragnya, Kathik and Preeti for being my

family outside home. I knew I could always bank on you for a good home-cooked

meal. I would like to thank my parents Ravikumar and Koustubha, my sister

Varsha and my brother-in-law Sandeep for believing me and keeping me sane.

Finally, I would like to thank my Masters advisor, Indrajit Bhattacharya, and my

manager at IBM, Vinayaka Pandit, without whom I would not have embarked on

my PhD journey.

Part of this work was supported by the National Science Foundation grants

CCF-1740850, CCF-2023495 and IIS-1703331, AFRL, IFDS DMS-2023495, the

Defense Advanced Research Projects Agency and an Amazon Research Award.

xiv

The U.S. Government is authorized to reproduce and distribute reprints for gov-

ernmental purposes notwithstanding any copyright annotation thereon.

xv

Chapter 1

Introduction

Gathering, cleaning, organizing and storing large amounts of useful data in

structured knowledge bases is a fundamental challenge of AI. Knowledge bases

enables sophisticated AI applications to query data in realtime for performing

reasoning and planning tasks. Initial AI approaches organised the data using

closed ontologies, vocabularies, and agreed upon schemas[11]. These approaches

mainly concentrated on structured sources of data present in relational tables. A

challenge with these systems was that the schemas needed to evolve constantly

and this breaks down when extracting information at a large scale.

The rapid growth of the World Wide Web has brought with it an explosion in

the amount of data available online. A wealth of knowledge is hidden in the semi-

structured (e.g Wikipedia infoboxes) and unstructured (e.g. blogs, user comments

and reviews) data found on the web. Recent advances in machine learning and

information extraction have allowed us to tap into these sources leading to the

crossing of structure chasm [98]. These large knowledge bases store the extracted

information in the form of graphs called knowledge graphs [26, 55, 166, 149].

Knowledge graphs represent entities as nodes in the graphs and relationships

between these entities are stored as typed edges.

1

Knowledge graphs help systems understand and reason about various real-

world entities, and have become an integral part of a variety of systems including

search engines, intelligent agents and fake news detection applications. Knowl-

edge graphs have enabled search engines to return structured information along

with search results in the form of knowledge panels [84]. Intelligent agents such

as Alexa or Siri return the exact answer the user is looking for with the help of

knowledge graphs [137]. Knowledge graphs enable factoid question answering sys-

tems, such as IBMWatson, to defeat humans in quiz shows such as Jeopardy![104].

Fake news detection algorithm use knowledge graphs to verify the veracity of news

content [182].

In order to perform these tasks, these systems need to extract novel, valid and

useful patterns from the knowledge graph, a task known as knowledge discovery.

While significant progress has been made in this regard, several challenges still

exist. In this dissertation, I explore the existing approaches, enumerate challenges

faced in the process, and develop methods and provide insights to tackle such

challenges.

1.1 Opportunities

Knowledge graphs provide a structured representation of entities, their at-

tributes and their relationships using a graph [191]. Most knowledge graphs follow

the RDF standard[106] and represent facts about entities using triples of the form

(Subject, Predicate, Object). While subject and object are entities, the predicate

denotes the type of relationship that exists between the two entities. For example

(WashingtonD.C., capitalOf, United States) is a triple which encodes the fact

that Washington D.C. is the capital of United States. The entities in the knowl-

edge graph are usually typed. The relationships that entity types participate in

2

and other related meta-information is defined by an ontology. Recent advances in

information extraction have led to the construction of many large scale knowledge

graphs [26, 55, 166, 149]. I give more detailed background on knowledge graphs

in the next chapter.

These knowledge graphs provide a structured source of knowledge which is

important for a wide range of systems. Knowledge graphs allow AI systems to

go beyond matching keyword on semi-structured and unstructured text. They

enable these systems to understand the semantics, nuances and meaning of en-

tities present in text.[224]. They also provide relationships that exist between

different these entities. While some knowledge graphs deal with entities such as

people and places [26, 166], others such as Cyc[142] and ConceptNet [149] fo-

cus on commonsense knowledge. Several domains specific knowledge graphs such

as Bio2RDF[17] and LinkedLifeData[167] for biology and Product Graph[56] for

e-commerce applications have also been constructed.

Several state-of-the-art recommendation systems use knowledge graphs to not

only to generate better recommendations and also to provide users with an ex-

planation for each recommendation [261, 38]. Question answering systems and

chatbots reason over knowledge graphs or use knowledge graph embeddings to

accomplish their task [210, 110]. Fake news detection techniques use knowledge

graph embeddings or run graph mining algorithms on a knowledge graphs to iden-

tify trustworthy sources and to check the veracity of the facts [182, 44, 58].

To accomplish these tasks, these systems discover local patterns and relation-

ships the exist between individual entities in the graph and also global properties

that often involve several or all entities and relationships in the knowledge graphs.

The local patterns could be relationships that hold between two entities of the

same type or those that hold across entity types. One important relationship that

3

can be discovered between entities of the same type is the equivalence relation-

ship that identifies entities that are the same. For example, a product knowledge

graph may contain entities corresponding to products present across various re-

tailers’ catalogs. This is related to the problem of entity resolution in knowledge

graphs [61, 192]. Apart from this, we can also discover other relationships between

entities of the same type such variations, where the entities are similar to each

other in some aspects but differ in other aspects. We can further identify the as-

pects along which the entities differ in. I refer to the problem of discovering these

rich set of relationships between entities of the same type in knowledge graphs as

data alignment.

Estimating global properties such as the importance of an entity and identify-

ing the presence of recurring subgraph patterns in the knowledge graph is useful for

tasks such as schema generation[144], identifying strong ties [208] and for learning

representations of the graph [262]. Discovering recurring subgraphs is related to

the task of network motif mining [165]. The presence of these subgraph patterns

can be computed using complex graph queries. However, since knowledge graphs

are incomplete, we need to infer the missing information before computing them.

I refer to the task of estimating these subgraphs using complex graph queries as

aggregate graph queries.

As nodes in a knowledge graphs represent realworld entities, these nodes also

follow global patterns that are inherent to realworld entities. For example, we

know that for all entities A,B and C, if the relationships motherOf(A,B),

brotherOf(C,A) is true, then the relationship uncleOf(C,B) must be true. These

patterns can be represented using logical rules such as:

motherOf(A,B) ∧ brotherOf(C,A)→ uncleOf(C,B)

4

Discovering these latent rules enables construction of models that can reason in

a knowledge graphs. Discovering such rules from the facts present in a knowledge

graphs is known as rule mining [81, 79, 82, 49]. For reasoning in knowledge graphs,

several such rules need to be mined, evaluated and combined before arriving at

a decision. I refer to this task of mining and combining several related rules to

construct a model that can reason in a knowledge graphs as model discovery.

This is similar to the task of inductive logic programming, where logical theories

are discovered from instances and background knowledge [169]. This problem is

also related to the task of structure learning in statistical relational learning [89].

In the next sections, I talk about the various challenges related to tasks of data

alignment, estimating aggregate graph queries and model discovery, and provide

insights and methods to tackle these challenges.

1.2 Challenges

There are several challenges that need to be address when aligning entities,

estimating graph queries and discovering models in knowledge graphs.

Rich set of entities and relations: Knowledge graphs model realworld and

contain a rich set of entity and relation types often running into the hundreds.

Different entity types have very different characteristics, participate in different

relations and can even have different set of output labels for the same task. For

example, variant alignment relations such as size and color can be inferred for

products such as clothing, where as flavor and package size can be inferred for

products such as groceries. Models that reason in a knowledge graphs must com-

bine and evaluating a large set of entities and relations and need to be highly

scalable.

Missing or incomplete information: Knowledge graphs are large, contain-

5

ing millions of entities and relationships, and at the same time incomplete and

noisy, with many relationships about these entities missing. Knowledge discovery

approaches need to be scalable and at the same time robust to missing information

and noise. For example, when identifying patterns or rules in the data, we may

mine rules that are biased. Consider a rule mining algorithm run on a knowledge

graphs with contains facts about people, most of whom live in United States.

The algorithm might mine the rule isPerson(A) → livesIn(A,UnitedStates).

Knowledge discovery approaches need to be robust to handle such biases.

Lack of negative instances: Knowledge graphs only encode information

about true facts and do not contain facts that are false. Most learning approaches

require both positive and negative facts for training. Some of the approaches

overcome this challenge by making a local closed-world assumption, and assumes

all missing facts about a given entity and a predicate is false. However, since

knowledge graphs are known to be incomplete, this assumptions might not hold

in practice.

Similar and correlated relations: Relations that entities participate in

are highly correlated and different entity types participate in similar but differ-

ent relations. Knowledge discovery approaches need to infer these correlations.

For example, length and breadth are highly similar relations that are correlated.

Color and finish are similar relations but different entity types participate in these

relations.

Little or no training data: Due the presence of large number of entity types

and relations, often there is little or no training data to train models. Unsuper-

vised approaches or approaches that require fewer training instances need to be

developed for these tasks.

6

1.3 Contributions

My current thesis addresses the above mentioned challenges for the tasks of

data alignment, estimating aggregate graph queries and model discovery. My

work on data alignment is motivated by product knowledge graph used in the e-

commerce domain. I use citation graphs to evaluate various proposed approaches

for the task of estimating aggregate graph queries. I show the advantages of the

proposed explainable model discovery framework using recommendation graphs

that deal with users and items. Below I highlight the key contributions of my

work. Portions of this dissertation have been published elsewhere [71, 72, 73, 69].

In Chapter 3, I look at the task of data alignment for nearly identical, but dis-

tinct, entities called entity variations. Entity variations share the same value for

key attributes such as brand, manufacturer and product line, but differ in other

attributes, which I call variational attributes, such as package size and color. Iden-

tifying these variational attributes is crucial for aligning entities with equivalence

and variation relationships. However, these variational attributes are domain de-

pendent and often present only in unstructured text. To address this challenge,

I introduce the notion on contrast features and propose a novel unsupervised ap-

proach, VarSpot, to mine them from unstructured text. VarSpot reasons about

both similarities and differences between entities, and can easily scale to large

sources containing millions of entities. I show the generality of my approach by

performing experimental evaluation on three different domains. I then use these

mined contrast features to perform contrastive entity linkage, an approach

that aligns entity pairs with variation and equivalence or duplicate relationships.

The proposed approach significantly outperforms state-of-the-art learning-based

and rule-based entity linkage systems when identifying duplicates and variations.

Further, through annotations using Mechanical Turk, I show the interpretable na-

7

ture of contrast features. This work was published at the Automated Knowledge

Base Construction (AKBC) 2020.

Next, in Chapter 4, I develop a fine-grained alignment framework that identi-

fies the discriminating attributes between entity variations. Identifying these dis-

criminative attributes between entity variations, e.g., the same wristwatch models

but in different finishes, is crucial for improving e-commerce search engines and

recommender systems. Despite the importance of these discriminative attributes,

as in the case of most variational attributes, they are often not available ex-

plicitly and instead are mentioned only in unstructured fields. To address this

challenge, I introduce the novel task of discriminative attribute extraction which

involves identifying the attributes that distinguish product variations, such as fin-

ish, and also, extracting the values for these attributes from unstructured text.

This task differs from the standard attribute value extraction task that has been

well-studied in literature, as the discriminating attribute needs to be identified

in addition to finding the values for this attribute. I propose a novel end-to-

end, deep learning based approach, DiffXtract, that jointly identifies both the

discriminative attribute and extracts its values from the product variations. The

proposed approach is trained using a multitask objective and explicitly models the

semantic representation of the discriminative attribute and uses it to extract the

attribute values. This allows the approach to identify wide range of discriminative

attribute across domains with very little training data. I show that the existing

attribute extraction approaches have several drawbacks, both theoretically and

empirically. I also introduce a novel dataset based on a corpus of data previously

crawled from a large number of e-commerce websites. Through empirical evalu-

ation, I show that DiffXtract outperforms state-of-the-art deep learning-based

and dictionary-based attribute extraction approaches when identifying both the

8

attribute and when extracting attribute values. This work was published at the

International Conference on Big Knowledge (ICBK) 2021.

In Chapter 5, I propose the concept of aggregate graph queries that capture a

class of global graph properties such as cluster cohesion and the number of bridge

nodes. These properties are crucial to glean insights about a graph’s community

structure and spread of influence. Efficiently computing graph properties when

the graph is fully observed has received significant attention [250, 45], however the

problem of computing aggregate graph queries when there is missing information

has received little attention. Computing these queries for graphs with missing

attributes involves performing inference over the graphs. I study the effectiveness

of statistical relational learning and graph neural networks in estimating these

queries. I estimate these properties first using point estimates. For approaches

that can infer a joint distribution over the missing attributes, I also estimate

these properties as an expectation over the distribution. I theoretically show that

for even simple queries on graphs with two nodes, point estimates cannot mini-

mize the expected mean square error. To compute the expectation tractably for

probabilistic soft logic, one of the statistical relational learning approaches, I in-

troduce a novel sampling framework. In the experimental evaluation, using three

benchmark datasets, I show that expectation-based approaches tend to outper-

form point estimates when computing aggregate graph queries. This work was

published in International Joint Conference on Learning & Reasoning (IJCLR)

2021.

In Chapter 6, I develop a framework to perform model discovery in knowledge

graphs. I propose a new structure learning algorithm, Explainable Structured

Model Search (ESMS), that learns a model consisting of weighted logical rules and

also provides a framework to generate explanations for the predictions generated

9

by the model. The proposed approach discovers models that trade-off predictive

accuracy and explainability. Learning these rules from data comes with high

computational costs as it typically requires an expensive combinatorial search

over the space of rules and repeated optimization over rule weights. ESMS uses

a novel search procedure to efficiently search the space of models. The piecewise

pseudolikelihood (PPLL) objective used by the procedure does not require re-

optimizing the rule weights across models during each iteration of the search.

Further, I introduce the notion of relational stability and prove that the proposed

explanation framework is stable. In the empirical evaluation on three realworld

datasets, I show that the proposed approach not only discovers models that are

explainable, but also significantly outperforms existing state-out-the-art structure

learning approaches. This is under review and a part of this work was published

at Statistical Relational AI (StarAI) 2018.

1.4 Organization

This dissertation is organised as follows. In Chapter 2, I formally introduce

knowledge graphs and provide the necessary background to understand statistical

relational learning and graph neural network approaches. The next two chapters

deal with local properties of the graph that hold between a pair of entities. In

Chapter 3, I propose an approach to align entities with duplicate and variation

relations. In Chapter 4, I refine the variation relationship by identifying the

discriminative variational attribute. Chapter 5 and Chapter 6 deal with global

properties of the graph. In Chapter 5, I propose an approach to estimate aggregate

graph properties when some entity labels are missing. In Chapter 6, I propose an

explainable model discovery framework. Finally, in Chapter 7, I summarize the

contributions of my thesis and provide future directions to expand this work.

10

Chapter 2

Background

Three areas of research are important to my work. First, I give an overview of

knowledge graphs. Next, I discuss the area of statistical relational learning(SRL)

that combines probabilistic reasoning with knowledge representation. I talk about

Markov Logic Networks(MLN) and Probabilistic Soft Logic(PSL), two statistical

relational learning frameworks that I use in this dissertation. Finally, I describe

deep learning based graph neural networks for inference in relational data.

2.1 Knowledge Graphs

Knowledge Graphs(KG) provide a structured representation of entities, re-

lationship and attributes using a graph. Most knowledge graphs loosely follow

the RDF standard and represent facts about entities using triples of the form

(Subject, Predicate, Object). While subject and object are entities, the predi-

cate denote the type of relationship that exists between the two entities.

While the initial KGs were hand curated and small[142, 164], advances in in-

formation extraction have fueled the growth of many large scale knowledge graphs

such as NELL[166], Yago[230], Freebase[26] and Knowledge Vault[55] to name a

11

few. Some knowledge graphs focus on encoding facts about proper entities such

as people and places [26, 166], others such as Cyc[142] and ConceptNet [149] fo-

cus on commonsense knowledge. Several domains specific knowledge graphs such

as Bio2RDF[17] and LinkedLifeData[167] for biology and Product Graph[56] for

e-commerce applications have also been constructed.

Knowledge graphs encode facts about entities in the form of triples. While

the presence of a triple suggests a true fact, the interpretation of the absence of

a triple differs based on the KG paradigm. In closed-world paradigm, missing

triples are interpreted as facts that are false. However, in open-world paradigm,

missing triples are interpreted as facts where the truth value is unknown.

Entity resolution, link prediction and link-based clustering of related entities

are some of the tasks that are well studied with respect to KGs in literature [179].

Entity Resolution refers to the problem of matching entity mentions in structured

and unstructured data. For a survey of entity resolution approaches refer to Brizan

and Tansel [30] and Getoor and Machanavajjhala [88]. In the context of KGs,

entity resolution refers to matching pairs of entities across KGs that refer to the

same real-world entity. Pujara and Getoor [192], Rastogi et al. [202], Singla and

Domingos [225], Pujara et al. [193] are some of the approaches proposed for entity

resolution in KGs. Link prediction, also called knowledge graph completion is the

task of inferring missing triples in the knowledge graph. Proposed techniques for

this task can be classified as graph-based algorithms [248, 85, 140] and embedding

or tensor-based algorithms [178, 258, 28]. Clustering of related entities refers to

the task of grouping entities in relational data based on their similarity. In the

social network domain, this task is known as community detection[77]. Saeedi

et al. [209], Gad-Elrab et al. [80] are some examples of clustering approaches for

knowledge graphs.

12

In this thesis, I propose a richer formulation for these three tasks involving

multiple entities and relations and propose novel approaches to solve them.

Data alignment: Data alignment refers to the task of discovering semantic

relations such as variations and discriminative attributes between entities of the

same type in a KG. The inferred relations are called alignment relations. Although

the task of data alignment is related to the tasks of entity resolution and link

prediction, it differs from both in key aspects. Entity resolution approaches infer

entities that are the same. Data alignment approaches, on the other hand, infer

entities that are related but are not identical. It also uses a more expressive

alignment language when linking entities, denoting how the entities are related.

Data alignment can be thought of as a more general form of entity resolution.

Like the task of data alignment, link prediction infer missing relations between

entities. Some of the links such as sameAs and subsetOf can be thought of as

aligning entities. However, link prediction is more general and can infer other

relations such as bornIn between entities of different entity types. In contrast,

data alignment always infers relations between entities of the same type.

Aggregate graph queries: Aggregate graph queries provide a rich lan-

guage to identify recurring subgraphs in the graphs with incomplete information.

These complex queries generally involve many nodes and edges and require joint

reasoning over multiple node labels to compute them. This task combine the tasks

of estimating the queries with the inference of missing information such as node

labels. This is related to the task of clustering related entities. However, unlike

clusters where all entities in the cluster are similar, graph queries can express more

complex groups of entities using Boolean logic. Aggregate graph queries then use

an aggregate function such as average to summarize these subgraphs.

Model discovery: Model discovery refers to the task of mining and com-

13

bining logical rules, that represent complex relationships between entities and

entity types, into a model that can reason in a KG. Models can reason about

the existence of missing edges, type of an entity, cluster similar entities and so

on. Many link prediction algorithm for KGs mine and combine rules based on

observed relationships in the KG to infer new relations [139, 81]. These algo-

rithms can considered as a special case of model discovery. Further, these rules

are interpretable in nature can be used as explanations.

2.2 Statistical Relational Learning

Statistical Relational Learning (SRL) techniques combine probabilistic reason-

ing with knowledge representations that capture the structure in problem domains.

Getoor and Taskar [89] provides a survey of various SRL models proposed in lit-

erature. Markov Logic Networks(MLN) [205] and Probabilistic Soft Logic(PSL)

[14] are two popular SRL frameworks. These frameworks use weighted first-order

logic rules to define an undirected graphical model and inference is performed over

the generated graphical model.

Nickel et al. [179] introduce the notion of probabilistic knowledge graphs to

use SRL techniques for reasoning in KGs. Given a set of entities E and a set of

relationship R, the probabilistic knowledge graphs represents each possible triple

(ei, rj, ek) by a random variable rj(ei, ek). These random variables rj(ei, ek) take

values in the range [0, 1] and denote the probability of the triple being true.

Before I introduce MLN and PSL formally in the next section, I give a brief

overview of some of the terms used in SRL and its interpretation in the context

of probabilistic knowledge graphs.

• Predicate: A predicate p is a relation defined by a unique identifier and a

positive integer called its arity, which denotes the number of terms it accepts

14

as arguments.

• Atom: An atom p(·) in SRL framework corresponds to a predicate p in the

KG. At atom takes as arguments constants (e.g. Alice, Bob) or variables

(e.g. A,B). The constants correspond to entities in the KG and the variables

correspond to entity types.

• Ground atom: An atom whose predicate arguments are all constants is

a ground atom. A ground atom encodes a fact or a triple, and the truth

value represents the probability of the fact being true.

• Clause: A clause c is a formula ∧iLi ∨j Lj where Li and Lj are atoms of

its negation.

• Rule: A rule r is a pair (w, c) where c is a clause and w is its associated

real-valued weight.

• Ground rule: A rule consisting of only ground atoms is a ground rule.

• Model: A model M is a set of rules {R1, R2, · · · , Rn}.

Given a set of logical rules defined by a SRL model, and a set of observations

from the data, the rules are grounded to generate ground rules, where variables in

a rule are substituted by all possible constants. The set of ground rules generated

from rule r is denoted by Gr.

Each ground atom present in the set of ground rules is then associated with

a random variable. Random variables that correspond to ground atoms with

observed values are called observed random variables(X) and those that cor-

respond to ground atoms with unobserved values are called unobserved random

variables(Y). Each ground rule is then mapped to a potential function φ over

15

the random variables. The set of all potentials define a probability distribution

over the random variables.

For example, consider the following rule that suggests similar items are rated

similarly by the user:

w : SimilarItem(I1, I2) ∧Rating(U, I1)→ Rating(U, I2)

Here, SimilarItem is a predicate that encodes the similarity between the two

items I1 and I2, and the predicate Rating encodes the rating assigned to the item

by the user U . w denotes the weight of the rule that determines its importance.

The variables I1, I2, U range over the constants in a domain. Consider the set of

users = {Alice, Bob} and item = {Top Gun, Valkyrie}. An example of a ground

rule is as follows:

w :SimilarItem(Top Gun, V alkyrie) ∧Rating(Alice, Top Gun)

→ Rating(Alice, V alkyrie)

For the ground rule mentioned above, letX1, Y1, Y2 be the random variables associ-

ated with the ground atoms SimilarItem(Top Gun, V alkyrie), Rating(Alice, Top Gun),

Rating(Alice, V alkyrie). The grounded rule is mapped to a potential φ(X1, Y1, Y2).

The set of potentials defined by the ground rules is then used to define a

distribution over the set of observed(X) and unobserved(Y) random variables

16

given by:

P (X,Y) = 1
Z

exp(
∑
r∈M

∑
Gr

wrφr(X,Y))

where

Z =
∑
X

exp(
∑
r∈M

∑
Gr

wrφr(X,Y))

(2.1)

Each φr instantiated from logical rule r ∈M is a function that scores assignments

x. Intuitively, φr assigns higher scores to assignments that satisfy its correspond-

ing logical rule scaled by its rule weight. Assignments that satisfy more ground

rules are exponentially more probable.

2.2.1 Markov Logic Networks

Markov Logic Networks [205] are an SRL framework that define a class of

undirected discrete probabilistic graphical models. An MLN model consists of

weighted logical rules that encode statistical dependencies and structural con-

straints. It associates ground atoms with Boolean random variables. Potential

functions φ are indicator functions that are one if a ground rule is satisfied and

zero otherwise. MLN has been successfully applied to many problem including

information extraction [213], entity resolution [225] and computer vision [237].

Formally, joint density function defined by an MLN is given by:

P (Y,X) = 1
Z

exp(
∑
r∈M

∑
Gr

wrφr(X,Y))

where

Z =
∑
Y

exp(
∑
r∈M

∑
Gr

wrφr(X,Y))

(2.2)

17

where φr(X,Y) is given by:

φr(X,Y) = 1(X,Y) (2.3)

where 1 is an indicator function that is 1 if a ground rule is satisfied and 0

otherwise.

2.2.2 Probabilistic Soft Logic

Probabilistic Soft Logic(PSL) is a SRL framework and a templating language

used for defining hinge-loss Markov random fields (HL-MRFs)[14], a class of undi-

rected probabilistic graphical models, that supports modeling of multi-relational

data. Like MLN, PSL model consists of weighted logical rules that encode sta-

tistical dependencies and structural constraints. However, unlike MLN where the

truth values of ground atoms are Boolean, truth values in PSL are continuous val-

ued in the range [0,1] and can be used to represent real-valued similarities. While

in MLNs the rule weights are real numbers, in PSL the rule weights are positive

real numbers. This make inference is PSL efficient. PSL has been successfully

applied to many problem including natural language processing [18], social media

analysis [115, 64] and information extraction [189].

Formally, a HL-MRF is defined by the joint density function :

P (Y|X) = 1
Z

exp(−
∑
r∈M

∑
Gr

wrφr(X,Y))

where

Z =
∫

Y
exp(−

∑
r∈M

∑
Gr

wrφr(X,Y))

(2.4)

where the Y represent the target or unobserved ground atoms and X represent

18

the observed ground atoms. Gr represents the set of all ground rules corresponding

to the PSL rule r. φr(X,Y) represents the linear or quadratic penalty for violating

clause r based on whether p = 1 or p = 2.

2.3 Graph Neural Networks

Deep learning approaches learn non-linear hierarchical representation of the

data and mapping from these representations to the final tasks [94]. These ap-

proaches alleviate the need for handcrafted features and have achieved state-of-

the-art performances in several tasks ranging from object detection[203], machine

translation[157], speech recognition[105] and natural language understanding[212].

Recently, there has been great interest in applying these techniques to graphs [254]

in general and knowledge graphs in particular[114].

Graph neural networks can be broadly classified into recurrent graph neural

networks (RecGNNs), convolutional graph neural networks (ConvGNNs), graph

autoencoders (GAEs), and spatial-temporal graph neural networks (STGNNs)

[256]. RecGNNs use recurrent architecture and message passing algorithms to

learn node representations. ConvGNNs use the convolution operation to aggregate

a node’s features with the features of its neighbours. GAEs learn latent node

representations that are capable of reconstructing the structural information of

the graph. STGNNs learn node representation and take into consideration spatial

dependency and temporal dependency.

In this dissertaion, I use three popular graph neural networks, Graph Con-

volutional Networks (GCNs)[122], Graph Attention Networks (GATs) [241] and

Graph Markov Neural Networks (GMNNs) [197].

19

2.3.1 Graph Convolutional Networks

Graph Convolutional Network (GCN) [122] is a popular non-probabilistic GNN

approach. GCNs iteratively update the representation of each node by combining

each node’s representation with its neighbors’ representation. The propagation

rule to update the hidden representation of a node is given by:

H(l+1) = σ
(
D̃−0.5ÃD̃−0.5H(l)W (l)

)
(2.5)

where H(l) denotes the representation at layer l, D̃ represents the degree matrix,

Ã represents the adjacency matrix with self-loop, W represents the weights, and

σ denotes an activation function, such as the ReLU. The final representations are

fed into a linear softmax layer classifier for label prediction.

2.3.2 Graph Attention Networks

Graph Attention Networks (GATs) [241] are similar to GCNs and use self-

attention while combining the representation of each node with its neighbors.

This allows the model to assign different weights to each of its neighbors’ repre-

sentations. The propagation rule for GAT is given by:

h
(l+1)
i = σ

∑
j∈N

αijh
(l)
j W

 (2.6)

where h(l)
i is the representation of node i at layer l, W is the weight matrix, N is

the set of neighbors and α is the attention weights.

20

2.3.3 Graph Markov Neural Networks

Graph Markov Neural Networks (GMNNs) [197] is a recently introduced prob-

abilistic approach. GMNNs build on graph neural networks such as GCNs or

GATs by adding a second neural network to capture the latent dependencies in

the inferred data. The pair of neural networks are trained using a variational EM

algorithm. In the E-step, the object representations are learned by the first neural

network. In the M-step, the latent dependencies are learned by the other neural

network.

21

Chapter 3

Data Alignment in Knowledge

Graphs

3.1 Introduction

Are the two Kindle e-readers shown in Fig. 3.1 the same or different? It

is unclear – while they are essentially the same product – they have the same

company, brand and screen size, they also have some important differences such

as color and storage. Unlike common entity linkage domains such as medical

health records and publication data sets where there is a precise notion of identity,

domains such as products and music are inherently more challenging due to the

presence of nearly identical but distinct entities. In fact, whether these entities are

distinct or not may sometimes be context dependent. We refer to these entities

as entity variations.

More formally, entity variations are sets of entities that share the same value

across core attributes called base attributes, but differ from each other along a

few crucial attributes which we refer to as variational attributes. For example,

22

Base Product

Base Attributes

Company Amazon
Brand Kindle
Screen Size 6 in

p1 p2

Variational
Attributes

Color White
Storage 4 GB

Color Black
Storage 8 GB

Figure 3.1: Entity variations: Variations for the tablet base entity. The base
attributes include company, brand and screen size. Color, storage and option are
variational attributes.

variations of the tablet in the motivating example have different values for the

variational attribute storage size.

An entity linkage framework for domains with variations needs to identify

both entities that are exactly the same (duplicates), and also entity variations

(variations). While identifying variations is important for matching duplicate

entities, it is a useful task in its own right. For example, it is critical for enhancing

customer shopping experience. Consolidating product variations on the same page

enables customers to locate the product they desire quickly. Grouping product

variations in search results can increase diversity and prevent returned results

from being dominated by multiple variants of the same product.

There has been a large body of work for the task of identifying duplicates

(See [68, 129, 52, 132, 88, 43] for survey papers comparing various approaches).

More recently, Li et al. [145] proposed an approach to identify entity variations

in a single catalog using structured variational attributes. However, one of the

main challenges in identifying variants is in the discovery of variational attributes

present in unstructured text, and then jointly identifying duplicates and variations

23

Figure 3.2: Variation histogram: The distribution of grocery product pairs
which are duplicates, variations and distinct across Jaccard similarity computed
on title. Even for high similarity (between (0.8,1.0]), about 70% of the pairs are
actually variations.

Most data sources have few structured attributes, while many other entity

attributes, including several variational attributes, are included in unstructured

text such as title and description. Attribute value extraction approaches [269,

90, 187, 194, 116, 131, 206, 152] typically extract values for a small, fixed set

of attributes such as brand, flavor and quantity and not all extracted attributes

correspond to variational attributes. The presence of a large number of varia-

tional attributes that are different across domains limit the use of these attribute

extraction techniques. In addition, these techniques are typically supervised and

need labels which may be costly to acquire.

To illustrate the magnitude of the problem, consider a sampling of grocery

products from two e-commerce catalogs (details described in Section 3.4). These

catalogs contain two attributes, brand and title. Fig. 3.2 shows the distribution

of duplicates, variations and distinct entity pairs sampled and grouped into five

uniform interval buckets using Jaccard similarity computed on the title. Across

24

Duplicate Variation Variational Attrib.
Matching Matching Extraction

ER approaches X
Li et al. [145] X
Attribute Xextraction

CEL X X X

Table 3.1: CEL extracts variational attributes and identifies both duplicates and
variations.

all ranges, variations are mixed in with duplicates and distinct pairs, with some

buckets containing up to 70% variation pairs. There are no structured attributes

to help distinguish them. As we show in our experiments, even state-of-the-art

approaches that compute multiple similarity measures incorrectly link variations

as duplicates.

In this chapter, we address these challenges by proposing a novel framework,

contrastive entity linkage (CEL), that identifies both duplicates and varia-

tions together. The main contributions include:

• Three-way linkage: We extend the traditional task of two class entity

linkage, where the goal is to identify duplicates, to a three class setting,

where along with duplicates we also identify entity variations.

• Automatic variational attribute discovery: We proposed a variational

attribute discovery approach, VarSpot, a scalable, unsupervised technique

that analyzes similarities and differences within the same catalog. VarSpot

uses the notion of contrast features to model variational attributes.

• Effectiveness: We perform empirical evaluation in three different domains

to show the generality of our approach. Using three different state-of-the-

art entity linkage frameworks, including rule-based and deep learning based

25

frameworks, we show that models with contrast features significantly out-

perform models without them when identifying duplicates and variations.

Further, through annotations using Mechanical Turk, we show the inter-

pretable nature of contrast features.

3.2 Preliminaries

In this section, we introduce necessary terms and notation, followed by the

formal definition of three-way entity linkage.

Base entity: A base entity is an abstract, canonical entity associated with a

set of attributes called base attributes.

Entity variations: Entity variations are a set of related entities that are

instantiations of the same base entity. All entity variations share the same value for

the base attributes. Entity variations are also associated with a set of variational

attributes whose values differ across variations. We denote the function that

maps an entity to its base entity by B.

Records and attributes: A record represents a realworld entity in a data

source and is associated with a set of attributes called record attributes. Records

usually have a combination of structured attributes such as brand and price, and

unstructured text attributes such as title and description. The attribute values

in a record may be missing or incorrect. Not all base and variational attributes

as present as structured record attributes. We use ri to denote a record, am to

denote the record attribute and ri(am) to denote the value of the amth attribute

of ri. The set of all attributes is given by A. We denote the function that maps

a record to the realworld entity it represents by E.

Catalog: The set of all records present in a data source is referred to as a

catalog, and is denoted by C.

26

Definition 1. Given two catalogs C1, C2, the task of 3-way entity linkage is to

identify sets of record pairs M(Set of duplicates), V(Set of variations) such that

V ,M ⊂ C1 × C2, (ri, rj) ∈ M ⇔ E(ri) = E(rj), (ri, rj) ∈ V ⇔ {B(E(ri)) =

B(E(rj)) ∧ E(ri) 6= E(rj)}.

Table 3.2 gives an overview of the symbols and their definitions.

Symbol Definition
ri Record
am Record attribute

ri(am) athm attribute of record ri
A Set of all record attributes
E Maps record to realword entity
B Maps entity to its base entity
C Catalog
M Set of duplicates
V Set of variations

Table 3.2: List of symbols used in this chapter along with their definitions.

3.3 Contrastive Entity Linkage

In this section, we introduce the notion of contrast features that capture the

value of variational attributes, and propose VarSpot, a novel algorithm to identify

them. We then describe our overall approach, Contrastive entity linkage, that

uses VarSpot to identify both duplicates and variations.

3.3.1 Contrast Features

Contrast features are phrases or n-grams that represent values of variational

attributes present in unstructured text attributes such as title. For the motivating

example in the introduction, the phrase 4 GB and 8 GB are contrast features as

they correspond to values of the variational attribute storage size. Since contrast

27

Algorithm 1 VarSpot: An approach to identify contrast features
Input: Product catalogs C1, C2
Output: Contrast features with weights f
Phase 1: Link each catalog to itself to identify potential variations
L1 ← Link(C1)
L2 ← Link(C2)
Phase 2: Extract contrast features from identified variations
f1 = ContrastSpot(L1)
f2 = ContrastSpot(L2)
Aggregate the contrast features from the two catalogs
f = f1 ∪ f2
return f

features are attribute values of all variational attributes, they are more general.

While pack of 2, 75 oz, dark roast are some examples contrast features in the

groceries domain, radio edit, remix, live are examples of contrast features in the

music domain.

3.3.2 Overview of VarSpot

VarSpot is a unsupervised contrast feature extraction algorithm and has two

phases. In the first phase VarSpot identifies a set of potential entity variations

in a single catalog. This phase returns a set L consisting of entity pairs and their

similarity scores. This phase is described in Subsection 3.3.3. In the second phase,

we use the ContrastSpot algorithm to extract phrases that distinguish pairs in

L. This is described in Subsection 3.3.4. We finally aggregate the extracted

phrases from both of the catalogs to generate the contrast features. An overview

of VarSpot is given in Algorithm 1.

28

3.3.3 Phase 1: Identifying Potential Variations

The first step of the proposed VarSpot algorithm identifies potential entity

variations by linking the entities in a catalog to itself. This is motivated by two key

properties of catalogs. First, catalogs typically contain very few duplicates. Most

sites ensure that records in their catalog refer to distinct entities. Second, the

records of variations are typically more similar to each other than to records that

correspond to entities with different base products. This is due to the presence

of many base attributes that are shared across variations. Based on the key

properties mentioned earlier, we expect that most of the pairs with high similarity

scores to be variations.

Typically, in order to limit the O(n2) potential blowup in candidate pairs, a

blocking technique such as locality sensitive hashing (LSH) is used to limit the

candidate pairs for linkage. For large catalogs, even after performing blocking, we

may need to evaluate a large set of candidate pairs. Since entity variations share

the same value for base attributes, we only need to consider record pairs that have

the same values for these attributes. We block on the structured base attributes

such as brand, when present in the catalog, to reduce the number of pairs.

Further, instead of using a sophisticated supervised linkage system that per-

forms linkage using all attributes of the record, we compute a similarity measure

s such as Jaccard or cosine similarity on the unstructured attribute from which

we need to extract the contrast features. We then return all pairs that have score

s > θ.

The algorithm for identifying potential entity variations Link is given in Al-

gorithm 2. The algorithm takes as input a catalog C, structured base attributes

ab, bucket size threshold λ and similarity threshold θ. First, the algorithm buck-

ets records based on the attribute value ab. We then prune buckets larger than

29

Algorithm 2 Link: Scalable unsupervised approach to discover variations
Input: Catalogs C, Base attributes ab, Bucket size threshold λ, Similarity thresh-
old θ.

Output: Set of potential entity variations L
Bucket entities based on base attribute ab
for ri ∈ C do

Hab
[ri(am)]← Hab

[ri(am)] ∪ ri
Prune buckets with size > λ
for key ∈ Hab

do
if size(Hab

[key]) > λ then
Prune Hab

[key]
Compute similarity and generate pairs
for each pair (ri, rj) ∈ Hab

do
if sim(ri(av), ri(av)) > θ then
L = L ∪ (s, ri, rj)

return L

the threshold λ. For each of the remaining buckets, we consider all record pairs,

compute similarity scores and output all pairs greater than threshold θ.

3.3.4 Phase 2: Extracting Contrast Features

The second phase of VarSpot extracts contrast features from the unstructured

attributes of identified potential entity variations. The main idea is to first start

with unigrams that are present in one entity but not the other, and grow the phrase

by considering adjacent tokens. We continue until we find the largest significant

phrase, and extract the phrase as a contrast feature. Similar techniques have been

proposed to extract phrases in topic modeling [66].

Significant phrases are n-grams which occur more frequently than expected had

they been sampled independently from their constituent sub-phrases. For example

the phrase pack of 2 could arise either because it is a phrase corresponding to a

single attribute, or because {pack of, 2} are two independent phrases adjacent to

each other. To capture this, we define a significance score (sig) and consider all

30

phrases c with sig(c) > α to be a significant phrase.

The probability of observing an n-gram c can be estimated by

p(c) = f(c)
L

(3.1)

where f(c) is the observed frequency of c and L is the total number of all n-grams.

A partition of an n-gram is a set of smaller n-grams that together form the

string. For example, the partitions of the n-gram pack of 2 are {pack, of 2},{pack

of, 2} and {pack, of, 2}. Let c be an n-gram, and c′ be a partition of the tokens in

the n-gram. The expected frequency of observing n-gram c due to independently

sampling its constituent n-grams in c’ is given by:

f̂(c’) = L ∗
∏
t∈c′

p(t) (3.2)

where p(t) is the probability of occurrence of the n-gram t. For a n-gram c and one

of its partition c′, the standard deviation between the observed frequency of c and

the expected frequency due to independently sampling its constituent n-grams in

c′ is given by:

std_dev(c, c′) = f(c)− f̂(c’)√
f(c)

(3.3)

The significance score sig(c) for an n-gram is given by:

sig(c) = min c′ std_dev(c, c′) (3.4)

The ContrastSpot algorithm to extract the contrast features for the list of

potential entity variations L is given in Algorithm 3. First, for each pair of entities

in L, we extract all n-grams of size up to m, that are present in the unstructured

attribute of one of the entities but not the other. We compute the frequency of

31

Algorithm 3 ContrastSpot: Extracting contrast features from potential vari-
ations
Input: List of variations L, Unstructured attribute av, significance score thresh-
old α, max. length m

Output: Contrast features with weights f
Compute n-gram frequencies
for (ri, rj) ∈ L do

Extract n-grams c in ri(av)4rj(av)
Freq[c]← Freq[c] + 1

Compute the set of significant phrases
for c ∈ Freq with length > 1 do

if sig(c) > α then
Sig = Sig ∪ c

Extract the longest significant phrase
for (ri, rj) ∈ L do

G ← Unigrams present in ri(av)4rj(av)
Grow unigrams in G to largest c ∈ Sig
f ← c

return f

all extracted n-grams from the set of pairs in L. Next, for all n-grams other than

unigrams, we compute the significant score, and keep track of all phrases the have

a score greater than the threshold α. This is the list of significant phrases.

3.3.5 Contrastive Entity Linkage

We now describe our overall contrastive entity linkage algorithm (CEL) for

the task of three-way linkage. First, we extract the set of contrast features from

both the catalogs using the VarSpot algorithm. Then, for each entity in the cat-

alog, we extract phrases corresponding to contrast features from the unstructured

text attributes, such as title. These phrases correspond to the set of variational

attribute values. We add these phrases as an additional record attribute. We train

a multiclass classifier using the labeled data to classify a pair of records as either

duplicate, variation or distinct. To identify the set of duplicatesM, and the set

32

of variations V , we first generate the set of potential duplicate and variation pairs

from the two catalogs using blocking techniques such as locality sensitive hashing

(LSH). We classify these blocked pairs using the trained classifier, and return sets

M and V .

3.4 Experimental Validation

In this section, we perform experimental evaluation to answer the following

research questions:

• RQ1: Do the extracted contrast features capture variational attributes?

• RQ2: How does contrastive entity linkage perform on the task of identifying

variations and duplicates?

• RQ3: Does adding contrast features improve the performance of traditional

entity linkage frameworks when identifying duplicates?

3.4.1 Data

We perform experiments on data of varying sizes from three different product

domains: software, music and groceries. The dataset statistics are given in Table

3.3.

Software is a benchmark e-commerce entity linkage dataset that contains soft-

ware products extracted from two websites, Amazon and Google [130]. Each

product is associated with three attributes: title, manufacturer and price.

We use the same set of blocked pairs as used in Konda et al. [128]. This is

a small-sized dataset with a few thousand entities in each of the catalogs.

33

Groceries contains grocery products sampled from Amazon and products con-

tained in the Open Grocery Database1. Each product is associated with

two attributes: title and brand. To generate the set of candidate pairs, we

performed blocking using locality sensitive hashing (LSH). We used both

the attributes for blocking. This is a medium-sized dataset with ∼1 million

entities in the Amazon catalog and ∼100,000 entities in the Opengrocery

catalog.

Music is a dataset containing music tracks extracted from two different music

catalogs, Musicbrainz[232] and Lastfm[160]. Each track is associated with

two attributes: title and artist. To generate the set of candidate pairs, we

performed blocking using LSH. We used both the attributes for blocking.

This is a large-sized dataset with ∼1.5 million entities in the Musizbrains

catalog and ∼1 million entities in the Lastfm catalog.

To train and evaluate the various approaches, we generated a stratified sample

of the blocked pairs [23] using the Jaccard similarity computed on the two text

attributes, and labeled the pairs as duplicates, variations, or distinct. The label

distribution for each dataset is given in Table 3.3. Using the labeled samples,

we performed Monte Carlo cross validation, and generated 10 splits by randomly

splitting into train and test splits. We used 70% of the samples for training and

use the remaining for testing.

3.4.2 Approaches

In our first set of experiments, we compare the performance of CEL with

Magellan [128], a state-of-the-art entity linkage framework. In addition, we fur-

ther investigate the utility of the VarSpot algorithm for identifying duplicates
1http://www.grocery.com/open-grocery-database-project/

34

by integrating the contrast features it discovers into three state-of-the-art repre-

sentative, SILK [113], Magellan and Deepmatcher [168]. We first extract phrases

corresponding contrast features from the title and add it as a separate attribute.

For each of the frameworks, we train a model using the augmented data, and

compare its performance with a model trained on data without contrast features.

Magellan is an another representative, state-of-the-art, end-to-end supervised

entity linkage framework. The framework automatically generates several

similarity and distance measures for each of the attributes based on the at-

tribute type. Using these measures as features, it trains supervised classifiers

such as logistic regression and random forest to perform linkage.

SILK is a representative, state-of-the-art entity linkage framework that takes

as input two catalogs to link and a configuration file, and outputs the set

of linked entities. The configuration file contains the set of attributes to

use, similarity measures to compute on these attributes and weights for

each attributes. The weights are tuned by performing a grid search using a

labeled dataset.

Deepmatcher is a state-of-the-art deep learning entity linkage framework. It

uses word embeddings to generate embeddings of attributes and computes

a similarity representation for each of these attributes. Then a classifier is

trained on the similarity representation to identify duplicates. Deepmatcher

provides four different models of increasing model complexity: SIF, RNN,

Attention and Hybrid. The hybrid model uses a bidirectional RNN with de-

composable attention and a vector concatenation augmented with element-

wise absolute difference to learn a similarity representation. We use the

hybrid model as it has the highest representational power and the best per-

formance.

35

Domain Catalog 1 Catalog 2 Blocked Sampled Sampled Sampled
pairs Duplicates Variations Distinct

Software 1364 3227 11461 516 564 604
Groceries 1125952 110437 655254 598 1215 1412

Music 1456963 943335 1797549 412 271 1919

Table 3.3: Data statistics: Number of entities in each catalog, blocked pairs
and label distribution for the three domains.

3.4.3 Performance metrics

We compute the F1 score and average precision score (APS) for each of the

splits and report the mean and standard deviation. We use the Python scikit-

learn library to compute the metrics. We performed paired t-test and numbers in

bold are statistically significant with p < 0.05.

3.4.4 Experimental Results

Effectiveness of contrast features: We first provide a qualitative analysis

of the extracted contrast features and their effectiveness in capturing the varia-

tional attributes. Recall that the first step, before performing contrastive entity

linkage, is to extract the contrast features. To do this, we first block on one of

the base attributes and compute a similarity score such as Jaccard on the un-

structured attribute. We use manufacturer for software, brand for groceries and

artist for music as base attributes for blocking. We prune blocks greater than 25

for music (large dataset), 50 for groceries (medium dataset), and 100 for software

(small dataset). We did not observe considerable change in the performance when

we varied these thresholds. We then compute Jaccard similarity between the title

attribute of pairs and output all pairs with score greater than 0.6.

Table 3.4 shows some sample pairs discovered by the Link algorithm for the

three domains. We observe that these entity pairs indeed correspond to variations.

36

Software
peachtree by sage premium accounting for nonprofits 2007
peachtree by sage premium accounting 2007 accountants ’ edition
peachtree by sage pro accounting 2007
peachtree by sage complete accounting 2007

Groceries
milk duds candy 1.85 ounce boxes pack of 24
milk duds candy 5 ounce boxes pack of 3
milk duds movie size 5 oz 12 count
milk duds chocolate and caramel candy 5 ounce

Music
groove is in the heart
groove is in the heart club version
groove is in the heart sampladelic remix
groove is in the heart original version

Table 3.4: Identifying entity variations: Examples of the variations of enti-
ties linked by VarSpot algorithm for software, groceries and music domains. In
these examples, edition is different for software, flavor and pack size is different
for groceries, and versions are different for music.

While editions differ for software and pack size and flavor differ for groceries, for

music the entities differ on versions.

The second step of VarSpot identifies contrast features and aggregates them

over all pairs from the previous step. VarSpot identifies them by looking for

phrases present in only one of the entities in a linked pair. We extract phrases up

to length 3 and set α, the significance score threshold, to 3.0. That is, we consider

n-grams to be phrases if their frequency is at least three standard deviations away

from their expected frequency from sub-phrases. We consider the top 100 contrast

features by weight for all experiments.

Table 3.5 shows some of the top contrast features by weight for different do-

mains. We observe that edition and platform are important for software, package

size and flavor are an important for groceries. For music the top contrast features

correspond to different versions of the track.

37

Software Groceries Music
standard mac upgrade pack of 6 remix

small box pack of 2 mix
premium upsell mac pack of 3 radio edit
standard upsell mac 2 pack live

deluxe original club mix
pro red instrumental

upgrade strawberry original version
professional orange extended mix

mac lemon acoustic
home premium part 2

Table 3.5: Extracted contrast features: Extracted contrast features for the
three domains. Most correspond to variational attributes.

Correct Partial Incorrect
Contrast Features 482 297 436
Frequent phrases 396 455 364
Infrequent phrases 0 114 1101

Table 3.6: Interpretability of contrast features: We observe that contrast
features explain about 40% of variations correctly. Frequent phrases only explain
variations partially.

To evaluate RQ1 further, we ran annotation tasks using Amazon Mechanical

Turk. We provide each worker with a pair of entities that are variations of each

other. Along with the entities, we also provide the set of phrases present in the title

of one entity but not the other. The worker annotates sets of phrases as correct

if they fully explain the reason for products being variations of each other. If not

all phrases have been extracted, or only part of the phrase has been extracted,

the worker annotates the set of phrases as partial. If the incorrect phrase or no

phrase is extracted, the worker annotates it as incorrect.

We ran the annotation task for the groceries data set as it has the largest set

of variations. To show that variational attribute values cannot be captured using

just the frequency of phrases, we ran the task with a set of 100 most frequent

phrases and 100 most infrequent phrases. These phrases were extracted using the

38

Logistic Regression Random Forests LR Improv. RF Improv.
NoCF CEL NoCF CEL

Software
Duplicates F1 0.753 0.784 0.785 0.81 3.1 % 2.5 %

APS 0.832 0.864 0.877 0.897 3.2% 2 %

Variations F1 0.425 0.535 0.677 0.695 11 % 1.8 %
APS 0.56 0.633 0.761 0.777 7.3 % 1.6 %

Grocery
Duplicates F1 0.658 0.706 0.717 0.741 4.8 % 2.4 %

APS 0.72 0.767 0.809 0.835 4.7 % 2.6 %

Variations F1 0.736 0.737 0.778 0.792 0.1 % 1.4 %
APS 0.761 0.789 0.855 0.868 2.8 % 1.3 %

Music
Duplicates F1 0.665 0.703 0.781 0.793 3.8 % 1.2 %

APS 0.747 0.782 0.854 0.869 3.5 % 1.5 %

Variations F1 0.663 0.74 0.765 0.787 7.7 % 2.2 %
APS 0.709 0.803 0.838 0.887 9.4 % 4.9 %

Table 3.7: Contrast features improve performance: Models with con-
trast features (CEL) significantly outperform models without contrast features
(Magellan) for both tasks across domains.

same significance score tests, but by using catalog-wide n-gram frequencies. The

results of the experiment are shown in Table 3.6. We observe that just the top

100 contrast features correctly explain about 40% of the variations correctly. This

is 20% more than those explained by frequent phrases. Further, another 20% of

the variations are explained partially by the top 100 contrast features. Frequent

phrases explain a large number of variations partially. This is because phrases

such as of 6 and natural are also frequent. Infrequent phrases perform poorly, as

they correspond to rare product-specific attributes.

Performance of CEL: We evaluate research question RQ2 by training lo-

gistic regression and random forest models in Magellan. For the random forest

classifier, we set the depth of the tree to 15 and number of trees to 1000. The

mean F1 and APS scores, along with the standard deviation, for the CEL and

Magellan models are given in Table 3.7. We observe CEL significantly outper-

forms models without contrast features (noCF) on all three domains for both

duplicate and variation detection. For duplicate detection, the performance boost

is up to 4.8% F1 Score and 4.7% APS (logistic regression). For variation detection,

the performance boost is up to 11% F1 Score and 7.3% APS (logistic regression).

39

SILK Logistic Regression Random Forests Deepmatcher
No CF CF No CF CF No CF CF No CF CF

Software F1 0.702 0.747 0.743 0.785 0.785 0.808 0.721 0.744
APS 0.843 0.88 0.878 0.897 0.749 0.779

Grocery F1 0.614 0.629 0.681 0.722 0.708 0.735 0.647 0.674
APS 0.725 0.771 0.805 0.831 0.664 0.706

Music F1 0.572 0.617 0.657 0.704 0.771 0.782 0.754 0.753
APS 0.748 0.774 0.848 0.866 0.796 0.804

Table 3.8: F1 score and APS for the task of identifying duplicates. We observe
that models with contrast features (CF) outperform models without contrast fea-
tures across domains.

Among the domains, we see significant improvements in the metrics for identifying

duplicates for the groceries domain. This is because a large number of variations,

which were getting linked as duplicates in NoCF, are prevented by the extracted

contrast feature attribute.

Performance on duplicate detection: To evalute RQ3, we train models

using the attributes present in the dataset (NoCF models) and compare it with

models that include contrast features as separate attribute (CF models). We

train models using Deepmatcher, Magellan and SILK. Since SILK returns the set

of linked entities without scores assigned to them, we only report the F1 score for

SILK.

The mean F1 and APS scores, along with the standard deviation, for the

NoCF and CF models are given in Table 3.8. As in the three-class setting,

we observe that CF models significantly outperform NoCF models on all three

domain. For duplicate detection, CF models of SILK and Magellan significantly

outperform NoCF models by up to 4.7% F1 Score (logistic regression). For Deep-

matcher, we observe that CF models outperform NoCF models. However, we

also observed a large variance in the metrics across the splits. The random forest

models outperform Deepmatcher on all the tasks. Similarly, logistic regression

outperforms Deepmatcher for the software and grocery domains. This might be

due to the small amount of training data and large number of parameters present

40

in the Deepmatcher model. For example, for the software domain, Deepmatcher

models have ∼7.1 million parameters for the NoCF models and ∼9.2 million pa-

rameters for the CF models. Mudgal et al. [168] make similar observations and

show that Magellan models outperform Deepmatcher models when the number of

labeled data is less that 10,000.

3.4.5 Analysis of Entity Linkage

To analyze the performance of models using contrast feature we show the

confusion matrix for one of the folds in the Music dataset in Table 3.9. We observe

that adding contrast features helps the random forest model identify duplicates

correctly which were earlier getting classified as variations. As an example the

track “harvest uptown famine downtown” in catalog 1 and the track “harvest

uptown” in catalog 2 was classified as a variation by the model without contrast

features. This is likely because the similarity measures between the two tracks are

close to that of variations. However, this was correctly classified as a duplicate

by the model with contrast features as “famine downtown” in not a variational

attribute and was not extracted as a contrast feature.

Without contrast features

Pred Distinct Pred. Dup. Pred. Var.
Distinct 570 8 4
Dup. 11 83 23
Var. 7 7 68

With contrast features

Pred Distinct Pred. Dup. Pred. Var.
Distinct 570 8 4
Dup. 13 91 13
Var. 7 6 69

Table 3.9: Confusion matrix: Models with contrast features correctly identify
duplicates which are classified as variations by models without contrast features.

41

3.4.6 Hyperparameter Tuning

The VarSpot algorithm and Contrastive entity linkage has four main hyperpa-

rameters - the significance threshold α, the bucket size λ, the similarity threshold

θ and the number of top contrast features used. In our experiments we set α = 3,

θ = 0.6 and considered the top 100 contrast features by weight. Further we set

λ = 25 for the music domain. Fig. 3.3 shows the sensitivities of these parameters

to the entity linkage and variant linkage metrics (F1, APS). We plot the metrics

as we vary the parameters individually. We observe that VarSpot algorithm and

Contrastive entity linkage is robust to changes in these parameters.

Figure 3.3: Sensitivity Analysis: Plot of entity linkage and variant linkage
metrics as we vary the hyperparameters. Our approach is robust to changes in
these hyperparameters.

42

3.5 Related Work

There is a wide body of research, spanning several decades, on the task of

entity linkage [10, 54, 21, 57, 211, 53, 168, 238]. See [68, 129, 52, 132, 88, 43]

for survey papers comparing various approaches. Starting from the seminal pa-

per by Fellugi and Sunter [75], several rule-based approaches [74, 223], learning

approaches [24, 128, 225] and crowdsourcing approaches [93, 245, 228] have been

proposed. Recently, approaches that use deep learning models have been proposed

[168, 63].

Here we review recent work in entity linkage on products, followed by ap-

proaches that identify variations of entities. Finally, we review recent work for

task of attribute value extraction from text.

3.5.1 Entity linkage for products

The task of entity linkage for products has received a fair bit of attention

recently [116, 131, 108, 153]. Supervised approaches such as [116, 131, 206] extract

product attributes from product title and description and use these extracted

attributes to perform entity linkage. Kannan et al. [116] use an inverted index to

extract the set of product attribute from the product title and then use logistic

regression to learn their importance. Köpcke et al. [131] use regular expressions to

extract attributes and use search engines to refine them. They train a SVM using

the extracted attributes to link offers. Ristoski et al. [206] use a convolutional

neural network and a CRF to extract product features and train various supervised

models such as random forests and SVM. Approaches such as Horch et al. [108]

learn a new similarity score by combining several distance scores such as Jaccard

and Sorensen distance. Londhe et al. [153] propose an unsupervised approach to

link products using a community detection algorithm. They make use of a search

43

engine to enrich the text of products. While these approaches identify duplicates,

they do not identify variations.

Approaches such as Li et al. [145] identify records in a catalog that are varia-

tions of each other. They takes as input, a catalog and a partitioning of the record

attributes into common-valued, dominant-valued and multivalued attributes. Us-

ing a small set of labeled data, they learn weights for the attribute values. Using

these weights, they cluster the records in the catalog such that all variations are

present in a cluster. Our approach on the other hand, mines variational attributes

present in the unstructured text in an unsupervised manner, and uses them to

identify both duplicates and variations across two different catalogs. On et al.

[181] links groups of entity variations across catalogs that are the same. Our

task is different, where the goal is to identify both duplicates and those that are

variations of each other.

3.5.2 Attribute value extraction

The task of extracting entity attribute values from unstructured text has re-

ceived significant attention as well [269, 90, 187, 148, 194, 116, 131, 206]. These

approaches can be broadly classified into closed-word approaches, which assume a

predefined set of attribute values [90, 148, 194], and open-world approaches which

do not make such assumptions [269]. Rule-based and linguistic approaches ap-

proaches such as Chiticariu et al. [42], Nadeau and Sekine [172], Mikheev et al.

[163] leverage the syntactic structure of the text to extract to attributes. CRF-

based systems such as Putthividhya and Hu [194] make use of seed dictionary

to bootstrap the models. Recently, neural network based models that combine

LSTMs and CRF have been proposed [135, 269]. However, all these techniques

extract attribute values for a pre-defined fixed set of attributes and are supervised

44

in nature.

3.6 Conclusion and Future Work

In this chapter, we proposed our approach, contrastive entity linkage, to iden-

tify both entity pairs that are duplicates and those that are variations of each

other. To address the challenge of identifying variational attributes present in the

unstructured text, we proposed a scalable, unsupervised algorithm, VarSpot. In

the experiments, using Mechanical Turk, we first showed that the contrast fea-

tures are interpretable and then showed that adding contrast features as a separate

attribute outperforms three state-of-the-art entity linkage systems.

This work suggests other interesting future directions. The distinction be-

tween variations and exchangeable products can often be subjective. For some

consumers, the distinction between a low-sodium versus regular soup is irrelevant;

for others it is highly important. An interesting direction for further work is de-

veloping and testing algorithms for personalized entity linkage. Another direction

of future work is in identifying the type of product attribute captured by the con-

trast feature. This can enable a more fine-grained discovery of product variations

such as variations that differ on flavor, variations that differ on package size and

so on.

45

Chapter 4

Fine-grained Data Alignment in

Knowledge Graphs

4.1 Introduction

44mm Wrist Watch with
Stainless Steel Band - Gold

44mm Wrist Watch with
Leather Band - Brown

Figure 4.1: Product variations: Two wristwatches with different finishes and
colors

How are the two products in Fig. 4.1 different from each other? While they

share some of the canonical attributes, having the same manufacturer, brand and

model; they have different finishes – stainless steel vs. leather and colors –

46

Figure 4.2: Performance for the baseline and DiffXtract: The baseline mis-
classifies finish as color for 70% of the pairs. Similarly, it misclassifies length as
size for 40% of the pairs. The proposed DiffXtract approach identifies them
accurately.

gold vs. brown. Such groups of nearly identical but distinct products are called

product variations [71].

Identifying attributes that distinguish product variations is crucial for the

success of a variety of online platforms. For example, e-commerce sites provide

a way to select a product variation in the user interface (UI). This requires the

knowledge of discriminative attributes between the variations. For conversational

search agents, discovering and eliciting user’s choice among the several variations

is a necessary step for identifying the product the user wishes to purchase. We can

also learn the preferences of a user by mining the discriminative attribute values

between the products bought by the user and other available variations. This in

turn significantly helps improve the user’s recommendations.

Extracting discriminative attributes from product variations involves several

challenges. First, each product is associated with a set of structured fields such

as brand and price and a set of unstructured fields such as title and description.

There are usually few structured attributes and these are often incomplete and

noisy for a large set of products. Retailers highlight important attributes of the

product by including them in unstructured fields such as title. For example, the

47

information about the finish for the wrist watch bands in Fig. 4.1 (Stainless steel

and leather) might not be present as a structured attribute but is mentioned in

the title. While task of extracting product attribute values from unstructured

text has received significant attention [257, 269, 90, 187, 148, 194, 116, 131, 206],

using these approaches for discriminative attribute extraction task remains largely

unexplored. Fig. 4.2 shows the performance of the baseline that extracts the

discriminative values and then identifies the attribute for two attributes (more

details in Section 4.4). We see that this approach incorrectly identifies color as

the attribute when the true attribute is finish for about 70% of the cases. Similarly,

the baseline identifies size as the attribute instead of length for about 40% of the

pairs.

Second, discovering discriminative attributes involves not only extracting the

attribute values but also identifying the attribute that differs between products.

Different sets of products involving the same product can have different discrimina-

tive attributes. In the case of “44mm Wrist Watch with Stainless Steel Band

- Gold” and ‘40mm Wrist Watch with Stainless Steel Band - Gold” size is

the discriminative attribute, however between the products “44mm Wrist Watch

with Stainless Steel Band - Gold” and “44mm Wrist Watch with Stainless

Steel Band - Brown” the discriminative attribute is color. While there is some

work on extracting semantic differences between a pair of words [226, 227, 136]

and extracting discriminative tokens from product reviews [121], the task of dis-

covering discriminative attributes from product titles has not been studied.

Finally, there a large number of potential discriminative attributes. Variations

in each product category vary along different sets of attributes. Often there is little

or no training data for each of the possible discriminative attributes.

In this chapter, we propose a novel deep learning based approach, DiffXtract,

48

to overcome these challenges. DiffXtract jointly identifies the discriminative at-

tribute and extracts the attribute values for a given pair of products. The model

is trained end-to-end using a multitask objective that combines attribute identifi-

cation and value extraction tasks. The framework explicitly models the semantic

representation of the discriminative attribute and uses attention to capture the

relation between the attribute and the product title. This enables the model to

scale to a large number of product attributes with little training data. From Fig.

4.2, unlike the baseline, we observe that the DiffXtract approach identifies finish

and length attributes with high accuracy.

The main contributions include:

• Taxonomy of approaches: We propose a taxonomy of approaches by

extending the state-of-the-art attribute identification and attribute value

extraction approaches for the discriminative attribute extraction task.

• DiffXtract: We propose a novel end-to-end multitask approach that jointly

performs both the discriminative attribute identification and value extrac-

tion tasks. We establish a theoretical upper bound for a class of approaches

called extraction-oriented approaches for the attribute identification task.

• Effectiveness: We introduce a novel dataset and empirically show that the

proposedDiffXtract approach outperforms attribute-oriented and extraction-

oriented approaches by up to 8% F1 score when identifying attributes, and

up to 10% F1 score when extracting attribute values.

To the best of out knowledge, we are the first to study the task of discriminative

attribute extraction for product variations.

49

4.2 Preliminaries

As discussed above, variational attributes play an important role (e.g., in prod-

uct browsing UI), but their values are often not provided explicitly, and are in-

cluded in unstructured text fields. In this section, we first introduce necessary

terms to describe the variational attributes and the formal problem definition.

We then provide a discussion on existing approaches for this task.

4.2.1 Problem Definition

Product attributes can be broadly divided into two sets of attributes called base

attributes and variational attributes [71]. Canonical attributes such as manufac-

turer, brand and product line called base attributes. Other product attributes

that cater to the users’ needs and preferences are called variational attributes.

Color, size and quantity are some examples of variational attributes. Product

variations are products that share the same value for all the base attributes but

have different values for some of the variational attributes. For example, the two

products in Fig. 4.1 are variations of each other. The variational attributes finish

and color have the values Stainless steel and Gold for the first product and

Leather and Brown for the second product. However, both the products share the

same value, 44mm, for the variational attribute size. We refer to the variational

attribute that has different values among product variations as a discriminative

attribute. In the example above, finish and color are the discriminative attributes.

Having defined the notion of a discriminative attribute, we now formally define

the task of discriminative attribute extraction.

Definition 2. Discriminative attribute extraction: Given a pair of product

variations with titles (T1, T2) the task of discriminative attribute extraction is to

output a triple (ad, v1, v2), where ad is the discriminative attribute for the product

50

pair and (v1, v2) are the extracted product attribute values for ad present in the

titles (T1, T2).

For the pair of product variations above, the expected triple is either {color,

Gold, Brown} or {finish, Stainless Steel, Leather}. We assume that the

set of all variations attributes A = {a1, a2, · · · , am} is given. However, we make

an open world assumption for the attribute values. We do not assume any fixed,

pre-defined vocabulary of attribute values and products can contain new emerging

values that have not been seen before.

We denote the tokens in the product titles T1, T2 by the sets {t11, t12, · · · , t1m},

{t21, t22, · · · , t2n} respectively. The extracted values v1, v2 are subsets of the tokens

present in T1, T2. The set of tokens in the name of the attribute ai (e.g., color,

manufacturer part number) is represented by {ai1, ai2, · · · , aip}. If one of the prod-

uct titles contains an attribute value that is missing in the other title, we do not

consider this as a discriminative attribute.

4.2.2 Discriminative Attribute Extraction Approaches

Discriminative attribute extraction task involves two sub-tasks, identifying the

discriminative attribute and extracting the attribute values. Based on the sub-

task that is solved first, the approaches can be broadly classified into extraction-

oriented approaches and attribute-oriented approaches.

Extraction-oriented approaches: These approaches extract the attribute

values first and they identify the attribute that these values belong to. Since

the values of the discriminative attribute needs to be different, these values must

contain tokens that are present only in one of the titles. In the example of “44mm

Wrist Watch with Stainless Steel Band - Gold” and “40mm Wrist Watch with

Stainless Steel Band - Gold” the tokens 44mm and 40mm are present in only

51

one of the titles. Since the attribute values can contain multiple tokens, and some

of these tokens can be common to both the titles (e.g., pack of 2 and pack of

3), these approaches start with the unique tokens and grow the values by including

adjacent tokens. Once these tokens are identified, extraction oriented approaches

can solve the sub-task of identifying the attribute using state-of-the-art unstruc-

tured text to product attribute matching approaches. For example, Kannan et al.

[116] use a inverted index that maps values to attribute names. We could also

train a multiclass classifier to identify the attribute from the tokens. The main

advantage of these approaches is their ability to compare and contrast the product

pairs when extracting the values.

Formally, these models can be represented by:

(âd, v̂1, v̂2) = argmaxad
P (ad|argmaxv1,v2P (v1, v2|T1, T2)) (4.1)

Attribute-oriented approaches: These approaches identify the attribute

first and then extract the values for the identified attribute. These approaches

leverage and extend the state-of-the-art product attribute extraction techniques

[257, 269, 90, 187, 148, 194, 116, 131, 206]. Since the set of variational attributes is

known, these approaches extract the values for each of these attributes, and then

identify the attribute that has different values. In the example of “44mm Wrist

Watch with Stainless Steel Band- Gold”, we can extract the values for all

variational attribute in A which includes size, finish, and color. Similarly, we can

extract the values for these attributes for the product “40mm Wrist Watch with

Stainless Steel Band- Gold” Since the values for the attribute size differ we

return the triplet (size, 44mm, 40mm). Formally, these models can be represented

52

by:

(âd, v̂1, v̂2) = argmaxv1,v2P (v1, v2|T1, T2, argmaxad
P (ad|T1, T2)) (4.2)

However, both these approaches have several drawbacks. While the attribute-

oriented approaches make use of state-of-the-art product attribute extraction tech-

niques, they extract the values for each product independently. They cannot

contrast between the product pairs while extracting the values. The extraction-

oriented approach, while capable of contrasting between the product pairs, cannot

make use of the state-of-the-art product attribute extraction techniques as they

require the attribute to be given as an input. Approaches such as Kannan et al.

[116], that use an inverted index, find the attribute identification task challenging

when provided with previously unseen attribute values.

More importantly, these approaches struggle to identify the correct attribute

where the attributes share a large set of values. Attributes such as color and finish,

for example, can take the same set of values such as red, yellow and blue. These

problems are further exacerbated in attributes that take numerical values such

as length, width and height. We can quantify the challenge of distinguishing such

attributes using Bayes error rate. Bayes error rate provides an upper bound on the

accuracy that can be achieved by any pattern classifier when class distributions

overlap.

Let the attribute ai ∈ A take values from the sets V i = {vi1, vi2, · · · , vim}.

We denote the probability of attribute ai taking a value vk using the conditional

distribution P (vk|ai). In the case of categorical attributes such as color this takes

the form of a multinomial distributions Πi. Let the prior probability of ai being

the true discriminative attribute be denoted by P (ai).

Theorem 1. The attribute identification task accuracy for the extraction-oriented

53

approaches has an upper bound given by,

1−
∑

vl,vm∈∪Vi

(
1− argmaxiΠi(vl)Πi(vm)P (ai)

)
Πi(vl)Πi(vm)

where P (ai) is the probability of ai being the discriminative attribute and Πi(vm)

is the probability of observing vm as the value of attribute ai.

Proof. Extraction-oriented approaches first extract the values and then identify

the attributes, i.e:

(âd, v̂1, v̂2) = argmaxad
P (ad|argmaxv1,v2P (v1, v2|T1, T2))

The attribute-identification task for these approaches assuming correct extraction

is given by argmaxad
P (ad|v1, v2).

From Bayes rule, the posterior probability of observing the triplet (ai, vl, vm)

denoted by P (ai|vl, vm) is given by:

P (ai|vl, vm) = P (vl, vm|ai)∑
a P (vl, vm|aa)P (aa)

Since the values vl, vmare independent conditioned on ai

= P (vl|ai)P (vm|ai)P (ai)∑
a P (vl|aa)P (vm|aa)P (aa)

= Πi(vl)Πi(vm)P (ai)∑
a Πa(vl)Πa(vm)P (aa)

The optimal Bayes classifier, assign the attribute with the highest posterior

probability as the discriminative attribute i.e.:

âd = argmaxai

Πi(vl)Πi(vm)P (ai)∑
a Πa(vl)Πa(vm)P (aa)

= argmaxiΠi(vl)Πi(vm)P (ai)

54

The classifier misclassifies when the true discriminative attribute does not have

the highest posterior probability. This is called the Bayes error rate and is given

by:

Ebayes =
∑

vl,vm∈∪Vi

[1− argmaxiΠi(vl)Πi(vm)P (ai)]Πi(vl)Πi(vm)

Thus the accuracy of the classifier is upper bounded by 1− Ebayes, i.e:

1−
∑

vl,vm∈∪Vi

[1− argmaxiΠi(vl)Πi(vm)P (ai)]Πi(vl)Πi(vm) (4.3)

The accuracy upper bound decreases as the overlapping between values of

different attributes increases. The upper bound is also related to the prior prob-

abilities of the attributes. More similar the prior probabilities of attributes with

overlapping values, the lower the upper bound on accuracy.

Multitask approach: To overcome these drawbacks, we propose a multitask

approach that jointly performs the attribute identification task and the value

extraction task. Formally, multitask approaches can be represented by:

(âd, v̂1, v̂2) = argmaxad,v1,v2P (v1, v2, ad|T1, T2) (4.4)

Multitask approaches extract both the values and identify the attribute together.

These approaches look at the entire title and model the probability of attribute

ai being the discriminative attribute. The tokens in the title can potentially help

these approaches circumvent the problem faced by extraction-based approaches.

For example, the position of the values vl, vm in the tile T1, T2 can provide the

context for identifying the attribute. Typically, the length tokens precede the

width and height tokens. Tokens in the title that provide information about the

55

Attrib.
Identification

Value
Extraction

Attribute-oriented
(OpenTag[269], CAM[257], · · ·) X

Extraction-oriented
(Dict [116], · · ·) X

DiffXtract
(Proposed approach) X X

Table 4.1: discriminative attribute extraction approaches: The proposed Dif-
fXtract approach jointly identifies the attribute and extracts their values

product type can help distinguish between color and finish.

Table 4.1 gives an overview of the various approaches. Attribute-oriented

approaches extract the values for a given attribute and Extraction-oriented ap-

proach identify the attribute given the extracted values. Our proposed multitask

approach, DiffXtract, jointly performs both tasks and is described in the next

section.

4.3 Multitask approach using DiffXtract

Our approach DiffXtract uses multitask learning where we train a single

end-to-end model to perform multiple tasks. Our model performs all the tasks

simultaneously - identifying the discriminative attribute and extracting the values

for the identified attribute from each of the product titles. We cast the problem

of identifying the discriminative attribute as a classification task, and the task

of extracting the attribute values from the two titles as sequence labelling tasks.

We identify the discriminative attribute and use this as an input for the value

extraction tasks.

Our approach follows state-of-the-art neural product attribute extraction tech-

niques and casts the attribute extraction problem as a sequence labeling task.

Each token in the title is associated with a label from the set of {B, I,O} tags,

56

Figure 4.3: DiffXtract: Discriminative Attribute Extraction Model

where B and I denote the beginning and inside tokens of the extracted attribute

value respectively, and O denotes the outside of the value tag. Neural attribute

value extraction approaches use a bidirectional LSTM (BiLSTM) and conditional

random field (CRF) to perform tagging. Unlike dictionary-based approaches that

learn from a limited and pre-defined vocabulary of attribute values, sequence la-

belling approaches can generalize to previously unseen attribute values. Further,

we extend the token representation to incorporate information about whether the

token is unique to the product or if it is present in both the product titles. This

allows the model to compare and contrast the two products when extracting the

attribute values.

Fig. 4.3 shows the architecture of our proposed model. We first review the

building blocks of our approach for the classification task followed by the blocks for

57

the extraction task. We then outline our multitask strategy for the discriminative

attribute extraction task.

4.3.1 Discriminative attribute identification

Word Representation Layer: Neural word embeddings map tokens in a

sentence to high dimensional vectors that capture both syntactic and semantic in-

formation. We use pretrained Bidirectional Encoder Representations from Trans-

formers (BERT) [51] to maps tokens to vectors. BERT generates contextual word

embeddings by taking a sentence as input and maps each token in the sentence to

a vector. Since BERT generates contextual embeddings, the embedding for the

token red in the brand red bull is different from the embedding in the color cherry

red. We add the [CLS] and [SEP] tokens to the begining and the end of the title

and the generate BERT embeddings for all tokens in both the products.

Bidirectional LSTM Layer: We capture the long term dependencies be-

tween the tokens in the product titles using as Bidirectional LSTM (BiLSTM).

Unlike LSTMs, which capture dependencies between a token and its preceding

tokens, BiLSTMs capture dependencies in both the directions via backward and

forward states. The forward and the backward hidden states are concatenated to

form the final output. We feed the BERT embeddings of the tokens in the title for

each of the products. We use the same BiLSTM for both the titles. The contex-

tual representation of the titles H1,H2 is represented as {h1
CLS, h

1
1, h

1
2, · · · , h1

m}

and {h2
CLS, h

2
1, h

2
2, · · · , h2

n} and is given by:

hj
i = [
−→
hji ;
←−
hji] = BiLSTM(

−−→
hji+1,

←−−
hji−1,Wb) (4.5)

Attribute Classification Layer: We use a softmax layer to predict the

discriminative attribute between the titles. We concatenate the hidden represen-

58

tation of [CLS] tokens from both the product titles and pass it to the softmax

layer. The output is given by

P (ad = k) = softmax([h1
CLS, h

2
CLS].Wh) (4.6)

where Wh is a weight matrix, h1
CLS and h2

CLS are the hidden representations from

the BiLSTM layer of [CLS] tokens, and k ∈ A.

Using the training data, we train the parameters of our model. We use the log

likelihood or the cross entropy as the loss function as it can handle unbalanced

classes in the training set. We denote the log likelihood of the classifier by lc.

4.3.2 Attribute Value Extraction task

Having identified the discriminative attribute, we next extract the values for

this attribute from each of the titles. Similar to the discriminative attribute

identification task, we first encode the tokens of the title into high dimensional

vectors using BERT and pass the embeddings to a BiLSTM to generate the vector

representation for the tokens. Unlike the classification task, we need to generate

tags for each token in the title. Hence, we use all hidden states of BiLSTM from

both the titles, i.e., H1,H2.

Attribute representation: Similar to the tokens in the title, we generate

contextual representations for all the attributes in A. We first map the tokens

present in the attribute names to high dimensional vectors using BERT and pass

them to another BiLSTM and use the hidden representation of the last token as

the representation of the attribute. We represent the contextual vectors for each

of the attribute by ha where a ∈ A.

From the output of the attribute identification task, we select the attribute

with the highest probability as the discriminative attribute and use its represen-

59

tation for the value extraction task. The discriminative attribute is represented

as had and is given by:

had = hâ where â = argmaxaP (ad = a) (4.7)

Attention Layer: While generating the final set of tags, the CRF consid-

ers all tokens to be equally important. However, this is not true as some tokens

are more important when extracting the attribute values. In the Neural Machine

Translation literature, attention mechanism was first used with great success by

Bahdanau et al. [15]. Attention mechanism enables the model to attend to differ-

ent parts of the input while generating output tags.

While generating the output tags for the tokens in the title, the attribute-

based attention mechanism enables us to attend to different tokens in the title

while extracting values for different attributes. This allows us to extract values

for all the attributes in A without training a separate model for each of the

attributes.

We compute the similarity between the attribute and the product title token

representations to obtain attention weights A = {α1, α2 · · · , αm}. We use cosine

similarity between the attribute representation and the token representation.

αi = cosine(had , hti) (4.8)

The attribute-weighted title representation is given by Ci = A � Hi, where �

represents element-wise multiplication. Ci represents the weighted sum of words

in the title T i with respect to the attribute ad.

Diffbit: Tokens that are present in one title but not the other are likely to

be part of the discriminative attribute value. To provide this signal to the final

60

layer, we compute a diffbit for each token in the title. This bit is 1 is the token

is not present in the other title and set to 0 otherwise. We denote this by dt. We

append the diffbits to the token representations.

Output layer: The final output layer generates the BIO tags that are used

to extract the attribute values. We use conditional random fields (CRF) [138]

for this task as they capture dependencies in the output labels. For example, if

the tag for a token is O, we know that the probability tag I for the next token

is 0. We concatenate the title representations for the BiLSTM Ht, the attribute

comprehension title Ct and the diffbit dt to obtain the feature matrix Mt.

Mt = [Ht,Ct, dt] (4.9)

This feature matrix is used by the CRF layer to generate the list of tags for each

token in the title. The joint probability distribution of tags y is given by:

P (yi|T ;ψ) ∝
m∏
i=1

exp(
K∑
k=1

ψkfk(yi−1, yi,Mt)) (4.10)

where ψk corresponds to the feature weight, fk is the feature function, and K is

the number of features. The final output is the best label sequence y∗ with the

highest conditional probability, i.e.:

y∗ = argmaxyP (y|T ;ψ) (4.11)

We learn the parameters of the model using the maximum conditional log likeli-

hood estimate. The maximum conditional likelihood is given by:

lv(ψ) =
N∑
i=1

log P (yi|Ti;ψ) (4.12)

61

where N denotes the number of training samples. We denote the log likelihood

for the first product as lv1 and for the second product as lv2 .

4.3.3 Multitask Learning

Having described the building blocks of classification and the extraction model,

we now describe the full model that is trained end-to-end. Fig. 4.3 shows the

architecture of our proposed model. We jointly train the model for discriminative

attribute identification and attribute value extraction. We do this by combining

the likelihood functions lc, l1v and l2v. The multitask likelihood objective is given

by:

l = lc + λ(l1v + l2v) (4.13)

where λ ∈ R is a hyperparameter that trades-off between attribute identification

task and attribute value extraction task.

4.4 Experimental Validation

In this section, we perform experimental evaluation to answer the following

research questions

• RQ1: How does the proposed DiffXtract method compare to other tech-

niques for the task of discriminative attribute extraction?

• RQ2: What attributes are harder to identify and extract?

• RQ3: How does the proposed DiffXtract method perform on the sub-task

of attribute extraction?

• RQ4: How sensitive is the hyperparameter λ that trades-off between the

two sub-tasks?

62

4.4.1 Data

We performed our experimental evaluation using the Multimodal Attribute

Extraction dataset [152]. The dataset contains over 2.2 million products collected

from several e-commerce sites. The dataset includes products from various cate-

gories such as electronics, jewelry, clothing and vehicles. Along with the product

title, the dataset provides an open-schema table of attribute-value pairs. There

are about 7.6 million attribute-value pairs that span across 2100 attributes.

Within an e-commerce platform, the information about which products are

variations is often provided by sellers. In our evaluation, we identified product

variations with a previously used approach [71]. We do this by first splitting the

products into train, validation and test splits in the ratio 0.8 : 0.05 : 0.15. For each

of the splits, we blocked the products using the tokens in the titles, and extracted

pairs where the title Jaccard similarity is ≥ 0.7 and have the same value for brand.

From these products, we identified product attributes that have a frequency

greater than 5000. The list of identified attributes is given in Table 4.2. For these

attributes, we identified pairs where each product in the pair contains the same

attribute with different values among the attribute-value pairs associated with

the products. For example, the products “clear kaleidoscope static cling

window film 35’ wide x 75 ft” and “clear kaleidoscope static cling

window film 35’ wide x 82 ft” were associated with the attribute length with

values 75 ft and 82 ft. Their common attribute with different values is the

ground truth for the discriminating attributes. Further, we removed pairs where

the values of the discriminating attribute values were not present in the title.

There were 42447 pairs in the train split, 6215 pairs in the validation split and

9910 pairs in the test split. The attribute distribution across splits is given in

Table 4.2.

63

Attribute Train Validation Test
Color 15357 3225 5316

Manufacturer part number 9203 1009 2071
Model 6062 824 970
Finish 5766 542 630
Size 1725 201 260

Length 1047 88 123
Width 975 92 128
Depth 882 50 72
Style 518 33 50

Material 254 23 42
Type 232 80 124

Dimensions 116 3 22
Height 107 6 17

Product type 91 12 21
UPC 61 3 6

Condition 21 16 56
Weight 15 3 1
Features 9 2 0
ASIN 4 0 0

Transmission 2 1 1

Table 4.2: Attribute distribution: The table show the distribution of discrimina-
tive attribute across train, validation and test splits. Here, ASIN refers to Amazon
Standard Identification Number and UPC refers to Universal Product Code.

4.4.2 Approaches

We analyse the performance of extraction-oriented and attribute-oriented base-

lines, and compare them with the proposed DiffXtract model.

Dict: For the extraction-oriented approach, we evaluated an inverted index

approach (Dict), similar to Kannan et al. [116], where we generate a dictionary

containing the values that an attribute can take. We use the train and validation

splits to generate this dictionary. At test time, for each of the pairs, we first

identify discriminative tokens present in one of the products but not the other.

For each of the products, we then identify attributes whose values are present

in the title and also contain a discriminative token. We then identify common

64

attributes that were extracted from both the products and sort them based on

the sum of frequency of the attribute values. We return the top attribute and its

values as the discriminative attribute.

Opentag: For the attribute-oriented approach, we compare our approach

with Opentag [269], a recently introduced neural sequence tagging model. This

approach extends the BiLSTM-CRF architecture by adding a self-attention mech-

anism to highlight important information before CRF layer. To ensure fair com-

parison with the other approaches, we used BERT word embeddings instead of the

GloVe embeddings[186] proposed in the model. We use the best performing joint

multi-attribute extraction model that extracts values for all possible attributes.

We extract attribute-value pairs for both the titles and select the attribute with

different values as the discriminative attribute value triplet. We use the training

set to train the model and use the validation set to perform early stopping. We

evaluate the validation set after every epoch and stop the training if the F1 score

for the attribute identification task or the value extraction task decreases for three

consecutive epochs.

Contextual attribute extraction model : We also extend the state-of-

the-art contextual attribute extraction model (CAM) [257]. CAM is a product

attribute extraction approach that takes as input a product title and an attribute,

and extracts the attribute value from the product title. We extend this model by

first extracting the value of all possible discriminative attributes from the title.

We then identify attributes where the extracted values are different and rank the

attributes based on the likelihood scores. We return the top ranked attribute

along with the values as the discriminative attribute value triplet. Since this

approach extracts values for each product independently, we trained the model

by passing each product title in the pair and the attribute as a datapoint. We

65

use the training set to train the model and use the validation set to perform early

stopping. We evaluate the validation set after every epoch and stop the training

if the F1 score for the attribute identification task or the value extraction task

decreases for three consecutive epochs.

DiffXtract: This is the proposed multitask approach that jointly identifies

the discriminative attribute and extracts values for that attribute. We select the

attribute with the highest probability as the discriminative attribute along with

the extracted values. We set parameter λ, that trades-off between the attribute

identification task and attribute value extraction task to 5. We use the training set

to train the model and use the validation set to perform early stopping. Similar

to the above approaches we perform early stopping using the validation split.

4.4.3 Performance Metrics

We compute the precision, recall and F1 scores for the attribute identifica-

tion task and the value extraction tasks. For the extraction task, we use the

Exact Match criteria were the model gets credit only when the full sequence of

extracted values are correct. As the attribute distribution is skewed, we compute

the weighted macro-average where metrics are computed for each attribute and

are weighted by the attribute’s support.

4.4.4 RQ1: Discriminative Attribute Extraction Perfor-

mance

The precision, recall and F1 scores for the attribute identification and value

extraction tasks are shown in Table 4.3.

Attribute identification task: We observe that DiffXtract outperforms

all other approaches by more than 8% on the F1 score. CAM performs poorly

66

Attribute identification Value extraction
Prec Recall F1 Prec Recall F1

Dict 0.855 0.632 0.646 0.721 0.558 0.629
Opentag 0.869 0.842 0.835 0.768 0.676 0.719
CAM 0.346 0.350 0.323 0.820 0.526 0.641

DiffXtract (No dt) 0.853 0.875 0.858 0.873 0.712 0.784
DiffXtract 0.908 0.912 0.908 0.837 0.751 0.792

Table 4.3: Performance metrics: The table shows the precision, recall and
F1 scores for the attribute identification and value extraction tasks. We observe
that the DiffXtract approach outperforms all other approaches.

compared to all other approaches on this task. This is because the model is

not trained to explicitly perform this task, and likelihood scores are not always

informative with respect to attribute identification. Further, Opentag andCAM

models identify attributes from each product independently and is hence unable

to contrast between the pairs. Opentag has a separate tag for each attribute

and hence is able to identify the attribute better than CAM. Dict contrasts

between product pairs by identifying attribute values present in one pair but not

the other. As a result, Dict performs better on the attribute identification task

compared to CAM. However, Dict does not take into account the other tokens

in a title when identifying the attribute. As a result, it performs poorly in the

attribute identification task when compared to DiffXtract. Further, we observe

that adding the diffbit (dt) results in a performance improvement of 5% on the

F1 Score.

The upper bound on the precision for the Bayes classifier mentioned in Theo-

rem 1 on this dataset is 0.93. We note that the precision for Dict (0.64) is lower

than the best possible value. We also observe that the precision for DiffXtract

(0.908) is much close to this, although this approach makes use of the context in

the title and can have precision higher than the Bayes classifier.

Value extraction task: We observe that DiffXtract outperforms all other

67

Figure 4.4: Confusion matrix for Dict

approaches by more than 10% on the F1 score. Dict performs poorly compared

to all other approaches on this task. The Dict approach makes a closed-world

assumption and cannot discover new attributes that are not present in the train-

ing data. As a result, it suffers from low recall which hurts its performance.

Opentag does not make a closed world assumption and hence has a much higher

recall. While CAM also does not make the closed-world assumption, the incor-

rect attribute identification, which is used to attend during value extraction, hurts

the performance of value extraction. Like in the attribute identification task, we

observe that adding the diffbit improves performance.

68

Figure 4.5: Confusion matrix for DiffXtract

4.4.5 RQ2: Analysis of Attribute Identification Task

To answer RQ2, we analyse metrics for the top 10 attributes in A by com-

puting the confusion matrix. Fig. 4.4 shows the confusion matrix for the Dict

approach. Similarly Fig. 4.5 shows confusion matrix for the DiffXtract ap-

proach. The diagonal elements show the fraction of test pairs for each attribute

that were correctly classified, and the off-diagonal elements show the incorrectly

classified pairs. We see that both approaches have high diagonal elements for some

attributes suggesting that they perform the attribute identification task reason-

ably well for these attributes. However, for attributes that take similar values, we

observe Dict is unable to distinguish between them. For example, the attribute

69

Figure 4.6: t-SNE plot: Plot shows the hidden states of [CLS] tokens from
both the products. Each attribute forms a distinct cluster.

finish is confused for color in about 70% of the pairs. Similarly, the attribute for

length, depth and width is confused for size. This is expected as all the above

attributes are numerical in nature. DiffXtract model captures the token posi-

tions and context information from the other tokens in the titles. As a result,

DiffXtract model correctly identify the attributes even when they have similar

values.

To confirm this hypothesis, we plot the vector used by DiffXtract to identify

the attribute. This contains the hidden states of [CLS] tokens from both the

products. We project this to a two-dimensional space using t-SNE [240]. The

plot for the top four attributes is shown in Fig. 4.6. We observe that variations

that differ by color and those that vary by finish form two distinct clusters. The

model makes use of other tokens present in the title to distinguish them. Similarly,

70

Precision Recall F1
DiffXtract (No dt) 0.857 0.813 0.843

DiffXtract 0.889 0.839 0.863

Table 4.4: Attribute extraction: Metrics for attribute extraction. We ob-
serve that providing the ground-truth improves the attribute extraction task F1
performance by 8%.

we observe variations that differ by part number and model also form different

clusters.

4.4.6 RQ3: Product Attribute Extraction Task

We perform ablation experiments and evaluate the sub-task of product at-

tribute extraction. We provided the ground-truth attribute and evaluate the value

extraction performance. The extraction metrics for the the proposed DiffXtract

model are given in Table 4.4. Comparing with the metrics in Table 4.3, we ob-

serve the F1 metric for the DiffXtract models improves by 8%. We observe this

for both the full model and the model without the diffbit (dt). This shows that

identifying the right attribute has a significant impact on the value extraction

task. The DiffXtract model has higher F1 score which suggests the diffbit helps

in value extraction.

4.4.7 RQ4: Sensitivity to λ

To answer RQ4, we train the DiffXtract model with different values for λ

and plot the precision, recall and F1 metrics for the two sub-tasks. The different

metrics for varying values of λ are shown in Fig. 4.7. The model is robust to

different values of λ. Varying the values led to slightly different epochs before the

model converged.

71

Figure 4.7: Sensitivity to λ: The model is robust to different values of λ.

4.5 Related Work

In this section we first review the related work in product attribute extraction

followed by discriminative attribute extraction.

4.5.1 Product attribute extraction

The task of extracting entity attribute values from unstructured text has re-

ceived significant attention [257, 269, 90, 187, 148, 194, 116, 131, 206]. These

approaches can be broadly classified into closed-word approaches, which assume

a predefined set of attribute values [90, 148, 194], and open-world approaches

which do not make such assumptions [269, 117, 257]. Rule-based and linguistic

approaches such as Chiticariu et al. [42], Nadeau and Sekine [172], Mikheev et al.

[163] leverage the syntactic structure of the text to extract the attributes. CRF-

based systems such as Putthividhya and Hu [194] make use of a seed dictionary

72

to bootstrap the models. Recently, neural network based models that combine

LSTMs and CRF have been proposed [135, 269, 117, 257]. Wang et al. [247]

propose a multitask question answering model that casts the attribute extraction

task as an answer span identification task. These approaches extract the value

for a given attribute from a product title. Our task involves contrasting between

two product variations and extracting both the discriminative attribute and its

values.

4.5.2 Discriminative attribute extraction

McRae et al. [161] was one of the early works that studied the task of iden-

tifying important features of living and non-living entities. They introduced the

notion of semantic feature production norms or McRae norms to test theories of

semantic representation and computation. They collected a list of features that

people think are important for set of 541 living and non-living concepts. Som-

merauer and Fokkens [226] proposed an approach for investigating the nature of

semantic information captured by word embeddings. Stepanjans and Freitas [227]

proposed a model to explicitly detect and explain discriminative attributes from

word embeddings. Krebs et al. [136] first proposed the task of semantic difference

detection where the goal is to predict whether a given word could discriminate

between two words. They model the semantic difference as a ternary relation

between two concepts such as apple and banana and a discriminative attribute

such as red that characterizes the first concept but not the other. Kim and Kang

[121] proposed a Latent Dirichlet Allocation based approach to extract discrim-

inative attributes from product reviews. Building on this literature, we propose

the task of discriminative attribute extraction for product variations where when

given a pair of product titles, the goal is to identify the discriminative attribute

73

and extract the values from the titles.

4.6 Conclusion and Future Work

In this chapter, we proposed the novel task of discriminative attribute ex-

traction that is crucial for product search engines and voice-based shopping assis-

tants. We showed that approaches for this task can be classified into three groups,

extraction-oriented approaches, attribute-oriented approaches and multitask ap-

proaches. We then proposed a novel multitask approach that jointly identifies and

extracts the attributes. For extraction-oriented approaches, we proved a theoret-

ical upper bound for the attribute identification task based on Bayes classifier.

Empirical results on the real-world product dataset show that the proposed mul-

titask approach outperforms all other approaches.

This work suggests other interesting future directions. The proposed approach

can be extended to learn the preferences of a user by identifying the discrimina-

tive attribute values between the products bought by the user and other available

variations. Generating such user profiles and using them to improve the recom-

mendations is an interesting direction. Another direction of future work is to use

the proposed approach to build a conversational search agent that can elicit user’s

preference and identify the right variation the user intends to buy.

74

Chapter 5

Aggregate Graph Queries in

Knowledge Graphs

5.1 Introduction

Large realworld graphs in domains such as social media (e.g., friendship and

follower graphs), computational biology (e.g., protein interaction networks), and

IoT (e.g., sensor networks) often have missing information that needs to be in-

ferred. Making use of the graph, or relational structure, can help immensely

in accurately inferring missing values [217, 175]. Statistical relational learning

[89, 200] and graph neural networks [92, 99, 122, 241, 197] are two powerful ma-

chine learning approaches for inferring the missing node labels. These approaches

have been shown to be quite effective; however, current literature has largely fo-

cused on maximizing locally decomposable metrics such as node label accuracy

over individual nodes.

Unfortunately, good performance on these locally decomposable metrics does

not necessarily translate to accurate estimation of global graph properties. Proper-

75

ties such as node centrality are important in the analysis of graph phenomena such

as influence maximization and resilience to attacks, and involve all the nodes and

edges in the graph. Global graph properties can be computed using complex graph

queries. While many such graph properties have been proposed [216, 250, 45, 201],

along with efficient algorithms to estimate them [221, 151, 254, 198, 62], the task

of estimating these queries when there is missing information, such as node labels,

has not received much attention. In such graphs, we need to combine the tasks

of estimating the queries with the inference of missing information such as node

labels. These complex queries generally involve many nodes and edges and require

joint reasoning over multiple node labels to compute them.

In this chapter, we introduce the notion of aggregate graph queries (AGQs), and

argue that researchers should focus more attention on accurately estimating these

richer queries. In order to support this, we introduce a suite of useful AGQs that

measure subgroup cohesion in graphs [250]. We study the effectiveness of SRL and

GNN-based approaches in computing AGQs on graphs with missing node labels.

For approaches that infer the best possible values for the missing node labels, we

propose a point estimate approach, where we first infer the missing values, and

then compute the query. For approaches that infer the joint distribution over all

the missing node labels, we propose an expectation-based approach that estimates

the query as an expectation over the joint distribution. Further, to compute

the expectation tractably using Monte Carlo approximation, we propose a novel

sampling approach for probabilistic soft logic, one of the SRL approaches that we

study.

We include a theoretical analysis that shows that the point estimate approach

leads to sub-optimal estimates even for simple graphs with just two nodes. We also

provide an extensive empirical analysis showing the extent to which this happens

76

over richer queries over realworld data. Further, we analyze the effect of training

data size on the performance of these approaches.

The contributions include:

• We introduce a suite of practical AGQs that measures the key graph prop-

erty of subgroup cohesion and study the effectiveness of SRL and GNNs in

estimating them.

• We show that first inferring the missing values and then estimating the AGQ

leads to poor performance.

• We propose a novel Metropolis-within-Gibbs sampling framework, MIG, for

PSL that is faster than existing SRL samplers.

• Through experiments on three benchmark datasets, we show that comput-

ing aggregate properties as an expectation outperforms point estimate ap-

proaches up to a factor of 50.

• The runtime experiments show that the proposed MIG approach for PSL is

up to 3 times faster than other SRL sampling approaches.

5.2 Preliminaries

In this section, we recap several important statistical relational learning and

graph neural network based approaches that we described in Chapter 2.

5.2.1 Statistical Relational Learning

Statistical relational learning or statistical relational learning and artificial in-

telligence (StarAI) methods combine probabilistic reasoning with knowledge rep-

resentations that capture the structure in the domain [89, 200]. SRL frameworks

77

typically define a declarative probabilistic model or theory consisting of weighted

first-order logic rules. The rules can encode probabilistic information about the

attributes and labels of nodes, and the existence of edges between nodes. Intu-

itively, the weight of a rule indicates how likely it is that the rule is true in the

world. The higher the weight, the higher is the probability of rule being true.

SRL approaches can be broadly classified into proof-theoretic or model-theoretic

approaches based on the inference technique used [50]. In proof-theoretic ap-

proaches, a sequence of logical reasoning steps or a proof is generated and this

is used to define a probability distribution. Probabilistic logic programs [48] and

Stochastic Logic Programs [170] are some popular proof-theoretic approaches. In

a model-theoretic approach, the model is used to generate a graphical model or

a ground weighted logical theory through a process called grounding. Inference

is then performed on the ground model. Probabilistic Soft Logic [14], Markov

Logic Networks [205] and Bayesian logic programs [118] are some popular model-

theoretic based approaches.

Markov Logic Networks

Markov Logic Networks [205, 180, 242] are a notable model-theoretic SRL

framework. A MLN induces an undirected graphical model using the set of logical

rules by a process known as grounding. In grounding, the variables in the rules are

replaced with values from the data. The atoms in the rules, where the variables

are replaced with the values, are called ground atoms and are modeled as Boolean

random variables(RVs) in the undirected graph. The ground rules represent cliques

in the graph. Based on the data, some RVs are observed (X) and some are

unobserved (Y). The probability distribution represented by the graphical model

78

over the unobserved random variables Y is given by:

P (Y |X;w) = 1
Z
exp

(
N∑
i=1

wiφi(X, Y)
)

(5.1)

where φi(X, Y) is the potential defined using Boolean satisfiability, wi is the

weight, N is the number of ground formulas and Z is the normalization constant.

φi(X, Y) takes the value 1 if the ground formula is satisfied, and 0 otherwise.

Probabilistic Soft Logic

Probabilistic Soft Logic [14] is another recently introduced SRL framework.

Similar to MLNs, PSL induces an undirected graphical model using the set of

logical rules. Unlike MLNs, the ground atoms in PSL are continuous and de-

fined over the range [0, 1]. For the potential functions, PSL uses a continuous

relaxation of Boolean logic, which results in hinge functions instead of Boolean

satisfiability. The probability distribution represented by the graphical model over

the unobserved random variables Y is given by:

P (Y |X;w) = 1
Z
exp

(
−

N∑
i=1

wiφi(X, Y)
)

(5.2)

where φi(X, Y) is the potential defined using Lukasiewicz logic, wi is the weight,

N is the number of ground formulas and Z is the normalization constant. The

potential function φi(X, Y) takes the form of a hinge and makes the MAP inference

in PSL convex.

5.2.2 Graph Neural Networks

GNNs build on top of neural networks to learn non-linear representation for

each node in a graph. These node representations are learned by encoding in-

79

formation about the local graph structure [122, 241], edge labels [215], adjacent

node labels [197, 188] and external domain knowledge [267, 196, 100]. GNNs can

be broadly classified into non-probabilistic and probabilistic approaches based on

whether they explicitly model the joint distribution.

Non-probabilistic approaches learn a non-linear representation for each node

in a graph using a neural network and use them to classify nodes independently.

These approaches do not explicitly model the joint probability distribution. Graph

Convolutional Networks (GCNs)[122] , Relational GCN[215], Graph Attention

Networks (GATs) [241] are some popular GNN approaches belonging to this cat-

egory.

Recently, several probabilistic approaches have been proposed that learn a

joint distribution over the unobserved node labels in a graph. The distribution

is parameterized using a graph neural network. GMNN [197], ExpressGNN [267],

pGAT [100], pLogicNet [196] and Column Networks [188] are some popular prob-

abilistic approaches. To make the inference tractable, approaches such as Qu

et al. [197], Qu and Tang [196], and Zhang et al. [267] use variational expectation

maximization [174]. In these approaches the joint distribution is approximated

with a mean-field variational distribution that is more tractable for inference.

Pham et al. [188] employ an approximate, multi-step, iterative method similar

to stacked learning, where the intermediate marginal probabilities for a node are

used as relational features in the next step.

Graph Convolutional Networks

Graph Convolutional Network (GCN) [122] is a popular non-probabilistic GNN

approach. GCNs iteratively update the representation of each node by combining

each node’s representation with its neighbors’ representation. The propagation

80

rule to update the hidden representation of a node is given by:

H(l+1) = σ
(
D̃−0.5ÃD̃−0.5H(l)W (l)

)
(5.3)

where H(l) denotes the representation at layer l, D̃ represents the degree matrix,

Ã represents the adjacency matrix with self-loop, W represents the weights, and

σ denotes an activation function, such as the ReLU. The final representations are

fed into a linear softmax layer classifier for label prediction.

Graph Attention Networks

Graph Attention Networks (GATs) [241] are similar to GCNs and use self-

attention while combining the representation of each node with its neighbors.

This allows the model to assign different weights to each of its neighbors’ repre-

sentations. The propagation rule for GAT is given by:

h
(l+1)
i = σ

∑
j∈N

αijh
(l)
i W

 (5.4)

where h(l)
i is the representation of node i at layer l, W is the weight matrix, N is

the set of neighbors and α is the attention weights.

Graph Markov Neural Networks

Graph Markov Neural Networks (GMNNs) [197] is a recently introduced prob-

abilistic approach. GMNNs build on graph neural networks such as GCNs or

GATs by adding a second neural network to capture the latent dependencies in

the inferred data. The pair of neural networks are trained using a variational EM

algorithm. In the E-step, the object representations are learned by the first neural

network. In the M-step, the latent dependencies are learned by the other neural

81

network.

5.3 Problem Definition

Consider a graph G = (V, E), where V is the set of nodes and E is the set of

edges. Each node i ∈ V is associated with a set of attributes denoted by ai and a

label denoted by ci ∈ {1, . . . , K}. All nodes and edges of the graph are observed

and the node labels are partially observed. The set of observed node labels is

denoted by Co, unobserved node labels by Cu, and Co ∪Cu = C. As an example,

consider a computer science citation graph.

Example 1. In a computer science citation graph Gc, the nodes Vc represent

computer science documents and the edges Ec represent citation links between

these documents. The documents in the graph can belong to several categories such

as AI, Systems, Compilers and Databases. The document category is represented

as a node labels Cc. The contents of the document i such as the tokens in the

abstract are represent by the node attributes ai. The documents with observed

categories correspond to Co. Documents with categories that need to be inferred

are correspond to Cu.

Definition 3 (Graph queries). A graph query GQ is a Boolean expression over

nodes, edges and node labels.

The most common form of graph queries are those that define a subgraph

pattern. A graph query GQ, when evaluated on a graph G with node labels C,

returns a set of subgraphs that satisfy the Boolean expression and is denoted by

GQ(G,C). We refer to graph queries that involve a single node or an edge as

simple graph queries, and queries that involve multiple nodes and/or edges as

complex graph queries.

82

Example 2. For the citation graph in Example 1, we might want to infer how

dense the citation links are within the categories. The GQ that returns the set of

all citation links between documents that belong to the same category is given by:

GQ1 = {∀(i,j)∈Vc×Vc(eij ∧ ci = cj)}

The Boolean expression is true when a pair of documents have a citation link

between them and also belong to the same category.

Definition 4 (Aggregate graph queries). Aggregate graph queries (AGQs) are a

class of graph queries that compute an aggregate function on the set of subgraphs

that match the Boolean expression, i.e., an AGQ Q(G,C) = Agg(GQ(G,C))

where Agg is an aggregate function.

For example, Count is an aggregate function that returns the number of sub-

graphs in the set. AGQs can be considered as a mapping from the graph G and

the node labels C to a real number, i.e., Q : (G,C)→ R.

Example 3. For the citation graph in Example 1, one way to summarize the den-

sity of citations within the categories is to count the number of such citations. The

aggregate graph query representing the number of citation links between documents

that belong to the same category is given by:

Q1 = Count(i,j)({∀(i,j)∈Vc×Vc(eij ∧ ci = cj)})

Definition 5 (Aggregate graph query estimation). Given a graph G, the observed

and unobserved node labels Co, Cu, and an aggregate graph query Q, the task of

aggregate graph query estimation is to compute the value of Q(G,Co, Cu).

83

Example 4. For the citation graph in Example 1, the aggregate graph query in

Example 3 cannot be computed directly due the missing document categories in

Cu. We need to first infer the category labels before computing the AGQ.

5.4 Aggregate Graph Queries

In this section we motivate and introduce several complex AGQs that are

useful in analyzing the community structure (also called cohesive subgroups) in

graphs. Analyzing the community structure of a graph is necessary to understand

the social forces operating in a network and is widely used in social sciences,

particularly in social psychology and sociology [250]. One of the approaches to

quantitatively measure this is the nodal degree approach that computes various

statistics regarding the membership of a node and its adjacent nodes to various

communities.

We define five different AGQs that can be used to quantitatively measure

the community structure of a graph. These queries compute statistics of the

entire graph using node and edge frequencies, between nodes that belong to the

same category, across different categories and also relative frequency between and

across categories. We also include an AGQ that measures the accuracy of the

predicted node labels to show that AGQs can also capture the traditional locally

decomposable metrics. The queries are also of varying complexity, where the

complexity is the number of nodes jointly involved in the query. Query Q0 involves

a single node and queries Q1 and Q2 involve two nodes. Queries Q3 to Q5 are

more complex and involve all the neighbors of a node. Q1 and Q2 are based on

edge frequencies and Q3 to Q5 are based on node label frequency. We illustrate

these queries using the citation graph introduced in Example 1.

[Q0]: Accuracy: This query measures the number of documents with the

84

correct categories assigned to them. It is a locally decomposable query and is

given by:

Q0 = Countci
(ci = c∗i)

where c∗i is the ground truth label.

[Q1]: Edge Cohesion: This query measures the number of citation links

between documents i, j that belong to the same category. It is given by:

Q1 = Counteij
(eij ∈ E ∧ ci = cj)

A citation graph with a small number of large, tight-knit categories tends to have

a large number of citations between documents of the same categories.

[Q2]: Edge Separation: This query measures the number of citation links

between documents i, j that belong to the different category. It is given by:

Q2 = Counteij
(eij ∈ E ∧ ci 6= cj)

A citation graph with large number of small communities tends to have a large

number of citations between documents across different categories.

[Q3]: Diversity of Influence: This query measures the number of docu-

ments i in the graph that are connected to at least half of the different document

categories. It is given by:

Q3 = Counti

(
Countj

(
{cj | ∀nj=1

(
eij ∧ ci 6= cj)}

)
≥ K

2

)

85

The inner Count computes the number of distinct document categories that a

document i is cited by and the outer Count computes the number of documents

that are connected to at least half of the document categories. This query is

computes the number of k-core nodes in the graph where k is set to half of the

number of categories.

[Q4]: Exterior Documents: This query measures the number of docu-

ments i that have more than half of its neighbors belonging to categories other

than the documents category, i.e.,

Q4 = Counti

((
Countj

(
{cj | eij ∈ E ∧ ci 6= cj}

))
>
Countj({cj|eij ∈ E})

2

)

The inner counts compute the number of adjacent documents with different labels

and adjacent documents respectively, and the outer count computes the number

of such documents in the graph. This AGQ helps measure the monophily in the

graph as given by [41].

[Q5]: Interior Documents: This query measures the number of documents

i that have more that half of its neighbors belonging to the same category as the

document. It is given by:

Q5 = Counti

((
Countj

(
{cj | eij ∈ E ∧ ci = cj}

))
>
Countj({cj|eij ∈ E})

2

)

Similar to the previous query, the inner counts compute the number of adjacent

documents with the same label and adjacent documents respectively and the outer

count computes the number of such documents in the graphs.

86

5.5 Estimating Aggregate Graph Queries

In this section, we first introduce the point-estimate approach to estimate the

AGQs. For models that explicitly learn the joint distribution, we also propose an

expectation-based approach.

5.5.1 Point Estimation Approach

One approach for aggregate graph query estimation is to impute the locally best

possible value for the unobserved node labels Cu and then compute the AGQ. Here,

we first learn a model by minimizing a locally decomposable objective function,

such as the likelihood of node labels or a loss function defined over the labels,

using the graph G, node attributes ai and observed node labels Co, and impute

values for the unobserved node labels Cu using the learned model. We refer to this

approach as a point estimate approach. The point estimate approach is formally

defined as follows:

Definition 6 (Point estimate approach). Given an aggregate graph query es-

timation task, the point estimate approach estimates Q by first imputing the

values for Cu (denoted by Ĉu) and then computes a value for Q, i.e., estimate

Q̂ = Q(G,Co, Ĉu).

Non-probabilistic GNN approaches such as GCNs and GATs model the marginal

distribution for each unobserved node label and impute labels using the mode of

the distribution. SRL approaches such as PSL and MLNs, and probabilistic GNN

approaches such GMNNs model the joint distribution over all unobserved node

labels and impute node labels using the mode or the mean of the joint distribution.

87

5.5.2 Expectation-Based Approach

Another approach for aggregate graph query estimation is to define a joint

probability distribution over the unobserved node labels and take the expectation

of the aggregate graph query Q over the joint distribution. We refer to this

approach as the expectation-based approach. Since the range of the aggregate graph

query Q is R, the expectation is well-defined. The expectation-based approach is

formally defined as follows:

Definition 7 (Expectation-based approach). Given an aggregate graph query

estimation task, the expectation-based approach estimates Q as an expectation

over the joint distribution of the unobserved node labels Cu, i.e., estimate Q̂ =

Ep(Ĉu|G,Co)[Q(G,Co, Ĉu)].

AGQs can be computed as an expectation using approaches that explicitly

model and perform inference on the joint distribution over the unobserved node

labels. Non-probabilistic GNNs such as GCN and GAT do not model the joint

distribution and cannot be used to compute the expected value. SRL approaches

such as PSL and MLN and probabilistic GNNs such as GMNNs and ExpressGNNs

model the joint distribution explicitly. However, computing the expectation ana-

lytically for these approaches is challenging due the intractability of the integra-

tion in the expectation. The expectation can be approximated using Monte Carlo

methods by sampling from the distribution.

To make the inference tractable, approaches such as GMNN and ExpressGNN

replace the joint distribution with a mean-field variational distribution. The mean-

field approximation breaks dependencies between the node labels in the joint dis-

tribution. As an example, Pham et al. [188] use an iterative approach to estimate

the joint distribution. The final layer of the GNN estimates the marginal node

label probabilities using the labels of its neighbors from the previous iteration.

88

Sampling from each node’s marginal distribution independently or from a mean-

field distribution results in samples with limited dependence between adjacent

node labels. This makes computing expectation of the AGQs using Monte Carlo

approximation challenging for these approaches.

5.6 Analysis of the Estimation Approaches

In the previous section, we proposed two approaches to estimate the AGQs. In

this section, we analyze the two approaches by estimating the value of the AGQ

introduced in Example 3 on a graph consisting of two nodes. We use stochastic

block models (SBMs) [107, 32, 1] as a generative model for the graph. SBMs are

a popular class of generative models used extensively in statistics, physics, and

network analysis. SBMs take as input the number of nodes n, a K dimensional

vector (γ), where γk > 0 and ∑K
k=1 γk = 1, representing the fraction of nodes that

belong to category k, and a K ×K symmetric matrix (Π) whose elements Πk1k2

represent the probability of edge between two nodes belonging to categories k1, k2.

We assume that at least one of the Πk1k2 where k1 6= k2 is non-zero, i.e., there

is a non-zero probability of observing an edge across nodes belonging to different

categories.

The SBM generative process for a graph G = (V, E) with node labels C is:

ci ∼Multinomial(γ) ∀i ∈ V

eij ∼ Bernoulli(Πcicj
) ∀i, j ∈ V × V

Consider a graph G with two nodes i, j connected by an edge eij. The joint

89

distribution for the node labels ci, cj, under the SBM, is given by:

p(ci, cj|eij) = p(ci)p(cj)p(eij|ci, cj)
p(eij)

(5.5)

We now show that even for the simple aggregate graph query introduced earlier

that counts the number of adjacent nodes belonging to the same category, the

point estimate approach leads to large errors.

Theorem 2. For a graph G generated using SBM with two nodes i, j and an edge

between them, the point estimate approach cannot minimizes the expected mean

squared error for the AGQ Q = Count(i,j)({∀(i,j)∈V×V (eij ∧ ci = cj)})

Proof. The expected MSE for Q is given by E[(Q−Q̂)2]. We know that, expected

MSE is minimized when Q̂ = E[Q], i.e.,

argminQ̂E[(Q− Q̂)2] = E[Q] (5.6)

Since the query Q takes the value 1 when both nodes i, j have the same la-

bel and 0 otherwise, the expected value for the query Q, E[Q], is equal to the

probability of i, j having the same node label. Thus E[Q] is given by:

E[Q] =
∑
k∈C

γ2
kΠkk (5.7)

Since ∑k1∈C
∑
k2∈C γk1γk2Πk1k2 = 1 and at least one of the terms γk1γk2Πk1k2 6= 0

when i 6= j, ∑k∈C γ
2
kΠkk lies strictly between 0 and 1. Thus 0 < E[Q] < 1.

The point estimate approach imputes labels for the nodes i, j and estimates

Q̂ to be 1 if the imputed values i, j belong to the same category and 0 otherwise.

Since the point estimate approach estimates Q̂ to be either 0 or 1, no point-

estimate approach can minimize the expected MSE.

90

The above theorem shows that even for simple queries, the point estimate ap-

proach leads to sub-optimal estimation. We show in the empirical evaluation that

this is true also for more complex queries on larger graphs. Further, from Equation

5.6, we know that an optimal estimate can be obtained using an expectation-based

approach which directly computes the expectation of AGQs under the joint dis-

tribution.

5.7 Expectation-Based Approach for PSL

In the previous section, we showed that point estimate approaches do not ob-

tain optimal estimates. Better estimates of AGQs can be obtained by computing

the expectation of AGQs over the joint distribution. Computing the expectation

analytically for SRL approaches may not always be possible due the intractability

of the integration in the expectation. One way to overcome this problem is to

use Monte Carlo methods to approximate the expectation by sampling from the

distribution. The expectation can be approximated as follows:

Q(G,Cu, Co) ≈
1
S

S∑
j=1

Q(G,Co, Cu(j)) (5.8)

where S is the number of samples and Cu(j) are samples drawn from the distribu-

tion p(Cu|G,Co).

Gibbs sampling [91] is a type of MCMC sampling approach that generates

samples from the joint distribution by iteratively sampling from the conditional

distribution of each random variable. For MLNs, where conditional distributions

follow a binomial distribution, approaches such as MC-SAT have been proposed

[190] that combine MCMC and satisfiability.

In PSL the unobserved node labels Cu are modeled as unobserved random

91

variables Y0:m where m is the number of nodes with unobserved labels. The

conditional distribution for a random variable yi ∈ Y conditioned on all other

variables X, Y−i is given by:

p(yi|X, Y−i) ∝ exp{−
Ni∑
r=1

wrφr(yi, X, Y−i)} (5.9)

where Ni is the number of groundings in which variable yi participates. The above

distribution neither corresponds to a standard named distribution nor has a form

amenable to techniques such as inversion sampling. Hence, it is non-trivial to

generate samples from the conditional distributions of PSL.

To address this challenge, unlike a previous hit-and-run based sampling ap-

proach [31], we propose a simple but effective approach for sampling from the

joint distribution. We overcome the challenge of sampling from the conditional

by incorporating a single step of a Metropolis algorithm within the Gibbs sam-

pler (also called Metropolis-within-Gibbs [91]). The algorithm for our proposed

approach (MIG sampler) is given in Algorithm 4. For each random variable yi, we

first sample a new value y′i from a uniform distribution Unif(0, 1) and compute

the acceptance ratio α given by:

α = exp{−∑Ni
r=1 wrφr(Y0:i−1, y

′
i, Yi+1:m, X)}

exp{−∑Ni
r=1 wrφr(Y0:i−1, yi, Yi+1:m, X)}

(5.10)

We then accept the new value y′i, as a sample from the conditional with a prob-

ability proportional to α. We ignore the first b samples as burn-in. Further, for

faster convergence we start the sampling from the MAP state of PSL.

92

Algorithm 4 MIG Sampler for PSL
Input: Unobserved RVs Y , Observed RVs X, N ground rules, # of iterations T,
burn-in period b.

Output: Set of samples S
Y (0) ← argmaxY p(Y |X) // Initialize Y (0) to MAP state
for t from 1 to T do

for i ∈ 1 to m do
y′ ∼ Unif(0, 1)
α = exp{−

∑Ni
r=1 wrφr(Y (t)

1:i−1,y
′,Y

(t−1)
i+1:m,X)}

exp{−
∑Ni

r=1 wrφr(Y (t)
1:i−1,y

(t−1)
i ,Y

(t−1)
i+1:m,X)}

if Unif(0, 1) < α then
Y

(t)
i = y′ //accept with probability α

else
Y

(t)
i = Y

(t−1)
i

if t > b then
S = S ∪ Y (t) // Consider samples after burn-in

Return S

5.8 Experimental Validation

In this section we analyze the performance of SRL and GNN-based approaches

on AGQs. We answer the following research questions:

• RQ1: How does the performance of expectation-based approaches compare

with point estimate approaches?

• RQ2: How does the performance vary with the amount of labeled data?

• RQ3: What is the trade-off in performance between estimating aggregate

graph queries and locally decomposable evaluation metrics such as accuracy?

• RQ4: What is the runtime performance of these approaches?

5.8.1 Data

We consider three benchmark citation datasets for node classification: Cora,

Pubmed and Citeseer [217]. The nodes correspond to documents, the edges corre-

93

Dataset #Categories #Nodes #Edges #Attributes
Cora 7 2708 5429 1433

Pubmed 3 19717 44338 500
Citeseer 6 3327 4732 3703

Table 5.1: Statistics for the three datasets: Cora, Pubmed and Citeseer.

spond to citations, the attributes correspond to words in the document, and the

categories correspond to areas of research. The statistics for these datasets are

given in Table 5.1. We assume all the attributes ai and citations E are observed,

while the categories C are only partially observed. We generate five folds consist-

ing 500 nodes for training, 100 nodes for validation (600 observed node labels)

and use the remaining as test nodes. All approaches are given access to observed

node labels during training and metrics are evaluated on the test data.

5.8.2 Approaches

SRL approaches: For both MLNs and PSL, we extend the model defined in Bach

et al. [14] to incorporate node attributes. We use a bag-of-words representation for

the node attributes. We train a logistic regression model(LR) to predict the node

labels using the bag-of-words vectors. For each node, we consider the category

with the highest probability as the LR prediction. Since LR does not need early

stopping, we use all the observed node labels to train the model. We set the L2

regularizer weight to 0.001.

The model contains the following rules:

w1 : HasCat(A,Cat) ∧ Link(A,B)→ HasCat(B,Cat)

w2 : LR(A,Cat)→ HasCat(A,Cat)

The predicate HasCat(A,Cat) is true if document A belongs to category Cat

94

and predicate Link(A,B) is true if documents A and B have an citation link

between them. The model incorporates the logistic regression predictions using

the predicate LR(A,Cat), which is true if LR predicts category Cat for document

A. For MLNs, we include a functional constraint that prevents a document from

having multiple categories set to true. For PSL, we include a highly weighted

rule that states that the truth values across all categories must sum to 1 for a

node. We learn the rule weights using MC-SAT for MLN and maximum likelihood

estimation for PSL using training and validation data.

The different SRL-based approaches that we consider are:

• LR: We compute the AGQs using the predictions of logistic regression

trained on the node attributes. This is a point estimate approach.

• MLN-MAP: This is a point estimate approach that computes the mode of

the joint distribution defined by the MLN model. We use the MaxWalkSAT

algorithm implemented in the Tuffy framework [180].

• MLN-SAM: This is an expectation-based approach that estimates the

AGQ as an expectation over the distribution defined by the MLN model.

We generate 1000 samples using the MC-SAT algorithm, discard the first

500 samples as burn-in samples and randomly choose 100 samples from the

500 (to ensure minimal correlation) and use Monte Carlo approximation to

compute AGQs.

• PSL-MAP: This is a point estimate approach that computes the mode of

the distribution defined by the PSL model. We use the ADMM algorithm

implemented in the PSL framework [14].

• PSL-SAM: This is an expectation-based approach that estimates the AGQs

as an expectation over the distribution defined by the PSL model. Similar

95

to MLN-SAM, we generate 1000 samples are generated using the proposed

MIG-sampler introduced in Algorithm 4, discard the first 500 samples as

burn-in samples and randomly choose 100 samples from the 500 (to ensure

minimal correlation) and use Monte Carlo approximation to compute AGQs.

GNN based approaches: These are point estimate approaches that use the

node representations to infer node labels. These models are trained using the

training and validation data where the validation data is used to perform early-

stopping. We used the code provided by the authors of the respective papers.

For all three approaches we performed hyperparameter tuning and found that

hyperparameters provided by authors performed best. The different GNN-based

approaches we consider are:

• GCN: This approach uses the representation computed using a graph con-

volutional network [122].

• GAT: This approach uses the representation computed using a graph at-

tention network [241].

• GMNN: This approach uses the representation computed using a Markov

neural network introduced recently [197].

5.8.3 Performance Metrics

In Subsection 5.8.4 and Subsection 5.8.5, we evaluate the performance on the

AGQs (Q0 to Q5) using the relative query error (QE) and in Subsection 5.8.6 we

evaluate the categorical accuracy (Acc) and homophily error. QE is computed

using:

QE = |Q̂−Q|
Q

(5.11)

96

where Q is the true value of the query and Q̂ is the predicted value. We evaluate

the overall performance of each method by computing the average QE over all

queries denoted by AQE. For homophily error we use the homophily measure H

defined in Dandekar et al. [46] and compute error similar to QE by computing

the absolute difference w.r.t. true H computed using the true labels. Homophily

measure H is given by:

H = |e ∈ S|
|e ∈ NS|

= Q1
Q2 (5.12)

where S and NS as sets of edges such that the nodes have the same category and

not the same category, respectively. All reported metrics are averaged across five

folds.

5.8.4 Performance on AGQs

In this section we answer RQ1 by computing the QE for the AGQs proposed

in Section 5.4. The QE and AQE for all datasets are shown in Table 5.2. We

observe that PSL-SAM has the lowest or the second lowest error across most of

the non-decomposable queries (Q1−Q5). GNNs perfrom better on accuracy (Q0)

which is a locally decomposable query. In Citeseer, although LR performs worse

on locally decomposable AGQs such a Q0, it performs better on other AGQs.

This is due to the sparse nature of the graph, where non-collective approaches

perform better. Among collective approaches, PSL-SAM outperforms all other

approaches. GNNs have a high query errors for non-decomposable AGQs. This

is consistent with our theoretical analysis.

Among the queries, we observe that Q1 and Q5 have lower error compared

to the other queries for all the methods. Both Q1 and Q5 estimate node pairs

that are adjacent and have the same category. These are easier to estimate as

these nodes typically lie at the center of the category clusters. Since all the

97

(a) Query error for Cora

Methods Q0 Q1 Q2 Q3 Q4 Q5 AQE
GCN 0.143 0.0756 0.323 0.281 0.768 0.363 0.325
GAT 0.159 0.076 0.326 0.281 0.729 0.361 0.322

GMNN 0.142 0.081 0.348 0.254 0.754 0.367 0.324
LR 0.324 0.320 1.371 1.854 0.993 0.401 0.709

MLN-MAP 0.188 0.011 0.110 0.136 0.529 0.268 0.207
PSL-MAP 0.162 0.027 0.116 0.063 0.060 0.034 0.077
MLN-SAM 0.170 0.021 0.092 0.068 0.074 0.035 0.076
PSL-SAM 0.170 0.015 0.066 0.005 0.040 0.022 0.053

(b) Query error for Pubmed

Methods Q0 Q1 Q2 Q3 Q4 Q5 AQE
GCN 0.152 0.129 0.524 2.732 0.737 0.126 0.733
GAT 0.168 0.144 0.583 2.364 0.764 0.132 0.692

GMNN 0.157 0.134 0.545 2.581 0.743 0.127 0.714
LR 0.219 0.126 0.513 6.342 0.712 0.120 1.33

MLN-MAP 0.205 0.075 0.362 3.613 0.435 0.080 0.795
PSL-MAP 0.170 0.016 0.064 4.259 0.007 0.001 0.752
MLN-SAM 0.223 0.037 0.070 0.057 0.051 0.007 0.073
PSL-SAM 0.171 0.009 0.038 0.011 0.022 0.003 0.042

(c) Query error for Citeseer

Methods Q0 Q1 Q2 Q3 Q4 Q5 AQE
GCN 0.263 0.241 0.736 0.876 0.907 0.429 0.575
GAT 0.272 0.254 0.775 0.888 0.939 0.439 0.594

GMNN 0.268 0.251 0.766 0.867 0.905 0.412 0.578
LR 0.327 0.134 0.408 0.378 0.382 0.176 0.300

MLN-MAP 0.292 0.192 0.595 0.625 0.789 0.369 0.477
PSL-MAP 0.283 0.151 0.460 0.600 0.516 0.237 0.374
MLN-SAM 0.297 0.161 0.506 0.641 0.485 0.217 0.384
PSL-SAM 0.286 0.143 0.435 0.586 0.509 0.231 0.365

Table 5.2: Query error obtained for all queries on the three datasets and the
average query error (AQE) across queries. The lowest error is indicated in bold
and the second lowest error is underlined.

approaches propagate the similarity between the node neighbors, the models have

a lower error on these queries. Queries Q2, Q3, and Q4 estimate nodes that have

neighbors with different categories. These are nodes that lie in the boundary of

98

the category clusters and are harder to infer. GNN-based approaches have very

large errors for these queries, resulting in overall poor performance.

5.8.5 Effect of Training Data

To address RQ2, we create five variants of the datasets by varying the amount

of training data available for each method from 200 to 600 with increments of 100.

Fig. 5.2 shows the performance of different methods on AGQs as we increase the

number of training examples. We report the mean and the standard deviation of

AQE across the five folds. We observe that on all three datasets expectation-based

approaches have the lowest error. The average query error for logistic regression

decreases sharply in the Citeseer data as we increase the size of the training data.

We also observe that expectation-based approaches are more robust to the amount

of training data when compared to point-estimate approaches.

5.8.6 Trade-off between Estimating AGQs and Locally De-

composable Metrics

To answer RQ3, we compute the accuracy of the predicted node labels which

is locally decomposable. Accuracy involves correctly estimating the node labels of

each node individually. Estimating AGQs, on the other hand, requires correctly

estimating the node labels for several adjacent nodes.

In Fig. 5.1, we plot the accuracy of the predicted node labels for all three

datasets with different amount of training data. We observe that GNNs have

a higher accuracy compared to SRL approaches. This is due to the sparsity of

node attributes in these datasets which leads to inferior predictions by the logistic

regression classifier. GNNs overcome this sparsity by aggregate features of the

neighboring nodes. However, this implicitly assumes that a node’s neighbors have

99

(a) Accuracy in Cora dataset.

200 300 400 500 600

0.6

0.7

0.8

training data

C
at
eg
or
ic
al

ac
cu
ra
cy

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

LR

(b) Homophiliy error in Cora dataset.

200 300 400 500 600

0

0.1

0.2

0.3

training data

H
om

op
h
ill
y
er
ro
r

(c) Accuracy in Pubmed dataset.

200 300 400 500 600
0.6

0.65

0.7

0.75

0.8

0.85

training data

C
at
eg
or
ic
al

ac
cu
ra
cy

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

LR

(d) Homophiliy error in Pubmed
dataset.

200 300 400 500 600

0

5 · 10−2

0.1

training data

H
om

op
h
il
ly

er
ro
r

(e) Accuracy in Citeseer dataset.

200 300 400 500 600
0.6

0.65

0.7

0.75

training data

C
at
eg
or
ic
al

ac
cu
ra
cy

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

LR

(f) Homophiliy error in Citeseer
dataset.

200 300 400 500 600

8 · 10−2

0.1

0.12

0.14

0.16

0.18

0.2

training data

H
om

op
h
il
ly

er
ro
r

Figure 5.1: Figures shows the accuracy and homophily error of different ap-
proaches on all three datasets as the number of training data increases.

100

the same label. While this is true for most nodes, it is not always true. As a

result, GNNs tend to perform poorly on AGQs which involve correctly estimating

multiple node labels that may belong to different categories.

The error in the homophily between the estimated node labels and the true

labels in shown in Fig. 5.1. We observe that GNN-based approaches have a

large error when compared to SRL approaches. Further, we observed that by

artificially modifying the weight of the first rule in PSL that propogates the node

labels across the citation edges, the accuracy could be improved at the cost of poor

AGQ estimates. This shows that there is a trade-off between locally decomposable

metrics such as accuracy and AGQs. While GNN-based approaches are good at

estimating locally decomposable metrics they perform poorly when estimating

AGQs. SRL-based approaches due to their flexibility in modeling can be altered

to perform well on either of the two metrics.

5.8.7 Runtime Comparisons

Methods Cora
Time (sec)

Pubmed
Time (sec)

Citeseer
Time (sec)

GCN 24 59 29
GAT 142 138 122

GMNN 30 17 8
LR 2 5 2

PSL-MAP 14 124 37
MLN-MAP 65 368 36
PSL-SAM 105 638 124
MLN-SAM 270 1947 166

Table 5.3: Table showing runtimes for each of the approaches on the three
datasets.

To answer RQ4, we recorded the runtimes of the different approaches and is

given in Table 5.3. As expected, we observed that point estimate approaches are

101

significantly faster compared to expectation-based approaches. This is not sur-

prising as point estimates are computed using efficient optimization approaches.

Among the GCN, GAT, GMNN, PSL-MAP and MLN-MAP, we observe that

GMNN takes the least amount of time in Pubmed and Citeseer dataset and PSL-

MAP takes the least amount of time in Cora dataset. Among PSL-SAM and

MLN-SAM, we observe that our proposed MIG sampler for PSL is faster than

MLN-SAM by a factor of two for Cora and three for Pubmed.

5.9 Conclusion and Future Work

In this chapter, we motivate the practical need for aggregate graph queries

(AGQs), and show that existing approaches which optimize for locally decompos-

able metrics such as accuracy neither perform well theoretically nor empirically.

In order to compute the expectation under the joint distribution, we introduce a

novel sampling approach, MIG, for PSL that is both effective and efficient. We

perform an extensive evaluation of SRL and GNN approaches for answering AGQs.

Through our experiments we show that SRL methods can get up to 50 times less

error compared to GNNs and that our proposed MIG sampler is up to three times

faster than other SRL sampling approaches. An interesting future direction is to

combine GNN approaches with SRL models that can learn node representations

and also infer a joint distribution over the unobserved data. Extending this anal-

ysis for networks with missing edges and nodes is another interesting line of future

work.

102

200 300 400 500 600

0

0.5

1

training data

A
ve
ra
ge

q
u
er
y
er
ro
r

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

LR

(a) AQE for Cora dataset.

200 300 400 500 600

0

0.5

1

1.5

training data

A
ve
ra
ge

qu
er
y
er
ro
r

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

(b) AQE for Pubmed dataset.

200 300 400 500 600

0.3

0.4

0.5

0.6

training data

A
ve
ra
ge

q
u
er
y
er
ro
r

GCN

GAT

GMNN

MLN-MAP

PSL-MAP

MLN-SAM

PSL-SAM

LR

(c) AQE for Citeseer dataset.

Figure 5.2: Effect of training data on average query error (AQE) for various
approaches.

103

Chapter 6

Model Discovery in Knowledge

Graphs

6.1 Introduction

Templated graphical models (TGMs) are a broad class of probabilistic graph-

ical models that use templates to succinctly define the structure of a model. A

template encodes the relationship between random variables and is instantiated

many times within the model [127]. TGMs have shown remarkable success in

capturing probabilistic dependencies in structured data and have been success-

fully applied to many domains including computational biology, knowledge base

completion, and text mining.

Learning these templated models directly from the data, also known as struc-

ture learning, alleviates the cost of human-engineered model construction. How-

ever, the task of structure learning involves several critical computational chal-

lenges. First, the model space is potentially infinite and, even when restricted to

be finite, results in a combinatorial search. Second, approaches that iteratively

104

refine and grow a set of rules require interleaving of several costly rounds of param-

eter estimation and scoring. Finally, scoring the model often involves computing

the model likelihood, which is typically intractable to evaluate exactly.

In addition to predictive performance, there is a growing interest in explain-

able models. Models that provide explanations lead to increased user trust and

have also been shown to be more persuasive [235, 204, 9, 60, 265, 246]. Explana-

tions can also help isolate and identify incorrect assumptions and biases learned

by the model. While TGMs are more interpretable than other large graphical

models, generating explanations for individual predictions that satisfy certain de-

sired properties is still challenging. Further, not all data sources that are included

in the model can be explained to the end user. When learning a model from the

data, there is a need to trade-off between accuracy and end-user explainability.

In this chapter, we propose a novel approach, explainable structured model

search (ESMS), that learns an explainable templated graphical model automati-

cally from data. The data consists of several information sources, not all of which

can be easily explained to the end user. Our proposed approach leverages proba-

bilistic soft logic (PSL)[14], a TGM defined using a set of weighted first-order logic

rules. Unlike other SRL methods that use Boolean logic, PSL uses Lukasiewicz

logic, a continuous relaxation of Boolean logic, and can incorporate real-valued

data such as similarity metrics and confidence scores. Our proposed structure

learning approach utilizes an efficient weight learning strategy that invalidates

the need to re-optimizing a rule’s weight across models during the search. To

prune non-informative rules that might be generated, we introduce an efficient

learning objective for PSL that assigns importance weights for rules and elimi-

nates non-informative rules.

Our ESMS approach introduces an explanability score that biases the search

105

to learn end-user explainable models. After learning a model, we generate expla-

nations for each of the inferred random variables. The continuous nature of the

PSL inferred values enables our explanation framework to satisfy the properties

of explicitness and faithfulness [9]. Further, we extend the concept of stability for

the SRL setting and show that the proposed explanation strategy is stable.

The main contributions include:

• We propose a novel structured search approach that efficiently discovers

a templated graphical model using rule templates that best captures the

statistical dependencies in the data.

• We introduce an efficient weight learning strategy based on a piecewise pseu-

dolikelihood objective that allows parallelization and requires weights for a

template to be learned only once across models.

• Using an explainabilty parameter, our learning approach generates models

that trade-off accuracy and end-user explainability of its predictions.

• We propose a new Fisher score based ranking algorithm that identifies the

best explanation for a prediction and theoretically show that this is stable.

• We empirically show, for the recommendation domain, the discovered mod-

els using our proposed approach outperform models generated using state-

of-the-art methods.

6.2 Preliminaries

In this section, we recap the probability distribution defined by Probabilistic

soft logic. The templates in PSL are weighted logical clauses that encode statistical

106

dependencies and structural constraints. Consider the following PSL rule that

suggests similar items are rated similarly by the user:

w : SimilarItem(I1, I2) ∧Rating(U, I1) ; =⇒ ;Rating(U, I2)

Here, SimilarItem is a predicate that encodes the similarity between the two

items I1 and I2, and the predicate Rating encodes the rating assigned to the item

by the user U . w denotes the weight of the rule that determines its importance.

The variables I1, I2, U range over the constants in a domain. The number

of variables in a predicate is called the arity of the predicate. The predicate

together with the list of variables is called an atom. The set of predicates under

consideration is denoted by P . Given a set of users and items such as User =

{Alice, Bob} and Item = {Top Gun, Valkyrie}, PSL generates ground rules by

substituting variables in the rules with constants. An example of a ground rule is

as follows:

w :SimilarItem(Top Gun, V alkyrie)∧

Rating(Alice, Top Gun) ; =⇒ ;Rating(Alice, V alkyrie)

The atoms in a ground rules are called ground atoms (e.g. SimilarItem(Top

Gun, Valkyrie)). Values of ground atoms maybe known (observed ground

atoms) or need to be inferred (unobserved ground atoms). A PSL Model

(denoted by M) is a set of weighted rules {r1, r2, · · · , rn}.

Using the model M and a set of observed and unobserved ground atoms,

PSL generates a hinge-loss Markov random field. PSL first associates a ran-

dom variable in the range [0, 1] with each ground atom. Random variables that

correspond to ground atoms with observed values are called observed ran-

107

dom variables (X) and those that correspond to ground atoms with unob-

served values are called unobserved random variables (Y). For the ground

rule mentioned above, let X1, Y1, Y2 be the random variables associated with

the ground atoms SimilarItem(Top Gun, V alkyrie), Rating(Alice, Top Gun),

Rating(Alice, V alkyrie). Then each grounded rule is mapped to a hinge-loss

potential φ using Lukasiewicz logic. For the ground rule mentioned above the

hinge-loss potential is given by:

φ(Y,X) = max{X1 + Y1 − Y2 − 1, 0}p (6.1)

where p ∈ {1, 2}. In this work we consider p = 2, which results in squared

hinge-loss potentials.

Given the set of observed and unobserved random variables X,Y, and the

set of potentials Φ, PSL defines a probability distribution over the unobserved

random variables Y conditioned on the observed random variables X as follows:

P (Y|X) = 1
Z(X,Y)exp(−E)

where E =
∑
j

wjΦj(Y,X) ; Z(X,Y) =
∫

Y
exp(−E)

(6.2)

Here, j iterates over all the ground rules, and the w’s are weights. The function

E is called the energy function.

6.3 Explainable Templated Graphical Models

Explanations are human-understandable artifacts that provide qualitative un-

derstanding of the relationship between the data, the model’s internal state, and

the predictions [204, 252]. Explanations can either be generated a posteriori,

where the model is viewed as a black box, or generated by the model internally

along with its predictions. A good explanation must satisfy three properties -

108

explicitness, faithfulness, and stability [9]. Explicitness means that the generated

explanation is interpretable by the user. A faithful explanation implies that the

generated explanation is relevant to the prediction. Finally, stability means that

the generated explanation does not change drastically for small changes in the

input features.

In the relational setting, the generated explanations depend on other observed

and unobserved random variables. A stable explanation must not change dras-

tically when the values of other random variables change. We refer to this as

relational stability. We formally define this by extending the framework in Wolf

et al. [252] to a relational setting.

Let h be a model that predicts the values for the unobserved random variables

(Y) given the observed random variables X. We denote an explanation by G, and

the space of possible explanations by G.

Definition 8. Explaining function: An explaining function, denoted by f ,

scores the possible explanations faithfully and takes as input three components:

the input, the output and an explanation, i.e., f : (X,Y,G)→ R.

Definition 9. Relational Stability: Let h be a model and f be an explaining

function. Let X,Y be the set of observed and unobserved random variables and

G be the space of possible explanations. We say that f is stable with respect to

h, if for any two X1,X2 ∈ X that differ in a single random variable Xi and a

prediction Yk ∈ Y, ∃D ∈ R such that:

∀G ∈ G ∀k |fk(X1, h(X1), G)− fk(X2, h(X2), G)| ≤ D (6.3)

The above definition states that the explaining function score for a prediction’s

explanation does not vary a lot when the value of one of the observed random

109

variabless is changed.

Having defined relational stability, we now define the task of learning explain-

able templated graphical models.

Definition 10. Learning explainable templated graphical models: Given

a set of predicates P along with a target predicate PT ∈ P that we need to infer.

The task of learning explainable templated graphical model involves two subtasks:

Structure Learning: The structure learning subtask involves discovering a tem-

plated model M that is then used to infer the values of Y that belong to the

predicate PT .

Explanation: The explanation subtask involves generating and ranking the expla-

nations for the inferred values of Y using the explanation function f that satisfies

the three properties of explicitness, faithfulness and relational stability.

6.4 Structure Learning for Templated Graphical

Models

Learning a templated graphical model directly from data poses two main chal-

lenges. First, even after restricting the template length and the size of the model,

it involves a combinatorial search and the possible set of models is very large.

Second, the search over the space of models involves estimating the weights of

the templates many times, which is costly. To overcome these challenges, we

first introduce the notion of rule patterns that capture the common statistical

patterns and perform a structured search by sampling the space of models us-

ing these patterns. Further, we propose a novel likelihood function, piecewise-

pseudologlikehood (PPLL), to learn the weights of the inferred rules.

We illustrate our approach using patterns from the recommender system do-

110

main, however, the patterns are quite general, and apply in many other domains

that involve multi-relational reasoning.

Definition 11. Rule Patterns: A rule pattern is a skeletal rule that encodes

the structure and variable bindings between the predicates.

Rule patterns capture the common statistical relational patterns present in the

data. Assigning predicates to the slots in the pattern results in a template.

Consider the simplest possible pattern:

(A,B)→ PT (A,B)

where is a slot that can be filled by a predicate. This pattern can be used

to combine or fuse information from multiple sources. For example, it can be

use to generate templates for a hybrid recommender system[133] that combines

information from other simpler recommendation systems, e.g.:

NMF (U, I)→ Rating(U, I)

where NMF (Non-negative Matrix Factorization) is a standalone recommender

system.

We propose three sets of rule templates that capture a wide variety of rules

used in templated graphical models.

Path Template: The path template is the most common template and can

capture relational patterns such as transitivity. Each slot in the template must be

filled with a predicate of arity two. A path template of size two has the following

structure:

(A,B) ∧ (B,C)→ PT (A,C)

111

An example for a path based rule in recommender systems is:

SimilarItem(A,B) ∧Rating(B,C)→ Rating(A,C)

Similarly, path templates of size three and higher can be defined.

Local Template: The local template can incorporates information from multiple

standalone sources. The local template has the following structures:

(A,B)→ PT (A,B)

(B)→ PT (A,B)

(A)→ PT (A,B)

In addition to our earlier hybrid recommender example, another example of a

rule generated from the local template is:

AvgUserRating(A)→ Rating(A,B)

Similarity Template: The similarity template captures the relational between

multiple target instances. Each slot in the template must be filled with a predicate

of arity two and has the following structure:

(A,B) ∧ (C,A)→ PT (C,B)

For example, similarity functions used in collaborative filtering can be generated

from this template and is given by:

SimilarItem(I1, I2) ∧Rating(U, I1)→ Rating(U, I2)

112

Algorithm 5 Explainable Structured Model Search (ESMS)
Input: T : Rule templates; LM : max rules in a model; N : max iterations; P : Set
of open and closed predicates

Output: M∗: optimal model
scorebest ← −∞
M∗ ← φ
for i ∈ 1 to N do

M← φ
while lM < LM do

r ← generateRule(T, P)
wr ← arg maxwr

lppll(w)
M←M ∪ r
lM+ = 1

if V (M) > scorebest then
M∗ ←M
scorebest ← V (M)

return M∗

Algorithm 6 generateRule(T, P)
Input: T : Rule templates; P Set of open and closed predicates
Output: r: a rule
t ∼ Unif(T)
Sample p ⊂ P such that the predicates can be applied to t
r ← p applied to template t
return r

Prior Template: For targets where we have no information, we typically have a

prior value. This is captured by the prior template and has the following form:

PT (A,B) = {0, 1}

By setting different weights to these rules, we can vary the prior value for a targets

in the range [0, 1].

Having defined the set of rule templates, we introduce the ESMS algorithm

which performs a structured search through the space of models in Algorithm 5.

For each rule in the model, we first sample a template. We then sample predicates

113

for each slot in the template. Once all the rules in the model are sampled, we

learn the relative importance of these rules by performing weight learning. We

use an efficient objective function, Piecewise pseudolikelihood, which is presented

in the next subsection. We then evaluate the performance of the model V (M) on

the training data. We repeat this process N times and return the best performing

model as the final model.

6.4.1 Piecewise pseudolikelihood

The ESMS algorithm involves learning the weights of the sampled rules. One

approach to weight learning involves optimizing the likelihood function. How-

ever, the partition function Z in likelihood involves an integration that makes

it intractable to compute. To overcome the intractable likelihood score, pseudo-

likelihood [19] is commonly used in SRL structure learning and weight learning

methods. For HL-MRFs, the pseudo-likelihood P̂M approximates the likelihood

as:

P̂M(Y|X) =
∏
Yi∈Y

1
Zi(Y,X) exp(−Ei(Yi,Y,X))

where Zi(Y,X) =
∫
Yi

exp(−Ei(Yi,Y,X))

Ei(Yi,Y,X) =
∑
c∈C

∑
j:Yi∈Gc

wjφj(Yi,X,Y)

(6.4)

The notation j : Yi ∈ Gc selects ground clauses j where Yi appears. However, due

to the coupling of the rules, we also need to re-estimate the weights for the same

rule in different models. Further, the objective function is non-convex and is hard

to optimize.

To overcome these challenges, we propose a new, efficient-to-optimize objective

function called piecewise pseudolikelihood (PPLL). PPLL has two key prop-

114

erties that makes weight learning highly scalable : 1) with PPLL, the optimal

weight of a rule is independent of other rules in the model; and 2) the PPLL ob-

jective is convex and admits an inherently parallelizable gradient-based algorithm

for optimization.

PPLL was first proposed for weight learning in conditional random fields

(CRF) [231]. For HL-MRFs, PPLL factorizes the joint conditional distribution

along both random variables and rules and is defined as:

P̂M(Y|X) =
∏
r∈R

∏
Yi∈Y

exp(−Er
i (Yi,Y,X))

Zr
i (Y,X)

where Zr
i (Y,X) =

∫
Yi

exp(−Er
i (Yi,Y,X))

Er
i (Yi,Y,X) =

∑
j:Yi∈Gr

wjφj(Yi,Y,X)

(6.5)

The key advantage of PPLL over likelihood arises from the factorization of Z

into Zc
i , which requires only ground rules corresponding to r and variable Yi for

its computation. Following standard convention, we optimize the log of PPLL

denoted lppll(w).

We now show that for the log PPLL objective function, performing weight

learning on the entire model containing all rules is equivalent to optimizing the

weight for each rule independently.

Theorem 3. Optimizing lppll(w) over the set of weights w is equivalent to opti-

mizing over each wr separately.

115

Proof. By the definition of lppll(w), we have

arg max
w∈R+

lppll(w) = arg max
w∈R+

∑
r∈R

∑
Yi∈Y

log
exp(−Er

i (Yi,Y,X))
Zr
i (Y,X)

=
∑
r∈R

arg max
wr∈R+

∑
Yi∈Y

log
exp(−Er

i (Yi,Y,X))
Zr
i (Y,X)

= arg max
wr∈R+

∑
Yi∈Y

log
exp(−Er

i (Yi,Y,X))
Zr
i (Y,X) ∀r ∈ R

We optimize lppll(w) using a projected gradient descent algorithm. The partial

derivative of lppll(w) for a given rule weight wr is of the form:

∇wr = Φr(Yi,Y,X)− Eppll[Φr(Yi,Y,X)]

where Φr(Yi,Y,X) =
∑
Yi∈Y

∑
j:Yi∈Gr

φj(Yi,Y,X)
(6.6)

The gradient for a rule weight wr is the difference between observed and expected

hinge-loss potential summed over corresponding ground rules Gr. We can compute

observed penalties once and cache their values. Unlike the gradients for likelihood,

each expectation term in the PPLL gradient considers a single rule. Thus, when

evaluating gradients for weight updates, we use multi-threading to compute the

expectation terms in parallel. The dual advantages of parallelizing and requiring

weight learning only once for a rule makes PPLL highly scalable.

6.5 Explainabilty

Having learned a PSL model using the ESMS approach, we now describe

our approach to generate explanations for the inferred values. The unobserved

values are inferred by maximizing the likelihood of the graphical model. The value

116

of a random variable Yi depends on the all the hinge-loss clique potentials it is

present in. We denote the set of all potentials Yi participates in by ΦYi
. These

potentials are generated by grounded templates that are interpretable. We can

either display these ground templates directly to the user or use a translation

system, that takes as input a ground template and outputs sentences in natural

language or pictorially as described in Kouki et al. [134]. Thus the space of

explanations G is given by ΦYi
.

6.5.1 End-User Explainability and Accuracy Trade-off

Certain data sources are easier to interpret than others by the end-user. For

example, in a recommender system, rules containing predicates such as

SimilarUserCosine can be explained using sentences such as “User U1 who is sim-

ilar to you liked this item I”. Other predicates such as latent factor recommenda-

tion approaches are hard to explain to the end-user. We partition the predicates

into explainable and non-explainable predicates based on domain knowledge. We

formally define end-user explainability of a rule as:

Definition 12 (α-explainable). A rule r is α-explainable if the proportion of

explainable predicates in the body of the rule is greater than α.

Therefore, if a rule has no end-user explainable predicates in the body then it

is a non-explainable (0-explainable) rule and if every predicate in the body of a

rule is end-user explainable then it is a fully explainable (1-explainable) rule.

In applications where providing meaningful explanations to the end user is

important, we may prefer models with high α-explainable. A model with high α-

explainable rules can result in a greater number of predictions that are explainable.

However, this might result in a loss of predictive accuracy. To address this trade-off

at the model discovery time, we introduce an explainability parameter γ ∈ [0, 1]

117

which is the minimum proportion of rules in a model that are explainable and

tune it based on the application’s need. In the while loop of Algorithm 5, with

probability γ, we generate an α-explainable by repeatedly generating rules until

we meet the explainability criteria; with probability 1−γ, we simply add the next

generated rule to the model. A value of 1 for γ ensures that every rule in the

model only contains predicates that are explainable and hence all predictions can

be explained. This ensures that the generated explanations satisfy the property

of explicitness.

The set of ground rules that correspond to the space of explanations is usually

very large and not all are equally important. To ensure faithfulness, we measure

the importance of each ground rule to the inferred value (using the explaining

function f), and display the most important rule to the user.

Definition 13. The explaining function fi : (X, Y,ΦYi
) → R scores the impor-

tance of a ground rule φj ∈ ΦYi
with respect to a random variable Yi. It is given

by the norm of the first partial derivative of the ground rule at the inferred value

yi, i.e:

fi(X,Y, φj) =
∥∥∥∥∥wj∂φj(X,Y)

∂Yi
|yi

∥∥∥∥∥
1

(6.7)

Modifying a rule with high fi would lead to a significant change in the RV’s

inferred value.

6.5.2 Stability of the explanation function

Having shown that explaining function f satisfies the first two properties, we

now show that it is stable as defined in Section 6.3.

We first review the definition of strong convexity and observe that the PSL

energy function is strongly convex.

118

Definition 14. A function E : (Y ,X) → R is κ-strongly convex in Y (w.r.t the

1-norm) if Y is a convex set and, for any Y,Y′ ∈ Y, τ ∈ [0, 1],

τ(1− τ)κ2 ‖Y −Y′‖ + E(τY + (1− τ)Y′,X) ≤ τE(Y,X) + (1− τ)E(Y′,X)

for X ∈ X .

The energy function E is a summation of squared hinges and hence E is convex.

Further, the prior template described in Section 6.4 acts a regularizer of Y and is

κ-strongly convex. Hence E is at least κ-strongly convex in Y [154].

We next state and prove two lemmas that show the change in the optimal

energy function is bounded when the value of one of the observed RV (X) is

changed (Lemma 1) and this bounds the change is the unobserved RVs Ys (Lemma

2).

Lemma 1. For a graphical model G with a set of potentials Φ, let Qi denote

the number of potentials that involve Xi, and let QG , maxiQi. Let ‖w‖ <

R. Let X,X′ ∈ X differ at a single coordinate i by atmost ε. Then, for Ẏ ,

arg minYE(Y,X) and Ẏ′ , arg minYE(Y,X′),

∥∥∥E(Ẏ′,X)− E(Ẏ′,X′)
∥∥∥ ≤ εR

√
QG

119

Proof.

∥∥∥E(Ẏ′,X)− E(Ẏ′,X′)
∥∥∥

=
∥∥∥wTΦ(Ẏ′,X)−wTΦ(Ẏ′,X′)

∥∥∥
≤ ‖w‖

∥∥∥Φ(Ẏ′,X)−Φ(Ẏ′,X′)
∥∥∥ [Form Cauchy-Schwarz]

≤ R
∥∥∥Φ(Ẏ′,X)−Φ(Ẏ′,X′)

∥∥∥

because, by definition, ‖w‖ is upper bounded by R. Note that Φ(Ẏ′,X) and

Φ(Ẏ′,X′) only differ at any grounding involving Xi. The number of such ground-

ings is Qi, which is upper-bounded by QG, so at most QG potentials will change.

Further, the squared hinge loss potential has the from max{Cx
TX + Cy

TY−

c, 0}2 where Cx,Cy co-efficient vectors consisting of 1,−1, 0.

∥∥∥Φ(Ẏ′,X)−Φ(Ẏ′,X′)
∥∥∥

=
∑
φ∈Φ

1{CXi 6= 0}((φ(Ẏ′,X)− φ(Ẏ′,X′)))2

1/2

=
∑
φ∈Φ

1{CXi 6= 0}(max{Cx
TX + Cy

T Ẏ′ − c, 0} −max{Cx
TX′ + Cy

T Ẏ′ − c, 0})2

1/2

≤

∑
φ∈Φ

1{CXi 6= 0}(max{Cx
T (X−X′) + Cy

T (Ẏ′ − Ẏ′), 0})2

1/2

≤ (Qi)1/2 ε ≤ (QG)1/2 ε

Lemma 2. Let E : (Y ,X)→ R be κ-strongly convex, and let Ẏ , arg minYE(Y,X)

and Ẏ′ , arg minYE(Y,X′), where X,X′ ∈ X differ at a single coordinate i.

120

Then,

∥∥∥Ẏ′ − Ẏ
∥∥∥2

1
≤ 2
κ
|E(Ẏ′,X)− E(Ẏ′,X′)| (6.8)

Proof. Without loss of generality, assume thatE(Ẏ,X) ≥ E(Ẏ′,X′) .(If E(Ẏ,X) ≤

E(Ẏ′,X′) we can state this in terms of Ẏ′). Let ∆Y , Ẏ′− Ẏ. By Definition 14,

for any τ ∈ [0, 1],

τ(1− τ)κ2
∥∥∥Ẏ′ − Ẏ

∥∥∥ + E(τẎ′ + (1− τ)Ẏ,X) ≤ τE(Ẏ′,X) + (1− τ)E(Ẏ,X)

Since Ẏ is, by definition, the unique minimizer of E(Y,X), it follows that E(Ẏ +

τ∆Y,X) − E(Ẏ,X) ≥ 0, so the above inequality is preserved when this term is

dropped. This, dividing both sides by τκ/2, we have that

(1− τ) ‖∆Y‖2 ≤ 2
κ

(E(Ẏ′,X)− E(Ẏ,X))

‖∆Y‖2 ≤ 2
κ

(E(Ẏ′,X)− E(Ẏ,X))

where the last inequality follows from the fact that (1− τ) is maximized at τ = 0.

Since E(Ẏ,X) ≥ E(Ẏ′,X′), the following inequality holds

∥∥∥Ẏ′ − Ẏ
∥∥∥2
≤ 2
κ

(E(Ẏ′,X)− E(Ẏ′,X′))

We now state a lemma that shows that the change in the explaining func-

tion score for a ground rule j with respect to the observed RV Yk denoted by

fk(X,Y, φj) is bounded.

121

Lemma 3. Let the explaining function f be defined as f(X,Y, φ) =
∥∥∥w∂φ(X,Y)

∂Yi
|y
∥∥∥.

Let X,X′ ∈ X differ at a single random variable Xi by at most ε. Let ‖Y −Y′‖ <

B for any two Y,Y′ ∈ Y and ‖w‖ < R. Then:

|f(X,Y, φ)− fk(X′,Y′, φ)| ≤ 2R(ε+B) (6.9)

Proof. The hinge loss function φ has the from max{Cx
TX+Cy

TY− c, 0}2 where

Cx,Cy co-efficient vectors consisting of 1, 0,−1.

The partial derivative w.r.t to Yi

=
∥∥∥∥∥∂φ(X,Y)

∂Yi
|y
∥∥∥∥∥

= 2 ∗max{Cx
TX + Cy

TY − c, 0} ∗
∥∥∥∥∥∂max{Cx

TX + Cy
TY − c, 0}

∂Yi
|y
∥∥∥∥∥

= 2 ∗max{Cx
TX + Cy

TY − c, 0}

Now consider |f(X,Y, φ)− f(X′,Y′, φ)|

= w

∥∥∥∥∥∂φ(X,Y)
∂Yi

|y −
∂φj(X′,Y′)

∂Yi
|y′
∥∥∥∥∥

= 2w‖max{Cx
TX + Cy

TY − c, 0} −max{Cx
TX′ + Cy

TY′ − c, 0}‖

≤ 2w
∥∥∥max{Cx

T (X−X′) + Cy
T (Y −Y′), 0}

∥∥∥
≤ 2w ‖max{ε+B, 0}‖

≤ 2R(ε+B)

We now prove that scores by the explaining function f is stable.

Theorem 4. The explaining function fi is stable with respect to h(X,Y).

122

Cora Yelp LastFM
AUPR MAE MSE MAE MSE

BOOST 0.700 (0.163) 0.196 (0.008) 0.079 (0.007) 0.279 (0.058) 0.11 (0.044)
BOOSTP P LL 0.651 (0.186) 0.212 (0.012) 0.092 (0.013) 0.257 (0.046) 0.0941 (0.058)

PRA 0.622 (0.169) 0.2005 (0.0004) 0.086 (0.0004) 0.186 (0.001) 0.048 (0.0004)
ESMS 0.684 (0.148) 0.193 (0.003) 0.065 (0.008) 0.177 (0.070) 0.043 (0.0004)

Table 6.1: Metrics: Our ESMS approach significantly outperforms other ap-
proaches on recommendation datasets and is comparable to BOOST on Cora.
Numbers in bold are statistically significant with p < 0.05.

Proof. From Lemma 1 and Lemma 2, for any X,X′ ∈ X that differ in a single

random variable i, we have

|E(Ẏ′,X)− E(Ẏ′,X′)| ≤ RQG

⇒
∥∥∥Ẏ′ − Ẏ

∥∥∥
1
≤
√

2
κ
RQG

From Lemma 3, we have

|fk(X, Ẏ, φj)− fk(X′, Ẏ′, φj)| ≤ 2R(1 +
√

2
κ
RQG)

=|fk(X, h(X), φj)− fk(X′, h(X′), φj)| ≤ D

Thus f is stable with respect to E(Y,X).

6.6 Experimental Evaluation

We investigate the following research questions empirically:

• RQ1) What is the predictive accuracy of models discovered by ESMS ?

• RQ2) What is the impact of the explainability parameter γ on end-user

explainability?

123

Entity Resolution Predicates
SAME_AUTHOR SAME_BIB
SAME_V ENUE SAME_TITLE

AUTHOR V ENUE
TITLE HASWORD_AUTHOR

HASWORD_TITLE HASWORD_V ENUE.

Table 6.2: Entity resolution predicates: List of predicated for the entity
resolution datasets.

• RQ3) How well can the predictions be explained?

6.6.1 Data

We evaluate the predictive accuracy of the discovered models on an entity

resolution dataset and two recommendation datasets. Further, for the recommen-

dation datasets, we evaluate the generated explanations.

Enity Resolution Dataset: The Cora entity resolution dataset is based on

the citation references between scientific papers. The task is to identify papers

that are the same. This is represented by the target predicate SAME_BIB.

The dataset contains 10 predicates and are shown in Table 6.2. For each of the

non-target predicates, we included the inverse predicates where the arguments are

reversed. For example, for the predicate SAME_AUTHOR(A,B) we include the

predicate _SAME_AUTHOR(B,A). In total there are 19 predicates. Since

all predicates are explainable, we do not classify them as explainable and non-

explainable predicates. The dataset is split into 5 folds. We use the same splits

as Khot et al. [120].

Recommendation Dataset: We run experiments on two recommendation

datasets Yelp and LastFM . Yelp is a restaurant recommendation dataset con-

taining 34,454 users, 3,605 restaurants, 8,512 friendship links and 99,049 observed

ratings. LastFM is a music artist recommendation dataset containing 1,892

124

Explainable Predicates
USERS_ARE_FRIENDS SIM_COSINE_ITEMS
SIM_PEARSON_ITEMS SIM_CONTENT_ITEMS_JACCARD
SIM_ADJCOS_ITEMS SIM_MF_COSINE_ITEMS

SIM_MF_EUCLIDEAN_ITEMS SIM_COSINE_USERS
SIM_PEARSON_USERS SIM_MF_COSINE_USERS

SIM_MF_EUCLIDEAN_USERS AV G_ITEM_RATING
RATING_PRIOR AV G_USER_RATING

Table 6.3: Expainable predicates: List of explainable predicated for the rec-
ommendation datasets.

Non-explainable Predicates
RATING RATED

SGD_RATING BPMF_RATING
ITEM_PEARSON_RATING USER

ITEM

Table 6.4: Non-expainable predicates: List of non-explainable predicated
for the recommendation datasets.

users, 17,632 music artists, 12,717 friendship links and 92,834 observed ratings.

Both Yelp and LastFM datasets contain 21 predicates or relations. We cat-

egorize the predicates as explainable and non-explainable predicates based on how

easy it is for an end-user to understand the predicates. There were 14 explainable

predicates and 7 non-explainable predicates. The list of explainable predicates

are shown in Table 6.3 and the list non-explainable predicates is Table 6.4.

The Yelp dataset is split in five folds. Each fold contains a train and a test

split. The train splits contains 79240 observed ratings and 7924 ratings that need

to be predicted. The test split contains 99049 observed ratings and 19809 ratings

that need to be predicted.

Similarly, the LastFM dataset is split in five folds. Each fold contains a

train and a test split. The train splits contains 74267 observed ratings and 18567

ratings that need to be predicted. The test split contains 92834 observed ratings

and 18567 ratings that need to be predicted.

For both datasets, the task is to predict the unobserved ratings. To prevent

125

the generation of a quadratic number of user-item pairs, we perform blocking.

Blocking restricts the rating pairs by identifying the important pairs using a simple

heuristic. For details see Augustine and Getoor [12]. We use the splits from Kouki

et al. [133].

6.6.2 Approaches

We evaluate by comparing the following structure learning methods:

BOOST[120]: This is a state-of-the-art structure learning approach for MLNs.

It uses Friedman’s functional gradient boosting algorithm to generate a series

of relational regression problems, which in turn are used to generate the rules

in the model. We use the code of [120] with the recursion flag set to True.1.

BOOSTuses Boolean logic, so we round the values of the ground atoms to 1 if

the value is greater that 0.5, and 0 otherwise. We learn 10 trees and combined the

rules across the trees to generate a PSL model. We use the same weights learned

by the BOOST approach. Since PSL only allows positive weights, we truncate

negative weights to 0. In addition, we also evaluate a model with the weights

learned using the PPLL objective (BOOSTPPLL).

PRA[85]: PRA is a relational path finding algorithm that identifies paths that

connect unobserved pairs by performing random walks. We use the code of Gard-

ner and Mitchell [85] to identify paths of length up to three 2. We then convert

these paths to PSL rules. We learn the rule weights using our proposed PPLL

weight learning method.

ESMS : Our proposed approach that performs a structured search to learn an

explainable PSL model. We use the rule templates described in 6.4. We set the

maximum number of rules in a model to 15, maximum iterations to 100 and γ = 0.
1https://starling.utdallas.edu/software/boostsrl
2https://matt-gardner.github.io/pra/

126

6.6.3 Predictive performance of ESMS

We evaluate [RQ1] by comparing the predictive accuracies of BOOST, BOOSTPPLL,

PRA and ESMS . We compute the postive class AUPR for the Cora dataset.

For the recommendation datasets we compute the mean squared error (MSE)

and mean absolute error (MAE) by rescaling the ratings between [0, 1]. [133].

Table 6.1 shows the performance metrics computed across the 5 folds. We re-

port the mean and standard deviation. We perform a paired t-test to measure

significance and the numbers in bold are statistically significant with p < 0.05

. First, we observe that the ESMS approach outperforms both versions of

BOOST and PRA on the recommendation datasets. On the entity resolu-

tion dataset, it outperforms PRA and is comparable to BOOST. PRA can

only discover rules that are paths and this limitation hurts the performance of

the model. We next observe that the BOOST models perform better than the

BOOSTPPLL model. The BOOST method did not learn any collective rules

such as: Rating(A,B) ∧ SimItem(B,C) → Rating(A,C). These content-based

rules are important for the recommender system performance. As a result, the

ESMS performs better than BOOST. The learned models for all approaches are

given in the supplementary material.

ESMS discovered social rules such as Friends(U1, U2) ∧ Rating(U1, I1) →

Rating(U2, I1), similarity rules such SimItemPearson(I1, I2) ∧ Rating(U1, I1) →

Rating(U1, I2). Further, the model incorporates external systems with rules such

as BPMF (U1, I1)→ Rating(U1, I1).

127

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

γ
M

EP
@

1
0

0.02

0.04

0.06

0.08

0.1

M
SE

mse
MEP@1

Figure 6.1: MEP vs MSE for LastFM: As we increase γ we generate more
explainable models that have a slightly higher MSE

6.6.4 Trade-off between predictive accuracy and explain-

ability

We evaluate [RQ2] by investigating the impact of the explainability param-

eter γ on a model’s predictive accuracy and end-user explainability. For each

prediction, we generated a ranked list of ground rules in Gi and compute mean

explainable precision(MEP@K) [2] that represents that fraction of ratings that are

explainable. MEP@K is defined as 1
|Y|
∑|Y|
i=1(Ek(Gi)), where Ek(Gi) is one if one of

the top-k ranked rules in Gi is explainable and zero otherwise. We assume a rating

to be explainable if it contains at least one explainable predicate (α = 0.25). We

modified γ from 0 to 1 (γ = {0, 0.3, 0.5, 0.7, 0.9, 1.0}) and computed the MEP@1

and MSE of all generated models.

Fig. 6.1 shows the change in MSE and MEP@1 as we vary γ for the LASTFM

dataset. We observe that, not surprisingly, we generate models with more explain-

able rules as we increase γ. However, the MSE also increases slightly. This due to

the model not containing non-explainable rules such as latent factor models that

have high predictive accuracy. We found a similar pattern on the YELP dataset.

128

1 1.5 2 2.5 3
0.5

0.6

0.7

0.8

0.9

1

@K
M

EP

ESMS γ =0
ESMS γ =0.3
ESMS γ =0.5
ESMS γ =0.7
ESMS γ =0.9
ESMS γ =1.0

BOOST
PRA

Figure 6.2: MEP for LastFM: MEP increases for all approaches as we increase
K. ESMS with γ > 0.7 outperforms BOOSTand PRA.

Analysis of Explanations

We evaluate [RQ3] by analyzing the MEP for all models at K = {1, 2, 3}. Fig.

6.2 shows the MEP@K for various approaches. As we increase the value for K,

the MEP value increases for all approaches. For ESMS , we get a MEP of 1 for

γ > 0.7 for all K. PRA has MEP close to 0.9 due to the large number of rules in

the model. BOOST starts with MEP close to 0.5 at K = 1 but increases rapidity

as we increase K.

As a concrete example of our results, we look at an example of a ground

rule that was identified by our approach as the most important explanation for

a rating in the LastFM dataset. For pair (User12, Artist5) ESMS identified

the most important rule as: MF (User12, Artist5) → Rating(User12, Artist5)

when γ was set to 0. This is a non-explainable rule. However, when we change

γ = 1, the most important ground rule became: Rating(User12, Artist29) ∧

SimItemjaccard(Artist29, Artist5) → Rating(User12, Artist5). This is explain-

able.

129

Figure 6.3: Running time for weight learning: Runtime increase exponen-
tially for MLE but increases linearly for PPLL.

6.6.5 Timing Experiment

We evaluate the runtimes for the proposed PPLL weight learning approach

and the standard Maximum Likelihood Estimate (MLE) approach. Given a set

of rules, PPLL compute the weights only once for each rule. The presence of

other rules in the model does not affect the weight of a rule. However, since MLE

couples all the rules, we need to compute the weights for each subset of the rules

and select the best model.

Fig. 6.3 shows the runtimes in seconds for PPLL and MLE as the number of

rules in the model increases from 1 to 5. We observe that the runtimes increase

exponentially for MLE but increases linearly for PPLL. The decoupling of the

rules in weight learning help scale our approach to models with larger sets of

rules.

130

6.7 Related Work

We give a brief overview of structure learning in templated graphical models

and related work in explainability.

6.7.1 Structure Learning:

Many algorithms have been proposed to learn MLNs, a class of discrete TGMs.

Bottom-up approaches generate informative clauses by using relational paths to

capture patterns and motifs in the data [162, 123, 124]. Most recently, MLN

structure learning has been viewed from the perspectives of moralizing learned

Bayesian networks [119] and functional gradient boosting [120]. These methods

improve scalability while maintaining predictive performance. Structure learning

methods for specific to a task of interest use inductive logic programming [169]

to generate clauses which are pruned with L1-regularized learning [111, 112] or

perform iterative local search [22] to refine rules with the operations described

above. For PSL, a reinforcement learning based approach has been proposed [266].

Our approach builds on these approaches and the rule templates [207, 249, 251]

to learn an model that also generates explanations.

6.7.2 Explainability:

Explainable models can be broadly classified into model-intrinsic methods and

model-agnostic methods. Model-intrinsic approaches such as Catherine and Cohen

[37], Kouki et al. [134], Al-Shedivat et al. [8] use interpretable models that are

easy to explain. Model-agnostic or post-hoc explanations such as Ribeiro et al.

[204], Peake and Wang [185], Yang et al. [259] consider the model as a black box

and generate explanations from the output. Our proposed approach is a model-

131

intrinsic method that learns an interpretable PSL model. Several gradient-based

and perturbation based explanations have been proposed by Bach et al. [13], Zeiler

and Fergus [263], Shrikumar et al. [222], Wolf et al. [252] for deep learning models.

In this work, we propose a similar approach for templated graphical models.

6.8 Conclusion and Future Work

We proposed an efficient approach to learn explainable templated graphical

models that trades-off between performance and explainability. Our explana-

tion framework satisfies the properties of explicitness, faithfulness and stability.

Our work suggests interesting future directions. Latent predicates are crucial

for improving model performance. We plan to extend our approach to models

with latent predicates. Our approach to rank explanations does not account for

end-user preferences. These preferences could be incorporated into the ranking

algorithms.

132

Chapter 7

Conclusion and Future Work

In this dissertation, I have proposed the three important knowledge discovery

tasks of data alignment, estimating aggregate graph queries and model discovery

for knowledge graphs and developed novel approaches for these tasks. The tasks

capture both the local properties of the KG such as relationships that exist be-

tween two entities of same type and global graph properties such as logical rules

and subgraph patterns that hold across several entities and relations of different

types. These approaches address many of the practical challenges such as the pres-

ence of rich sets of entities and relations and lack of training data and negative

instances. I have evaluated both statistical relational learning and deep learning

based approaches’ ability to address these challenges. Further, I compare and

contrast these approaches both empirically and theoretical. In next two section,

I briefly summarize the my contributions and propose future research directions

to expand this thesis.

133

7.1 Summary of Contributions

In the area of data alignment, I first proposed an approach to align entities

with duplicate and variation relationships. My contributions include: (1) extend-

ing the traditional task of two class entity linkage, where the goal is to identify

duplicates, to a three class setting, where along with duplicates we also iden-

tify entity variations. (2) proposing a variational attribute discovery approach,

VarSpot, which is scalable and unsupervised. The approach analyzes similarities

and differences within the same catalog. (3) I proposed the notion of contrast fea-

tures to model variational attributes. (4) I performed empirical evaluation in three

different domains to show the generality of the approach. Using three different

state-of-the-art entity linkage frameworks, including rule-based and deep learn-

ing based frameworks, I showed that models with contrast features significantly

outperform models without them when identifying duplicates and variations. and

(5) I evaluated the interpretable nature of contrast features through Mechanical

Turk annotation experiments.

I then extended the alignment relationships to more fine-grained attributes

and proposed an approach to identify and extract the discriminative attribute the

distinguishes these entities and the values for these attributes. My contributions

in this area include: (1) I proposed a taxonomy of approaches by extending the

state-of-the-art attribute identification and attribute value extraction approaches

for the discriminative attribute extraction task. (2) I proposed a novel end-to-

end multitask approach that jointly performs both the discriminative attribute

identification and value extraction tasks. I establish a theoretical upper bound

for a class of approaches called extraction-oriented approaches for the attribute

identification task. (3) I introduced a novel dataset and empirically show that the

proposed DiffXtract approach outperforms attribute-oriented and extraction-

134

oriented approaches.

In the area of estimating global graph properties, I introduced the concept of

aggregate graph queries and compared various approaches to estimate them when

the knowledge graph is incomplete with missing node labels. My contributions in

this area include: (1) I introduced a suite of practical aggregate graph queries that

measures the key graph property of subgroup cohesion and study the effectiveness

of statistical relational learning and graph neural networks in estimating them. (2)

I showed that first inferring the missing values and then estimating the aggregate

graph queries leads to poor performance. (3) I proposed a novel Metropolis-

within-Gibbs sampling framework, MIG, for probabilistic soft logic that is faster

than existing statistical relational learning samplers. (4) Through experiments on

three benchmark datasets, I showed that computing aggregate properties as an

expectation outperforms point estimate approaches.

Finally, in the area of model discovery, I proposed an approach to discovery

explainable models that can infer missing relationships in the knowledge graph.

Further, I showed that these models can also generate explanations for the in-

ferred relationships. My contributions in this area include: (1) I proposed a novel

structured search approach that efficiently discovers a templated graphical model

using rule templates that best captures the statistical dependencies in the data.

(2) I introduced an efficient weight learning strategy based on a piecewise pseudo-

likelihood objective that allows parallelization and requires weights for a template

to be learned only once across models. (3) Using an explainability parameter, the

proposed learning approach generates models that trade-off accuracy and end-

user explainability of its predictions. (4) I proposed a new Fisher score based

ranking algorithm that identifies the best explanation for a prediction and theo-

retically show that this is stable. (5) Empirically I showed, that the discovered

135

models using the proposed approach outperform models generated using other

state-of-the-art methods.

7.2 Future Work

While this work addressed the core challenges in estimating the local and

global properties of knowledge graphs, there are several future avenues to expand

this work. Specifically, three areas of research that seems promising to me are:

Incorporating user preferences: Many of the approaches proposed in this

dissertation make assumptions that are often subjective and should ideally incor-

porate user preferences. For example, when identifying variations the distinction

between base attributes and variational attributes is often be subjective and varies

across categories. For some consumers, the distinction between a low-sodium ver-

sus regular soup is irrelevant;for others it is highly important. Similarly brand is

an important base attribute for electronics but might be a variational attribute for

medicines. Similarly, for the task of generating explanations, the set of predicates

that are explainable and those that are hard to understand by the end-user is user

and domain specific. Incorporating these preferences into approaches can greatly

expand the scope of these approaches.

Using knowledge graph embeddings: Knowledge graph embedding have

emerged as a method of choice for incorporating nodes and relations in the graph

into various information retrieval and machine learning tasks. Some of the pro-

posed approaches in this dissertation, such as DiffXtract, use word embeddings

to capture the semantic information in the node attributes such as title. However,

there is scope for learning embeddings for entities and relations in the graph using

all the attributes and the relationships, and then use these embedding for the

tasks proposed in this dissertation.

136

Neuro-symbolic approaches: While some approaches proposed in this dis-

sertation are symbolic, some of the proposed approaches make use of sub-symbolic

neural approaches. One promising area that has been gaining importance re-

cently is the neuro-symbolic approach that integrates the low-level representa-

tional power of deep neural networks with high-level symbolic reasoning. These

approaches leverage the power of deep neural networks in learning intermediate

representations and combine them with the ability of symbolic approaches to in-

corporate domain knowledge and common-sense reasoning. An interesting future

direction is to explore the ability of these approaches to solve the tasks proposed in

this dissertation. For example, while estimating aggregate graph queries, we could

combine graph neural network based approaches with statistical relational learn-

ing models to incorporate node representations and also infer a joint distribution

over the unobserved data.

137

Bibliography

[1] Emmanuel Abbe. Community detection and stochastic block models: Re-
cent developments. JMLR, 18:1–86, 2018.

[2] Behnoush Abdollahi and Olfa Nasraoui. Explainable matrix factorization
for collaborative filtering. In WWW Companion, 2016.

[3] Behnoush Abdollahi and Olfa Nasraoui. Using explainability for constrained
matrix factorization. In RecSys, 2017.

[4] Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B Aditya Prakash.
Condensing temporal networks using propagation. In ICDM, 2017.

[5] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next genera-
tion of recommender systems: A survey of the state-of-the-art and possible
extensions. TKDE, 17(6):734–749, 2005.

[6] Charu C Aggarwal. Data mining: the textbook. Springer, 2015.

[7] Charu C Aggarwal. Content-based recommender systems. In Recommender
Systems, pages 139–166. Springer, 2016.

[8] Maruan Al-Shedivat, Avinava Dubey, and Eric Xing. Contextual explana-
tion networks. Journal of Machine Learning Research, 21(194):1–44, 2020.

[9] David Alvarez-Melis and Tommi S Jaakkola. Towards robust interpretability
with self-explaining neural networks. In NeuRIPs, 2018.

[10] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminat-
ing fuzzy duplicates in data warehouses. In VLDB, 2002.

[11] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In
The semantic web, pages 722–735. Springer, 2007.

[12] Eriq Augustine and Lise Getoor. A Comparison of Bottom-Up Approaches
to Grounding for Templated Markov Random Fields. In SysML, 2018.

138

[13] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick
Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise ex-
planations for non-linear classifier decisions by layer-wise relevance propa-
gation. PloS, 10(7), 2015.

[14] Stephen H Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-
loss markov random fields and probabilistic soft logic. JMLR, 18:1–67, 2017.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. ICLR, 2015.

[16] Konstantin Bauman, Bing Liu, and Alexander Tuzhilin. Aspect based rec-
ommendations: Recommending items with the most valuable aspects based
on user reviews. In KDD, 2017.

[17] François Belleau, Marc-Alexandre Nolin, Nicole Tourigny, Philippe Rigault,
and Jean Morissette. Bio2rdf: towards a mashup to build bioinformatics
knowledge systems. Journal of biomedical informatics, 41(5):706–716, 2008.

[18] Islam Beltagy, Katrin Erk, and Raymond Mooney. Probabilistic soft logic
for semantic textual similarity. In ACL, 2014.

[19] Julian Besag. Statistical analysis of non-lattice data. JRSS, 24(3):179–195,
1975.

[20] Indrajit Bhattacharya and Lise Getoor. Iterative record linkage for cleaning
and integration. In SIGMOD workshop on DMKD, 2004.

[21] Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in rela-
tional data. In TKDD, 2007.

[22] Marenglen Biba, Stefano Ferilli, and Floriana Esposito. Discriminative
structure learning of Markov logic networks. In ILP, 2008.

[23] P Bickel, P Diggle, S Fienberg, U Gather, I Olkin, and S Zeger. Springer
Series in Statistics. Springer, 2009.

[24] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. Adaptive block-
ing: Learning to scale up record linkage. In ICDM, 2006.

[25] Mustafa Bilgic and Raymond J Mooney. Explaining recommendations: Sat-
isfaction vs. promotion. In IUI Workshop on Beyond Personalization, 2005.

[26] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie
Taylor. Freebase: a collaboratively created graph database for structuring
human knowledge. In SIGMOD, 2008.

139

[27] Béla Bollobás, Svante Janson, and Oliver Riordan. The phase transition in
inhomogeneous random graphs. RSA, 31:3–122, 2007.

[28] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating embeddings for modeling multi-relational
data. In NeuRIPS, 2013.

[29] Svetlin Bostandjiev, John O’Donovan, and Tobias Höllerer. Tasteweights:
a visual interactive hybrid recommender system. In RecSys, 2012.

[30] David Guy Brizan and Abdullah Uz Tansel. A. survey of entity resolution
and record linkage methodologies. Communications of the IIMA, 6(3):5,
2006.

[31] Matthias Broecheler and Lise Getoor. Computing marginal distributions
over continuous markov networks for statistical relational learning. In
NeuRIPS, 2010.

[32] T N Bui, S Chaudhuri, F T Leighton, and M Sipser. Graph bisection
algorithms with good average case behavior. Combinatorica, 7:171–191,
1987.

[33] Robin Burke. Knowledge-based recommender systems. ELIS, 69
(Supplement 32):175–186, 2000.

[34] Robin Burke. Hybrid recommender systems: Survey and experiments.
UMUAI, 12(4):331–370, 2002.

[35] Rocío Cañamares, Marcos Redondo, and Pablo Castells. Multi-armed rec-
ommender system bandit ensembles. In RecSys, 2019.

[36] Rich Caruana. Multitask learning. MLJ, 28(1):41–75, 1997.

[37] Rose Catherine and William Cohen. Personalized recommendations using
knowledge graphs: A probabilistic logic programming approach. In RecSys,
2016.

[38] Rose Catherine, Kathryn Mazaitis, Maxine Eskenazi, and William Cohen.
Explainable entity-based recommendations with knowledge graphs. RecSys,
2017.

[39] Antoine Channarond, Jean-Jacques Daudin, Stéphane Robin, et al. Classi-
fication and estimation in the stochastic blockmodel based on the empirical
degrees. EJS, 6:2574–2601, 2012.

[40] Hanxiong Chen, Xu Chen, Shaoyun Shi, and Yongfeng Zhang. Generate
natural language explanations for recommendation. 2019.

140

[41] Alex Chin, Yatong Chen, Kristen M. Altenburger, and Johan Ugander.
Decoupled smoothing on graphs. In WWW, 2019.

[42] Laura Chiticariu, Rajasekar Krishnamurthy, Yunyao Li, Frederick Reiss,
and Shivakumar Vaithyanathan. Domain adaptation of rule-based annota-
tors for named-entity recognition tasks. In EMNLP, 2010.

[43] Peter Christen. Data matching: concepts and techniques for record linkage,
entity resolution, and duplicate detection. Springer: Data-centric systems
and applications, 2012.

[44] Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M Rocha, Johan
Bollen, Filippo Menczer, and Alessandro Flammini. Computational fact
checking from knowledge networks. PloS one, 10(6), 2015.

[45] Diane J Cook and Lawrence B Holder. Mining graph data. John Wiley &
Sons Inc., 2006.

[46] Pranav Dandekar, Ashish Goel, and David Lee. Biased assimilation, ho-
mophily, and the dynamics of polarization. In WINE, 2012.

[47] Luc De Raedt and Kristian Kersting. Probabilistic inductive logic program-
ming. In PILP. 2008.

[48] Luc De Raedt and Angelika Kimmig. Probabilistic (logic) programming
concepts. Machine Learning, 100:5–47, 2015.

[49] Luc De Raedt, Anton Dries, Ingo Thon, Guy Van den Broeck, and Mathias
Verbeke. Inducing probabilistic relational rules from probabilistic examples.
In IJCAI, 2015.

[50] Luc De Raedt, Sebastijan Dumančić, Robin Manhaeve, and Giuseppe
Marra. From statistical relational to neuro-symbolic artificial intelligence.
IJCAI, 2020.

[51] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of deep bidirectional transformers for language under-
standing. In NAACL, 2019.

[52] AnHai Doan and Alon Y Halevy. Semantic integration research in the
database community: A brief survey. AI magazine, 2005.

[53] Pedro Domingos. Multi-relational record linkage. In KDD Workshop on
MRMD, 2004.

[54] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in
complex information spaces. In SIGMOD, 2005.

141

[55] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge fusion. In KDD,
2014.

[56] Xin Luna Dong. Challenges and innovations in building a product knowledge
graph. In KDD, pages 2869–2869. ACM, 2018.

[57] Xin Luna Dong, Alon Halevy, and Cong Yu. Data integration with uncer-
tainty. In VLDB, 2009.

[58] Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van Dang, Wilko
Horn, Camillo Lugaresi, Shaohua Sun, and Wei Zhang. Knowledge-based
trust: Estimating the trustworthiness of web sources. VLDB, 2015.

[59] Simon Dooms. Dynamic generation of personalized hybrid recommender
systems. In RecSys, 2013.

[60] Finale Doshi-Velez and Been Kim. Towards a rigorous science of inter-
pretable machine learning. Springer Challenges in ML, 2017.

[61] Mark Dredze, Paul McNamee, Delip Rao, Adam Gerber, and Tim Finin.
Entity disambiguation for knowledge base population. In International Con-
ference on Computational Linguistics (ICCL), pages 277–285. Association
for Computational Linguistics, 2010.

[62] Cody Dunne and Ben Shneiderman. Motif simplification: improving net-
work visualization readability with fan, connector, and clique glyphs. In
CHI, 2013.

[63] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty,
Mourad Ouzzani, and Nan Tang. Deeper–deep entity resolution. In VLDB,
2017.

[64] Javid Ebrahimi, Dejing Dou, and Daniel Lowd. Weakly supervised tweet
stance classification by relational bootstrapping. In EMNLP, 2016.

[65] Michael D Ekstrand, John T Riedl, and Joseph A Konstan. Collaborative
filtering recommender systems. FTHCI, 4(2):81–173, 2011.

[66] Ahmed El-Kishky, Yanglei Song, Chi Wang, Clare R Voss, and Jiawei Han.
Scalable topical phrase mining from text corpora. In VLDB, 2014.

[67] Mehdi Elahi, Francesco Ricci, and Neil Rubens. A survey of active learning
in collaborative filtering recommender systems. Computer Science Review,
20:29–50, 2016.

142

[68] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios.
Duplicate record detection: A survey. TKDE, 2007.

[69] Varun Embar, Dhanya Sridhar, Golnoosh Farnadi, and Lise Getoor. Scalable
structure learning for probabilistic soft logic. In StarAI, 2018.

[70] Varun Embar, Sriram Srinivasan, and Lise Getoor. Tractable marginal in-
ference for hinge-loss markov random fields. In ICML Workshop on TPM,
2019.

[71] Varun Embar, Bunyamin Sisman, Hao Wei, Xin Luna Dong, Christos
Faloutsos, and Lise Getoor. Contrastive entity linkage: Mining variational
attributes from large catalogs for entity linkage. In AKBC, 2020.

[72] Varun Embar, Andrey Kan, Bunyamin Sisman, Christos Faloutsos, and Lise
Getoor. Diffxtract: Joint discriminative product attribute-value extraction.
2021.

[73] Varun Embar, Sriram Srinivasan, and Lise Getoor. A comparison of sta-
tistical relational learning and graph neural networks for aggregate graph
queries. Machine Learning, 110:1847–1866, 07 2021.

[74] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record
matching rules. In VLDB, 2009.

[75] Ivan P Fellegi and Alan B Sunter. A theory for record linkage. JASA, 64:
1183–1210, 1969.

[76] Peter Forbes and Mu Zhu. Content-boosted matrix factorization for rec-
ommender systems: experiments with recipe recommendation. In RecSys,
2011.

[77] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):
75–174, 2010.

[78] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning prob-
abilistic relational models. In IJCAI, 1999.

[79] Mohamed H Gad-Elrab, Daria Stepanova, Jacopo Urbani, and Gerhard
Weikum. Exception-enriched rule learning from knowledge graphs. In ISWC,
2016.

[80] Mohamed H Gad-Elrab, Daria Stepanova, Trung-Kien Tran, Heike Adel,
and Gerhard Weikum. Excut: explainable embedding-based clustering over
knowledge graphs. In International Semantic Web Conference, pages 218–
237. Springer, 2020.

143

[81] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek.
Fast rule mining in ontological knowledge bases with amie++. VLDB, 24
(6):707–730, 2015.

[82] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian
Suchanek. Amie: association rule mining under incomplete evidence in
ontological knowledge bases. In WWW, 2013.

[83] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle,
and Lars Schmidt-Thieme. Learning attribute-to-feature mappings for cold-
start recommendations. In ICDM, 2010.

[84] Yuqing Gao, Jisheng Liang, Benjamin Han, Mohamed Yakout, and Ahmed
Mohamed. Building a large-scale, accurate and fresh knowledge graph. KDD
Tutorial, 2018.

[85] Matt Gardner and Tom Mitchell. Efficient and expressive knowledge base
completion using subgraph feature extraction. In EMNLP, 2015.

[86] Matt Gardner, Partha Pratim Talukdar, Bryan Kisiel, and Tom Mitchell.
Improving learning and inference in a large knowledge-base using latent
syntactic cues. 2013.

[87] Matt Gardner, Partha Pratim Talukdar, Jayant Krishnamurthy, and Tom
Mitchell. Incorporating vector space similarity in random walk inference
over knowledge bases. In EMNLP, 2014.

[88] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, prac-
tice & open challenges. Proceedings of the VLDB Endowment, 5(12):2018–
2019, 2012.

[89] Lise Getoor and Ben Taskar. Introduction to Statistical Relational Learning.
The MIT Press, 2007.

[90] Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano.
Text mining for product attribute extraction. KDD Explorations Newsletter,
2006.

[91] Walter R Gilks, Sylvia Richardson, and David Spiegelhalter. Markov chain
Monte Carlo in practice. Chapman and Hall/CRC, 1995.

[92] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. Neural message passing for quantum chemistry. In ICML,
2017.

144

[93] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton,
Narasimhan Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: hands-
off crowdsourcing for entity matching. In SIGMOD, 2014.

[94] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[95] Asela Gunawardana and Christopher Meek. A unified approach to building
hybrid recommender systems. In RecSys, 2009.

[96] Rishi Gupta, Tim Roughgarden, and Comandur Seshadhri. Decompositions
of triangle-dense graphs. In ITCS, 2014.

[97] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel, and Erel Uziel.
Social media recommendation based on people and tags. In SIGIR, 2010.

[98] Alon Y Halevy, Oren Etzioni, AnHai Doan, Zachary G Ives, Jayant Madha-
van, Luke K McDowell, and Igor Tatarinov. Crossing the structure chasm.
In CIDR, 2003.

[99] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation
learning on large graphs. In NeuRIPS, 2017.

[100] L Vivek Harsha Vardhan, Guo Jia, and Stanley Kok. Probabilistic logic
graph attention networks for reasoning. In WWW Companion, 2020.

[101] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-
aware explainable recommendation by modeling aspects. In CIKM, 2015.

[102] Reinhard Heckel, Michail Vlachos, Thomas Parnell, and Celestine Dünner.
Scalable and interpretable product recommendations via overlapping co-
clustering. In ICDE, 2017.

[103] Jonathan L Herlocker, Joseph A Konstan, and John Riedl. Explaining col-
laborative filtering recommendations. In CSCW, 2000.

[104] Rob High. The era of cognitive systems: An inside look at ibm watson and
how it works. IBM Corporation Redbook, 1:16, 2012.

[105] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman
Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick
Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic mod-
eling in speech recognition: The shared views of four research groups. IEEE
Signal processing magazine, 29(6):82–97, 2012.

[106] Pascal Hitzler, Markus Krotzsch, and Sebastian Rudolph. Foundations of
semantic web technologies. Chapman and Hall/CRC, 2009.

145

[107] Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.
Stochastic blockmodels: First steps. Soc. Netw., 5:109 – 137, 1983.

[108] Andrea Horch, Holger Kett, and Anette Weisbecker. Matching product
offers of e-shops. In PAKKD, 2016.

[109] Yunfeng Hou, Ning Yang, Yi Wu, and S Yu Philip. Explainable recommen-
dation with fusion of aspect information. WWW, 22(1):221–240, 2019.

[110] Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping Li. Knowledge graph
embedding based question answering. In WSDM, 2019.

[111] Tuyen N. Huynh and Raymond J. Mooney. Discriminative structure and
parameter learning for Markov logic networks. In ICML, 2008.

[112] Tuyen N Huynh and Raymond J Mooney. Online structure learning for
markov logic networks. In ECML, 2011.

[113] Robert Isele, Anja Jentzsch, and Christian Bizer. Silk server-adding missing
links while consuming linked data. In COLD, 2010.

[114] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S Yu.
A survey on knowledge graphs: Representation, acquisition, and applica-
tions. IEEE Transactions on Neural Networks and Learning Systems, 2021.

[115] Kristen Johnson and Dan Goldwasser. “All I know about politics is what
I read in Twitter": Weakly supervised models for extracting politicians’
stances from Twitter. In COLING, 2016.

[116] Anitha Kannan, Inmar E Givoni, Rakesh Agrawal, and Ariel Fuxman.
Matching unstructured product offers to structured product specifications.
In KDD, 2011.

[117] Giannis Karamanolakis, Jun Ma, and Xin Luna Dong. Txtract: Taxonomy-
aware knowledge extraction for thousands of product categories. KDD, 2020.

[118] Kristian Kersting and Luc De Raedt. Bayesian logic programming: Theory
and tool. , An introduction to Statistical Relational Learning, 2007.

[119] Hassan Khosravi, Oliver Schulte, Tong Man, Xiaoyuan Xu, and Bahareh
Bina. Structure learning for Markov logic networks with many descriptive
attributes. In AAAI, 2010.

[120] Tushar Khot, Sriraam Natarajan, Kristian Kersting, and Jude Shavlik.
Learning markov logic networks via functional gradient boosting. In ICDM,
2011.

146

[121] Sung Guen Kim and Juyoung Kang. Analyzing the discriminative attributes
of products using text mining focused on cosmetic reviews. Information
Processing & Management, 54(6):938–957, 2018.

[122] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In ICLR, 2017.

[123] Stanley Kok and Pedro Domingos. Learning Markov logic network structure
via hypergraph lifting. In ICML, 2009.

[124] Stanley Kok and Pedro Domingos. Learning Markov logic networks using
structural motifs. In ICML, 2010.

[125] Stanley Kok, Marc Sumner, Matthew Richardson, Parag Singla, Hoifung
Poon, Daniel Lowd, Jue Wang, and Pedro Domingos. The alchemy system
for statistical relational ai. Technical report, UW, Seattle, 2005.

[126] Daphne Koller. Probabilistic relational models. In ILP, 1999.

[127] Daphne Koller and Nir Friedman. Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[128] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel
Ardalan, Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff
Naughton, et al. Magellan: Toward building entity matching management
systems. In VLDB, 2016.

[129] Hanna Köpcke and Erhard Rahm. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering, 2010.

[130] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity
resolution approaches on real-world match problems. In VLDB, 2010.

[131] Hanna Köpcke, Andreas Thor, Stefan Thomas, and Erhard Rahm. Tailoring
entity resolution for matching product offers. In EDBT, 2012.

[132] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: sim-
ilarity measures and algorithms. In SIGMOD, 2006.

[133] Pigi Kouki, Shobeir Fakhraei, James Foulds, Magdalini Eirinaki, and Lise
Getoor. Hyper: A flexible and extensible probabilistic framework for hybrid
recommender systems. In RecSys, 2015.

[134] Pigi Kouki, James Schaffer, Jay Pujara, John O’Donovan, and Lise Getoor.
Personalized explanations for hybrid recommender systems. In IUI, 2019.

147

[135] Zornitsa Kozareva, Qi Li, Ke Zhai, and Weiwei Guo. Recognizing salient
entities in shopping queries. In ACL, 2016.

[136] Alicia Krebs, Alessandro Lenci, and Denis Paperno. Semeval-2018 task 10:
Capturing discriminative attributes. In SEMEVAL, 2018.

[137] Veton Këpuska and Gamal Bohouta. Next-generation of virtual personal
assistants (microsoft cortana, apple siri, amazon alexa and google home).
In CCWC, 2018.

[138] John Lafferty, Andrew McCallum, and Fernando CN Pereira. Conditional
random fields: Probabilistic models for segmenting and labeling sequence
data. ICML, 2001.

[139] Ni Lao and William W Cohen. Relational retrieval using a combination of
path-constrained random walks. Machine learning, 81(1):53–67, 2010.

[140] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and
learning in a large scale knowledge base. In EMNLP, 2011.

[141] Kristen LeFevre and Evimaria Terzi. Grass: Graph structure summariza-
tion. In ICDM, 2010.

[142] Douglas B Lenat, Ramanathan V. Guha, Karen Pittman, Dexter Pratt, and
Mary Shepherd. Cyc: toward programs with common sense. Communica-
tions of the ACM, 33(8):30–49, 1990.

[143] Cheng-Te Li and Shou-De Lin. Egocentric information abstraction for het-
erogeneous social networks. In ASONAM, 2009.

[144] Manling Li, Qi Zeng, Ying Lin, Kyunghyun Cho, Heng Ji, Jonathan May,
Nathanael Chambers, and Clare Voss. Connecting the dots: Event graph
schema induction with path language modeling. In EMNLP, pages 684–695,
2020.

[145] Pei Li, Xin Luna Dong, Songtao Guo, Andrea Maurino, and Divesh Srivas-
tava. Robust group linkage. In WWW, 2015.

[146] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. Neural
rating regression with abstractive tips generation for recommendation. In
SIGIR, 2017.

[147] Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a
combined approach to recommend. In RecSys, 2014.

[148] Xiao Ling and Daniel S Weld. Fine-grained entity recognition. In AAAI,
2012.

148

[149] Hugo Liu and Push Singh. Conceptnet—a practical commonsense reasoning
tool-kit. BT technology journal, 22(4):211–226, 2004.

[150] Juntao Liu, Caihua Wu, and Wenyu Liu. Bayesian probabilistic matrix
factorization with social relations and item contents for recommendation.
DSS, 55(3):838–850, 2013.

[151] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summa-
rization methods and applications: A survey. CSUR, 51:62–96, 2018.

[152] Robert L Logan IV, Samuel Humeau, and Sameer Singh. Multimodal at-
tribute extraction. AKBC, 2017.

[153] Nikhil Londhe, Vishrawas Gopalakrishnan, Aidong Zhang, Hung Q Ngo,
and Rohini Srihari. Matching titles with cross title web-search enrichment
and community detection. In VLDB, 2014.

[154] Ben London, Bert Huang, and Lise Getoor. Stability and generalization in
structured prediction. Journal of Machine Learning Research, 17, 2016. to
appear.

[155] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-based
recommender systems: State of the art and trends. In Recommender Systems
Handbook, pages 73–105. Springer, 2011.

[156] Mi Luo, Fei Chen, Pengxiang Cheng, Zhenhua Dong, Xiuqiang He, Jiashi
Feng, and Zhenguo Li. Metaselector: Meta-learning for recommendation
with user-level adaptive model selection. In WebConf, 2020.

[157] Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-
proaches to attention-based neural machine translation. In EMNLP, 2015.

[158] Hao Ma, Dengyong Zhou, Chao Liu, Michael R Lyu, and Irwin King. Rec-
ommender systems with social regularization. In WSDM, 2011.

[159] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: un-
derstanding rating dimensions with review text. In RecSys, 2013.

[160] Brian McFee, Thierry Bertin-Mahieux, Daniel PW Ellis, and Gert RG
Lanckriet. The million song dataset challenge. In WWW, 2012.

[161] Ken McRae, George S Cree, Mark S Seidenberg, and Chris McNorgan. Se-
mantic feature production norms for a large set of living and nonliving
things. Behavior research methods, 37(4):547–559, 2005.

[162] Lilyana Mihalkova and Raymond J Mooney. Bottom-up learning of Markov
logic network structure. In ICML, 2007.

149

[163] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recognition
without gazetteers. In EACL, 1999.

[164] George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39–41, 1995.

[165] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri
Chklovskii, and Uri Alon. Network motifs: simple building blocks of com-
plex networks. Science, 298(5594):824–827, 2002.

[166] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar,
B Yang, J Betteridge, A Carlson, B Dalvi, M Gardner, B Kisiel, et al.
Never-ending learning. Communications of the ACM, 61(5):103–115, 2018.

[167] Vassil Momtchev, Deyan Peychev, Todor Primov, and Georgi Georgiev. Ex-
panding the pathway and interaction knowledge in linked life data. ISWC,
2009.

[168] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon
Park, Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghaven-
dra. Deep learning for entity matching: A design space exploration. In
SIGMOD, 2018.

[169] Stephen Muggleton. Inductive logic programming. New generation comput-
ing, 8(4):295–318, 1991.

[170] Stephen Muggleton et al. Stochastic logic programs. Advances in inductive
logic programming, 32:254–264, 1996.

[171] Katarzyna Musiał and Krzysztof Juszczyszyn. Properties of bridge nodes
in social networks. In ICCCI, 2009.

[172] David Nadeau and Satoshi Sekine. A survey of named entity recognition
and classification. Lingvisticae Investigationes, 30:3–26, 2007.

[173] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summa-
rization with bounded error. In MOD, 2008.

[174] Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that
justifies incremental, sparse, and other variants. In Learning in graphical
models, pages 355–368. Springer, 1998.

[175] Jennifer Neville and David Jensen. Iterative classification in relational data.
In AAAI Workshop on Learning Statistical Models from Relational Data,
2002.

150

[176] Jennifer Neville and David Jensen. Dependency networks for relational data.
In ICDM, 2004.

[177] Jennifer Neville and David Jensen. Relational dependency networks. JMLR,
8:653–692, 2007.

[178] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way
model for collective learning on multi-relational data. In ICML, 2011.

[179] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich.
A review of relational machine learning for knowledge graphs. Proceedings
of the IEEE, 104(1):11–33, 2016.

[180] Feng Niu, Christopher Ré, AnHai Doan, and Jude Shavlik. Tuffy: Scaling
up statistical inference in markov logic networks using an rdbms. VLDB, 4:
373–384, 2011.

[181] Byung-Won On, Nick Koudas, Dongwon Lee, and Divesh Srivastava. Group
linkage. In ICDE, 2007.

[182] Jeff Z Pan, Siyana Pavlova, Chenxi Li, Ningxi Li, Yangmei Li, and Jinshuo
Liu. Content based fake news detection using knowledge graphs. In ISWC,
2018.

[183] Denis Parra, Peter Brusilovsky, and Christoph Trattner. See what you want
to see: visual user-driven approach for hybrid recommendation. In IUI,
2014.

[184] Michael J Pazzani and Daniel Billsus. Content-based recommendation sys-
tems. In The Adaptive Web: Methods and Strategies of Web Personalization,
pages 325–341. Springer, 2007.

[185] Georgina Peake and Jun Wang. Explanation mining: Post hoc interpretabil-
ity of latent factor models for recommendation systems. In SIGKDD, 2018.

[186] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, 2014.

[187] Petar Petrovski and Christian Bizer. Extracting attribute-value pairs from
product specifications on the web. In WI, 2017.

[188] Trang Pham, Truyen Tran, Dinh Phung, and Svetha Venkatesh. Column
networks for collective classification. In AAAI, 2017.

[189] Emmanouil Platanios, Hoifung Poon, Tom M Mitchell, and Eric J Horvitz.
Estimating accuracy from unlabeled data: A probabilistic logic approach.
In NeuRIPS, 2017.

151

[190] Hoifung Poon and Pedro Domingos. Sound and efficient inference with
probabilistic and deterministic dependencies. In AAAI, 2006.

[191] Jay Pujara. Probabilistic models for scalable knowledge graph construction.
PhD thesis, 2016.

[192] Jay Pujara and Lise Getoor. Generic statistical relational entity resolution
in knowledge graphs. StaRAI, 2016.

[193] Jay Pujara, Kevin Murphy, Xin Luna Dong, and Curtis Janssen. Proba-
bilistic models for collective entity resolution between knowledge graphs. In
Bay Area Machine Learning Symposium, 2014.

[194] Duangmanee Pew Putthividhya and Junling Hu. Bootstrapped named entity
recognition for product attribute extraction. In EMNLP, 2011.

[195] Lin Qiu, Sheng Gao, Wenlong Cheng, and Jun Guo. Aspect-based latent
factor model by integrating ratings and reviews for recommender system.
Know.-Based Syst., 110(C):233–243, 2016.

[196] Meng Qu and Jian Tang. Probabilistic logic neural networks for reasoning.
In NeuRIPS, 2019.

[197] Meng Qu, Yoshua Bengio, and Jian Tang. Gmnn: Graph markov neural
networks. In ICML, 2019.

[198] Qiang Qu, Siyuan Liu, Christian S Jensen, Feida Zhu, and Christos Falout-
sos. Interestingness-driven diffusion process summarization in dynamic net-
works. In ECML, 2014.

[199] Luc De Raedt and Kristian Kersting. Statistical relational learning. In
EML. Springer, 2011.

[200] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Sta-
tistical relational artificial intelligence: Logic, probability, and computation.
Morgan & Claypool Publishers, 2016.

[201] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

[202] Vibhor Rastogi, Nilesh Dalvi, and Minos Garofalakis. Large-scale collective
entity matching. VLDB, 4(4):208–218, 2011.

[203] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In CVPR, 2016.

152

[204] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i
trust you?" explaining the predictions of any classifier. In SIGKDD, 2016.

[205] Matthew Richardson and Pedro Domingos. Markov logic networks. MLJ,
62(1-2):107–136, 2006.

[206] Petar Ristoski, Petar Petrovski, Peter Mika, and Heiko Paulheim. A ma-
chine learning approach for product matching and categorization. SWJ, 9:
1–22, 2017.

[207] Tim Rocktäschel and Sebastian Riedel. End-to-end differentiable proving.
In NeuRIPS. 2017.

[208] Rahmtin Rotabi, Krishna Kamath, Jon Kleinberg, and Aneesh Sharma.
Detecting strong ties using network motifs. In World Wide Web Companion,
pages 983–992, 2017.

[209] Alieh Saeedi, Eric Peukert, and Erhard Rahm. Using link features for entity
clustering in knowledge graphs. In European Semantic Web Conference,
pages 576–592. Springer, 2018.

[210] Amrita Saha, Vardaan Pahuja, Mitesh M Khapra, Karthik Sankara-
narayanan, and Sarath Chandar. Complex sequential question answering:
Towards learning to converse over linked question answer pairs with a knowl-
edge graph. In AAAI, 2018.

[211] Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication us-
ing active learning. In KDD, 2002.

[212] Ruhi Sarikaya, Geoffrey E Hinton, and Anoop Deoras. Application of deep
belief networks for natural language understanding. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, 22(4):778–784, 2014.

[213] Sandeepkumar Satpal, Sahely Bhadra, Sundararajan Sellamanickam, Ra-
jeev Rastogi, and Prithviraj Sen. Web information extraction using markov
logic networks. In KDD, 2011.

[214] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collabo-
rative filtering recommender systems. In The Adaptive Web: Methods and
Strategies of Web Personalization, pages 291–324. Springer, 2007.

[215] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg,
Ivan Titov, and Max Welling. Modeling relational data with graph convo-
lutional networks. In ESWC, 2018.

[216] John Scott. Social network analysis. Sociology, 22:109–127, 1988.

153

[217] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. Collective classification in network data. AI
magazine, 29:93–93, 2008.

[218] Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Interpretable convolu-
tional neural networks with dual local and global attention for review rating
prediction. In RecSys, 2017.

[219] Amit Sharma and Dan Cosley. Do social explanations work? studying and
modeling the effects of social explanations in recommender systems. In
WWW, 2013.

[220] Zeqian Shen, Kwan-Liu Ma, and Tina Eliassi-Rad. Visual analysis of
large heterogeneous social networks by semantic and structural abstraction.
TVCG, 12:1427–1439, 2006.

[221] Lei Shi, Hanghang Tong, Jie Tang, and Chuang Lin. Vegas: Visual influence
graph summarization on citation networks. TKDE, 27:3417–3431, 2015.

[222] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning im-
portant features through propagating activation differences. In ICML, 2017.

[223] Rohit Singh, Vamsi Meduri, Ahmed Elmagarmid, Samuel Madden, Paolo
Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan
Tang. Generating concise entity matching rules. In ICDM, 2017.

[224] Amit Singhal. Introducing the knowledge graph: things, not strings. Official
google blog, 2012.

[225] Parag Singla and Pedro Domingos. Entity resolution with markov logic. In
ICDM, pages 572–582. IEEE, 2006.

[226] Pia Sommerauer and Antske Fokkens. Firearms and tigers are dangerous,
kitchen knives and zebras are not: Testing whether word embeddings can
tell. In EMNLP Workshop on BlackboxNLP, 2018.

[227] Armins Stepanjans and André Freitas. Identifying and explaining discrimi-
native attributes. In EMNLP, 2019.

[228] Michael Stonebraker, Daniel Bruckner, Ihab F Ilyas, George Beskales, Mitch
Cherniack, Stanley B Zdonik, Alexander Pagan, and Shan Xu. Data cura-
tion at scale: The data tamer system. In CIDR, 2013.

[229] David G Stork, Richard O Duda, Peter E Hart, and D Stork. Pattern
classification. Wiley-Interscience Publication, 2001.

154

[230] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core
of semantic knowledge. In TheWebConf, 2007.

[231] Charles Sutton and Andrew McCallum. Piecewise pseudolikelihood for effi-
cient training of conditional random fields. In ICML, 2007.

[232] Aaron Swartz. Musicbrainz: A semantic web service. IEEE Intelligent
Systems, 17:76–77, 2002.

[233] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining. Pearson Education, 2006.

[234] Ben Taskar, Pieter Abbeel, and Daphne Koller. Discriminative probabilistic
models for relational data. 2002.

[235] Nava Tintarev and Judith Masthoff. A survey of explanations in recom-
mender systems. In ICDEW, 2007.

[236] Nava Tintarev and Judith Masthoff. Designing and evaluating explanations
for recommender systems. In Recommender systems handbook, pages 479–
510. Springer, 2011.

[237] Son D Tran and Larry S Davis. Event modeling and recognition using
markov logic networks. In ECCV, 2008.

[238] Rakshit Trivedi, Bunyamin Sisman, Jun Ma, Christos Faloutsos, Hongyuan
Zha, and Xin Luna Dong. Linknbed: Multi-graph representation learning
with entity linkage. In ACL, 2018.

[239] Chun-Hua Tsai and Peter Brusilovsky. Explaining recommendations in an
interactive hybrid social recommender. In IUI, 2019.

[240] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(11), 2008.

[241] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. Graph attention networks. ICLR, 2018.

[242] D Venugopal, S Sarkhel, and V Gogate. Magician: Scalable inference and
learning in markov logic using approximate symmetries. Technical report,
UofM, Memphis, 2016.

[243] Jesse Vig, Shilad Sen, and John Riedl. Tagsplanations: explaining recom-
mendations using tags. In IUI, 2009.

[244] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In CVPR 2001, 2001.

155

[245] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crow-
der: Crowdsourcing entity resolution. In VLDB, 2012.

[246] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. Explainable rec-
ommendation via multi-task learning in opinionated text data. In SIGIR,
2018.

[247] Qifan Wang, Li Yang, Bhargav Kanagal, Sumit Sanghai, D Sivakumar, Bin
Shu, Zac Yu, and Jon Elsas. Learning to extract attribute value from prod-
uct via question answering: A multi-task approach. In KDD, 2020.

[248] Quan Wang, Jing Liu, Yuanfei Luo, Bin Wang, and Chin-Yew Lin. Knowl-
edge base completion via coupled path ranking. In ACL, volume 1, pages
1308–1318, 2016.

[249] William Yang Wang and William Cohen. Joint information extraction and
reasoning: A scalable statistical relational learning approach. In IJCNLP,
2015.

[250] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods
and Applications. Cambridge University Press, 1994.

[251] Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim
Rocktäschel. Nlprolog: Reasoning with weak unification for question an-
swering in natural language. ACL, 2019.

[252] Lior Wolf, Tomer Galanti, and Tamir Hazan. A formal approach to ex-
plainability. In AAAI/ACM Conference on AI, Ethics, and Society, pages
255–261, 2019.

[253] Yao Wu and Martin Ester. Flame: A probabilistic model combining aspect
based opinion mining and collaborative filtering. In WSDM, 2015.

[254] Ye Wu, Zhinong Zhong, Wei Xiong, and Ning Jing. Graph summarization
for attributed graphs. In ISEEE, 2014.

[255] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1):4–24, 2020.

[256] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and Yu Philip S. A comprehensive survey on graph neural networks. vol-
ume 32, pages 4–24, 2021.

[257] Huimin Xu, Wenting Wang, Xinnian Mao, Xinyu Jiang, and Man Lan.
Scaling up open tagging from tens to thousands: Comprehension empowered
attribute value extraction from product title. In ACL, 2019.

156

[258] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Em-
bedding entities and relations for learning and inference in knowledge bases.
ICLR, 2015.

[259] Fan Yang, Ninghao Liu, Suhang Wang, and Xia Hu. Towards interpretation
of recommender systems with sorted explanation paths. In ICDM, 2018.

[260] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting
semi-supervised learning with graph embeddings. In ICML, 2016.

[261] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi
Khandelwal, Brandon Norick, and Jiawei Han. Personalized entity recom-
mendation: A heterogeneous information network approach. In WSDM,
2014.

[262] Yanlei Yu, Zhiwu Lu, Jiajun Liu, Guoping Zhao, and Ji-rong Wen. Rum:
Network representation learning using motifs. 2019.

[263] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolu-
tional networks. In IN ECCV, 2014.

[264] Yongfeng Zhang and Xu Chen. Explainable recommendation: A survey and
new perspectives. Found Trends Inf. Ret., 14(1):1–101, 2018.

[265] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaop-
ing Ma. Explicit factor models for explainable recommendation based on
phrase-level sentiment analysis. In SIGIR, 2014.

[266] Yue Zhang and Arti Ramesh. Learning interpretable relational structures
of hinge-loss markov random fields. In IJCAI, 2019.

[267] Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan
Qi, and Le Song. Efficient probabilistic logic reasoning with graph neural
networks. 2020.

[268] Kaiqi Zhao, Gao Cong, Quan Yuan, and Kenny Q Zhu. Sar: A sentiment-
aspect-region model for user preference analysis in geo-tagged reviews. In
ICDE, 2015.

[269] Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong, and Feifei Li.
Opentag: Open attribute value extraction from product profiles. In KDD,
2018.

157

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Opportunities
	Challenges
	Contributions
	Organization

	Background
	Knowledge Graphs
	Statistical Relational Learning
	Markov Logic Networks
	Probabilistic Soft Logic

	Graph Neural Networks
	Graph Convolutional Networks
	Graph Attention Networks
	Graph Markov Neural Networks

	Data Alignment in Knowledge Graphs
	Introduction
	Preliminaries
	Contrastive Entity Linkage
	Contrast Features
	Overview of
	Phase 1: Identifying Potential Variations
	Phase 2: Extracting Contrast Features
	Contrastive Entity Linkage

	Experimental Validation
	Data
	Approaches
	Performance metrics
	Experimental Results
	Analysis of Entity Linkage
	Hyperparameter Tuning

	Related Work
	Entity linkage for products
	Attribute value extraction

	Conclusion and Future Work

	Fine-grained Data Alignment in Knowledge Graphs
	Introduction
	Preliminaries
	Problem Definition
	Discriminative Attribute Extraction Approaches

	Multitask approach using DiffXtract
	Discriminative attribute identification
	Attribute Value Extraction task
	Multitask Learning

	Experimental Validation
	Data
	Approaches
	Performance Metrics
	RQ1: Discriminative Attribute Extraction Performance
	RQ2: Analysis of Attribute Identification Task
	RQ3: Product Attribute Extraction Task
	RQ4: Sensitivity to

	Related Work
	Product attribute extraction
	Discriminative attribute extraction

	Conclusion and Future Work

	Aggregate Graph Queries in Knowledge Graphs
	Introduction
	Preliminaries
	Statistical Relational Learning
	Graph Neural Networks

	Problem Definition
	Aggregate Graph Queries
	Estimating Aggregate Graph Queries
	Point Estimation Approach
	Expectation-Based Approach

	Analysis of the Estimation Approaches
	Expectation-Based Approach for PSL
	Experimental Validation
	Data
	Approaches
	Performance Metrics
	Performance on AGQs
	Effect of Training Data
	Trade-off between Estimating AGQs and Locally Decomposable Metrics
	Runtime Comparisons

	Conclusion and Future Work

	Model Discovery in Knowledge Graphs
	Introduction
	Preliminaries
	Explainable Templated Graphical Models
	Structure Learning for Templated Graphical Models
	Piecewise pseudolikelihood

	Explainabilty
	End-User Explainability and Accuracy Trade-off
	Stability of the explanation function

	Experimental Evaluation
	Data
	Approaches
	Predictive performance of ESMS
	Trade-off between predictive accuracy and explainability
	Timing Experiment

	Related Work
	Structure Learning:
	Explainability:

	Conclusion and Future Work

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography

