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Here we show that brain seizures can be effectively suppressed through

random modulation of the brain medium. We use an established mesoscale

cortical model in the form of a system of coupled stochastic partial differen-

tial equations. We show that by temporal and spatial randomization of

parameters governing the firing rates of the excitatory and inhibitory

neuron populations, seizure waves can be significantly suppressed. We

find that the attenuation is the most effective when applied to the mean

threshold potential. The proposed technique can serve as a non-invasive

paradigm to mitigate epileptic seizures without knowing the location of

the epileptic foci.
1. Introduction
Epilepsy, characterized by epileptic seizures, is the fourth most common neuro-

logical disorder in the world affecting over 50 million people [1]. Epileptic

seizures start due to simultaneous electric-signal firing by a large number of

nearby neurons. Details of the mechanism that causes this simultaneous firing

are not yet fully understood, but when a bundle of neurons fire together, they col-

lectively form a localized high-energy wave on the surface of the cortex. This

localized high-energy wave then propagates over the surface of the brain, similar

to how water waves propagate in a pond, and may result in a number of physical

effects such as erratic shaking of the body, loss of consciousness, lethargy and pain.

Seizures occur unpredictably. Patients who suffer from epilepsy may be lim-

ited in their daily activity. The most common treatment, useful for approximately

70% of patients, is based on antiepileptic medications and special diets. The other

30% of patients may undergo invasive surgeries, such as removing seizing por-

tions of the cortex or implanting neurostimulators in the body to alleviate their

condition [2]. These invasive treatments do not guarantee complete suppression

of epileptic seizures. Furthermore, the resection surgery risks damaging healthy

brain tissue and can, therefore, cause loss of functionality. For these reasons,

non-invasive treatments to attenuate epileptic seizures are highly desired.

Most existing methods for epileptic seizure control rely on targeting specific

locations of the brain with electric or magnetic stimulation. These modalities

often cannot be applied non-invasively. A number of open and closed loop feed-

back control methods have been proposed to mitigate epileptic seizures through

transcranial electric or magnetic modulation [3,4]. Such methods require launch-

ing a lot of energy that may cause damage to the cortical tissue. Furthermore, the

required resolution to target epileptic foci may not be easily achieved. Recently,

optical stimulation has been proposed for modulation of epiletic activity based

on optogenetic stimulation and inhibition of neural activity [5]. Attenuation

of seizure activity through open-loop optogenetic control has also been computa-

tionally developed. By coupling a mesoscale optogenetic model with a mesoscale

cortical model, a charge-balanced control scheme was introduced, minimizing

damage to cortical tissue [2]. Optical stimulation of neurons requires expression

of opsins in neurons through injection of virus vectors, a procedure which is

not amenable for human testing.
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In vivo experiments in rats have suggested that electric

stimulation through feedback can attenuate seizure activity

[6]. Attenuation of seizure activity by modulating the threshold

potential with electric fields has been observed in rat brain

slices in vitro. Closed and open loop feedback control of exter-

nal electric fields for seizure modulation have been confirmed

through computational models and simulations. Differential,

linear and filter controllers were successfully implemented

and were found to attenuate seizure activity [7]. A charge-

balanced feedback control algorithm was implemented in the

mesoscale cortical model to minimize cortical damage when

applying electrical signals [8]. The use of control mechanisms

serves as the underlying theme in all of these methods to

modulate seizure activity. These non-invasive methods require

sensors to determine when a seizure is occurring, process the

data through a feedback system and then apply the proper

signal to attenuate the seizure. However, proper stimulation

with the correct feedback controller is crucial. This is important

because feedback may not only fail to mitigate the seizure, but

it can also amplify the seizure, disrupt normal brain activity

and be detrimental to the patient. For example, it is shown

that positive proportional feedback can amplify seizure

activity, thus making the condition worse [6].

Here, we present another approach to seizure mitigation

inspired from a wave phenomenon called Anderson localiz-

ation. Localization is the dampening of waves by random

modulation of the medium. For example, ocean waves lose

their energy as they propagate over irregular topography

(random medium). The concept was first discovered by P. W.

Anderson in the context of solid-state physics, for which he

won a Nobel Prize in 1977 [9]. Localization has since been

observed in many other wave systems, and is used today for

engineering purposes [10,11]. For example, in tsunami mitiga-

tion, one approach is to plant coastal vegetation (e.g. random

trees) on the shoreline.

Epileptic seizures are due to collective pathological activity

of a large population of neurons. Therefore, from a mesoscale

perspective, a seizure can be considered as a synchronized col-

lective of waves propagating across cortical regions. We show

here that this wave propagation behaviour can be disrupted

through local modulation of neurons (hypothetically, through

a phased-array of ultrasound transducers) to create multiple

local modes that can dissipate the seizure wave energy.

A major advantage of the proposed methodology is that we

do not need to target the epileptic foci. Therefore, the detection

mechanism does not require high resolution or a dense array of

electroencephalogram (EEG) sensors. We only need to monitor

the magnitude of the epileptic seizure wave (for example, using

EEG) and disrupt it by random modulation of neural activity in

the cortex.

While details of how the required modulation is physically

implemented are beyond the scope of this paper and will be

reported elsewhere, we will discuss the possible use of ultra-

sonic waves to achieve this purpose. It has been recently

demonstrated that ultrasonic waves can modulate (stimulate

and inhibit) neural activity [4]. Ultrasound is a medically safe

imaging modality and has been used for imaging internal

organs and fetuses. In the treatment of brain cancer, high-fre-

quency ultrasound is used to monitor apoptosis in malignant

tumours [12]. It is conceivable that ultrasound can be used to

trigger mechano-signal transduction pathways in biological tis-

sues and cells. Ultrasound in certain frequencies (0.6–0.7 MHz)

has minimal propagation loss in the brain (less than 0.5 dB cm21
MHz), has maximal transcranial transmission, does not inter-

fere with electromagnetic waves and has a relatively small

wavelength [4]. First use of ultrasound for modulating neural

activity was reported by Fry et al. [13–16].

In this paper, we discuss the concept of Anderson localiz-

ation for suppression of tonic–clonic epileptic seizures in the

context of a cortical model. Our proposed method may be

implemented in practice using a variety of approaches includ-

ing electrical, magnetic, ultrasonic or optical stimulation.

Although there are different types of seizure activities such

as absence, myoclonic or atonic seizures, we focus on the gen-

eralized tonic–clonic seizure activity. The cortical model we

use has already been studied and verified to model this type

of seizure [1,2].
2. Mesoscale cortical model
The cortex is a complex network of interconnected neural cir-

cuits consisting of billions of neurons. Precise modelling of

all neural interactions in the human cortex is an elusive goal

of neuroscience and is computationally intractable. In the

past two decades, a tractable mesoscale model of the cortex

in the form of a set of stochastic partial differential equations

(SPDEs) has been introduced [17,18]. Rather than attempting

to model every neuron and neural connection in the cortex,

the equations model the mesoscale electrical dynamics

in the cortex. That is, instead of examining the dynamics of

the soma membrane potential of each individual neuron, the

mesoscale model considers the spatial average of the potential

of a population of neurons. The mesoscale model is expressed

as a set of equations that includes anatomically derived

neuronal connectivities, ionic reversal potentials, and fast

excitatory and inhibitory channel kinetics.

The excitatory mean soma potential he that is modelled by

the mesoscale equations are related to electrocorticogram

(ECoG) and EEG recordings. Electrodes used in EEG and

ECoG record electrical activity of a local region of the cortex.

The data obtained from these recordings are what the mesoscale

equations aim to model. In fact, both EEG and ECoG are related

to the spatially averaged local field potential (LFP), which is

measurable on the scalp (in the case of EEG) or on the surface

of the cortex (in the case of ECoG). In [18], the author argues

that the deviation between the excitatory mean soma potential

and the resting potential is proportional to the LFP. As EEG

data are linearly related to the spatially averaged LFP, we can

conclude that EEG data are proportional to the spatially

averaged excitatory soma potential.

This mesoscale model has been successfully used to study

phenomena such as epileptic seizures [1,2,7,8,19], sleep

[20,21] and anaesthesia [22–24]. In [1], the authors compared

time series data of real seizures with oscillatory activity

exhibited by the mesoscale cortical model. More specifically,

they compared the peak frequency and wave speed of the

observed seizure data with computational simulations from

the model. Therefore, Kramer et al. [1] validates our use of

this model to computationally produce seizures.

The dimensionless mesoscale cortical model relates (i) the

excitatory and inhibitory soma potentials ~he and ~hi, (ii) the

postsynaptic activation input from local excitatory and inhibi-

tory neurons to excitatory neurons Ĩee and Ĩie, (iii) the

postsynaptic activation input from local excitatory and inhibi-

tory neurons to inhibitory neurons Ĩei and Ĩii, and (iv) the long
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range inputs from excitatory neurons to excitatory and inhibi-

tory neurons f~e and f~ i, through the following coupled

SPDEs:

@~he

@~t
¼ 1� ~he þ Geðh0

e � ~heÞ~Iee þ Giðh0
i � ~heÞ~Iie, ð2:1aÞ

@~hi

@~t
¼ 1� ~hi þ Geðh0

e � ~hiÞ~Iei þ Giðh0
i � ~hiÞ~Iii, ð2:1bÞ

1

Te

@

@~t
þ 1

� �2

~Iee ¼ Nb
e

~Se½~he� þ f~ e þ Pee þ G~1, ð2:1cÞ

1

Te

@

@~t
þ 1

� �2

~Iei¼ Nb
e

~Se½~he� þ f~i þ Pei þ G~2, ð2:1dÞ

1

Ti

@

@~t
þ 1

� �2

~Iie¼ Nb
i

~Si½~hi� þ Pie þ G~3, ð2:1eÞ

1

Ti

@

@~t
þ 1

� �2

~Iii¼ Nb
i

~Si½~hi� þ Pii þ G~4, ð2:1fÞ

1

le

@

@~t
þ 1

� �2

f~e ¼
1

l2
e

r2f~e þ
1

le

@

@~t
þ 1

� �
Na

e
~Se½~he� ð2:1gÞ

and
1

li

@

@~t
þ 1

� �2

f~i ¼
1

l2
i

r2f~ i þ
1

li

@

@~t
þ 1

� �
Na

i
~Se½~he�:

ð2:1hÞ

The subscripts ‘e’ and ‘i’ refer to the excitatory and inhibitory

neuron populations, respectively. The double subscripts such

as ‘ei’, for example, mean from the ‘e’ to the ‘i’ population.

For instance, Ĩie represents postsynaptic activation input from

inhibitory neurons to local excitatory neurons. The model con-

solidates neurons into two types, spatially averaged excitatory

and inhibitory neurons, in which local interactions with glial

and extracellular matrix are also incorporated. That is, neurons

and the media surrounding the neurons are merged into a

single entity called the spatially averaged neuron. The connec-

tions between the neurons are consolidated into local

(neighbouring) ðIee,Iie,Iei,IiiÞ and long range (cortico-cortical)

ðfe,fiÞ1 interactions.

Equation (2.1a) describes the time evolution of the excit-

atory soma potential ~he as a function of itself and the

postsynaptic activation input from local excitatory Ĩee and

inhibitory neurons Ĩie. Similarly, equation (2.1b) describes

the time evolution of the inhibitory soma potential ~hi as a

function of itself and the postsynaptic activation input from

local excitatory Ĩei and inhibitory neurons Ĩii. Equations

(2.1c) through (2.1f ) relate the time evolution of the postsyn-

aptic activation inputs between local neurons ~Iee,~Iei,~Iie,~Iii as

functions of firing rates of neurons ~Se, ~Si, long range

cortico-cortical inputs from excitatory neurons ~fe, ~fi, and sub-

cortical inputs Pee þ ~G1, Pei þ ~G2, Pie þ ~G3, Pii þ ~G4, where
~Gk, k [ f1,2,3,4g are the stochastic components.

Equations (2.1g) and (2.1h) relate the time and space evol-

ution of the long range cortico-cortical inputs ~fe, ~fi with the

firing rate of the excitatory population. Each of the eight

dynamical variables are functions of dimensionless space

and time (~x, ~y,~t). The topology is implicitly defined by the

equations. A graph of the relationships between all these con-

nections can be easily drawn from the equations. For a

diagram of all these connections, see [18].

The two firing rate ~S functions

~Se½~he� ¼
1

1þ exp½�~geð~he � ~ueÞ�
ð2:2aÞ
and

~Si½~hi� ¼
1

1þ exp½�~gið~hi � ~uiÞ�
ð2:2bÞ

model the firing rates of the exictatory and inhibitory neuron

populations, respectively, as a function of their membrane

potentials. These sigmoid functions were originally derived

in [18] and then reformulated to their dimensionless form

in [1]. We discuss these functions in further detail in §3.2.

In this paper, we will modify these functions to incorporate

coupling between the parameters in the functions. A table

defining all the coefficients in this model is provided in

appendix A.
3. Implementation
3.1. Numerical details
We now describe how the mesoscale cortical model is numeri-

cally implemented for simulations. The numerical method

of lines [25] is adopted to solve the system of SPDEs. The

spatial derivatives are discretized first to create a system of

ordinary differential equations which is integrated forward in

time. The second derivative in space is discretized with a

second-order accurate central difference formula and the

two-dimensional Laplacian operator is discretized using a

5-point stencil [25]. The resulting system of ordinary differen-

tial equations (with stochastic forcing) are integrated forward

in time with a fourth order Runge–Kutta method.

We now explain how the stochastic inputs in the equations

are implemented. Suppose the spatial step size is D~x, and the

time step size is D~t. Random inputs ~G1,2,3,4 at location

~x ¼ mD~x and time ~t ¼ nD~t are determined by drawing from

the following independent normal random variables [8]:

~G1ðm,nÞ � aee

ffiffiffiffiffiffiffi
Pee

pffiffiffiffiffiffiffiffiffiffiffi
D~xD~t
p N ð0,1Þ, ð3:1aÞ

~G2ðm,nÞ � aei

ffiffiffiffiffiffi
Pei

pffiffiffiffiffiffiffiffiffiffiffi
D~xD~t
p N ð0,1Þ, ð3:1bÞ

~G3ðm,nÞ � aie

ffiffiffiffiffiffi
Pie

pffiffiffiffiffiffiffiffiffiffiffi
D~xD~t
p N ð0,1Þ ð3:1cÞ

and ~G4ðm,nÞ � aii

ffiffiffiffiffiffi
Pii

pffiffiffiffiffiffiffiffiffiffiffi
D~xD~t
p N ð0,1Þ, ð3:1dÞ

where N ð0,1Þ are independent, identically distributed stan-

dard normal random variables, and a ¼ aee ¼ aei ¼ aie ¼ aii

are user-determined parameters. We discuss how the value a

is chosen in §3.1.1.

To explain what is happening, let us only consider ~G1. The

same reasoning will apply to ~Gi i [ f2,3,4g. Recall from (2.1)

that the subcortical input from excitatory neurons to excit-

atory neurons is Pee þ ~G1, where Pee is a constant and ~G1 is a

stochastic input. This modelling choice is saying that the sub-

cortical input is a random process in which at every point in

space and time, the value of the subcortical input is deter-

mined randomly by drawing from some random variable.

A Gaussian white noise process is a common choice to

model ~G1 [1,2,8] because when it is integrated in time, the

result is a Brownian motion, and because the fluctuations

are uncorrelated (d-function correlated) [26]. As we discretize

the cortex to simulate the model, we must also discretize the

white noise process. We do this by drawing from independent,

identically distributed standard normal random variables
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Figure 1. One-dimensional cortical simulations: control case, no localization. The parameter values are chosen so that the the cortex is in a susceptible seizure state
as defined by Kramer et al. [1], i.e. Pee ¼ 548.0, Ge ¼ 0.0008, except a ¼ 0.633. (a) The time evolution of the excitatory soma potential over a period of six
seconds. Note that the system is initially set near equilibrium, but because of stochastic inputs, seizures spontaneously form around t ¼ 1 s and propagate through-
out the entire domain. (b) The time evolution of the excitatory soma potential at a single point x ¼ 350 mm. Observe that the soma potential initially fluctuates
around the equilibrium solution before exhibiting large oscillations in time. (Online version in colour.)
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N ð0,1Þ for each space and time discretization point (m,n), and

then scaling the variance by multiplying each sample by

aee

ffiffiffiffiffiffiffi
Pee

p
=
ffiffiffiffiffiffiffiffiffiffiffi
D~xD~t
p

. The variance is scaled according to the spatial

and temporal discretizations so that the noise is d-function cor-

related as D~t,D~x! 0. Note that one can control the variance of

the subcortical inputs by changing aee.
3.1.1. Initial and boundary conditions
The initial conditions we choose are related to the equili-

brium solution of the system, which is the solution to the

model (without stochastic inputs) that does not change in

space or time. The equilibrium solution is found by setting

the time and spatial derivatives to be zero, and the stochastic

inputs to be zero (@=@t! 0, r ! 0, ~Gk ! 0). This will result

in a set of algebraic equations for which we can solve for the

state variables. Setting the initial conditions precisely at equi-

librium is unrealistic as the cortex is never in a uniform

equilibrium state. Instead, we add noise to the equilibrium

conditions to get a more realistic initial condition. So for

every point in space, we offset the equilibrium values by ran-

domly adding a value drawn from a normal distribution. The

addition of random noise is an attempt to model normal

brain activity before it goes into a seizure state.

Whether or not a seizure forms in this model is mostly

dependent on the influence of input on the excitatory soma

potential (Ge) and subcortical input to the excitatory neuron

populations (Pee). This hypothesis is thoroughly argued

in [1]. The parameter a, which controls the magnitude of ran-

domness from subcortical inputs, also matters. However,

there is neither a commonly accepted value nor a physically

meaningful way for determining a. For example, Selvaraj

et al. [2] assumes a large range of 0.001–1.15 for a to demon-

strate the robustness of optogenetic control. In the upcoming

one-dimensional simulations of the model, we chose a so that

there would be some normal brain activity in the first second

before exhibiting seizure activity (which is manifested in the

form of oscillations in space and time). This can be seen in

figure 1. If the initial conditions are too close to equilibrium

or if the noise in the system a is too weak, then seizure

activity may not begin for a long time.
Periodic boundary conditions are implemented for both

the one- and two-dimensional versions of the cortical

model. This is a common modelling assumption as we do

not know the exact geometry of the cortex [1,2].

One may ask how does one know if the data produced

from the chosen initial conditions correspond with seizures.

Recall from §2 that in [1], the authors compared time

series data of real seizures with simulated data generated

from the mesoscale model. They found that the average

frequency of maximum power and wave speed of the simu-

lated seizure matched well with real seizures. Therefore, we

may safely assume that the results from this model accurately

simulate seizures.
3.1.2. Examples of simulated seizures
We show examples of seizure formation and propagation in

figures 1 and 2. The main quantity we are studying is the excit-

atory soma potential ~he. In the one-dimensional case (figure 1),

the spatial step size is D~x ¼ 0:05, and the temporal step size is

D~t ¼ 0.0025. These correspond to dimensional step sizes of

Dx ¼ 14 mm and Dt ¼ 0.1 ms. As neurological processes take

place with the resolution of about 1 ms (approximately equal

to the refractory period), it is valid to use time steps of

around that magnitude to properly capture the dynamics of

the system. Furthermore, using smaller spatial time steps

may be invalid as the model we are using is a mesoscale

model. More specifically, as the mesoscale model is related

to the LFP, there would be no valid physical justification to

use an arbitrarily small spatial step. Most parameters chosen

for the one-dimensional case are the baseline cortical par-

ameters described in [1], which are listed in table 2 in

appendix A, except for Pee ¼ 548:0, Ge ¼ 0:0008, a ¼ 0:633.

These amended parameters correspond to a seizure state of

the cortex (cf. [1]).

In figure 2, we show a two-dimensional seizure simulation.

We use the same parameters as the one-dimensional case

except for a ¼ 0.002 and the temporal step size of D~t ¼ 0:025.

This step size corresponds to the dimensional step size of

Dt ¼ 1 ms (cf. [2]). Figure 2 shows that even though the initial

conditions are chosen such that the cortex is near equilibrium,

the stochastic inputs lead to strong coherent oscillations which
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correspond to seizures. The more interesting result is the

propagation of spiral waves through space. This further

demonstrates and supports the wave like nature of seizu-

res as presented by past computational research [2,27].

While the actual surface area of the human cortex is

around 500 � 500 mm, we can better demonstrate the wave

nature developed by seizure waves by adopting the larger

1400 � 1400 mm domain [2].
3.2. Modifying the firing rate functions
Now we come back to discuss the neuron firing rate func-

tions, which will become important for localization. We

first restate equation (2.2) in its dimensional form to get a

clearer picture of all the parameters involved in this model:

Sj½hj� ¼
Smax

j

1þ exp½�gjðhj � ujÞ�
: ð3:2Þ

This model is sufficient in describing the firing rate of each

population of neurons as a function of their soma potentials

when the parameters governing the firing rate, gj, which

describes the spread of threshold potentials across neurons,

uj, which is the population mean threshold potential and

Smax
j , the maximum firing rate, are held constant. However,
this equation is not sufficient when the parameters of the

function may be changing in space or time. We may naively

assume that to incoporate spatial and temporal inhomo-

geneity in the parameters, we only need to replace the

constants with functions. This will not work because this

model is only an approximation of a more complex model

that may no longer be valid with inhomogeneous parameters.

Equation (3.2) is an approximation of the more accurate

firing rate function of j [ fe, ig type neuron population

Sj½hj� ¼
Smax

j

1þ ð1� rsSmax
j Þ exp½�gjðhj � ujÞ�

, ð3:3Þ

where rs is the absolute refractory period, the time in which a

neuron is firing and obviously cannot be triggered to fire

again. It is common to assume that rsSmax
j � 1 such that

equation (3.3) reduces to equation (3.2) [18]; however, as we

are considering randomizing the parameters (i.e. letting them

vary with time and space), neglecting this value can lead to

wrong results. Equation (3.4) shows how the maximum firing

rate is coupled with the threshold potential. This equation

can be derived by finding the inflection point of (3.3). In the

upcoming simulations, we assume rs ¼ 1 ms, which is about

the time for a neuron to be depolarized past the activation



rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20160872

6
potential threshold, fire, and then polarize [18]. From appendix

A, Smax ¼ 500 Hz so rsSmax � 0:5, which is not negligible.

Equation (3.4) shows coupling between Sj
max, uj and gj. Fixing

any one of the three parameters, while changing another par-

ameter will invariably change the third parameter. That is,

no one parameter can be changed independently of the other

two parameters. Clearly we see that randomizing parameters

in the approximation (3.2) will not exhibit this coupling.

u 0j ¼ uj þ
1

gj
logð1� rsSmax

j Þ: ð3:4Þ

With the incorporation of the rsSj
max term, we need to calculate

new ue and ui values as they were offset by �1=ge log 2 and

�1=gi log 2, respectively. The new dimensionless firing rate

function is therefore obtained as

~Sj½~hj� ¼
1

1þ ð1� rsSmax
j Þ exp½�egjð~hj � ~ujÞ�

: ð3:5Þ

Note that we do not change rsSmax
j as it is already a dimension-

less term. All the upcoming simulations use the modified

dimensionless firing rate function.
3.3. Implementing localization
To disrupt seizure waves, we apply the Anderson localization

idea here. This requires randomizing the cortical medium

through which the seizure wave is propagating. This is a gen-

eral concept and can be applied to any type of wave system.

For example, in the case of ocean waves, the seabed is ran-

domized by small ripples to achieve localization [10,11]. For

the electrical waves propagating on the cortex, table 2 in

appendix A presents all the possible parameters in the

scope of the mesoscopic model that can be potentially

tweaked to disrupt the seizure. Most of these parameters

are difficult to change externally because they characterize

the anatomical and physiological structure of the cortex. For

example, changing parameters such as the number of synap-

tic connection between neurons Na,b
e,i , or the sub-cortical

inputs Pee,ei,ie,ii to the neurons is formidable as they define

physiological and deep intercortical interactions and cannot

be changed easily. We, therefore, focus our attention on the

parameters governing the firing rates ~Sj½~hj� of the populations

of neurons. The physical mechanism of randomizing these

parameters is beyond the scope of this paper. However, a

few possible methods include using non-invasive ultrasound,

electrical stimulation or optogenetic stimulation to modulate

the firing rates of neurons [4].

To achieve localization, the constant parameters Smax
j , gj

or uj will be replaced with random processes, or random

functions of space and time. How this is implemented is

as follows:

Smax ! Smax½1þ s1N ð0,1Þ�, ð3:6Þ
g! g½1þ s2N ð0,1Þ� ð3:7Þ

and u! u½1þ s3N ð0,1Þ�, ð3:8Þ

where sk are the standard deviations of the normal distri-

bution N ð0,s2
kÞ. In other words, at each point in space and

time, we replace the original parameter, say ue, with a

sample drawn from a normal distribution with mean ue

and variance u2
es

2
1. As there are two populations of neurons,

there are a total of six parameters that can be randomized:

Smax
e , Smax

i , ge, gi, ue and ui. In the following section, each

of these parameters will be randomized over a range of
variances to see how they affect the propagation of the

seizure waves. We begin with a discussion of simulations

that will serve as the control cases. Then the effectiveness of

localization is first discussed for the one-dimensional

model, which will motivate discussion and provide insight

for the two-dimensional model.
4. Seizure suppression in one-dimensional
mesoscale model

The one-dimensional cortical model with periodic boundary

conditions can be interpreted as modelling EEG or ECoG

data with linear strip electrodes around the scalp [1]. In this

section, we will simulate seizures using the one-dimensional

cortical model and suppress them via localization. Ran-

domizations in both space and time are run for each of the

six parameters over a range of variances. We first allow the

seizure to form in the first three seconds of the simulations.

Afterwards, localization is applied for a period of three

seconds. The vertical line at t ¼ 3 s in the following plots

shows the onset of applying the localization. The control

case (i.e. with no localization applied) is shown in figure 1.

Each simulation uses the exact same stochastic inputs ~Gk

and initial conditions. The spatial step size is h ¼ 0.05 and

the temporal step size is k ¼ 0.0025. These correspond to

dimensional step sizes of Dx ¼ 14 mm and Dt ¼ 0.1 ms. All

results are confirmed to be converged. Specifically, we

tested a few cases of localization with different spatial and

temporal step sizes and showed that the effects of localization

are not dependent on the step size. In the discussion, we

provide a brief demonstration of convergence.

4.1. Qualitative effects of localization
We begin by showing simulations of localization in action,

and discuss their qualitative features.

4.1.1. Randomizing ue
Randomizing ue, the mean excitatory threshold potential

in space and time suppresses seizures successfully by reduc-

ing the seizure amplitude. Figure 3a,b shows localization

applied through randomizing ue in both space and time

with s ¼ 0.20. We can see that the seizure is completely

attenuated within 0.5 s throughout the domain due to the

random temporal and spatial perturbations. Note that the

oscillations are centred around the equilibrium potential

he�253 mV. This result is similar to the closed loop control

of an external electric field to suppress seizure activity [8].

4.1.2. Randomizing ui
Randomizing ui, the inhibitory population threshold poten-

tial decreases the frequency of the seizure oscillations as the

underlying randomization increases in variance. Figure 4

shows localization being applied by randomizing ui in both

space and time. The general trend is that low values of s,

such as s ¼ 0.15 (figure 4a,b), show little to no seizure attenu-

ation at all. However, as s is increased, we see seizure

attenuating in an unusual way. Rather than suppressing the

amplitude of the oscillations in space and time, the frequency

of the seizures is reduced. In figure 4c,d, s ¼ 0.30, we see that

the seizure is more spaced out, suggesting that the frequency

has decreased. This is confirmed in figure 4d in which we can
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Figure 4. Spatial and temporal localization on ui for s ¼ 0.15 (a,b) and s ¼ 0.30 (c,d) with baseline parameters of the cortex except Pee ¼ 548.0, Ge ¼
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see that the frequency of the seizure has decreased dramati-

cally, but the amplitude is only slightly affected. If s is

increased further, we will see that the frequency will be

further reduced until the seizure is completely eliminated

(not shown here). Observe that oscillations in excitatory

soma potential are centred around the resting potential of

the neuron, he�270 mV. This result is similar to the open

loop optogenetic control of inhibitory neurons [2].
4.1.3. Randomizing Se
max

Randomizing Smax
e , the maximum excitatory firing rate, will

also decrease the amplitude of seizures, although only with

higher variances than what was needed for ue. Figure 5a,b
shows localization being applied by randomizing Smax

e in

both space and time with s ¼ 0.3. The mechanism for

the suppression is most probably due to the fact that it is

coupled with ue. That is, randomizing Smax
e also indirectly
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randomizes ue. But we see some sort of ‘delay’ as the seizure

does not attenuate as quickly or as uniformly. In the ue cases,

we saw that seizure attenuation started soon after t ¼ 3 s and

that the seizure attenuated uniformly everywhere.

4.1.4. Randomizing Si
max

Randomizing Si
max, the maximum firing rate of the inhibi-

tory population does not sufficiently attenuate seizures.

Figure 5c,d shows localization being applied by randomizing

Smax
i with s ¼ 0.50 in both space and time. While extremely

subtle, the frequency of the seizures is, in fact, being

decreased as s is increased. The frequency before localization

is approximately f0 ¼ 9.5 Hz, and after is f1 ¼ 7 Hz. As we are

applying localization to inhibitory neurons, this effect is con-

sistent with the case when applying randomization to ui,

but with less success. Even with a larger amplitude of

noise, i.e. s ¼ 0.50, we can barely see any attenuation.

4.1.5. Randomizing ge
Randomizing ge will attenuate seizure amplitude, but only

with high variances. Figure 6 shows localization being applied

by randomizing ge in space and time withs ¼ 0.25 ands ¼ 0.5.

This example shows that randomizing ge with low variances

does not have a noticeable effect on the seizure; only at high

variances do we see seizure attenuation happen relatively

quickly throughout the domain. It is important to note that
the level the standard deviations needs to be to attenuate

seizure for ge is much higher than for other parameters.

4.1.6. Randomizing gi
Randomizing gi reduces seizure frequency, but does not elim-

inate seizures completely. Figure 7 shows localization being

applied through randomizing gi with s ¼ 0.25 shown in

figure 7a,b, and s ¼ 0.5 shown in figure 7c,d. This figure

demonstrates the difficulty of attenuating seizures by rando-

mizing gi. As we are applying localization to inhibitory

neurons, we see that the frequency of the seizures is decreased

ass is increased, which is similar to the cases for ui. However, it

requires much higher s to achieve similar levels of attenuation.

4.2. Evaluating efficacy of localization quantitatively
From figures 3–7, one can roughly see that by randomizing

ue,ui and Se, the oscillatory behaviour of a seizing cortex

is suppressed. To quantify and compare the efficacy of

localization, we need to define a metric for seizure suppression.

Typically for wave phenomena, one looks at the fre-

quency and amplitude of the wave to estimate the energy.

In our case, looking at these quantities alone will not be a

sufficient measure because we have seen that the seizures

are attenuated in two ways: a decrease in amplitude or a

decrease in frequency. Therefore, a better metric must be

used. In [28], the authors propose a metric called ictality,
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which is based on the autocovariance of the excitatory soma

potential over time at a single point in space. Given data of

the excitatory soma potential ~he over time at some point in

space, we can calculate the ictality by first plotting the

autocovariance of ~he, and then dividing the height of

the second-order peak by the first-order peak. This pro-

cedure is equivalent to plotting the autocorrelation of ~he

and finding the value of the second peak as the autocorrela-

tion is the autocovariance normalized according to the

variance of the signal. See figure 8 for an example of

calculating the ictality of a seizure.

Ictality measures how periodic ~he is over time. If the

signal is close to a sinusoid, then the data is highly correlated

with itself, so the autocorrelation will decay very slowly, and

the ictality will be high. If the signal is very noisy with no dis-

tinct period, then the data will not be correlated, so the

autocorrelation will decay very quickly, and the ictality will

be low. Seizures are characterized by oscillatory behaviour

of ~he. A cortex undergoing a seizure will see ~he be more cor-

related with itself. Therefore, during a seizure, the ictality will

be high. We can use this measure to see if ictality of the

seizure decays with greater randomization of the parameters.

As localization relies on random inputs, a more statisti-

cal study is required. We perform an ensemble of simulations

for the one-dimensional case. For each parameter (ue,ui,Se,

Si ,ge,gi), we performed approximately 10 simulations for each

relative standard deviation from s ¼ 0.05 to s ¼ 0.5. Then for

each simulation, we calculated the ictality of the seizure 0.5 s
after localization is applied at every point in the domain and

took their mean. These data are plotted in figure 9.

Clearly this shows that the best candidates for localization

are ue and Se. While ui and Si also show decay, these results

are questionable as the attenuated seizure converges near

the resting potential rather than at the equilibrium potential.

Furthermore, this also shows that the parameters ge and gi

are not effective for mitigating seizures, or at least far less

effective than other parameters.
5. Seizure suppression in two dimensions
We now apply localization for all of the six aforementioned

parameters by randomizing them at different variances in

the two-dimensional model. We will compare the upcoming

simulations to the control simulation in figure 10, which was

run for total time t ¼ 1 s on a 700 � 700 mm size domain. The

parameters used to run these simulation are the baseline par-

ameters of the seizure state as defined in [1] and used in [2]

(except for Ge ¼ 0.66 � 1023, Pee ¼ 548.00, a ¼ 1.15) in order

to compare effectiveness of seizure attenuation with past

methods such as optogenetic control [2] and closed loop feed-

back through electrical stimulation [8]. Periodic boundary

conditions are implemented and the initial conditions are

the equilibrium solution that is randomly perturbed. For

each of the following simulations, we provide two plots.

Plot (a) shows a one-dimensional cross section of the plane
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over time at y ¼ 350mm. Plot (b) shows the evolution of the

excitatory soma potential at a single point in the one-dimen-

sional cross section at x ¼ 350 mm. Localization is applied at

t ¼ 0.5 s for all simulations. The spatial step size is h ¼ 0.05,

which corresponds to 14 mm for both x- and y-axes. The

temporal step size is k ¼ 0.025, which corresponds to 1 ms.
5.1. Simulations
5.1.1. Randomizing ue
Similar to the one-dimensional case, randomization of ue

reduces the amplitude of seizures. Figure 11a,b shows
localization applied to ue with s ¼ 0.25 through randomization

in both space and time. Randomizing the medium interrupts the

seizure propagation and attenuates the seizure. Qualitatively,

we note that the attenuation in two dimensions is not as effective

as in the one-dimensional case. The residual oscillations in the

two-dimensional case have larger amplitudes.

5.1.2. Randomizing ui
Randomizing ui suppresses seizures by reducing the seizure

wave frequency. In figure 12a,b, localization is applied by ran-

domizing ui in both space and time. Note that it is far easier

to attenuate seizure by modulating the threshold potential of
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inhibitory neurons in the two-dimensional case than in the

one-dimensional case. In the two-dimensional case, rando-

mizing ui with s ¼ 0.15 will result in complete attenuation

while in the one-dimensional case, we need s ¼ 0.45. Similar

to the one-dimensional case, random modulation of the

inhibitory neurons decreases the frequency rather than the

amplitude of the seizures.
5.1.3. Randomizing gi
Figure 12c,d shows localization being applied by randomizing gi

in both space and time with s¼ 0.2. Note that as we are modu-

lating inhibitory neurons, the excitatory soma potential

converges near the resting potential of neurons, rather than
near equilibrium. Fluctuating near the resting potential is not

representative of a real life scenario. Also note that the seizure

is completely eliminated, which contrasts with the one-

dimensional simulations. Figure 7 shows that the seizures are

beginning to attenuate, but at s¼ 0.5, the seizure is barely per-

turbed. However, figure 12c,d shows that randomizing gi with

just s¼ 0.2, we can see complete attenuation.
5.1.4. Randomizing ge, Se
max, Si

max

Randomizing ge does not attenuate seizures. Figure 13a,b
shows localization being applied by randomizing ge in

both space and time with s ¼ 0.3. This confirms the one-

dimensional result that randomizing ge to attenuate seizures
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is quite difficult. The amplitude decreases very slightly after

localization. Also, from figure 13c– f, we see that randomizing

Se
max, Si

max does not attenuate seizures in two dimensions.

In neither case do we see much seizure attenuation as

compared to the control case. This is different from the one-

dimensional modulation of these parameters, where we saw

some attenuation at s ¼ 0.25.
6. Discussion
Using a mesoscale model of the cortex, described by the set of

coupled nonlinear SPDEs in §2, we showed how randomly

modulating different parameters governing the firing rates

of neurons affects the propagation of seizure waves in the

brain. From the results presented in §§4 and 5, we can see

that localization of seizure waves is the most effective when

randomization is applied to ue and ui, the parameters describ-

ing the population mean threshold potential for excitatory
and inhibitory, respectively. In the case of randomizing ue,

using a standard deviation of only s ¼ 0.20 times ue, reduced

the seizure to incoherent oscillations (figure 3). For ui, we saw

annihilation of the seizure, in which the frequency was

reduced (figure 4). We achieved similar results in two dimen-

sions for ue when s ¼ 0.25 (figure 11) and for ui when s ¼

0.15 (figure 12a,b). However, there is a key distinction

between the two cases: randomization of ue results in ~he con-

verging close to the equilibrium state of the cortex, while

randomization of ui results in ~he converging to a fixed state

of the system first described by [1] in dynamical systems

theory, which happens to be approximately the resting poten-

tial of neurons. The latter case cannot be a real physiological

state of the cortex after seizure disruption. Another interest-

ing difference is that randomizing ue reduces the seizure

amplitude, but not the frequency (figures 3 and 11), while ran-

domizing ui reduces the seizure frequency, but not the

amplitude (figures 4 and 12a,b). These phenomena can be

explained by looking at how excitatory and inhibitory neurons
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Table 1. Variables of the dimensionless SPDE cortical model from table 1
of Kramer et al. [1] and Steyn-Ross et al. [23].

symbol definition description

~he,i he,i=hr dimensionless

population

mean soma potential
~Iee,ie Iee,ieGe=ðge expð1ÞSmaxÞ total input to

excitatory synapses
~Iei,ii Iee,ieGi=ðgi expð1ÞSmaxÞ total input to

inhibitory synapses
~fe,i fe,i=Smax long range inputs to

e,i populations
~t t=t dimensionless time

~x x=ðt~vÞ dimensionless space
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function in cortical activity. Among all the possible varia-

bles that we could modulate in the mesoscale model of the

cortex, we found these two variables to be the most effective

in attenuating the electrical activity in the fastest possible

way. It is quite conceivable that randomizing a proper combi-

nation of theses two variables might be the optimum scenario

to localize the seizures, which of course needs to be tested

against practical limitations.

In the one-dimensional model, randomizing ge and gi

resulted in slight attenuation of seizures at the levels where sup-

pression occurred for the uj cases. At s ¼ 0.25 (figures 6a,b and

7a,b), there is very little observable attenuation. Only at s ¼ 0.5

(figures 6c,d and 7c,d) do we see attenuation for the ge case and

some semblance of efficacy for the gi case. In two dimensions,

randomizing ge results in little attenuation (figure 13a,b).

For gi, we find that with s ¼ 0.2, seizures are also completely

eliminated (figure 12c,d). However, this result is questionable

as it was not as prominent in the one-dimensional case. The

efficacy of randomization of the maximum firing rate par-

ameters is harder to judge. In one dimension, we saw

that randomization of Se
max attenuated seizures for s ¼ 0.3

(figure 5a,b), but no noticeable effect could be seen for Si
max at

s ¼ 0.5 (figure 5c,d). In two dimensions, randomizing neither

Se
max nor Si

max attenuated seizures (figure 13c– f ).

To quantify how effectively we can mitigate seizure waves,

we need to define a figure of merit. Defining a universal figure

of merit is challenging as modulating the excitatory threshold

potential will reduce seizure amplitude, while modulating

inhibitory neuron threshold potential will reduce seizure

wave frequency. Therefore, a measure simply based on the

amplitude will fail to capture the mitigation of seizure in the

latter case. The authors in [28] argue that looking at the auto-

correlation plots of ~he provides a good metric for intensity of

seizures, in which the magnitude of seizure strength is related

to how fast the autocorrelation plot of a seizure at a point

decays. Therefore, their metric was applied to large batches

of simulations and was found to be a good measure of seizure

strength. We are able to quantitatively see in figure 9 that the

ictality of the seizure decays with s and that ue is the best can-

didate to apply localization.

Recall that with a modified firing rate function, we estab-

lished that these model parameters are coupled with each

other. Therefore, randomization of one parameter would

result in the randomization of other parameters. Such
couplings are usually ignored. However, we established coup-

ling between the maximum firing rate and the population

threshold potential and showed that completely neglecting

the coupling will be insufficient in applying localization to

the model. For future work, we can improve the model by con-

sidering deterministic spatial and temporal inhomogeneities of

these parameters, which can cause further possible coupling

effects. This would require re-derivation of the population

neuron firing rate transfer function.

In all of the results we presented, the cortex was approxi-

mated as discrete points and randomization was applied at

each grid point. We show here in a few exemplary cases

that our results are not grid dependent and are converged.

Figure 14 shows two cases of randomization in both space

and time being applied to ue with s ¼ 0.2 in the two-dimen-

sional cortical model. In figure 14a, we use Dx ¼ 14 mm and

Dt ¼ 0.1 ms. In figure 14b, we use Dx ¼ 7 mm and Dt ¼ 7 ms.

Note that the underlying randomness is not the same. These

show similar effectiveness of randomization. The former case

is a reduction of the time step by a factor of 10, the latter case

is a reduction of the spatial step by two. These plots show

that the effectiveness of localization is not dependent on



Table 2. Parameters of the dimensionless SPDE cortical model from table 2 of Kramer et al. [1] and Steyn-Ross et al. [23].

symbol definition description typical value

Ge,i
Ge,i expð1ÞSmax

ge,ijhrev
e,i � hrj influence of input on membrane potential 1:42� 10�3, 0:774

h0
e,i hrev

e,i =hr dimensionless cell reversal potential �0:643, 1:29

Te,i tge,i dimensionless neurotransmitter rate constant 12:0, 2:6

le,i t ~nLe,i dimensionless characteristic cortico-cortical length scale 11:2, 18:2

Pee,ie pee,ie=Smax subcortical input to excitatory population 11:0, 16:0

Pei,ii pei,ii=Smax subcortical input to inhibitory population 16:0, 11:0

Na
e,i — number of synaptic connections from distant e populations to e and i populations 4000, 2000

Nb
e,i — number of synaptic connections from local e and i populations 3034, 596

~ge,i ge,ihr slope of dimensionless sigmoid function at inflection point �19:6,�9:8
~ue,i ue,i=hr dimensionless e,i population threshold potential also the inflection point �0:857,�0:857
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grid size or underlying randomness and are indeed

converged.

Further research is needed to translate the randomization

of mesoscale model parameters to physical means of modulat-

ing the neural activity in the cortex. For example, it has been

shown that cortical neural circuits can be stimulated using

non-invasive ultrasound waves [4], where both excitatory

and inhibitory pathways can be stimulated by using the ultra-

sound at the appropriate frequency. Also, it has been shown

that the neural firing rate in the retina can be modulated by

using ultrasound at different frequencies or different powers

[29]. The implementation of the intervention mechanism can

be based on electrical, magnetic or ultrasonic stimulation of

local neural activity. We propose that an array of ultrasonic

transducers can be designed to generate the patterns of interest

in the cortex to localize seizure waves. It should be noted

that in this method, we would not need prior knowledge

of the epileptic foci and the ultrasonic array would generate

the ‘random’ pattern of interest to disrupt epilepsy seizure

waves. This would become even more interesting when the

ultrasonic array would function in an adaptive way to account

for variations among subjects. Obviously, such an imple-

mentation requires careful study of potential side effects on

cortical regions.

In the proposed technique, seizures would be disrupted

when the randomization system is on. Therefore, we are not

claiming that the parameters of the biological system would

be permanently changed. The spontaneous phase transitions

as a result of an external intervention can prevent seizure

waves from propagation throughout the brain right after

the onset of seizure. As a future clinical utility of this tech-

nique, one could imagine a wearable device that would

launch a pattern of ultrasound waves from outside the

skull to disrupt seizure. Having said that, we cannot rule

out the potential of long-term permanent changes that

might result in curing epilepsy through a gradual in situ
learning process.

Finally, we comment that a seizure state has been shown to

be correlated to a Hopf bifurcation in the phase space of he2Ge

parameters of the mesoscale model [1]. In other words, the

brain goes into a seizure state when a stable equilibrium in

he2Ge phase diagram turns into an unstable equilibrium and

two new stable equilibria are formed about this newly formed

unstable equilibrium. Our simulations show that with the
introduction of proper excitations, the Hopf bifurcation in the

phase diagram no longer exists.
7. Conclusion
In this paper, we have shown the possibility of using Anderson

localization to disrupt seizure waves exhibited by a mesoscale

cortical model. Borrowing the concept of Anderson localization

from solid state physics, we have presented here, for the first

time, the effects of random modulation on the cortical model

as a means of seizure attenuation by randomizing the par-

ameters governing the firing rate of a population of neurons.

We first showed the control cases for comparison and confir-

mation of past research. The one-dimensional cortical model

characteristics described in [1] and two-dimensional cortical

model characteristics [2] were considered. The travelling

waves in the one-dimensional model and the spiral like waves

described by [2,27] were confirmed. We also took into account

possible coupling between parameters, and used a more precise

equation to describe the firing rates of the two populations as a

function of their soma potentials in our simulations to properly

explore localization. We demonstrated the possibility of seizure

suppression by randomizing the six parameters affecting the

firing rate transfer function in both one- and two-dimensional

cases. Spatial and temporal randomization were applied to

each of these parameters at different variances to observe the

effect over a large range of randomization parameters. We

identified the most effective parameters to be the population

mean threshold potential for excitatory and inhibitory path-

ways, i.e. ue and ui. In our proposed method, disruption of

seizure waves can be simply carried out using random modu-

lation and does not require any knowledge of how exactly

seizure waves are formed in the cortex. We hope that this com-

putational study will motivate future experimental and

mathematical studies.

Competing interests. We declare we have no competing interests.

Funding. The authors are grateful for the kind support from the
Hellman Foundation.
Endnote
1Technically fe,fi should be written as fee,fei, respectively. But as
the model does not consider fie,fii, the first subscripts are dropped.
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Appendix A
Tables 1 and 2 define and summarize the variables and par-

ameters of the cortical model. The dimensional excitatory

soma potential he is related to its dimensionless counterpart
~he by he ¼ hr~he, where hr ¼ �70 mV is the resting potential.

[1]. Similarly, dimensional space and time are related to
their dimensionless form by x ¼ t~v~x and t ¼ t~t, where

t ¼ 0:04 s is the membrane time constant and ~v ¼ 7 m s�1

is the mean axonal conduction speed. It is now established

that the formation and propagation of seizures are due to

abnormally high levels of subcortical input to the excitatory

neuron population Pee and Ge [1,19].
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