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Professor Ronald Graham
Professor Ramamohan Paturi
Professor Jeffrey Remmel

2017



Copyright

Robin Joshua Tobin, 2017

All rights reserved.



The dissertation of Robin Joshua Tobin is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically:

Co-Chair

Chair

University of California, San Diego

2017

iii



DEDICATION

To my family (be they Tobins, Dohertys or Ryans).

iv



EPIGRAPH

Shut up!

I am working Cape Race.

—Jack Phillips

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Spectral graph theory . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Matrices associated to graphs . . . . . . . . . . . . 2
1.2.2 Fundamental inequalities . . . . . . . . . . . . . . . 4

1.3 Overview of results . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Measures of graph irregularity . . . . . . . . . . . . . . . . . . . 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Graphs of maximal principal ratio . . . . . . . . . . . . . . 10

2.2.1 Structural lemmas . . . . . . . . . . . . . . . . . . 10
2.2.2 Proof of main theorem . . . . . . . . . . . . . . . . 13

2.3 Connected graphs of maximum irregularity . . . . . . . . . 24
2.3.1 Structural lemmas . . . . . . . . . . . . . . . . . . 24
2.3.2 Alteration step . . . . . . . . . . . . . . . . . . . . 29
2.3.3 The pineapple graph is extremal . . . . . . . . . . . 34

Chapter 3 The spectral radius of outerplanar and planar graphs . . . . . . . . 38
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Outerplanar graphs of maximum spectral radius . . . . . . . 39
3.3 Planar graphs of maximum spectral radius . . . . . . . . . . 43

3.3.1 Structural lemmas . . . . . . . . . . . . . . . . . . 43
3.3.2 Proof of main theorem . . . . . . . . . . . . . . . . 51

vi



Chapter 4 The spectral gap of reversal graphs . . . . . . . . . . . . . . . . . 52
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Spectral gap of graphs in Fn . . . . . . . . . . . . . . . . . 61

4.2.1 A projection of graphs in Fn . . . . . . . . . . . . . 61
4.2.2 The spectral gap is 1 . . . . . . . . . . . . . . . . . 64

4.3 The reversal graph . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 A graph projection of the reversal graph . . . . . . . 68
4.3.2 The spectral gap of the reversal graph . . . . . . . . 72

4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



LIST OF FIGURES

Figure 2.1: The pineapple graph, PA(m,n). . . . . . . . . . . . . . . . . . . . . 25
Figure 2.2: Structure of G in Proposition 2.3.5. . . . . . . . . . . . . . . . . . 31

Figure 3.1: The graph P1 +Pn−1. . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 3.2: The graph P2 +Pn−2. . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 4.1: The Petersen graph G and a three vertex weighted graph which it
covers. In the covering map, vertices in G are sent to the vertex with
same color in G′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 4.2: The adjacency eigenvalues of the reversal graph, R7, plotted in in-
creasing order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



ACKNOWLEDGEMENTS

Firstly, I thank Fan Chung and Jacques Verstraëte, for providing a seemingly
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ABSTRACT OF THE DISSERTATION

Extremal Spectral Invariants of Graphs

by

Robin Joshua Tobin

Doctor of Philosophy in Mathematics

University of California, San Diego, 2017

Professor Fan Chung Graham, Chair
Professor Jacques Verstraëte, Co-Chair

We address several problems in spectral graph theory, with a common theme of

optimizing or computing a spectral graph invariant, such as the spectral radius or spectral

gap, over some family of graphs. In particular, we study measures of graph irregularity,

we bound the adjacency spectral radius over all outerplanar and planar graphs, and finally

we determine the spectral gap of reversal graphs and a family of graphs that generalize

the prefix reversal graph.

Firstly we study two measures of graph irregularity, the principal ratio and the

difference between the spectral radius of the adjacency matrix and the average degree.
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For the principal ratio, we show that the graphs which maximize this statistic are the

kite graphs, which are a clique with a pendant path, when the number of vertices is

sufficiently large. This answers a conjecture of Cioabă and Gregory. For the second

graph irregularity measure, we show that the connected graphs which maximize it are

pineapple graphs, answering a conjecture of Aouchiche et al.

Secondly we investigate the maximum spectral radius of the adjacency matrix

over all graphs on n vertices within certain well-known graph families. Our main result is

showing that the planar graph on n vertices with maximal adjacency spectral radius is the

join P2 +Pn−2, when n is sufficiently large. This was conjectured by Boots and Royle.

Additionally, we identify the outerplanar graph with maximal spectral radius, answering

a conjecture of Cvetkovic̀ and Rowlinson.

Finally, we determine the spectral gap of various Cayley graphs of the symmetric

group Sn, which arise in the context of substring reversals. This includes an elementary

proof that the prefix reversal (or pancake flipping graph) has spectral gap one, originally

proved via representation theory by Cesi. We generalize this by showing that a large

family of related graphs all have unit spectral gap.

xii



Chapter 1

Introduction

1.1 Preliminaries

The subject of this dissertation is spectral graph theory, which studies graphs

through various associated matrices, such as the adjacency matrix or normalized Lapla-

cian. We will address several problems in this area, with a common theme of computing

or maximizing a spectral parameter, such as the spectral radius, over some families of

graphs. In this section, we provide an overview of the background terminology and

results that will be used throughout the dissertation, and establish notation. The section

concludes with a summary of the main results.

A graph G is a pair (V,E), where V is a set of vertices and E is a set of unordered

pairs of vertices, which are called the edges of G. When the underlying graph is not clear

from context, we will use the notation V =V (G) and E = E(G). A subgraph of G is a

graph whose vertex set and edge set are subsets of V (G) and E(G) respectively.

Two vertices x,y are said to be adjacent if the pair (x,y) belongs to the edge set.

The neighbors of a vertex x, denoted N(x), is the set of all vertices that are adjacent to x.

The degree of a vertex x, denoted dx, is defined by dx = |N(x)|. The average degree d of

1
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a graph is then given by

d = ∑
x∈V (G)

dx =
2|E(G)|
|V (G)|

.

A graph is d-regular if every vertex has degree d.

1.2 Spectral graph theory

1.2.1 Matrices associated to graphs

Given a graph G on n vertices, many n×n matrices which encode the structure

of the graph have been studied, including the adjacency matrix A, the combinatorial

Laplacian L, the normalized Laplacian L , the distance matrix D [29] and the signless

Laplacian Q [18]. We will be concerned with three of these, the adjacency matrix, and

the combinatorial and normalized Laplacians. In this subsection we define these matrices,

and discuss some of their properties. Throughout this subsection we will be considering

a graph G with vertex set V (G) = {1,2, · · · ,n}.

The adjacency matrix is the n×n matrix defined by

A(i, j) =


1 if (i, j) is an edge of G

0 if (i, j) is not an edge of G.

This is a symmetric matrix, and so will have n real eigenvalues and a basis of n orthogonal

eigenvectors. We will denote the eigenvalues of the adjacency matrix by λ1 ≥ λ2 ≥ ·· · ≥

λn. By the Perron–Frobenius theorem, if the graph G is connected then λ1 > λ2, and we

can choose eigenvector corresponding to λ1 whose entries are all strictly positive.

The combinatorial Laplacian is defined by L = D−A, where D is the diagonal

matrix with D(i, i) = di. The eigenvalues of this matrix are non-negative, which follows

easily from considering the the eigenvector entry of largest absolute value (or alternatively,
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it is an immediate consequence of the Gershgorin circle theorem [36]). The smallest

eigenvalue of this matrix is 0, and the corresponding eigenvector is the constant vector.

The normalized Laplacian L is defined by L = D−1/2LD−1/2. The eigenvalues of the

normalized Laplacian lie between 0 and 2.

For real symmetric matrices, we have the following characterization for all of its

eigenvalues.

Theorem 1.2.1 (Courant–Fischer for real matrices). Let A be a real symmetric matrix,

with eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn. For any 1≤ k ≤ n, we have

min
w1,w2,··· ,wn−k∈Rn

max
x 6=0,x∈Rn

x⊥w1,w2,··· ,wn−k

xT Ax
xT x

= λk,

and

max
w1,w2,··· ,wk−1∈Rn

min
x 6=0,x∈Rn

x⊥w1,w2,··· ,wk−1

xT Ax
xT x

= λk.

As a special case, we recover the Rayleigh–Ritz characterization of the extremal eigen-

values λ1 and λn,

Theorem 1.2.2 (Rayleigh–Ritz for real matrices). Let A be a real symmetric matrix, with

eigenvalues λ1 ≥ λ2 ≥ ·· · ≥ λn.

λ1 = max
x 6=0

xT Ax
xT x

,

and

λn = min
x 6=0

xT Ax
xT x

.

For the adjacency matrix, that yields the following characterization of the largest eigen-

value,

λ1 = max
x 6=0

xT Ax
xT x

= max
x 6=0

2∑(i, j)∈E(G) xix j

xT x
.
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1.2.2 Fundamental inequalities

We will frequently manipulate inequalities involving properties of the graph, such

as the number of edges, and spectral parameters, such as the eigenvalues and eigenvector

entries. We introduce such manipulations by giving the proofs of some classic inequalities

in spectral graph theory which we will use.

Throughout this section we will assume that v is the eigenvector corresponding to

the eigenvalue λ1 of the adjacency matrix. Additionally we assume that it is normalized

so that it has maximum entry equal to 1, and that vertex x is a vertex attaining this. From

the definition of the adjacency matrix, we have

λ1vy = ∑
z∼y

vz. (1.1)

Our choice of normalization yields

λ1vy = ∑
y∼x

vy ≤ dy. (1.2)

Theorem 1.2.3 (Stanley [49]). Given a graph G with m edges and largest adjacency

eigenvalue λ1, we have

λ1 ≤
−1+

√
8m+1

2
,

with equality only when G is the union of a complete graph and a (possibly empty)

independent set of vertices.

Proof. We have

λ
2
1 = λ

2
1vx = ∑

y∼x
λ1vy ≤ ∑

y∼x
dy ≤ 2m−dx ≤ 2m−λ1,

where the last inequality follows from λ1 ≤ dx. This implies the desired inequality. For



5

the equality case, we must have λ1 = dx and ∑y∼x dy = 2m−dx. This happens only if

every edge in G is incident to a vertex in N(x), and if there is a dx-regular connected

component. This is exactly the union of a complete graph and an independent set of

vertices.

There have been many generalizations of this result [25, 53, 35, 44, 19], as well

as several similar inequalities, which incorporate additional information about the graph

structure such as the minimum or maximum degree [23, 7, 46]. We highlight one of these

generalizations here, which we will have occasion to use later.

Theorem 1.2.4 (Hong [53]). Given a connected graph G with m edges and largest

adjacency eigenvalue λ1, we have

λ1 ≤
√

2m−n+1,

with equality only when G is either Kn or K1,n.

This can be proved with a small modification to the proof above.

1.3 Overview of results

The remainder of this thesis is broken into three chapters. In Chapter 2 we

consider measures of graph irregularity, which are statistics that quantify how much a

graph deviates from being regular. In particular, we consider two such statistics. The

first is the principal ratio, which, for a connected graph, is the ratio of the largest and

smallest entries of the leading eigenvector of the adjacency matrix. For this statistic, we

characterize the extremal graphs for large enough n. This was conjectured by Cioabă and

Gregory [16].
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Theorem 1.3.1. For sufficiently large n, the connected graph G on n vertices with largest

principal ratio is a kite graph.

The second graph irregularity measure we consider is λ1− d, the difference between

the largest adjacency eigenvalue and the average degree. In this case we show that the

extremal connected graphs are pineapple graphs, which are a clique with a set of pendant

edges added to a single vertex on the clique. This was conjectured by Aouchiche et al

[4].

Theorem 1.3.2. For sufficiently large n, the connected graph that maximizes λ1−d is a

pineapple graph.

In Chapter 3, we consider planar and outerplanar graphs, and maximize the

adjacency spectral radius over each of these families for a fixed number of vertices. The

problem of determining the maximum spectral radius over some family of geometric

graphs has been studied by many authors, with the case of planar graphs receiving

particular attention. We show that for sufficiently large n the extremal graphs are the

graphs P2 +Pn−2. This was conjectured independently by Boots and Royle in 1991 [8]

and by Cao and Vince in 1993 [11].

Theorem 1.3.3. For sufficiently large n, the planar graph on n vertices that maximizes

λ1 is P2 +Pn−2.

We also answer the analogous problem for outerplanar graphs, showing that the extremal

graph in that case is given by P1 +Pn−1, as conjectured by Cvetković and Rowlinson

[17].

Theorem 1.3.4. For sufficiently large n, the outerplanar graph on n vertices that maxi-

mizes λ1 is P1 +Pn−1.
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Finally, in Chapter 4 we study several families of graphs that arise in the context

of substring reversals. Given a permutation σ written in list notation (σ1,σ2, · · · ,σn), a

substring reversal is any permutation of the form

(σ1,σ2, · · · ,σi−1,σ j,σ j−1, · · · ,σi,σ j+1, · · · ,σn).

When i = 1, this is a prefix reversal. The reversal graph has vertex set Sn and where two

vertices are adjacent if they can be obtained from one another by a substring reversal.

The study of this graph is motivated by applications in mathematical biology [5]. Our

main result is determining the spectral gap of this graph.

Theorem 1.3.5. Let λ1,λ2 be the largest and second largest eigenvalues of the adjacency

matrix of the reversal graph. Then λ1−λ2 = n.

Additionally, we construct a family of graphs which generalize the prefix reversal graph,

for which every graph has spectral gap equal to one. This provides a combinatorial proof

that the spectral gap of the prefix reversal gap is one, which was proved via representation

theory by Cesi [12], who in turn was answering a question posed by Gunnells, Scott and

Walden [31].



Chapter 2

Measures of graph irregularity

2.1 Introduction

A measure of graph irregularity is a statistics that quantifies how far a graph is

from being regular. The choice of the word “measure” is slightly unfortunate due to its

more common alternative meaning, but this is the phrase that has been used repeatedly in

the literature, and so we adopt it here. Many different such statistics have been proposed.

There is the irregularity of a graph as defined by Albertson [3],

irr(G) = ∑
(u,v)∈E(G)

|du−dv| .

A variant of this that depends only on the degree sequence of a graph, the total irregularity,

was introduced by Abdo et. al. [1],

irrit(G) =
1
2 ∑

u∈V (G)
∑

v∈V (G)

|du−dv|

8
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Another irregularity measure that does depends only on the degree sequence is given by

the variance of the degree sequence, studied by Bell [6],

var(G) =
1
n ∑

v∈V (G)

|dv−d|2 .

Collatz and Sinogowitz, in perhaps the first spectral graph theory paper, noted that the

difference between the largest adjacency eigenvalue and the average degree can be seen

as a measure of the irregularity of a connected graph [52]. Finally, the principal ratio of

a connected graph was studied as a measure of graph irregularity by Cioabă and Gregory

[16],

γ(G) =
xmax

xmin
,

where x is a positive eigenvector corresponding to the largest eigenvalue of the adjacency

matrix, and xmin and xmax are the smallest and largest eigenvector entries respectively.

In this section we determine the extremal graphs with respect to the last two

irregularity measures, answering conjectures of Cioabă and Gregory [16] and Aouchiche

et. al. [4].

Let Pr ·Ks be the graph attained by identifying an end vertex of a path on r vertices

to any vertex of a complete graph on s vertices. This has been called a kite graph or

a lollipop graph. Cioabă and Gregory [16] conjectured that the connected graph on n

vertices maximizing γ is a kite graph. Our first result proves this conjecture for n large

enough.

Theorem 2.1.1. For sufficiently large n, the connected graph G on n vertices with largest

principal ratio is a kite graph.

A pineapple graph is a clique with pendant edges added to a single vertex.

Aouchiche et al [4] conjectured that the extremal connected graph with respect to the
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invariant λ1−d is a pineapple graph. We show this for sufficiently large n.

Theorem 2.1.2. For sufficiently large n, the connected graph G on n that maximizes

λ1−d is a pineapple graph.

An analogous problem for directed graphs, finding graphs which maximize the

principal ratio for directed graphs, was answered by Aksoy et al [2]. We note that

Brightwell and Winkler [9] showed that a kite graph maximizes the expected hitting

time of a random walk. The extremal graphs for various of these irregularity measures

have been studied. The extremal graphs with respect to irr(G) were characterized by

Hansen and Mélot [33], and the extremal graphs with respect to the total irregularity were

studied by [1]. Nikiforov [45] proved several inequalities comparing var(G), ε(G) and

s(G) := ∑v |d(u)−d|. Bell showed that ε(G) and var(G) are incomparable in general

[6]. Finally, additional bounds on γ(G) have been given in [16, 47, 43, 40, 56].

2.2 Graphs of maximal principal ratio

2.2.1 Structural lemmas

Throughout this section G will be a connected simple graph on n vertices. The

eigenvectors and eigenvalues of G are those of the adjacency matrix A of G. The vector v

will be the eigenvector corresponding to the largest eigenvalue λ1, and we take v to be

scaled so that its largest entry is 1. Let x1 and xk be the vertices with smallest and largest

eigenvector entries respectively, and if several such vertices exist then we pick any of

them arbitrarily. Let x1,x2, · · · ,xk be a shortest path between x1 and xk. Let γ(G) be the

principal ratio of G.

Recall that the vertices v1,v2, · · · ,vm are a pendant path if the induced graph

on these vertices is a path and furthermore if, in G, v1 has degree 1 and the vertices
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v2, · · · ,vm−1 have degree 2 (note there is no requirement on the degree of vm).

Lemma 2.2.1. If λ1 ≥ 2 and σ = (λ1 +
√

λ2
1−4)/2, then for 1≤ j ≤ k,

γ(G)≤ σ j−σ− j

σ−σ−1 v−1
x j
.

Moreover we have equality if the vertices x1,x2, · · · ,x j are a pendant path.

Proof. We have the following system of inequalities

λ1vx1 ≥ vx2

λ1vx2 ≥ vx1 +vx3

λ1vx3 ≥ vx2 +vx4

...
...

λ1vx j−1 ≥ vx j +vx j−2 .

The first inequality implies that

vx1 ≥
1
λ1

vx2 .

Plugging this into the second equation and rearranging gives

vx2 ≥
λ1

λ2
1−1

vx3.

Now assume that

vxi ≥
ui−1

ui
vxi+1,

with some positive constants u j for all j < i. Then

λ1vxi+1 ≥ vxi +vxi+2
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implies that

vxi+1 ≥
ui

λ1ui−ui−1
vxi+2,

where λ1ui− ui−1 must be positive because vx j is positive for all j. Therefore the

coefficients ui satisfy the recurrence

ui+1 = λ1ui−ui−1

Solving this and using the initial conditions u0 = 1, u1 = λ we get

ui =
σi+1−σ−i−1

σ−σ−1

In particular, ui is always positive, a fact implicitly used above. Finally this gives,

vx1 ≥
u0

u1
vx2 ≥

u0

u1
· u1

u2
vx3 ≥ ·· · ≥

vx j

u j−1

Hence

γ(G) =
vxk

vx1

=
1

vx1

≤ σ j−σ− j

σ−σ−1 v−1
x j

If these vertices are a pendant path, then we have equality throughout.

We will also use the following lemma which comes from the paper of Cioabă and

Gregory [16].

Lemma 2.2.2. For r ≥ 2 and s≥ 3,

s−1+
1

s(s−1)
< λ1(Pr ·Ks)< s−1+

1
(s−1)2 .

In the remainder of the section we prove Theorem 2.1.1. We now give a sketch of

the proof that is contained in Section 2.2.2.
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1. We show that the vertices x1,x2, · · · ,xk−2 are a pendant path and that xk is connected

to all of the vertices in G that are not on this path (lemma 2.2.4).

2. Next we prove that the length of the path is approximately n−n/ log(n) (lemma 2.2.5).

3. We show that xk−2 has degree exactly 2 (lemma 2.2.8), which extends our pendant

path to x1,x2, · · · ,xk−1. To do this, we find conditions under which adding or

deleting edges increases the principal ratio (lemma 2.2.6).

4. Next we show that xk−1 also has degree exactly 2 (lemma 2.2.10). At this point we

can deduce that our extremal graph is either a kite graph or a graph obtained from

a kite graph by removing some edges from the clique. We show that adding in any

missing edges will increase the principal ratio, and hence the extremal graph is

exactly a kite graph.

2.2.2 Proof of main theorem

Let G be the graph with maximal principal ratio among all connected graphs on

n vertices, and let k be the number of vertices in a shortest path between the vertices

with smallest and largest eigenvalue entries. As above, let x1, · · · ,xk be the vertices of the

shortest path, where γ(G) = vxk/vx1 . Let C be the set of vertices not on this shortest path,

so |C|= n−k. Note that there is no graph with n−k = 1, as the endpoints of a path have

the same principal eigenvector entry. Also λ1(G)≥ 2, otherwise Pn−2 ·K3 would have

larger principal ratio. Finally note that k is strictly larger than 1, otherwise vxk = vx1 and

G would be regular.

Lemma 2.2.3. λ1(G)> n− k.

Proof. Let H be the graph Pk ·Kn−k+1. It is straightforward to see that in H, the smallest

entry of the principal eigenvector is the vertex of degree 1 and the largest is the vertex of
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degree n−k+1. Also note that in H, the vertices on the path Pk form a pendant path. By

maximality we know that γ(G)≥ γ(H). Combining this with lemma 2.2.1, we get

σk−σ−k

σ−σ−1 ≥ γ(G)≥ γ(H) =
σk

H−σ
−k
H

σH−σ
−1
H

where σH =
(

λ1(H)+
√

λ1(H)2−4
)
/2.

Now the function

f (x) =
xk− x−k

x− x−1

is increasing when x≥ 1. Hence we have σ≥ σH , and so λ1(G)≥ λ1(H)> n− k.

Lemma 2.2.4. x1,x2, · · · ,xk−2 are a pendant path in G, and xk is connected to every

vertex in G that is not on this path.

Proof. By our choice of scaling, vxk = 1. From lemma 2.2.3

n− k < λ1(G) = ∑
y∼xk

vy ≤ |N(xk)|.

Now |N(xk)| is an integer, so we have |N(xk)| ≥ n−k+1. Moreover because x1,x2, · · · ,xk

is an induced path, we must have that |N(xk)|= n−k+1 exactly, and hence the N(xk) =

C∪{xk−1}. It follows that x1,x2, · · · ,xk−3 have no neighbors off the path, as otherwise

there would be a shorter path between x1 and xk.

Lemma 2.2.5. For the extremal graph G, we have n− k = (1+o(1)) n
logn .

Proof. Let H be the graph Pj ·Kn− j+1 where j =
⌊

n− n
logn

⌋
, and let G be the connected

graph on n vertices with maximum principal ratio. Let x1, · · · ,xk be a shortest path from

x1 to xk where γ(G) =
vxk
vx1

. By lemma 2.2.4, we have

λ1(G)≤ ∆(G)≤ n− k+1.
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By the eigenvector equation, this gives that

γ(G)≤ (n− k+1)k (2.1)

Now, lemma 2.2.1 gives that

γ(H) =
σ

j
H−σ

− j
H

σH−σ
−1
H

,

where

σ(H) =
λ1(H)+

√
λ1(H)2−4

2
.

Now, s− 1+ 1
s(s−1) < λ1(Pr ·Ks) < s− 1+ 1

(s−1)2 , so we may choose n large

enough that n
logn +1 > σH−σ

−1
H > n

logn . By maximality of γ(G), we have

(n− k+1)k ≥ γ(G)≥ γ(H)≥
(

n
logn

)n− n
logn−2

.

Thus, n− k = (1+o(1)) n
logn .

For the remainder of this section we will explore the structure of G by showing

that if certain edges are missing, adding them would increase the principal ratio, and so

by maximality these edges must already be present in G. We have established that the

vertices x1,x2, · · · ,xk−2 are a pendant path, and so we have

γ(G) =
σk−2−σ−k+2

σ−σ−1
1

vxk−2

(2.2)

We will not add any edges that affect this path, and so the above equality will remain

true. The change in γ is then completely determined by the change in λ1 and the change

in vxk−2 . The next lemma gives conditions on these two parameters under which γ will

increase or decrease.
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Lemma 2.2.6. Let x1,x2, · · · ,xm−1 form a pendant path in G, where n−m = (1 +

o(1))n/ log(n). Let G+ be a graph obtained from G by adding some edges from xm−1 to

V (G)\{x1, · · · ,xm−1}, where the addition of these edges does not affect which vertex has

largest principal eigenvector entry. Let λ
+
1 be the largest eigenvalue of G+ with leading

eigenvector entry for vertex x denoted v+x , also normalized to have maximum entry one.

Define δ1 and δ2 such that λ
+
1 = (1+δ1)λ1 and v+xm−1

= (1+δ2)vxm−1 . Then

• γ(G+)> γ(G) whenever δ1 > 4δ2/n

• γ(G+)< γ(G) whenever δ1 exp(2δ1λ1 logn)< δ2/3n.

Proof. We have

σ = λ1−λ
−1
1 −λ

−3
1 −2λ

−5
1 −·· ·−

2
2n−3

(
2n−2

n

)
λ
−(2n−1)
1 −·· ·

So

λ
+
1 −λ1 < σ+−σ < λ

+
1 −λ1−2((λ+

1 )
−1−λ

−1
1 )

when λ1 is sufficiently large, which is guaranteed by lemma 2.2.5. Plugging in λ
+
1 =

(1+δ1)λ1, we get

δ1λ1 < σ+−σ < δ1λ1 +2λ
−1
1 (1− (1+δ1)

−1)< δ1λ1 +δ1

In particular

(1+δ1/2)σ < σ+ < (1+2δ1)σ

To prove part (i), we wish to find a lower bound in the change in the first factor of

equation 2.2. Let

f (x) =
xm−1− x−m+1

x− x−1 .

Then 2mxm−3 > f ′(x) > (m− 2)xm−3−mxm−5, and using that n−m ∼ n/ log(n) and
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σ∼ λ1 which goes to infinity with n, we get f ′(x)& (m−2)xm−3. By linearization and

because f (σ)∼ σm−2, it follows that

σ
m−1
+ −σ

−m+1
+

σ+−σ
−1
+

≥
(

1+
δ1(m−3)

2

)
σm−1−σ−m+1

σ−σ−1

Hence, if
δ1(m−3)

2
> δ2

then γ(G+)> γ(G). In particular it is sufficient that δ1 > 4δ2/n.

To prove part (ii), recall from above that f ′(x) < 2mxm−3. Then, when x =

(1+o(1))(n/ log(n))

f ′(x+ ε) < 2m(x+ ε)m−3

= 2mxm−3
(

1+
ε

x

)m−3

≤ 2mxm−3 exp
(mε

x

)
≤ 2nxm−3 exp(2log(n)ε)

So for 0 < ε < δ1λ1, we have

f ′(x+ ε)< 2nxm−3 exp(2log(n)δ1λ1)

Hence (
1+3nexp(2δ1λ1 logn)δ1

)σm−1−σ−m+1

σ−σ−1 >
σ

m−1
+ −σ

−m+1
+

σ+−σ
−1
+
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Lemma 2.2.7. For every subset of U of N(xk), we have

|U |−1 < ∑
y∈U

vy ≤ |U |.

An immediate consequence is that there is at most one vertex in the neighborhood of xk

with eigenvector entry smaller than 1/2.

Proof. The upper bound follows from vy ≤ 1, and the lower bound from the inequalities

∑
y∈N(xk)\U

vy ≤ |N(xk)|− |U |

and

∑
y∈N(xk)

vy = λ1(G)> |N(xk)|−1.

Lemma 2.2.8. The vertex xk−2 has degree exactly 2 in G.

Proof. Assume to the contrary. Let U =N(xk−2)∩N(xk). Then |U | ≥ 2, so by lemma 2.2.7

we have

∑
y∈U

vy > |U |−1≥ 1.

Now, by the same argument as the in the proof of lemma 2.2.1, we have that

γ(G) =
σk−1−σ−k+1

σ−σ−1

(
∑

y∈U
vy

)−1

Let H = Pk−1 ·Kn−k+2. Then by maximality of γ(G) we have

σk−1−σ−k+1

σ−σ−1 > γ(G)≥ γ(H) =
σ

k−1
H −σ

−k+1
H

σH−σ
−1
H



19

So σ > σH , which means λ1(G)> λ1(H)> n−k+1. This means that ∆(G)> n−k+1,

but we have established that ∆(G) = n− k+1.

We now know that x1,x2, · · · ,xk−1 is a pendant path in G, and so equation 2.2

becomes

γ(G) =
σk−1−σ−k+1

σ−σ−1
1

vxk−1

(2.3)

Lemma 2.2.9. The vertex xk−1 has degree less than 11|C|/
√

logn.

Proof. Assume to the contrary, so throughout this proof we assume that the degree of

xk−1 is at least 11|C|/
√

logn. Let G+ the graph obtained form G with an additional edge

from xk−1 to a vertex z ∈C with vz ≥ 1/2. Let λ
+
1 = λ1(G+) and let v+x be the principal

eigenvector entry of vertex x in G+, where this eigenvector is normalized to have v+xk
= 1.

Change in λ1: By equation 1.2.2, we have λ
+
1 −λ1 ≥ 2

vxk−1vz

||v||22
. A crude upper bound on

||v||22 is

||v||22 ≤ 1+ ∑
y∼xk

vy +
2
λ1

+
4
λ2

1
+ · · ·< 2λ1

We also have that vz ≥ 1/2 so

λ
+
1 ≥

(
1+

vxk−1

2λ2
1

)
λ1.

Change in vxk−1: Let U = N(xk−1∩C). By the eigenvector equation we have

vxk−1 =
1
λ1

(
vxk−2 +vxk + ∑

y∈U
vy

)

v+xk−1
=

1
λ
+
1

(
v+xk−2

+v+xk
+v+z + ∑

y∈U
v+y

)
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Subtracting these, and using that λ1 < λ
+
1 and vxk = v+xk

= 1, we get

v+xk−1
−vxk−1 ≤

1
λ1

(
v+xk−2

−vxk−2 +v+z + ∑
y∈U

v+y −vy

)
.

By lemma 2.2.7, we have ∑y∈U v+y −vy ≤ 1. We also have v+xk−2
−vxk−2 < 1 and v+z ≤ 1.

Hence v+xk−1
−vxk−1 ≤ 3/λ1, or

v+xk−1
≥
(

1+
3

λ1vxk−1

)
vxk−1

We can only apply lemma 2.2.6 if v+xk
is the largest eigenvector entry in G+. So

we must consider two cases.

Case 1: If in G+ the largest eigenvector entry is still attained by vertex vxk , then we can

apply lemma 2.2.6, and see that γ(G+)> γ(G) if

vxk−1

2λ2
1
≥ 12

λ1vxk−1n

or equivalently

v2
xk−1
≥ 24λ1

n
.

We have that λ1 = (1+o(1))(n−n/ log(n)), so it suffices for

vxk−1 ≥
5√

logn
. (2.4)

We know that

vxk−1 >
|U |−1

2λ1
.

By assumption

|U |+2 = N(xk−1)≥ 11|C|/
√

logn
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Equation 2.4 follows from this, so γ(G+)> γ(G).

Case 2: Say the largest eigenvector entry of G+ is no longer attained by vertex xk. It

is easy to see that the largest eigenvector entry is not attained by a vertex with degree

less than or equal to 2, and comparing the neighborhood of any vertex in C with the

neighborhood of xk we can see that vxk ≥ vy for all y ∈C. So the largest eigenvector entry

must be attained by vxk−1 . Then equation 2.3 no longer holds, instead we have

γ(G+) =
σ

k−1
+ −σ

−k+1
+

σ+−σ
−1
+

. (2.5)

Recall that in lemma 2.2.6 we determined the change from γ(G+) to γ(G) by considering

λ
+
1 −λ1 and v+xk−1

−vxk−1 . In this case, by (2.5), we must consider λ
+
1 −λ1 and 1−vxk−1 .

Now if v+xk−1
> v+xk

, then vertex xk−1 in G is connected to all of C except perhaps a single

vertex. Hence in G, the vertex xk−1 is connected to all of C except at most two vertices.

This gives the bound

1−vxk−1 ≤ 3/λ1

and so as in the previous case, γ(G+)> γ(G).

So in all cases, xk−1 is connected to all vertices in C that have eigenvector entry

larger than 1/2. If all vertices in C have eigenvector entry larger than 1/2, then xk−1 is

connected to all of C, and this implies that vxk−1 > vxk , which is a contradiction. At most

one vertex in C is smaller than 1/2, and so there is a single vertex z ∈C with vz < 1/2.

We will quickly check that adding the edge {xk−1,z} increases the principal ratio. As

before let G+ be the graph obtained by adding this edge. The largest eigenvector entry in

G+ is attained by xk−1, as its neighborhood strictly contains the neighborhood of xk. As

above, adding the edge {z,xk} increases the spectral radius at least

λ
+
1 >

(
1+

vz

2λ2
1

)
λ1
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and we have 1− vxk−1 < 1− vz/λ1. Applying lemma 2.2.6 we see that γ(G+) > γ(G),

which is a contradiction. Finally we conclude that the degree of xk−1 must be smaller

than 11|C|/
√

logn.

We note that this lemma gives that vxk−1 < 1/2 which implies that any vertex in

C has eigenvector entry larger than 1/2.

Lemma 2.2.10. The vertex xk−1 has degree exactly 2 in G. It follows that vxk−1 < 2/λ1.

Proof. Let U = N(xk−1)∩C, c = |U |. If c = 0 then we are done. Otherwise let G− be

the graph obtained from G by deleting these C edges. We will show that γ(G−)> γ(G).

(1) Change in λ1: We have by equation 1.2.2,

λ1−λ
−
1 ≤ 2c

vxk−1

||v||22

By Cauchy–Schwarz,

||v||22 > ∑
x∈N(xk)

v2
x ≥

(
∑x∈N(xk) vx

)2

|C|+1
≥ (n− k)2

n− k+1

We also have

vxk−1 ≤
c+2

λ1

Combining these we get

λ1−λ
−
1 <

9c2

λ1(n− k+1)
⇒ λ1 <

(
1+

9c2

λ1λ
−
1 (n− k+1)

)
λ
−
1

We have λ1λ
−
1 > (n− k)2, so

λ1 <

(
1+

10c2

(n− k)3

)
λ
−
1
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(2) Change in vxk−1: At this point, we know that in G− the vertices x1, · · · ,xk form a

pendant path, and so by the proof of lemma 2.2.1, we have v−xk−1
= (1+o(1))/λ1. By

the eigenvector equation and using that the vertices in C have eigenvector entry at least

1/2, we have vxk−1 > (1+ c/2)/λ1. So

vxk−1−v−xk−1
>

1
λ1

(c
2
+o(1)

)

In particular,

vxk−1 >

(
1+

c
3v−xk−1λ1

)
v−xk−1

Applying lemma 2.2.6, it suffices now to show that

10c2

(n− k)3 exp
(

2
10c2

(n− k)3 λ
−
1 logn

)
<

c
9v−xk−1λ1n

. (2.6)

Now
10c2

(n− k)3 < 10
112

log(n)
|C|2

(n− k)3 <
113

logn
logn

n
=

113

n
.

Similarly 2 10c2

(n−k)3 λ
−
1 logn < 2 ·113, so the lefthand side of equation 2.6 is smaller than

C0/n, where C0 is an absolute constant. For the righthand side, recall that v−xk−1
λ1 =

1+o(1), and also that

c >
11√
logn

(
n

logn
+o(1)

)
>

10n

log3/2 n
.

So the righthand side is larger than 1/ log3/2 n. Hence for large enough n, the righthand

side is larger than the lefthand side.

We are now ready to prove the main theorem.

Theorem 1. For sufficiently large n, the connected graph G on n vertices with largest
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principal ratio is a kite graph.

Proof. It remains to show that C induces a clique. Assume it does not, and let H be the

graph Pk ·Kn−k+1. We will show that γ(H)> γ(G), and this contradiction tells us that C

is a clique. As before, lemma 2.2.1 gives that

γ(H) =
σk

H−σ
−k
H

σH−σ
−1
H

,

where

σ(H) =
λ1(H)−

√
λ1(H)2−4

2
.

Since x1, · · ·xk form a pendant path we also know that

γ(G) =
σk−σ−k

σ−σ−1 .

Now, λ1(H) > λ1(G) because E(G) ( E(H). Since the functions g(x) = x+
√

x2−4 and f (x) = (xk− x−k)/(x− x−1) are increasing when x ≥ 1, we have γ(H) >

γ(G).

2.3 Connected graphs of maximum irregularity

2.3.1 Structural lemmas

Throughout this section, let G be a graph on n vertices with spectral radius λ1

and first eigenvector normalized so that x = 1. Throughout we will use d = 2e(G)/n

to denote the average degree. We will also assume that G is the connected graph on n

vertices that maximizes λ1−d.

To show that G is a pineapple graph we first show that λ1 ∼ n
2 and d ∼ n

4 (Lemma



25

Km

n

Figure 2.1: The pineapple graph, PA(m,n).

2.3.1). Then we show that there exists a vertex with degree close to n
2 and eigenvector

entry close to 1 (Lemma 2.3.3). We bootstrap this to show that there are many vertices of

degree about n
2 , that these vertices induce a clique, and further that most of the remaining

vertices have degree 1 (Lemma 2.3.4 and Proposition 2.3.5). We complete the proof by

showing that all vertices not in the clique have degree 1 and that they are all adjacent to

the same vertex.

We remark that once we show that G is a pineapple graph, the small question

remains of which pineapple graph maximizes λ1−d. Optimization of a cubic polynomial

shows that G is a pineapple with clique size dn
2e+1 (see [4], section 6).

Lemma 2.3.1. We have λ1(G) = n
2 + c1

√
n and 2e(G)

n = n
4 + c2

√
n, where |c1|, |c2|< 1.

Proof. By eigenvalue interlacing, PA(p,q) has spectral radius at least p− 1. Setting

H = PA
(⌈n

2

⌉
+1,

⌊n
2

⌋
−1
)
, we have

λ1(H)− 2e(H)

n
≥ n

4
− 3

2
.

On the other hand, an inequality of Hong [53] gives

λ
2
1 ≤ 2e(G)− (n−1).
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It follows that

d ≥
λ2

1
n
+1− 1

n
. (2.7)

Setting λ1 = pn and applying (2.7), we have λ1−d ≤ pn− p2n−1+ 1
n . The right hand

side of the inequality is maximized at p = 1/2, giving

n
4
− 3

2
≤ λ1−d ≤ n

4
−1+

1
n
. (2.8)

Next setting λ1 =
n
2 + c1

√
n, (2.7) gives

d ≥ n
4
+ c1
√

n+ c2
1 +1− 1

n
,

whereas (2.8) implies

d ≤ λ1−
n
4
+

3
2
=

n
4
+ c1
√

n+
3
2
. (2.9)

Together, these imply |c1|< 1 and prove both statements for n large enough.

Lemma 2.3.2. There exists a constant c3 not depending on n such that

0≤ 1
|N(x)| ∑y∼x

dy−λ1vy ≤ c3
√

n.

Proof. From the inequality of Hong,

∑
y∼x

λ1vy = λ
2
1 ≤ dn− (n−1).

Rearranging and applying Lemma 2.3.1, we have

0≤ ∑
y∼x

(dy−λ1vy) = O
(

n3/2
)
.

By equation (1.1) again, and because the first eigenvector is normalized with vx = 1, we
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have

λ1 = ∑
y∼x

vy ≤ dx,

giving dx = Ω(n). Combining, we have

1
|N(x)| ∑y∼x

(dy−λ1vy) = O
(√

n
)
,

where the implied constant is independent of n.

Now we fix a constant ε > 0, whose exact value will be chosen later. The next

lemma implies that close to half of the vertices of G have eigenvector entry close to 1

for n sufficiently large, depending on the chosen ε. We follow that with a proposition

which outlines the approximate structure of G, and then finally use variational arguments

to deduce that G is exactly a pineapple graph.

Lemma 2.3.3. There exists a vertex u 6= x with vu > 1− 2ε and du− λ1vu = O(
√

n).

Moreover du ≥ (1/2−2ε)n.

Proof. We proceed by first showing a weaker result: that there is a vertex y with vy >
1
2−ε

and dy−λ1vy = O(
√

n), and additionally that y ∈ N(x). We will then use this to obtain

the required result.

Let A := {z∼ x : vz >
1
2 − ε}. By Lemma 2.3.1,

λ1 =
n
2
+ c1
√

n,

where |c1|< 1. Since 0 < vz ≤ 1 for all z∼ x, we see that |A| ≥ δεn where δε is a positive

constant that depends only on ε. Let B = {z∼ x : dz−λ1vz > K
√

n}, where K is a fixed
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constant whose exact value will be chosen later. Now

1
|N(x)| ∑y∼x

(dy−λ1vy)≥
1

|N(x)| ∑z∈B
(dz−λ1vz)≥

1
n
|B|K
√

n.

By Lemma 2.3.2, |B| ≤ c3
K n. Therefore, for K large enough depending only on ε, we have

|A∩Bc|> 0. This proves the existence of the vertex y, with the properties claimed at the

beginning of the proof.

Next, we show that there exists a set U ⊂ N(y) such that |U | ≥
(1

4 −2ε
)

n and

vu ≥ 1−2ε for all u ∈U . By Lemma 2.3.1,

(n
2
+ c1
√

n
)(1

2
− ε

)
≤ λ1vy ≤ dy,

where |c1|< 1. So dy ≥
(1

4 − ε
)

n for n large enough. Now let C = {z∼ y : vz < 1−2ε}.

Then

K
√

n≥ dy−λ1vy = ∑
z∼y

(1−vz)≥ ∑
z∈C

(1−vz)≥ 2|C|ε.

Therefore

|N(y)\C| ≥
(

1
4
− ε

)
n− K

√
n

2ε
.

Setting U = N(y)\C, we have |U |>
(1

4 −2ε
)

n for n large enough.

Set D =U ∩N(x). We will first find a lower bound on |D|. We have

λ
2
1 ≤ ∑

y∼x
dy ≤ 2m− ∑

y6∈N(x)
dy.

Rearranging this we get

d−
λ2

1
n
≥ 1

n ∑
y6∈N(x)

dy.

Now applying the bound on d from equation 2.9 and expression for λ1 in Lemma 2.3.1
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yields (
n
4
+ c1
√

n+
3
2

)
−
(n

2 + c1
√

n
)2

n
≥ 1

n ∑
y6∈N(x)

dy,

which implies that

3
2

n≥
(

3
2
− c2

1

)
n≥ ∑

y6∈N(x)
dy ≥ ∑

y∈U\N(x)
dy ≥ |U \N(x)|(1−2ε)λ1.

So

|U \N(x)| ≤ 3
2(1−2ε)

n
λ1

=
3

2(1−2ε)

1
1/2+ c1n−1/2 .

In particular, |D| ≥ (1
4 − c′ε)n.

Now by the same argument used at the start of the proof to show the existence of

the vertex y, we have some vertex u ∈ D with du−λ1vu = O(
√

n). Finally

du ≥ vuλ1 ≥ (1−2ε)(n/2+ c1
√

n)≥ (1/2−2ε)n.

2.3.2 Alteration step

Lemma 2.3.4. Let x,y be two vertices in G. If vxvy > 1/2+n−1/2 +5n−1, then x and y

are adjacent. On the other hand, if vxvy < 1/2−3ε then x and y are not adjacent.

Proof. We begin by bounding the dot product of the leading eigenvector v with itself.

We will show that
n
2
+
√

n+5≥ vtv >
n
2
−2εn−O(

√
n). (2.10)

First, we show the lower bound. With u from the previous lemma, by Cauchy–Schwarz
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we have

vtv≥ ∑
z∼u

v2
z ≥

1
du

(
∑
z∼u

vz

)2

=
(λ1vu)

2

du
.

By Lemma 2.3.3, we then have

vtv≥ (du−O(
√

n))2

du
≥ du−O(

√
n)>

n
2
−2εn−O(

√
n).

For the upper bound of inequality (2.10), first set E = (N(x)∪{x})C. Then

vtv = ∑
z∈V (G)

v2
z ≤ ∑

z∈V (G)

vz ≤ 1+ ∑
z∈N(x)

vz + ∑
z∈E

vz ≤ 1+λ1 +
1
λ1

∑
z∈E

dz.

From the proof of Lemma 2.3.3 we have the bound

∑
z∈E

dz ≤
3
2

n.

Hence

vtv≤ 1+
n
2
+ c1
√

n+
3
2
· 1

1/2+ c1n−1/2 ≤
n
2
+
√

n+5.

This completes the proof of inequality (2.10).

Let λ
+
1 be the leading eigenvalue of the graph formed by adding the edge {x,y}

to G. Then by (1.2.2) we have

λ
+
1 −λ1 ≥

vt(A+−A)v
vtv

≥
2vxvy

vtv
≥

2vxvy

n/2+
√

n+5
=

2vxvy

n(1/2+n−1/2 +5n−1)
.

If vxvy > 1/2+n−1/2 +5n−1, then

(λ+
1 −d+)− (λ−d)>

2
n
− 2

n
= 0.

Hence {x,y} must already have been an edge, otherwise this would contradict the
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K|U |1−O(ε)

U

I|V | O( ε

n)

V

I|W | 1
2 +O(ε)

W

Figure 2.2: Structure of G in Proposition 2.3.5. The number beside each set indicates
the values of eigenvector entries in the set. U is a clique and V , W are independent sets.
Each vertex in V is adjacent to exactly one vertex in U , and each vertex in W is adjacent
to multiple vertices in U .

maximality of G.

Similarly if λ
−
1 is the leading eigenvalue of the graph obtained from G by deleting

the edge {x,y}, then

λ1−λ
−
1 ≤

vt(A−A−)v
vtv

≤
2vxvy

n/2−2εn−O(
√

n)
≤

2vxvy

(1/2−3ε)n
,

when n is large enough. Now if vxvy < 1/2−3ε, then

(λ1−d)− (λ−1 −d−)< 0.

Proposition 2.3.5. For n sufficiently large, we can partition the vertices of G into three

sets U,V,W (see Figure 2.2) where

(i) vertices in V have eigenvector entry smaller than (2+ ε)/n and have degree one,
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(ii) vertices in U induce a clique, all have eigenvector entry larger than 1−20ε, and

(1/2−3ε)n≤ |U | ≤ (1/2+ ε)n,

(iii) vertices in W have eigenvector entry in the range [1/2−4ε,1/2+21ε] and are

adjacent only to vertices in U.

Proof. By Lemma 2.3.4, any two vertices in G with eigenvector entry 1 are adjacent.

Moreover, it is easy to see that every vertex in G is incident to at least one vertex with

eigenvector entry 1: if not, for each vertex not incident to a vertex with eigenvector entry

1, delete one of its edges and add a new edge from that vertex to a vertex with eigenvector

entry 1 (such as the vertex x). The resulting graph is connected, will have the same

number of edges as the original graph, and will have strictly larger λ1 (this can be seen

by considering the Rayleigh quotient, as in the proof of Lemma 2.3.4). So by maximality

of G, there are no such vertices. This implies that the set of edges that are incident to a

vertex with eigenvector entry 1 spans the vertex set of G. In particular, if we remove any

edge that is not incident to a vertex with eigenvector entry 1, we do not disconnect the

graph. We will use this fact repeatedly in this proof.

(i) Let V consist of all vertices in G with eigenvector entry less than 1/2− 4ε. By

Lemma 2.3.4, removing any edge incident to a vertex in V strictly increases λ1−d,

so each vertex in V has degree one. By equation (1.1), the eigenvector entry of any

such vertex is at most 1/λ1 < (2+ ε)/n, when n is large enough.

(ii) From Lemma 2.3.3, we have a vertex u such that du−λ1vu = O(
√

n). Let X be

the set of neighbors z of u such that vz < 9/10. Then we have

(1−9/10)|X | ≤ ∑
y∼u

1−vy = du−λ1vu = O(
√

n).

Hence |X | = O(
√

n). Let U be all vertices in G with eigenvector entry at least
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9/10. So, by Lemma 2.3.3

|U | ≥ du−|X | ≥ n/2−2εn−O(
√

n).

For n large enough, we have |U | ≥ (1/2− 3ε)n. For sufficiently large n, by

Lemma 2.3.4 these vertices are all adjacent to each other. For the upper bound on

|U | we use the expression for e(G) in Lemma 2.3.1

|U |(|U |−1)≤ 2e(G)≤ n2

4
+ c2n

√
n,

which implies |U | ≤ (1/2+ ε)n for large enough n.

Now take any vertex y ∈U . If x is a vertex with largest eigenvector entry, then

λ1−λ1vy ≤ ∑
z∈N(x)\N(y)

vz ≤ vy + ∑
z∈UC

vz. (2.11)

We have

λ1 ∑
z∈UC

vz ≤ ∑
z∈UC

dz ≤ 2e(G)−2|E(U,U)|

≤ n2

4
+ c2n

√
n− (1/2−3ε)(1/2−3ε−1/n)n2

≤ 4εn2,

for n sufficiently large, where we are using the expression for e(G) given by

Lemma 2.3.1. In particular,

∑
z∈UC

vz ≤ 9εn.
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Finally, by equation 2.11 we have

vy ≥ 1− 1
λ1

∑
z∈UC

vz−
vy

λ1
≥ (1−20ε).

(iii) Let W consist of all remaining vertices of G. If a vertex has eigenvector entry

smaller than 1/2− 4ε then it is in V by construction. If a vertex z ∈W has

eigenvector entry larger than 1/2+21ε then we have

(1/2+21ε)(1−20ε)> 1/2+ ε,

if ε < 1/50, say. So for sufficiently large n, by Lemma 2.3.4 we have that z

is adjacent to every vertex in U . But by the proof of part (ii), this implies that

vz > 1−20ε, which contradicts z ∈W .

For z∈W and any vertex y∈UC, then vyvz≤ (1/2+21ε)(1/2+21ε)< 1/4+22ε

and so by Lemma 2.3.4 there is no edge between y and z in the maximal graph G.

2.3.3 The pineapple graph is extremal

Theorem 2.3.6. For sufficiently large n, G is a pineapple graph.

Proof. Take U,V,W as in the previous lemma. We begin by showing that the set W

must be empty. Proceeding by contradiction, let z be in W . Furthermore let G+ be

the graph obtained by adding edges from z to every vertex in U . We will show that

λ1(G+)−d(G+)> λ1(G)−d(G), which contradicts the maximality of G.

Since the vertex z is adjacent only to vertices in U , and the fact that vertices in U
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have eigenvector entry between 1−20ε and 1, equation (1.1) yields

λ1(1/2−4ε)≤ λ1vz ≤ dz(G)≤ λ1vz

1−20ε
= (1/2+O(ε))λ1.

Using the expression for λ1 in Lemma 2.3.1, for large enough n we have

(1− ε)
n
4
≤ dz(G)≤ (1+ ε)

n
4
.

So we can bound the change in the average degrees

d(G+)−d(G)≤ 2(|U |− (1− ε)n/4)
n

< 1/2+3ε.

Next we find a lower bound on λ1(G+)−λ1(G). Let w be the vector that is equal to v on

all vertices except z, and equal to 1 for z. Then,

λ1(G+)≥ wtA+w
wtw

.

We first find a lower bound for the numerator (with abuse of big-O notation with inequal-

ities)

wtA+w ≥ wtAw+2(|U |−dz(G))(1−O(ε))≥ wtAw+(1/2−O(ε))n

≥ vtAv+2dz(G)(1−vz)(1−20ε)+(1/2−O(ε))n

≥ vtAv+2dz(G)(1/2−31ε)+(1/2−O(ε))n

≥ vtAv+(3/4−O(ε))n.
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Similarly, we find an upper bound for the denominator

wtw = vtv+1−v2
z

≤ vtv+1− (1/2−4ε)2

≤ vtv+3/4+4ε.

Combining these, and using the bound on vtv from the proof of Lemma 2.3.4, we get

λ1(G+)−λ1(G) ≥ wtA+w
wtw

− vtAv
vtv

≥ vtv(3/4−O(ε))n−vtAv(3/4+4ε)

vtv(vtv+3/4+4ε)

≥ (3/4−O(ε))n− (3/4+4ε)λ1(G)

vtv+3/4+4ε

= 3/4+O(ε).

Hence λ1(G+)− λ1(G) > d(G+)− d(G), and by maximality of G we conclude that

W = /0.

At this point we know that G consists of a clique together with a set of pendant

vertices V . All that remains is to show that all of the pendant vertices are incident to

the same vertex in the clique. Let V = {v1,v2, · · · ,vk}, and let ui be the unique vertex

in U that vi is adjacent to. Let G+ be the graph obtained from G by deleting the edges

{vi,ui} and adding the edges {vi,x}, where x is a vertex with eigenvector entry 1. Now,

d(G+) = d(G), and

λ1(G+)−λ1(G)≥ vtA+v
vtv

− vtAv
vtv

,

with equality if and only if v is a leading eigenvector for A+. We have

vtA+v
vtv

− vtAv
vtv

=
1

vtv

(
k

∑
i=1

1−vui

)
≥ 0,
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with equality if and only if vui = 1 for all 1≤ i≤ k. By maximality of G, we have equality

in both of the above inequalities, and so v is a leading eigenvector for G+, and every

vertex in U incident to a vertex in V has eigenvector entry 1. G+ is a pineapple graph,

and it is easy to see that there is a single vertex in a pineapple graph with maximum

eigenvector entry. It follows that the vertices in V are all adjacent to the same vertex in

U , and hence G is a pineapple graph.

This chapter is based on the papers “Three conjectures in extremal spectral graph

theory”, [51], to appear in Journal of Combinatorial Theory, Series B, and “Characterizing

graphs of maximum principal ratio”, submitted to Electronic Journal of Linear Algebra

[50], both written jointly with Michael Tait. The dissertation author was the primary

investigator and author of the paper.



Chapter 3

The spectral radius of outerplanar and

planar graphs

3.1 Introduction

The study of spectral radius of planar graphs has a long history, dating back to

at least Schwenk and Wilson [37]. This direction of research was further motivated

by applications where the spectral radius is used as a measure of the connectivity of a

network, in particular for planar networks in areas such as geography, see for example

[8] and its references. In the field of geography, the spectral radius of the adjacency

matrix was being used as a “summary measure of overall network connectivity” ([8])

of planar networks. To compare this statistic for two networks with different numbers

of vertices, it is necessary to normalize by dividing out the maximum spectral radius of

a planar graph on n vertices. To this end, Boots and Royle and independently Cao and

Vince conjectured that the extremal graph is P2+Pn−2 [8], [11]. Several researchers have

worked on this problem and successively improved upon the best theoretical upper bound,

including [53], [11], [54], [30], [55], [22]. Other related problems have been considered,

38
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for example Dvořák and Mohar found an upper bound on the spectral radius of planar

graphs with a given maximum degree [20]. Work has also been done maximizing the

spectral radius of graphs on surfaces of higher genus [22, 54, 55]. We would also like to

note that it is claimed in [22] that Guiduli and Hayes proved that the maximum spectral

radius of a planar graph is attained by P2 +Pn−2, for sufficiently large n. However, this

preprint has never appeared, and the authors could not be reached for comment on it.

The outerplanar conjecture appeared in [17], where the authors mention that it is

related to the study of various subfamilies of Hamiltonian graphs. Rowlinson [48] made

partial progress on this conjecture, which was also worked on by Cao and Vince [11] and

Zhou–Lin–Hu [57].

3.2 Outerplanar graphs of maximum spectral radius

Let G be a graph. As before, let the first eigenvector of the adjacency matrix of G

be v normalized so that maximum entry is 1. For v ∈V (G) we will use v to mean a vertex

or the eigenvector entry of that vertex, where it will be clear from context which meaning

we are using. Let x be a vertex with maximum eigenvector entry, ie x = 1. Throughout

let G be an outerplanar graph on n vertices with maximal adjacency spectral radius. λ1

will refer to λ1(A(G)).

Two consequences of G being outerplanar that we will use frequently are that G

has at most 2n−3 edges and G does not contain K2,3 as a subgraph. An outline of our

proof is as follows. We first show that there is a single vertex of large degree and that the

remaining vertices have small eigenvector entry (Lemma 3.2.3). We use this to show that

the vertex of large degree must be adjacent to every other vertex (Lemma 3.2.4). From

here it is easy to prove that G must be K1 +Pn−1.

We begin with an easy lemma that is clearly not optimal, but suffices for our
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Figure 3.1: The graph P1 +Pn−1.

needs.

Lemma 3.2.1. λ1 >
√

n−1.

Proof. The star K1,n−1 is outerplanar, and cannot be the maximal outerplanar graph with

respect to spectral radius because it is a strict subgraph of other outerplanar graphs on

the same vertex set. Hence, λ1(G)> λ1(K1,n) =
√

n−1.

Lemma 3.2.2. For any vertex u, we have du > vun−11
√

n.

Proof. Let A be the neighborhood of u, and let B =V (G)\ (A∪{u}). We have

λ
2
1vu = ∑

y∼u
∑
z∼y

vz ≤ du + ∑
y∼u

∑
z∈N(y)∩A

vz + ∑
y∼u

∑
z∈N(y)∩B

vz.

By outerplanarity, each vertex in A has at most two neighbors in A, otherwise G would

contain a K2,3. In particular,

∑
y∼u

∑
z∈N(y)∩A

vz ≤ 2 ∑
y∼u

vy = 2λ1vu.

Similarly, each vertex in B has at most 2 neighbors in A. So

∑
y∼u

∑
z∈N(y)∩B

vz ≤ 2 ∑
z∈B

vz ≤
2
λ1

∑
z∈B

dz ≤
4e(G)

λ1
≤ 4(2n−3)

λ1
,
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as e(G)≤ 2n−3 by outerplanarity. So, using Lemma 3.2.1 we have

∑
y∼u

∑
z∈N(y)∩B

vz < 8
√

n.

Combining the above inequalities yields

λ
2
1vu−2λ1vu < du +8

√
n.

Again using Lemma 3.2.1 we get

vun−11
√

n < (n−1−2
√

n−1)vu−8
√

n < du.

Lemma 3.2.3. We have dx > n− 11
√

n and for every other vertex u, vu < C1/
√

n for

some absolute constant C1, for n sufficiently large.

Proof. The bound on dx follows immediately from the previous lemma and the normal-

ization that vx = 1. Now consider any other vertex u. We know that G contains no K2,3,

so du < 12
√

n, otherwise u and x share
√

n neighbors, which yields a K2,3 if n≥ 9. So

12
√

n > du > vun−11
√

n,

that is, vu < 23/
√

n.

Lemma 3.2.4. Let B =V (G)\ (N(x)∪{x}). Then

∑
z∈B

vz <C2/
√

n

for some absolute constant C2.
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Proof. From the previous lemma, we have |B|< 11
√

n. Now

∑
z∈B

vz ≤
1
λ1

∑
z∈B

(
23/
√

n
)

dz =
23

λ1
√

n
(e(A,B)+2e(B)) .

Each vertex in B is adjacent to at most two vertices in A, so e(A,B)≤ 2|B|< 22
√

n. The

graph induced on B is outerplanar, so e(B)≤ 2|B|−3 < 22
√

n. Finally, using the fact

that λ1 >
√

n−1, we get the required result.

Theorem 3.2.5. For sufficiently large n, G is the graph K1 +Pn−1, where + represents

the graph join operation.

Proof. First we show that the set B above is empty, i.e. x is adjacent to every other vertex.

If not, let y ∈ B. Now y is adjacent to at most two vertices in A, and so by Lemma 3.2.3

and Lemma 3.2.4,

∑
z∼y

vz < ∑
z∈B

vz +2C1/
√

n < (C2 +2C1)/
√

n < 1

when n is large enough. Let G+ be the graph obtained from G by deleting all edges

incident to y and replacing them by the single edge {x,y}. The resulting graph is

outerplanar. Then, using the Rayleigh quotient,

λ1(A+)−λ1(A)≥
vt(A+−A)v

vtv
=

2vy

vtv

(
1−∑

z∼y
vz

)
> 0.

This contradicts the maximality of G. Hence B is empty.

Now x is adjacent to every other vertex in G. Hence every vertex other than x

has degree less than or equal to 3. Moreover, the graph induced by V (G)\{x} cannot

contain any cycles, as then G would not be outerplanar. It follows that G is a subgraph of

K1 +Pn−1, and maximality ensures that G must be equal to K1 +Pn−1.
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Figure 3.2: The graph P2 +Pn−2.

3.3 Planar graphs of maximum spectral radius

3.3.1 Structural lemmas

As before, let G be a graph with first eigenvector normalized so that maximum

entry is 1, and let x be a vertex with maximum eigenvector entry, ie x= 1. Let m= |E(G)|.

For subsets X ,Y ⊂ V (G) we will write E(X) to be the set of edges induced by X and

E(X ,Y ) to be the set of edges with one endpoint in X and one endpoint in Y . We will let

e(X ,Y ) = |E(X ,Y )|. We will often assume n is large enough without saying so explicitly.

Throughout the section, let G be the planar graph on n vertices with maximum spectral

radius, and let λ1 denote this spectral radius.

We will use frequently that G has no K3,3 as a subgraph, that m ≤ 3n− 6, and

that any bipartite subgraph of G has at most 2n−4 edges. The outline of our proof is

as follows. We first show that G has two vertices that are adjacent to most of the rest of

the graph (Lemmas 3.3.1–3.3.4). We then show that the two vertices of large degree are

adjacent (Lemma 3.3.6), and that they are adjacent to every other vertex (Lemma 3.3.7).

The proof of the theorem follows readily.

Lemma 3.3.1.
√

6n > λ1 >
√

2n−4.

Proof. For the lower bound, first note that the graph K2,n−2 is planar and is a strict

subgraph of some other planar graphs on the same vertex set. Since G has maximum
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spectral radius among all planar graphs on n vertices,

λ1 > λ1(K2,n−2) =
√

2n−4.

For the upper bound, since the sum of the squares of the eigenvalues equals twice the

number of edges in G, which is at most 6n−12 by planarity, we get that λ1 <
√

6n−12<
√

6n.

Next we partition the graph into vertices of small eigenvector entry and those

with large eigenvector entry. Fix ε > 0, whose exact value will be chosen later. Let

L := {vz ∈V (G) : vz > ε}

and S =V (G)\L. For any vertex z, equation (1.1) gives vz
√

2n−4 < vzλ1 ≤ dz. There-

fore,

2(3n−6)≥ ∑
z∈V (G)

dz ≥ ∑
z∈L

dz ≥ |L|ε
√

2n−4,

yielding |L| ≤ 3
√

2n−4
ε

. Since the subgraph of G consisting of edges with one endpoint

in L and one endpoint in S is a bipartite planar graph, we have e(S,L) ≤ 2n− 4, and

since the subgraphs induced by S and by L are each planar, we have e(S)≤ 3n−6 and

e(L)≤ 9
√

2n−4
ε

.

Next we show that there are two vertices adjacent to most of S. The first step

towards this is an upper bound on the sum of eigenvector entries in both L and S.

Lemma 3.3.2.

∑
z∈L

vz ≤ ε
√

2n−4+
18
ε

(3.1)

and

∑
z∈S

vz ≤ (1+3ε)
√

2n−4. (3.2)
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Proof.

∑
z∈L

λ1vz = ∑
z∈L

∑
y∼z

vy = ∑
z∈L

∑
y∼z
y∈S

vy + ∑
y∼z
y∈L

vy


≤ εe(S,L)+2e(L)

≤ ε(2n−4)+
18
√

2n−4
ε

.

Dividing both sides by λ1 and using Lemma 3.3.1 gives (3.1).

On the other hand,

∑
z∈S

λ1vz = ∑
z∈S

∑
y∼z

vy ≤ 2εe(S)+ e(S,L)≤ (6n−12)ε+(2n−4).

Dividing both sides by λ1 and using Lemma 3.3.1 gives (3.2).

Now, for u ∈ L we have

vu
√

2n−4≤ λ1vu = ∑
y∼u

vy = ∑
y∼u
y∈L

vy + ∑
y∼u
y∈S

vy ≤ ∑
y∈L

vy + ∑
y∼u
y∈S

vy.

By (3.1), this gives

∑
y∼u
y∈S

vy ≥ (vu− ε)
√

2n−4− 18
ε
. (3.3)

The equations (3.2) and (3.3) imply that if u ∈ L and vu is close to 1, then the

sum of the eigenvector entries of vertices in S not adjacent to u is small. The following

lemma is used to show that u is adjacent to most vertices in S.

Lemma 3.3.3. For all z we have vz >
1√
6n

.

Proof. By way of contradiction assume vz ≤ 1√
6n

< 1
λ1

. By equation (1.1) z cannot be

adjacent to x, since x has eigenvector entry 1. Let H be the graph obtained from G
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by removing all edges incident with z and making z adjacent to x. Using the Rayleigh

quotient, we have λ1(H)> λ1(G), a contradiction.

Now letting u = x and combining (3.3) and (3.2), we get

(1+3ε)
√

2n−4≥ ∑
y∈S
y6∼x

vy + ∑
y∈S
y∼x

vy ≥ ∑
y∈S
y6∼x

vy +(1− ε)
√

2n−4− 18
ε
.

Now applying Lemma 3.3.3 gives

|{y ∈ S : y 6∼ x}| 1√
6n
≤ 4ε
√

2n−4+
18
ε
.

For n large enough, we have |{y ∈ S : y 6∼ x}| ≤ 14εn. So x is adjacent to most of S. Our

next goal is to show that there is another vertex in L that is adjacent to most of S.

Lemma 3.3.4. There is a w ∈ L with w 6= x such that vw > 1− 24ε and |{y ∈ S : y 6∼

w}| ≤ 94εn.

Proof. By equation (1.1), we see

λ
2
1 = ∑

y∼x
∑
z∼y

vz ≤

(
∑

uv∈E(G)

vu +vv

)
−∑

y∼x
vy =

(
∑

uv∈E(G)

vu +vv

)
−λ1.

Rearranging and noting that e(S)≤ 3n−6 and e(L)≤ 9
√

2n−4
ε

since S and L both induce

planar subgraphs gives

2n−4≤ λ
2
1 +λ1 ≤ ∑

uv∈E(G)

vu +vv

=

(
∑

uv∈E(S,L)
vu +vv

)
+

(
∑

uv∈E(S)
vu +vv

)
+

(
∑

uv∈E(L)
vu +vv

)

≤

(
∑

uv∈E(S,L)
vu +vv

)
+ ε(6n−12)+

18
√

2n−4
ε

.
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So for n large enough,

(2−7ε)n ≤ ∑
uv∈E(S,L)

vu +vv

=

 ∑
uv∈E(S,L)

u=x

vu +vv

+

 ∑
uv∈E(S,L)

u6=x

vu +vv


≤ εe(S,L)+dx + ∑

uv∈E(S,L)
u6=x

vu,

giving

∑
uv∈E(S,L)

u 6=x

vu ≥ (1−9ε)n.

Now since dx ≥ |S|−14εn > (1−15ε)n, and e(S,L)< 2n, the number of terms

in the left hand side of the sum is at most (1+15ε)n. By averaging, there is a w ∈ L such

that

vw ≥
1−9ε

1+15ε
> 1−24ε.

Applying (3.3) and (3.2) to this w gives

(1+3ε)
√

2n−4≥ ∑
y∈S
y6∼w

vy + ∑
y∈S
y∼w

vy ≥ ∑
y∈S
y6∼w

vy +(1−21ε)
√

2n−4+
18
ε
,

and applying Lemma 3.3.3 gives that for n large enough

|{y ∈ S : y 6∼ w}| ≤ 94εn.

In the rest of the section, let w be the vertex from Lemma 3.3.4. So vx = 1
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and vw > 1− 24ε, and both are adjacent to most of S. Our next goal is to show that

the remaining vertices are adjacent to both x and w. Let B = N(x)∩N(w) and A =

V (G)\{x∪w∪B}. We show that A is empty in two steps: first we show the eigenvector

entries of vertices in A are as small as we need, which we then use to show that if there is

a vertex in A then G is not extremal.

Lemma 3.3.5. Let v ∈V (G)\{x,w}. Then vv <
1

10 .

Proof. We first show that the sum over all eigenvector entries in A is small, and then

we show that each eigenvector entry is small. Note that for each v ∈ A, v is adjacent to

at most one of x and w, and is adjacent to at most 2 vertices in B (otherwise G would

contain a K3,3 and would not be planar). Thus

λ1 ∑
v∈A

vv ≤ ∑
v∈A

dv ≤ 3|A|+2e(A)< 9|A|,

where the last inequality holds by e(A)< 3|A| since A induces a planar graph. Now, since

|L|< 3
√

2n−4
ε

< εn for n large enough, we have |A| ≤ (14+94+1)εn (by Lemma 3.3.4)

. Therefore

∑
v∈A

vv ≤
9 ·109 · εn√

2n−4
.

Now any v ∈ V (G) \ {x,w} is adjacent to at most 4 vertices in B∪{x,w}, as

otherwise we would have a K3,3 as above. So we get

λ1vv = ∑
u∼v

vu ≤ 4+ ∑
u∼v
u∈A

vu ≤ 4+ ∑
u∈A

vu ≤Cε
√

n,

where C is an absolute constant not depending on ε. Dividing both sides by λ1 and

choosing ε small enough yields the result.

We use the fact that the eigenvector entries in A are small to show that if v ∈ A
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(i.e. v is not adjacent to both x and w), then removing all edges from v and adding edges

from it to x and w increases the spectral radius, showing that A must be empty. To do

this, we must be able to add edges from a vertex to both x and w and have the resulting

graph remain planar. This is accomplished by the following lemma.

Lemma 3.3.6. If G is extremal, then x∼ w.

Once x∼ w, one may add a new vertex adjacent to only x and w and the resulting

graph remains planar.

Proof of Lemma 3.3.6. From above, we know that for any δ > 0, we may choose ε small

enough so that when n is sufficiently large we have dx > (1−δ)n and dw > (1−δ)n. By

maximality of G, we also know that G has precisely 3n−6 edges, and by Euler’s formula,

any planar drawing of G has 2n−4 faces, each of which is bordered by precisely three

edges of G (because in a maximal planar graph, every face is a triangle).

Now we obtain a bound on the number of faces that x and w must be incident

to. Let X be the set of edges incident to x. Each edge in G is incident to precisely two

faces, and each face can be incident to at most two edges in X (again, since each face is a

triangle by maximality). So x is incident to at least |X |= dx ≥ (1−δ)n faces. Similarly,

w is incident to at least (1−δ)n faces.

Let F1 be the set of faces that are incident to x, and then let F2 be the set of faces

that are not incident to x, but which share an edge with a face in F1. Let F = F1∪F2.

We have |F1| ≥ (1−δ)n. Now each face in F1 shares an edge with exactly three other

faces: if two faces shared two edges, then since each face is a triangle both faces must

be bounded by the same three edges; this cannot happen, except in the degenerate case

when n = 3. At most two of these three faces are in F1, and so |F2| ≥ |F1|/3≥ (1−δ)n/3.

Hence, |F | ≥ (1−δ)4n/3, and so the sum of the number of faces in F and the number of

faces incident to w is larger than 2n−4. In particular, there must be some face f that is
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both belongs to F and is incident to w.

Since f ∈ F , then either f is incident to x or f shares an edge with some face that

is incident to x. If f is incident to both x and w, then x is adjacent to w and we are done.

Otherwise, f shares an edge {y,z} with a face f ′ that is incident to x. In this case, deleting

the edge {y,z} and inserting the edge {x,w} yields a planar graph G′. By lemma 3.3.5,

the product of the eigenvector entries of y and z is less than 1/100, which is smaller

than the product of the eigenvector entries of x and w. This implies that λ1(G′)> λ1(G),

which is a contradiction.

We now show that every vertex besides x and w is adjacent to both x and w.

Lemma 3.3.7. A is empty.

Proof. Assume that A is nonempty. A induces a planar graph, therefore if A is nonempty,

then there is a v ∈ A such that |N(v)∩A| < 6. Further, v has at most 2 neighbors in B

(otherwise G would contain a K3,3. Recall that v is the principal eigenvector for the

adjacency matrix of G. Let H be the graph with vertex set V (G)∪{v′}\{v} and edge

set E(H) = E(G\{v})∪{v′x,v′w}. By Lemma 3.3.6, H is a planar graph. Then

vT vλ1(H)≥ vT A(H)v

= vT A(G)v−2 ∑
z∼v

vvvz +2vv(vw +vx)

≥ vT A(G)v−14 ·vv ·
1

10
−2 ∑

z∼v
z∈{w,x}

vvvz +2vv(vw +vx) (by Lemma 3.3.5)

≥ vT A(G)v− 14
10

vv +2vvvw (|N(v)∩{x,w}| ≤ 1)

> vT A(G)v (as vw > 7/10)

= vT vλ1(G).

So λ1(H)> λ1(G) and H is planar, i.e. G is not extremal, a contradiction.
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We now have that if G is extremal, then K2 + In−2, the join of an edge and an

independent set of size n−2, is a subgraph of G. Finishing the proof is straightforward.

3.3.2 Proof of main theorem

Theorem 3.3.8. For n ≥ N0, the unique planar graph on n vertices with maximum

spectral radius is K2 +Pn−2.

Proof. By Lemmas 3.3.6 and 3.3.7, x and w have degree n− 1. We now look at the

set B =V (G)\{x,w}. For v ∈ B, we have |N(v)∩B| ≤ 2, otherwise G contains a copy

of K3,3. Therefore, the graph induced by B is a disjoint union of paths, cycles, and

isolated vertices. However, if there is some cycle C in the graph induced by B, then

C∪{x,w} is a subdivision of K5. So the graph induced by B is a disjoint union of paths

and isolated vertices. However, if B does not induce a path on n−2 vertices, then G is

a strict subgraph of K2 +Pn−2, and we would have λ1(G)< λ1(K2 +Pn−2). Since G is

extremal, B must induce Pn−2 and so G = K2 +Pn−2.

This chapter is based on part of the paper “Three conjectures in extremal spectral

graph theory”, [51], to appear in Journal of Combinatorial Theory, Series B, written

jointly with Michael Tait. The dissertation author was the primary investigator and author

of the paper.



Chapter 4

The spectral gap of reversal graphs

4.1 Introduction

Consider a permutation τ in the symmetric group Sn, written in word nota-

tion (τ1,τ2, · · · ,τn), where we denote τ(i) = τi. A substring is a subsequence of τ,

(τi,τi+1, . . . ,τ j), for some 1≤ i< j≤ n, and reversing this substring yields (τ j,τ j−1, . . . ,τi).

A substring reversal of τ is any permutation obtained from τ by reversing a substring in

τ. Substring reversal is a well-studied operation on permutations, and often appears in

metrics on permutations, edit distances and permutation statistics. There are numerous ap-

plications involving many variations of substring reversal, such as genome arrangements

and sequencing (see [5], [32], [39]).

The reversal graph Rn is the graph whose vertex set is the permutation group Sn,

where two vertices are adjacent if they are substring reversals of each other. Thus, Rn

has n! vertices and is regular with degree
(n

2

)
. Many properties of the reversal graph Rn

have long been studied. One interesting problem is to determine the minimum number of

substring reversals needed to transform one given permutation in Sn to another, which

is equivalent to finding a shortest path in Rn. The smallest number of reversals required

52
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to turn any permutation into any other is exactly the diameter of Rn, and it was shown

in [5] that the diameter of the reversal graph is exactly n− 1. The connectivity and

hamiltonicity of Rn were investigated in [41]. There are still many questions concerning

Rn that remain unresolved. In this section, we examine the eigenvalues of Rn, and

determine the second largest eigenvalue of the adjacency matrix of Rn. Note that the

second largest adjacency eigenvalue of a regular graph is intimately related to the rate

of convergence for random walks on a graph. We use methods from graph coverings to

determine the second largest eigenvalue of Rn, although our techniques cannot be used to

determine the whole spectrum of Rn.

An intriguing variation of substring reversal is prefix reversal (or pancake flipping)

where only substrings of the form (τ1, . . . ,τ j) are allowed to be reversed. The prefix

reversal graph, or the pancake graph, Pn is a special subgraph of Rn. Pn also has vertex

set Sn but the edge set is restricted. In Pn, the neighbors of τ are the permutations of the

form

(τk,τk−1, · · · ,τ1,τk+1, · · · ,τn)

for 1 < k ≤ n. In contrast to the reversal graph where the exact value of the diameter is

known, the problem of determining the diameter of the pancake graph has a long history

and still remains open. This problem was first posed by Jacob Goodman, under the

pseudonym Harry Dweighter, as a Monthly problem in 1975 [21]. The current best upper

bound is f (n)≤ 18
11n, due to Chitturi et al. [13], improving on a previous bound of 5

3n

given by Gates and Papadimitriou [27] in 1979. The best lower bound is f (n)≥ 15
⌊ n

14

⌉
,

which is due to Heydari and Sudborough [34]. Recently it was shown that the problem

of determining the exact minimum number of flips to transform one permutation τ1 into

another permutation τ2, for two given permutations τ1 and τ2, is NP–hard [10]. In [12],

it was determined that the spectral gap of Pn is one, answering a question posed in [31].

We will determine the spectral gaps for a family of graphs which contains certain Cayley
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graphs including Pn, giving an alternative proof in that case. We then use the spectral

gap of Pn, together with a decomposition of Rn into Pn and copies of Rn−1, to determine

the second largest eigenvalue of Rn.

Theorem 4.1.1. If λ1,λ2 are the two largest eigenvalues of the adjacency matrix of Rn,

then

λ1 =

(
n
2

)
, and λ2 =

(
n
2

)
−n.

We will consider a family of graphs that generalizes the pancake graph, and show

that for every graph in this family the spectral gap is one.

Theorem 4.1.2. Let Fn be the set of all graphs whose vertex set is the symmetric group

Sn, and where for each vertex τ and each 2≤ i≤ n, τ is adjacent to exactly one vertex of

the form

(τi,α2,α3, · · · ,αi−1,τ1,τi+1, · · · ,τn).

That is, the first and ith entries are swapped, and the entries in between are possibly

rearranged. Then for any graph G ∈ Fn, the two largest eigenvalues of the adjacency

matrix of G are n−1 and n−2. In particular, the adjacency spectral gap of G is 1.

The graphs Rn and Pn, as well as many of the graphs in Fn, are Cayley graphs of

the symmetric group Sn. Indeed, Cayley graphs of the symmetric group have been the

subject of extensive study, with particular interest in their spectral gap. In [42], Lubotzky

posed the problem of finding a family of k-regular Cayley graphs of Sn with spectral gap

bounded away from zero; an explicit construction of such a family was found in [38]. For

many particular Cayley graphs of Sn, the spectral gap has been computed [26, 24, 12],

and the case when S consists of transpositions is particularly well-studied. Of particular

relevance here, the Cayley graph with generating set

S = {(1 k) : 2≤ k ≤ n}
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belongs to the family Fn, and the spectral gap was determined to be 1 in [24].

The remainder of the paper is organized as follows. In Section 2 we review the

necessary background and establish notation. In Section 3 we recall the notions of graph

coverings and projections, which we will use frequently in our proofs. In Section 4 we

introduce a graph which is a projection of every graph in the family Fn, which provides

a lower bound of one on the spectral gap of every graph in this family. We establish

the corresponding upper bound in Section 5. In Section 6 we prove Theorem 4.1.1 and

further investigate the spectrum of Rn. We conclude with some problems and remarks.

Before proceeding to define the graph spectra of interest here, we note that the

definitions of eigenvalues and eigenvectors are much simpler and cleaner for regular

graphs than those of weighted irregular graphs. Although the graphs Rn and the graphs

in Fn, are regular, we will consider various associated graphs which are irregular and

weighted in order to determine the spectral gap that we need. Furthermore, we remark

that the spectral gap of the adjacency matrix of a weighted or unweighted graph often

depends on a few of the largest degrees and therefore the spectral gap of the adjacency

matrix can not be used to determine the rate of convergence for random walks on

irregular graphs. Instead it is more appropriate to study the combinatorial Laplacian and

normalized Laplacian. In this section, we consider general weighted graphs and define

the eigenvalues of the normalized Laplacian, which will be important when we define

graph covers. For undefined terminology, the reader is referred to [15].

Let G denote a weighted undirected graph with edge weight wu,v = wv,u. The

adjacency matrix of G, denoted by AG, has entries AG(u,v) = wu,v for vertices u and v.

For any vertex v ∈V (G), the set of vertices adjacent to v is denoted by N(v). The degree

dv of a vertex v is defined to be

dv = ∑
u

wu,v.

We will only consider weighted graphs without isolated vertices, i.e., dv > 0 for all v. Let
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DG be the diagonal degree matrix whose ith diagonal entry is equal to the degree of the

ith vertex. Then the combinatorial Laplacian of G is LG = DG−AG, and the normalized

Laplacian is LG = D−1/2
G LGD−1/2

G . For a d-regular graph, we have LG = 1− 1
d AG. The

eigenvalues of the normalized Laplacian LG are denoted by 0 = µ0 ≤ µ1 ≤ . . . ≤ µn−1

where n is the number of vertices in G. µ1 is called the spectral gap of the normalized

Laplacian, and the rate of convergence of random walks on G with transition probability

matrix P = D−1
G AG is exactly µ−1

1 (see [15]). We will denote the eigenvalues of the

adjacency matrix of G by λ1 ≥ λ2 ≥ ·· · ≥ λn, and λ1− λ2 is the spectral gap of the

adjacency matrix. For a regular graph of degree d, λ1 = d and λ2 = d(1−µ1).

Let φi denote the orthonormal eigenvector associated with µi. It can easily

be shown that φ0 = D1/2
G /

√
vol(G) where vol(G) = ∑v dv. Instead of dealing with

eigenvectors φi of LG, it is often convenient to consider the corresponding harmonic

eigenfunction defined by fi = D−1/2
G φi which satisfies

µi fi(u)du = ∑
v

wu,v( f (u)− f (v))

for all vertices u. Note that for regular graphs, harmonic eigenfunctions are exactly

eigenfunctions. Moreover, for regular graphs the eigenfunctions of L ,L and A are the

same, and the corresponding spectra are translations of each other.

We will frequently deal with permutations, so we establish the notation that we

will use. The symmetric group is denoted as Sn throughout. Every permutation will be

given in word notation, that is, as a list of numbers (τ1,τ2, · · · ,τn), which indicates that

permutation τ maps i to τi. We will sometimes refer to the value τi as the ith entry or

position of the permutation τ. When we write the product of two permutations, such as

πσ, we take this to mean: first apply permutation σ, then apply permutation π.

As discussed in Section 1, Rn and many of the graphs in the family Fn are Cayley
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graphs. We briefly recall the definition here. Let H be a finite group, and S a subset of

H. We say that S is a symmetric set if whenever s ∈ S, we also have s−1 ∈ S. Given

a symmetric set S that generates the group H, the right-Cayley graph CayR(H,S) is

the graph with vertex set equal to H, and edges of the form {x,xs} for all x ∈ H,s ∈ S.

This is an undirected |S|-regular graph. A left-Cayley graph is defined similarly, with

edges of the form {x,sx}. For example, let S be the set of permutations corresponding

to substring reversals. That is, S consists of the permutations obtained from taking the

identity permutation (1,2,3, · · · ,n) and reversing a substring. Then Rn = CayR(Sn,S).

In proving Theorem 4.1.2 and Theorem 4.1.1, we will rely heavily on graph

coverings, an idea developed in [14]. A short overview is presented here. Let G and G̃ be

two weighted graphs. Then G̃ is a covering of G if there is a surjection π : V (G̃)→V (G)

satisfying the following two properties:

(1) For x,y ∈V (G̃), where π(x) = π(y), and for any v ∈V (G)

∑
z∈π−1(v)

w(z,x) = ∑
z∈π−1(v)

w(z,y).

(2) There is a fixed m ∈ R+∪{∞}, the index of π, such that for all u,v ∈V (G)

∑
x∈π−1(u)
y∈π−1(v)

w(x,y) = mw(u,v). (4.1)

As π is a surjection, it can alternatively be viewed as a partition of the vertices of

V (G̃) into |V (G)| sets. With this interpretation, the above definition can be seen as a

generalization of an equitable partition; see, for example, [28]. We say that G is a

projection of G̃ via the mapping π if G̃ is a covering of G under π.

The virtue of a graph covering is that there is a strong correspondence between
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the eigenvalues of a covering graph and the eigenvalues of the projection. This corre-

spondence is the content of the following theorem, which is proved in [14].

Theorem 4.1.3. (Covering-Correspondence)

Let G, G̃ be two weighted undirected graphs, and π : V (G̃)→V (G) be a covering map.

For any function f : V (G̃)→ C, define p f : V (G)→ C by

p f (v) = ∑
x∈π−1(v)

f (x)dx

dv
.

For any function f : V (G)→ C, define the lift of f , l f : V (G̃)→ C by

l f (x) = f (u), where π(x) = u.

(i) If µ is an eigenvalue of G with harmonic eigenfunction f , then µ is an eigenvalue

of G̃ with harmonic eigenfunction l f .

(ii) If µ is an eigenvalue of G̃ with harmonic eigenfunction f , then if p f 6= 0, µ is an

eigenvalue of G with harmonic eigenfunction p f .

We will use this theorem in the form of the following corollary.

Corollary 4.1.4. Let G be a graph with cover G̃, under covering map π, where G̃ is a

regular graph. Then the eigenvalues of the normalized Laplacian of G are eigenvalues of

the normalized Laplacian of G̃. For any eigenvalue µ of the normalized Laplacian of G̃

that is not an eigenvalue of G, the corresponding eigenfunction f satisfies

∑
x∈π−1(u)

f (x) = 0 (4.2)

for all u ∈V (G).
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Furthermore, if G, G̃ are both regular graphs with the same degree d, then this

holds for their adjacency matrices as well.

Proof. It follows directly from Theorem 4.1.3 that if µ is an eigenvalue of the normalized

Laplacian of G, then it is an eigenvalue of G̃. Now let µ be an eigenvalue of G̃ with

eigenfunction f , where µ is not an eigenvalue of G. By regularity of G̃, f is also a

harmonic eigenfunction, and by part (ii) of Theorem 4.1.3 it must be the case that p f = 0.

Hence, for all u ∈V (G),

0 = p f (u) =
1
du

∑
x∈π−1(u)

f (x)dx.

By regularity, dx is constant, and so dividing by a constant gives equation 4.2.

If G, G̃ are both d-regular graphs, then their adjacency eigenvalues satisfy λi =

d(1−µi−1), and the corresponding eigenfunctions are the same. It follows that adjacency

eigenvalues of G are also adjacency eigenvalues of G̃, and for any other adjacency

eigenvalue of G̃ the corresponding eigenfunction satisfies equation 4.2.

Example. Let G be the Petersen graph. We compute the eigenvalues of G by finding

a graph G′ for which G is a cover. Define G′ to be the weighted graph with vertex set

{v1,v2,v3}, and edges and edge weights as shown in Figure 4.1. The adjacency matrix

and normalized Laplacian of G′ are

AG′ =


0 1 0

1 0 2

0 2 4

 ,LG′ =


1 − 1√

3
0

− 1√
3

1 −
√

2
3

0 −
√

2
3

1
3
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Now fix any vertex x ∈V (G), and define a map π : V (G)→V (G′) by

π(y) =


v1 y = x

v2 y∼ x

v3 otherwise

It is easy to check that π satisfies the definition of a graph covering (with index m = 3),

and so the eigenvalues of LG′ , which are 0, 2
3 ,

5
3 , are eigenvalues of LG.

Furthermore these must be the only eigenvalues of LG. Otherwise, let f be a harmonic

eigenfunction corresponding to some other eigenvalue. By vertex transitivity of G, we can

assume f (x) 6= 0. By the covering-correspondence theorem, since f does not correspond

to an eigenvalue of G′ we have that p f = 0. Hence

0 = p f (v1) = ∑
y∈π−1(v1)

f (y)
dy

dv1

= f (x)dx

since by construction of π, x is the only vertex mapped to v1. It follows that f (x) = 0

which is a contradiction, and this shows that all of the eigenvalues of LG are eigenvalues

of LG′ .

(a) Petersen graph G

v1 v2 v3

1 2 4

(b) Graph G′

Figure 4.1: The Petersen graph G and a three vertex weighted graph which it covers. In
the covering map, vertices in G are sent to the vertex with same color in G′.
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4.2 Spectral gap of graphs in Fn

4.2.1 A projection of graphs in Fn

We begin by constructing a weighted graph Gn on three vertices, which is a

projection of every graph in Fn. Then we compute the eigenvalues of Gn, and by

Corollary 4.1.4, these will be eigenvalues of every graph in Fn. Let F be a graph

in Fn, and let Gn be the weighted graph with vertices {v1,v2,v3}, with edge weights

w(v1,v1) = n− 2, w(v1,v2) = 1, w(v2,v3) = n− 2, w(v3,v3) = (n− 2)2, and all other

edge weights zero. To construct the covering map π : V (F)→V (Gn), we just need to

specify the sets U1 = π−1(v1),U2 = π−1(v2),U3 = π−1(v3):

U1 = π
−1(v1) = {τ ∈ Sn : τn = n}

U2 = π
−1(v2) = {τ ∈ Sn : τ1 = n}

U3 = π
−1(v3) = {τ ∈ Sn : τ1 6= n,τn 6= n}

In order to verify that this is a covering, we need to check the two properties:

(1) We need to show that any two vertices in the same preimage set Ui have the same

number of neighbors in each preimage set U j. For example, take τ ∈U3, so τk = n

for some 1 < k < n. By definition of Fn, if σ is adjacent to τ then either σn = τn

or σn = τ1. In particular, σn 6= n, so τ is not adjacent to any vertex in U1. There is

exactly one neighbor of τ with σ1 = n, and so τ is adjacent to exactly one vertex

in U1. The remaining n−2 neighbors of τ are in U3. As required, the number of

neighbors in each preimage set did not depend on the choice of τ ∈U3. The cases

that τ ∈U1 and τ ∈U2 are similar.

(2) We need to verify equation 4.1 for each pair chosen from the preimage sets
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U1,U2,U3. For this covering, we have m = (n−1)!. Firstly, U1 and U1:

∑
x∈U1
y∈U1

w(x,y) = ∑
x∈U1

(n−2)

since each element of U1 is adjacent to exactly n−2 elements in U1. So

∑
x∈U1
y∈U1

w(x,y) = |U1|(n−2) = (n−1)!w(v1,v1)

as required. The pairs U1, U2 and U2, U3 are similarly verified.

For the pair U1 and U3, since there are no edges between these sets and since

w(v1,v3) = 0, we are done. Similarly for the pair U2 and U2. And finally, the pair

U3,U3:

∑
x∈U3
y∈U3

w(x,y) = ∑
x∈U3

(n−2) = |U3|(n−2)

Now |U3|= n!−|U1|− |U2|= (n−2)(n−1)!, so we get

∑
x∈U3
y∈U3

w(x,y) = (n−1)!w(v3,v3)

as required.

Now that we have a covering, we evaluate the eigenvalues of the projection Gn.

Lemma 4.2.1. The eigenvalues of the normalized Laplacian of Gn are

0, 1
n−1 ,

n
n−1 .
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Proof. The normalized Laplacian of Gn is


1

n−1 − 1
n−1 0

− 1
n−1 1 −

√
n−2

n−1

0 −
√

n−2
n−1

1
n−1


The result follows from a simple computation.

Corollary 4.2.2. For any G ∈ Fn, the adjacency matrix AG has eigenvalues n−1, n−2

and −1. For 1≤ i≤ n define

X(i) = {τ ∈ Sn : τn = i}

Y (i) = {τ ∈ Sn : τ1 = i}

Z(i) = {τ ∈ Sn : τ1 6= i,τn 6= i}

Then any eigenfunction corresponding to any other eigenvalue than those listed above

must sum to zero on each of X(i), Y (i) and Z(i), for any i ∈ {1,2, · · · ,n}.

Proof. When defining the covering mapping π to Gn, for a permutation τ the vertex it

was mapped to was determined by the position of n in τ. Observe that we can replace n

with any index i, 1≤ i≤ n, and we still have a covering, in this case with preimage sets

X(i), Y (i), Z(i).

Now take an eigenfunction of G which corresponds to an eigenfunction other

than n−1, n−2, or −1. G is regular, so this eigenfunction is also an eigenfunction of

the normalized Laplacian of G, corresponding to an eigenvalue other than 0, 1/(n−1) or

n/(n−1). It follows from Corollary 4.1.4 and the previous lemma that the eigenfunction

must sum to zero over the preimage sets of the covering, which are X(i), Y (i) and

Z(i).
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4.2.2 The spectral gap is 1

Recall that Fn is the family of graphs whose vertex set is Sn and where for each

vertex τ,

τ = (τ1,τ2, · · · ,τn),

and each 2≤ i≤ n, τ is adjacent to exactly one vertex of the form

(τi,α2,α3, · · · ,αi−1,τ1,τi+1, · · · ,τn).

Each graph in Fn is an (n−1)-regular graph. The prefix reversal graph Pn is in Fn, as

well as the right-Cayley graph generated by the transpositions (1 k), where 2≤ k ≤ n.

In order to compute the spectral gap of graphs in Fn, we proceed by induction, so

first we compute the spectrum of graphs in F3 to establish our base case.

Lemma 4.2.3. F3 = {C6}. In particular, the adjacency spectral gap of every graph in

F3 is one.

Proof. Let G ∈ F3. Then G is a 2-regular graph on 3! = 6 vertices. From the definition

of F3, it is easy to verify that G is connected, and so G =C6. The first two adjacency

eigenvalues of C6 are 2 and 1.

We can now prove the theorem on the spectral gap of Fn, as stated in the Section 1.

Proof of Theorem 4.1.2. We proceed by induction, so assume that the adjacency spectral

gap of any graph in Fn−1 is 1. The base case is established by Lemma 4.2.3. By (n−2)-

regularity of graphs in Fn−1, it follows from the inductive assumption that the second

largest eigenvalue of any graph in Fn−1 is n−3.

Let G be a graph in Fn. Pick any eigenvector f coming from an eigenvalue λ that

is not n−1, n−2 or −1. Our goal is to show that λ < n−2. Recall that X(i) consists of



65

the permutations whose last entry is i, Y (i) consists of the permutations whose first entry

is i and Z(i) consists of all other permutations. For any i, from Corollary 4.2.2 we get a

projection of G with preimage sets X(i),Y (i),Z(i). The set X(i) induces a graph in Fn−1,

and the set Y (i) induces an independent set (since every two adjacent permutations have

different first entries). Furthermore the edges between X(i) and Y (i) form a matching.

Our proof strategy is the following: we will get an expression for λ involving the values

of f on the set X(i) and the set Y (i). We can control the contribution from X(i) using the

inductive assumption, and then we show that we can choose i so that the contribution

from Y (i) is small enough to yield the stated result.

Claim: We can fix an i such that

∑
x∈X(i)

f (x)2 ≥ ∑
y∈Y (i)

f (y)2 (4.3)

and

∑
x∈X(i)

f (x)2 > 0.

Proof of claim: Notice that the sets X(1),X(2), · · · ,X(n) partition the vertex set of

G (ie. partitioning the permutations based on the last entry). Similarly, the sets

Y (1),Y (2), · · · ,Y (n) partition the vertex set of G. Hence

n

∑
j=1

∑
x∈X( j)

f (x)2 =
n

∑
j=1

∑
y∈Y ( j)

f (y)2 > 0.

In particular, there exists an index i such that

∑
x∈X(i)

f (x)2 ≥ ∑
y∈Y (i)

f (y)2.

Let I denote the set of indices i satisfying the above inequality. Then there exists some i
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in I satisfying

∑
x∈X(i)

f (x)2 > 0

since f 6= 0. This proves the claim.

Consider an arbitrary vertex x ∈ X(i). Then by definition of X(i), x is a permuta-

tion with x(n) = i. x has n−1 neighbors in G, n−2 of these neighbors are in X(i) and

one of its neighbors is in Y (i). Let cx be the unique neighbor of x in Y (i). As noted above,

the induced subgraph on X(i) is in Fn−1. By the eigenvalue-eigenvector equation, we

have

λ f (x) = f (cx)+ ∑
y∈N(x)∩X(i)

f (y).

Multiplying both sides by f (x), and summing over x ∈ X(i) yields

λ ∑
x∈X(i)

f (x)2 = ∑
x∈X(i)

f (x) f (cx)+ ∑
x∈X(i)

∑
y∈N(x)∩X(i)

f (x) f (y).

Dividing across by the sum on the left-hand side (which is non-zero by our claim above)

gives

λ =
∑x∈X(i) f (x) f (cx)

∑x∈X(i) f (x)2 +
∑x∈X(i)∑y∈N(x)∩X(i) f (x) f (y)

∑x∈X(i) f (x)2 . (4.4)

We will now find upper bounds for each of the two terms on the right-hand side.

Let G′ be the induced subgraph on X(i), which is a graph in Fn−1, and let

g = f |X(i). Since ∑x∈X(i) f (x) = 0, we have that g ⊥ 1, where 1 is the constant vector

with entries 1, which is the eigenvector associated with λ1. Now we can bound the second
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term in equation 4.4 by n−3:

∑
x∈X(i)

∑
y∈N(x)∩X(i)

f (x) f (y)

∑
x∈X(i)

f (x)2 =
gT AG′g

gT g

≤ maxh⊥1
hT AG′h

hT h

= λ2(G′)

= n−3.

The edges between X(i) and Y (i) are a matching. So as x ranges over the vertices

of X(i), cx ranges over the vertices of Y (i). By Cauchy–Schwarz,

∑
x∈X(i)

f (x) f (cx) ≤
√

∑
x∈X(i)

f (x)2 ∑
x∈X(i)

f (cx)2

=

√
∑

x∈X(i)
f (x)2 ∑

y∈Y (i)
f (y)2

So

∑
x∈X(i)

f (x) f (cx)

∑
x∈X(i)

f (x)2 ≤

√√√√√√√
∑

y∈Y (i)
f (y)2

∑
x∈X(i)

f (x)2 ≤ 1

where the last inequality follows from equation 4.3.

Applying these two bounds in equation 4.4 gives

λ≤ n−3+1 = n−2.

This shows that there is no eigenvalue of G strictly between n− 2 and n− 1, so we

conclude that λ2(G) = n−2.

As a brief application of Theorem 4.1.2, we can establish bounds on the edge
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expansion of every graph in G ∈ Fn. Recall that the edge expansion of a d-regular graph

G, hG, is defined as

hG = min
S⊂V (G)

|E(S, S̄)|
min(|S|, |S̄|) ·d

.

If S is the set of permutations whose last entry is n, then |S|= |E(S, S̄)|= (n−1)!, which

gives the upper bound hG ≤ 1/(n−1). To obtain a lower bound, we can use an inequality

from [15], hG ≥ µ1/2. Combining these two inequalities gives the bounds

1
2(n−1)

≤ hG ≤
1

n−1
.

4.3 The reversal graph

4.3.1 A graph projection of the reversal graph

The graph Rn is a Cayley graph of Sn that does not belong to the family Fn but is

closely related. For any 1≤ i < j ≤ n, let ri, j denote the bijection on Sn defined by

ri, j(τ) = (τ1,τ2, · · · ,τi−1,τ j,τ j−1, · · ·τi+1,τi,τ j+1, · · · ,τn)

That is, it reverses the subsequence from indices i to j, inclusive. Then two permutations

σ and τ are adjacent in Rn iff τ = ri, j(σ) for some i < j. We will first show that Rn has

many integer eigenvalues. We remark that the spectrum of Rn is not generally integer-

valued, despite the presence of many integer eigenvalues. A plot of the 7! eigenvalues of

R7 is given in Figure 4.2. We will first prove the following useful fact.

Lemma 4.3.1. Let X be the symmetric n×n matrix with entries

Xi, j = min{i, j,n+1− i,n+1− j}
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Figure 4.2: The adjacency eigenvalues of the reversal graph, R7, plotted in increasing
order.

For a given real number x, let D be the unique diagonal matrix such that every row of

D+X sums to x. Then the eigenvalues of D+X are

λk = x−
⌊

k
2

⌋
n+2

(⌊ k
2

⌋
2

)
,1≤ k ≤ n.

In particular, λ1 = x, λ2 = x−n.

Example: For n = 5 and x = 12 we get

D+X =



7 0 0 0 0

0 4 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 7


+



1 1 1 1 1

1 2 2 2 1

1 2 3 2 1

1 2 2 2 1

1 1 1 1 1


which has eigenvalues 12,7,7,4,4.

Proof. We proceed by induction. For the case n = 1, the result is immediate. When
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n = 2, we have

D+X =

x−1 1

1 x−1


which has eigenvalues x and x−2, as required.

Now fix n and assume the result holds for all smaller dimensions. Since D+X

is a symmetric matrix with constant row sums, the leading eigenvector of D+X is the

all-ones vector 1, with corresponding eigenvalue x. All other eigenvectors are orthogonal

to 1. It follows that if Y = D+X −11T , then D+X and Y have the same eigenvectors.

Moreover, the spectrum of Y , counting multiplicity, is exactly the spectrum of D+X

with x replaced by x−n.

The only non-zero entry in the top row of Y is the top-left entry, which is x−n.

The only non-zero entry in the bottom row of Y is the bottom-right entry which is also

x− n. Denote the characteristic polynomial of a matrix A by pA(λ). Expanding the

determinant of Y −λI along the top row and then along the bottom row, we obtain that

pY (λ) = (λ− x+n)2 pY ′(λ)

where Y ′ is the (n− 2)× (n− 2) principal submatrix of Y , obtained by deleting the

first and last rows and columns. In particular, the spectrum of Y consists of x−n with

multiplicity two, and the spectrum of Y ′. Hence, from the relationship between the

spectrum of D+X and the spectrum of Y discussed above, we have that the eigenvalues

of D+X are exactly the eigenvalues of Y ′, together with x and x−n.

Observe that Y ′ satisfies the conditions of the theorem, with row sum equal to
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x−n. By induction, we have that the eigenvalues of Y ′ are (for 1≤ k ≤ n−2):

λk(Y ′) = (x−n)−
⌊

k
2

⌋
(n−2)+2

(⌊ k
2

⌋
2

)
= x−

⌊
k+2

2

⌋
n+2

(⌊k+2
2

⌋
2

)
.

Combining these n−2 eigenvalues with x and x−n yields exactly the claimed spectrum

for D+X .

Lemma 4.3.2. The spectrum of the adjacency matrix of the reversal graph, ARn , contains

the eigenvalues

λk =

(
n
2

)
−
⌊

k
2

⌋
n+2

(⌊ k
2

⌋
2

)
,1≤ k ≤ n.

In particular,
(n

2

)
and

(n
2

)
−n are eigenvalues, and so the spectral gap is at most n.

Proof. We begin by constructing a projection of the graph Rn. Let G be the graph with

vertices v1, v2, · · · , vn corresponding to the adjacency matrix AG = D+X , where vertex

vi corresponds to row and column i, and D+X is as in the previous lemma, with row

sum
(n

2

)
. Let U(i) be the set of all permutations τ such that τi = n. The sets U(i), for

1≤ i≤ n, partition V (Rn), so we can define a map π : V (Rn)→V (G) by setting π(x) = vi

whenever x ∈U(i). It suffices to show that this is a covering map, then the result will

follow from the previous lemma.

To show that π satisfies the first property of a graph cover, we need that for all

indices i, j, any two vertices in U(i) have the same number of neighbors in U( j). This

follows from the fact that there are a fixed number of reversals that map entry i to entry j.

For the second property, take two preimage sets U(i), U( j), and τ0 some permu-

tation in U( j). It is easily checked that by construction of the weighted graph G, we

have

w(vi,v j) = |N(τ0)∩U(i)| .
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Then

∑
σ∈U(i)

∑
τ∈U( j)

w(σ,τ) = ∑
σ∈U(i)

|U( j)|w(σ,τ0)

= (n−1)! |N(τ0)∩U(i)|

= (n−1)!w(vi,v j)

where the first equality follows from property (i). Hence π is a covering with m = (n−1)!.

4.3.2 The spectral gap of the reversal graph

We are finally ready to prove the main theorem determining the spectral gap of

Rn.

Proof of Theorem 4.1.1: The value of λ1 is
(n

2

)
since Rn is regular of degree

(n
2

)
. From

the previous lemma we have that

λ2 ≥
(

n
2

)
−n

so it suffices to prove that

λ2 ≤
(

n
2

)
−n.

We follow a similar approach to the proof of Theorem 4.1.2.

We proceed by induction. For the base case, consider n = 2. Then R2 is K2, with

eigenvalues 1,−1. Now assume for any m < n, we have

λ2(ARm) =

(
m
2

)
−m.
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For any 1≤ i≤ n, we define the sets

Ui( j) =
{

τ ∈ Sn : τ j = i
}
.

As in the proof of Lemma 4.3.2, for any fixed i the sets Ui( j), 1≤ j≤ n are the preimages

of a covering map of Rn, and the two largest eigenvalues of the projection are
(n

2

)
and(n

2

)
−n. It follows from Corollary 4.1.4 that if ARn has an eigenvalue λ strictly between(n

2

)
and

(n
2

)
−n then the corresponding eigenvector must sum to zero on Ui( j) for all i, j.

Let λ be such an eigenvalue, with eigenvector f .

Let E1 = {{σ,τ} ∈ E(Rn) : σ1 6= τ1}, that is, the set of edges arising from sub-

string reversals that include the first entry of the permutation. Observe that the edge set

E1 is exactly the set of edges of the prefix reversal graph Pn. Let R′ be the graph obtained

by removing all edges in E1 from Rn. Then R′ consists of n connected components,

U1(1),U2(1), · · · ,Un(1). Each of these connected components is isomorphic to Rn−1.

We have, by the Rayleigh quotient

λ =
2∑{x,y}∈E(Rn) f (x) f (y)

∑x∈Rn f (x)2

=
2∑{x,y}∈E1 f (x) f (y)

∑x∈Rn f (x)2 +
2∑{x,y}6∈E1 f (x) f (y)

∑x∈Rn f (x)2

≤ λ2(APn)+
2∑{x,y}6∈E1 f (x) f (y)

∑x∈Rn f (x)2

where the last inequality follows since f is orthogonal to the constant vector 1. Using

Theorem 4.1.2 we have λ2(APn) = n−2.

To bound the second term, we will partition the edges not in E1 in the following

way

{{x,y} 6∈ E1}= E(U1(1))∪E(U2(1))∪·· ·∪E(Un(1)).
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Hence, we have

2∑{x,y}6∈E1 f (x) f (y)

∑x∈Rn f (x)2 =
∑

n
i=1 2∑{x,y}∈E(Ui(1)) f (x) f (y)

∑
n
i=1 ∑x∈Ui(1) f (x)2

≤ max1≤i≤n
2∑{x,y}∈E(Ui(1)) f (x) f (y)

∑x∈Ui(1) f (x)2

≤ λ2(ARn−1)

where we are using the fact that v sums to zero over each set Ui(1). Combining the two

inequalities above, we get

λ ≤ λ2(APn)+λ2(ARn−1)

= (n−2)+
(

n−1
2

)
− (n−1)

=

(
n
2

)
−n

Thus we conclude that λ2(ARn) =
(n

2

)
− n and this completes the proof of Theorem

4.1.1.

4.4 Future work

Consider the stochastic process of pancake flipping: Start with a stack of n

pancakes (or n cards). At each step, with probability 1/n, choose i where i = 1, . . . ,n and

do a pancake flipping of the first i pancakes. The above process is equivalent to taking a

random walk on Pn + I, where Pn is the pancake graph. The transition probability matrix

is then P = (A(Pn)+ I)/n.

Since the first nontrivial eigenvalue of the normalized Laplacian of Pn is 1/(n−1).

Consequently, the first nontrivial eigenvalue of the normalized Laplacian of Pn + I is

1/n and all eigenvalues of the normalized Laplacian of Pn + I are at most 2− 1/n. It
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is known that the rate of convergence for random walk is the inverse of µ−1 where

µ = min{µ1,2− µn−1} where 0 = µ0,µ1, . . . ,µn−1 are the nontrivial eigenvalues of the

normalized Laplacian of Pn+ I. However, in order to get tight bounds for the convergence

of the random walk to the stationary distribution under the total variational distance,

more work is needed. For a vertex-transitive graph, a general upper bound after t steps of

random walk on Pn + I can be derived by using the Plancherel formula (see [15]):

∆TV (t)≤
1
2

(
∑
i 6=0

(1−µi)
2t
)1/2

.

Using the result that |1−µi| ≤ 1−1/n for i 6= 0, we have

∆TV (t)<
1
2

(
1− 1

n

)t
n!

≤ e−t/n+n logn.

Hence, the random walk converges to the uniform distribution with ∆TV (t)≤ e−c after at

most t = n2 logn+ cn steps. If we know more about the distribution of eigenvalues µi,

this upper bound should be improved. It seems reasonable to conjecture that O(n logn)

steps suffice.

Similarly, we can consider the random substring reversal process, where in each

step, with probability
(n+1

2

)−1
we choose a substring (allowing substrings of length 1)

and reverse it. This is equivalent to taking a random walk on Rn +nI. In this case, we

have µ1 = n/
(n+1

2

)
= 2(n+1)−1 and µn−1 ≤ 2−2(n+1)−1. As in the case of pancake

flipping, knowing the spectral gap allows us to obtain a bound on the rate of convergence,

but to obtain sharp bounds it would be desirable to know more about the distribution of

all eigenvalues.

We have mainly focused on substring reversal and pancake flipping on permu-
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tations. There are many interesting variations of these problems. In particular, for

applications such as genome rearrangement, the objects of interest are signed permuta-

tions. In this case the operation of substring reversal is taking the reverse of the substring

and changing the signs of every element in the substring. The corresponding problem

for pancake flipping is the burnt pancake problem where the sign is used to distinguish

the two sides of each pancake. The burnt pancake graph P̄n has 2nn! vertices and degree

n. A natural question is to determine the spectral gap of the adjacency matrix. In fact,

Pn+ I is a projection of P̄n, which implies that the adjacency spectral gap of P̄n is at least

one. A natural guess is that the spectral gap of the adjacency matrix of P̄n is exactly 1.

However, this turns out to be not true. For P̄4 the spectral gap is approximately 0.71343,

and for P̄5 the spectral gap is approximately 0.75758.

This chapter is based on the paper “The Spectral Gap of Graphs Arising from

Substring Reversals”, submitted to Journal of Combinatorics, written jointly with Fan

Chung. The dissertation author was the primary investigator and author of the paper.
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