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Abstract.

Frozen and unfrozen surfaces exhibit different longwave surface emissiv-

ities with different spectral characteristics (Feldman et al. [2014]; Huang et

al. [2016]), and outgoing longwave radiation and cooling rates are reduced

for unfrozen scenes relative to frozen ones. Here, physically-realistic mod-

eling of spectrally-resolved surface emissivity throughout the coupled model

components of the Community Earth System Model (CESM) [DF]is advanced,

and implications for model high-latitude biases and feedbacks are evaluated.

It is shown that despite a surface emissivity feedback amplitude that is, at

most, a few percent of the surface albedo feedback amplitude, the inclusion

of realistic, harmonized longwave, spectrally-resolved emissivity information

in CESM1.2.2 reduces wintertime Arctic surface temperature biases from −7.2±

0.9 K to −1.1 ± 1.2 K, [DF]relative to observations. The bias reduction is

most pronounced in the Arctic Ocean, a region for which Coupled Model In-

tercomparison Project version 5 (CMIP5) models (Taylor et al. [2012]) ex-

hibit[DF]s the largest mean wintertime cold bias (Flato et al. [2013]), sug-

gesting that persistent polar temperature biases can be lessened by includ-

ing this physically-based process across model components. The ice-emissivity

feedback of CESM1.2.2 is evaluated under a warming scenario with a kernel-

based approach, and it is found that emissivity radiative kernels exhibit wa-

ter vapor and cloud-cover dependence, thereby varying spatially and decreas-

ing in magnitude over the course of the scenario from secular changes in at-

mospheric thermodynamics and cloud patterns. Accounting for the temporally-
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varying radiative responses can yield diagnosed feedbacks that differ in sign

from those obtained from conventional climatological feedback analysis meth-

ods.

Keypoints:

• The representation of longwave surface emissivity in a climate model im-

proves its cryospheric response to climate change by +6.1±1.9 degrees Kelvin

of wintertime Arctic surface temperature relative to observations.

• Spectral emissivity kernels computed online for 200+ year model period

are non-linear in time [DF]and change with atmospheric water vapor.

• Temporally and spatially localized atmospheric dynamics, captured by

time-dependent spectral surface emissivity kernels, expose the climatolog-

ical seasonal sea-ice emissivity radiative response which decreases in the Arc-

tic with rising CO2 forcing.
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1. Introduction

The IPCC Fifth Assessment Report found that both individual models and the multi-

model average surface air temperatures across the poles were significantly colder than

observed[DF](Flato et al. [2013]). This bias is most pronounced in the Coupled Model

Intercomparison Project - Phase 5 (CMIP5) (Taylor et al. [2012]) multi-model distribution

of Arctic Ocean wintertime surface air temperature (Flato et al. [2013]). This points

to an underestimation of high-latitude warming by current climate models, which has

profound implications both for the cryosphere and for lower latitudes (ACIA [2005]). This

problematic situation should be rectified by identifying and fixing the sources of model

error by including known physics and processes. There is growing awareness that the

polar radiative energy balance is critically dependent on cloud cover and detailed cloud

optical properties but that these quantities are currently poorly constrained (Gettelman

et al. [2010]; Kay et al. [2012]; English et al. [2014]). In addition, deficiencies in our

understanding of the polar radiative energy balance have been identified as contributing

substantially to the under-estimation of polar climate change (Barton et al. [2014]).

Much effort has been expended on understanding the role of ice-albedo feedback in

describing these biases. Winton [2006] quantify the snow albedo feedback in relation

to other feedbacks to determine its impact on Arctic amplification but found that the

snow albedo feedback has [DF]a negligible influence. To constrain snow albedo feedback

[DF]observationally, Qu & Hall [2006] produce a model for the shortwave surface albedo

kernel by developing an analytic model of [DF]the planetary albedo dependence on surface

albedo. In a follow-up paper, the same authors derive physical models to describe the
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second factor in the snow albedo feedback expression: the sensitivity of snow albedo to

to temperature change (Qu & Hall [2007]). Flanner et al. [2011] quantify [DF]the snow

albedo feedback using radiative kernels (Soden et al. [2008]) and northern hemisphere

satellite observations of albedo and surface temperature change between 1979 and 2008.

In comparison to model projections of climatological feedback[DF]s, they found that their

observational [DF]estimate of the snow albedo feedback mean was more than twice the

mean value from the Coupled Model Intercomparison Project version 3 (CMIP3) models

(Meehl et al. [2007]). Colman [2013] applied surface albedo radiative kernel techniques to

CMIP3 models and regress[DF]ed ice-albedo feedbacks to explore northern and southern

hemisphere snow/sea ice feedback relationships across seasonal, interannual, decadal, and

climatological timescales, finding statistically significant correlations between temporal

scales only for northern hemisphere snow albedo feedback. In a similar study contempo-

raneous to Colman [2013], Qu & Hall [2014] also found that northern hemisphere snow

albedo feedback exhibits strong correlations between seasonal and climatological scales

in 25 CMIP5 models. In analyzing seasonal observational data records, Crook & Forster

[2014] also found challenges in constraining climatological ice albedo feedback when con-

sidering both the northern and southern hemispheres. The average global all-sky surface

albedo feedback reported in Flato et al. [2013], Colman [2013], and Qu & Hall [2014] is

0.26±0.16 W/m2/K, derived from model ensembles. A multi-model mean global clear-sky

surface albedo feedback is close, 0.24±0.07 W/m2/K (Sanderson et al. [2010]).

[DF]Despite the scientific focus on albedo feedbacks (Winton [2006]; Qu & Hall [2006];

Qu & Hall [2007]; Qu & Hall [2014]; Flanner et al. [2011]; Colman [2013];Crook & Forster

[2014]), the model biases relative to observations are most pronounced where there is little
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to no solar insolation (e.g., Arctic winter), so unless indirect wintertime processes result

from a poor implementation of model albedo outside of winter, other processes must be

considered to explain this persistent issue. In polar regimes the radiative energy balance

is also highly sensitive to longwave emission. Recent work has shown that current climate

models may be missing an important ’ice-emissivity’ feedback resulting from differential

snow/ice and ocean surface emissivity in the far-infrared (FIR) wavelengths (Feldman

et al. [2014]; Chen et al. [2014]; Huang et al. [2016]). Angularly-averaged emissivity

(hereafter referred to simply as ”emissivity”) is a scaling term affecting the Planck emission

of longwave radiation from materials into air, normalized by the ideal blackbody emission

at the same temperature. The emissivity of materials takes on values between 0 and

1, varies spectrally, and is dependent on photon dispersion relations in the longwave,

as well as on the local surface radius of curvature. For example, emissivity values of

frozen water in the shape of a snow grain and of an ice-slab will differ. Global circulation

models (GCMs) have conventionally treated emissivity as a broadband property, but such

a simplification may not be appropriate given the recent theoretical updates to emissivity

for a number of land surface types [DF]that show spectral dependence (Feldman et al.

[2014]; Chen et al. [2014]; Huang et al. [2016]).

Feldman et al. [2014] discussed the potential for a positive feedback whereby lower

far-infrared surface emissivity values for ocean being smaller than sea ice would lead to

reduced cooling in the high latitudes as sea ice loss increases with climate change. The

outgoing longwave radiation flux in high latitude and high altitude regions is particularly

sensitive to spectral surface emissivity changes as the drier atmosphere in these regions

is more transparent to far-infrared surface emission than in low- to mid-latitude atmo-
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spheres which have relatively higher total precipitable water. Therefore correcting the

representation of radiative cooling over those regions with low precipitable water so that

they exhibit a realistic characterization of surface emissivity in the models is especially

important. Chen et al. [2014] modeled far-infrared interactions between the surface and

clouds, where the surface was assigned with snow surface spectral emissivity and ice cloud

scattering was taken into account. In that study, the net upward far-infrared flux at the

surface and top of the atmosphere are both reduced, for a high latitude and altitude region

where cloud top heights are 2-5 km above the surface.

These two aforementioned studies led to the development of a spectral surface emissivity

database for weather and climate models, for which spectral emissivity is modeled for a

number of surface types in the longwave from wavenumbers 0-2000 cm−1 in Huang et al.

[2016]; complex indices of refraction of water and ice compiled for wavelengths spanning

the near ultra-violet to far-infrared (Hale & Querry [1973]; Warren & Brandt [2008]) are

model inputs. Undisturbed water and ice emissivities are modeled with Fresnel equations

on a semi-infinite half-space and snow emissivities are derived by approximating snow

grains as spheres, where emissivity is equal to the absorption efficiency calculated from

Mie theory with optical properties adjusted to account for diffracted electromagnetic wave

coherence effects when deposited snow grains are closely-packed (Mishchenko et al. [1994]).

Spectral emissivity is dependent not only on complex indices of refraction, but on local

curvature radii of longwave photon exittance as well, so spectral emissivity will evolve

with snow grain size. Additionally, snow-grain size dependent spectral emissivities have

been reported by Hori et al. [2006] and Chen et al. [2014]. Due to detector material cut-off

responsivity, measurements of surface emissivity exist only for wavenumbers higher than
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650 cm−1 (λ < 15.4µm) (Hori et al. [2006]; Baldridge et al. [2009]), and Huang et al. [2016]

show that modeled spectral emissivity curves compare well in this range, giving confidence

to the computed emissivity values extending out to the far-infrared (wavenumbers ¡ 650

cm−1).

This emissivity database can be used as part of GCM longwave radiation routines.

Building on this database, Huang et al. [2016] explored global and regional differences

between radiant energy fields in off-line simulations of the atmospheric component of the

Community Earth System Model (Hurrell et al. [2016]) with and without realistic surface

emissivity. Huang et al. [2016] found that the global root-mean-squared (RMS) difference

in outgoing longwave radiation (OLR) between the two simulations can be as large as

2.04 W/m2 in a summer month under clear-sky conditions.

However, to date, the effects of realistic, spectrally-resolved longwave surface emissivity

on a transiently-forced, fully-coupled climate model have not been considered, so we can

compare and contrast the results from including realistic surface emissivity in a model to

the heretofore conventional model treatment of surface emissivity. In this paper, we will

present the detailed modifications to CESM that we used to harmonize the treatment of

non-unit, spectrally-resolved emissivity across all relevant model components, and then

we will present an analysis of how the inclusion of realistic surface emissivity affects model

polar biases. Finally, we present appropriate, computationally-efficient methods for diag-

nosing a GCM’s ice-emissivity feedbacks and their temporal and spatial dependence, and

discuss implications for the inclusion of realistic surface spectral emissivity modifications

for other widely-used climate models besides CESM.
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2. Methods

2.1. Emissivity specification in CESM

In the release version of CESM1, the surface components of that code calculate the

grey-body broadband longwave upwelling surface flux using broadband emissivity values ε.

Specifically in the land component, grey-body broadband longwave upwelling surface flux

F ↑surf = εσSBT
4
ground, where σSB is the Stefan-Boltzmann constant, and Tground is the

ground temperature. This longwave upwelling flux is passed from the surface components

into the atmospheric component, where surface emissivity contribution to the flux is

retained. To preserve this contribution, CESM1 adopts a convention whereby the surface

flux in the atmospheric component at the surface boundary grid, (F ↑surf), is given by

σT 4
rad, but Trad is rederived by defining the radiative surface temperature of the model’s

surface components as: Trad = 4

√
F ↑surf/(εσSB), where surface emissivity is simplified

to ε = 1.0. The re-calculated radiative surface temperature, distinct from the surface

temperature that other model components utilize, is used in the atmospheric component

as a new temperature boundary condition for longwave flux calculations by way of the

Planck function integrated over all wavelengths and angles. Consequently, calculation of

upward radiative fluxes in the CESM1 release version atmospheric component amounts

to a Planck curve spectral modulation of the grey-body longwave upwelling radiation of

the surface components.

Longwave radiative fluxes are modeled by RRTMG LW (Mlawer et al. [1997]), a

rapid radiative transfer model for use in global circulation models. RRTMG LW uses

a correlated-k method with a reduced k-distribution set to calculate fluxes in global cir-

culation models that is at least four orders of magnitude more computationally efficient
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than line-by-line methods. The longwave spectrum is discretized into sixteen contiguous

bands [DF]that balance radiometric accuracy with computational efficiency, and Table 1

lists the 16 discrete, contiguous spectral bands that the atmospheric component maintains

for intra-atmospheric radiative transfer.

2.2. Harmonizing emissivity across model components

In this work, we modify CESM1 to establish a coherent and energy-conserving treatment

of surface emissivity between all of the surface and atmospheric components of the model.

While we use the spectral emissivity values described by Feldman et al. [2014] in both

the atmospheric and surface interactions in CESM, the modifications we present here

supersede those of Feldman et al. [2014][DF], which explored the sensitivity of model

prognostics to only emissivity modifications to the atmospheric component of CESM. We

detail the steps to harmonize longwave upwelling flux between the surface and atmospheric

components below.

Selecting the medium-grained snow size emissivity curve and desert scene emissivity

curve from Huang et al. [2016], we set the Planck-function-weighted broadband emissivity

for frozen surfaces (sea and land ice) over a Ts range 250-273 K to the average value

0.982 (deviation ±0.0002), the corresponding value for non-vegetated mineralized land

over Ts range 260-300 K is 0.926 (deviation ±0.001), and for ocean over Ts range 253-293

K is 0.908 (deviation ±0.001). The simulated spectral surface emissivity curves, Planck-

function weighted broadband and original CESM1 broadband surface emissivity values

are listed in Table 1. Theoretical predictions of longwave spectral emissivity beyond 15

µm for vegetation have not been undertaken at the time of this study due to the lack

of coherent measurements and/or modeling of plant pigment indices of refraction, leaf
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cell sizes and shapes both in its interior and epidermis, and the leaf macroscopic shape.

Consequently, vegetation emissivity is left unaltered from the release version of CESM1,

which is dependent on exposed leaf and stem area indices. Calculated in the land model,

upwelling longwave fluxes emitted above the canopy in vegetated grid cells are preserved

in the atmospheric model grid cells. Vegetated grid cells are identified in a binary fashion,

on the condition where the sum of leaf area and stem area indices ¿ 0.05. Medium-grained

snow spectral emissivity is chosen for frozen surfaces, on both land and sea-ice, inasmuch

as sea-ice is only observed to be snow-free about one month per year [Warren et al. [1999];

Massom et al. [2001]; Webster et al. [2014]].

In the release version of CESM1, the upward longwave surface flux is preserved in

the atmospheric component (Community Atmosphere Model, version 5.3) by solving for

surface radiative temperature as described above. While ε < 1.0 in the land and ice

component in the release version of CESM1, ε is set to unity (ε = 1.0) in the atmospheric

component, so any changes to the treatment of surface emissivity in the surface compo-

nents of the model requires the re-derivation of surface temperatures in the atmospheric

component to avoid a mismatch, and a lack of energy conservation, between the radiative

temperature used in the atmospheric and land, ocean, and ice components of the model.

However, surface temperatures in the land, ocean, and ice components are established

from temperature models of sub-surface layered media, therefore the surface temperature

re-derivation in the CESM1 release atmospheric model by applying the Stefan-Boltzmann

law on longwave surface upwelling flux with surface emissivity set equal to 1.0 consti-

tutes a distinctly different representation of surface temperature from sub-surface layered

temperature models.
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To rectify the mismatch between atmospheric and surface [DF]model component treat-

ments of upwelling longwave radiation, we modify CESM1 such that we pass the non-

radiative surface temperature calculated in the surface components to the atmospheric

component via the coupler. Radiative surface fluxes (F ↑surf) are determined with the up-

dated broadband Planck-weighted emissivity in surface components in CESM1 and are

merged onto the atmospheric grid in the coupler before being passed to the atmospheric

component. We perform this Planck weighting using 3-point Gauss-Legendre quadrature

(Li [2000]).

In our modified version of CESM1, the atmospheric component radiative temperature is

set to the ground temperature reported by the land component for non-vegetated surfaces.

Over ocean scenes, the sea-surface temperature from the ocean component is passed to

the atmospheric component, and the atmospheric component receives proportionately-

weighted ground and sea-surface temperatures for grid cells with partial land fraction. The

longwave upward flux in vegetated grid cells takes into account longwave flux reflections

between the canopy and ground. As such, the ground temperature in vegetated grid

cells would not represent an appropriate lower boundary condition in the atmospheric

model, as canopy reflections are not considered in the atmospheric model. Therefore, for

grid cells of land/ocean overlap and vegetated surfaces, the radiative temperature in the

atmospheric component is determined by : Trad = 4

√
F ↑/σSB to preserve the upward flux

determined in the surface module.

In summary, we establish the effects of the updated spectral variations in surface emis-

sivity in model surface components that currently only support grey-body surface emis-

sivity by creating broadband surface emissivity values through Planck-function weighting.
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In the atmospheric component, which does support spectrally-varying surface emissivity,

the surface upward longwave fluxes calculated in the surface components persist by setting

the surface radiative temperature to the ground temperature from the land component

and the sea-surface temperature from the ocean component, after which RRTMG LW

calculates upwelling band-by-band fluxes with spectrally-resolved emissivity based on the

scene. Discrepancies in longwave surface upwelling fluxes emanating from the different

expressions between the land and atmospheric components will be quantified to legitimize

the approximation.

2.3. Emissivity Radiative Response and Feedback

2.3.1. Emissivity kernels

Using our modified version of CESM1 to account for surface emissivity variations across

model components [DF]realistically, we can then investigate, diagnose, and quantify the

ice-emissivity feedbacks rigorously and compare them against other widely-reported feed-

back estimates of surface albedo. We can quantify the ice-emissivity feedback using a

time-dependent radiative kernel method, whereby the temporal evolution of both the ker-

nel and emissivity can be evaluated. The radiative kernel is an analytic expression of the

partial derivative of the outgoing longwave radiation at the top of the atmosphere, taking

into account its dependence on surface emissivity. The kernel can be calculated online

during the integration of a global circulation model and accounts for changes in water

vapor and cloud cover.

The derivation of the kernel is as follows: the sensitivity of the outgoing longwave radi-

ation to changes in surface emissivity is quantified by the partial derivative of broadband
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outgoing longwave radiation (OLR) with respect to surface emissivity, and is given by:

∂OLR

∂ε
(~r, t) =

∫ ∞
0

[B(ν, ~r, Ts(~r, t))− F ↓(ν, ~r, t)]Θ(ν, ~r, t)dν (1)

where ε is emissivity, time t, and for latitude φ and longitude θ grid box location ~r = [φ, θ].

B(ν, ~r, Ts(~r, t)) is the black-body function for surface temperature Ts(~r, t), F
↓(ν, ~r, t) is

the spectral downwelling flux from the atmosphere above the surface, and Θ(ν, ~r, t) is

the flux transmittance from the surface to the top of the model. The sign convention

for the emissivity kernel is positive for outgoing flux. Θ(ν, ~r, t) is dependent on the

atmospheric state which is expected to evolve over CO2 forcing periods, and includes

effects of water vapor and temperature profile. The emissivity kernel can be explicitly

calculated within RRTMG LW by taking advantage of calls to its subroutines. As such,

the temporal emissivity kernels for both clear-sky and all-sky can be calculated online

along with CESM model runs, for each grid box and time point. The kernels broken down

into its spectral components
[
∂OLR
∂ε

]
i
(~r, t) are given by Eqn. 1 with the integration limits

νi and νi+1, the lower and upper wavenumber band limits of RRTMG LW band i (1).

We can use online analytical radiative kernel feedback methods similar to the numer-

ically derived, offline radiative feedback kernel methods by Soden et al. [2008] and Shell

et al. [2008], who use 3-hourly atmospheric state outputs over one model year to derive

monthly-averaged four-dimensional (latitude, longitude, atmospheric level, and time) ker-

nels for water vapor and lapse rate, and three-dimensional (latitude, longitude and time)

surface albedo kernels using a base atmosphere from a selection of global circulation mod-

els (GCM). Soden et al. [2008] and Shell et al. [2008] produced these kernels for only one

model year and applied the same kernels to monthly-averaged parameter perturbations

derived over two time periods: 2000-2010 and 2100-2110, in a large number of GCM’s for
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model feedback intercomparison. In this work, surface emissivity kernels are calculated for

each atmospheric model time-step (hourly) throughout the model run period (1850-2100),

but output as monthly averages for each surface grid cell. Kernel evolution as a function

of time and the linear convention proposed by Soden et al. [2008], Shell et al. [2008], and

Armour et al. [2013] can be evaluated.

However, the impact of non-unit surface emissivity, and changes thereof due to evolving

states of the cryosphere, is strongly dependent on column-integrated atmospheric water

vapor (Feldman et al. [2014]), and to account for this, surface emissivity kernels are

calculated hourly for integrations spanning 1850-2100 and various emissions scenarios.

We then use this information to produce monthly-averaged kernels for each grid box over

the entire integration period, and we can use this detailed kernel calculation to evaluate

kernel evolution as a function of time and test the linear convention proposed by Soden

et al. [2008], Shell et al. [2008], and Armour et al. [2013].

2.3.2. Emissivity kernels and radiative response

The outgoing longwave radiation perturbation (δOLRε) due to an emissivity pertur-

bation δε is the product of the kernel and δε, giving a emissivity radiative response

(EmR(~r, t)):

EmR(~r, t) = −δOLRε

= − 1

A(R)

∫
R

16∑
i=1

[
∂OLR

∂ε

]
i

(~r, t)δεi(~r, t)dA(r) (2)

where i is spectral emissivity in band i, in location r at time t and t0, for t > t0, and A(r)

is the area at location ~r in the region R. δεi(~r, t) = [εi(~r, t) − εi(~r, t0)] for an emissivity

change in band i between time t and t0. We adopt the sign convention in such a way

that emissivity radiative response is positive for a negative change in emissivity whereby
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outgoing radiation is reduced at time t from a reference value at time t0, for t > t0. That

is, the induced radiative response due to emissivity change is positive for net incoming

radiation.

2.3.3. Conventional climatological emissivity feedback

Following Wetherald & Manabe [1988], we can use conventional methods to quantify

the feedback associated with changing surface emissivity, λε, by looking at the top-of-

model longwave radiative perturbation induced by radiative forcing. This is given by the

following expression:

λε = − 1

A(R)

∫
R

16∑
i=1

[
∂OLR

∂ε

]
i

(~r, t)
δεi(~r, t)

δT̄s(t)
dA(r) (3)

= −δOLRε(~r, t)

δT̄s(t)
(4)

where δT̄s(t) = T̄s(t) − T̄s(t0) is the global mean surface temperature change at time t,

with respect to a reference climate model global mean surface temperature at time t0.

The emissivity feedback component is the emissivity radiative response normalized by

the global mean temperature change, and it therefore readily fits within the context of

well-established climate feedback analyses.

Based on the forward partial radiative perturbation (PRP) technique (Wetherald &

Manabe [1988]), Soden et al. [2008] describe their radiative kernel technique as similar

to the two-sided PRP technique (Colman & McAvaney [1997]), but the kernel technique

explicitly isolates the climate variable of interest. Soden et al. [2008] showed that climate

variable feedbacks are the product of kernels calculated from a reference climate state and

climate variable perturbations occurring potentially decades later. Accordingly, the Soden

et al. [2008] kernels are derived from a reference climate at time period t0, so the emissivity
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feedback from Eqn. 3 is dependent on
[
∂OLR
∂ε

]
i
(~r, t0) and δεi(~r, t) = εi(r, t)− εi(r, t0). The

validity of this approach requires stationarity in
[
∂OLR
∂ε

]
i
(~r, t0) over the period over which

the feedback analysis is performed, which is typically multiple decades.

Under forced climate change scenarios, the atmospheric state and therefore
[
∂OLR
∂ε

]
i
(~r, t)

at time t, can be expected to evolve away from
[
∂OLR
∂ε

]
i
(~r, t0), because water-vapor load-

ing in the atmosphere follows thermodynamic constraints which modulate the strength

of the emissivity feedback. Therefore, Eqn. 3 is a function of the climate state and

should be time-dependent, such that λε depends on the kernel from the future forced

atmosphere
[
∂OLR
∂ε

]
i
(~r, t). The emissivity kernel, and in turn, the amplitude of the asso-

ciated feedback, are dependent on the kernel base state. Thus, we can evaluate temporal

ice-emissivity kernels and feedback estimates using a conventional climate model feedback

analysis framework for a forcing climate model run to test the stationarity assumption.

Accordingly, the surface emissivity change over a multi-decadal climatic model run

between t and t0 shall be noted as ∆ε rather than δεin Eqns. 1 and 3. We determine ∆εi

in spectral band i for each grid box, year y and month m in time period t by differencing

εi from the value reported over the same month and grid box over a 10-year average in

the reference period t0

∆εi(~r, t(m, y)) = εi(~r, t(m, y))− 1

10

10∑
y=1

εi(~r, t0(m, y)) (5)

2.3.4. Time-dependence of emissivity kernels

While Soden et al. [2008] showed that one-year’s worth of kernel are adequate for multi-

model ensemble feedback intercomparisons, they note that multi-year kernels could elu-

cidate local feedback strengths, but multi-year numerical four-dimensional kernels are

computationally expensive for multiple climate variables. However, since our surface
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emissivity kernel calculation has an analytic form, we can calculate these kernels online

as part of the model runs to explicitly investigate regional atmospheric dynamics in the

model over longer time-periods (decades) than were explored previously. As part of our

analysis, we can therefore capture the outgoing longwave radiation perturbation at the

top of the atmosphere due to surface emissivity changes, and the evolution of these effects

over decadal climatological periods, as suggested by Armour et al. [2013].

In 2.3.3, the product of a time-dependent kernel with emissivity response and surface

temperature occurring over a several decadal period intermixes the instantaneous atmo-

spheric state used for kernel calculation with the climatological change in emissivity and

surface temperature. In an analysis scheme put forth by Armour et al. [2013], if the

atmospheric state is known at each time step and grid box, then an instantaneous emis-

sivity radiative response is considered as the product of the time-dependent kernel with

a synchronous emissivity response. Adjustments to longwave radiation due exclusively

to emissivity changes from seasonal cryospheric melt and freeze cycles can be directly

inferred from Eqn. 1, with t in units of months and t0 referring to the month preceding

t, so that for spectral band i, δεi is explicitly

δεi(~r, t(m, y)) = εi(~r, t)− εi(~r, t0)

= εi(~r, t(m, y))− εi(~r, t(m− 1, y)). (6)

for month m in year y. Inserting Eqn. 5 into Eqn. 1 then gives the instantaneous

monthly outgoing longwave radiative emissivity response. The relative roles of the at-

mosphere and surface in controlling outgoing longwave radiation can be elucidated by

differences in instantaneous monthly outgoing longwave radiative emissivity response be-

tween climatological eras separated by decades.
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2.4. CESM run configuration

For this investigation, we use a fully-coupled CESM version 1 with Community At-

mospheric Model version 5 with a nominal 2◦ × 2◦ horizontal grid and the default time

steps for each model component. To test the new emissivity values implemented in the

surface and atmospheric components, we created a control run with CESM1 run under

unforced conditions whereby the CO2 concentration is set to its nominal value circa 1850,

and other anthropogenic greenhouse gases and aerosols remain fixed at their respective

pre-industrial levels. The model is started at 1850 and runs for 155 years. Initially, the

model’s top of the atmosphere net energy imbalance (net shortwave - net longwave flux)

remained steady over a multidecadal run at approximately 1.2 W/m2. To reduce the net

radiative imbalance to within 0.5-1.0 W/m2 so as to be consistent with estimates of the

Earth’s actual radiative imbalance (Hansen et al. [2005]; Trenberth et al. [2009]), we de-

creased the threshold for relative humidity for low stable clouds (CESM namelist variable

cldfrc rhminl) from the default value of 0.8875 to 0.8750. From this, the net radiative

imbalance stabilized at 0.7±0.4 W/m2 over the 155 year run period, after a spin-up time

of 10 years. This model tuning adjustment was consistent with published approaches pre-

sented by Mauritsen et al. [2012] to reduce net radiative balance, and the tuning followed

well-established tuning-parameter estimation methods (Jackson et al. [2008]). We call

this model ”1850CNTL”.

With interest in model transient sensitivity relevance to the Earth’s present climate

(Winton [2006]), we also ran a forced simulation with historical CO2 concentrations,

where atmospheric CO2 concentrations from 1850 to 1950 were scaled by the ratio of the

concentration derived from Siple Station ice core data in a given year to its concentration
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in 1850 (Neftel et al. [1994]). Atmospheric CO2 between 1976 and 2005 was set by

the annually averaged Mauna Loa Observatory data (NOAA ESRL Global Monitoring

Division [2015]), and atmospheric CO2 between 1951 and 1975 was derived from a linear

interpolation of the Siple Station and Mauna Loa datasets. Accordingly, the rate of

increase of atmospheric CO2 from 1850-1950 is approximately 0.09% per year, and from

1951-1974, it is approximately 0.24 % per year, and from 1975-2005, it is approximately

0.50% per year. The threshold for relative humidity for low stable clouds was set equal

to the value specified for the control case. The historical CO2 ramping case was run for

155 years as well for the time period 1850-2005. This model will be named ”HISTCO2”.

In two additional cases, atmospheres defined by representative concentration pathways

defined by the Intergovernmental Panel on Climate Change (IPCC) were initiated to

evaluate the effect of surface emissivity on the 21st century climate. Again, the threshold

for relative humidity for low stable clouds was set equal to the value specified for the

1850CNTL case. We use the CESM1 fully-coupled component sets and the RCP 2.6 and

RCP 8.5 forcings pathways, and start the runs referencing the 2005 HISTCO2 model, and

integrate to 2100. These cases are simply named ”RCP 2.6” and ”RCP 8.5”.

2.5. CESM output data

CESM model data values were averaged monthly for subsequent analysis. The

radlw.f90 and radiation.f90 code were modified to output clear-sky and all-sky spec-

tral emissivity kernels, as well as the modified spectral emissivity values on the atmo-

spheric horizontal grid. Monthly averaged spectral emissivity kernel and emissivity maps

in each of the 16 bands were written to the CESM history files.
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3. Results

3.1. Model Validation

The modifications to the longwave physical representations in the model that are de-

scribed above can potentially destabilize the model’s climate simulations, given the specific

tunings of the release version. For 1850CNTL, we evaluated the stability of climatic model

variables. Over the 155-year period, the net radiative imbalance was reported above at

+0.7±0.4 W/m2, the mean surface temperature was 287.12±0.11 K with a rate of change

of +1.6±2.1 ×10−4 K/year. The sea surface temperature mean was 285.71±0.06 K with

a rate of change of +0.9±1.1 ×10−4 K/year. Flux differences between model compo-

nents are expected given that surfaces fluxes are calculated in the land model using the

Stefan-Boltzmann law along with Planck-averaged emissivity and surface fluxes in the

atmospheric model are computed with an integration of Planck function using spectral

emissivities. Inspection of the mean globally averaged longwave upwelling surface flux

difference between the atmospheric model and land model is 1.3±0.1 × 10−2 W/m2, with

a −5.3± 19.1 × 10−6 W/m2/year rate of change over the 155 year model run.

Additionally, to benchmark our 1850 control climate against the CESM standard release,

we compared the surface temperature evolution of 1850CNTL against the fully-coupled

1850 control run from the CESM Last Millenium Ensemble (CESM-LME, Otto-Bliesner

et al. [2016]), which uses the same code version (CESM1 with CAM5.3) as the CESM

Large Ensemble (CESM-LENS, Kay et al. [2015]), except that CESM-LME is specified

on a 2◦ horizontal resolution grid for the atmosphere and land surface rather than the 1◦

for CESM-LENS. Mean surface temperature, deviation, and temperature rate of change

over 1850-2005 are [287.12±0.11 K, +1.6×10−4 K/yr] and [287.16±0.43 K, +1.18×10−4
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K/yr] for our 1850 control model and the CESM-LME 1850 fully coupled control model,

respectively. The mean temperature difference of 0.04 K is within 10% of the temperature

spread of 0.4 K due to internal variability in the CESM-LME member. The differences

in these results are not statistically-significant, so we can say that our realistic surface

emissivity modifications to CESM1 do not appreciably affect unforced simulations.

3.1.1. Observational validation

We are interested in confronting the results of our modified and unmodified versions

of CESM with observations. The spectral surface emissivity treated model, designated

”CESM-ε(ν)”, is tested against the CESM-LME (Otto-Bliesner et al. [2016]), for agree-

ment with historical (1979-2005) Arctic surface temperatures, as determined from ERA-

Interim (Dee et al [2011]) skin temperature reanalysis.

Figure 1a shows a comparison of ERA-Interim skin temperatures in blue, HISTCO2

case of CESM-ε(ν) in red, and CESM-LME in green over northern ocean latitudes from

1979-2005. Over the 26-year period, the mean temporally and spatially-averaged surface

temperature bias for CESM-ε(ν) improves over 20th historical forcing CESM-LME model

by over 90%, from -4.4±2.7 K CESM-LME mean surface temperature bias to -0.4±1.6

K CESM-ε(ν) mean surface temperature bias with respect to reanalysis data, as seen in

the Figure 1b residual plots. Reanalysis skin temperatures exhibit warmer mean Arctic

surface temperatures than the models during the wintertime with a larger winter cold bias

in the CESM-LME 20th century model than CESM-ε(ν) (∆TLME
S = −7.2± 0.9 K versus

∆T
ε(ν)
S = −1.1 ± 1.2 K in Figure 1c). Summertime model surface temperature biases to

skin temperature reanalysis are ∆TLME
S = −1.1± 0.4 K and ∆T

ε(ν)
S = 0.0± 0.4 K, shown

in Figure 1d.
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Mean Arctic surface temperature residuals are mapped for winter (Figures 2a and 2b),

and summer months (Figures 2d and 2e) over 1979-2005, where the CESM-LME surface

temperature winter cold bias with respect to reanalysis data is most pronounced (Fig-

ure 2b). In Figure 2c, modeled surface temperature difference maps show that CESM-

ε(ν) December-January-February mean over 1979-2005 Arctic ocean surface temperature

is warmer than that of CESM-LME over areas of sea-ice. The cold bias pattern seen

over northern Eurasia in CESM-LME (Figure 2b), associated with snow-cover bias in

CESM1 (Park et al. [2014]), persists in CESM-ε(ν) (Figure 2a). Surface temperature

over land is largely unchanged between CESM-ε(ν) and CESM-LME because longwave

surface upwelling radiation modeling over vegetated land grids in CESM-LME remained

intact in CESM-ε(ν), as discussed in Section 2.2. The CESM-ε(ν) Arctic sea-ice decline

is -5.9±1.2 %/decade over 1950-2005, while 10 member mean CESM-LME September

sea-ice decline is -2.5±0.4 %/decade over the same period, from 60◦ to 90◦ North; we

note that the uncertainty in CESM-ε(ν)’s sea-ice decline is much larger, being a single

model realization. Indeed, Stroeve et al. [2007] determined a September Arctic sea-ice de-

cline of -7.8±0.6 %/decade over 1953-2006 observational record, whereas the multi-model

IPCC AR4 mean is -2.5±0.2 %/decade. Improvement of Arctic sea-ice trend estimates

relative to observations suggests that preserving and passing surface temperatures de-

rived in the surface models into the atmospheric model along with implementing spectral

emissivity values in the atmospheric model and updated broadband surface emissivity in

surface models (as discussed in 2.1) improves model performance for prognosing northern

hemisphere sea-ice.
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However, in the southern hemisphere, there is not a marked improvement between

CESM-ε(ν) and CESM-LME. The austral summer (January, February, March) sea-ice

decline of −9.1±3.7 %/decade and −7.1±1.0 %/decade for CESM-ε(ν) and CESM-LME

20th century forcing ensemble mean, respectively, are both inconsistent with observed

satellite data record sea-ice extent growth of +0.95 ± 0.23 %/decade from 1979-2006

(Comiso & Nishio [2008]). These findings indicate that some combination of poorly mod-

eled cloud radiative effects (Lawson & Gettelman [2014]) and southern ocean dynamics

need to be addressed before the impacts of surface emissivity can be properly considered.

3.2. Emissivity and Kernels

3.2.1. Kernels

Global patterns of emissivity kernels are necessarily positive in sign and are inversely

related to maps of column water. Figures 3 and 4 show clear-sky and all-sky seasonal

kernel maps, respectively, and reveal that the broadband kernels are strongest at high

altitude regions, dry hot climates, and high latitudes, all of which exhibit low column

water vapor (Feldman et al. [2014]). Positive trends in water vapor over high latitude

oceans in the summer months induce kernel amplitude suppression and can be seen in

seasonal all-sky kernel maps.

3.2.2. Surface emissivity evolution

Figure 5 shows the change in surface emissivity for wavenumbers in the atmospheric

window (820-980 cm−1, RRTMG LW band 6) between 1850CNTL and the RCP8.5 runs at

the end of the 21st Century. These maps show prominent reductions in surface emissivity

(blue) at high latitudes in summer and fall seasons in the RCP8.5 run relative to the

1850CNTL run, and these reductions are collocated with increasing sea-ice melt. The
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maps also show increased emissivity (red) in mid- to high-latitude continental regions in

winter and spring months, and we can attribute this result to increased greening of dry

desert and high altitude continental regions in RCP8.5 as compared to 1850CNTL.

These maps also show the concurrent effect of sea-ice loss and changing atmospheric

water vapor and clouds. The summer and fall exhibit the largest emissivity decrease

over high-latitude oceans, which reduce emissivity kernel strength (Figures 3 and 4) and

thereby outgoing longwave radiation at the top of the model. The inverse spatial corre-

lation of emissivity change and transient kernel strength contributes to moderating the

top-of-the-model emissivity feedback.

3.2.3. Spectrally-resolved emissivity kernels

Figure 6 shows the spectral variations in surface emissivity kernels and their relative

contribution to the broadband kernel, as a function of RRTMG LW band numbers (1).

In this figure, the top row shows the clear-sky and all-sky globally-averaged spectral

kernel amplitudes, and the globally-averaged spectral emissivity change from 10 years’

of the 1850CNTL run is shown in the bottom row for RCP8.5 years 2090-2100. The

spectral kernel shape over the RRTMG LW bands is similar in all four CESM model

runs, and the kernel amplitude in band 6 (820-980 cm−1), which corresponds to the mid-

infrared atmospheric window, is the dominant contributor. The shape of the spectral

emissivity change highlights the differences in spectral emissivity values used for ocean

and snow. Except for Band 16 (2600-3250 cm−1), where εwater(ν) > εmedium-snow(ν)

for 3000 < ν < 3250 cm−1, the emissivity of medium-snow exceeds that of ocean. Even

though band 6 is the dominant contributor to the kernel, this band shows the smallest

difference between ocean and medium-snow. Each of the bands 7-9 (encompassing 980-
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1390 cm−1) exhibit comparable emissivity radiative response magnitudes to band 6. Snow

emissivity values are larger than water emissivity from 980-1390 cm−1 for the snow grain

sizes measured by Hori et al. [2006]. Within band 6, the emissivity of coarse snow grain

sizes (800 µm median diameter) is lower than water, and consequently for this band, δεi=6

would be positive under sea-ice loss.

3.2.4. Kernel temporal evolution

The temporal evolution of globally- and annually-averaged broadband clear-sky emis-

sivity kernels for the four CESM runs are plotted as solid lines in Figure 7a, along with

polynomial fits (dotted lines). The all-sky kernels are shown as ratios to clear-sky kernels

in the same figure, as dashed lines, and are a little more than 50% of the clear-sky ampli-

tude. Relative to the forced cases, the 1850CNTL kernels are temporally stable. Kernel

amplitudes for CO2 forced atmospheres are not stationary in time nor are they linear,

demonstrating that by the end of the 21st century, large biases could be introduced into

quantifying feedback by applying the first year’s climate base state kernel. For the model

specifications of this work, by the end of the 21st century the RCP8.5 scenario kernels

are reduced by nearly 21% from 1850CNTL and reduced by approximately 17% from the

present-day kernel ( HISTCO2 at year 2005).

Figure 7b shows the globally- and annually-averaged climatological surface broadband

emissivity change with respect to 1850CNTL for each CESM model run. Absolute values

are less than a percent, due to globally-averaged values of surface emissivity changes

occurring primarily in the cryosphere (which covers about 20% of Earth’s surface area),

much like surface albedo. In the 1850 control climate, low fluctuations around zero exist

for emissivity differences, which we attribute to sea-ice melt and freeze. Considering that
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ocean emissivity is lower than that of this model’s designation of medium-grained snow

in the strong kernel RRTMG LW band 6, negative surface emissivity change values for

all CO2 forcing cases is the result of a decreased frozen surface extent in the future.

Over the last 10 years’ of each scenario period, monthly-averaged high-latitude broad-

band kernel reductions relative to 1850CNTL are shown in Figure 8. HISTCO2 monthly

kernel amplitude temporal shape over an annual period varies by less than 3% from

1850CNTL, however monthly kernel amplitudes for RCP2.6 and RCP8.5 can decrease by

as much as 10% in clear-sky cases, and almost 30% for all-sky cases in high latitudes.

This indicates the problematic nature of implementing radiative kernels calculated from

only one year’s atmospheric state in the course of analysis of the contribution of the ice-

emissivity feedbacks over multiple decades. We also note that the seasonal variability in

high-latitude kernels is highly asymmetric between the Arctic and the Antarctic. The

seasonality that we find in the Arctic under clear-sky conditions is largely a function of

the seasonality in atmospheric precipitable water vapor (Figures 9a & 9b). The all-sky

seasonality is impacted by enhanced cloud fractional coverage (Figures 9c & 9d) associ-

ated with sea-ice loss, which has been consistently observed in CMIP3 and CMIP5 models

(Karlsson et al. [2013]). In the Antarctic, however, the clear-sky kernel reduction is largely

invariant through the seasons, except for the end of the century RCP8.5 case, where the

southern winter warms.

The monthly evolution of spectral kernels for high latitudes for the last 10 years’ of

the RCP 8.5 scenario is shown in Figure 10. Figures 10a and 10b show the monthly

kernel amplitude for northern high latitude clear-sky and all-sky conditions, respectively,

and are affected by the seasonality in water vapor (Figure9). The effects of ozone in the
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southern high latitudes can also be seen in bands 6 and 7, where rising O3 concentrations

in the winter months decrease the kernel strength, and are shown in Figures 10c and

10d for clear- and all-sky conditions, respectively. RRTMG LW bands 2 and 3, in the

water-vapor rotational absorption feature shows the most pronounced seasonality due to

the seasonality in column water-vapor.

The climatological spectral surface emissivity change ∆εi(t) (Eqn. 5) relative to

1850CNTL is plotted for each month in a ten-year average of years 2090-2100 of RCP

8.5 in Figures 11a and 11b, at northern and southern high latitudes, respectively. The

climatological surface emissivity change for the end of the century RCP 8.5 scenario is

negative for all months and RRTMG LW bands except springtime high northern lati-

tudes band 16, where ocean emissivity is larger than medium-grained snow emissivity

above 3000 cm−1. The climatological surface emissivity change is largest in the summer

and early autumn in high northern latitudes, indicating increased thaw during the typical

Arctic melt season. The weak spectral surface emissivity change in the springtime indi-

cates wintertime Arctic sea-ice coverage persistence (75% of pre-industrial) even at the

end of the century in RCP8.5. In the southern high latitudes, the climatological spectral

surface emissivity change is the most negative during the winter months, during which

climatological surface temperature increase is also largest ( 60% relative to HISTCTL).

Focusing on the last 10 years’ of the RCP 8.5 scenario, the average seasonal spectral

surface emissivity change, δεi(t) (Eqn. 5), contribution to the surface radiative response

from month-to-month is seen in Figures 11c and 11d, again for northern and southern high

latitudes respectively. Cryospheric phase changes can be observed in the seasonal cycle

emissivity change between the northern and southern high latitudes, with freezing periods
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producing positive δεi(t) and negative δε(t) for melt periods. Atmospheric dynamics

effects on phase changes are evident from structure in Figure 11c, where continental and

ocean current spatial distribution in the Arctic impose complexity. In contrast, consistent

transitions throughout the bands and months occur in the Antarctic (Figure 11d), where

cryospheric changes are more established on sea-ice. Note that the δεi(t) amplitudes

determined here are a product of the assigned spectral emissivity values for water and

medium-grained snow, which is a simplification for seasonal emissivity values of frozen

surfaces. Snow-cover on ice sheets will evolve from fine-grained deposition in the cold and

windy months to coarse-grains as seasonal temperatures rise. While not a focus in this

study, the foundation for surface emissivity feedback analysis incorporating seasonal snow

grain-size dependent spectral emissivity has been built with this work.

3.3. Emissivity feedbacks

3.3.1. Conventional feedback analysis

To put the emissivity feedback magnitude into the context of conventional climate

feedback analysis, we first report the global emissivity feedback, λε, as one component

of the total feedback parameter λ, as defined by Wetherald & Manabe [1988]. In this

form, the emissivity radiative response relative to pre-industrial period is normalized by

the global mean temperature change. Noting the surface emissivity kernel evolution due,

largely, to water vapor dependence, we show the feedback on the 1850CNTL model by

calculating surface emissivity kernels from the 1850CNTL, as well as referencing ∆εi(~r, t)

with t0 as the 1850CNTL period.

Zonally and temporally-averaged cryosphere emissivity feedbacks are shown in Figure 12

with conventional feedback analysis. The globally-averaged surface temperature difference
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∆T̄S in each scenario was obtained by subtracting a 1850CNTL 10-year averaged monthly

global mean surface temperature from monthly surface temperature of each scenario over

a 10 year period, ending at the year appearing in the Figure 12 legend. In the four

scenarios starting with present-day, the climatological emissivity response, ∆εi(~r, t) is

determined by differencing ε at each spectral band, year, month and grid cell in these

10 year periods with a 10-year averaged 1850CNTL spectral ε for each month and grid

cell. Feedback analysis is only considered in a spatio-temporal grid point for which ∆T̄S

is significant, that is, when ∆T̄S ¿ σTS , where σTS is the surface temperature standard

deviation over the 10-year period for a particular month. Therefore feedbacks are zonally

and temporally averaged by the number of contributing non-zero grid values. Insignificant

∆T̄S’s may occur for HISTCO2, but are generally avoided in the future CO2 forcing

scenarios. Grid cells for which CESM history field ICEFRAC or FRACSNO contained values

¿ 0.0 for any monthly-averaged timepoint over the analysis period were considered to be

members of the cryosphere. Feedbacks for HISTCO2 are much larger than the forced

runs due to ∆T̄S values which are small and somewhat unstable compared to those of

future forcing scenarios. Sea-ice emissivity global mean feedback amplitude is stable

with increasing future CO2 forcing due to linear kernel strength scaling with rising global

mean temperature, and mean zonal broadband ∆ε amounting to O(100) %. However,

the spatial distribution of increasing feedback moves poleward, which is consistent with

increased sea-ice melt at higher latitudes. Our diagnosed ice-emissivity feedbacks can

then be compared to other well-known feedbacks, such as that due to surface albedo

(Hall&Qu [2006]; Winton [2006]; Flanner et al. [2011]; Crook & Forster [2014]; Armour
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et al. [2013]). We do note that the all-sky emissivity feedback is dependent on clouds,

which will complicate the feedback analysis.

Considering the nonlinearity of the emissivity kernels, we compare feedback calculations

based on static kernels K(tref) (where tref is the reference time period) against those

calculated with time-dependent/dynamic kernels K(t) to look at calculation biases with

respect to agreement between methods. For each CO2 forced case, surface emissivity

feedbacks are computed for increasing specification: from global, cryospheric, to sea-ice

emissivity feedbacks; the latter two separated into northern and southern hemispheres (0◦

to 90◦ latitude and -90◦ to 0◦ latitude). When comparing different reference periods in

static kernel use (Figure 13a), in which both the static kernels and climatological emissivity

change differ, the mean bias between surface emissivity feedback calculation methods is

1.16×10−3 W/m2/K. When comparing surface emissivity feedbacks calculated using static

kernels against using time-dependent kernels (Figure 13b) for the same reference periodthe

bias is almost twice as large at 1.95×10−3 W/m2/K. The use of time-dependent kernels

in feedback calculations ( Figure 13c) the mean bias between different reference periods

is reduced down to 8.01×10−4 W/m2/K (compare to Figure 13a). In the previous three

cases, surface emissivity feedback was calculated in the conventional method, relative to

the global mean surface temperature change.

We must also consider the appropriateness of using global mean surface temperature

change for high-latitude feedbacks. While surface albedo feedback studies such as Bony

et al. [2006], Sanderson et al. [2010], and Winton [2006] normalized the surface albedo ra-

diative response with respect to global mean surface temperature change, Hall&Qu [2006],

Flanner et al. [2011], Colman [2013] Crook & Forster [2014], and Qu & Hall [2014] have
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implemented regional surface temperature change in their formulation of surface albedo

feedback to compare seasonal to climatological surface albedo feedback. By using zonal

mean surface temperature change as ∆T̄S in Eqn. 3, we find minimal bias (-1.72×10−4

W/m2/K) when using time-dependent kernels, as shown in Figure 13d, where we compare

pre-industrial and present-day kernel calculations. Indeed with the smallest bias, Figure

13d shows that the determination of the surface emissivity feedback should be based on the

localized surface temperature change rather than the global surface temperature change,

in order to provide a more physically mechanistic formulation of this feedback. The biases

in Figures 13a-d are respectively then 43%, 72%, 29%, and 6% of the mean global sea-ice

emissivity feedback calculated by time-dependent kernels with normalization with zonal

mean surface temperature change. The largest bias occurs in the case comparing emissiv-

ity feedbacks calculated by static versus time-dependent radiation kernels normalized by

climatological global mean temperature differences (Figure 13b), and smallest feedback

bias exists when applying time-dependent kernels normalized by mean zonal temperature

changes from different reference periods (Figure 13d).

Directing attention to frozen and unfrozen water surfaces, for which theoretical longwave

emissivity values were derived by co-authors in Chen et al. [2014] and Huang et al. [2016],

we list globally-averaged sea-ice emissivity feedback values derived from static kernels and

time-dependent/dynamic kernels in Table 2. Surface emissivity feedback values are also

separated in the table by two methods of surface temperature change: the global mean

surface temperature difference and zonal mean surface temperature difference. Static

surface emissivity kernels, surface emissivity change, and surface temperature change are

referenced to the 1850CNTL atmosphere. Parameter standard deviations over the 10-
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year periods are propagated into feedback uncertainties expressions for each of the four

feedback calculation types. Focusing the discussion to future forcing scenarios, clear-sky

sea-ice surface emissivity feedbacks determined with dynamic kernels are on the order of

90% of those determined with static kernels, and all-sky dynamic kernel sea-ice emissivity

feedbacks are less than 60% of static kernel derived values. Normalizing by the zonal

mean surface temperature difference, mechanistically more physical, reduces the sea-ice

surface emissivity feedback values by roughly 50%, compared to normalization by the

global mean surface temperature difference. As the most physical method in Table 2,

time-dependent kernel feedback calculation with normalization by zonal mean surface

temperatures produce clear-sky sea-ice emissivity feedback values that are less than 50%

of values when calculated with static kernels and with normalization by global mean

surface temperature difference. For all-sky, time-dependent kernel, zonal mean surface

temperature derived sea-ice emissivity feedback values are less than 30% of static kernel,

global mean surface temperature feedback values.

Surface emissivity feedbacks for CO2 forcing scenarios referenced to 1850CNTL and

calculated with their respective time-dependent clear- and all-sky kernels are shown in

Figure 14 for northern and southern hemispheric, and global means, for which mean

surface temperature change is calculated zonally. Northern hemisphere cryosphere in-

cludes snow-covered land, and as vegetated areas become more exposed in the RCP 21st

century CO2 forcing scenario wintertime, surface emissivity feedbacks are negative for

εveg > εsnow, yet increase with forcing strength. The southern hemisphere cryosphere

surface emissivity feedbacks are due to changes in the distribution of sea-ice, as their values

are equivalent to the sea-ice emissivity feedback; they are exclusively positive, denoting
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sea-ice melt in future scenarios compared to the reference period. Despite undergoing

less sea-ice melt, southern hemisphere cryosphere/sea-ice emissivity feedbacks are larger

in amplitude than northern hemisphere feedbacks due to the larger southern hemisphere

sea-ice surface area. For both hemispheres, the sea-ice surface emissivity feedback is sta-

ble throughout the forcing scenarios as indicated by feedback calculations for the last

10-years of each scenario period. Driving this stability is that the time-dependent sea-ice

emissivity radiative response is counterbalanced by zonally-averaged surface temperature

change (eg., Figure 13).

3.3.2. Seasonal response analysis

Time-dependent emissivity kernels allow us to discern the longwave radiative response of

the climate to emissivity changes at time t by examining the emissivity radiative response

over the seasonal cycle. Figure 15 plots 10-year averaged emissivity kernels, month-to-

month emissivity change (δεi=6), and emissivity radiative response for RRTMG LW band

6 in each column; the top row for sea-ice dominant northern latitudes, and the bot-

tom row for sea-ice dominant southern latitudes. We inspect the atmospheric dynamics,

melt/freeze cycle, and emissivity radiative response in these high latitude regions as they

evolve with increased CO2 forcing.

At high northern latitudes, Figure 15a shows that, due to water vapor, emissivity ker-

nels in winter-time allow more longwave radiation to escape the top of the atmosphere

than summertime, for RRTMG LW band 6. Despite a month-to-month emissivity change

(δεi=6) with an amplitude larger during melt than freeze periods in future CO2 forcing

scenarios (Figure 15b), the combination of seasonal atmospheric effects on the emissivity

kernel and melt/freeze cycle produces a seasonal emissivity radiative response in Figure
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15c, which cumulatively over the year is negative in sign (Figure 16). Examination of

contributing factors show that the Arctic emissivity kernel amplitude difference between

warm and cold seasons becomes larger with increasing CO2 forcing scenarios, impact-

ing the differential between summertime and wintertime emissivity radiative response.

Month-to-month emissivity changes also evolve with increased CO2 forcing, with an ear-

lier onset springtime melt. However, the winter-time refreeze (February/March) maximum

produces a rebound effect that is as large as 84% of pre-industrial levels, even at the end

of the 21st century. Again, however, the seasonality of the emissivity kernels as shown in

Figure 16 stands in contrast to the annually-averaged emissivity radiative response.

In the Antarctic, the seasonal emissivity kernel strength (Figure 15d) is influenced by

ozone concentration more than water vapor and therefore dips in the southern winter

during increased ozone concentration and low water vapor. Thus, the RRTMG LW band

6 kernels have higher amplitude during the melt season where emissivity changes are neg-

ative (Figure 15e). Another feature of note is that for all cases, the southern atmosphere

over the sea-ice dominant latitudes does not change significantly from the 1850CNTL at-

mosphere, thereby larger amplitude emissivity changes in the future CO2 forcing scenarios

impose a stronger impact than emissivity kernels in the emissivity radiative response (Fig-

ure 15f).

The climatological evolution of seasonal emissivity radiative response (Eqn. 1) can

be seen in Figure 16, where we plot 10-year zonal and annual averages of the seasonal

emissivity response (annual average of plots such as Figs. 15c and 15f for each latitude).

The emissivity radiative response at high northern latitudes shows increasing outgoing

radiation with CO2 forcing, given the seasonal atmospheric dynamics and surface emis-
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sivity change oscillation between positive and negative sign. In the southern ocean, the

emissivity radiative response in future CO2 forcing scenarios reduces, signifying positive

climatological seasonal emissivity radiative response, given climatologically stable atmo-

spheric dynamics over the southern ocean and modeled climatological decrease in frozen

surfaces. Bear in mind that Antarctic sea-ice decline is simulated in the CESM models to

be much faster than observations, as discussed in Section 3.1.1.

Even though we do not make direct comparisons of seasonal with climatological emissiv-

ity feedback here, we note the relative sign of the emissivity radiative responses between

the periods. The climatological sea-ice emissivity radiative response (use of Eqn. 5 in

Eqn. 1) is positive, given the climatological decrease in summertime frozen surfaces and

emissivity values for frozen and non-frozen surfaces specified in this work. However, on

short time scales, the seasonal sea-ice emissivity radiative response (Eqn. 5 in Eqn. 1),

is about an order of magnitude less than the climatological emissivity radiative response

and is consistently negative. Focusing on northern high latitudes, the climatologically ac-

cumulated seasonal sea-ice emissivity radiative response remains negative. The northern

high latitude emissivity radiative response is influenced by two components: first is the

declining sea ice, and secondly, the climatologically evolving seasonal emissivity radiative

kernels modulate the strength of the emissivity reduction during springtime/summertime

melt, as shown in Figure 15a. In the southern high latitudes over sea ice, the clima-

tological emissivity radiative response is driven by predominantly the surface emissivity

differences due to declining sea ice, as water vapor has less seasonal impact on the emis-

sivity radiative kernel than in the northern atmosphere, and therefore the southern high

latitude climatological emissivity radiative response is positive.
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4. Discussion and Conclusions

We have investigated how the inclusion of realistic and consistent surface emissivity in

both land-surface and atmospheric components of the CESM coupled-climate model af-

fects a wide range of climate variables. We did this by replacing the broadband emissivity

values in RRTMG LW for water, medium-grained snow, and desert scenes. We find that

this harmonized treatment of surface emissivity within CESM can be important for reduc-

ing high-latitude temperature biases. We also find that short-term effects of atmospheric

dynamics and spectral information need to be considered to understand radiative effects

in higher detail, and are possible with radiative kernels computed for every grid and time

point for the entire model integration period.

We performed feedback analysis and found that sea-ice emissivity feedback is positive in

sign, which is driven by the differences in emissivity between frozen and unfrozen surfaces

at wavenumbers less than 3000 cm−1. From this single mean state realization represented

by our transient model, we have quantified the global sea-ice emissivity feedback in an

atmosphere at year 2100 in the RCP 8.5 scenario as +8.05 ± 0.15 × 10−3 W/m2/K for

clear-sky and +2.62 ± 0.15 × 10−3 W/m2/K for all-sky, with uncertainties derived from

propagation of Eqn. 3 variables’ 1-σ deviations over the analysis time period. The global

clear-sky sea-ice emissivity feedback is a few percent of surface albedo feedback, and

this relative amplitude is not unexpected, given that albedo change (tens of %) is much

larger than emissivity change ( a few %), between snow and water. This feedback analysis

used spectrally-resolved kernels and revealed time-varying interactions between the bands.

We can extend this analysis to diagnose the ice-emissivity feedback in other earth system
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models with offline calculations of spectral surface emissivity radiative kernels and spectral

surface emissivity change for models with sea-ice fraction output.

We also note that conventional climatological feedback calculations indicate that this

sea-ice emissivity feedback is positive in sign, but that the radiative effects of the difference

in emissivity between frozen and unfrozen surfaces exhibit seasonal dependence. Further-

more, this seasonality itself exhibits meridional asymmetry due to differences in sea-ice

response to climate forcing between the Arctic and the Antarctic. In the Arctic, this

seasonal, temporally higher order analysis exhibits increasing outgoing surface emissivity

radiative response in a warming climate. While the sea-ice emissivity feedback and sea-

sonal sea-ice emissivity radiative response amplitudes are a few percent of surface albedo

feedbacks, the feedback analysis methods outlined in this work demonstrate that spatially

and temporally localized feedback analysis can give insight into the mechanisms at work

on those scales which differ in amplitude and sign from conventional climatological anal-

yses. This is demonstrated in Section 3.3.2, where by executing seasonal surface emissiv-

ity response analysis with time-dependent kernels and time-dependent surface emissivity

change, the northern high latitude climatological surface emissivity radiative response is

negative while southern high latitude climatological surface emissivity radiative response

is positive. In the presence of sea ice decline, the Arctic atmospheric dynamics develops

in such a way that the climatological surface emissivity radiative response is negative,

whereas the Antarctic atmospheric dynamics is rather static over the climatological forc-

ing periods, giving way to positive climatological surface emissivity radiative response.

Additionally, the sign between high latitude climatological surface emissivity radiative

response analysis and conventional emissivity feedback analysis can differ if the latter
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case does not capture underlying driving feedback mechanisms present in a higher order

domain.

The inclusion of this realistic physics leads to improved agreement between CESM

model results and Arctic surface temperatures and sea-ice trends. This reduction of per-

sistent surface temperature biases suggests that modeling surface emissivity may be a

contributing factor to cold-pole model biases, where radiative surface temperatures would

constantly being rederived low in RRTMG LW compared to surface components, when

surface emissivity is set to 1.0 in the atmospheric component. To clarify, the CESM1

release version calculates two distinct representations of the surface temperature: the sur-

face temperature derived from sub-surface temperature profile models residing in surface

model components, and the surface temperature calculated by the Stefan-Boltzmann law

with surface emissivity set equal to 1.0. We tried to reconcile the disparate representation

of surface temperature to ultimately harmonize the treatment of surface temperature and

radiative fluxes. With spectral surface emissivity modeling as outlined in Section 2.2,

more realistic calculated longwave upward and downward fluxes impact energy balance

and surface temperature derivations in the surface components in the next time-step.

Twenty-four atmospheric GCMs that participated in the CMIP5 (Taylor et al. [2012])

assume constant surface emissivity over the entire longwave spectrum, and so the modi-

fications to CESM1 presented here may be relevant for those models.

There is still work to be done regarding ice-emissivity feedback analysis, however. First,

in these simulations the downward longwave radiative flux still remains decoupled from

the ocean model, though we should note that the influence of this decoupling on the

results presented here is likely to be small because the longwave extinction coefficient
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amplitude excludes longwave radiation from transmission beyond the first ocean layer (W.

Large, National Center for Atmospheric Research, personal communication). Second, the

treatment of spectral surface emissivity for vegetated surfaces is incomplete in that its

variation based on plant species and far-infrared emissivity for any vegetated scenes is

unknown. Third, the dependence of the ice-emissivity feedback on snow grain-size needs

to be explored. We used the spectral emissivity curve for medium-grained snow, but

several studies have noted a decrease in emissivity with snow grain-size that is spectrally-

variable (Hori et al. [2006]; Huang et al. [2016]). Therefore, the sign of the seasonal

surface emissivity radiative response and the climatological surface emissivity feedback

could depend on the details of snow metamorphosis, which further motivates the need for

realistic modeling of snow grain-size evolution both in the sea-ice and land components of

coupled-climate models. Finally, a similar analysis to what is presented here for CESM

will need to be performed in other climate models to establish if surface-emissivity physics

are important for high-latitude feedbacks and bias reduction in the multi-model ensemble.
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Table 1. RRTMG LW Bands and Surface Emissivity values

RRTMG LW Emissivity
Band Limits (cm−1) Snow Ocean Desert

1 10-350 0.9936 0.8488 0.9116
2 350-500 0.9883 0.8845 0.8866
3 500-630 0.9799 0.8874 0.9055
4 630-700 0.9717 0.899 0.9591
5 700-820 0.9643 0.9189 0.9605
6 820-980 0.982 0.9531 0.9376
7 980-1080 0.9862 0.9502 0.8783
8 1080-1180 0.9909 0.9447 0.9181
9 1180-1390 0.9812 0.9400 0.9780
10 1390-1480 0.9776 0.9362 0.9741
11 1480-1800 0.9771 0.9359 0.9705
12 1800-2080 0.9717 0.9374 0.9676
13 2080-2250 0.965 0.9349 0.9648
14 2250-2380 0.9636 0.9336 0.9648
15 2380-2600 0.9583 0.9316 0.9636
16 2600-3250 0.9391 0.9251 0.9613

Planck-averaged broadband 0.982 0.901 0.922
CESM1 broadband 0.970 1.000 0.960
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Table 2. Sea-ice emissivity globally-averaged feedbacks [W/m2/K]. See text for further details.

∆T̄S Sky Case Kernel
Static Time-dependent/Dynamic

Global Mean Clear HISTCO2 3.27×10−2 ± 1.49×100 3.05×10−2 ± 2.29×10−3

2×CO2, RCP 8.5 2065 1.75×10−2 ± 1.28×10−3 1.55×10−2 ± 3.46×10−4

RCP 2.6 2100 1.71×10−2 ± 1.31×10−3 1.52×10−2 ± 3.50×10−4

RCP 8.5 2100 1.67×10−2 ± 7.54×10−4 1.43×10−2 ± 1.95×10−4

All HISTCO2 1.50×10−2 ± 1.16×100 8.15×10−3 ± 1.63×10−3

2×CO2, RCP 8.5 2065 9.53×10−3 ± 1.28×10−3 5.44×10−3 ± 2.56×10−4

RCP 2.6 2100 9.22×10−3 ± 1.32×10−3 5.38×10−3 ± 2.53×10−4

RCP 8.5 2100 9.46×10−3 ± 7.70×10−4 4.79×10−3 ± 1.95×10−4

Zonal Mean Clear HISTCO2 8.49×10−3 ± 2.05×10−3 8.06×10−3 ± 1.92×10−3

2×CO2, RCP 8.5 2065 9.19×10−3 ± 3.47×10−4 8.19×10−3 ± 2.38×10−4

RCP 2.6 2100 9.03×10−3 ± 3.28×10−4 8.11×10−3 ± 2.32×10−4

RCP 8.5 2100 9.26×10−3 ± 2.40×10−4 8.05×10−3 ± 1.47×10−4

All HISTCO2 3.71×10−3 ± 2.01×10−1 2.32×10−3 ± 2.01×10−1

2×CO2, RCP 8.5 2065 4.55×10−3 ± 3.77×10−4 2.77×10−3 ± 2.39×10−4

RCP 2.6 2100 4.44×10−3 ± 6.99×10−4 2.75×10−3 ± 3.92×10−4

RCP 8.5 2100 4.82×10−3 ± 2.74×10−4 2.62×10−3 ± 1.52×10−4
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Figure 1. Focusing on Arctic ocean latitudes, a) comparison of 1979-2005 Arctic surface

temperatures monthly and spatially-averaged over 69◦-90◦ North for CESM-ε(ν) (red), the mean

of 10 fully-forced CESM-LME models (green), and ERA-Interim skin temperature reanalysis

(blue), b) the residuals with respect to ERA-Interim skin temperature for CESM -ε(ν) radiative

surface temperature (red) and CESM-LME (green), c) December-January-February residuals for

the same period and region where error bars show the deviations over the months, and d) are

the June-July-August residuals for the same period and region.
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Figure 2. North Pole projection difference maps of Arctic radiative surface temperatures in

the period 1979-2005 over 60◦-90◦ northern latitudes. Skin temperature reanalysis data is from

ERA-Interim (Dee et al [2011]), CESM-LME is the 10 ensemble mean of historical 20th century

fully-forced model from the CESM Last Millenium Ensemble (Otto-Bliesner et al. [2016]), and

CESM-ε(ν) is this work’s model, for the HISTCO2 case. December-January-February (DJF)

mean surface temperature differences are plotted between a) CESM-ε(ν) and ERA-Interim, b)

CESM-LME and ERA-Interim and c) CESM-ε(ν)-CESM-LME. d), e) and f) show the same for

months June-July-August (JJA). Crosses indicate statistically significant grid points to p¡0.05 of

the Welch’s t-test.
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Figure 3. For the RCP 8.5 case, end of century 10-year averaged clear-sky ε kernel maps for

four seasons: a) December-January-February, b) March-April-May, c) June-July-August, and d)

September-October-November.
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Figure 4. Same description as Figure 3, except for all-sky.
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Figure 5. Emissivity difference in RRTMG LW band 6 between 10-year average in RCP8.5 end

of century and a 10-year average of 1850CNTL, for four seasons: a) December-January-February,

b) March-April-May, c) June-July-August, and d) September-October-November. Red regions

denote increased emissivity and in blue areas, the emissivity has reduced.
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Figure 6. Globally- and temporally-averaged spectral kernel amplitudes by RRTMG LW band,

for the last 10 years end-of-century RCP 8.5 case for a) clear- and b) all-sky. c) The globally-

and temporally-averaged spectral emissivity change of the last 10-years of RCP 8.5 and 10 years

of 1850CNTL.
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Figure 7. Temporal evolution of emissivity kernels and climatological emissivity change. a)

Solid lines show globally-averaged broadband clear-sky ε kernel strength in units of W/m2/ε.

Dotted lines are polynomial fits to the clear-sky kernels. Dashed lines are ratios of all-sky to

clear-sky globally-averaged broadband ε kernel amplitudes and is unitless. b) Globally-averaged

broadband emissivity change with respect to the 1850CNTL case.
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Figure 8. Broadband kernel reduction for forced CO2 atmosphere cases, with respect to

the 1850CNTL case. a) and b) are clear-sky kernel reductions area-averaged in northern and

southern high latitudes, respectively. c) and d) show the all-sky cases area-averaged in northern

and southern high latitudes, respectively.
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Figure 9. Total precipitable water and total cloud fraction for forced CO2 atmosphere cases.

a) and b) Area-averaged in northern and southern high latitude total precipitable water, respec-

tively. c) and d) show area-averaged total cloud fraction in northern and southern high latitudes,

respectively.

c©2017 American Geophysical Union. All Rights Reserved.



Figure 10. Spectral ε kernels for RCP8.5 scenario in high northern latitudes a) clear and b)

all-sky, and in high southern latitudes d) clear- and e) all-sky, on a monthly basis. The color

scheme for RRTMG LW bands is [red, green, blue, yellow] for bands=[1,2,3,4] and repeated 3

more times up to band 16.
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Figure 11. Average spectral climatological surface ε change on a monthly basis between

2090-2100 in RCP8.5 scenario and 10 years of 1850CNTL for a) high northern latitudes and b)

high southern latitudes. Average seasonal month-to-month surface ε change in years 2090-2100

of RCP8.5 scenario for c) high northern latitudes and d) high southern latitudes. See Eqns. 5

and 5 for ∆εi and δεi definitions.
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Figure 12. Zonally-averaged emissivity feedback of cryosphere for each of the four CO2

forced cases, relative to 1850CNTL. Kernels from 1850CNTL atmosphere were used in this case,

with clear-sky on the left and all-sky on the right plot. Normalization by global mean ∆T̄S,

for conventional prescription of feedback. The HISTCO2 feedback is large due to smaller global

mean ∆T̄S.
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Figure 13. Sea-ice emissivity feedbacks calculated using different reference periods and kernel types
(static or time-dependent/dynamic). a) Comparison of 2 different reference periods, each using their
respective static kernel. b) For the same reference period, comparison of feedback using static kernel
vs. dynamic kernel. c) Comparison of 2 different reference periods, each using their respective dynamic
kernels. d) Comparison of 2 different reference periods, each using their respective dynamic kernels, but
feedback is normalized by zonal mean temperature. Marker colors indicate the model case, as described
in other figures in this manuscript. Marker fill styles indicate: left fill-clear sky Northern Hemisphere
(NH), right fill-all sky NH, bottom fill-clear sky southern hemisphere (SH), top fill-all sky SH, full fill-
clear sky global, no fill-all sky global. The line of agreement is the black dashed line, and the blue line
is a linear regression.
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Figure 14. Climatological surface ε feedback, calculated with time-dependent kernels of outgo-

ing longwave radiation sensitivity to surface emissivity and zonally-averaged surface temperature

change, relative to 10-year averages in 1850CNTL. Error bar lengths indicate uncertainties prop-

agated from standard deviations in kernel, surface emissivity, and surface temperature values.
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Figure 15. RRTMG LW band 6 seasonal emissivity radiative response factors for high sea-ice

dominant latitudes. a) northern and d) southern high latitude monthly emissivity kernels for the

last 10 years of each case, the last year noted in the figure legend. b) northern and e) southern

high latitude month-to-month emissivity change (δεi=6, Eqn. 5). c) northern and f) southern

high latitude emissivity radiative response. Errorbars are calculated from the 10-year variability.

Kernel and radiative response plots use solid lines for clear-sky, and dashed lines for all-sky.
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Figure 16. Zonally- and time-averaged seasonal emissivity radiative response for each case,

using a) clear-sky kernels, and b) all-sky kernels. The time-average is over 10-year periods ending

in the year denoted in the figure legend for each case.
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