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Inductor coil of the highest possible 
Q

A. Rikhter* & M. M. Fogler

The geometry of an inductor made of a long thin wire and having the highest possible Q-factor is 
found by numerical optimization. As frequency increases, the Q-factor first grows linearly and then 
according to a square-root law, while the cross-section of the optimal coil evolves from near-circular to 
sickle-shaped.

Given a piece of wire, how can one wind it into a coil of the maximum possible Q-factor? While previously this 
question has been treated almost exclusively in the context of radio engineering1,2, in this work we address it as 
a problem in mathematical physics. To constrain the size of the coil, we have the following geometric parameters 
fixed: the total wire length W, the conducting core diameter di , and the effective outer diameter d. We define d in 
terms of the maximum possible wire density n2 ≡ (πd2/4)−1 per unit area. Thus, for the hexagonal closed pack-
ing of round wires, d is (12/π2)1/4 = 1.050 times the actual outer diameter. The current is taken to be I = e−iωt . 
We consider only frequencies ω much smaller than the self-resonance frequency ωr ∼ c/W of the coil, allowing 
us to neglect the capacitance term. With these simplifying assumptions, the current is uniform along the wire, 
and the Q-factor is defined as the ratio of the stored magnetic energy to the magnetic losses. For the purpose of 
this paper, an equivalent and more convenient definition of Q is the ratio of the imaginary and real parts of the 
complex impedance Z = R + iωL:

Because of induced eddy currents, R(ω) is coil-shape dependent, so that the competition between the induct-
ance and the losses poses a nontrivial optimization problem for Q(ω).

Our electrodynamic problem has roots in a magnetostatic problem first studied by Gauss3. Specifically, in 
the limit ω → 0 , the effective resistance R approaches the dc resistance R(0) = 4W/(πσd2i ) , where σ is the core 
conductivity, so that maximizing Q is equivalent to maximizing L. Gauss assumed that the coil of the highest L 
under the aforesaid constraints is a toroidally wound solenoid with a nearly circular cross-section, Fig. 1a. Later, 
Maxwell4 revisited the problem and treated a more practical case of a square cross-section, Fig. 1b. Maxwell’s 
analysis was improved by Rosa and Grover5. Building on their work, Brooks proposed that the mean radius 
of the optimal coil is approximately 3/2 of the side of the square6. The inductance of this coil is 0.656Lc , where

Optimization of inductors with nonmagnetic cores became topical again in the 1970’s when toroidal coils 
(wound in the poloidal direction) were brought in a wider use in plasma physics and energy storage research. 
The case of a single-layer toroid was solved by Shafranov7,8. Multilayer coils were studied by Murgatroyd9,10 who 
found that the inductance of the optimal toroid is 0.29Lc . The reduction compared to the Brooks coil is presum-
ably because the toroid generates no stray magnetic field. Murgatroyd reviewed the 5/3 power-law of  (2) and 
other properties of optimal inductors in his excellent summary9. For example, the characteristic size of such 
inductors is set by

These scaling laws apply assuming the wire bundle forming the cross-section of the coil can be approximated 
by a continuum current distribution, which is legitimate if the number of turns N is large enough. For example, 

(1)Q(ω) = ImZ

ReZ
= ωL(ω)

R(ω)
.

(2)Lc =
µ0

4π

W5/3

d 2/3
.

(3)ρc =
1

2
(Wd2)1/3.
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the relative error in the following inductance calculation due to this approximation scales as N−1/2 , as shown 
by Maxwell4. Adopting this continuum approach, below we derive scaling laws for finite-ω optimal inductors in 
terms of two additional characteristic scales:

The former is the frequency at which the eddy-current losses become comparable with the dc Ohmic ones, 
the latter is the order of magnitude of the Q-factor at ωc.

Low frequencies
We begin with answering Gauss’ question about the dc inductance. It was posed by him 150 years ago but appar-
ently has not been settled yet. Gauss’ calculation can be summarized as follows. An estimate of L is provided by 
the approximate formula4

where N is the total number of turns in the coil and ρ̄ is their mean radius. Note that 2πρ̄N = W . Parameter GMD 
is the geometric mean distance. In the continuum limit, appropriate for large N, it is defined via

where positions r = (ρ, z) , r′ = (ρ′, z′) vary over the cross-section of the coil, of the area A = N/n2 . According 
to  (5), to maximize L for a given N (or ρ̄ ) we need to minimize GMD at fixed A. It can be proven11 that the solu-
tion is a circle of radius a = √

A/π  whose GMD is5 e−1/4a . Minimizing L with respect to ρ̄/a , Gauss obtained 
ρ̄/a = e13/4/8 = 3.22 . Such a mean-radius to half-height ratio is noticeably different from either 3.7 or 3 advo-
cated by, respectively, Maxwell and Brooks, see Fig. 2a, suggesting that this method is too crude to reveal the 
true optimal coil geometry.

To glean a more accurate answer, we tackled the problem numerically. We expressed the inductance and the 
wire-length constraint in the form of integrals,

where 0 ≤ n(r) ≤ n2 is the number of turns per unit area at position r . Function M(r, r′) , given by

is the mutual inductance of co-axial line currents5 piercing the cross-section at r and r′ ; K(m) and E(m) are the 
complete elliptic integrals. We approximated the integrals in  (7), (8) by sums over a finite two-dimensional grid 

(4)ωc ≡
8π

Qc

d2

µ0σd
4
i

, Qc ≡
2ρc

di
.

(5)L = µ0N
2ρ̄

[

ln

(

8ρ̄

GMD

)

− 2

]

,

(6)ln(GMD) = 1

A2

∫∫

ln |r − r
′|d2rd2r′,

(7)L =
∫∫

n(r)M(r, r′)n(r′) d2r d2r′,

(8)W =
∫

n(r) 2πρ d2r,

(9)
M(r, r′) = µ0

√

ρρ′

m
[(2−m)K(m)− 2E(m)],

m = 1

1+ k2
, k = |r − r

′|√
4ρρ′

Figure 1.   Schematics of multi-layer coils with (a) elliptic and (b) square cross-sections.
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and performed the constrained maximization of L numerically. The mean radius of the optimal coil is ρ̄ = 1.28ρc . 
The cross-section of the coil is not a circle; it is better approximated by an ellipse of dimensions

represented by the curve labeled ω2 = 0 in Fig. 2b. The cross-section is fully packed, so that

where �(x) is the unit step-function. Finally, the coil inductance is

which is 1% larger than that of the Brooks coil.
Encouraged by the simplicity of these results, we rederived them as follows. We started with the expansion5

valid for k ≪ 1 [Eq. (9)], and evaluated the integral in  (7) analytically for the elliptic cross-section defined 
by  (11). The result can be written as

which is a generalization of Rayleigh’s formula12 for the b = a case and a key improvement over  (5). Using this 
formula for L and another one, W = πabρ̄n2 , for the length constraint, we were able to easily solve for the optimal 
ξ1 , ξ2 numerically, reproducing  (10).

Returning to the Q-factor, we rewrite  (1) in terms of our characteristic scales Lc , Qc , ωc:

where we introduced the loss enhancement factor

Below we show that at low frequencies ω ≪ ωc , the loss factor behaves as

(10)ξ1 ≡
ρ̄

a
= 2.54, ξ2 ≡

ρ̄

b
= 2.61,

(11)n(r) = n2 �

(

1− (ρ − ρ̄)2

a2
− z2

b2

)

,

(12)L = 0.663Lc ,

(13)M(r, r′) ≃ µ0

√

ρρ′
[(

1+ 3k2

4

)

ln
4

k
− 2− 3k2

4

]

,

(14)L = µ0N
2ρ̄ �,

(15)
� =

(

1+ 1

32

ξ 22 + 3ξ 21

ξ 21 ξ
2
2

)

ln

(

16 ξ1ξ2

ξ1 + ξ2

)

− 7

4

+ 7

96

1

ξ 21
+ 1

32

ξ 22 − 3ξ 21

ξ 21 ξ
2
2

ξ1

ξ1 + ξ2
,

(16)Q = π

2

ω

ωc

L/Lc

1+ F(ω)
Qc ,

(17)F(ω) ≡ R(ω)

R(0)
− 1.

Figure 2.   Cross-sections of the optimal coils. (a) Designs proposed by Gauss3, Maxwell4, and Brooks6. (b) 
Results obtained in this work. The cross-section evolves from near-circular to elliptic to sickle-shaped as ω 
increases. The shading represent the local wire density n(r) computed on a 30× 30 grid. The curves serve 
as guides to the eye. The wire density is seen to switch from 0 to n2 with few or no intermediate values. The 
numbers on the axes are x and z coordinates in units of ρc . The legend indicates the magnitudes of (ω/ωc)

2.
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At such frequencies, F ≪ 1 is negligible, L is virtually unchanged from the dc value, and so the Q-factor is 
linear in ω:

see Fig. 3.

Proximity effect losses
The finite-frequency losses in coils are traditionally attributed to the combination of the skin and proximity 
effects13. The latter, due to the collective field H(r) of all the turns of the wire, dominates in multi-layer coils of 
interest to us if ω is not too high, such that δ ≫ di , where

is the skin depth. Under the stated condition of weak skin effect, the loss factor takes the form

where H , equal to the curl of a vector potential, is

In general, these expressions have to be evaluated numerically. However, we can estimate F analytically for 
a coil with the elliptic cross-section,  (11). Retaining only the leading-order terms in k ∼ max(a, b)/ρ̄ ≪ 1 
in  (13), we find

Substituting this into  (21), we get

which is a generalization of Howe’s formula for a multi-stranded round wire14. Finally, using  (3) and (10), we 
arrive at  (18). At the border of its validity, ω ≈ ωc , that equation predicts F ≈ 0.3 assuming the wire is long 
enough so that δ/di ≈ 0.2 (W/d)1/6 ≫ 1.

(18)F(ω) = 0.305
ω2

ω2
c

.

(19)
Q

Qc
= 1.04

ω

ωc
, ω ≪ ωc ,

(20)δ(ω) =
√

2

µ0ωσ

(21)F(ω) = π2

64W

d6i
δ4

∫

H
2(r)n(r) 2πρ d2r

(22)H(r) = 1

2πµ0ρ
(ẑ∂ρ − ρ̂∂z)

∫

M(r, r′)n(r′)d2r′.

(23)H(r) = n2

a+ b

[

az ρ̂ − (ρ − ρ̄)b ẑ
]

.

(24)F = 1

8

(

d3i
δ2d2

ab

a+ b

)2

= π2

2

ω2

ω2
c

(

1

ρc
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)2

,
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Figure 3.   (a) Q-factor of the optimal coil as a function of ω2/ω2
c . The connected dots are our numerical results. 

The two dashed lines indicate the expected low- and intermediate-frequency scaling. Inset: loss factor F vs. 
ω2/ω2

c . (b) Mean radius ρ̄ of the coil in units of ρc as a function of ω2/ω2
c.
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Intermediate frequencies
At ω ≫ ωc the competition between inductance and proximity losses is expected to cause flattening of the cross-
section of the optimal coil. We confirmed this hypothesis by numerical simulations based on  (7), (8), (21), and 
(22). Our results for a few representative ω are shown in Fig. 2b. As frequency increases, the cross-section first 
becomes oval and then sickle-shaped. Figure 3 presents the Q-factor and the mean radius ρ̄ obtained from these 
simulations. The plot in the main panel of Fig. 3a suggests that the linear scaling of Q(ω) changes to a square-root 
law above the frequency ωc as the cross-section begins to flatten and bend. The inset of Fig. 3a illustrates that the 
loss factor grows as predicted by  (18) at ω/ωc < 1 but reaches a constant F ≈ 0.3 at ω/ωc > 1.

We can shed light on the observed ω/ωc > 1 behaviors using our elliptical cross-section model. Assuming 
a ≪ b , we derive the following analytical expressions for a and b in terms of dimensionless parameters ξ2 = ρ̄/b 
and F:

They entail that Q at a given ω has the scaling form

Hence, Q at fixed ξ2 reaches its maximum at F = 1/3 , which is close to our numerical result. Freezing F at 
1/3 and maximizing Q with respect to ξ2 , we arrived at

The first equation in  (27), represented by the upper dashed line in Fig. 3a, is within 10% from the simulation 
results. The second equation in  (27), has a similar level of agreement with the data in Fig. 3b. This is satisfactory 
considering that ω/ωc is not truly large and that our analytical model is oversimplified.

High frequencies
From now on we focus on the practical case of densely packed, thinly insulated wires, di ≈ d . Per  (20) and (25), 
at frequency ωs = ωcQc/(2π) ≫ ωc both the width 2a of the thickest part of the winding and the skin depth 
δ become of the order of d. This implies that at ω ≫ ωs the optimal coil is (i) single-layered and (ii) strongly 
affected by the skin effect. In view of the former, we can fully specify the cross-sectional shape of the coil by a 
function ρ(z) and replace  (7) and (8) by

with n1 ∼ 1/d being the number of turns per unit arc length s of the cross-section. Equation (21) gets modified as 
well. As first shown by Rayleigh15, a single straight round wire is characterized by the loss factor Fs = di/(4δ) ≫ 1 , 
due to confinement of the current to a δ-thick skin layer at the conductor surface. In a coil or in a bunch of parallel 
wires, inter-wire interactions cause further nonuniformity of the current in the skin layer. As a result, the loss 
factor increases beyond Rayleigh’s Fs:

where H‖(z) and H⊥(z) are the components of H(r) parallel and perpendicular to the layer,

The dimensionless coefficients � , f, and g introduced by Butterworth13 depend on the wire packing density 
n1di and have to be calculated numerically16. The optimization of Q using the entire set of these complicated 
equations appears to be challenging, so we have not attempted it. On the other hand, the solution for ρ(z) we 
present below is a nearly constant function. For such functions the loss factor F should be weakly shape depend-
ent, in which case to maximize Q it is sufficient to maximize L alone. We accomplished the latter numerically 
using  (29) and (30), in which we additionally dropped the 

√

1+ ρ′2 factors. The optimal solenoid shape we 
found is slightly convex, as depicted schematically in Fig. 4, with the aspect ratio ξ = ρ̄/l = 2.20 and curvature 
0.0024/l. Note that ξ is numerically close to ξ2 in the intermediate frequency regime,  (28). Substituting the 
obtained L into  (16), we got

(25)
a

ρc
=

√

F

2π2

ωc

ω
,

b

ρc
=

√

1

πξ2

ρc

a
.

(26)Q(ξ2, F) =
F1/4

1+ F
q(ξ2).

(27)
Q

Qc
= 0.85

√

ω

ωc
,

ρ̄

ρc
= 1.6

√

ω

ωc
,

(28)
a

ρc
= 0.26

ωc

ω
, ξ2 = 2.13.

(29)L = n21

∫∫

M(r, r′)ds ds′,

(30)W = n1

∫

2πρ(z)ds, ds =
√

1+ ρ′2(z) dz,

(31)
F

Fs
= �+ d2i n1

8W

∫

[

fH2
� (z)+ gH2

⊥(z)
]

2πρ ds,

(32)H�(z) =
Hρρ

′ +Hz
√

1+ ρ′2
, H⊥(z) =

Hρ −Hzρ
′

√

1+ ρ′2
.
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which is similar to  (27) but has a different coefficient. This type of high-frequency behavior is actually well-
known in radio engineering1,2.

In an effort to rederive these results more simply, we considered a family of constant-radius solenoids whose 
inductance is given by Lorenz’s formula5

where m = ρ2/(ρ2 + l2) . As seen in Fig. 4, the maximization of this L (under the constraint 4πρln1 = W ) gives 
L = 0.661µ0W

3/2/(2π
√
d ) , in agreement with Murgatroyd9. This value of the inductance is only ∼ 1% lower 

than the true optimum, which corresponds to the slightly convex shape we found here. Yet the best aspect ratio 
for the constant-radius solenoid proves to be 2.46, a 13% larger than for our optimal coil.

Discussion
In this work we studied theoretically the highest possible Q-factor of an inductor wound from a given piece of 
wire. Real inductors used in various practical applications17–20 are made under numerous additional constraints, 
such as minimal cost, ease of manufacturing, or current handling capacity. Depending on the application, a mul-
titude of related optimization problems may arise. Our calculation provides a fundamental upper bound on Q 
and its scaling with wire length, diameter, and frequency. At the highest frequencies we considered, Q(ω) grows 
according to the square-root law. We expect this law to persist until either capacitance effects or radiative losses 
or frequency dispersion of σ neglected in our theory become important. For example, the capacitance effects 
restrict the validity of . (33) to frequencies below the self-resonance frequency ωr ∼ c/W . Hence, this equation 
may apply only if ωr/ωs ∼ Z0/R(0) ≫ 1 , i.e., if the dc resistance of the wire is much smaller than the impedance 
of free space Z0 = cµ0 = 377� . However, if R(0) is too low, then dipole radiation21,22 losses, growing as ω4 , could 
surpass the Ohmic ones. Consideration of these additional physical effects is relevant for optimizing inductors 
used in resonators, antennas, and metamaterials, and so it could be an interesting topic for future research.

Methods
To optimize inductance, the Eqs. (7) and (8) were replaced by sums:

over finite two-dimensional grid of points ri in the cross-section of the coil . The off-diagonal elements 
Mij = M(ri , rj) were found from (9). To find the diagonal elements of the matrix, the mutual inductance of two 
rings of radius ρi offset by a vertical distance, M(ri , ri + aGMDẑ)) , was computed, which is a good approxima-
tion to the self-inductance of a thin wire23. The matrix M is positive definite, and so the maximization of L is a 

(33)
Q

Qc
= 2.34

F/Fs

√

ω

ωc
, ω ≫ ωs ,

(34)L = 8

3
µ0n

2
1ρ

3

[

2m− 1

m
√
m

E(m)+ 1−m

m
√
m
K(m)− 1

]

,

(35)L[n] =
∑

i

∑

j

niMijnj

(36)W[n] =
∑

i

2πρini

1 2 3 4
0.6

0.63

0.65

0.67

Figure 4.   Inductance L of a constant-radius single-layer coil as a function of ξ = ρ̄/l . The open dot labels 
the maximum on the curve. The filled dot shows the true optimum. L is in units of µ0W

3/2/(2π
√
d) . Inset: 

definitions of ρ̄ and l.
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convex constrained optimization problem, which we solved using MATLAB’s24 built-in quadprog function, 
yielding the optimal distribution of currents ni.

The full problem including the proximity and skin effects is more complicated; to begin with, it is no longer 
obviously convex due to the additional factor in (21). The magnetic field entering this equation can in principle 
be found from (22). We used an equivalent method, as follows. For each point on a two-dimensional grid, the 
magnetic field vector at coordinate i due to the current at coordinate j was calculated using the well-known 
formula25 for the magnetic field of a ring current, yielding the matrix Hij . The loss factor was then calculated 
using the discretized version of (21),

The optimal distribution of current ni was then obtained by maximizing

numerically, using the built-in fmincon function in MATLAB. This function requires an initial guess, which 
we chose to be random. We verified that the results of the optimization were independent of the starting val-
ues of ni and satisfied the constraint (36) up to the specified tolerance of 10−6 . For guiding the eye, the values 
ni depicted in Fig. 2 were supplemented with smooth envelope curves. For the two lower frequencies, ellipses 
were used, and for the higher two, sickle-shaped curves satisfying c0 = (x2 + y2 − c1)

2 + c2y
2 were used with 

suitable choices of c0, c1, c2.
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