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Abstract

Gliomas account for approximately 80% of all primary malignant brain tumors, and despite
improvements in clinical care over the last 20 years remain among the most lethal tumors,
underscoring the need for gaining new insights that could translate into clinical advances. Recent
genome-wide association studies (GWAS) have identified seven new susceptibility regions. We
conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14
cohort studies, 3 casecontrol studies, and 1 population-based case only study) and found evidence
of strong replication for three of the seven previously reported associations at 20q13.33 (R7EL),
5p15.33 (TERT), and 9p21.3 (CDKNZ2BAS), and consistent association signals for the remaining
four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDBI). The direction and
magnitude of the signal were consistent for samples from cohort and case-control studies, but the
strength of the association was more pronounced for loci rs6010620 (20q,13.33; R7EL) and
rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group,
likely due to relatively more higher grade tumors being captured in the cohort studies. We further
examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our
study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached
genome-wide significance. Our findings suggest that larger studies focusing on novel approaches
as well as specific tumor subtypes or subgroups will be required to identify additional common
susceptibility loci for glioma risk.

Introduction

Gliomas account for approximately 80% of all primary malignant brain tumors (Kohler et al.
2011) and despite improvements in clinical care over the last 20 years, remain associated
with considerable morbidity, with the most common histological subtype, glioblastoma
(GBM) having a median survival of only 15 months (CBTRUS 2012). To date the only
established environmental risk factor is exposure to moderate-to-high doses of ionizing
radiation (Bondy et al. 2008). A heritable component of glioma is supported by: the two-fold
elevated risk in individuals with a positive family history (Hemminki et al. 2009; Malmer et
al. 2003; Scheurer et al. 2007; Wrensch et al. 1997); an increased risk observed in rare
genetic syndromes (Farrell and Plotkin 2007); a possible moderately penetrant risk locus in
the 3" untranslated region of TP53(Stacey et al. 2011); and recent identification by genome-
wide association studies (GWAS) of common susceptibility variants at 5p15.33 (7TERT),
8g24.21 (CCDC26), 9p21.3 (CDKNZA-CDKN2ZB), 20q13.33 (RTELI), 11923.3
(PHLDBI), and two independent signals at 7p11.2 (EGFR) (Sanson et al. 2011; Shete et al.
2009; Wrensch et al. 2009)

To search for additional common genetic variants we conducted a new independent GWAS
in 1,856 cases and 4,955 controls ascertained from 14 cohort studies, 3 case-control studies,
and 1 population-based case-only study (Table 1). Previous GWAS studies were based on
case-control samples only. Our study was designed to include a large number of incident
cases from cohort studies (556 out of 1856, i.e. 30% of all cases) to minimize potential bias
to glioma with longer survival.

Hum Genet. Author manuscript; available in PMC 2013 September 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rajaraman et al.

Results

Page 4

Study-specific population characteristics are summarized in Table 1. The mean age of cases
ranged from 48.7 years in the NIOSH Upper Midwest Health Study to 73.5 years in the
Multi-Ethnic Cohort. 55.1% of glioma cases were of the glioblastoma subtype, with a larger
percentage of high grade tumors (WHO 111 or 1V) observed in cohort (74.7%) versus case-
control (64.5%) studies (Supplementary Table 1).

After quality control metrics were applied to the scan data, 559,977 SNPs were available for
analysis in 1,856 cases and 4,955 controls (details in Materials and Methods). Concordance
between known duplicates was greater than 99.95%. The main effect model was adjusted by
sex, age, study and seven eigenvectors (to account for small differences in population
substructure). Examination of the Q-Q plot indicated the likelihood of additional loci
associated with glioma risk (Figure 1). The genomic control lambda for the study is
estimated at 1.006, suggesting the lack of issues related to differences in the underlying
population substructure.

The results of this genome-wide association scan confirmed the previously reported seven
regions as risk susceptibility loci for glioma (Figure 2). Specifically, we replicated three of
seven previously reported associations at 20q13.33 (R7EL), 5p15.33 (7TERT), and 9p21.3
(CDKNZBAS) (Table 2). Associations for the remaining loci were consistent with reported
findings with respect to the direction of the odds ratios, but were not statistically significant
at the genome-wide level (i.e. p < 5.0 x 1078). When results were examined separately for
samples from cohort versus case-control studies, the direction and magnitude of the signal
were generally consistent. However, the strength of the association was more pronounced
for loci rs6010620 (20q,13.33; R7EL) and rs2736100 (5p15.33, TERT) in the cohort studies
despite the smaller number of cases in this group (Table 2a). Conversely, the strength of the
association for loci at 11q23.3 (PHLDBI) and 9p21.3 (CDKNZBAS) was higher in case-
control studies.

We further examined associations for previously reported loci by gender and tumor subtype
(Tables 3 and 4). In analyses by gender, the signals at 8q24.21 (CCDCZ26) rs4295627 and
7pl1.2 (EGFR) rs2252586 were stronger in women compared with men in our data (p-value
for heterogeneity 0.0037 and 0.057, respectively). However, this effect modification by
gender was not observed in the joint data from the UK, US-MDA, French and German
replication groups. By tumor subtypes, the three regions most strongly associated with
glioma risk overall at 5p15.33 (7ERT), 9p21.3 (CDKNZB) and 20913.33 (RTEL 1), were
mainly associated with glioblastoma. Associations with the marker at 8q24.21 (CCDCZ26)
appeared more pronounced for oligodendroglioma, while the signal at 11923.3 (PHLDBI)
was preferentially associated with low-grade glioma.

In addition to previously reported loci, we identified 85 previously unreported loci with
associations of p-trend < 4.0 x10~4 after removing probable genotyping artifacts, known
associations, and highly correlated SNP markers (r2>0.6). We performed an in silico
replication by a meta analysis with data from three previously reported GWAS studies
which provided data on a total of 5,015 cases and 11,601 controls (Table 1) (Sanson et al.
2011; Shete et al. 2009; Wrensch et al. 2009). Summary measures (odds ratios and 95%
confidence intervals) were obtained from each study, and a meta-analysis was performed
using an inverse variance fixed effect model. However, none of these associations reached
statistical significance at the genome-wide association level (Supplementary Table 2). A
similar exercise was undertaken for 85 promising loci identified in combined data from the
UK, US-MDA, French and German replication groups, but again, none of these associations
reached statistical significance at p < 5.0 x 1078 (Supplementary Table 3).
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Discussion

In this study, we present the data from a new independent GWAS of glioma based on 1,856
cases and 4,955 controls. While we did not observe any novel locus that reached genome-
wide significance, the new scan provides further evidence for confirmation of the
established loci. Similar to previously published reports, we note that 7TER7 rs2736100,
CDKNZBrs4977756, and RTEL11rs6010620 were most strongly associated with
glioblastoma, CCDC26rs4295627 with oligodendroglioma, and PHLDBI1 rs498872 with
low-grade glioma (Egan et al. 2011; Jenkins et al. 2011; Simon et al. 2010). These results
suggest different genetic etiologies for different subtypes of glioma, and underscore the
importance of considering tumor heterogeneity in GWAS studies.

Although we observed differential associations for the two loci on 8924.21 (CCDC26) and
7pl11.2 (EGFR) by gender in our data, effect modification by gender was not observed for
these loci in the joint data from the UK, US-MDA, French and German replication groups,
suggesting that the observed gender differences in our data could have been due to chance.
However, it will be important to re-examine potential effect modification by gender in larger
datasets, along with consideration of potential risk covariates of interest such as allergy or
smoking (Lachance et al. 2011; Schoemaker et al. 2010).

Previous GWAS of glioma were based on case-control studies only, which would generally
not include rapidly fatal gliomas. One concern of results from these studies is that
associations may be influenced by survival and therefore potentially bias toward glioma
with longer survival. It is noteworthy that in our GWAS scan, the strength of the association
was more pronounced for rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in
the cohort studies despite the smaller number of cases in this group. These regions have
been particularly associated with high-grade glioma in other studies (Egan et al. 2011;
Jenkins et al. 2011; Simon et al. 2010), and the differences in cohort versus case-control
results in our scan likely reflects the fact that a higher proportion of highly fatal tumors
(WHO Grade I11 and 1) were captured by the cohort studies as compared to the case-
control studies. Similarly, stronger results for the CCDC26 and PHL DB variants in the
case-control studies are consistent with previous associations of these loci with low-grade
tumors. Nonetheless, overall results from GliomaScan, which comprised a large number of
incident glioma from cohort studies, support GWAS associations based on previous case-
control studies. Our data thus suggest that previously reported associations are generalizable
to incident glioma cases.

Our study had adequate power to detect variants of moderate effect sizes for common allele
frequencies. However we did not observe additional signals with /n silico analysis in three
previously reported scans totaling 5,015 cases and 11,601 controls. This suggests that the
underlying architecture of genetic susceptibility to glioma may not include as large a
proportion of common variants as has been seen for other cancers to date. Alternatively, the
underlying heterogeneity of glioma may limit our ability to identify more highly significant
variants. For example, recent advances in understanding of glioma subtypes (e.g. proneural,
neural, mesenchymal) based on gene expression (2008; Phillips et al. 2006), somatic
mutations (e.g. /DHI)(Yan et al. 2009) and global patterns of methylation (glioma CpG
island methylator pheynotype; G-CIMP)(Noushmehr et al. 2010) suggest there are important
subgroups of glioma that may represent distinct pathological entities. Still, given the
relatively small sizes of the glioma scans to date, and in order to comprehensively define the
catalog of common variants associated with risk for glioma (Park et al. 2010), further
genome-wide association studies will need to involve sufficiently large study populations
along with analysis of tumor subtypes to assess these risks.

Hum Genet. Author manuscript; available in PMC 2013 September 04.
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Materials and Methods

Study Participants

Studies participating in GliomaScan are described in Table 1, and comprise 1,856 glioma
cases and 4,955 controls from 14 cohort studies, 3 case-control studies, and 1 community-
based case-only study. Cases were newly diagnosed glioma [ICDO-3 codes 9380-9480 or
equivalent], and controls were cancer-free at the time of glioma diagnosis. Cases and 2,429
newly genotyped controls (pre-QC) were scanned with the Illumina 660W chip. Newly
genotyped controls for this project were selected in a 2:1 ratio, frequency matched on age,
sex and race/ethnicity. GWAS data were already available on 2,591 controls and 12 cases
from cohorts that had participated in the PANSCAN study (pancreatic cancer GWAS),
CGEMS studies (Hunter et al. 2007; Landi et al. 2009; Yeager et al. 2007) and the NCI lung
cancer GWAS (Landi et al. 2009). These were scanned with the commercial HumanHap 550
or HumanHap 610 lllumina SNP arrays.

Study Design

We conducted a new genome wide association scan of glioma (GliomaScan) to validate
previously reported risk regions and to attempt to identify additional novel risk loci. Details
of the 19 studies participating in GliomaScan are provided in Table 1. We evaluated 85
additional loci of potential interest by conducting a fixed-effects meta-analysis using /n
sifico data from 3 previously reported genome wide association scans in a total of 5,015
cases and 11,601 controls (Sanson et al. 2011; Shete et al. 2009; Wrensch et al. 2009).

Genome-wide SNP Genotyping

All GliomaScan samples were genotyped at the NCI Core Genotyping Facility (CGF,
Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute,
Bethesda, USA). Samples from the United Kingdom, MD Anderson Cancer Center, France
and Germany were genotyped as described previously (Sanson et al. 2011; Shete et al. 2009;
Wrensch et al. 2009). Summary estimates were provided from previously genotyped studies
for the purpose of meta-analysis.

Quality Control Assessment

Genotyping was attempted for a total of 5,084 GliomaScan samples on Illumina 660W
arrays at the CGF. After excluding 6 samples due to lab processing error, 5,078 samples
remained (2,215 cases, 2,859 new controls and 4 QC samples). Genotype clusters were
estimated with high performing samples having overall completion rates greater than 98%,
and genotype calls for the rest of the samples were based on the clusters defined by the high
performing samples only. Additionally, 2,591 previously scanned (on 550 or 610 chips)
controls and 12 previously scanned individual cases from ATBC, CLUE, CPSII, HPFS,
NHS, NYUWHS, PHS, PLCO, SMWHS and WHS were included.

SNP assays were excluded if they had less than 90% of completion rate, or had extreme
deviation from fitness for Hardy-Weinberg proportion (P<1x10710). Participants were
excluded based on: 1) completion rates lower than 94-96% as per the QC groups (n=420
samples); 2) abnormal heterozygosity values of less than 25% or greater than 35% (n=45) —
some samples were excluded for both low completion rates and abnormal heterozygosity,
and the total number of unique samples excluded for either criteria was 438; 3) unexpected
duplicates (n=8 forming 4 pairs), and one sample that also failed due to low completion rate;
4) sex discordance between self reported and the imputed gender by X chromosome
heterozygosity (n=9); 5) one sample from each unexpected inter-study duplicates (n=20) and
6) phenotype exclusions (due to ineligibility or incomplete information) (n=27). Utilizing a
set of 12,000 un-linked SNPs (pair-wise r2<0.004) common to all GWAS chips (Yu et al.
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2008), 215 subjects with less than 80% European ancestry were excluded from downstream
analyses based on STRUCTURE analysis (Falush 2007) and PCA (Price et al. 2006). For
the planned 154 duplicate pairs, concordance was 99.96%.

The final participant count for the association analysis was 1,856 cases and 4,955 controls.
559,977 SNPs were available for analysis in one or more studies. Each participating study
obtained informed consent from study participants and approval from its Institutional
Review Board (IRB) for this study and obtained IRB certification permitting data sharing in
accordance with the NIH Policy for Sharing of Data Obtained in NIH Supported or
Conducted Genome-Wide Association Studies (GWAS). The dbGaP data portal provides
access to individual level data from the NCI scan ONLY to investigators from certified
scientific institutions after approval of their submitted Data Access Request.

Statistical analysis

The association between the 559,977 SNPs and risk of glioma was estimated by the odds
ratio (OR) and 95% confidence interval (Cl) using unconditional logistic regression
assuming a trend effect genetic model with 1 degree of freedom. PCA analysis revealed
seven significant (p<0.05) eigenvectors when included in the NULL model (logistic
regression with dummy variables for sex, age and study). The main effect model was
adjusted by sex, age, study and seven eigenvectors. In addition to overall analyses of SNP
associations, models were also examined by gender and stratified by the following tumor
subtypes: glioblastoma (ICDO-3 codes 9440, 9441, 9442, 9443), oligodendroglioma/mixed
glioma (ICDO-3 codes 9382, 9450, 9451, 9460), low grade glioma (grade | or 11 according
to current WHO classifications), or high grade glioma (grade 111 or IV according to current
WHO classifications)(2000; Louis et al. 2007). Top-ranked SNPs for further follow-up were
selected based on the p-value for additive trend, after known hits and loci in high linkage
disequilibrium (pairwise r2 value > 0.6) were removed.

Meta-analysis

For the 85 loci of interest, each participating center provided the results of logistic
regression analysis for individuals of European ancestry (CEU) adjusted for age and study-
specific factors (e.g. study site). The following information was provided for each SNP:
minor allele frequency (MAF), genotype counts for both cases and controls, risk allele, per
allele odds ratio (OR), associated 95% confidence intervals, and the associated p-value of 1
degree freedom (df) test of the trend effect for the SNP. Summary estimates for each center
were combined using a fixed effect metaanalysis.

Data Analysis

Data analysis and management was performed with GLU (Genotyping Library and Utilities
version 1.0), PLINK and SAS® version 9.2 (Raleigh, NC, USA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This research was supported by intramural funds from the NCI, NIH, Department of Health and Human Services,
and has been funded in whole or in part with federal funds from the NCI, NIH, under contract N01-CO-12400. The
content of this publication does not necessarily reflect the views or policies of the Department of Health and Human
Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S.
Government. We are indebted to the scientific and field efforts of Michelle Brotzman (Westat), Laurie Burdette,

Hum Genet. Author manuscript; available in PMC 2013 September 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rajaraman et al.

Page 8

Peter Hui (IMS), Annelie Landgren, Leah Mechanic, Lisa Newman (RTI), Aurelie Vogt, Tim Sheehy, Mitchel
Berger Susan Chang, Mike Prados, Tarik Tihan, Ivan Smirnov and Lucie McCoy.

References

ICD-O International Classification of Diseases for Oncology. Third Edition. World Heath
Organization; Geneva: 2000.

Comprehensive genomic characterization defines human glioblastoma genes and core pathways.
Nature. 2008; 455:1061-8. [PubMed: 18772890]

Bondy ML, Scheurer ME, Malmer B, Barnholtz-Sloan JS, Davis FG, II’yasova D, Kruchko C,
McCarthy BJ, Rajaraman P, Schwartzbaum JA, Sadetzki S, Schlehofer B, Tihan T, Wiemels JL,
Wrensch M, Buffler PA. Brain tumor epidemiology: consensus from the Brain Tumor
Epidemiology Consortium. Cancer. 2008; 113:1953-68. [PubMed: 18798534]

CBTRUS. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed
in the United States in 2004-2008. Central Brain Tumor Registry of the United States (CBTRUS);
Chicago, Illinois: 2012.

Egan KM, Thompson RC, Nabors LB, Olson JJ, Brat DJ, Larocca RV, Brem S, Moots PL, Madden
MH, Browning JE, Ann Chen Y. Cancer susceptibility variants and the risk of adult glioma in a US
case-control study. J Neurooncol. 2011

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data:
dominant markers and null alleles. Mol. Ecol. Notes. 2007; 7:574-578. [PubMed: 18784791]

Farrell CJ, Plotkin SR. Genetic causes of brain tumors: neurofibromatosis, tuberous sclerosis, von
Hippel-Lindau, and other syndromes. Neurol Clin. 2007; 25:925-46. viii. [PubMed: 17964021]

Hemminki K, Tretli S, Sundquist J, Johannesen TB, Granstrom C. Familial risks in nervous-system
tumours: a histology-specific analysis from Sweden and Norway. The lancet oncology. 2009;
10:481-8. [PubMed: 19356978]

Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R,
Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD,
Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS,
Fraumeni JF Jr. Hoover RN, Thomas G, Chanock SJ. A genome-wide association study identifies
alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature genetics.
2007; 39:870-4. [PubMed: 17529973]

Jenkins RB, Wrensch MR, Johnson D, Fridley BL, Decker PA, Xiao Y, Kollmeyer TM, Rynearson
AL, Fink S, Rice T, McCoy LS, Halder C, Kosel ML, Giannini C, Tihan T, O’Neill BP, Lachance
DH, Yang P, Wiemels J, Wiencke JK. Distinct germ line polymorphisms underlie glioma
morphologic heterogeneity. Cancer genetics. 2011; 204:13-8. [PubMed: 21356187]

Kohler BA, Ward E, McCarthy BJ, Schymura MJ, Ries LA, Eheman C, Jemal A, Anderson RN, Ajani
UA, Edwards BK. Annual report to the nation on the status of cancer, 1975-2007, featuring tumors
of the brain and other nervous system. J Natl Cancer Inst. 2011; 103:714-36. [PubMed: 21454908]

Lachance DH, Yang P, Johnson DR, Decker PA, Kollmeyer TM, McCoy LS, Rice T, Xiao Y, Ali-
Osman F, Wang F, Stoddard SM, Sprau DJ, Kosel ML, Wiencke JK, Wiemels JL, Patoka JS,
Davis F, McCarthy B, Rynearson AL, Worra JB, Fridley BL, O’Neill BP, Buckner JC, II’yasova
D, Jenkins RB, Wrensch MR. Associations of high-grade glioma with glioma risk alleles and
histories of allergy and smoking. American journal of epidemiology. 2011; 174:574-81. [PubMed:
21742680]

Landi MT, Chatterjee N, Yu K, Goldin LR, Goldstein AM, Rotunno M, Mirabello L, Jacobs K,
Wheeler W, Yeager M, Bergen AW, Li Q, Consonni D, Pesatori AC, Wacholder S, Thun M, Diver
R, Oken M, Virtamo J, Albanes D, Wang Z, Burdette L, Doheny KF, Pugh EW, Laurie C,
Brennan P, Hung R, Gaborieau V, McKay JD, Lathrop M, McLaughlin J, Wang Y, Tsao MS,
Spitz MR, Krokan H, Vatten L, Skorpen F, Arnesen E, Benhamou S, Bouchard C, Metspalu A,
Vooder T, Nelis M, Valk K, Field JK, Chen C, Goodman G, Sulem P, Thorleifsson G, Rafnar T,
Eisen T, Sauter W, Rosenberger A, Bickeboller H, Risch A, Chang-Claude J, Wichmann HE,
Stefansson K, Houlston R, Amos CI, Fraumeni JF Jr. Savage SA, Bertazzi PA, Tucker MA,
Chanock S, Caporaso NE. A genome-wide association study of lung cancer identifies a region of

Hum Genet. Author manuscript; available in PMC 2013 September 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rajaraman et al.

Page 9

chromosome 5p15 associated with risk for adenocarcinoma. American journal of human genetics.
2009; 85:679-91. [PubMed: 19836008]

Louis, DN.; Ohgaki, H.; Wiestler, OD.; Cavanee, WK. WHO Classification of Tumors of the Central
Nervous System. IARC Press; Lyons: 2007.

Malmer B, Henriksson R, Gronberg H. Familial brain tumours-genetics or environment? A nationwide
cohort study of cancer risk in spouses and firstdegree relatives of brain tumour patients. Int J
Cancer. 2003; 106:260-3. [PubMed: 12800203]

Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE,
Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L,
Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG,
Baylin SB, Laird PW, Aldape K. Identification of a CpG island methylator phenotype that defines
a distinct subgroup of glioma. Cancer cell. 2010; 17:510-22. [PubMed: 20399149]

Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N. Estimation of effect
size distribution from genome-wide association studies and implications for future discoveries.
Nature genetics. 2010; 42:570-5. [PubMed: 20562874]

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H,
Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K. Molecular subclasses of high-
grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in
neurogenesis. Cancer cell. 2006; 9:157—-73. [PubMed: 16530701]

Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components
analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38:904-9.
[PubMed: 16862161]

Sanson M, Hosking FJ, Shete S, Zelenika D, Dobbins SE, Ma Y, Enciso-Mora V, Idbaih A, Delattre
JY, Hoang-Xuan K, Marie Y, Boisselier B, Carpentier C, Wang XW, Di Stefano AL, Labussiere
M, Gousias K, Schramm J, Boland A, Lechner D, Gut I, Armstrong G, Liu Y, Yu R, Lau C, Di
Bernardo MC, Robertson LB, Muir K, Hepworth S, Swerdlow A, Schoemaker MJ, Wichmann HE,
Muller M, Schreiber S, Franke A, Moebus S, Eisele L, Forsti A, Hemminki K, Lathrop M, Bondy
M, Houlston RS, Simon M. Chromosome 7p11.2 (EGFR) variation influences glioma risk. Hum
Mol Genet. 2011; 20:2897-904. [PubMed: 21531791]

Scheurer ME, Etzel CJ, Liu M, El-Zein R, Airewele GE, Malmer B, Aldape KD, Weinberg JS, Yung
WK, Bondy ML. Aggregation of cancer in first-degree relatives of patients with glioma. Cancer
Epidemiol Biomarkers Prev. 2007; 16:2491-5. [PubMed: 18006942]

Schoemaker MJ, Robertson L, Wigertz A, Jones ME, Hosking FJ, Feychting M, Lonn S, McKinney
PA, Hepworth SJ, Muir KR, Auvinen A, Salminen T, Kiuru A, Johansen C, Houlston RS,
Swerdlow AJ. Interaction between 5 genetic variants and allergy in glioma risk. American journal
of epidemiology. 2010; 171:1165-73. [PubMed: 20462933]

Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y, Boisselier
B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U, Henriksson R,
Bergenheim AT, Feychting M, Lonn S, Ahlbom A, Schramm J, Linnebank M, Hemminki K,
Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C, Schoemaker M, Muir
K, Swerdlow A, Lathrop M, Bondy M, Houlston RS. Genome-wide association study identifies
five susceptibility loci for glioma. Nat Genet. 2009; 41:899-904. [PubMed: 19578367]

Simon M, Hosking FJ, Marie Y, Gousias K, Boisselier B, Carpentier C, Schramm J, Mokhtari K,
Hoang-Xuan K, Idbaih A, Delattre JY, Lathrop M, Robertson LB, Houlston RS, Sanson M.
Genetic risk profiles identify different molecular etiologies for glioma. Clin Cancer Res. 2010;
16:5252-9. [PubMed: 20847058]

Stacey SN, Sulem P, Jonasdottir A, Masson G, Gudmundsson J, Gudbjartsson DF, Magnusson OT,
Gudjonsson SA, Sigurgeirsson B, Thorisdottir K, Ragnarsson R, Benediktsdottir KR, Nexo BA,
Tjonneland A, Overvad K, Rudnai P, Gurzau E, Koppova K, Hemminki K, Corredera C,
Fuentelsaz V, Grasa P, Navarrete S, Fuertes F, Garcia-Prats MD, Sanambrosio E, Panadero A, De
Juan A, Garcia A, Rivera F, Planelles D, Soriano V, Requena C, Aben KK, van Rossum MM,
Cremers RG, van Oort IM, van Spronsen DJ, Schalken JA, Peters WH, Helfand BT, Donovan JL,
Hamdy FC, Badescu D, Codreanu O, Jinga M, Csiki IE, Constantinescu V, Badea P, Mates IN,
Dinu DE, Constantin A, Mates D, Kristjansdottir S, Agnarsson BA, Jonsson E, Barkardottir RB,
Einarsson GV, Sigurdsson F, Moller PH, Stefansson T, Valdimarsson T, Johannsson OT,

Hum Genet. Author manuscript; available in PMC 2013 September 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rajaraman et al.

Page 10

Sigurdsson H, Jonsson T, Jonasson JG, Tryggvadottir L, Rice T, Hansen HM, Xiao Y, Lachance
DH, BP ON, Kosel ML, Decker PA, Thorleifsson G, Johannsdottir H, Helgadottir HT, Sigurdsson
A, Steinthorsdottir V, Lindblom A, Sandler RS, Keku TO, Banasik K, Jorgensen T, Witte DR,
Hansen T, Pedersen O, Jinga V, Neal DE, Catalona WJ, Wrensch M, Wiencke J, Jenkins RB,
Nagore E, Vogel U, Kiemeney LA, Kumar R, Mayordomo JI, Olafsson JH, Kong A, et al. A
germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nature genetics.
2011; 43:1098-103. [PubMed: 21946351]

Wrensch M, Jenkins RB, Chang JS, Yeh RF, Xiao Y, Decker PA, Ballman KV, Berger M, Buckner
JC, Chang S, Giannini C, Halder C, Kollmeyer TM, Kosel ML, LaChance DH, McCoy L, O’Neill
BP, Patoka J, Pico AR, Prados M, Quesenberry C, Rice T, Rynearson AL, Smirnov I, Tihan T,
Wiemels J, Yang P, Wiencke JK. Variants in the CDKN2B and RTEL1 regions are associated
with high-grade glioma susceptibility. Nat Genet. 2009; 41:905-8. [PubMed: 19578366]

Wrensch M, Lee M, Miike R, Newman B, Barger G, Davis R, Wiencke J, Neuhaus J. Familial and
personal medical history of cancer and nervous system 29 conditions among adults with glioma
and controls. Am J Epidemiol. 1997; 145:581-93. [PubMed: 9098174]

Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S,
Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE,
Vogelstein B, Bigner DD. IDH1 and IDH2 mutations in gliomas. The New England journal of
medicine. 2009; 360:765-73. [PubMed: 19228619]

Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K,
Chatterjee N, Wang Z, Welch R, Staats BJ, Calle EE, Feigelson HS, Thun MJ, Rodriguez C,
Albanes D, Virtamo J, Weinstein S, Schumacher FR, Giovannucci E, Willett WC, Cancel-Tassin
G, Cussenot O, Valeri A, Andriole GL, Gelmann EP, Tucker M, Gerhard DS, Fraumeni JF Jr.
Hoover R, Hunter DJ, Chanock SJ, Thomas G. Genome-wide association study of prostate cancer
identifies a second risk locus at 8q24. Nature genetics. 2007; 39:645-9. [PubMed: 17401363]

Yu K, Wang Z, Li Q, Wacholder S, Hunter DJ, Hoover RN, Chanock S, Thomas G. Population
substructure and control selection in genome-wide association studies. PLoS ONE. 2008; 3:e2551.
[PubMed: 18596976]

Hum Genet. Author manuscript; available in PMC 2013 September 04.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Rajaraman et al.

Page 11

.,~

Observed —logy(p)

| 1 1 1 1 |

>Expected —Ibg 0(p)

Figure 1. Quantile-Quantile (Q-Q) plot of observed versus expected P valuesin the Glioma
GWAS
The analysis was adjusted by sex, age, study and seven eigenvectors.

The genomic control lambda is 1.006.
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Figure 2. Manhattan Plot of the association results

Chromosomal locations of ~-values derived from 1-df trend tests from logistic regression
model adjusted for study sites, age, gender, and 7 eigenvectors on 1,856 cases and 4,955
controls.
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Table 4
Risk estimates for Glioma for previously reported Glioma GWAS signals by tumor subtype

Subtype Locus Gene (Réfllgt?'lsef ) (c();t:rﬁrrrl%lla: (C;Jt?jlgc;;s) pf,gjrfe OR  95% LClI 95% UCI

Glioblastoma
12736100 TERT G|T 0.506/0.416 4949|970 1.82E-10 0.700 0.627 0.781
rs11979158 EGFR AlG 0.190]0.136 4952|970 4.33E-04 0.760 0.652 0.886
1s2252586 EGFR G|A 0.268/0.317 49541969 2.62E-03  1.198 1.065 1.347
14295627 CCDC26 TIG 0.200/0.200 4952|971 2.30E-01 1.087 0.948 1.247
rs4977756  CDKN2BAS AlG 0.423)0.508 4951|969 1.93E-10 1.418 1.273 1.580
1s1412829 CDKN2BAS T|IC 0.444/0.523 4943]969 1.31E-08 1.371 1.229 1.529
rs498872 ARCN1,PHLDB1 C|IT 0.314/0.291 4951|969 1.32E-01 0.913 0.811 1.028
rs6010620  RTEL1,TNFRSF6B GlA 0.229]0.173 4954|971 2.43E-07 0.696 0.606 0.799
1s4809324 RTEL1,TNFRSF6B T|IC 0.106/0.138 4952|968 2.38E-02 1.205 1.025 1.416

Oligodendroglioma
rs2736100  TERT GIT 0.502|0.442 2131|248 2.45E-02  0.802 0.661 0.972
1s11979158 EGFR AlG 0.181/0.169 2132|248 6.16E-01  0.937 0.727 1.208
12252586 EGFR GIA 0.274/0.317 2134J248 1.69E-01 1.157 0.940 1.426
rs4295627  CCDC26 TG 0.196/0.270 2133|248 1.88E-04 1.533 1.223 1.922
14977756 CDKN2BAS AlG 0.428|0.444 2132|248 4.14E-01 1.083 0.895 1.311
s1412829 CDKN2BAS T|IC 0.456/0.468 2128|247 4.45E-01 1.078 0.888 1.309
rs498872 ARCN1,PHLDB1 c|T 0.311/0.381 2132|248 1.07E-03  1.396 1.142 1.707
1$6010620 RTEL1,TNFRSF6B GIA 0.237|0.188 2134J248 2.99E-02 0.766 0.601 0.975
s4809324 RTEL1,TNFRSF6B T|IC 0.114/0.098 2132|246 2.28E-01 0.818 0.590 1.135

Other
1s2736100 TERT G|T 0.505/0.489 4195|223 7.29E-01  0.966 0.794 1.175
1s11979158 EGFR AlG 0.189|0.193 4197|223 4.44E-01 1.102 0.860 1.411
rs2252586  EGFR GlA 0.271/0.314 4199|223 2.05E-01 1.147 0.928 1.420
14295627 CCDC26 TIG 0.202|0.236 4198|222 2.29E-02 1.313 1.038 1.660
14977756 CDKN2BAS AlG 0.423|0.464 4196|221 6.17E-02 1.205 0.991 1.467
rs1412829  CDKN2BAS T|IC 0.446|0.498 4189|223 1.86E-02 1.267 1.040 1.543
rs498872 ARCN1,PHLDB1 CIT 0.315/0.363 4196|222 2.85E-02 1.261 1.024 1.552
1$6010620 RTEL1,TNFRSF6B GIA 0.229|0.211 4200|223 4.06E-01 0.904 0.712 1.147
rs4809324  RTEL1,TNFRSF6B T|IC 0.107/0.113 4198|222 8.89E-01 1.023 0.747 1.400

Low grade glioma
12736100 TERT G|T 0.502|0.463 2131|337 1.19E-01 0.871 0.733 1.036
rs11979158 EGFR AlG 0.181/0.175 2132|337 5.62E-01 0.935 0.745 1.174
1s2252586 EGFR G|A 0.274/0.282 2134|337 8.77E-01  0.985 0.814 1.192
14295627 CCDC26 TIG 0.196/0.236 2133|337 8.05E-02 1.206 0.977 1.488
rs4977756  CDKN2BAS AlG 0.428)0.444 2132|337 5.83E-01 1.049 0.884 1.244
1s1412829 CDKN2BAS T|IC 0.456/0.467 2128|336 6.01E-01 1.047 0.881 1.245
rs498872 ARCN1,PHLDB1 C|IT 0.311/0.374 2132|337 1.19E-03 1.349 1.125 1.617
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Other Allele .

Subtype boous - Gene (Reflne (Contr 1oas) Conificasy paaue OR  %LCI 9% UC
s6010620 RTEL1,TNFRSF6B GIA 0.237]0.191 2134|337 2.97E-02 0.786 0.633 0.977
1s4809324 RTEL1,TNFRSF6B T|IC 0.114/0.108 2132|337 5.79e-01 0.924 0.699 1.222

High grade glioma
s2736100 TERT G|IT 0.506]0.422 4949|1181 2.29E-10 0.720 0.650 0.797
1s11979158 EGFR AlG 0.190/0.141 4952|1182 4.84E-04 0.779 0.677 0.897
12252586 EGFR GIA 0.268|0.318 4954]1181 1.78E-03 1.190 1.067 1.328
s4295627 CCDC26 TIG 0.200]0.206 4952|1183 1.11E-01 1.108 0.977 1.257
14977756 CDKN2BAS AlG 0.423|0.497 4951]1181 5.19E-09 1.347 1.218 1.489
s1412829 CDKN2BAS T|IC 0.444|0.516 4943|1181 2.47E-08 1.333 1.205 1.475
rs498872 ARCN1,PHLDB1 C|T 0.314]0.309 4951|1180 8.27E-01 0.988 0.886 1.101
1$6010620 RTEL1,TNFRSF6B G|A 0.229|0.166 4954]1183 3.56E-10 0.662 0.582 0.754
s4809324 RTEL1,TNFRSF6B T|IC 0.106/0.137 4952|1178 227E-02 1.191 1.025 1.384

*
Models adjusted by sex, age, study and seven eigenvectors. Subjects with age > 80 were excluded from OTHER subtype analysis; Subjects with
age > 70 were excluded from both OLIGO and LO-GR analyses
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