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A B S T R A C T   

Crowdsourced geotagged social media data and machine learning approaches have emerged as promising tools 
for mapping ecosystem services, especially cultural ecosystem services that are difficult to assess. Here, we use 
recreation to show how social media data, machine learning, and spatial analysis techniques can improve our 
understanding of human-nature interactions and the mapping of recreational ecosystem services. We extracted 
80,500 photographs taken in non-urban areas of the Tahoe Central Sierra Initiative project area in California 
between 2005 and 2019 that were posted to the photo sharing application Flickr and used these as a proxy for 
recreational visits to the area. Automated image content analysis was used to identify the objects and concepts in 
the photographs and uncover the types of nature experiences that are important to visitors. Additionally, variable 
importance, a Random Forest machine learning technique, was used to examine the environmental and land
scape variables that drive recreation in the area and to create a classification model that predicts the recreation 
potential of the entire area based on important variables. The automated image content analysis identified 1,239 
unique labels linked to recreation, with mountains, hills, and rocks being the most prominent features (22%). 
Our Random Forest model indicates that vegetation cover, land cover, elevation, smoke days, and landscape 
features are major drivers of recreation in the area and are of interest to visitors in the area. The model predicted 
that 25.9% of the area has the potential to support recreational visits. Most of these recreation potential areas are 
in protected areas (77.8%), predominantly in conifer forests (66%) and within national forest boundaries, 
especially the Tahoe National Forest area (37.6%). These results show that recreational ecosystem services vary 
across landscapes and illustrate the need for improved mapping approaches to determine the provision of 
ecosystem services in different places. The analysis provides novel insights into the various ways social media 
data and machine learning techniques can be powerful components of ecosystem service research and how they 
hold great potential for monitoring and informing management interventions on ecosystem service provision, 
especially in places with limited traditional onsite visitation data.   

1. Introduction 

Human well-being depends on natural capital for important services 
including fertile soil, fresh water, pollination, flood protection, and 
climate regulation (Maes et al., 2016; Remme et al., 2021; Daily, 2021; 
Bratman et al., 2019; Wolsko et al., 2019; Estoque et al., 2021). Mapping 
is essential to understanding how ecosystems contribute to human well- 
being and to support policies as well as adaptation strategies to pressures 
such as land use and climate change (Guo et al., 2023; Burkhard and 

Maes, 2017; Zhao et al., 2015; Daily and Ruckelshaus, 2022; Dasgupta, 
2021). Although quantitative studies of ecosystem services have rapidly 
grown in recent years, cultural ecosystem services including, 
nature-based recreation, i.e., recreation that occurs in and depends on 
the natural environment, are underrepresented in the literature 
compared to provisioning and regulatory services. In addition to 
contributing to the well-being of residents and tourists alike, 
nature-based recreation plays a significant role in national, statewide, 
and surrounding local economies. However, recreation managers 
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frequently lack basic information on the amount and extent of recreation 
use, especially at large spatial scales (McDaniel et al., 2021; Manley and 
Egoh, 2022; Karasov et al., 2020; Tew et al., 2019; Mayer and Wolter
ing., 2018; Lee et al., 2019; Sinclair et al., 2018; Sinclair et al., 2020; 
Zhang et al., 2021; Hermes et al., 2018; Yoshimura and Hiura, 2017; 
Cheng et al 2019; Kosanic and Petzold, 2020; Morse et al., 2022). This is 
a key gap that can be filled in by studies that expand ecosystem service 
modeling capabilities to rapidly assess the inherent properties of land
scapes, how people interact with their environment, and their preferred 
nature-based experiences (Rossi et al., 2020; Ghermandi et al., 2020). 

Due to the subjectivity and intangibility of these cultural services, 
most studies rely on human interpretation and perception of ecosystems, 
societal context, individual values, and often the presence of benefi
ciaries in the physical environment (Guerrero et al., 2016; Tenerelli 
et al., 2016). As a result, visitation rates, prominent touristic sites, and 
other proxies are commonly regarded as comprehensive indicators of 
these cultural ecosystem services (Gosal et al., 2021; Nigussie et al., 
2021; Havinga et al., 2020; Tiemann and Ring, 2022; Karasov et al., 
2022; Hausmann et al., 2019). For nature-based recreation, most map
ping and assessment tools rely on traditional administrative data and 
direct observations on the number and character of visitors, as well as 
the spatial and temporal extent of recreational activities (McDaniel 
et al., 2021; Wood et al., 2020; Oteros-Rozas et al., 2018; Hegetsch
weiler et al., 2022; Wilkins et al., 2021; Zhang et al., 2021; Wartmann 
et al., 2021; Wang et al., 2022; Llanos-Paez and Acuña, 2022). However, 
such conventional methods are limited in that they can be costly and 
have not always led to a deeper understanding of important cultural 
ecosystem services and the contribution of the natural environment to 
those services, as they are usually site specific, time consuming, and 
limited in both spatial coverage and content richness. Although a myriad 
of indicators can be used in research, depending on the objective of the 
study, most of these indicators do not necessarily capture both the 
biophysical and social aspects of the service (Manley and Egoh, 2022). 
This leads to greater uncertainty due to oversimplifications and gener
alizations of the nonlinear dynamics of ecosystem services. There is 
therefore an urgent need for studies that improve and spatially refine 
existing mapping approaches to fill in key data and methodological gaps 
associated with mapping socio-ecological systems, refine indicators for 
mapping ecosystem services, and improve our understanding, estima
tion, and reporting of model uncertainties. 

Recently, technological advancements in social media, mobile net
works, and smartphone technologies have created many streams of data 
and possibilities to address the data and research gaps in mapping cul
tural ecosystem services. Billions of posts, including text, videos, and 
geotagged photographs, with a wealth of spatial and temporal metadata 
of previously unavailable valuable beneficiary information on human- 
nature interactions, attitudes, and perceptions of nature based experi
ences from millions of users are uploaded to social media platforms such 
as Facebook, Twitter, and Instagram every year, revolutionizing 
ecosystem service research and ecological assessments (Toivonen et al., 
2019; Cheng et al., 2019; Cardoso et al., 2021; Ruiz-Frau et al., 2020; 
Mouttaki et al., 2021; Manley and Egoh, 2022; Wilkins et al., 2021; 
Zhang et al., 2021; Havinga et al., 2020; Wood et al., 2020; McDaniel 
et al., 2021). Although data mining on social media platforms is a fast, 
large scale, and highly resource efficient source of data with the po
tential to inform estimates of visitation and improve our ability to assess 
rapid changes in ecosystems and their use at fine spatial and temporal 
resolutions compared to traditional monitoring systems, particularly in 
areas considered too costly or difficult for traditional monitoring, few 
studies have utilized this valuable resource. For example, several studies 
on recreation (Hamstead et al., 2018; Mouttaki et al., 2021; Manley and 
Egoh, 2022; Ciesielski and Stereńczak, 2021; Muñoz et al., 2020; Long 
et al., 2021; Karasov et al., 2022; Ghermandi, 2022; Richards and Lav
orel, 2022) have used geotagged photographs from Flickr, a platform 
popular among nature photographers with over 90 million monthly 
active users (Ruiz-Frau et al., 2020) as a proxy for visitation. Some 

studies quantify the value of natural environments by predicting the 
spread of person-days of recreation measured from geotagged photo
graphs posted to Flickr based on the locations of natural habitats and 
other features that factor into people’s decisions about where to recreate 
(Sinclair et al., 2018; Lingua et al., 2022). For example, some indicators 
are focused on speculations that people love to go to mountains and 
water bodies such as lakes and rivers (and these have been used to map 
recreational services), but no evidence exists on which elements are 
most important for recreational activities. However, research in this area 
is still in its infancy, calling for more studies exploring the utility of big 
data and crowdsourced social media data for ecosystem service 
research. 

While photo content analysis can be conducted manually, this is 
extremely time consuming (Cardoso et al., 2021; Cheng et al., 2019). 
New methodologies based on artificial intelligence and deep-learning 
approaches such as machine learning have emerged to potentially fill 
this gap, maximize the utility of crowdsourced data, and expand 
ecosystem service modeling capabilities. Machine learning, for example, 
reduces data processing time and allows for the rapid processing of data, 
and one of its key strengths is that it can support the analysis of larger 
datasets than many conventional methods (Reichstein et al., 2019; 
Scowen et al., 2021; Ochoa and Urbina-Cardona, 2017; Lautenbach 
et al., 2019; Scowen et al., 2021; Manley and Egoh, 2022). Such ad
vancements allow us to rapidly assess the inherent properties of land
scapes, how people interact with their environment, and their preferred 
nature-based experiences (Rossi et al., 2020; Ghermandi et al., 2020). 
For example, machine learning algorithms for image analysis such as 
Google Cloud Vision facilitate the automatic description and classifica
tion of photo content (Willcock, et al., 2018; Richards and Tunçer, 2018; 
Pal et al., 2020), but are rarely used in the ecosystem service literature. 
Additionally, algorithms such as Random Forest (a classification and 
regression tree) allow for the assessment of variable importance (i.e., 
predictive power) and the selection of relevant indicators for mapping 
ecosystem service provision (Scowen et al., 2021). Studies utilizing such 
information are still in their infancy, although they can help determine 
the factors that influence, for example, recreational visits, which is 
essential to understanding people’s recreational values and crucial for 
planners and managers. 

The main objective of this study is to use newly available techniques 
and data sources to improve ecosystem service modeling methods and 
reduce uncertainty in the mapping of cultural services. We specifically 
use recreational ecosystem services as an example to illustrate how 
crowdsourced social media data and machine learning can fill in key 
data and methodological gaps and help improve how we measure, map, 
and manage ecosystem services on public lands. Secondly, we aim to 
identify the key pointers and indicators influencing recreational activ
ities that are useful for mapping the recreational potential of landscapes. 
Lastly, we seek to understand the extent to which California ecosystems, 
particularly protected areas, provide recreational services. We present a 
case study in California using visitation data from the photo sharing 
application Flickr, a Random Forest machine learning technique, auto
mated image content analysis via Google Cloud Vision, environmental 
variables, and model-based analysis to assess the recreational ecosystem 
services in areas outside cities in the Tahoe Central Sierra Initiative 
(TCSI) project area. We use the locations of recreation users’ social 
media posts to describe how their visits are distributed across the public 
lands in the TCSI and to evaluate nature-human interactions to uncover 
the types of nature experiences and unique qualities of landscapes that 
are important to recreational visitors. The novel approaches developed 
in this analysis will help land managers and decision makers answer 
critical questions related to factors influencing recreational visits, in
dicators for mapping the recreational potential of landscapes, and the 
impact of management and disturbance on nature-based recreation. 
Results of this study are crucial for informing the valuation of ecosystem 
services, improving mapping tools, and reducing uncertainty in the 
mapping of important areas for recreation. Although we focus on 
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recreational ecosystem services, the methods developed in this study can 
also be used for identifying other ecosystem services, including provi
sioning and regulating services across various scales and management 
contexts. 

2. Materials and methods 

2.1. Study area 

Within the Sierran Steppe-Mixed Forest-Coniferous Forest-Alp ecor
egion of the Sierra Nevada lies the TCSI (Fig. 1), a pioneering 9,700 km2 

landscape-level forest restoration effort under the Sierra Nevada 
Watershed Improvement Program (California Tahoe Conservancy, 
2019). The initiative brings together innovative planning, investment, 
and management tools for multiple restoration initiatives and collabo
ratives to improve the health and resilience of the Sierra Nevada (Sierra 
Nevada Conservancy, 2021). A healthy forest is expected to decrease the 
risk of severe, high-intensity wildfires, and lead to other desirable 
environmental outcomes, and improve, among other benefits, the rec
reational potential of the natural areas. Based on the California 
Department of Forestry and Fire Protection (CALFIRE) Fire and 

Resource Assessment Program (FRAP) (2015) land cover dataset 
(Fig. 1), the TCSI is predominantly conifer forest (68.2%). Hardwood 
forests, shrublands, and water make up 8.8%, 8.5%, and 6.6% of the 
area, respectively. A smaller proportion of the area is categorized as 
barren (4.1%), herbaceous (2.1%), urban (1.1%), wetland (0.4%), and 
agricultural land (0.2%). Six watersheds fall within the TCSI area, 
namely Yuba, Truckee, Lake Tahoe Basin, Upper Bear, North Fork 
American, and South Fork American. These forested watersheds contain 
large amounts of carbon, produce substantial amounts of wood products 
and clean energy, provide significant fish and wildlife habitat, and are a 
recreational playground for millions of visitors all year-round (Sierra 
Nevada Conservancy, 2021). For example, recreation is the foundation 
of Lake Tahoe Basin’s $5 billion economy (Sierra Nevada Alliance, 
2021). Lake Tahoe’s crystal blue waters and snow-capped mountains 
draw an estimated 8 to 14 million annual visitors each year (Tahoe 
Regional Planning Agency, 2021; The Sierra Nevada Ally, 2021; Cali
fornia Tahoe Conservancy, 2021). The United States Department of 
Agriculture (USDA) Forest Service estimates that over 10.8 million 
people visit national forests located in the TCSI area (Tahoe National 
Forest, Eldorado National Forest, Plumas National Forest, and the Lake 
Tahoe Basin Management Unit) to recreate annually. These visitors 

Fig. 1. Location as well as land cover characteristics of the Tahoe Central Sierra Initiative and forest restoration projects being undertaken in the state of California.  
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spend about $1.18 billion during their trips and contribute more than 
$828 million towards the wages and income of local businesses (USDA 
Forest Service, 2020a; USDA Forest Service, 2020b; USDA Forest Ser
vice, 2020c; USDA Forest Service, 2020d). Thus, our case study is a 
relevant baseline to characterize the current provision of ecosystem 
services such as nature-based recreation in the area that is home to 
approximately 200,000 people located in and around the ten cities 
within the TCSI boundary (Tahoe Truckee Community Foundation, 
2020). 

2.2. Data collection 

2.2.1. Obtaining visitation data from Flickr 
Flickr photographs taken between 1 January 2005 and 31 December 

2019 in the TCSI were retrieved by querying the Flickr Application 
Programming Interface (API) using Python scripts. An API is an interface 
that developers can access to perform various tasks, which also enables 
different applications to communicate with each other (Robillard, 
2009). We ended our photograph search in 2019 to avoid the effects of 
COVID-19-related travel restrictions (i.e., stay at home orders, lockdown 
orders) on recreational visits. We specifically used the dates the photo
graphs were taken and a bounding box of coordinates defining the 
boundary of the TCSI to search for all geolocated posts (based on the 
latitude and longitude associated with each photograph). We chose 
Flickr because of easy access to public content through its API. Addi
tionally, Wood et al. (2013) observed that the number of recreators who 
visit a location annually is related to the number of photographs taken in 
the same area and uploaded to the Flickr database at 836 visitor at
tractions worldwide. We excluded urban areas from the analysis to es
timate recreational visits in natural landscapes outside cities. To do this, 
we filtered the resulting Flickr records using a United States Census 
Bureau (2021) urban area shapefile to discard any photographs taken 
within an urban area. This retained a unique dataset of photographs 
taken in the non-urban areas of the TCSI area, which were then 

downloaded along with their metadata. The data downloaded included 
the location, date, and time the photograph was taken, as well as the 
web address of the web page containing the photograph and details 
about the photographer, including their unique identifier and origin 
based on the location listed on their online profiles. Fig. 2 shows the 
spatial distribution of the photographs considered in the study and their 
locations across the USDA Forest Service national forest boundaries 
(USDA Forest Service, 2021) in the TCSI. 

2.2.2. Selection of environmental variables 
Understanding how different landscape features contribute to 

ecosystem service provision is essential for management and planning. It 
is assumed that the potential of a landscape to provide recreational 
opportunities is a function of its attractiveness to people (Schirpke et al., 
2018; Mitchell et al., 2021). To understand the environmental features 
that might contribute to this aesthetic appeal and to assess the impor
tance of different variables in influencing recreational activities in the 
TCSI focal area, potential explanatory variables considered to factor into 
people’s decisions about where to recreate were identified from the 
literature. This includes studies by Scholte et al. (2018), Oteros-Rozas 
et al. (2018), Paracchini et al. (2014), Grêt-Regamey et al. (2015), 
Egoh et al. (2012), Casado-Arzuaga et al. (2014), and Zulian et al. 
(2013). These variables include characteristics of both the biophysical 
environment, such as vegetation cover, and infrastructure, such as 
roads, that promote the recreational opportunity of landscapes, as well 
as a series of site and context-specific variables. Our variables of interest 
included: land cover types; habitat diversity; vegetation and forest 
cover; number of smoke days; elevation; presence and distance to access 
routes (roads, rail, and trails); presence of flowers, recreational sites, 
protected areas, and parks; population density; and presence and pro
portion of water (lakes and other water bodies). Appendix Table 1 lists 
all datasets used in the analysis along with their sources. After down
loading the necessary datasets for the study area, spatial analysis tech
niques, including the zonal tool in Geographic Information System 

Fig. 2. Spatial distribution of Flickr photographs considered in the dataset for each USDA Forest Service national forest region within the TCSI (n = 80,500).  
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software ArcMap® (version 10.3), were used to summarize the data 
layers and the Flickr visitation data across one-kilometer grids of the 
study area created using the ArcGIS geoprocessing tool (https://pro.ar 
cgis.com/). 

2.3. Data analysis 

2.3.1. Automated image content analysis using Google Cloud Vision API 
To uncover the types of nature experiences and unique ecosystems, 

wildlife, and scenic qualities of landscapes that are important to recre
ational visitors in the TCSI, we used the automated content analysis tool, 
Google Cloud Vision (https://cloud.google.com/vision). Google Cloud 
Vision is a machine learning algorithm with the ability to detect broad 
sets of categories within an image, including labels, text, faces, land
marks, logos, and image properties, but it is rarely used in ecosystem 
service research. In our analysis, this was useful for identifying the types 
of nature most photographed by visitors to the TCSI and useful for 
mapping hotspots of different categories of human-nature interactions 
across different landscapes. For each Flickr photograph downloaded for 
the TCSI, we extracted the web address of the photograph from the 
metadata and then passed this web address to the Google Cloud Vision 
API label detection function using the R package ‘googleCloudVisionR’ 
(Pal et al., 2020). The API returned a list of labels for each photograph 
and a confidence score, which ranges from 0 (no confidence) to 1 (very 
high confidence) associated with each label. Following Runge et al. 
(2020), we limited our analysis to any labels with a score of 0.6 or higher 
up to a maximum of 20 labels for each photograph (the median number 
of labels per photograph in our dataset is 20). Our analysis focuses on 
nature-based recreation, i.e., recreational activities involving physical 
and experiential interactions with the natural environment (Cortinovis 
et al., 2018). As such, we excluded labels associated with the built 

environment or agricultural activities, including those depicting agri
cultural crops, food, plantations, and livestock. We manually catego
rized all labels and classified them into ten categories that depict: 1) 
trees; 2) other vegetation types; 3) accessibility; 4) wildlife; 5) rocks, 
hills, and mountains; 6) water; 7) recreational activities; 8) accommo
dation; 9) general landscape features; and 10) attractions (Appendix 
Table 2). To assess the performance and consistency of the classification 
criteria of Google Cloud Vision as well as to reduce the subjectivity 
associated with content analysis, we performed manual content analysis 
on a random sample of 385 photographs determined using the Cochran 
formula (Cochran, 1963; Israel, 1992) to evaluate Google Cloud Vision’s 
performance in identifying labels from photographs. Cohen’s Kappa 
coefficient (Cohen, 1960) via the R package ‘irr’ (Gamer et al., 2012) 
was used to assess the level of agreement between the manual coding 
and Google Cloud Vision derived labels. 

2.3.2. Environmental variable analysis using machine learning 
The resolution of the geotagged photographs can be leveraged to 

assess the importance of different variables in influencing recreational 
activities in the area. Here, we used the non-urban Flickr records for 
2012, one of the years with the highest visitation (n = 8,350), in com
bination with the potential explanatory environmental and landscape 
variables considered to factor into people’s decisions about where to 
recreate and those that might contribute to the potential of a landscape 
to provide opportunities for recreation identified from the literature (see 
list in Appendix Table 1). First, we examined these candidate variables 
for correlation and ran collinearity diagnostics to detect and filter highly 
correlated variables. Collinearity, a situation where two variables have 
near perfect linear combinations of one another, and multicollinearity, 
which involves more than two variables, make it difficult to come up 
with reliable estimates of the individual coefficients and potentially 

Fig. 3. Presence and absence of visitation in the TCSI in 2012.  
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result in incorrect conclusions about the relationship between outcome 
and predictor variables (Hebbali, 2020). We used the ‘olsrr’ package in R 
(Hebbali, 2020) to measure the presence of collinearity and multi
collinearity. We specifically examined the correlation matrix for pre
dictor variables that correlate highly and computed the Variance 
Inflation Factor (VIF), a measure of how much the variance of the esti
mated regression coefficient is inflated by the existence of correlation 
among the predictor variables in the model. We also estimated the 
tolerance statistic, which quantifies the percentage of variance in the 
predictor that cannot be accounted for by other predictors, and 
computed Eigenvalues, which show the variance of each linear combi
nation. Variables that were found to be highly correlated were removed 
from the analysis. 

Based on the 2012 presence and absence of visitation data from 
Flickr for each 1 km grid (Fig. 3) and the spatial layers of the explanatory 
variables, the Forest-based Classification and Regression toolset in 
ArcGIS Pro was used to train and construct a classification model for 
predicting the presence or absence of recreational visits in different 
areas based on the associated explanatory variables. We specifically left 
out the area covered by Lake Tahoe and focused on 875 grids that had 
visitation and an equal number of randomly selected grids that had no 
visitation. The Forest-based Classification and Regression tool utilizes 
Random Forest, a supervised machine learning method that uses pre
defined input-output pairs to train a model and derive outputs based on 
the known values provided as part of a training dataset (ESRI, 2021). 
Unlike in unsupervised learning processes where there is no specific 
feedback supplied for input data and the machine learning algorithm 
detects patterns, in supervised learning, the user specifies which vari
ables (i.e., outputs) are considered dependent on others (i.e., inputs) 
(Hastie et al., 2009; Mjolsness and DeCoste, 2001). Random Forest has 
been shown to perform comparatively as well as traditional spatial 
methods and is effective at solving spatial problems (Breiman, 2001; Fox 
et al., 2020; Manley and Egoh, 2022). For example, Manley and Egoh 
(2022) used social media data from Flickr along with social and bio
physical data to create a Random Forest regression model that connects 
the summer demand for recreational ecosystem services to social, 
environmental, and climate variables in California. Random Forest can 
also handle many predictors, is robust to correlated explanatory vari
ables, and allows for varying functional relationships between the pre
dictor and response variables (Larson et al., 2018). In addition to being a 
data driven model that can model without making a priori assumptions 
about the input data, the Random Forest algorithm adds a large amount 

of randomness into the regression analysis and effectively avoids model 
overfitting (Manley and Egoh, 2022; Willcock et al., 2018; Rammer and 
Seidl, 2019; Scowen et al., 2021). This is a key advantage of the algo
rithm for our analysis, considering that recreation is based upon a large 
set of complexly interacting variables, which makes it vulnerable to 
overfitting. 

2.3.3. Making predictions about visitation in the TCSI 
After training a Random Forest model and assessing its accuracy, it 

can then be used to generate predictions of unknown values in a dataset 
that has the same associated explanatory variables (ESRI, 2021). In the 
Forest-based Classification and Regression toolset, predictions can be 
performed for both categorical variables (classification) and continuous 
variables (regression). In addition, the toolset also calculates the 
importance of each explanatory variable to the model and reports var
iables with the top twenty importance scores, helping us better under
stand which variables drive the results of the model. We trained and 
assessed various classification models based on the presence and 
absence of visitation data (Fig. 3), as well as the potential explanatory 
variables of visitation (Appendix Table 1), in the Forest-based Classifi
cation and Regression toolset before selecting the best classification 
model. The best model was then used in predict mode to map the rec
reational potential of different areas in the TCSI for recreational visits (i. 
e., the presence or absence of recreational visits). This was achieved by 
assigning the same explanatory variables used to train the model to all 
grid locations in the TCSI. 

3. Results 

The analysis was able to illustrate how crowdsourced geotagged data 
from Flickr and machine learning techniques, together with environ
mental variables and model-based analysis, can be used to support as
sessments looking at cultural ecosystem services such as recreation in 
natural lands. The following sections present results for the various 
analyses undertaken to illustrate how these approaches can be leveraged 
to identify the types of nature experiences and unique qualities of 
landscapes that are important to recreational visitors, identify key var
iables influencing recreational activities in the TCSI that are useful for 
mapping the recreational potential of natural lands, and illustrate the 
recreation potential of natural lands in the TCSI. 

Fig. 4. Classification of important objects and landscape features associated with recreation in the TCSI.  
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3.1. Distribution of Flickr photographs taken in the TCSI 

Our analysis retained a unique dataset of 80,500 photographs taken 
in non-urban areas of the TCSI area uploaded by approximately 5,000 
users. The median number of photographs taken by each photographer 
was 3, and 86% of photographers uploaded fewer than 20 photographs. 
The maximum number of photographs uploaded by a single photogra
pher was 8,244 (only 4 photographers uploaded more than 1,000 pho
tographs). From the spatial distribution of the photographs (Fig. 2), it 

can be observed that there is some clustering of the photographs, for 
example, at focal points and along linear features such as access routes. 

3.2. Nature experiences and unique qualities of landscapes that are 
important to visitors from image content analysis 

The Google Cloud Vision algorithm was able to access 80,050 pho
tographs and assign 4,561 unique labels to them. These labels included 
descriptors of physical objects (e.g., ‘tree’, ‘woody plant’, and ‘water’), 
activities (e.g., ‘skiing’, ‘hiking’, and ‘backpacking’), and concepts such 
as ‘leisure’ and ‘fun’. Of all labels, only 1,239 were linked to recreation. 
Fig. 4 shows the 1,239 labels summarized across the ten categories 
described in Appendix Table 2 for all photographs (up to a maximum of 
20 labels each). For each category, the top five labels obtained from the 
analysis are illustrated in the table. Overall, photographs depicting 
mountains, hills, and rocks had the greatest percentage contribution to 
labels retrieved (22%), followed by those focusing on trees (16%), water 
(16%), general landscape views (14%), and other vegetation (14%). 

Cohen’s Kappa resulted in a good agreement (93%) between the 
manual coding and Google Cloud Vision derived labels (Kappa statistic 
= 0.918), indicating that Google Cloud Vision automatically describes 
and classifies photo content with a high level of accuracy. 

3.3. Key environmental variables for mapping the recreational potential 
of natural lands 

Our multicollinearity tests yielded VIF values within tolerance (VIF 
less than 10 with a tolerance statistic not less than zero), and no presence 
of small eigenvalues (close to zero) which would have indicated 

Table 1 
Variable Importance table of key indicators of recreation in the TCSI.  

Variable Importance Percentage (%) 

Variety of Existing Vegetation Cover 7.22 11 
Variety of Land Cover 7.18 11 
Majority Existing Vegetation Cover 5.50 9 
Elevation 4.79 7 
Distance to Rail 4.76 7 
Number of Smoke Days 4.73 7 
Percentage of Forest 4.10 6 
Main Land Cover 4.10 6 
Population Density 4.08 6 
Distance to Trails 3.91 6 
Distance to Roads 3.33 5 
Percentage of Water 1.92 3 
Presence of Protected Areas 1.64 3 
Presence of Water 1.61 3 
Presence of Access Routes 1.54 2 
Number of Recreational Opportunities 1.49 2 
Presence of Parks 1.14 2 
Presence of Recreational Opportunities 0.82 1 
Presence of Forests 0.17 0  

Fig. 5. Predicted recreational potential map for the TCSI from the Random Forest model.  
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multicollinearity. However, the pairwise correlations between the 
number of parks and presence of parks, majority existing vegetation 
cover and majority vegetation type, variety of existing vegetation type 
and variety of existing vegetation cover, change in smoke days, and 
number of smoke days were greater than 0.75, implying some degree of 
correlation. Our final classification model yielded an accuracy of 0.99 
after filtering and was able to predict the presence and absence of rec
reational visits based on the given training dataset. After training the 
Random Forest model, results show that vegetation cover (both majority 
and variety) and variety of land cover types have the most predictive 
power. The number of smoke days, elevation, and distance to rail have 
also proven to be important factors in determining recreational visits in 
the TCSI. The top variables found to significantly affect the presence or 
absence of recreational visits to the TCSI are shown in Table 1. Variables 
with high “importance” are drivers of the outcome in the model, and 
their values have a significant impact on predicting the presence or 
absence of visitation in the TCSI. According to ESRI (2021), importance 
is calculated using Gini coefficients and can be thought of as the number 
of times a variable is responsible for a split in the decision tree and the 
impact of that split divided by the number of trees. The percentage (%) 
column highlights the percentage of the total sum of Gini coefficients for 
each variable. 

3.4. Recreational potential of the TCSI’s natural lands 

Our Random Forest classification model was able to predict the 
presence and absence of visitation in different areas across the TCSI 
(Fig. 5). Of the 9,531 1-km grids used in the analysis, 2,471 (25.9%) 
were predicted to have the potential to support recreational visits in the 
TCSI. 

Most of the grids with high recreation potential are predominantly in 
protected areas (77.8%) listed in the California Protected Areas Data
base (GreenInfo Network, 2021). These high recreation potential areas 
are mainly located in conifer forests (66%), shrublands (13%), and 
barren lands (7%). A smaller proportion of the high recreation potential 
grids occur over hardwood forest (5%), water (5%), herbaceous cover 
(3%), and wetland (1%) land cover categories. Most of the grids pre
dicted for recreational visits fall within the Tahoe National Forest 
(37.6%), Eldorado National Forest (33.4%), and Lake Tahoe Basin 
Management Unit (24.8%). Few grids are predicted for recreation in 
areas outside of USDA Forest Service national forest boundaries (11.4%) 
and Plumas National Forest (1.3%). 

4. Discussion 

We set out to explore the utility of crowdsourced social media data 
and machine learning techniques to improve our understanding and 
mapping of ecosystem services, particularly recreational ecosystem 
services in natural lands. Recently, there have been concerted efforts to 
utilize social media data and emerging artificial intelligence in assessing 
cultural ecosystem services such as recreation. Availability and access to 
crowdsourced data provide an opportunity to connect the biophysical 
and social aspects of ecosystem services, a key gap that has previously 
resulted in an incomplete understanding of the impacts of ecosystems 
and the ecosystem services they provide to human well-being (Manley 
and Egoh, 2022). Several studies, including Sonter et al. (2016), Arslan 
and Örücü (2021), Mancini et al. (2018), Richards and Tunçer (2018), 
Cheng et al. (2019), Cardoso et al. (2021), and Zhang et al. (2021), have 
used geo-tagged photographs from social media to understand the 
spatial patterns of nature-based recreational visits. However, as our 
analysis illustrates, there are other important possibilities besides 
mapping visitation that social media data offers to ecosystem service 
research that are yet to be tapped upon. For example, our study adds to 
the few studies that have included image content analysis to understand 
the unique qualities of the environment that are of most interest to 
people or sought to refine the indicators used for mapping the 

recreational potential of landscapes (Richards and Tunçer, 2018; 
Figueroa-Alfaro and Tang, 2017). This is particularly important for 
improving methods that reduce uncertainty in the mapping of ecosystem 
services. Non-market valuation approaches such as the travel cost 
method, for example, typically rely on limited administrative data and 
surveys to get visitation data (Nyelele et al., 2023; Bowker et al., 2009). 
As such, approaches such as ours that take advantage of emerging data 
sources and methodologies are critical in filling important gaps and 
expanding ecosystem service modeling capabilities to rapidly assess the 
inherent properties of landscapes, how people interact with their envi
ronment, and their preferred nature-based experiences (Rossi et al., 
2020; Ghermandi et al., 2020). Additionally, algorithms such as Random 
Forest allow for the assessment and selection of relevant indicators for 
mapping ecosystem service provision (Scowen et al., 2021). Such in
formation can help determine the factors that influence, for example, 
recreational visits, which is essential to understanding people’s recrea
tional values and crucial for planners and managers. 

With growing demand for outdoor recreation and increasing pres
sure on parks and protected areas, such an analysis can be used to in
fluence decision making around the management of natural areas for 
ecosystem service provision. Content analysis provides us an opportu
nity to look beyond photograph density in assessing the recreational 
potential of sites and instead explore people’s preferences and features 
of the environment that attract their attention when they recreate. Our 
image content analysis shows that mountains, hills, and rocks were 
either more common, more noticeable, or of greater interest to the 
visitor community, followed by trees, water, and general landscape 
views of the area. This result is also mirrored in the results of the vari
able importance analysis, which identified vegetation cover, land cover, 
and elevation as some of the most important variables for predicting 
recreational visits. This is not surprising considering that the Sierra 
Nevada contains the headwaters of 24 major river basins, has higher 
elevations, and has a unique character of forests defined by tall trees, a 
relatively mild climate, and low forest density (Bales et al., 2011). Lake 
Tahoe, a year-round outdoor paradise, is not only one of the largest 
alpine lakes anywhere but is also one of the highest lakes, attracting 
hikers to its tall peaks (Freel Peak, Monument Peak, Pyramid Peak, and 
Mount Tallac) that offer a picturesque view of the lake below. Although 
these findings are in line with observations by van Zanten (2016) and 
Oteros-Rozas et al. (2018) that some of the best predictors of recrea
tional value are geomorphological features such as hills and mountains, 
interestingly, few studies (Peña et al., 2015; Paracchini et al., 2014; 
Tenerelli et al., 2016; Weyland and Laterra, 2014) have included them 
as important determinants of recreational activity. 

The variable importance analysis sought to identify key pointers and 
indicators influencing recreational activities that are useful for mapping 
the recreational potential of landscapes. Previous studies have used 
several indicators such as accessibility (e.g., proximity to roads), pres
ence of recreational outdoor opportunities, scenic beauty, and visitor 
numbers to map recreational services (Schägner et al., 2016; Egoh et al., 
2012; Byczek et al., 2018; Paracchini et al., 2014). Our variable 
importance results show that although these factors are important, 
heterogeneity may play a bigger role in choosing where to recreate. We 
found two factors associated with heterogeneity (variety of vegetation 
cover and variety of land cover types) to be the most important factors. 
Interestingly, Harrison et al. (2014) found a very strong relationship 
between recreational services and biodiversity, in particular species 
richness and abundance. However, very few studies have used species 
richness or vegetation richness as a proxy for mapping recreational 
services except in cases such as hunting and angling (Egoh et al., 2012; 
Villamagna et al., 2014; Grima et al., 2019). Although our image content 
analysis did not show accessibility as an important driver of recreation, 
similar to Paracchini et al. (2014) and mostly listed in Egoh et al. (2012), 
accessibility, specifically distance to rail, came up as an important var
iable in the variable importance analysis. Additionally, the spatial dis
tribution of the photographs (Fig. 2) highlights that photograph 
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locations follow a linear pattern, implying that areas along access routes, 
for example, roads, trails, and other paths, that are easily accessible are 
also easier to photograph. This is not surprising, as distance from roads 
and viewsheds has been used to map recreational services (Reyers et al., 
2009; Karasov et al., 2020; Ihtimanski et al., 2020), implying that even 
though people prefer undisturbed and pristine areas, they cannot reach 
those areas without access routes. One of the most interesting results 
from the variable importance analysis is the importance of smoke days 
in predicting visitation. Climatic variables such as temperature, pre
cipitation, and humidity, as well as air quality, are hardly included in 
mapping recreational services but are some of the most important as
pects that people consider when going out. California is marred with 
frequent wildfires (Seipp et al., 2023), and smoke has increasingly 
become a fixture on the Western landscape, making recreational activ
ities unattractive on certain days due to bad air quality linked to severe 
human health impacts and often resulting in forest and park closures. 
For example, Gellman et al. (2022) found that campers on public lands 
experience at least 400,000 days of wildfire smoke each year on public 
lands in the western USA. Such an analysis is helpful in identifying and 
refining important indicators for mapping certain services and reducing 
the uncertainty in our mapping approaches. 

Random Forest allowed us to test and then use important explana
tory variables shown to be influential in determining recreational ac
tivities in the TCSI to predict the presence or absence of recreational 
visitation in the area. Merrill et al. (2020) were also able to develop a 
Random Forest-based model to predict visitation to a range of water 
recreation areas using cellphone data and other explanatory variables in 
New England, USA. Manley and Egoh (2022) also demonstrate the 
effectiveness of Random Forest in predicting the impact of different 
environmental and climatic factors on recreational ecosystem services in 
California. Our focus was not on estimating absolute visitation numbers 
since our Flickr dataset does not capture all the recreational visits to the 
area. Instead, we focused on using social media-based visitation data 
and machine learning to determine whether an area within the TCSI has 
the potential to “host” recreational visits, given the unique character
istics of the landscape. It is interesting to note that while our classifi
cation and prediction model were based on 2012 Flickr visitation data, 
our predicted presence and absence of visitation map (Fig. 5) mimics the 
observed overall visitation patterns for 2005-2019 depicted on Fig. 2. 
This adds confidence to the accuracy of our model to predict areas that 
can support recreation based on the explanatory variables we used. 
Interestingly, most of the areas predicted to host recreational visits fall 
mainly within national forest boundaries and in protected areas. Such 
findings support calls for the conservation and protection of outstanding 
ecosystems to retain important functions for conserving valued species, 
habitats, and landscapes in their natural or semi-natural state. Our 
methodology and results can be used to highlight key areas that should 
be preserved for an array of conservation and cultural ecosystem ser
vices and benefits, including those related to recreation. 

While the approach used in the analysis improves our understanding 
of recreational ecosystem services and demonstrates the utility of pub
licly available datasets and machine learning techniques in mapping 
cultural ecosystem services such as recreation, it is not without limita
tions. Firstly, unlike field surveys, social media data is based on infer
ence, considering that the motivation for sharing photographs is not 
known and the initial purpose of social media is not for ecosystem ser
vices research. Additionally, approaches such as ours relying on social 
media data assume that a visit to the area is only for the purpose of 
recreation and do not account for the people who travel through the area 
to recreate in other places. To overcome this, we filtered photographs to 
focus on those taken in natural lands and looked at the image content to 
obtain labels related to nature-based recreation. Other studies (e.g., 
Schirpke et al., 2021; Hirahara, 2021) have overcome this limitation 
through text analysis of user generated tags from the photograph met
adata or essays written by forest recreation participants to obtain deeper 
insights into people’s experiences, preferences, or emotions related to 

cultural ecosystem services such as recreation. A further potential lim
itation of relying on social media data for proxy counts of visitation, 
more specifically a single photograph platform (Flickr), is that the 
number of observations provided is sometimes too low to adequately 
represent visitor rates in natural areas. Social media might underesti
mate the actual visitation as a smaller proportion of people visiting parks 
and other recreation locations may post images to Flickr (Nyelele et al., 
2023; Hausmann et al., 2019; Wood et al., 2013; Toivonen et al., 2019). 
Although Flickr is the most popular source of geotagged photographs for 
cultural ecosystem service research due to its global popularity and open 
API (Ruiz-Frau et al., 2020), studies can explore how to include data 
from multiple social media data streams, especially popular streams 
such as Facebook, Instagram, and Twitter that have better data but have 
restricted access through their APIs. 

Additionally, Flickr has previously been validated as an effective 
proxy of visitation (Wood et al., 2013; Wood et al., 2020; Manley and 
Egoh, 2022), and thus we can deduce trends in the use and demand of 
ecosystem services based on the data. While we cannot completely rule 
out errors in the datasets and techniques used in our analysis, our ac
curacy assessment, specifically the weighted Cohen’s Kappa agreement 
index between the manual and automated classification (93%), indicates 
a good result of the automated content analysis. It must be stressed that 
the particular focus of this study was to show a methodology that could 
be used in different areas where crowdsourced data, environmental 
data, and landscape data can be obtained and that may be applicable to 
other ecosystem services. Although our analysis and findings may be site 
specific, they can be extended to other areas and scales. This will help 
improve forest and land use management and decision making including 
the identification of focal areas for prioritizing management actions that 
improve ecosystem service provision. Our study has illustrated how the 
concurrent use of crowdsourced social media data and machine learning 
has great potential to close key data and methodological gaps in 
ecosystem service research by improving estimates of visitation and the 
ability to assess changes in recreation use. 

Future work can build on this work and harness geotagged social 
media data from a variety of platforms and machine learning resources 
to improve estimates of visitation trends across space and time that can 
be used to inform assessments and management actions related to 
ecosystem service provision. There is also the potential to incorporate 
big data and social media data to study and improve the valuation of 
recreational ecosystem services, and other cultural ecosystem services as 
well as provisioning and regulating services across various scales and 
management contexts. This will be important in facilitating sustainable 
land use management and informing policy and decision making. 

5. Conclusions 

Using recreation as an example, this study provides novel insights 
into the variety of ways social media and machine learning can be used 
to improve the mapping of cultural ecosystem services that rely on 
visitation estimates, especially in places with limited traditional onsite 
visitation data. Results from the study reveal that recreational visits are 
related to a variety of environmental and landscape characteristics of the 
area, including vegetation cover, elevation, landforms, and smoke days. 
This supports the conclusion that recreational ecosystem services from 
natural lands are not the same across landscapes, and improved mapping 
approaches are needed to determine the provision of ecosystem services 
across landscapes. Additionally, the study has demonstrated how envi
ronmental and landscape variables deemed as important possible 
drivers of recreational visits can be used to map recreational potential in 
the absence of visitation data, filling in key data availability gaps in 
ecosystem service research. Furthermore, results from the image content 
analysis have helped us evaluate nature-human interactions to uncover 
the types of nature experiences and unique qualities of landscapes that 
are important to recreational visitors, providing us with an additional 
layer of information that has the potential to guide more decision- 
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making regarding areas to focus on for management action and forest 
restoration activities that enhance and protect the recreational oppor
tunities that are important to visitors. Although the study is based on a 
prototype area, the TCSI, with a particular focus on non-urban areas, the 
methodological and conceptual approaches of this analysis can be used 
to advance the mapping of recreational ecosystem services as well as 
other ecosystem services and the planning and evaluation of priority 
action by leveraging on social media and machine learning approaches 
to improve ecosystem service provision, assessment, and mapping of 
ecosystem services in different landscapes. 
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Table A1 
Description of environmental variables used in the analysis and their sources.  

Data Description Source 

Existing 
Vegetation 
Types 

Current distribution of the 
terrestrial ecological 
systems. 

LANDFIRE, Earth Resources 
Observation and Science 
Center (EROS), U.S. 
Geological Survey (https 
://www.landfire.gov). 

Land Cover Types Land cover data depicting the 
spatial distribution of habitat 
types within California. 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

Existing 
Vegetation 
Cover 

Vertically projected percent 
cover of the live canopy layer 
for a 30-m cell. 

LANDFIRE, Earth Resources 
Observation and Science 
Center (EROS), U.S. 
Geological Survey (https 
://www.landfire.gov). 

Change in Smoke 
Days 

Change in the number of 
smoke days between two 
consecutive years as detected 
from satellite observations. 

NOAA/NESDIS Satellite 
Analysis Branch’s Hazard 
Mapping System (https: 
//www.ospo.noaa.gov). 

Distance to Rail Distance to railroad features. U.S. Geological Survey, 
National Geospatial 
Technical Operations Center 
USGS National 
Transportation Dataset 
(NTD) (https://www.usgs.go 
v/core-science-systems/nat 
ional-geospatial-program/n 
ational-map). 

Smoke Days Presence and absence of 
smoke as well as number of 
smoke days detected from 
satellite observation. 

NOAA/NESDIS Satellite 
Analysis Branch’s Hazard 
Mapping System (https: 
//www.ospo.noaa.gov). 

Presence and 
number of 
access routes 

Presence and absence of 
access features (roads, rail, 
trail etc.). 

U.S. Geological Survey, 
National Geospatial 
Technical Operations Center 
USGS National 
Transportation Dataset 
(NTD) (https://www.usgs.go 
v/core-science-systems/nat 
ional-geospatial-program/n 
ational-map) and U.S. Forest 
Service (https://data.fs.usda. 
gov/geodata/edw/datasets. 
php). 

Elevation Digital Elevation Model 
(DEM) representation of the 
bare ground (bare earth) 
topographic surface of the 
Earth. 

United States Geological 
Survey (USGS) (htt 
ps://www.usgs.gov/). 

Proportion of 
Forest (%) 

Proportion of area covered 
by forest. 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

Population 
Density 

Number of people per unit of 
area (obtained at the census 
block group level). 

U.S. Census Bureau (htt 
ps://data.census.go 
v/cedsci/). 

Distance to Trails Distance to the National 
Forest System trail locations 

U.S. Forest Service (htt 
ps://data.fs.usda. 
gov/geodata/edw/datasets. 
php). 

Presence of 
Flowers 

Presence and absence of 
flowers in the area. 

Consortium of California 
Herbaria Portal 2 (CCH2) 
(https://ucjeps.berkeley.edu 
/consortium). 

Distance to Roads Distance to road features. U.S. Geological Survey, 
National Geospatial 
Technical Operations Center 
USGS National 
Transportation Dataset  

Table A1 (continued ) 

Data Description Source 

(NTD). (https://www.usgs.go 
v/core-science-systems/nat 
ional-geospatial-program/n 
ational-map). 

Recreational 
Opportunities 

Recreational sites, areas, 
activities, and facilities 
available to visitors that the 
Forest Service collects 
through the Recreation 
Portal. 

U.S. Forest Service (htt 
ps://data.fs.usda. 
gov/geodata/edw/datasets. 
php). 

Presence of 
Protected Areas 

Presence and absence of 
lands that are owned in fee 
and protected for open space 
purposes by over 1,000 
public agencies or non-profit 
organizations. 

California Natural Resources 
Agency California Protected 
Areas Database (CPAD). (http 
s://gis.cnra.ca.gov). 

Proportion of 
Water (%) 

Proportion of the area 
covered by water. 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

Presence or 
absence of 
Water 

Presence and absence of 
water bodies such as rivers 
and lakes in area. 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

State parks Presence and absence as well 
as number of parks in an area 
based on state park 
boundaries. 

California State Parks Park 
Boundaries. (https://www. 
parks.ca.gov). 

Habitat Types Major habitat type and 
variety of types in the area 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

Presence of forests Presence and absence of 
forests in the area 

California Department of 
Forestry and Fire Protections 
CALFIRE Fire and Resource 
Assessment Program 
(CALFIRE-FRAP) (https:// 
wildlife.ca.gov/Data/ 
VegCAMP). 

Fire Active fires detected in an 
area each day 

NOAA/NESDIS Satellite 
Analysis Branch’s Hazard 
Mapping System (https:// 
www.ospo.noaa.gov/) 
Monitoring Trends in Burn 
Severity (MTBS)  
(https://www.mtbs.gov). 

Rare vegetation 
types 

Vegetation types mapped 
and ranked as rare. 

California Department of Fish 
and Wildlife (CDFW) https 
://wildlife.ca.gov/).  

C. Nyelele et al.                                                                                                                                                                                                                                 

https://www.landfire.gov
https://www.landfire.gov
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://www.landfire.gov
https://www.landfire.gov
https://www.ospo.noaa.gov
https://www.ospo.noaa.gov
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.ospo.noaa.gov
https://www.ospo.noaa.gov
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://www.usgs.gov/
https://www.usgs.gov/
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
https://data.census.gov/cedsci/
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://ucjeps.berkeley.edu/consortium
https://ucjeps.berkeley.edu/consortium
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://www.usgs.gov/core-science-systems/national-geospatial-program/national-map
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://data.fs.usda.gov/geodata/edw/datasets.php
https://gis.cnra.ca.gov
https://gis.cnra.ca.gov
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://www.parks.ca.gov
https://www.parks.ca.gov
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://wildlife.ca.gov/Data/VegCAMP
https://www.ospo.noaa.gov/
https://www.ospo.noaa.gov/
https://www.mtbs.gov
https://wildlife.ca.gov/
https://wildlife.ca.gov/


Ecological Indicators 154 (2023) 110606

11

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

We used publicly available data 

Acknowledgements 

This work was funded by the Center for Ecosystem Climate Solutions: 
https://california-ecosystem-climate.solutions/. The Center for 
Ecosystem Climate Solutions is supported by California Strategic Growth 
Council’s Climate Change Research Program with funds from California 
Climate Investments—Cap-and-Trade Dollars at Work. We thank Roger 
Bales and the many colleagues who provided valuable suggestions and 
comments which greatly helped in improving this manuscript. Benis N. 
Egoh is supported by fellowships from the SLOAN Foundation and the 
Society of Hellman Fellows. 

Appendix A 

Tables A1 and A2. 

References 
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Table A2 
Prominent labels in each category.  

Category Description Top five labels 

1. Trees Photographs focusing on trees Tree, forest, larch, 
evergreen, woody plant 

2. Other vegetation Photographs depicting 
vegetation other that trees 

Plant, grass, plant 
community, grasslands, 
shrub 

3. Accessibility Photographs of roads, rail, 
vegetated trails, and other 
features that facilitate access to 
places 

Road, road surface, trail, 
thoroughfare, bridge 

4. Wildlife Photographs highlighting the 
experiential use and enjoyment 
of wildlife 

Wildlife, terrestrial animal, 
carnivore, vertebrate, fawn 

5. Rocks, hills, and 
mountains 

Photographs of mountains, 
hills, and other rock features 

Mountain, mountain 
range, hill, rock, slope 

6. Water Photographs showing views of 
water bodies including lakes, 
rivers, and other hydrologic 
features 

Water, lake, watercourse, 
water resources, coastal 
and oceanic landforms 

7. Recreational 
activities 

Physical use of landscapes – 
photographs of sport and 
recreational activities, such as 
skiing, climbing, hiking, 
camping, and others 

Winter sport, ski, 
backpacking, hiking, cross 
country skiing 

8. Accommodation Photographs showing 
accommodation linked to 
recreation e.g., cabins, 
campgrounds, and cottages 

Cottage, tent, hut, log 
cabin, tarpaulin 

9. Landscapes Photographs for which the 
focus is a wide and large-scale 
view of the landscape 

Landscape, natural 
environment, glacial 
landform, plain, natural 
environment 

10. Attractions Photographs depicting 
attractions such as (e.g., 
historical buildings, ruins) 

Landmark, temple, 
monument, historic sight, 
statue  
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Ayanz, J., Pérez-Soba, M., Grêt-Regamey, A., Lillebø, A.I., Malak, D.A., Condé, S., 
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