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Abstract

Polycyclic aromatic hydrocarbons (PAHs), dioxin-like compounds (DLCs) and structurally-related 

environmental pollutants may contribute to the pathogenesis of various diseases and disorders, 

primarily by activating the aryl hydrocarbon receptor (AHR) and modulating downstream cellular 
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responses. Accordingly, AHR is considered an attractive molecular target for preventive and 

therapeutic measures. However, toxicological risk assessment of AHR-modulating compounds 

as well as drug development is complicated by the fact that different ligands elicit remarkably 

different AHR responses. By elucidating the differential effects of PAHs and DLCs on aldo–keto 

reductase 1C3 expression and associated prostaglandin D2 metabolism, we here provide evidence 

that the epidermal growth factor receptor (EGFR) substantially shapes AHR ligand-induced 

responses in human epithelial cells, i.e. primary and immortalized keratinocytes and breast cancer 

cells. Exposure to benzo[a]pyrene (B[a]P) and dioxin-like polychlorinated biphenyl (PCB) 126 

resulted in a rapid c-Src-mediated phosphorylation of EGFR. Moreover, both AHR agonists 

stimulated protein kinase C activity and enhanced the ectodomain shedding of cell surface-bound 

EGFR ligands. However, only upon B[a]P treatment, this process resulted in an auto-/paracrine 

activation of EGFR and a subsequent induction of aldo–keto reductase 1C3 and 11-ketoreduction 

of prostaglandin D2. Receptor binding and internalization assays, docking analyses and mutational 

amino acid exchange confirmed that DLCs, but not B[a]P, bind to the EGFR extracellular domain, 

thereby blocking EGFR activation by growth factors. Finally, nanopore long-read RNA-seq 

revealed hundreds of genes, whose expression is regulated by B[a]P, but not by PCB126, and 

sensitive towards pharmacological EGFR inhibition. Our data provide novel mechanistic insights 

into the ligand response of AHR signaling and identify EGFR as an effector of environmental 

chemicals.

Keywords

Aldo-keto reductase 1C3; Aryl hydrocarbon receptor; Environmental pollutants; Epidermal growth 
factor receptor; Dioxin-like compounds; Polycyclic aromatic hydrocarbons

1. Introduction

The aryl hydrocarbon receptor (AHR) is a transcription factor that modulates gene 

expression in response to a variety of small molecular weight compounds, including 

numerous environmental pollutants of emerging concern, such as dioxins, dioxin-like 

polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) (Murray 

et al., 2014; Rothhammer and Quintana, 2019; Vogel et al., 2020). Whereas AHR signaling 

driven by endogenous and dietary ligands, such as tryptophan metabolites and indoles, 

contributes to proper organ development and maintains cell and tissue homeostasis, a 

long-lasting activation of AHR by environmental chemicals may contribute to a variety 

of adverse health effects, including autoimmune and allergic inflammatory diseases, 

endocrine disruption and cancer (Murray et al., 2014; Roman et al., 2018; Rothhammer 

and Quintana, 2019; Stockinger et al., 2021; Vogel et al., 2020). Accordingly, AHR is 

considered an attractive target for the development of novel preventive and therapeutic 

measures. However, drug development as well as the toxicological risk assessment of AHR-

modulating compounds is considerably complicated by a remarkable ligand-specificity of 

AHR signaling and associated outcome. An illustrating example is the opposing impact of 

dioxin-like compounds (DLCs) and PAHs on T cell differentiation and the development 

and worsening of allergic inflammatory diseases, such as asthma and atopic dermatitis. 

Whereas a chronic exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related 
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DLCs induces immunosuppressive regulatory T cells (Funatake et al., 2005; Quintana et al., 

2008), exposure to PAHs and PAH-rich airborne particulate matter suppresses regulatory T 

cell differentiation (Nadeau et al., 2010; O’Driscoll et al., 2018) and promotes the expansion 

of Th2 and Th17 cells (Castañeda et al., 2018; Hidaka et al., 2017; Hong et al., 2016; 

O’Driscoll et al., 2018; Weng et al., 2018; Wong et al., 2018; Xia et al., 2015). Accordingly, 

an exposure to free and particle-bound PAHs is associated with an increased risk for asthma 

and atopic dermatitis (Dijkhoff et al., 2020; Lag et al., 2020), whereas elevated systemic 

levels of DLCs correlate with a decreased incidence of atopic diseases (Nakamoto et al., 

2013; Ye et al., 2018). Furthermore, transcriptome analyses revealed that different AHR 

ligands induce a different pattern of gene expression even within the same tissue or cell-type 

(Kopec et al., 2010; Nault et al., 2013; Souza et al., 2016). The molecular mechanisms 

responsible for this ligand specificity of AHR signaling are not well understood.

Inactive AHR is part of a cytosolic multiprotein complex consisting of a heat-shock protein 

90 dimer, AHR-interacting protein, the co-chaperone p23 and cytoplasmic tyrosine kinase 

c-Src. Upon ligand-binding, this complex dissociates and AHR translocates into the nucleus, 

dimerizes with AHR nuclear translocator (ARNT) and binds to xenobiotic-responsive 

elements (XRE) in the enhancer region of target genes, e.g. encoding cytochrome P450 

(CYP) 1A1 and CYP1B1, to induce their transcription (Murray et al., 2014; Roman et 

al., 2018; Rothhammer and Quintana, 2019; Stockinger et al., 2021; Vogel et al., 2020). 

In addition, there are multiple non-canonical functions of AHR, for instance involving a 

modulation of epidermal growth factor receptor (EGFR) and NF-E2-related factor 2 (NRF2) 

signaling pathways, that may shape the outcome of AHR signaling (Roman et al., 2018; 

Vogel et al., 2020).

The expression of human aldo–keto reductase (AKR) 1C3 is differentially regulated 

by prototypical AHR ligands, i.e. upregulated in response to PAHs but unaffected by 

TCDD treatment (Burczynski et al., 1999). AKR1C3 is a cytosolic NADPH-dependent 

oxidoreductase that catalyzes the biosynthesis of 17β-estradiol and testosterone and the 

reduction of prostaglandin (PG) D2 and PGH2 to 9α,11β-PGF2 and PGF2α, respectively 

(Liu et al., 2020; Penning, 2019). Accordingly, AKR1C3 contributes to the pathogenesis of 

various types of cancer, inflammatory diseases and endocrine disorders (Liu et al., 2020; 

Penning, 2019). Despite its clinical relevance, the regulation of AKR1C3, particularly in 

response to environmental factors, is not well understood.

Here, we elucidated the molecular mechanisms underlying the ligand-specific differences 

in the AHR response of human epithelial cells. We identified a complex AHR- and 

EGFR-dependent signaling pathway which is initiated by PAH treatment to modulate the 

expression of hundreds of genes. Although initially stimulating similar signaling events, 

dioxin-like compounds (DLCs) interrupted this pathway by binding to the extracellular 

domain (ECD) of EGFR and inhibiting its activation by growth factors.
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2. Material and methods

2.1. Cell culture

Normal human epidermal keratinocytes (NHEKs) obtained from PromoCell (Heidelberg, 

Germany) were cultured in Keratinocyte Growth Medium 2 (PromoCell). HaCaT, HaCaT-

AHR-KO, HaCaT-CYP1A1-KO and HaCaT-NRF2-KO keratinocytes were cultured in 

DMEM low glucose (1 g/l) medium (PAN Biotech, Aidenbach, Germany) and supplemented 

with 10% FBS and antibiotics/antimycotics (PAN Biotech). Stable AHR-knockdown HaCaT 

keratinocytes (HaCaT-shAHR) and respective empty vector control cells (HaCaT-EV) were 

cultured in regular HaCaT medium supplemented with 0.68 mg/ml G418 (Carl Roth, 

Karlsruhe, Germany). MCF-7 and MCF-7-AHR-KO cells were cultured in DMEM high 

glucose (4.5 g/l) medium (PAN Biotech) supplemented with 10% FBS and antibiotics/

antimycotics. The generation and characterization of HaCaT-shAHR and HaCaT-EV cells 

(Fritsche et al., 2007) and MCF-7-AHR-KO cells (Vogel et al., 2021) has been previously 

described. HepG2 cells were cultured in RPMI 1640 containing 10% FBS and antibiotics/

antimycotics (PAN Biotech). All cells were kept in a humidified atmosphere of 5% CO2 at 

37 °C.

2.2. Chemicals and treatment

Benzo[a]pyrene, benzo[k]fluoranthene, bosutinib, 1,2-dithiole-3-thione, flufenamic acid, 

MG132, PP2, Ro-31–8220 and hydrogen peroxide were purchased from Sigma-Aldrich 

(Taufkirchen, Germany), BPIQII, SR11302 and T-5224 from Cayman Chemicals (Ann 

Arbor, MI), and CH223191, cobimetinib and glutathione from Selleckchem (Houston, TX). 

Marimastat was purchased from Santa Cruz Biotechnology (Dallas, TX) and PD153035 

from Absource Diagnostics (Munich, Germany). 3,3′,4,4′,5-Pentachlorobiphenyl (PCB126) 

and 2,3′,4,4′,5-pentachlorobiphenyl (PCB118) were bought from LGC Standards (Wesel, 

Germany) and 2,3,7,8-tetrachlorodibenzo-p-dioxin from Amchro (Hattersheim am Main, 

Germany). Prostaglandin D2, AREG, TGFα and EGF were purchased from PeproTech 

(Rocky Hill, NY). Hydrogen peroxide, glutathione and the three EGFR ligands were 

dissolved or diluted in water, the other compounds in DMSO. Treatment time and applied 

concentrations of the chemicals and human recombinant proteins is indicated in the figure 

legends.

2.3. Quantitative real-time PCR

Total RNA was isolated and transcribed into cDNA by using the GenUP Total RNA Kit 

(Biotechrabbit, Hennigsdorf, Germany) and a M−MLV reverse transcriptase (Promega, 

Walldorf, Germany). Quantitative real-time PCR analyses were carried using the QuantiFast 

SYBR Green PCR Kit and a Corbett-Rotor Gene 300 light cycler (Qiagen, Hilden, 

Germany). Oligonucleotide sequences are listed in supplementary table 1a.

2.4. Transient transfection of siRNA and plasmid DNA

Transient transfection of HaCaT cells with ARNT-targeted and non-silencing siRNA (Santa 

Cruz Biotechnology, Dallas, TX) was done using the INTERFERin reagent (Polyplus 
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Transfection, Illkirch, France). JetPEI DNA Transfection Reagent (Polyplus) was used for 

transient transfection with plasmid DNA.

2.5. SDS-PAGE/Western blot analysis

Cells were lysed in RIPA buffer on ice and subsequently centrifuged for 5 min at 4 °C at 

maximum speed. Protein samples were separated by 10% and 12% SDS-polyacrylamide gel 

electrophoresis and blotted onto PVDF membranes (GE Healthcare, Freiburg, Germany). 

Blots were blocked with 5% skim milk or bovine serum albumin in TBS-Tween-20 (0.1%) 

for 1 h at room temperature and subsequently incubated overnight at 4 °C with primary 

antibodies. Blots were washed and then incubated for 1 h with a 1:5000 dilution of HRP-

conjugated secondary antibodies (Cell Signaling Technology, Leiden, The Netherlands) in 

5% bovine serum albumin in TBS-Tween-20 (0.1%) at room temperature. Bands were 

visualized using WesternBright ECL HRP substrate (Advansta, San Jose, CA) and a C-DiGit 

Western Blot Scanner (LI-COR Biotechnology, Lincoln, NE). Primary antibodies are listed 

in supplementary table 1b.

2.6. Incubation of AKR isoforms with PGD2

The incubation mixtures contained 50 mM phosphate buffer (pH 7.4) with 1 mM EDTA, 

400 pmol/mL of recombinant AKRs and a NADPH generating system consisting of 1 mM 

NADP+, 5 mM glucose 6-phosphate, 0.5 IU of glucose 6-phosphate dehydrogenase and 

2 μM PGD2. After a preincubation of 2 min at 37 °C, the reaction was initiated by the 

addition of the NADPH generating system and was allowed to continue at 37 °C for up to 

60 min. Incubations were terminated with the addition of 30% (v/v) acetonitrile. Protein was 

precipitated by centrifugation, and the supernatants were subjected to LC-MS analysis.

2.7. LC–MS analyses

Incubations were analyzed using reversed-phase HPLC with a Synergi Hydro-RP 4 μm, 150 

× 2 mm column (Phenomenex, Aschaffenburg, Germany) and gradient elution using 10 mM 

ammonium formate and acetonitrile containing 0.1% formic acid as solvents. The HPLC 

was coupled to a high-resolution Orbitrap Fusion™ Tribride™ mass spectrometer (Thermo 

Fisher Scientific, Bremen, Germany) operated in full-scan mode. Selectivity of the analytes 

was gained by extracting a very narrow mass range in the order of 10–20 ppm of the exact 

mass of the analyte. 9α,11β-PGF2 was identified using authentic standard.

2.8. Generation of CRISPR/Cas9 and CRISPR/Cas12 mutated cells

The generation of CYP1A1-KO and NRF2-KO HaCaT keratinocytes was carried out as 

described previously (Vogel et al., 2021). The respective gRNAs (Fig. S1) were designed 

using the CRISPR design tool CHOPCHOP (http://chopchop.cbu.uib.no/) and cloned into 

a modified version of the PX458 plasmid available at Addgene (#48138). The resulting 

bicistronic vectors each encoded the respective gRNA and the Cas9 nuclease. AHR-KO 

HaCaT keratinocytes were generated delivering a ribonucleoprotein consisting of a Cas12 

protein (IDT) in complex with a targeting gRNA. Activity of the gRNAs and their efficiency 

were assessed via high resolution melt analysis. HaCaT cells were transfected with 

nuclease plasmids in antibiotic-free medium in a 12-well plate using FuGENE HD (Roche, 
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Mannheim, Germany) or the NEON electroporation system (Thermo Fisher Scientific). 

After 48 h, cells were sorted (FACS or MACS) and plated as single cells in a 96-well 

plate and duplicated after a week. Clones were lysed in proteinase K and genotyped using 

high-resolution melt analysis, SANGER sequencing or deep sequencing using a MiSeq 

Illumina (San Diego, CA) (Ramachandran et al., 2021).

2.9. PKC activity assay

PKC activity was analyzed by using the PKC Kinase Activity Kit (Enzo Life Sciences, 

Loerrach, Germany). Treatment medium was removed from the cells were washed with PBS 

twice. Lysates were prepared using 100 μl MOPS lysis buffer and samples were analyzed 

according to manufacturer’s instructions.

2.10. ELISA-based quantification of growth factors

The concentration of TGFα and AREG in cell culture supernatant was determined by 

using respective Quantikine ELISA Kits (Bio-Techne, Wiesbaden, Germany). Therefore, the 

supernatant from treated cells was transferred into microtubes and centrifuged at 5000 rcf at 

4 °C for 5 min. The supernatant was analyzed according to manufacturer’s instructions.

2.11. EGFR docking analyses

Crystal structures of the extracellular domain of EGFR in an inactive complex with EGF 

(PDB ID:1nql) and dimeric (2:2) complex of EGFR and EGF (PDB ID: 1ivo) were used to 

perform docking analyses. Ligand structures for TCDD (PubChem CID: 15625), PCB126 

(PubChem CID: 63090), 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PCDD; PubChem CID: 

38439), 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin (HCDD; PubChem CID: 38251), 2,3,7,8-

tetrachlorodibenzofuran (TCDF; PubChem CID: 39929), 3,3′,4,4′-tetrachlorobiphenyl 

(PCB77; PubChem CID: 36187), PCB118 (PubChem CID: 35823), and B[a]P (PubChem 

CID:125144) were downloaded from PubChem database (Kim et al., 2016) in SD format. 

The EGF domain was removed from the protein structure using PyMol (www.pymol.org), 

and ligand structures were converted to PDB format using OpenBabel 2.3.1 (O’Boyle et 

al., 2011). Flexible docking was performed using AutoDock 4.2 (Goodsell et al., 1996) as 

previously described (Hawerkamp et al., 2019), except that the size for the grid box (x,y,z 

points) were set to 51 × 39 × 58, while centers for the grid were designated at X = 113.38, 

Y = 65.95, Z = 39.94 dimensions. The final docking poses were analyzed with PyMol 

(www.pymol.org).

2.12. EGFR internalization assay

Internalization of EGFR was investigated using a High-Content-Screening method adapted 

from Wang et al. (Wang and Xie, 2007). Cells were treated with 200 ng/ml EGF-AF555 

(Thermo Fisher Scientific, Waltham, MA) for 2.5 min on ice. Afterwards the test compounds 

were added and incubated for another 2.5 min on ice. Internalization was enabled by 

incubating the cells at 37 °C and 5 % CO2 for 25 min. The cells were fixed with 4 

% paraformaldehyde. The membrane was stained with Wheat Germ Agglutinin, Oregon 

Green™ 488 Conjugate and the nuclei with Hoechst33342 (both Thermo Fisher Scientific). 
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HCS analysis was performed using a Cellomics ArrayScan VTI (Thermo Fisher Scientific) 

and the images were analyzed with the HCS Studio Cellomics Scan software (version 6.6.0).

2.13. EGF-EGFR AlphaLISA binding assay

A potential disturbance of the binding of EGF to EGFR by the test compounds was analyzed 

by using the cell-free EGF/EGFR AlphaLISA Binding Kit (PerkinElmer, Waltham, MA).

2.14. Site-directed mutagenesis

For the generation of point-mutated EGFR variants, the pCMV3-EGFRwt plasmid (Sino 

Biological, Eschborn, Germany) was used as template. Briefly, a high fidelity Q5 

polymerase (New England Biolabs, Ipswich, MA) was used to amplify the whole plasmid 

with complementary primer pairs, carrying the desired mutation in the form of mismatches 

to the original plasmid. PCR conditions were: 94 °C for 2 min, 21 cycles of 94 °C (30 

sec), 55 °C (1 min) and 68 °C (30 sec/kb). After three cycles, the oligonucleotides for the 

introduction of the respective point-mutations were added; primer sequences are listed in 

supplementary table 1c. Afterwards, the PCR mix was treated with DpnI endonuclease (New 

England Biolabs) to remove parental DNA. The successful introduction of point-mutations 

was validated by Sanger Sequencing.

2.15. Measurement of DNA synthesis

DNA synthesis was assessed using a colorimetric BrdU incorporation assay (Sigma-Aldrich, 

Taufkirchen, Germany). Briefly, HaCaT keratinocytes were seeded on 96-well-plates in 

quintuplicate (2×104 per well) and starved overnight. Approximately 12 h later, the cells 

were treated with the respective test substances and BrdU labeling solution for 4 h. 

Subsequently, the assay was carried out according to the manufacturers protocol. Finally, 

after 15 min incubation with substrate solution, absorbance was measured at 370 nm 

(reference wavelength 492 nm) using the Infinite 200 PRO plate-reader (Tecan, Maennedorf, 

Switzerland).

2.16. ROS measurement

Cells were incubated with 100 μM DCF-diacetate diluted in PBS post treatment for 30 

min at 37 °C and 5 % CO2. Afterwards, the DCF-diacetate dilution was removed and the 

fluorescence at 485ex/535em nm was measured using the Infinite 200 PRO plate-reader 

(Tecan).

2.17. CYP1A1 activity assay

Measurement of the deethylation of 7-ethoxyresorufin in living monolayer cultures was 

carried out as described previously (Frauenstein et al., 2015).

2.18. Library preparation and sample loading for long-read nanopore RNA-sequencing

Quality of isolated RNA was assessed using the High Sensitivity RNA Screen Tape System 

(Agilent Technologies, Santa Clara, CA). Reverse transcriptase and multiplexing of the 

samples were performed with the PCR cDNA Barcoding Kit (SQK-PCB109, Oxford 

Nanopore Technologies, Oxford, United Kingdom) using 50 ng total RNA. Quantity of 
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amplified cDNA was determined with the Qubit™ 4 Fluorometer (Invitrogen, Carlsbad, 

CA) and the range of fragment size was examined using the Agilent D1000 SreenTape 

assay (Agilent Technologies). The Flowcell (FLO-MIN106) was prepared with the FlowCell 

Priming Kit (EXP FLP002, Oxford Nanopore Technologies) and equal amounts of barcoded 

cDNA was loaded. Sequencing was carried out with a MinION (MN33710) using the 

MinKNOW software (v.21.02.1) over a period of 72 h.

2.19. RNA-Seq data analysis

Raw fast5 reads were base-called and demultiplexed using Guppy (v4.5.4 + 66c1a7753). 

Reads were aligned to the reference genome (GRCh38.94) using Minimap2 (Li, 2018). 

Uniquely mapped reads were summarized with the featureCounts function of the R 

(v4.0.3) package Rsubread (v1.32.2) (Liao et al., 2019). Differential expression analysis 

was performed with DESeq2 (v1.22.1) (Love et al., 2014) and cluster-Profiler (v4.0.0) (Yu et 

al., 2012) was used for gene set enrichment analysis.

2.20. Multiple sequence alignment

The multiple alignment of the N-terminal 420 amino acids of the EGFR protein (mature) 

from various mammalian species was carried out using Clustal Omega (v1.2.4) (Sievers 

et al., 2011) and the following NCBI Reference Sequences: Homo sapiens, NP_005219.2; 

Macaca mulatta, XP_014988922.2; Callithrix jacchus, XP_035109337.1; Mus musculus, 

NP_997538.1; Rattus norvegicus, AAF14008.1; Oryctolagus cuniculus, XP_008260065.1; 

Sus scrofa, NP_999172.1; Ovis aries, XP_014957685.2; Felis catus, XP_006929148.1; 

Canis lupus dingo, XP_025305356.1.

2.21. Statistical analysis

All data shown are mean (±standard deviation) from three or more independent experiments, 

if not indicated otherwise. Differences were considered significant at p ≤ 0.05. A 

comparison of two groups was performed by unpaired, two-tailed Student’s t test. A 

comparison of multiple groups was conducted with analysis of variance followed by a Tukey 

post hoc analysis to correct for multiple comparison.

3. Results

3.1. B[a]p but not PCB126 induces AKR1C3 expression in an AHR-dependent manner

Treatment of NHEKs with 2.5 μM of the PAH benzo[a]pyrene (B[a]P) and 1 μM of the 

DLC 3,3′,4,4′,5-pentachlorobiphenyl (PCB126) for 24 h increased CYP1A1 copy numbers 

to a similar extent (Fig. 1a). In contrast, the AKR1C3 transcript level was only induced by 

B[a]P but not by PCB126 treatment. Dose- and time course studies in immortalized human 

HaCaT keratinocytes confirmed a strict AHR ligand-dependent regulation of AKR1C3 (Fig. 

1b, S2a). Accordingly, exposure to benzo [k]fluoranthene (B[k]F) induced the expression 

of both CYP1A1 and AKR1C3, whereas TCDD treatment only increased the copy 

numbers of CYP1A1 (Fig. S2b). Gene and protein expression analyses of B[a]P- and 

PCB126-treated AHR-knockdown (HaCaT-shAHR) and CRISPR/Cas12-engineered AHR-

knockout (HaCaT-AHR-KO) keratinocytes, AHR-knockout human MCF-7 breast cancer 

cells (MCF-7-AHR-KO) and respective AHR-proficient controls confirmed a ligand-specific 
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and AHR-dependent upregulation of AKR1C3 (Fig. 1c,d, S2c,d). Further qPCR analyses 

revealed a similar expression pattern for other AKR1 isoforms, i.e. AKR1C2 and AKR1B10 
(Fig. S2e). Hence, in contrast to PCB126, a treatment of human epithelial cells with B[a]P 

induces the expression of AKR1C3 and related isoforms in an AHR-dependent manner.

3.2. B[a]p but not PCB126 stimulates PGD2 metabolism

Next, we assessed potential alterations in AKR1C3 enzyme activity and analyzed the 

11-ketoreduction of PGD2. An incubation of 2 μM PGD2 with microsomal preparations 

of heterologously expressed human AKR1C isoforms revealed an efficient and NADPH-

dependent reduction of PGD2 to 9α,11β-PGF2 by AKR1C3 (Fig. S2f). AKR1C1 and 

AKR1C2 were roughly 10-times less effective in reducing PGD2, whereas the liver-specific 

isoform AKR1C4 only had a minor impact. A pretreatment of AHR-proficient cells with 

B[a]P resulted in an enhanced formation of 9α,11β-PGF2 as compared to solvent controls 

(Fig. 1e). This effect was neither observed in cells pretreated with PCB126 nor in B[a]P-

exposed HaCaT-shAHR keratinocytes. AHR-dependency of the B[a]P-induced generation of 

9α,11β-PGF2 was confirmed in NHEKs cotreated with the AHR antagonist CH223191 (Fig. 

S2g). Moreover, a co-treatment of HaCaT cells and NHEKs with B[a]P and the AKR1C3 

inhibitor flufenamic acid (FFA) blunted the B[a]P-stimulated reduction of PGD2 to 9α,11β-

PGF2 (Fig. 1f, S2g). Taken together, these data provide evidence that in contrast to PCB126 

an exposure of human primary and immortalized keratinocytes to B[a]P stimulates the 

AKR1C3-catalyzed metabolism of PGD2 in an AHR-dependent manner.

3.3. B[a]p induces AKR1C3 expression independently from canonical AHR signaling

A transient RNAi-mediated knockdown of ARNT dampened the B[a] P-induced 

upregulation of CYP1A1 by approximately 40% but did not affect the B[a]P-mediated 

induction of AKR1C3 protein (Fig. 2a), indicating that AKR1C3 is not part of the 

AHR/XRE gene battery. Treatment of HaCaT cells with PP2, a pharmacological inhibitor of 

Src family kinases and potent AHR agonist (Frauenstein et al., 2015), elevated the transcript 

numbers of CYP1A1 but not of AKR1C3 (Fig. 2b), suggesting an upregulation of AKR1C3 
through the non-canonical c-Src- and EGFR-dependent signaling pathway (Dong et al., 

2011; Fritsche et al., 2007). This was supported by the observation that treatment with the 

EGFR ligand amphiregulin (AREG) increased AKR1C3 copy numbers independently of 

AHR (Fig. 2c). An AREG-inducible expression of AKR1C3 was also confirmed in NHEKs 

(Fig. 2d).

3.4. Treatment with B[a]P but not PCB126 results in a biphasic activation of EGFR

In line with earlier reports (Bessede et al., 2014; Dong et al., 2011), AHR activation by 

B[a]P and PCB126 resulted in a rapid phosphorylation of c-Src Y416 (Fig. 2e). This was 

accompanied by a phosphorylation of EGFR residue Y845, a substrate of c-Src (Chen et al., 

2016), after 15 min of treatment with both AHR agonists (Fig. 2f). Upon B[a]P treatment, 

an additional phosphorylation of EGFR at residues Y1068 and Y1173 was observed, 

indicating an EGFR ligand-mediated activation and subsequent autophosphorylation of the 

receptor tyrosine kinase (RTK) (Chen et al., 2016). After elongating the treatment time 

(2 h), these two residues were still phosphorylated in B[a]P-treated but not in PCB126-

exposed cells (Fig. 2f). Importantly, c-Src may also activate PKC (Joseloff et al., 2002), 
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which subsequently stimulates metalloproteases, such as A Disintegrin And Metalloprotease 

(ADAM) 17, to shed the ectodomain of cell-surface bound EGFR ligands, including AREG 

and transforming growth factor α (TGFα) (Chen et al., 2016; Seals and Courtneidge, 

2003). Indeed, a 2 h exposure of HaCaT cells to B[a]P and PCB126 stimulated both 

PKC enzyme activity (Fig. 2g) and the release of AREG and TGFα in an AHR- and 

c-Src-dependent manner (Fig. 2h,i). Hence, although both AHR ligands stimulate the 

phosphorylation of c-Src and EGFR Y845 and activate PKC and associated shedding of 

EGFR ligands, only B[a]P mimicked an EGF-induced EGFR autophosphorylation (Y1068, 

Y1173). Accordingly, we noted AHR ligand-specific differences in the phosphorylation 

of EGFR downstream extracellular-regulated kinase 1/2 (ERK). B[a]P exposure of HaCaT 

cells caused a biphasic phosphorylation of ERK, with peaks observed after 5 and 120 

min (Fig. 3a). On the contrary, PCB126 treatment only stimulated ERK phosphorylation 

at an early timepoint, i.e. after 15 min (Fig. 3b). Further experiments revealed that the 

early phosphorylation of EGFR residue Y845 induced by both B[a]P and PCB126 was 

sensitive towards AHR antagonists (MNF, CH223191), the Src kinase inhibitor bosutinib 

and the EGFR blocker PD153035, but not towards inhibition of PKC (Ro-31–8220) and 

metalloproteases (marimastat) (Fig. 3c,d). In contrast, the B[a]P-induced phosphorylation of 

EGFR residue Y1068 after 2 h of treatment was attenuated by all inhibitors tested (Fig. 3e). 

An analysis of B[k]F-treated HaCaT cells confirmed an enhanced phosphorylation of EGFR 

(Y1068) after 2 h, which was sensitive towards pharmacological inhibition of Src kinase and 

PKC (Fig. S3).

3.5. Inhibition of non-canonical AHR signaling abrogates the B[a]P-mediated AKR1C3 
induction

So far, our data provide evidence that B[a]P and PCB126 have a differential impact on 

EGFR activation, with B[a]P causing a longer lasting activation through an extracellular 

stimulus. This was supported by co-treatment of HaCaT cells, NHEKs and MCF-7 cells 

with various pharmacological inhibitors, revealing that the B[a]P-induced upregulation 

of AKR1C3 involved c-Src (bosutinib), PKC (RO-31–8220), metalloprotease activity 

(marimastat), EGFR (PD153035, BPIQII) and MEK (cobimetinib) (Fig. 3f–h, Fig. S4). 

Importantly, the B[a]P-triggered induction of AKR1C3 was also reduced by the addition 

of an EGFR-blocking antibody in HaCaT cells (Fig. 3f) as well as by co-exposure to 

PCB126 in MCF-7 cells (Fig. S4). The latter observation indicates that although stimulating 

similar AHR-dependent signaling events as B[a]P, PCB126 may interfere with the growth 

factor-triggered autophosphorylation of EGFR and downstream signal transduction required 

for AKR1C3 induction.

3.6. The AHR- and EGFR-dependent upregulation of AKR1C3 is mediated by NRF2

Transcription factors of the AP-1 family are well-known executors of the MEK/ERK axis, 

a co-exposure of HaCaT cells to two pharmacological AP-1 inhibitors, however, did not 

reduce the B[a]P-mediated upregulation of AKR1C3 (Fig. S5a). Another transcription 

factor known to control AKR1C3 expression by binding to antioxidant response elements 

in its promoter sequence is NRF2 (Tebay et al., 2015). In unstressed cells, NRF2 is 

rapidly degraded by the proteasome. Upon oxidative, metabolic or oncogenic stress, 

NRF2 accumulates in the cytosol and subsequently translocates into the nucleus (Tebay 
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et al., 2015). Interestingly, AHR stimulates NRF2 activity in ketoconazole-treated NHEKs 

independently of oxidative stress (Tsuji et al., 2012), and it was suggested that this process 

involves EGFR and downstream MEK/ERK signal transduction (Haarmann-Stemmann et 

al., 2012). We found that treatment of HaCaT keratinocytes for 6 h with either B[a]P or 

a combination of 1,2-dithiole-3-thione (D3T), which activates NRF2 via ERK (Manandhar 

et al., 2007), and the proteasome inhibitor MG132 resulted in an accumulation of NRF2 

protein, whereas exposure to PCB126 did not (Fig. 4a). Accompanying qPCR analyses 

revealed a slight increase after 6 h and a significant increase of the AKR1C3 transcript 

numbers after 12 h of B[a]P treatment (Fig. S5b). Co-exposure to EGFR and MEK 

inhibitors attenuated the B[a]P-triggered accumulation of NRF2 (Fig. 4a), suggesting 

that NRF2 may be involved in the PAH-specific upregulation of AKR1C3. To confirm 

this, we next engineered NRF2-knockout HaCaT (HaCaT-NRF2-KO) cells, which neither 

expressed detectable amounts of NRF2 protein nor responded to a treatment with D3T 

by upregulating heme oxygenase-1 (HO-1) expression (Fig. S5c,d). Exposure of HaCaT 

and HaCaT-NRF2-KO cells to B[a]P and PCB126 resulted in an upregulation of CYP1A1 
in both cell-lines, whereas AKR1C3 expression was only inducible by B[a]P in the NRF2-

proficient keratinocytes (Fig. 4b). Depending on parameters, such as the capacity of the 

conjugating and antioxidant enzyme systems, an exposure to PAHs may cause the generation 

of reactive oxygen species (ROS). Interestingly, AKR1C3 is known to convert the CYP1A1-

derived B[a]P metabolite B[a]P-7,8-trans-hydrodiol to B[a]P-7,8-catechol, which then may 

undergo redox-cycling (Park et al., 2008). To exclude this potential source of ROS, we 

generated CYP1A1-knockout HaCaT cells (HaCaT-CYP1A1-KO), which exhibited neither 

basal nor B[a]P-inducible CYP1A1 enzyme activity (Fig. S5e). As expected, exposure 

studies revealed a B[a]P- and PCB126-inducible expression of CYP1A1 in the control cells, 

but not in the HaCaT-CYP1A1-KO cells. However, B[a]P treatment increased AKR1C3 
expression in both cell-lines (Fig. S5f) and thus independently from CYP1A1 activity 

and potentially associated ROS and genotoxic metabolites. This was confirmed by ROS 

measurements in HaCaT cells, showing no signs of oxidative stress 6 h after treatment 

with B[a]P and PCB126 (Fig. 4c). Moreover, neither the B[a]P- nor the D3T-induced 

upregulation of AKR1C3 was significantly affected by a co-treatment with glutathione (Fig. 

4d), which, as expected, efficiently decreased H2O2-related oxidative stress (Fig. S5g). In 

case the B[a]P-induced upregulation of AKR1C3 occurred via the AHR-EGFR-NRF2 axis, 

a stimulation of HaCaT-NRF2-KO cells with EGFR ligands should not affect AKR1C3 
copy numbers. Indeed, exposure to both EGF and AREG induced AKR1C3 expression to 

a similar extent in NRF2-proficient but not in NRF2-KO cells (Fig. 4e). Although we will 

not exclude an occurrence of ROS during the 24 h treatment with the AHR agonists, the 

above data argue against a major contribution of oxidative stress to the PAH-stimulated 

upregulation of AKR1C3. Taken together, our results strongly indicate that PAHs induce 

AKR1C3 expression in an AHR-,EGFR-, MEK/ERK- and NRF2-dependent manner and that 

PCB126 and related DLCs may disturb this signaling pathway at the level of EGFR.

3.7. DLCs bind to EGFR and inhibit its growth factor-induced activation

The potential disturbance of the binding between EGFR and its ligands by DLCs was 

analyzed by using a cell-free AlphaLISA assay. The positive control, human recombinant 

EGF, reduced the binding of biotinylated EGF to antibody-captured EGFR by approximately 
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40% (Fig. 5a). As expected, the addition of B[a]P had no effect on ligand-receptor 

binding. PCB126, in contrast, inhibited the binding of biotinylated EGF to EGFR in a 

dose-dependent manner, and TCDD also slightly reduced ligand-receptor interaction (Fig. 

5a). In addition, immunoblot analyses revealed that a 30 min co-treatment of HaCaT cells 

with PCB126, 2,3′,4,4′,5-pentachlorobiphenyl (PCB118), and TCDD nearly completely 

blunted the TGFα-induced phosphorylation of EGFR Y1068 and Y1173, while a treatment 

with B[a]P and B[k]F did not affect or even slightly increased it (Fig. 5b, Fig. S6a). We next 

performed high content analyses to monitor the effects of the DLCs on the internalization 

of the EGFR in HaCaT keratinocytes (Fig. 5c). A pretreatment of HaCaT cells with Alexa 

Fluor® 555-labeled EGF (AF-EGF) and a subsequent incubation with solvent (DMSO) 

led to an internalization of the AF-EGF-bound EGFR. An exposure of AF-EGF-pretreated 

cells with unlabeled EGF and increasing concentrations of PCB126 and TCDD dramatically 

reduced the internalization of EGFR, providing evidence that by binding to its ECD (Fig. 

5c), DLCs interfere with the growth factor-induced activation of EGFR. To ensure that 

DLCs also inhibit functional endpoints of EGFR signaling, we assessed whether an exposure 

to PCB126 and TCDD affects EGFR ligand-stimulated DNA synthesis. Treatment of HaCaT 

keratinocytes with AREG induced DNA synthesis, which was inhibited by co-exposing the 

cells to either PCB126, TCDD or PD153035 (Fig. 5d). Subsequent dose response studies 

with TCDD, PCB118 and PCB126 in HaCaT-AHR-KO cells confirmed that DLCs inhibit 

AREG-induced DNA synthesis independently of AHR (Fig. 5e, Fig. S6b).

3.8. Docking analyses and mutational amino acid exchange identify EGFR residues 
required for DLC binding

To identify the molecular basis for the association between DLCs and EGFR, we conducted 

an in silico docking analysis for PCB126, TCDD and B[a]P with the ECD of human 

EGFR. In its inactive state the ECD adopts a “tethered” conformation that precludes 

EGFR dimerization. Binding of EGF or related growth factors stabilizes an extended 

ECD conformation, which can subsequently homo- or heterodimerize with another EGFR 

molecule or EGFR family member to build the active extended dimer (Chen et al., 2016). 

Our in silico docking analyses did not predict an interaction of any of the tested AHR 

ligands with the tethered EGFR monomer. Conversely, docking analyses with the extended 

ECD conformation predicted that TCDD and PCB126, but not B[a]P, bind to the same 

region on the ECD (domain I and III) of EGFR (Fig. 6a–c). The estimated binding 

energy of −11.6 kcal/mol (TCDD) and −11.1 kcal/ mol (PCB126) would correspond to 

dissociation constants of 55.7 nM and 59.3 nM, respectively (supplementary table 2). The 

site of interaction is next to the site where EGF intercalates to stabilize the extended ECD 

conformation (Fig. 6a). These analyses imply that binding of DLCs may stabilize the ECD 

in a slightly altered extended conformation that is incompatible with EGF binding and stable 

ECD dimerization. A further in silico docking analysis predicted that also other DLCs, 

namely PCB77, PCB118, PCDD, HCDD, and TCDF, are capable to interact with the EGFR 

ECD (Fig. S7a–f, supplementary table 2). Moreover, a superimposition of the compound 

structure of PCB126, TCDD and B[a]P (Fig. S7g) illustrated that due to its larger size, B[a]P 

probably clashes with EGFR residue Q8 and thus is unable to occupy the same binding site 

than DLCs (Fig. S7h).
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To confirm the functional relevance of the amino acid residues predicted to be involved 

in DLC-binding (Fig. 6b,c, Fig. S7b–f, supplementary table 2), we mutated a cDNA 

expression plasmid to replace the amino acids at position 8 (glutamine), 11 (serine) and 

408 (glutamine) of the mature EGFR protein by alanine. Transient transfection experiments 

in low EGFR-expressing human HepG2 hepatoma cells (Fuchs et al., 2008) revealed that 

the mutated EGFR variants (Q8A, S11A and Q408A) are still responsive towards EGF 

treatment, as indicated by an enhanced phosphorylation of EGFR at Y1068 (Fig. 6d). In co-

exposure experiments with transfected cells expressing wild-type EGFR, PCB126 reduced 

the EGF-induced phosphorylation of the RTK. However, when we repeated this experiment 

in cells overexpressing the Q8A and Q408A EGFR variants, PCB126 did not affect the 

EGF-induced phosphorylation of EGFR Y1068 (Fig. 6d). These data provide compelling 

evidence that DLCs can directly bind to the ECD of EGFR to replace bound growth factors. 

Moreover, our data identify the EGFR residues Q8 and Q408 as being critical for the binding 

of DLCs to EGFR ECD.

3.9. EGFR inhibition shapes B[a]P-induced gene expression

To identify genes that are specifically regulated in response to B[a]P treatment and 

sensitive towards EGFR inhibition, we performed Nanopore long-read RNA sequencing 

of HaCaT cells treated for 24 h with PCB126, B[a]P alone and in combination with 

PD153035, and solvent (Fig. 7a). Compared to solvent control and considering a cut-off 

of | L2FC| ≥ 1.5, PCB126 and B[a]P treatment resulted in a differential expression 

of 910 and 1434 genes, respectively. A set of 370 genes was differentially regulated 

by both AHR agonists. In comparison to solvent control, the most molecular functions 

and pathways regulated by PCB126 or B[a]P treatment were related to xenobiotic 

metabolism, chemical carcinogenesis, steroid biosynthesis, and tryptophan metabolism (Fig. 

S8). Overall, suppression of gene expression, for instance related to cell adhesion and 

O-glycan biosynthesis, was more evident in response to B[a]P treatment (Fig. S8c,d). 

Moreover, 586 genes were solely regulated by B[a]P treatment. Given that these genes 

are not regulated in response to the combinatorial treatment, consisting of B[a] P and 

PD153035, they can be considered as being EGFR-dependent. In addition, the 478 genes 

representing the overlap between B[a]P- and B [a]P plus PD153035-treated samples, 

contains candidates whose expression is partially modulated in an EGFR-dependent manner 

(e.g. compared to DMSO, |L2FC| of cotreatment ≥ 1.5 but |L2FC| of cotreatment <|L2FC| 

B[a]P treatment). A gene set enrichment analysis revealed that the B[a]P-specific induction 

of various metabolic processes as well as the inhibition of biosynthetic pathways and cell 

junctional organization was sensitive towards pharmacological EGFR inhibition (Fig. 7b). 

KEGG pathway analysis indicated a B[a]P-induced and EGFR-dependent regulation of 

genes related to steroidogenesis, chemical carcinogenesis, insulin signaling and adherence 

junctions (Fig. 7c). Amongst others, genes regulated in response to B[a]P exposure can 

be categorized in three subtypes: ‘Type A’ represents genes that are upregulated via 
the canonical AHR pathway. The expression of these genes was induced upon PCB126 

and B[a]P treatment and, because EGFR signaling dampens AHR/XRE-dependent gene 

expression (Sutter et al., 2009), further increased in cells co-treated with B[a]P and 

PD153035; ‘Type B’ represents genes that are positively regulated by non-canonical AHR 

signaling pathways. The expression of these genes was inducible by B[a]P but not by 
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PCB126 treatment and sensitive towards EGFR inhibition; ‘Type C’ represents genes that 

are negatively regulated by non-canonical AHR signaling pathways. The expression of these 

genes was downregulated by B[a]P but not by PCB126 treatment and this downregulation 

was attenuated in response to PD153035 co-exposure. The top 10 regulated genes in terms 

of highest variance of each subtype are shown in the heatmap (Fig. 7d). The expression level 

of representative genes of each subtype was validated by qPCR (Fig. 7e, S9). Taken together, 

these results provide evidence that a substantial part of the B[a]P-induced alterations of the 

transcriptome is mediated by EGFR-dependent non-canonical AHR signaling pathways.

4. Discussion

Ligand-specificity of AHR signaling is multifactorial and influenced by pharmacokinetic 

aspects, compound-specific conformational changes of AHR and other parameters (Denison 

and Faber, 2017; Safe et al., 2020). By unraveling the specific responses induced by PAHs 

and DLCs, two classes of ubiquitous environmental chemicals comprising of multiple 

prototypic ligands, we here identified EGFR as a chemical-binding cell-surface receptor 

and critical determinant of AHR ligand specificity.

We provide evidence that PAHs induce EGFR signal transduction via two pathways, both 

initiated by an AHR ligand-driven stimulation of c-Src. Active c-Src rapidly phosphorylated 

EGFR (Y845) resulting in a phosphorylation of ERK. In addition, c-Src stimulated PKC 

and downstream metalloprotease activity to induce ectodomain shedding of cell surface-

bound AREG and TGFα. These growth factors activated EGFR (Y1068, Y1173) in an 

auto-/paracrine fashion, resulting in a second peak of ERK phosphorylation and a NRF2-

dependent induction of AKR1C3. On the contrary, PCB126 exposure, although enforcing 

PKC activation and growth factor shedding, neither caused a second peak of ERK activation 

nor an induction of AKR1C3.

It has been repeatedly reported that an exposure to AHR agonists interferes with the binding 

of radiolabeled EGF to the plasma membrane (Hudson et al., 1985; Kärenlampi et al., 

1983; Madhukar et al., 1984). The underlying molecular mechanism of this interaction, 

however, is still enigmatic. It may be due to an AHR ligand-mediated enforcement of EGFR 

internalization either by stimulating a phosphorylation of the RTK via c-Src or by inducing 

the release of growth factors that bind to EGFR ECD. However, in contrast to PAHs that, 

presumably due to recycling of EGFR, only cause a transient decline (Hudson et al., 1985; 

Kärenlampi et al., 1983), TCDD reduces the EGF-binding capacity of the plasma membrane 

for up to 4 days (human keratinocytes) and 40 days (rat liver), respectively (Hudson et 

al., 1985; Madhukar et al., 1984). In light of our data, it is likely that DLCs interact with 

EGFR ECD and thereby disturb a proper binding of (labeled) EGF. This scenario would 

still allow a rapid AHR- and c-Src-dependent endogenous activation of EGFR (Y845) and 

downstream signal transduction by DLCs, but would exclude an activation of the RTK 

through auto-/paracrine events. In contrast to B [a]P, the DLCs tested in this study bind 

to the ECD of EGFR in its extended conformation in close proximity to the binding site 

for EGF. Our results are compatible with a model where DLC binding distorts the ECD 

sufficiently to block EGF binding and ECD dimerization. This model is supported by 

previous studies reporting an inhibition of growth factor-stimulated EGFR internalization by 
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halogenated pesticides, PCBs and bisphenol S (Hardesty et al., 2018; Ticiani et al., 2021). 

The same mechanism as described for DLCs may thus be extended to other structurally 

related chemicals, making the EGFR a novel direct effector of environmental pollutants. 

However, given that several endogenous EGFR ligands are under transcriptional control of 

AHR (John et al., 2014; Patel et al., 2006), an accumulation of these growth factors over 

time may overcome the inhibitory effect on EGFR internalization of the ECD-bound DLCs.

In contrast to PCB126 and other DLCs, exposure of keratinocytes to B [a]P stimulates the 

growth factor-mediated activation of EGFR, thereby modulating the expression of hundreds 

of genes involved in various metabolic processes, biosynthetic pathways and cell adherence. 

DLCs in turn may specifically affect cellular functions by blocking growth factor-induced 

EGFR activation.

As mentioned above, a chronic exposure to PAHs may foster the onset and worsening of 

atopic diseases, whereas an exposure to DLCs has no or even the opposite effect on the 

pathogenesis of these Th2-driven diseases. The differential regulation of PGD2 metabolism 

may partially contribute to this AHR ligand-specific difference. PGD2 is mainly released 

by degranulating mast cells and contributes to the pathogenesis of allergic inflammatory 

diseases by binding to CRTH2 on Th2 cells and stimulating cytokine secretion (Pettipher 

et al., 2007). However, upon its release PGD2 either spontaneously hydrolyzes to 15-

deoxyΔ12–14 PGJ2 or is reduced by AKR1C3 to 9α,11β-PGF2. Whereas 15-deoxyΔ12–

14 PGJ2 acts as an anti-inflammatory (Pettipher et al., 2007), 9α,11β-PGF2, which is 

less potent in activating CRTH2 than PGD2 but metabolically stable, prolongs allergic 

inflammation and serves as systemic biomarker for allergen-induced mast cell activation 

(Bochenek et al., 2003; Seibert et al., 1987). In the skin, elevated expression levels of 

AKR1C3 and the associated formation of 9α,11β-PGF2 may stimulate a Th2 cytokine-

induced disturbance of keratinocyte differentiation (Mantel et al., 2012). In addition, by 

converting PAH diols to redox-cycling catechols, enhanced AKR1C3 levels may enforce 

mast cell activation and cause further oxidative tissue damage (Diaz-Sanchez et al., 2000; 

Park et al., 2008). A PAH-driven activation of AHR may thus contribute to allergic 

inflammatory diseases by perpetuating Th2 responses, impairing epithelial barrier function 

and enhancing the susceptibility towards inflammatory stimuli (Dijkhoff et al., 2020; Lag et 

al., 2020). For regulatory purposes, it should be considered that the mouse genome encodes 

neither AKR1C3 nor a functional homolog (Velica et al., 2009).

Regarding its important role in development and tissue homeostasis (Chen et al., 2016), 

an inhibition of growth factor-driven EGFR activation may be a critical mode of action of 

DLCs. In the skin, for instance, EGFR signaling contributes to epidermal homeostasis by 

tightly orchestrating keratinocyte fate and associated barrier functions (Chen et al., 2016). 

A systemic application of EGFR inhibitors, e.g. during lung cancer therapy, is frequently 

accompanied by cutaneous adverse effects, including an acceleration of keratinocyte 

differentiation and an impairment of the epidermal barrier (Lacouture, 2006; Lichtenberger 

et al., 2013). Accordingly, treatment of human keratinocytes with EGFR inhibitors switches 

the keratinocyte program from proliferation to differentiation (Lichtenberger et al., 2013; 

Peus et al., 1997). This program switch is also observed in human keratinocytes exposed 
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to TCDD and may contribute to the pathogenesis of chloracne, the hallmark of an acute 

intoxication with DLCs in humans (Hudson et al., 1985; Sutter et al., 2019).

From a mechanistical point of view, a chemical inhibition of growth factor-driven 

proliferation and an induction of cellular differentiation may be of interest for the treatment 

of EGFR-positive cancers. In fact, results from rodent studies revealed an anti-carcinogenic 

effect of TCDD in certain tissues (DiGiovanni et al., 1980; Holcomb and Safe, 1994). 

However, whether DLCs may serve as a structural blueprint for the development of novel 

non-toxic EGFR ECD modulators for therapeutic purposes remains to be investigated. A 

limitation of this study is that we have not yet confirmed a direct interaction of DLCs with 

EGFR molecules from other species than human. However, a multiple alignment of the 

N-terminal 420 amino acids of the mature EGFR protein revealed a high conservation of 

the residues predicted and/or experimentally proven to be involved in DLC binding across 

several mammalian species (Fig. S10).

Taken together, we identified a PAH-specific non-canonical AHR signaling pathway 

responsible for the induction of AKR1C3 and the associated 11-ketoreduction of PGD2 

that provides a plausible link between PAH exposure and the pathogenesis of allergic 

inflammatory diseases. In addition, we revealed that DLCs interact with EGFR ECD, 

resulting in a displacement of bound growth factors and an inhibition of downstream 

events. This novel mode of action is probably relevant for various DLC-associated adverse 

health effects, in particular for those involving a dysbalance between cell proliferation 

and differentiation. We conclude that the expression level of EGFR and the presence of 

its ligands are critical parameters which have to be considered in order to optimize the 

prediction of the biological outcome in a given PAH- or DLC-exposed cell population or 

tissue.
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Fig. 1. B[a]P induces AKR1C3 expression in an AHR-dependent manner.
a qRT-PCR analyses of CYP1A1 and AKR1C3 in NHEKs stimulated with B[a]P (2.5 μM), 

PCB126 (1 μM) or solvent (0.1 % DMSO) for 24 h. n = 9. *, p ≤ 0.05 compared to DMSO; 

#, p ≤ 0.05 compared to B[a]P. b qRT-PCR analysis of AKR1C3 in HaCaT keratinocytes 

stimulated as indicated for 24 h. n = 6. *, p ≤ 0.05 compared to DMSO control, #, p 

≤ 0.05, compared to B[a]P of the same concentration. c qRT-PCR analyses of CYP1A1 
and AKR1C3 in HaCaT-shAHR and HaCaT-EV keratinocytes exposed to 2.5 μM B[a]P, 1 

μM PCB126 or 0.1 % DMSO for 24 h. n = 4. *, p ≤ 0.05 compared to EV DMSO, #, 
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p ≤0.05 compared to EV B[a]P. d Western blot analyses of AKR1C3 protein content in 

HaCaT-shAHR and HaCaT-EV keratinocytes stimulated as described in c. GAPDH level 

served as loading control. n = 3, representative picture. e LC-MS analyses of supernatants 

derived from HaCaT-shAHR and HaCaT-EV cells stimulated with 0.1 % DMSO, 1 μM 

PCB126 or 2.5 μM B[a]P for 24 h. Afterwards, cells were treated with 1 μM PGD2 in 

conditioned medium and supernatants were collected at indicated time points. n = 3. *, p 

≤ 0.05 compared to DMSO. f LC-MS analyses of the supernatants of HaCaT cells treated 

with 0.1 % DMSO and 2.5 μM B[a]P for 24 h. In addition, HaCaT cells pretreated for 

23 h with 2.5 μM B[a]P were co-exposed for 1 h to 50 μM flufenamic acid (FFA) and 

B[a]P. Subsequently, cells were treated with 1 μM PGD2 in conditioned medium and the 

supernatant was collected at indicated time points. Supernatants were collected at indicated 

time points. n = 3. *, p ≤ 0.05 compared to DMSO.
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Fig. 2. B[a]P stimulates AKR1C3 expression in an EGFR-dependent manner.
a HaCaT keratinocytes were transiently transfected with ARNT-targeted or non-silencing 

siRNA for 24 h. Next, cells were treated with 2.5 μM B[a]P or solvent for another 24 h. 

The protein level of CYP1A1, ARNT and AKR1C3 was detected by western blot analyses, 

α-tubulin was used as loading control. n = 2, representative pictures. b qRT-PCR analyses of 

CYP1A1 and AKR1C3 in HaCaT-shAHR and HaCaT-EV cells treated with 10 μM PP2 or 

0.1 % DMSO for 24 h. n = 4. *, p ≤ 0.05 compared to EV DMSO, #, p ≤ 0.05 compared to 

EV B[a]P. c qRT-PCR analyses of CYP1A1 and AKR1C3 in HaCaT-shAHR and HaCaT-EV 
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keratinocytes treated as indicated for 24 h. n = 4–7. *, p ≤ 0.05 compared to EV DMSO, 

#, p ≤ 0.05 compared to EV B[a]P. d NHEKs were treated with 20 ng/ml AREG for 24 

h and AKR1C3 transcript level were analyzed by qRT-PCR. e Western blot analyses of 

SRC and its phosphorylated form (Y416). HaCaT keratinocytes were treated with B[a]P 

(2.5 μM), PCB126 (1 μM) or 0.1 % DMSO for the indicated time. n = 3, representative 

pictures. f Phosphorylation of EGFR in HaCaT keratinocytes treated with B[a]P (2.5 μM) 

or PCB126 (1 μM) was examined by western blot analysis. Cells were treated for 15 min 

and 2 h. DMSO (0.1 %) served as solvent control, EGF (10 ng/ml) as positive control. n = 

3, representative picture. g Levels of activated PKC were quantified using a non-radioactive 

protein kinase activity assay. HaCaT keratinocytes were pre-treated with Bosutinib (1 μM), 

MNF (20 μM), CH223191 (10 μM) or 0.1 % DMSO for 1 h. Afterwards, cells were 

stimulated with B[a]P (2.5 μM) or PCB126 (1 μM) and 0.1 % DMSO. After 2 h, cells 

were lysed and PKC activity was determined. ELISA-based quantification of h AREG and 

i TGFα in the cell culture supernatants. Cells were treated as described in g. Supernatants 

were collected 2 h after treatment. n = 4. *, p ≤ 0.05 compared to DMSO, #, p ≤ 0.05 

compared to either B[a]P or PCB126 treated cells respectively.
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Fig. 3. B[a]P stimulates AKR1C3 expression through a non-canonical signaling pathway.
Western blot analyses of ERK1/2 phosphorylation upon exposure to a B[a]P (2.5 μM) 

and b PCB126 (1 μM) for the indicated time points. In the upper panel the densitometric 

quantification, in the lower panel representative blots are shown. n = 3 – 5. *, p ≤ 0.05 

compared to DMSO. Western blot analysis of HaCaT cells treated with c B[a]P (2.5 μM) 

and d PCB126 (1 μM) for 15 min or e B[a]P (2.5 μM) for 2 h. In parallel, cells were co-

treated with bosutinib (1 μM), marimastat (1 μM), PD153035 (1 μM), RO-31–8220 (1 μM), 

MNF (20 μM), CH223191 (10 μM) or DMSO (0.1 %). In c and d EGFR phosphorylation at 
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residue Y845 and in e EGFR phosphorylation at residue Y1068 was examined. All results 

were normalized to total EGFR, GAPDH was used as loading control. n = 3, representative 

pictures. f qRT-PCR analyses of AKR1C3 in HaCaT keratinocytes. The cells were treated 

with B[a]P (2.5 μM) in the absence and presence of either Bosutinib (1 μM), PD153035 (1 

μM), BP1-QII (1 μM), Cobimetinib (1 μM), EGFR-blocking antibody (4 μg/ml), Marimastat 

(1 μM) or DMSO (0.1 %) for 24 h. n = 3 – 6. *, p ≤ 0.05 compared to DMSO, #, p 

≤ 0.05 compared to B[a]P. g Western blot analysis of AKR1C3 protein level in HaCaT 

keratinocytes. Cells were treated as indicated at the concentrations depicted in f for 24 h. In 

the lower panel a representative blot, in the upper panel the densitometric quantification is 

shown. n = 3. *, p ≤ 0.05 compared to DMSO, #, p ≤ 0.05 compared to B[a]P. h qRT-PCR 

analyses of AKR1C3 in NHEKs treated for 24 h with B[a]P (2.5 μM) in the absence and 

presence of either Bosutinib (1 μM), PD153035 (1 μM), Marimastat (1 μM), MNF (20 μM), 

CH223191 (10 μM) or DMSO (0.1 %). Additional cells were treated with 20 ng/ml AREG. 

n = 7. *, p ≤ 0.05 compared to DMSO, #, p ≤ 0.05 compared to B[a]P.
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Fig. 4. Induction of AKR1C3 depends on NRF2 in HaCaT keratinocytes.
a Western blot analyses of NRF2 protein stabilization. Cells were treated as indicated, the 

co-treatment with D3T (70 μM) and MG-132 (10 μM) served as positive control. Whole cell 

lysates were prepared 6 h post stimulation. GAPDH was used as loading control. On the left 

a representative western blot, on the right the densitometric quantification is shown. n = 4. 

*, p ≤ 0.05 compared to DMSO, #, p ≤ 0.05 compared to B[a]P. b qRT-PCR analyses of 

CYP1A1 and AKR1C3 in HaCaT and HaCaT-NRF2-KO (DU34) keratinocytes. Cells were 

treated with B[a]P (2.5 μM), PCB126 (1 μM) or DMSO (0.1 %) DMSO for 24 h. n = 3. *, p 

≤ 0.05 compared to DMSO HaCaT control, #, p ≤ 0.05 compared to the respective proficient 

HaCaT control. c ROS formation was analyzed using the DCF-DA assay. HaCaT cells were 

treated as indicated for 6 h. As a positive control cells were treated with H2O2 30 min prior 

to staining. n = 3. *, p ≤ 0.05 compared to DMSO. d mRNA level of AKR1C3 in HaCaT and 

HaCaT-NRF2-KO (DU34) cells treated for 24 h as indicated. Test compounds were used at 

the following concentrations: DMSO (0.1 %), B[a]P (2.5 μM), D3T (70 μM) and GSH (100 

μM). n = 3. *, p ≤ 0.05 compared to DMSO, #, p ≤ 0.05 compared to the respective HaCaT 

control sample. e qRT-PCR analyses of AKR1C3 in HaCaT and HaCaT-NRF2-KO (ΔNRF2) 

keratinocytes treated as indicated for 24 h. n = 4. *, p ≤ 0.05 compared to DMSO, #, p ≤ 

0.05 compared to the respective HaCaT control sample.
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Fig. 5. TCDD and PCB126 interfere with the activation and internalization of EGFR.
a The effect of the DLCs on the interaction of EGF with EGFR was analyzed by using 

a cell-free EGF/EGFR AlphaLISA binding kit. n = 3. *, p ≤ 0.05 compared to DMSO. b 
Effect of B[a]P and PCB126 on EGFR activation upon TGFα stimulation was analyzed 

via western blot analyses. HaCaT keratinocytes were starved for 3 h and next stimulated 

with TGFα (20 ng/ml) for 2.5 min on ice. Afterwards, either DMSO (0.1 %), PCB126 

(1 μM) or B[a]P (2.5 μM) was added and cells were incubated at 37 °C and 5 % CO2 

for 30 min. Levels of total and phosphorylated EGFR (Y1068, Y1137) were determined; 
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β-Actin was used as loading control. n = 3. representative pictures. c Influence of PCB126 

(1 μM), TCDD (0.1 μM) and B[a]P (2.5 μM) on EGFR internalization was investigated by 

EGFR internalization assay and subsequent high content screening microscopy. On the left 

representative pictures, on the right results from the automated quantification are shown. 

n = 4–7. *, p ≤ 0.05 compared to DMSO. #, p ≤ 0.05 compared to B[a]P. d Colorimetric 

BrdU incorporation assay to assess the influence of PCB126, TCDD and PD153035 on 

AREG-induced DNA synthesis. HaCaT keratinocytes were treated as indicated for 4 h. 

Absorption was measured at a wavelength of 370 nm (reference wavelength 492 nm). n = 

3. *, p ≤ 0.05 compared to DMSO. #, p ≤ 0.05 compared to AREG/DMSO. e Colorimetric 

BrdU incorporation assay in HaCaT-AHR-KO (DU26) keratinocytes. Cells were treated as 

indicated and the experiment was performed as described in e. n = 7. *, p ≤ 0.05 compared 

to DMSO. #, p ≤ 0.05 compared to AREG/DMSO.
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Fig. 6. PCB126 and TCDD bind to EGFR and inhibit its growth factor-induced activation.
a In silico docking analyses predicting the binding of PCB126 (blue) and TCDD (orange) 

to the ECD of EGFR (grey). EGF (magenta; taken from PDB ID: 1ivo) is superimposed. 

Interacting amino acid residues of EGFR ECD for b PCB126 and c TCDD shown as 

stick models. d Potentially interacting residues were converted to alanine by site directed 

mutagenesis. HepG2 cells were either transfected with an empty vector (pCMV3), pCMV3-

EGFR plasmid or a plasmid bearing one of the following point mutations: EGFRQ8A, 

EGFRS11A or EGFRQ408A. 24 h post transfection, cells were starved for 3 h and treated with 
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EGF (10 ng/ml) alone and in combination with 1 μM PC126 for 15 min. Phosphorylation 

of EGFR residue Y1068 was assessed by western blotting and the results were normalized 

to total EGFR. GAPDH was used as loading control. Bar graph shows the densitometric 

quantification. Signals were compared with the respective DMSO control. n = 3. *, p ≤ 0.05 

compared to DMSO, #, ≤ 0.05 compared to EGF. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. RNA-Seq analysis reveals distinct expression patterns upon B[a]P treatment.
RNA-Seq analyses of HaCaT keratinocytes using oxford nanopore long-read RNA 

sequencing technology. Cells were treated with DMSO (0.1 %), PCB126 (1 μM), B[a]P (2.5 

μM) or B[a]P (2.5 μM) + PD153035 (1 μM) for 24 h. n = 3. a Differentially expressed genes 

compared to DMSO with a |log2 fold change| ≥ 1.5 depicted in a venn diagram. b Gene 

set enrichment analysis of biological processes of a subset of filtered genes, which were 

solely regulated by B[a]P and where EGFR inhibition of EGFR signaling with PD153035 

counteracted this regulation. Following filter strategy was applied: PCB126 vs. DMSO |log2 
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fold change| ≤ 1 → B[a]P vs PCB126 |log2 fold change| ≥ 2 → B[a]P vs B[a]P + PD153035 

|log2 fold change| ≥ 1. Data set of differentially expression analysis of PCB126 vs. B[a]P 

was filtered for the remaining genes. Regulation of biological processes was depicted in a 

dot plot. c Genes filtered for b were employed on a KEGG pathway analysis. Regulated 

pathways are shown in a dot plot. d Variance heatmap of predefined expression patterns. 

Shown are the top 10 genes with the highest variance of each gene expression type. Type A: 

PCB126 vs. DMSO log2 fold change > 1.5 → B[a]P vs. DMSO log2 fold change > 1.5 → 
B[a]P + PD153035 vs. B[a]P log2 fold change > 0. Type B: PCB126 vs. DMSO log2 fold 

change < 1 → B[a]P vs. DMSO log2 fold change > 1.5 → B[a]P vs. B[a]P + PD153035 

log2 fold change > 0. Type C: PCB126 vs. DMSO log2 fold change > 0 → B[a]P vs. DMSO 

log2 fold change < −1 → B[a]P vs. B[a]P + PD153035 log2 fold change < 0. e qRT-PCR 

analysis of genes representing the different types of gene expression patterns. n = 4. *, p ≤ 

0.05 compared to DMSO, #, ≤ 0.05 compared to B[a]P.
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