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Abstract

Duality and Infinity

by

Guillaume Massas

Doctor of Philosophy in Logic and Methodology of Science

University of California, Berkeley

Professor Wesley H. Holliday, Co-Chair

Professor Paolo Mancosu, Co-Chair

Many results in logic and mathematics rely on techniques that allow for concrete, often
visual, representations of abstract concepts. A primary example of this phenomenon in logic
is the distinction between syntax and semantics, itself an example of the more general duality
in mathematics between algebra and geometry. Such representations, however, often rely on
the existence of certain maximal objects having particular properties such as points, possible
worlds or Tarskian first-order structures.

This dissertation explores an alternative to such representations known as possibility
semantics. Its core idea is to replace maximal objects with ordered systems of partial ap-
proximations. Although it originates in the semantics of modal logic and the representation
of abstract ordered structures, I argue that it has far-reaching mathematical, foundational
and philosophical significance, especially in the context of semiconstructive mathematics, a
foundational framework that does not assume any fragment of the Axiom of Choice beyond
the Axiom of Dependent Choices.

The dissertation is divided in two main parts. The first part explores various applications
of the mathematical framework underlying possibility semantics to lattice theory and non-
classical propositional logics. A major theme is the development of constructive dualities
for various categories of lattices, which are related to standard non-contructive dualities via
Vietoris constructions.

The second part of the dissertation explores the alternative foundational setting of semi-
constructive mathematics, focusing on three applications of possibility semantics for classical
first-order logic to the philosophy of the mathematical infinite. In particular, we introduce
generic powers, a semi-constructive analogue of ultrapowers in classical model theory, and
we explore the merits of these structures from a foundational, conceptual and historical
viewpoint.
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7 The Fréchet Hyperreals 223

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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Introduction

The main topic of this dissertation is possibility semantics. Possibility semantics has (at
least) two distinct points of origin in logic, a fact that will be reflected in the very struc-
ture of this dissertation. The phrase was first coined by Humberstone [140] in the context
of the semantics of modal logic. Humberstone’s idea was to propose an alternative to the
now-standard Kripke semantics for modal logic that would take possibilities rather than
worlds as basic. The key difference between the two is that possibilities can be partial, and
therefore pairwise compatible, while worlds are maximal and pairwise incompatible objects.
Consequently, some possibilities may be more informative than others, and possibilities can
therefore be ordered in terms of how complete a description of a world they provide. Hum-
berstone provides a semantics for modal propositional logic that follows this basic intuition.
In particular, a conjunction is satisfied by a possibility p if and only if both conjuncts are
satisfied at p, but a disjunction may be satisfied at a possibility p without any of its disjuncts
being satisfied at p. Indeed, a possibility p could settle a disjunction as true because no pos-
sible extension of p could refute both disjuncts at the same time. But this does not mean
that such a p should decide which disjunct is true. We take this feature to be the common
denominator to all the conceptual frameworks that we will liken to possibility semantics
here. Since Humberstone’s work, the idea of defining a concrete semantics for a (possibly
non-classical) propositional logic in which points may satisfy a disjunction without satisfying
one of the two disjuncts has found applications in many domains. In classical modal logic, it
was used to great effect in the study of modal incompleteness [137, 134, 266]. Various possi-
bility semantics were also developed for intuitionistic logic [37, 36, 188], (modal) orthologic
[109, 138], and fundamental logic, a weaker logic that generalizes both intuitionistic logic
and orthologic [131].

For first-order classical logic, an early work in this tradition is a manuscript by van
Benthem [23]. But it would be somewhat misleading to think that possibility semantics
for classical logic originated only around that time, or as a special case of Humberstone’s
ideas. Indeed, the basic idea of possibility semantics, namely to evaluate formulas in a first-
order language at points in a partially ordered set, already essentially appeared in Cohen’s
method of forcing in set theory [59]. In forcing semantics, conditions in a forcing notion can
be thought of as approximations of a generic extension of a model of set theory to which
they belong. Of course, because it is only a partial approximation, a condition may force
a disjunction to hold in a generic extension without forcing any specific disjunct to hold.
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Accordingly, the second point of origin of possibility semantics is just the definition of the
forcing relation in set theory. Given the influence that forcing has had in many areas of math-
ematical logic, this means however that possibility semantics has strong ties with a venerable
tradition of non-Tarskian approaches to the semantics of first-order logic, including, perhaps
most importantly for this dissertation, Boolean-valued models [233, 10] and sheaf semantics
[181, 195]. This dual nature of possibility semantics will be reflected in the structure of
dissertation, which is composed of two main parts, one focusing on non-classical proposi-
tional logics, and the second one focusing on possibility semantics for first-order classical
logic. Those two parts also differ in their contributions. The first part is mostly a math-
ematical investigation of various frameworks related to possibility semantics in the context
of duality theory, while the second part focuses of applications of first-order possibility se-
mantics to several philosophical problems about the mathematical infinite broadly construed.

The second theme of this dissertation is semiconstructive mathematics. As I will use it
here, it refers to a foundational setting that sits between constructive and classical mathe-
matics, namely the kind of mathematics that can be carried out in ZF + DC, where ZF
stands for Zermelo-Frankel set theory, and DC stands for the Axiom of Dependent Choices,
a weak fragment of the axiom of choice.1 This foundational framework, sometimes also called
quasi -constructive mathematics [230], is often taken to be a natural setting for most of ordi-
nary mathematics, and in particular it may be thought of as a “paradise” for analysis, as it
neither assumes nor rejects some of the more puzzling consequences of the Axiom of Choice.
Under some mild set-theoretic assumptions, ZF +DC is consistent with the statement that
every set of reals is Lebesgue measurable [242], and under some stronger large cardinal as-
sumptions, it is consistent with the Axiom of Determinacy [263]. A key fact here is that
the Boolean Prime Ideal Theorem, a strong fragment of the Axiom of Choice usually proved
as an immediate application of Zorn’s Lemma, cannot be proved in the semiconstructive
setting.

In this dissertation, we will study interactions between possibility semantics and semi-
constructive mathematics of the following two kinds. First, in the context of non-classical
propositional logics, the development and study of semantics for many logics is grounded
in a branch of category theory called duality theory (see [102] for a recent overview of the
field). Duality theory studies a certain kind of strong correspondences between ordered alge-
braic structures, which abstract away from syntax in logic, and concrete geometric structures,
which typically provide semantics for various logical systems. Most dualities, including Stone
duality between compact zero-dimensional Hausdorff spaces and Boolean algebras, rely on
the Boolean Prime Ideal theorem in an essential way, and therefore do not hold in a semicon-
structive setting. However, the discrete “forcing duality” between complete Boolean algebras
and posets, which is at heart of the basic machinery of forcing and possibility semantics,
can be lifted to a full duality for Boolean algebras within the resources of semiconstruc-

1Note that the phrase “semi-constructive” or “semi-intuitionistic” [88, 217] may also designate a different
framework, in which the background logic is somewhere between intuitionistic and classical logic. By contrast,
we will use the law of excluded middle throughout this dissertation.
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tive mathematics, as was shown by Bezhanishvili and Holliday in [41]. Much of the work
in Part I of this dissertation is devoted to generalizations of this fact beyond the Boolean
case. In particular, we identify a pattern in which non-constructive topological dualities
can be replaced by semiconstructive ones in which the points of nonconstructive topological
spaces are “semipoints”, i.e. points in another topological space that approximates them.
Moreover, these approximations can always be analysed as a particular kind of topological
construction known as Upper Vietoris hyperspaces. Accordingly, our motivating slogan will
be that a shadow of non-constructive dualities can be found in the semiconstructive setting
by “factoring” through Vietoris hyperspaces:

Non-constructive Dualities =
Constructive Dualities

Upper Vietoris Hyperspaces
.

The second point of contact between possibility semantics and semiconstructive math-
ematics that we will investigate is in the use of the former as a semantics for first-order
classical logic. Indeed, many concepts in standard, Tarskian model theory rely on the Axiom
of Choice, and, specifically, on the Boolean Prime Ideal Theorem. By contrast, possibility
structures offer a semantics for first-order logic that is not as entangled with non-constructive
assumptions. For example, the proof of the Completeness Theorem for first-order logic re-
quires, for uncountable languages, the Boolean Prime Ideal Theorem, while one can give a
choice-free proof for possibility structures [135]. In other words, the added complexity of
possibility semantics compared to Tarskian semantics is reflected in the lower complexity of
the metatheory it requires, as captured by the following “equation”:

ZFC + Tarskian Semantics = ZF + Possibility Semantics.

In Part II of this dissertation, we will focus on a particular kind of model-theoretic
constructions whose existence relies on the Boolean Prime Ideal, namely, ultrapowers. The
key insight that will we pursue is that ultrapowers can be replaced in the semiconstructive
setting with generic powers, possibility structures that essentially capture all only those
features shared by all ultrapowers of a model modulo an ultrafilter on a given index set. The
choice of terminology, of course, suggests that there is a strong connection with forcing. In
fact, we will show that, in many cases, classical ultrapowers are merely “one forcing away”
from generic powers, an idea summarized by the following slogan:

Ultrapowers = Generic Powers× Forcing.

Moreover, I will argue that generic powers have technical and conceptual advantages over
Tarskian ultrapowers that make them particularly interesting structures to study in connec-
tion with several philosophical problems about infinity.

I will now give a more detailed overview of the dissertation and of its main results. As
mentioned, the dissertation is divided into two parts, one in which the emphasis is largely
on mathematical results about structures related to possibility semantics for propositional
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logics, and one in which the emphasis is on the application of possibility structures to several
philosophical problems.

Part I focuses on possibility semantics for propositional non-classical logics and its rela-
tionship to duality theory. Chapter 1 covers some background on lattices and duality theory.
In particular, Table 1.1 gives a systematic overview of most of the dualities relevant for our
purposes, highlighting which ones are new.

Chapter 2 introduces a discrete duality between the category cLat of complete lattices
and a category of bi-preordered sets called b-frames. The duality is established in Sec-
tion 2.2, and restricted in various ways to subcategories of cLat in Sections 2.3 and 2.4.
Two applications to the theory of Heyting algebras conclude the chapter. First, we obtain
a decomposition theorem for complete Heyting algebras that generalizes a classical result
about complete Boolean algebras (Section 2.5). Second, a possibility semantics for proposi-
tional intuitionistic logic is defined on bi-ordered sets, and used to prove the incompleteness
of a certain intermediate logic with respect to the class of complete bi-Heyting algebras, thus
improving on one of the only known results in the field (Section 2.6).

In Chapter 3, we enter the realm of topological dualities and investigate extensions of the
choice-free version of Stone duality to two generalizations of Boolean algebras. Our approach
is semi-pointfree, meaning that we will interested in the representation of algebraic objects
via ordered topological spaces in which the points can intuitively be thought of as rough
approximations of maximally precise points. Section 3.3 presents a choice-free duality for
de Vries algebras, which are complete Boolean algebras endowed with a proximity relation.
In Section 3.4, the link between de Vries’s original duality and its choice-free version is
established via Upper Vietoris constructions, and two applications of the choice-free duality
are given. The rest of the chapter focuses on establishing two choice-free dualities for the
category of distributive lattices. The first one, established in Section 3.6, is a bitopological
duality, while the second one, established in Section 3.7, considers a category of ordered
topological space that can be thought of as choice-free versions of Priestley spaces. In both
cases, the two dualities can be connected to their non-constructive counterparts via an Upper
Vietoris construction, as shown in Section 3.8.

In Chapter 4, we extend the techniques from the previous chapters beyond the distribu-
tive setting, and present a duality for the category of all lattices. We first use Vietoris
constructions and their algebraic duals to present a small extension of Priestley duality
(Section 4.3), which is then itself used to obtain our main result, namely a duality between
the category of lattices and a category of Priestley spaces endowed with a relation, which
we call FI-spaces (Section 4.4). In Section 4.5, we refine this duality to a duality between
a category of lattices augmented with a weak complement operation and a category FIN of
FI-spaces endowed with an additional relation. Finally, Section 4.6 connects our work in
this chapter to the b-frames of Chapter 2, the choice-free dualities for distributive lattices of
Chapter 3, and the possibility semantics for Fundamental Logic presented in [131].

Chapter 5 concludes the first part of the dissertation with an application of possibility
semantics to a famous problem in the philosophy of time that goes back to Aristotle. After
introducing the problem (Section 5.2), I present a new solution, orthofuturism, which is based
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on a non-distributive logic OF. A possibility semantics for OF is presented in Section 5.5,
and the philosophical merits of orthofuturism in contrast with its competitors are explored
in Sections 5.4 and 5.6.

Part II of the dissertation focuses on possibility semantics for classical first-order logic,
and applications of it to several problems in the philosophy of the infinite. Chapter 6 in-
troduces the basics of possibility semantics for first-order logic, and contains several results
about embeddings between possibility structures. Generic powers, which are the key tech-
nical notion for this part of the dissertation, are introduced in Section 6.2. This section also
contains the proofs for the three fundamental results about generic powers that are used
throughout Part II: the Structure Lemma, the Truth Lemma and the Genericity Lemma.

In Chapter 7, we explore an application of possibility semantics to the foundations of
nonstandard analysis. In Section 7.2, generic powers are used to provide a semiconstructive
analogue †R of the non-constructive hyperreal fields obtained as ultrapowers modulo a non-
principal ultrafilter on ω, and versions of several basic results of classical NSA are proved
in this setting. Sections 7.3 to 7.5 focus on a detailed comparison between the approach via
generic powers and other alternative approaches to nonstandard analysis. In particular, I
argue that †R is a natural convergence point between reduced powers, sheaves and Boolean-
valued models. Finally, I discuss in Section 7.6 several philosophical objections that have
been raised against the use of nonstandard methods in analysis because of their alleged
lack of purity and canonicity, and I argue that the semiconstructive approach allows us to
convincingly answer these objections.

In Chapter 8, we turn to the philosophy of mathematics, and to recent debates surround-
ing the possibility of a “Euclidean” notion of the infinite. Our discussion focuses on two
distinct but related topics. First, the theory of numerosities [18, 19, 16], which is intended
as an alternative to the Cantorian theory of size for infinite collections and, second, NAP
functions, an application of this theory to some problems in probability theory. After pre-
senting both theories in Section 8.3, I argue that numerosities and NAP functions fail to
meet some of the challenges that have been raised against them in the literature (Section 8.4).
This prompts me to develop in Section 8.5 an alternative approach to both numerosities and
NAP functions via generic powers and possibility semantics which, as I argue in Section 8.6,
has some significant advantages over the standard proposals.

Finally, Chapter 9 explores a related theme, but this time in the historical context of
Bernard Bolzano’s philosophy. Bolzano famously sketched a “calculation of the infinite” in
his Paradoxes of the Infinite [46] which has mostly been read as a failed attempt at a the-
ory of transfinite sets based on the preservation of part-whole intuitions rather than on the
Cantorian notion of cardinality. After introducing the relevant passages in Bolzano’s text
and the way they have usually been received in the existing literature (Sections 9.2 and 9.3),
an alternative interpretation of Bolzano’s “calculation of the infinite” as a theory of infinite
sums is developed, and the coherence and fruitfulness of his views are established via a for-
mal reconstruction of his theory that uses standard model-theoretic techniques (Sections 9.4
and 9.5). Finally, I introduce in Section 9.7 an alternative formal reconstruction that uses
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generic powers rather than ultrapowers, and I argue that this approach sheds some new light
on some interpretive issues regarding Bolzano’s views on the infinite.

Let me conclude this introduction by mentioning the sources for the material included in
the dissertation. Some of the content included in each chapter has already been published
elsewhere or has been obtained in collaboration with others. Chapter 2 was published at the
Annals of Pure and Applied Logic under the title “B-frame Duality” [187]. Many ideas for
applications of the general framework developed in there came from fruitful conversations
with Wes Holliday. The first part of Chapter 3 on de Vries algebras was accepted for publi-
cation in Advances in Modal Logic, Vol.14. under the title “Choice-Free de Vries Duality”.
The second part on distributive lattices stems from several conversations with Wes Holli-
day, Nick Bezhanishvili and especially Tomáš Jakl, whose insights regarding the connection
between spaces of filter-ideal pairs and free distributive lattices also influenced the way I
wrote Chapter 4. Chapter 5 benefited from fruitful conversations with Wes Holliday and
John MacFarlane, and was largely inspired by their work on epistemic modals and the open
future, respectively. Chapter 7 has been accepted for publication at the Australasian Jour-
nal of Logic under the title “A Semiconstructive Approach to the Hyperreal Line”. Earlier
drafts of the chapter benefited from especially valuable feedback from Wes Holliday, Dana
Scott, Johan van Benthem, Sean Walsh and an anonymous referee. Many ideas in Chapter 8
originated from conversations with Wes Holliday and Paolo Mancosu, as well as from a grad-
uate seminar on Probability Theory that they co-organized in Spring 2021, and from Paolo’s
graduate seminar on Infinity in Spring 2020. Finally, Chapter 9 is adapted from the paper
“Bolzano’s Mathematical Infinite” [14], co-authored with Anna Bellomo and published at
the Review of Symbolic Logic. Earlier drafts of the paper benefited from valuable feedback
from Paolo Mancosu, Luca Incurvati, Wes Holliday, Arianna Betti and Annapaola Ginammi.
I also thank Anna for allowing me to include our joint work in this dissertation. Moreover,
the material in Section 9.7 is new and was not part of our joint paper. Some results in
that section were made possible thanks to conversations with Gabe Goldberg and Robert
Schütz.



7

Part I

Possibilities and Duality
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Chapter 1

Background on Duality Theory

This chapter introduces some background and motivation for the first part of this disserta-
tion. We will first provide some background on ordered structures such posets, lattices and
Boolean algebras, before offering a systematic overview of the topics in duality theory that
we focus on.

1.1 Background on Lattices

In this section, we will introduce some background results on posets and lattices. As all
the results mentioned here are well-known, we will not provide proofs, but we refer the
interested reader to standard sources in universal algebra and lattice theory [66, 229, 28, 42].
Recall that a partial order on a set X is a binary relation that is reflexive, transitive and
antisymmetric. We first fix the following terminology.

Definition 1.1.1. A map f between posets P = (P,≤P) and Q = (Q,≤Q) is monotone
or order-preserving if p ≤P p′ implies f(p) ≤Q f(p′) for all p, p′ ∈ P . It is antitone or
order-reversing if p ≤P p

′ implies f(p) ≥Q f(p′).

Let us now introduce a concept that is ubiquitous in order theory, and originates from
Galois theory.

Definition 1.1.2. Let P = (P,≤P) and Q = (Q,≤Q) be posets. A monotone Galois
connection between P and Q is a pair of order-preserving maps F : P → Q and G : Q → P
satisfying the following condition for any p ∈ P, q ∈ Q:

F (p) ≤Q q ⇔ p ≤P G(q)

In such a monotone Galois connection, F is usually called the left adjoint of G, and G is the
right adjoint of F . An antitone Galois connection is a pair of order-reversing maps F and
G such that the following condition holds for any p ∈ P, q ∈ Q:

p ≤Q G(q) ⇔ q ≤P F (p).
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The phrase “Galois connection” is often used ambiguously in the literature, meaning
either a monotone or antitone Galois connection. We will follow this convention, making
sure to specify however whether a Galois connection is order-preserving or order-reversing
when it is not immediately clear from context. Let us now move on to our main structures
of interest, lattices.

Definition 1.1.3. A meet-semilattice (resp. join-semilattice) is a structure (L,∧,≤) (resp.
(L,∨,≤)) such that ≤L is a partial order on L and any two elements a, b ∈ L have a ≤L-
greatest lower bound a ∧ b (resp. a ≤L-least upper bound a ∨ b). A lattice is a structure
(L,∧,∨,≤) such that (L,∧,≤) is a meet-semilattice and (L,∨,≤) is a join-semilattice. It is
bounded if it has a ≤L-greatest element 1 and a ≤l-least element 0, and it is complete if any
subset A of L has a ≤L-greatest lower bound

∧
A and a ≤L-least upper bound

∨
A.

In what follows, we will always assume that a lattice is bounded, and will therefore always
use the phrase “lattice” to mean “bounded lattice”.

Definition 1.1.4. A meet-semilattice homomorphism (resp. join-semilattice homomor-
phism) is a map f : L → M between two meet-semilattices (resp. two join-semilattices) L
and M such that f(a∧L b) = f(a)∧M f(b) (resp. f(a∨L b) = f(a)∨M f(b)) for any a, b ∈ L.
A lattice homomorphism is a map between lattices which is both a meet-semilattice homo-
morphism and a join-semilattice homomorphism. A meet-semilattice (resp. join-semilattice)
homomorphism f between lattices L and M is meet-complete (resp. join-complete) if for
any A ⊆ L such that

∧
L(A) (resp.

∨
LA) exists in L, so does

∧
M f [A] =

∧
M{f(a) | a ∈ A}

(resp.
∨
M f [A] =

∧
M{f(a) | a ∈ A}), and f(

∧
LA) =

∧
M f [A] (resp. f(

∨
LA) =

∨
M f [A]).

The following is a key result in lattice theory, and it will play a role in some form or
other in many different settings.

Theorem 1.1.5 (Adjoint Functor Theorem for Lattices). Let L and M be lattices, and let
f : L→M . Then:

• If f has a left adjoint g : M → L, then f is meet-complete.

• If f has a right adjoint g : M → L, then f is join-complete

• If L and M are complete lattices, then f has a left-adjoint if and only if it is a meet-
complete, and f has a right-adjoint if and only if it is join-complete.

Galois connections are particularly useful in order theory because they provide a canonical
way of defining closure operators on posets.

Definition 1.1.6. Let P = (P,≤P ) be a poset. A closure operator on P is a map κ : P → P
with the following three properties for any a, b ∈ P :

• a ≤P b⇒ κ(a) ≤P κ(b) (monotone);

• a ≤P κ(a) (increasing);



CHAPTER 1. BACKGROUND ON DUALITY THEORY 11

• κκ(a) ≤ κ(a) (idempotent).

A kernel operator on P is a map λ : P → P such that λ is a closure operator on the poset
(P,≥P) dual to P . In other words, λ is monotone, decreasing and idempotent. Given a
closure operator κ on P , the fixpoints of κ are the elements a ∈ P such that κ(a) = a.

Lemma 1.1.7. Let P = (P,≤P) and Q = (Q,≤Q) be posets, and suppose f : P → Q has a
right adjoint G : Q → P. Then the operation f ◦ g : Q → Q is a closure operator on P, and
the operation g ◦ f : P → P is a kernel operator.

In the case of a lattice L, the fixpoints of a closure operator on L have even more structure.

Theorem 1.1.8. Let L be a lattice.

• If κ a closure operator on L, then the fixpoints of κ form a lattice with meets computed
as in L and joins given by a ⊔ b = κ(a ∨L b).

• Dually, if λ is a kernel operator on L, then the fixpoints of λ form a lattice with joins
computed as in L and meets given by a ⊓ b = λ(a ∧M b).

• If L is a complete lattice, then the lattice of fixpoints of a closure (resp. kernel) operator
on L also form a complete lattice.

Let us now consider classes of lattices with some additional properties.

Definition 1.1.9. A lattice L is distributive if the operations ∧L and ∨L satisfy the following
properties for any a, b, c ∈ L:

a ∧L (b ∨L c) ≤L (a ∧L b) ∨L (a ∧L c)
a ∨L (b ∧L c) ≤L (a ∨L b) ∧L (a ∨L c).

Equivalently, for any a, b ∈ L, if there is c ∈ L such that a ∧L c ≤L b and a ≤L b ∨L c, then
a ≤L b.

Definition 1.1.10. A Heyting algebra is a distributive lattice L such that for any b ∈ L, the
map · ∧L b : L → L given by a 7→ a ∧L b has a right adjoint b →L · : L → L. Equivalently,
there is a binary operation →L on L such that for any a, b, c ∈ L :

a ∧L b ≤L c⇔ a ≤L b→L c.

Definition 1.1.11. A Boolean algebra is a Heyting algebra L such that the map · →L 0 :
L→ L is self-adjoint. Equivalently, L is a distributive lattice with a unary operation ¬L on
L satisfying:

a ∧L ¬La = 0

a ∨L ¬La = 1.



1.1. BACKGROUND ON LATTICES 12

Distributive lattices, Heyting algebras and Boolean algebras will play a central role in
the next three chapters. The main notion in Chapter 5 will be that of an ortholattice, which
we will refrain from defining for now. In the case of Heyting algebras, the correct notion of
morphism between them is stronger than that of a mere lattice homomorphism.

Definition 1.1.12. A Heyting homomorphism is a lattice homomorphism f : L → M that
also preserves the operation →. A Boolean homomorphism is a Heyting homomorphism
between Boolean algebras.

We will also often need to consider elements of distributive lattices with the following
key properties.

Definition 1.1.13. Let L be a lattice.

• An element a ∈ L is join-prime (resp. meet-prime) if a ≤L b ∨L c implies a ≤L b or
a ≤L c (resp. b ∧L c ≤L a implies b ≤L a or c ≤L a) for any b, c ∈ L.

• It is completely join-prime (resp. completely meet-prime) if for every C ⊆ L, a ≤L

∨
C

implies a ≤L c for some c ∈ C (resp.
∧
C ≤L a implies c ≤L a for some c ∈ C).

• Completely join-prime elements in Boolean algebras are often called atoms, and com-
pletely meet-prime elements are called co-atoms.

Finally, we conclude this section by introducing the two dual notions filters and ideals,
which are central in lattice theory. As is well known, ideals play a major role in abstract
algebra as the kernels of homomorphisms, and filters play a key role both in logic, where
they can be viewed as abstract consistent theories, and in general topology, where they can
be thought of as ways of partially locating points.

Definition 1.1.14. A filter on a lattice L is a non-empty set F ⊆ L with the following two
properties for any a, b ∈ L:

• a ∈ F and a ≤L b together imply b ∈ F ;

• a, b ∈ F implies a ∧L b ∈ F .

A filter F is proper if F ̸= L.
Dually, an ideal on a lattice L is a non-empty set I ⊆ L with the following two properties

for any a, b ∈ L:

• a ∈ I and b ≤L a together imply b ∈ I;

• a, b ∈ I implies a ∨L b ∈ I.

An ideal I is proper if I ̸= L.

We will also be considering filters and ideals with some specific properties
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Definition 1.1.15. Let L be a lattice.

• A proper filter F (resp. a proper ideal I) on L is principal if there is a ∈ L such that
F = {b ∈ L | a ≤L b} (resp. I = {b ∈ L | b ≤L a}). The principal filter (resp. principal
ideal) determined by an element a ∈ L is often denoted by ↑a (resp. ↓a).

• A proper filter F (resp. a proper ideal I) on a lattice L is prime if a, b /∈ F implies
a ∨L b /∈ F (resp. a, b /∈ I implies a ∧L b /∈ I).

• Moreover, if L is a complete lattice, then F (resp. I) is completely prime if
∨
LA ∈ F

implies F ∩ A ̸= ∅ (resp.
∧
LA ∈ I implies I ∩ A ̸= ∅) for any A ⊆ L.

• A prime filter on a Boolean algebra B is also called an ultrafilter.

It is an easy exercise to verify that in any lattice L, p ⊆ L is a prime filter on L if and
only if L \ p is a prime ideal on L. Moreover, it is a standard fact that prime filters (resp.
prime ideals) coincide with maximal filters (resp. maximal ideals) for Boolean algebras. In
the case of distributive lattices, maximal filters (resp. ideals) are always prime, but a prime
filter (resp. ideal) may not always be maximal. Finally, maximal filters (resp. ideals) may
fail to be prime in the case of arbitrary lattices.

The existence of prime filters or ideals on a given lattice L is a well-known problem that
often determines much about the structure of L. In any lattice L, any two elements a, b such
that a ≰L b can always be separated by the pair (↑a, ↓b). However, the requirement that a
and b be separated by a prime filter whenever a ≰ b cannot be satisfied in arbitrary lattices,
and actually follows from the following theorem in the case of distributive lattices.

Theorem 1.1.16 (Prime Filter Theorem). Let L be a distributive lattice. For any filter F
and ideal I on L such that F ∩ I = ∅, there is a prime filter p on L such that F ⊆ p and
p ∩ I = ∅.

The Prime Filter Theorem (PFT form now on) uses the Axiom of Choice in an essential
way. In fact, it is often considered as a fragment of the full Axiom of Choice, rather than
as merely one of its consequences. Of crucial relevance to the semiconstructive setting
mentioned in the Introduction is the fact that PFT is independent from ZF + DC [89]
(see also Solovay’s model [242] of ZF +DC+ “All sets of reals are Lebesgue measurable”).
Perhaps surprisingly, it is however equivalent to a restricted form of it to Boolean algebras,
known in the literature as the Boolean Prime Ideal Theorem (BPI from now on):

Theorem 1.1.17 (Boolean Prime Ideal Theorem). Let B be a Boolean algebra and a ̸= 0
an element of B. There is an ultrafilter p on B such that a ∈ p.

Both PFT and BPI have played a crucial role in the development of modern duality
theory. Much of the work in the next three chapters is devoted to the development of
alternative dualities that bypass the need to appeal to such non-constructive principles, and
can therefore be carried out in ZF + DC. For now, let us turn to some background on
dualities.
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1.2 Discrete and Topological Dualities

In this section, I will review some basic notions from duality theory, and give an overview
of some of the results that play an important role in the next three chapters. I will assume
some familiarity with the basic terminology of category theory (e.g., categories, functors,
isomorphisms and natural transformations) as well as rudiments of general topology. A
reader unfamiliar with category theory but more versed in the language of set theory may
appeal to the following intuition. A category is a structured class of mathematical objects
of a given kind (such as sets, posets, groups or topological spaces), in which the structure of
the category is determined by a fixed class of maps (called arrows or morphisms) between
the objects it contains. Typically, the maps between the objects of a category are functions
that preserve all or part of the internal structure (or lack thereof) of such objects, e.g.,
functions between sets, monotone maps between posets, groups homomorphisms between
groups, or continuous maps between topological spaces. Functors are structure-preserving
maps between categories, i.e., a functor F maps objects in a category C to objects in a
category D and maps in C to maps in D, in such a way that F (f) is a map from F (C)
to F (D) whenever f is a map from C to D C., except in a case of contravariant functors,
which “flip” the direction of the arrows from the source category to the target category
(i.e., a contravariant functor F from C to D sends a map f : C → D in C to a map
F (f) : F (D) → F (C) in D. Finally, a natural transformation is a uniform way of passing
from a functor F : C → D to a functor G : C → D. Formally, a natural transformation
η : F → G if given by a family {ηC}C ∈ C of maps in D which satisfy the following
“naturality” square:

F (C) F (D)

G(C) G(D)

F (f)

F (g)

ηC ηD

meaning that composition F (f) with ηD yields the same result as composing ηC with G(f) for
any f : C → D in C. Naturality is often understood as a formal way to capture the informal
notion of “canonicity” in mathematical practice, but an equally valid way to interpret this
requirement (at least within the purview of this dissertation) is to think of it as requiring
that the maps ηC by “uniformly definable” in some sense. We close this short and informal
primer on category theory with a reminder of the following notions.

Definition 1.2.1. Let C and D be categories.

• An adjunction between C and D is a pair of functors F : C → D and G : D → C such
that for any objects C ∈ C and D ∈ D, there are bijections ηC,D : HomD(F (C), D) →
HomC(C,G(D)) natural in C and D.

• Given an adjunction (F,G), F is called the left adjoint of G, and G is called the
right adjoint of F . Moreover, the family of maps ηF (C),F (C)(1F (C)) : C → GF (C)
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for every object C ∈ C is called the unit of the adjunction, and the family of maps
η−1
G(D),G(D)(1G(D)) : FG(D) → D for every object D ∈ D is called the counit of the

adjunction.

• A pair of functors (F,G) is a contravariant adjunction if F and G are contravariant
functors and for any two objects C ∈ C and D ∈ D, there is a bijection
ηC,D : HomD(D,F (C)) → HomC(C,G(D)) natural in C and D.

Adjunctions are one of the most pervasive concepts in category theory. In a precise
sense, an adjunction of functors between two categories generalizes the notion of a Galois
connection of monotone maps between two posets. Just like a Galois connection allows one
to move back and forth between the orders of two distinct posets, an adjunction allows one
to move back and forth between the morphisms in two distinct categories. A close relative
to the concept of an adjunction is that of an equivalence of categories.

Definition 1.2.2. Let C and D be categories. An equivalence of categories is given by a pair
of functors F : C → D and G : D → C and natural isomorphisms {ηC : C → GF (C)}C∈C
and {ϵD : D → FG(D)}D∈D. A duality between C and D is an equivalence between C and
Dop, i.e., it is given by a pair of contravariant functors.

Informally, the notion equivalence is often taken to be the most fruitful notion of “same-
ness” between two categories. Indeed, the vast majority of categorical concepts are invariant
under equivalence of categories. This means that in general, establishing the existence of an
equivalence between two categories allows for the study of the objects in one category via the
study of the corresponding objects in the other category. An equivalence of categories also
often paves the way for many fruitful interactions between two mathematical domains, and
they can be seen as “bridge” theorems that offer a way of translating results or problems
in one setting into results or problems in another. In that respect, equivalences between
categories of algebraic and geometric objects are often particularly useful. Dualities, in par-
ticular, exhibit an additional feature that makes them particularly desirable. Indeed, many
categorical concepts come in “dual pairs”, where one kind of construction is obtained from
his dual by reverting all the arrows involved in its definition. Typical examples of such dual
pairs include subalgebras and quotients, products and coproducts, limits and colimits, etc...
Dualities allow us to “translate” constructions in one setting into dual constructions in the
dual setting, which sometimes make them easier to comprehend. Let us now turn to the
specific dualities that will occupy us for the next chapters.

Duality theory focuses on dualities between categories of lattices and categories of ge-
ometric structures such as graphs and topological spaces. The cornerstone of the field is
arguably Stone’s duality between Boolean algebras and Stone spaces [245]. Let us first recall
the following definition.

Definition 1.2.3. A Stone space is a topological space X = (X, τ) which is compact,
Hausdorff and 0-dimensional (i.e., it has a basis of clopen sets).

Stone duality is the following theorem.
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Theorem 1.2.4 (Stone 1936). The category of Boolean algebras and Boolean homomor-
phisms between them is dual to the category of Stone spaces and continuous maps between
them.

Let us quickly describe this duality here, as it provides the original template for many of
the techniques that are still in use in duality theory up to this day. Given a Boolean algebra
B, its dual Stone space is the topological space (Spec(B), σ), where Spec(B) is the set of
all prime filters on B (equivalently, all ultrafilters on B), and σ is the topology generated
by the sets of the form pa = {p ∈ Spec(B) | a ∈ p}. Conversely, given a Stone space
X = (X, τ), its dual Boolean algebra is the Boolean algebra Clop(X ) of clopen subsets of
X. That X is homeomorphic to SpecClop(X ) is essentially due to the definition of Stone
spaces. Indeed, it is a basic fact from general topology that any ultrafilter on the subsets of
a topological space X converges to at least one point if X is compact, and to at most one
point if X is Hausdorff. Moreover, 0-dimensionality implies that two ultrafilters U and V
on X converge to the same point if and only if U ∩ Clop(X ) = V ∩ Clop(X ). Hence the
map ∈̇ : X → SpecClop(X ) given by x 7→ {U ∈ Clop(X ) | x ∈ U} is a bijection, and it

is easy to see that ∈̇−1
[ pU ] = U for every U ∈ Clop(X ). The converse direction, however, is

the celebrated Stone Representation Theorem:

Theorem 1.2.5 (Stone Representation Theorem). For any Boolean algebra B, Spec(B) is
a Stone space, and the map p· : B → Clop(Spec(B)) is a Boolean isomorphism.

As is well known, Stone’s theorem requires (BPI) in essentially two places. First, in
establishing that Spec(B) is compact. Second, in making sure that the map a 7→ pa is
injective, as one needs to show that if a ≰ b for some a, b ∈ B, there is p ∈ Spec(B) such
that a ∈ p and b /∈ p.

Finally, the correspondence between Boolean algebras and Stone spaces is extended to a
correspondence between their respective morphisms by taking inverse images (which explains
why we obtain a duality instead of an equivalence). Indeed, any Boolean homomorphism
f : B → C induces a continuous map Spec(f) : Spec(C) → Spec(B) given by the map
p 7→ f−1[p] = {a ∈ B | f(a) ∈ p}. Conversely, since the preimage of a clopen set under a
continuous map is clopen, and preimages under any function preserve intersections and set-
theoretic complements, the inverse image map Clop(g) : Clop(X ) → Clop(Y ) is a Boolean
homomorphism for any continuous map g : Y → X .

Stone duality was one of the earlier results establishing a tight correspondence between
order theory and topology. His duality theorem was soon extended, both on the topological
side (e.g., by de Vries [69], who identified a category of lattices dual to the category of
compact Hausdorff spaces) and on the algebraic side. Stone himself extended his result to a
duality between distributive lattices and spectral spaces [246].

Definition 1.2.6. A spectral space is a compact T0 topological space X = (X, τ) such that:

• the compact open sets CO(X ) form a basis for τ and are closed under intersections;
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• X is sober, i.e., any completely prime filter on the lattice of open sets of X converges
to a unique point.

A spectral map between spectral spaces is a continuous map f : X → Y such that f−1[U ] ∈
CO(X ) for every U ∈ CO(Y ).

Given a distributive lattice L, Stone considers the space Spec(L) of all prime filters over
L, endowed with the same topology as the one he defined on the dual spaces of Boolean
algebras, i.e., the topology generated by sets of the form pa for a ∈ L. Using PFT, one can
show that Spec(L) is compact for any distributive lattice L, and moreover that CO(Spec(L))
is always a distributive lattice into which L embeds via the map a 7→ pa. He thus obtained
the following:

Theorem 1.2.7 (Spectral Duality). The category DL of distributive lattices and lattice
homomorphisms between them is dual to the category Spec of spectral spaces and spectral
maps between them.

Spectral spaces, however, are not as nicely behaved as Stone spaces. This prompted
Priestley to modify Stone’s definition in order to obtain better behaved dual spaces of dis-
tributive lattices [210]. Priestley’s idea was to consider the patch topology of a spectral space
(X , τ), i.e., the topology generated by the compact opens in τ together with their com-
plements. In the case of a spectral space, this yields a Stone space. Priestley duality then
recovers the structure of the original distributive lattice by adding a partial order on the
topological space thus obtained. The Priestley dual of a distributive lattice L is therefore
the ordered topological space (Spec(L), τ ′,⊆), where τ ′ is generated by the sets of the form
pa for any a ∈ L and their complements, and ⊆ is the inclusion ordering on the set of prime
filters of L. Using PFT, one can then verify that this space satisfies the following definition.

Definition 1.2.8. A Priestley space is a triple (X, τ,≤) such that X = (X, τ) is a Stone
space, ≤ is a partial order on X satisfying the Priestley Separation Axiom:

(PSA) For any x, y ∈ X, if x ≰ y, then there is a clopen upset U ⊆ X such that x ∈ U and
y /∈ U .

An order-continuous map between Priestley spaces is a continuous map that is also monotone
with respect to the two partial orderings.

Given a Priestley space (X, τ,≤), the clopen upsets of X form a distributive lattice
ClopUp(X ). Moreover, using PFT, one can show that (Spec(L), τ ′,≤) is a Priestley space
for every distributive lattice L, and that the map a 7→ pa is a lattice isomorphism between L
and ClopUp(L). This yields the following.

Theorem 1.2.9 (Priestley Duality). The category DL is dual to the category PS of Priestley
spaces and order-continuous maps between them.

Working with ideas similar to Priestley’s, Esakia [83, 82] developed a duality for Heyting
algebras that is an elegant restriction of Priestley’s.
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Definition 1.2.10. A Priestley space is an Esakia space if the downset of every clopen set is
clopen. An order-continuous map f : X → Y between Esakia spaces is an Esakia morphism
if it is a p-morphism, i.e., it satisfies the following condition for any x ∈ X , y ∈ Y :

• If f(x) ≤Y y, then there is x′ ∈ X such that x ≤X x′ and f(x′) = y.

Theorem 1.2.11 (Esakia Duality). The category HA of Heyting algebras and Heyting ho-
momorphisms between them is dual to the category ES of Esakia spaces and Esakia mor-
phisms between them.

Beyond distributive lattices and Heyting algebras, however, duality theory often loses
some of its steam. Several topological dualities have been proposed for many categories of
lattices, but the corresponding topological spaces are often not as well behaved as Stone
or Priestley spaces. One of the reasons for this is the lack of an analogue of PFT. Many
properties of a topological space X can indeed be given characterizations in terms of prime
filters on the powerset of X or on its lattice of open sets. In the absence of PFT, it is more
difficult to relate the topological properties of a space with the order-theoretic properties of
some of its subsets.

Arguably, Stone’s key insight, followed by Priestley, Esakia, and many more, was the
realization that topology could help in representing a wider variety of algebraic structures
than discrete geometric structures such as sets and graphs.1 In the case of Boolean algebras,
his representation theorem generalized another, conceptually simpler one, often attributed
to Tarski. Let CABA be the category of complete and atomic Boolean algebras, where a
Boolean algebra B is atomic if for every b ∈ B there is an atom a ∈ B such that a ≤B b.
Then there is a one-to-one correspondence between CABAs and sets, mapping each CABA
B to its set of atoms At(B), and every set S to its powerset P(S). This simple observation
turned out to play an important role in the development of discrete dualities between cate-
gories of lattices and categories of relational structures, paving the way for providing some
solid algebraic foundations to what would eventually become the most common semantics for
modal logic [150, 151]. This discrete approach can also be carried out beyond the Boolean
case, to obtain relational semantics for (modal) intuitionistic or positive logic [216, 68, 160],
as well as beyond the setting of distributive lattices to substructural logics [2, 98]. One of the
most general result in this area, inspired from the old tradition of polarities due to Birkhoff,
is Gehrke’s representation of perfect lattices via generalized Kripke frames [101].

A distinctive feature of this approach is that the representation of a given lattice L
is obtained via very specific filters or ideals, which are both principal and satisfy some
maximality constraint such as being completely prime or completely irreducible (a variant of
the notion of primality that is equivalent to it in the distributive case). Consequently, this
type of approach can only represent complete lattices with some very strong properties, just
like Tarski’s representation for complete Boolean algebras via powersets can only represent

1Perhaps apocryphally, he is often credited for the motto that “One should always topologize!”.
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complete and atomic Boolean algebras. There is, however, another way of providing discrete
representations for Boolean algebras, based on working with principal filters rather than
principal filters with maximal properties. This is precisely what we called the Forcing duality
between complete Boolean algebras and separative and complete posets in the Introduction,
and it plays for possibility semantics the role that Tarski’s CABA duality plays for Kripke-
style semantics in non-classical and modal logics. Moreover, this duality can be topologized
so as to extend it to all Boolean algebras. This is the choice-free duality via UV -spaces of
Holliday and Bezahnishvili [41] (see Section 3.2.3 below). Importantly, this duality relates
to Stone duality via the Vietoris hyperspace construction [258], which we briefly describe
here, as it will play a key role in the following chapters.

For any compact Hausdorff space X = (X, τ), let K(X ) be the set of all compact subsets
of X . Given an open set U ∈ τ , let 2U = {V ∈ K(X ) | V ⊆ U} and 3U = {V ∈ K(X ) |
V ∩U ̸= ∅}. Vietoris considered the following construction on metric spaces, which was then
extended to all compact Hausdorff spaces.

Definition 1.2.12. Let X = (X, τ) be a compact Hausdorff space.

• The Upper Vietoris hyperspace of X is the topological space V2(X ) = (K(X ), τ2),
where τ2 is the topology generated by the set {2U | U ∈ τ}.

• The Lower Vietoris hyperspace of X is the topological space V3V (X ) = (K(X ), τ3),
where τ3 is the topology generated by the set {3U | U ∈ τ}.

• Finally, the Vietoris hyperspace of X is the topological space V(X ) = (K(X ), τ23 ,
where τ23 is the join of the topologies τ2 and τ3, i.e., the topology generated by the
family of sets {2U,3U | U ∈ τ}.

Assuming BPI, one can show that the Vietoris hyperspace of a compact Hausdorff space
is always compact and Hausdorff, and that the Vietoris hyperspace of a Stone is always a
Stone space.2 The Vietoris hyperspace construction can also be lifted to a functor on the
category KHaus of compact Hausdorff spaces, which yields a powerful method to reason
about topological semantics for modal logic [257]. Upper Vietoris spaces, on the other hand,
offer a bridge between Stone duality and its choice-free counterpart:

Theorem 1.2.13 ([41], Thm 7.7). A topological space X is a UV -space if and only if
X = M2(CORO(X )), where CORO(X ) is the choice-free dual Boolean algebra of X .

In other words, the choice-free dual space of a Boolean algebra can be obtained from its
Stone dual by the upper Vietoris construction.

Much of the work in the next three chapters is devoted to extending the pattern outlined
here beyond the setting of Boolean algebras. We conclude this introduction by offering a
somewhat systematic picture of the dualities that play a role in the rest of our work. As

2This is, in fact, equivalent to BPI, see [146, p. 122].
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transpired from the discussion above, dualities can be classified by at least two of their
features. The first one is the type of properties they require of the filter / ideal objects they
use in their representation of algebraic structures. Discrete dualities typically use principal
filters / ideals, while dualities that rely on some form of the Axiom of Choice use filter / ideals
with some maximal property like primality. The second feature is their level of generality.
Discrete dualities can only be established for categories of complete lattices, while topological
dualities can capture larger categories of lattices. Dualities based on filters can be developed
for categories of lattices that exhibit strong symmetry properties, like Boolean algebras or
distributive lattices, while filter-ideal based dualities can have a broader scope.

In order to help the reader orientate themselves around all these dualities, we conclude
with two visual aides. First, the following diagram of categories of lattices, in which ar-
rows indicate inclusion of categories, and each point contains a hyperlink to a part of the
dissertation where a duality for the corresponding category of lattices is discussed.

Lat

cLat

PL DL

cDL

sLat HA

cHA

sHA BA

cBA

CABA

Second, the table below offers a classification of many of the dualities discussed in this
dissertation according to their topological/discrete and constructive or non-constructive na-
ture and their level of generality. Each cell contains a hyperlink to a part of this dissertation
discussing it. Finally, bold-faced notions are new dualities that are introduced in this dis-
sertation.

Finally, Table 1.1 can be seen as also providing a roadmap for the next three chapters.
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Boolean Algebras Heyting Algebras Distributive Lattices Lattices
Principal Prime/Maximal Filters Tarski de Jongh/Troelstra Raney Gehrke Discrete / Choice-free

Principal Filters Forcing Heyting B-Frames Distributive B-Frames B-Frames Discrete / Choice-free
Prime/Maximal Filters Stone Esakia Stone/Priestley Hartung-Urquhart Topological / Choice

Filters UV -Spaces Heyting Bispaces PUV -spaces / UV P -Spaces Moshier-Jipsen / Dunn-Hartonas-Allwein / FI-Spaces Topological / Choice(-free)

Table 1.1: Systematic Overview of Many Dualities

Chapter 2 is devoted to discrete dualities that generalize the Forcing duality to the category
of all complete lattices and to some of its subcategories. Chapter 3 focuses on extending the
choice-free Stone duality beyond Boolean algebras but still within the realm of distributivity.
Finally, Chapter 4 tackles the issue of extending this approach to the most general category
considered here, namely the category of all lattices.
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Chapter 2

A Discrete Duality for Complete
Lattices

2.1 Introduction

Topological dualities have become a standard tool in the representation of lattices and in
the semantics of non-classical logics. Stone famously established a duality between Boolean
algebras and Stone spaces [245] which he later generalized to a duality between distributive
lattices and spectral spaces [246]. Priestley [210] presented an alternative duality between
distributive lattices and Priestley spaces, while Esakia’s work [81, 83] yields dualities for
Heyting and bi-Heyting algebras. In the general case of bounded lattices, several dualities
have been proposed. Urquhart [256] gave a topological representation of bounded lattices
that directly generalizes Stone and Priestley’s theorems and which was later lifted by Hartung
[127] to a duality for bounded lattices and surjective lattice morphisms. Other dualities for
lattices and various lattice expansions have been proposed by Allwein, Dunn and Hartonas
[1, 122, 124, 125], as well as by Jipsen and Moshier [197] and Gehrke and van Gool [105].
Although these topological dualities can be used to give representations of complete lattices,
there is also a long tradition of discrete, purely relational representations of complete lat-
tices. This tradition originates with Tarski’s duality between sets and complete and atomic
Boolean algebras, which was later expanded to Boolean algebras with operators (BAOs) and
used to provide a semantics for modal logic. Tarski’s duality was also generalized to a duality
between posets and superalgebraic locales [68], also known as completely join-prime gener-
ated complete lattices [215, 216]. In set theory, an alternative representation of complete
Boolean algebras as the regular open sets of a poset has also become a cornerstone of forcing
[144, 161] and has recently been used to provide an alternative semantics for modal logic
known as possibility semantics [24, 133, 134, 137, 140]. This latest representation of com-
plete Boolean algebras is also related to a more general representation of complete lattices
obtained by Allwein and MacCaull in [2].

In this chapter, we lift Allwein and MacCaull’s representation theorem to a full dual-
ity. This is achieved by establishing first an idempotent adjunction between the category
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cLat of all complete lattices and a category Bos of bi-preordered sets (bosets for short).
Bi-ordered sets already played a role in Urquhart’s representation theorem, although the
Allwein-MacCaull dual bosets we consider differ from Urquhart’s, and they have also been
discussed in connection with the representation of complete Heyting algebras [36, 37, 188].
As shown in [136], there is also a strong connection between representations of complete
lattices via bi-ordered sets and via polarities [42, 62, 101, 125, 126]. We use our b-frame
duality to provide discrete representations of various classes of complete lattices and use
these alternative characterizations to obtain some results in the theory of complete Heyting
algebras and the semantics of intermediate logics.

The chapter is organized as follows. In Section 2.2, we introduce bosets and the relevant
notion of morphism between them, and we lift the Allwein-MacCaull representation of com-
plete latties to an idempotent adjunction between the category of bosets and the category of
complete lattices. In order to restrict this adjunction to a duality, we generalize the notion of
dense embeddings from forcing posets to the setting of bosets, and we use this to characterize
the fixpoints of the adjunction. This allows us to define the category bF of b-frames, dual
to the category cLat of complete lattices. We conclude the section by comparing b-frame
duality to some existing discrete and topological representations of lattices.

In the following two sections, we develop this framework further by establishing a cor-
respondence between algebraic properties of complete lattices and first-order properties of
b-frames. This allows us to obtain alternative representations of complete distributive lat-
tices, complete Heyting algebras and complete Boolean algebras in Section 2.3, while in
Section 2.4 the duality obtained for complete Heyting algebras is further restricted to obtain
geometric, amalgamation-like characterizations of the duals of spatial and superalgebraic
locales.

The last two sections are devoted to new applications of this framework to the theory
of complete Heyting algebras and the semantics of intermediate logics. In Section 2.5, the
notion of a coproduct of two bosets is defined and used to prove the following decomposition
theorem for complete bi-Heyting algebras:

Theorem 2.5.14. Let L be a complete bi-Heyting algebra. Then L is a complete subdirect
product of L1 × L2 in cLat, where L1 is a completely join-prime generated locale and L2 is
locale with no completely join-prime element.

A related result in the theory of Boolean algebras [106] states that any complete Boolean
algebra is the product of an atomic and an atomless Boolean algebra, although Theo-
rem 2.5.14 is a result about complete bi-Heyting algebras in cLat, rather than in the category
of complete bi-Heyting algebras and complete bi-Heyting morphisms, which is not a full sub-
category of cLat.

Finally, Section 2.6 discusses some applications of this framework to the semantics of
intuitionistic logic. We introduce boset semantics, a semantics as general as locale semantics
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for intuitionistic logic and show how semantics that are equivalent to Kripke and topological
semantics arise as natural restrictions imposed on boset semantics. As a consequence, boset
semantics provides a uniform presentation of most of the semantic hierarchy for intuitionistic
logic introduced in [36]. We conclude with an application to the incompleteness problem for
intermediate logics:

Theorem 2.6.14. The intermediate logic SL, originally proved by Shehtman [239] to be
Kripke-incomplete, is in fact incomplete with respect to the larger class of all complete bi-
Heyting algebras.

A similar result has recently and independently been obtained by Bezhanishvili, Gabelaia
and Jibladze in [35], via Esakia duality and through a fairly intricate argument. By contrast,
our proof is a straightforward adaptation of Shehtman’s original argument, which we take
as evidence that boset semantics can be a fruitful framework for the study of intermediate
logics.

2.2 B-frame Duality

In this section, we introduce the category bF of b-frames and prove that it is dual to
the category of complete lattices cLat. This is done in two steps. First, we introduce a
category Bos of bi-preordered sets and establish an idempotent adjunction between Bos
and cLat. As was already noted by Allwein and McCaul in their representation theorem
for complete lattices obtained in [2], all complete lattices are fixpoints of this adjunction.
This means that we only need to restrict Bos to a full subcategory of fixpoints in order
to obtain a category dual to cLat. We call such fixpoints b-frames and show that they are
completely characterized by certain properties of bi-preordered sets. Finally, in Section 2.2.5,
we connect this adjunction to well-known discrete dualities for complete lattices, showing
in particular how it generalizes Tarski’s duality between CABA and Sets, Raney’s duality
between superalgebraic lattices and posets and the forcing duality between complete Boolean
algebras and separative posets. We also discuss connections with several existing dualities
for lattices, including Urquhart-Hartung duality [127, 256], Allwein-Hartonas duality [122]
and Hartonas-Dunn duality [124, 125, 126].

2.2.1 Bosets and B-morphisms

Our starting point is the notion of a bi-preordered set, which will be called bosets for short.
In other words, a boset is a tuple (X,≤1,≤2) such that ≤1 and ≤2 are preorders on X.
Bi-ordered sets have been used before in the representation theory of bounded lattices, in
particular by Urquhart [256], Hartung [127] and in various ways by Allwein, MacCaull,
Hartonas and Dunn [1, 2, 125, 126]. We refer the reader to Section 2.2.5 for a comparison
of our approach to this literature. More recently, bi-ordered sets have also been discussed
in connection with the representation of complete Heyting algebras in [36, 37, 188]. This
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connection will be explored further in Section 2.6. For now, we introduce the notion of
morphism between bosets that will be relevant for our purposes:

Definition 2.2.1. Let (X,≤X
1 ,≤X

2 ) and (Y,≤Y
1 ,≤Y

2 ) be two bosets. A map f : X → Y is a
boset morphism (b-morphism) if the following are true:

1. f is monotone in both orderings, i.e., for any x, y ∈ X, if x ≤X
i y, then f(x) ≤Y

i f(y)
for i ∈ {1, 2};

2. ∀x ∈ X ∀y ≥Y
2 f(x)∃z ≥X

2 x : f(z) ≥Y
1 y;

3. ∀x ∈ X ∀y ≥Y
1 f(x)∃z ≥X

1 x : f(z) ≥Y
2 y.

It is straightforward to verify that the composition of two b-morphisms is still a b-
morphism.

Lemma 2.2.2. Let f : (X,≤X
1 ,≤X

2 ) → (Y,≤Y
1 ,≤Y

2 ) and g : (Y,≤Y
1 ,≤Y

2 ) → (Z,≤Z
1 ,≤Z

2 ) be
two b-morphisms. Then g ◦ f : (X,≤X

1 ,≤X
2 ) → (Z,≤Z

1 ,≤Z
2 ) is a b-morphism.

Proof. Monotonicity is clear. Suppose x ∈ X and z ≥Z
2 gf(x). Then since g is a b-morphism

there is y ≥Y
2 f(x) such that g(y) ≥Z

1 z. But since f is a b-morphism, this implies that there
is x′ ≥X

2 x such that f(x′) ≥Y
1 y. Thus gf(x′) ≥Z

1 g(y) ≥Z
1 z. Hence g ◦ f satisfies condition

2. The proof that g ◦ f also satisfies condtion 3 is completely similar.

Therefore bosets and b-morphisms form a category Bos. Our main goal is to understand
how this category relates to cLat, the category of complete lattices and complete lattice
morphisms between them. Throughout this chapter, given a poset (P,≤) and A ⊆ P , we
will write ↑A and ↓A for the sets {p ∈ P | ∃q ∈ A : q ≤ p} and {p ∈ P | ∃q ∈ A : p ≤ q}
respectively.

Example 2.2.3. Any preordered set P = (P,≤) may be viewed as a boset in two different
ways: either as a Kripke boset PF = (P,≤,≥), i.e., by letting the second ordering be the
converse of the ordering on P , or as forcing boset PB = (P,≥,≥), obtained by letting the
two orderings be the converse ordering.1 It is straightforward to verify that a b-morphism
between Kripke bosets is precisely a monotone map between the underlying preordered sets,
while a b-morphism between forcing bosets is a monotone map f : (P,≤P ) → (Q,≤Q) that
is also weakly dense, i.e., f is such that f [↓p] is dense (in the sense of the downset topology
induced by the ordering) in ↓f [p] for every p ∈ P .

Any boset X = (X,≤X
1 ,≤X

2 ) can be regarded as a bi-topological space, by letting τ1 and
τ2 be the upset topologies induced by the orders ≤1 and ≤2 respectively. We write C1 and
C2 for the corresponding closure operators. We can then consider the complete lattices O1

1The reason for flipping the order is simply historical: in the forcing literature, one typically works with
regular open downsets, while Kripke semantics is typically defined in terms of upsets. Since we will be
working with upsets, yet several notions defined below are generalizations of notions about forcing posets,
flipping the order when representing forcing posets as bosets will help avoid any confusion.
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and O2 of open sets in τ1 and τ2 respectively and define two antitone maps: ¬1 : O2 → O1

and ¬2 : O1 → O2 by letting ¬iU = X − Ci(U) for any U ∈ Oj and i ̸= j ∈ {1, 2}. Now
clearly for any U ∈ O1 and V ∈ O2,

U ⊆ ¬1V iff U ⊆ X − V,

and
V ⊆ ¬2U iff V ⊆ X − U.

So ¬1 and ¬2 form a Galois connection, which means that the composite map ¬1¬2 is a
closure operator on O1. A fixpoint of ¬1¬2 is called regular open. Notice in particular
that if τ1 = τ2, this definition coincides with the usual notion of a regular open subset of a
topological space. It is useful to observe that a set U ⊆ X is regular open if and only if for
any x ∈ X:

x ∈ U iff ∀y ≥X
1 x ∃z ≥X

2 y : z ∈ U.

As the fixpoints of a closure operator on a complete lattice always form a complete
lattice (Theorem 1.1.8, see also [229, Thm. 5.2]), it follows that the fixpoints RO12(X )
form a complete lattice. It is straightforward to verify that for any collection {Ui}i∈I of
sets in RO12(X ),

∧
i∈I Ui =

⋂
i∈I Ui and

∨
i∈I Ui = ¬1¬2(

⋃
i∈I Ui). Regular open sets in

bitopological spaces have been studied before in the context of duality theory for lattices, in
particular in the Pairwise Stone duality for distributive lattices developed in [39] and in using
Priestley and Esakia duality to give a topological characterization of MacNeille completions
of Heyting algebras [119]. The next lemma shows that the inverse image of a b-morphism
maps regular opens to regular opens.

Lemma 2.2.4. Let f : (X,≤X
1 ,≤X

2 ) → (Y ≤Y
1 ,≤Y

2 ) be a b-morphism. Then for any 1-upset
U ⊆ Y , f−1[¬1¬2(U)] = ¬1¬2f

−1[U ].

Proof. We claim that Ci(f
−1[U ]) = f−1[Ci(U)] for any U ∈ Oj, i ̸= j ∈ {1, 2}. This is

clearly enough to establish that f−1[¬1¬2(U)] = ¬1¬2f
−1[U ] for any U ∈ O1. For the proof

of the claim, suppose f(y) ∈ U for some y ≥X
i x. Since f(y) ≥X

i f(x), by the b-morphism
conditions, there is some z ≥X

i x such that f(z) ≥Y
j f(y), for j ̸= i. Since U is j-open,

f(z) ∈ U , so f(x) ∈ Ci(U). This shows that Ci(f
−1[U ]) ⊆ f−1[Ci(U)]. Conversely, if

f(x) ≤Y
i y for some y ∈ U , then by the b-morphism conditions again there is some z ≥X

i x
such that f(z) ≥j y. Once again, since U is j-open this implies that z ∈ f−1[U ], and thus
x ∈ Ci(f

−1[U ]).

This allows us to define a contravariant regular open functor ρ : Bos → cLat:

• For any boset X = (X,≤1,≤2), ρ(X ) = RO12(X ), i.e., the complete lattice of
fixpoints of the ¬1¬2 closure operator on the 1-upward closed sets of X .

• Given a b-morphism f : (X,≤X
1 ,≤X

2 ) → (Y,≤Y
1 ,≤Y

2 ), ρ(f) : RO12(Y ) → RO12(X) is
defined as the restriction to RO12(Y ) of the preimage function f−1.
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Since RO12(X ) is a complete lattice for any boset X , ρ is well-defined on objects. To
see that it is well defined on morphisms, suppose f : X → Y is a b-morphism. Then
by Lemma 2.2.4 ρ(f) is a map from RO12(Y ) → RO12(X ). Moreover, let {Ui}i∈I be any
collection of sets in RO12(Y ). It is routine to check that

⋂
i∈I f

−1[Ui] = f−1[
⋂
i∈I Ui], and

by Lemma 2.2.4, we have that

f−1[¬1¬2(
⋃
i∈I

Ui)] = ¬1¬2(f
−1[

⋃
i∈I

Ui]) = ¬1¬2(
⋃
i∈I

f−1[Ui]).

Thus ρ(f) is a complete lattice morphism from RO12(Y ) to RO12(X ).

2.2.2 From Lattices to Bosets

Having constructed the first half of the adjunction, let us now define a functor going from
complete lattices to bosets. The construction on objects was already introduced in [2],
although Allwein and MacCaull do not extend their representation theorem to a full duality.

Definition 2.2.5. Let L be a complete lattice. The dual Allwein-MacCaull boset of L is the
boset (PL,≤L

1 ,≤L
2 ) such that:

• PL = {(a, b) ∈ L | a ≰ b};

• (a, b) ≤L
1 (c, d) iff a ≥L c;

• (a, b) ≤L
2 (c, d) iff b ≤L d.

Let f : L→M be a complete lattice homomorphism. By the adjoint functor theorem, f
has a left adjoint ·f and a right adjoint ·f , where for any a ∈ M , af =

∧
{c ∈ L | f(c) ≥ a}

and af =
∨
{c ∈ L | f(c) ≤ a}. The following lemma shows how to use the existence of

those adjoints to construct a b-morphism from f .

Lemma 2.2.6. Let f : L → M be a complete lattice homomorphism. The map α(f) :
(PM ,≤M

1 ,≤M
2 ) → (PL,≤L

1 ,≤L
2 ) defined by α(f)(a, b) = (af , bf ) is a b-morphism.

Proof.

• Showing that α(f) is well defined amounts to proving that for any a, b ∈ M , af ≤ bf
implies that a ≤ b. But clearly as ·f and ·f are left and right adjoint to f respectively,
we have that a ≤ f(af ) and f(bf ) ≤ b, so by monotonicity of f , af ≤ bf implies that
a ≤ f(af ) ≤ f(bf ) ≤ b.

• Monotonicity of α(f) in the two orderings is straightforward.

• Let (a, b) ∈ PM and suppose α(f)(a, b) ≤L
2 (c, d) for some c ≰ d ∈ L. We claim that

the pair (f(c), b) is in PM . To see this, note that if f(c) ≤ b, then c ≤ bf . But since
α(f)(a, b) = (af , bf ) ≤L

2 (c, d), we have that c ≤ d, a contradiction. Thus f(c) ≰ b.
Therefore (a, b) ≤M

2 (f(c), b) and (c, d) ≤L
1 (f(c)f , bf ).
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• Let (a, b) ∈ PM and suppose α(f)(a, b) ≤L
1 (c, d) for some c ≰ d ∈ L. We claim that

the pair (a, f(d)) is in PM . To see this, note that if a ≤ f(d), then af ≤ d. But since
α(f)(a, b) = (af , bf ) ≤L

1 (c, d), we have that c ≤ d, a contradiction. Thus a ≰ f(d).
Therefore (a, b) ≤M

1 (a, f(d)) and (c, d) ≤L
2 (af , f(d)f ) = α(f)(a, f(d)).

The contravariant α : cLat → Bos is defined as follows:

• for any complete lattice L, α(L) = (PL,≤L
1 ,≤L

2 ), the dual Allwein-MacCaull boset of
L.

• for any complete lattice morphism f : L → M , α(f) : (PM ,≤M
1 ,≤M

2 ) → (PL,≤L
1 ,≤L

2 )
is defined as the map (a, b) 7→ (af , bf ).

Remark 2.2.7. A careful look at the definition of the functor α reveals that it could easily
be extended to the category of all lattices and morphisms that have both a left and right
adjoint. However, in the absence of the adjoint functor theorem, this condition on morphisms
is fairly cumbersome. We therefore limit ourselves to discussing morphisms between complete
lattices, for which having a left and a right adjoint is equivalent to being a complete lattice
homomorphism.

We are now in a position to provide a representation theorem for all complete lattices. As
mentioned in the introduction, this result was already obtained in [2, Thm. 4.2.9]. However,
Allwein and MacCaull use some notation introduced by Urquhart [256], which differs quite
significantly from ours. A more similar proof to the one we give below can be found in [136],
although Holliday works with downsets while we work with upsets. Moreover, none of the
works mentioned above presents their result from a categorical viewpoint, while we are also
in a position to establish the naturality of the isomorphism between L and the regular opens
of its dual boset, a key step in proving the idempotent adjunction we are after.

Lemma 2.2.8. For any complete lattice L, L is isomorphic to ρα(L) naturally in L.

Proof. Let L be a complete lattice with dual boset α(L) = (PL,≤L
1 ,≤L

2 ). We claim that
the map φL : a 7→ ↑1(a, 0) is a complete lattice isomorphism natural in L between L and
RO12(PL).

• φL is well defined: let (c, d) ∈ PL such that c ≰ a. Then the pair (c, a) is in PL, which
implies that (c, d) /∈ ¬1¬2(↑1(a, 0)). Thus ¬1¬2(↑1(a, 0)) = ↑1(a, 0).

• φL is order-preserving and order-reflecting: suppose a ≤L b. Then (b, 0) ≤L
1 (a, 0),

which implies that ↑1(a, 0) ⊆ ↑1(b, 0). Conversely, if a ≰ b, then (b, 0) /∈ ↑1(a, 0).

• φL is surjective: Suppose U ⊆ PL such that ¬1¬2(U) = U . We claim that U = φ(a),
where a =

∨
{c | φ(c) ⊆ U}. Suppose that (c, d) ∈ U for some c ≰ d ∈ U . Then since

U is a 1-upset, ↑1(c, d) = ↑1(c, 0) ⊆ U , so c ≤ a. Since φL is order-preserving, this
implies that ↑1(c, 0) = φL(c) ⊆ φL(a), and therefore U ⊆ φL(a). For the converse, let
(c, d) ≥L

1 (a, 0). We claim that there is b ∈ L such that φL(b) ⊆ U and b ≰ d. To
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see this, note that, otherwise, d is an upper bound of the set {b ∈ L | φL(b) ⊆ U},
which implies that a ≤ d. But c ≤ a, and therefore c ≤ d, a contradiction. Thus
(c, d) ≤L

2 (b, d) for some b such that φL(b) ⊆ U , and therefore (a, 0) ∈ ¬1¬2(U) = U .
This completes the proof that φL is a complete lattice isomorphism.

• For naturality in L, suppose we have a complete lattice morphism f : L → M . We
want to show that φM(f)(a) = ρα(f)(φL(a)) for any a ∈ L. Note that φM(f)(a) =
↑1(f(a), 0). Then we compute:

ρα(f)(φL(a)) = ρα(f)(↑1(a, 0))

= {(c, d) ∈ α(M) | α(f)(c, d) ∈ ↑1(a, 0)}
= {(c, d) ∈ α(M) | (cf , df ) ≥L

1 (a, 0)}
= {(c, d) ∈ α(M) | cf ≤L

1 a}
= {(c, d) ∈ α(M) | c ≤L

1 f(a)} = ↑1(f(a), 0).

This completes the proof.

This result yields a representation of complete lattices as regular opens of some boset.
For our purposes however, it also allows us to establish that all complete lattices are fixpoints
of a contravariant adjunction. The existence of this adjunction is the main theorem of this
section:

Theorem 2.2.9. The functors α : cLat → Bos and ρ : Bos → cLat form a contravariant
adjunction.

Proof. Let L be a complete lattice and X = (X,≤1,≤2) a boset. We will define a family of
bijections between HomcLat(L, ρ(X )) and HomBos(X , α(L)), natural in both L and X .

For any f : L → ρ(X ) and any x ∈ X, let xf =
∧
{a ∈ L | x ∈ f(a)} and xf =∨

{b ∈ L | x ∈ ¬2(f(b))}. Let f : X → α(L) be defined as f(x) = (xf , xf ). We claim that
· : HomcLat(L, ρ(X )) → HomBos(X , α(L)) is an isomorphism natural in L and X .

• f is a b-morphism:

– Note first that f is well defined: since f is a complete lattice morphism, for any
x ∈ X, x ∈ f(xf ) and x /∈ f(xf ). Thus f(x) ∈ PL.

– For monotonicity, notice that x ≤1 y implies that if x ∈ f(a), then y ∈ f(a)
for any a ∈ L. Therefore xf ≥ yf , and therefore f(x) ≤L

1 f(y). Similarly, if
x ≤2 y, then x ∈ ¬2(f(b)) implies y ∈ ¬2(f(b), and thus xf ≤ yf . Therefore
f(x) ≤L

2 f(y).

– Suppose that (c, d) ≥L
2 f(x) for some x ∈ X, c, d ∈ L. We claim that there is

y ≥2 x such that y ∈ f(c). Otherwise, x ∈ ¬2(f(c)), and therefore c ≤ xf . But
this implies that c ≤ d, a contradiction. Thus such a y ≥2 x exists. But since
y ∈ f(c), it follows that f(y) ≥L

1 (c, d).
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– Suppose now that (c, d) ≥L
1 f(x). We claim that there is y ≥1 x such that

y ∈ ¬2(f(d)). Otherwise, x ∈ ¬1¬2(f(d)) = f(d), and thus c ≤ xf ≤ d, a
contradiction. Now since y ∈ ¬2(f(d)), we have that d ≤ fy, and thus (c, d) ≤L

2

f(y).

• · is injective: let f1, f2 : L→ ρ(X ) such that f1 ̸= f2. Without loss of generality, there
is some a ∈ L such that f1(a) ⊈ f2(a). Let x ∈ f1(a) such that x /∈ f2(a). Then there
is y ≥1 x such that y ∈ f1(a) and y ∈ ¬2(f2(a)). This implies that yf1 ≤ a ≤ yf2 . As
yf1 ≰ yf1 , this means that yf1 ̸= yf2 , and therefore f1(y) ̸= f2(y).

• · is surjective: let g : X → α(L) and consider the map f : L → ρ(X ) defined
by f(a) = g−1[↑1(a, 0)]. We claim that g = f . Indeed, for any x ∈ X such that
g(x) = (c, d) and any a ∈ L, we have that g(x) ∈ f(a) iff c ≤1 a, and g(x) ∈ ¬2(f(a))
iff a ≤ d. Thus f(x) = (c, d).

Finally, it remains to verify that ∼ is natural in both L and X . This means that for any
M ∈ cLat, Y ∈ Bos, g : M → L and h : Y → X , the following diagram commutes:

HomcLat(L, ρ(X )) ∼ //

HomcLat(g,ρ(h))

��

HomBos(X , α(L))

HomBos(α(g),h)

��
HomcLat(M,ρ(Y )) ∼ // HomBos(Y , α(M))

i.e., ρ(h) ◦ f ◦ g = α(g) ◦ f ◦ h for any f : L→ ρ(X ). Now let y ∈ Y and compute that:

α(g)(f)(h)(y) = α(g)((h(y)f , (h(y))f ))

= (
∧

{a ∈M | g(a) ≥ (h(y))f},
∨

{a ∈M | g(a) ≤ (h(y))f})

and

ρ(h) ◦ f ◦ g(y) = (
∧

{a ∈M | y ∈ ρ(h)(f)(g(a))},
∨

{a ∈M | y ∈ ¬2(ρ(h)(f)(g(a)))})

= (
∧

{a ∈M | y ∈ h−1[f(g(a))]},
∨

{a ∈M | y ∈ ¬2h
−1[f(g(a))]}).

Thus it is enough to show for any a ∈M that:

g(a) ≥ (h(y))f ⇔ h(y) ∈ f(g(a)) (2.1a)

g(a) ≤ (h(y))f ⇔ y ∈ ¬2h
−1[f(g(a))] (2.1b)

Now (2.1a) follows directly from the definition of (h(y))f . For (2.1b) on the other hand, note
that g(a) ≤ (h(y))f iff h(y) ∈ ¬2f(g(a)) iff y ∈ h−1[¬2f(g(a))]. Since h is a b-morphism, we
have that h−1[¬2f(g(a))] = ¬2h

−1[f(g(a))], which completes the proof.

For the sake of clarity, we will sometimes refer to this adjunction as a covariant adjunction
between cLat and Bosop. If we think of α and ρ as covariant functors, it then follows from
the previous theorem that α is left-adjoint to ρ. It therefore makes sense to talk about
the unit and counit of this adjunction as natural transformations η : IdcLat → ρα and
ϵ : IdbF → αρ.
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Remark 2.2.10. Closer inspection of the proof of Theorem 2.2.9 shows that the counit of
the adjunction is given by the map ϵX : X → αρ(X ), defined as ϵX (x) = (Ux, Vx), where
for any x ∈ X , Ux = ¬1¬2(↑1x) and Vx = {z | ¬∃y : y ≥2 x ∧ y ≥1 z}. To see that Vx is
regular open, note first that it is clearly a 1-upset. Now suppose that y /∈ Vx. This means
that there is z ∈ X such that z ≥2 x and z ≥1 y. But then for any w ≥2 z, w ≥2 x, and
therefore y /∈ ¬1¬2(Vx). Hence ¬1¬2(Vx) ⊆ Vx, which implies that Vx is regular open.

The Allwein-MacCaull representation theorem (Lemma 2.2.8), when coupled with
Theorem 2.2.9, implies the corollary mentioned above.

Corollary 2.2.11. The functors α and ρ form an idempotent contravariant adjunction.

Indeed, to establish that the adjunction is idempotent, it is enough to show that the
unit of the adjunction is a natural isomorphism. Now for any X ∈ Bos, L ∈ cLat,
g ∈ HomBos(X , α(L)), and a ∈ L, g−1(a) = g−1[↑1(a, 0)] = ρ(g)(φL(a)). Thus φL is the
unit of the adjunction between α and ρ. Moreover, since by Lemma 2.2.6 φL is an isomor-
phism natural in L, α(φL) is an isomorphism natural in α(L).

It is a general categorical fact that the fixpoints of an idempotent adjunction induce an
equivalence of categories. Therefore the following definition is natural.

Definition 2.2.12. A b-frame is a boset X such that ϵX : X → αρ(X ) is an isomorphism.
Let bF be the full subcategory of Bos of all b-frames.

As an immediate consequence of Corollary 2.2.11, we obtain the following:

Theorem 2.2.13. The categories cLat and bF are dually equivalent.

This result, however, only amounts to an abstract characterization of the duals of com-
plete lattices. A more useful characterization would identify precisely which properties of a
boset X guarantee that ϵX is an isomorphism. In the next part of this section, a special
class of b-morphisms, which generalize the notion of a dense embedding in the forcing liter-
ature, is introduced. We then show that for any boset X , ϵX is such a dense embedding.
Finally, in the last part, we will show that imposing some natural conditions on bosets allows
us to strengthen this dense embedding to an isomorphism, thus obtaining a more concrete
characterization of b-frames.

2.2.3 Dense Embeddings

We begin by introducing the following notation which will be used extensively:

Definition 2.2.14. Let X := (X,≤1,≤2) be a boset. For any x, y ∈ X and k, j ∈
P({1, 2})−{∅}, we introduce the following notation:

x j⊥ky iff ¬∃z : y ≤s z for all s ∈ j and x ≤t z for all t ∈ k.

In particular, we say that x is independent from y whenever x2⊥1y.
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It is straightforward to note that for any poset P = (P,≤), if we view P as a Kripke boset
(P,≤,≥), we have that x2⊥1y iff y ≰ x, while if we view P as a forcing boset (P,≥,≥),
we have that x2⊥1y iff x⊥y, where ⊥ is the standard incompatibility relation in the forcing
literature. More generally, following the notation introduced in Remark 2.2.10, we have in
any boset X that x2⊥1y iff x /∈ Uy iff y ∈ Vx.

In Allwein-MacCaull bosets, i.e., bosets of the form α(L) for some complete lattice L,
independence can be seen as a purely graph-theoretic way of capturing the order on L:

Lemma 2.2.15. Let (X,≤1,≤2) be α(L) for some complete lattice L. Then for any x =
(fx, ix) and any y = (fy, iy), we have that:

1. x2⊥1y iff fy ≤ ix;

2. x 12⊥2y iff fx ≤ ix ∨ iy;

3. x 12⊥1y iff fx ∧ fy ≤ iy.

Proof. All three items follow immediately from the fact that for any a, b ∈ L, a ≰ b iff the
pair (a, b) ∈ α(L).

Let us now focus on a specific class of b-morphisms, which generalize in a natural way
the notion of a dense embedding between forcing posets.2

Definition 2.2.16. Let X = (X,≤X
1 ,≤X

2 ) and Y = (Y,≤Y
1 ,≤Y

2 ) be two bosets and f :
X → Y a b-morphism. Then:

• f is dense if for any y ∈ Y there is x ∈ X such that y ≤Y
12 f(x).

• f is an embedding if for any x, y ∈ X , we have that x1⊥2y iff f(x)1⊥2f(y).

The next two lemmas show that dense b-morphisms and embeddings are dual to injective
and surjective lattice morphisms respectively.

Lemma 2.2.17. Let f : X = (X,≤X
1 ,≤X

2 ) → Y = (Y,≤Y
1 ,≤Y

2 ) be a b-morphism. Then:

1. f is dense iff ρ(f) is injective;

2. f is an embedding iff ρ(f) is surjective.

Proof.

1. Suppose f is dense, and let U, V ∈ ρ(Y ) such that U ̸= V . Without loss of generality,
there is y ∈ U ∩¬2V , and since f is dense, there must be x ∈ X such that f(x) ≥Y

12 y.
But then f(x) ∈ U ∩ ¬2V , which means that x ∈ ρ(f)(U)−ρ(f)(V ). Hence ρ(f) is
injective.
Conversely, suppose there is y ∈ Y such that for all x ∈ X, f(x) ≱Y

12 y. Let U =

2For an overview of the basic notions and techniques in forcing, see for example [161].
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¬1¬2(↑1y) and V = {z | y2⊥1z}. Clearly, U ⊈ V , but we claim that f−1[U ] ⊆ f−1[V ].
Note that this implies that U ∩ V ̸= U but f−1[U ] = f−1[U ∩ V ] = f−1[U ] ∩ f−1[V ]
and thus that ρ(f) is not injective. For the proof of the claim, suppose towards a
contradiction that there is x ∈ f−1[U ]−f−1[V ]. Since both f−1[U ] and f−1[V ] are
regular open, without loss of generality we may assume that x ∈ ¬2f

−1[V ]. Moreover,
note that, since x ∈ f−1[U ], then there is q ≥Y

1 y such that f(x) ≤Y
2 q. But this

means that there is z ≥X
2 x such that f(z) ≥Y

1 q ≥Y
1 y. Now since x ∈ ¬2f

−1[V ], this
means that f(z) /∈ V , and hence there is q′ ≥Y

1 f(z) such that q′ ≥Y
2 y. Hence there is

z′ ≥X
1 z such that f(z′) ≥Y

2 q′ ≥Y
2 y. But since also f(z′) ≥Y

1 f(z) ≥Y
1 y, we have that

f(z′) ≥Y
12 y, contradicting our assumption. This completes the proof.

2. Suppose f is an embedding, and let U ∈ ρ(X ). We claim that f−1f [U ] = U . To see
this, assume that x ∈ f−1f [U ]. Then f(x) = f(y) for some y ∈ U . Now for any z ≥1 x,
this implies that f(z) ≥1 f(y), and thus ¬f(y)1⊥2f(z). Hence ¬y1⊥2z, which implies
that z ∈ C2(U), and hence x ∈ ¬1¬2(U) = U . Thus f−1f [U ] ⊆ U , and the converse
direction is obvious. Now let V = ¬1¬2f [U ], and note that we have that

ρ(f)(V ) = f−1(¬1¬2f [U ]) = ¬1¬2(f
−1f [U ]) = ¬1¬2(U) = U.

Thus ρ(f) is surjective.
Conversely, assume there are x, y ∈ X such that x1⊥2y but there is z ∈ Y such that
f(x) ≤1 z and f(y) ≤2 z. Note that this implies that there is y′ ≥2 y such that
z ≤1 f(y′). We claim that for any U ∈ ρ(Y ), if f(x) ∈ U , then f(y′) ∈ U . Since
y′ /∈ ¬1¬2(↑1x), this will imply that ρ(f) is not surjective. For the proof of the claim,
it is enough to notice that f(y′) ≥1 z ≥1 f(x), since any U ∈ ρ(Y ) is a 1-upset. This
completes the proof.

Lemma 2.2.18. Let f : L→M be a lattice homomorphism. Then:

1. f is injective iff α(f) is dense;

2. f is surjective iff α(f) is an embedding.

Proof.

1. Note that by lemma 1.11, we have that f is injective iff ρα(f) is injective. But by the
previous lemma, we have that ρα(f) is injective iff α(f) is dense.

2. Similarly, we have that f is surjective iff ρα(f) is surjective, which by the previous
lemma is equivalent to α(f) being an embedding.

Dense embeddings will be of crucial relevance later on, as we will use extensively the fact
that a dense embedding between two bosets induces an isomorphism of the dual complete
lattices. Once again, this can be seen as a generalization of the well-known result that two
posets are forcing equivalent iff there is a dense embedding between them. In particular, if
X = (X,≤X

1 ,≤X
2 ) is a boset, then a dense sub-boset of X is a boset Y = (Y,≤X

1 |Y,≤X
2 |Y ),
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where Y ⊆ X and for any x ∈ X there is y ∈ Y such that x ≤12 y. The proof of the
following lemma is immediate when one realizes that if Y is a dense sub-boset of X , then
the inclusion map ι : Y → X is a dense embedding.

Lemma 2.2.19. Let Y be a dense sub-boset of X . Then ρ(X ) is isomorphic to ρ(Y ).

Moreover, as shown in Lemma 2.2.6, the unit ηL of the adjunction α ⊣ ρ is an isomorphism
for any complete lattice L. A similar result holds for the counit ϵX .

Lemma 2.2.20. For any boset X , the map ϵX : X → αρ(X ) is a dense embedding.

Proof. Suppose we have that x2⊥1y. Then y ∈ Vx, which implies that Uy ⊆ Vx. Hence
(Ux, Vx)2⊥1(U

y, Vy), which means that ϵX is an embedding. For density, assume U, V ∈
ρ(X ) are such that U ⊈ V . Then since both U and V are regular open there is y ∈ X
such that y ∈ U ∩ ¬2V . But this implies that Uy ⊆ U and that V ⊆ Vy, and hence
(U, V ) ≤12 (Uy, Vy).

However, it is easy to verify that dense embeddings are not isomorphisms in the category
of bosets: since b-morphisms are maps sending points to points, any b-morphism with an
inverse must be bijective. In order to characterize b-frames, we must therefore impose
some extra conditions on a boset X that guarantee that the dense embedding ϵX is an
isomorphism.

2.2.4 Characterizing B-frames

The following definition generalizes the notion of a separative poset in forcing:

Definition 2.2.21. A boset X = (X,≤1,≤2) is separative if it satisfies the following three
properties:

• ≤1 ∩ ≤2 is anti-symmetric;

• for any x, y ∈ X , x ≤1 y ⇔ ∀z(z2⊥1x→ z2⊥1y) (1-separativity);

• for any x, y ∈ X , x ≤2 y ⇔ ∀z(x2⊥1z → y2⊥1z) (2-separativity).

In particular, it is straightforward to verify that any poset (X,≤) is separative iff the
corresponding forcing boset (X,≥,≥) is separative.

In order to characterize b-frames, we will also need a second property.

Definition 2.2.22. A boset X = (X,≤1,≤2) is complete if for any U, V ∈ ρ(X ) such that
U ⊈ V , there is z ∈ X such that U = U z and V = Vz.

Unlike separativity, this property requires (monadic) second-order quantification to be
expressed. We will show later on (Lemma 2.3.24) that this requirement is necessary, i.e.,
that there is no possible first-order axiomatization of b-frames.

We can now establish that separativity and completeness entirely characterize b-frames.
Let us start by observing that the regular open sets of a complete separative boset X have
a very concrete characterization: they are precisely the principal 1-upsets of X .
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Lemma 2.2.23. Let X = (X,≤1,≤2) be a complete separative boset. Then for any non-
empty U ⊆ X, U ∈ ρ(X ) iff U = ↑1x for some x ∈ X.

Proof. We first claim that for any x ∈ X, ¬1¬2(↑1x) = ↑1x. To see this, note that it suffices
to show the left-to-right direction since ↑1x is 1-upward closed. By separativity, if x ≰1 y
for some y ∈ X, then there is z ∈ X such that z2⊥1x but ¬z2⊥1y. Let z′ ≥1 y such that
z′ ≥2 z. Clearly, z′2⊥1x, for otherwise we would have ¬z2⊥1x. Hence z′ ∈ ¬2(↑1x), which
implies that y /∈ ¬1¬2(↑1x), which concludes the proof of the claim. Hence for any x ∈ X,
↑1x ∈ ρ(X ). Now let U be a non-empty subset in ρ(X ). Then as U ⊈ ∅, there is some
x ∈ X such that U = Ux = ¬1¬2(↑1x) = ↑1x. Thus any non-empty U ∈ ρ(X ) is ↑1x for
some x ∈ X.

The next two lemmas establish the characterization of b-frames mentioned above.

Lemma 2.2.24. Every b-frame is separative and complete.

Proof. It is enough to show that α(L) is separative and complete for any complete lattice
L. Note first that it is clear from the definition of α(L) that ≤1 ∩ ≤2 is antisymmetric. For
1-separativity, suppose (a, b) ≰1 (c, d) for some a, b, c, d ∈ L. This means that c ≰ a, and
thus (c, a) ∈ α(L). But clearly (c, a)2⊥1(a, b) yet ¬(c, a)2⊥1(c, d). The converse direction
is trivial. For 2-separativity, suppose (a, b) ≰2 (c, d). Then b ≰ d, which means that
(b, d) ∈ α(L). But then (a, b)2⊥1(b, d), yet ¬(c, d)2⊥1(b, d). Hence α(L) is separative. For
completeness, recall first that ηL : L → ρα(L) is an isomorphism. For any U ⊈ V ∈ ρα(L),
let a = η−1

L (U) and b = η−1
L (V ) be elements of L, and note that we have that (a, b) ∈ α(L).

Since U = ηL(a) = ↑1(a, 0) = ↑1(a, b), we have that U = U (a,b). Moreover, for any (c, d) ∈
α(L), we have that (a, b)2⊥1(c, d) iff c ≤ b iff (b, 0) ≤1 (c, d) iff (c, d) ∈ ηL(b) = V . Thus
V = V(a,b), which completes the proof.

Coupled with Lemma 2.2.20, this lemma generalizes to bosets the standard result that
any poset is forcing equivalent to a separative poset.

Lemma 2.2.25. Every complete separative boset is a b-frame.

Proof. Let X = (X,≤1,≤2) be a complete separative boset. We have to show that the map
ϵX = X → αρ(X ) is an isomorphism, i.e., that it is bijective and reflects both preorders.

• Note first that since ≤1 ∩ ≤2 is antisymmetric, to prove injectivity it is enough to show
that both preorders are reflected by ϵX . Let x, y ∈ X , and assume x ≰1 y. Then
↑1y ⊈ ↑1x, which since X is separative implies that Uy ⊈ Ux and hence that

ϵX (x) = (Ux, Vx) ≰1 (Uy, Vy) = ϵX (y).

Similarly, if x ≰2 y, by separativity there is z ∈ X such that x2⊥1z but ¬y2⊥1z. But
this implies that z ∈ Vx yet z /∈ Vy. Hence ϵX (x) ≰2 ϵX (y).

• Finally, surjectivity is an immediate consequence of X being complete, since points in
αρ(X ) are precisely pairs (U, V ) of elements of ρ(X ) such that U ⊈ V .

Putting the previous two lemmas together, we obtain the last result of this section.

Theorem 2.2.26. A boset is a b-frame iff it is separative and complete.
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2.2.5 B-frame Duality and Lattice Representations

Let us conclude this section by comparing the results obtained above with known results in
the literature. There exist, of course, many adjunctions and dualities between categories of
lattices and concrete categories, which have various advantages and drawbacks. Representa-
tions of lattices as upsets of certain posets typically involve adding some further structure,
either in the form of a topology as in Priestley and Esakia duality, or in the form of a second
relation. Since our b-frame duality is of the latter kind, we first discuss how it relates to some
classical discrete representations in the literature, before comparing it to some well-known
dualities of the former kind.

Discrete Representations

As mentioned in the introduction, the duality exposed here can be seen as a generalization
both of the duality between posets and completely join-prime generated or superalgebraic
locales, which itself generalizes Tarski duality between sets and complete atomic Boolean
algebras, and of the representation of complete Boolean algebras as regular open sets of
separative posets which lies at the heart of some classical results in forcing. Although these
representations are well known, they are not always presented from a categorical perspective.
We therefore briefly present them below in some detail and somewhat more systematically
than what is commonly found in the literature, as this will illuminate the sense in which the
b-frame duality presented here generalizes those results.

Definition 2.2.27. Let cBA and CABA be the full subcategories of cLat whose objects
are complete Boolean algebras and complete and atomic Boolean algebras respectively. Let
sLat be the subcategory of cLat whose objects are superalgebraic complete lattices (i.e.,
completely join-prime generated complete lattices) and whose morphisms are complete lattice
homomorphisms.

Thus we obtain the following diagram of inclusions of categories:

cLat

sLat cBA

CABA

On the geometric side of these dualities, we have the category of sets and two categories
of posets:

Definition 2.2.28. Let Set be the category of all sets and functions between them, Pos1
the category of posets and monotone maps between them and Pos2 the category of posets
and weakly-dense maps between them.
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As mentioned in Example 2.2.3 above, a poset (P,≤P ) can be viewed as the boset (P,≤P

,≥P ), or as the boset (P,≥P ,≥P ). It is straightforward to verify that both constructions lift
to two full embedding functors κ : Pos1 → Bos and δ : Pos2 → Bos, from which we obtain
the following commuting diagram:

Bos

Pos1 Pos2

Set

δκ

We now briefly recall the various correspondences that our result aims to generalize:

Theorem 2.2.29 (Tarski). CABA and Set are dual to one another:

• The functor At : CABA → Set maps any complete atomic Boolean algebra to the set
of its atoms and any complete Boolean homomorphism h : B → C to the restriction of
its left adjoint h∗ : C → B to the atoms of B and C.

• The functor P : Set → CABA maps any set S to its powerset P(S) and any function
f : S → T to the inverse image map f−1 : P(T ) → P(S).

An early reference for the following result is [216]:

Theorem 2.2.30 (Raney). sLat and Pos1 are dual to one another:

• The functor γ : sLat → Pos1 maps any superalgebraic locale L to the poset of its
completely join-prime elements with the reverse order on L and any complete lattice
homomorphism h : L → M maps to the restriction of its left adjoint h∗ : M → L to
the completely join-prime elements of M and L.

• The functor τ : Pos1 → sLat maps any poset (P,≤P ) to its complete lattice of upsets
Up(P ) and any monotone map f : (P,≤P ) → (Q,≤Q) to the inverse image map
f−1 : Up(Q) → Up(P ).

• This γ-τ duality restricts precisely to Tarski duality between CABA and Set.

Let us also note that De Jongh and Troelstra [68] observed that the Raney dual of a com-
plete lattice homomorphism h is a p-morphism if and only if h is also a complete Heyting
morphism, meaning that it also preserves the right-adjoint of the meet operation, which
exists in any superalgebraic lattice. This yields a restriction of Raney duality to De Jongh-
Troesltra duality between the category of superalgebraic locales and Heyting morphisms
between them, and the category of posets and p-morphisms, which can also be shown to be
generalized by our b-frame duality.

Finally, the following definition is needed in order to express the last one of our theorems:
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Definition 2.2.31. A poset (P,≤P ) is separative if for any x, y ∈ P such that x ≰P y, there
is z ∈ P such that z ≤P x and for all w ∈ P , if w ≤P z then w ≰P y. A poset (P,≤P ) is
complete if for every non-empty regular open subset U of (P,≤P ) there is p ∈ P such that
U = ↓p.

Theorem 2.2.32 ([144, Chap. 14]). There is an idempotent contravariant adjunction be-
tween cBA and Pos2:

• The functor β : cBA → Pos2 maps any complete Boolean algebra B to the poset
(B+,≤B |B+), where B+ = B \0 and any complete Boolean homomorphism h : B → C
to the restriction of its left-adjoint h∗ : C+ → B+.

• The functor σ : Pos2 → cBA maps any poset to its Boolean algebra of regular open
downsets RO(P ) and any weakly dense map f : (P,≤P ) → (Q,≤Q) to the inverse
image map f−1 : RO(Q) → RO(P ).

• The functors σ and β restrict to a duality between the full subcategories of fixpoints of
σβ and βσ, i.e., between cBA and the full subcategory of Pos2 of complete separative
posets.

• If B is a complete atomic Boolean algebra, then At(B) with the discrete order is a dense
subposet of β(B). Conversely, if S is a set, then σ(S,∆S) is isomorphic to P(S).

Combining these results with our adjunction between complete lattices and bosets, we
obtain the following diagram of categories:

Set

CABA

cLat

Bos

sLatPos1 cBA Pos2

δκ
αρ

γ σ

τ β

PAt

Note that not all squares in the diagram above commute, not even up to isomorphisms.
For example, if B is a complete and atomic Boolean algebra, then At(B) is a discrete poset,
while the order on β(B) is the restriction of the order on B. Similarly, for a superalgebraic
lattice L, the second order on κ(L) is the converse of the first one, while this is not the case
for α(L). Nonetheless, we have the following result, which gives a precise meaning to the
claim that our α-ρ adjunction generalizes both the γ-τ duality and the β-σ adjunction (the
obvious inclusion functors have been omitted):
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Theorem 2.2.33.

1. There is a natural isomorphism between the functors ρκ and τ and between the functors
ρδ and σ.

2. There are natural transformations η1 : κγ → α and η2 : δβ → α, such that each
component is a dense embedding.

Proof.

1. Let P = (P,≤P ) be a poset. Then κ(P) = (P,≤P ,∆P ). Since the second ordering
on P is discrete, the regular opens of κ(P) are clearly the upsets of (P), hence ρκ(P)
is isomorphic to τ(P). The naturality condition is straightforward. Similarly, if Q =
(Q,≤Q) is a poset, then δ(Q) = (Q,≥Q,≥Q). Clearly, the regular opens of δ(Q) are
precisely the regular open downsets of Q, hence ρδ(Q) is isomorphic to σ(Q). Again,
the naturality condition is straightforward.

2. Let L be superalgebraic, with ≤ the order on L. Then γ(L) = (J(L),≥ |J(L)),
where J(L) is the set of completely join-prime elements of L and κγ(L) = (J(L),≥
|J(L),∆J(L)). Now given a completely-join prime element p ∈ J(L), let η1L(p) = (p, pδ),
where pδ =

∨
{c ∈ L | p ≰ c}. It is straightforward to check that η1L : κγ(L) → α(L) is

well-defined and is a b-morphism. Moreover, for any (a, b) ∈ α(L), we have that a ≰ b
and hence, since L is superalgebraic, there is p ∈ J(L) such that p ≤ a but p ≰ b. But
this at once implies that (a, b) ≤12 η

1
L(p), which establishes that ηL1 is dense. Finally,

to see that it is an embedding, note that for any p, q ∈ J(L), p2⊥1q iff p ≰ q iff q ≤ pδ,
from which it follows that (p, pδ)2⊥1(q, q

δ). Hence each component of η1 : κγ → α is a
dense embedding. The naturality condition on η1 is left to the reader.
Similarly, let B be a complete Boolean algebra, with ≤ the order on B. Then β(B) =
(B+,≤ |B+) and δβ(B) = (B+,≥ |B+,≥ |B+). Given b ∈ B+, let η2B(b) = (b,¬b).
Once again it is straightfoward to check that η2B : δβ(B) → α(B) is well-defined and a
b-morphism. Moreover, for any (a, b) ∈ α(B), we have that a ≰ b, hence a ∧ ¬b ∈ B+.
But clearly (a, b) ≤12 η

2
B(a ∧ ¬b), which shows that η2B is dense. Finally, to check that

it is also an embedding, note that, for any a, b ∈ B+, a2⊥1b iff a ∧ b ≤ 0 iff b ≤ ¬a
iff η2B(a)2⊥1η

2
B(b). Hence each component of η2 : δβ → α is a dense embedding. Once

again, the naturality condition is left to the reader.

Finally, let us conclude by mentioning once again that the representation of any complete
lattice as the regular opens of some boset was already proved in [2]. However, Allwein and
MacCaull do not offer a treatment of morphisms, nor do they identify the duals of complete
lattices. By contrast, the notion of a dense embedding, which is a generalization of a standard
tool in forcing, plays a central role in our characterization of b-frames and will also prove
itself very useful in establishing correspondences between lattice equations and first-order
properties of bosets.
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Topological Dualities

The discrete dualities presented above only offer representations for complete lattices. As is
well known, extending such dualities to categories of (possibly incomplete) lattices typically
requires one to topologize the dual geometric structures. The celebrated examples are, of
course, Stone’s duality between Boolean algebras and Stone spaces [245], Priestley’s duality
between bounded distributive lattices and Priestley spaces [210] and Esakia’s duality between
Heyting algebras and Esakia spaces [81].

For bounded lattices, several dualities have been developed. Urquhart [256] developed
a topological representation for bounded lattices in which the points in the dual space of
a bounded lattice are pairs of a filter and an ideal which are maximal with respect to one
another. This representation, which appeals to Zorn’s Lemma in an essential way, was later
lifted to a duality by Hartung [127] and generalizes Stone and Priestley’s dualities, in the
sense that the restriction to distributive lattices and Boolean algebras yields Priestley and
Stone spaces. However, the morphisms covered by the Urquhart-Hartung duality are only
the surjective lattice homomorphisms, and the duality is often seen as more cumbersome to
work with than Priestley or Stone’s. As a consequence, a number of alternative dualities
for bounded lattices have been proposed over the years. Gehrke and van Gool [105] have
recently developed a duality closely related to Urquhart-Hartung duality, in which however
the morphisms between lattices considered are not the usual lattice morphisms. Dualities
based on spaces of filters rather than maximal filters have also been offered by Hartonas [122]
and Jipsen and Moshier [197]. These dualities do not immediately generalize Stone duality
for Boolean algebras or Priestley duality for distributive lattices (even though Jipsen and
Moshier’s approach is closely related to Stone’s duality for distributive lattices via spectral
spaces [246]), see also Section 3.2.4 below, but still involve defining only one topology on the
space of proper filters of the dual lattice.

Finally, the existing dualities closest to b-frame duality are filter-ideal based dualities,
such as the duality between bounded lattices and enhanced L-spaces presented by Allwein
and Hartonas in [1] and the duality with L-frames introduced by Hartonas and Dunn in [125]
and subsequently developed more recently by Hartonas in [124, 126]. The Allwein-Hartonas
representation of a bounded lattice L is obtained by considering pairs of a filter and an ideal
on L that do not intersect and using the inclusion orderings on filters and ideals to define
order-closed sets that generate a topology. Morphisms are defined as continuous functions
that preserve both orderings and satisfy a condition similar to that imposed on b-morphisms.
The Hartonas-Dunn duality, by contrast, is inspired from the theory of polarities and has
close ties with the theory of generalized Kripke frames of Gehrke [101]. A bounded lattice
L is mapped to the triple (X,⊥, Y ), where X and Y are the posets of filters and ideals
of L endowed with a Stone-like topology, and ⊥ is a relation on X × Y . Such triples are
called L-frames, and a lattice L can then be recovered as the clopen sets of X that are also
fixpoints of the Galois connection between P(X) and P(Y ) induced by ⊥. Morphisms
between two L-frames (X,⊥, Y ) and (X ′,⊥′, Y ′) are pairs of continuous maps between X
and X ′ and between Y and Y ′ that commute with the closure operators generated by ⊥ and
⊥′. Since points in our b-frame representation of a complete lattice L are pairs of elements
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of the original lattice, and we work with two orderings, it is natural to see this latest duality
as giving rise to a “topologized” version of our b-frame duality, just like Stone duality topol-
ogizes Tarski duality, or the more recent duality between Boolean algebras and UV-spaces
presented in [41] topologizes the duality between complete Boolean algebras and complete
separative posets. Instead of being a triple composed of two spaces and a relation between
them, the duals of lattices in such a topologized version of b-frame duality would rather be
single bitopological spaces of filter-ideal pairs, and fixpoints of the Galois connection induced
by the relation ⊥ would be replaced regular open sets induced by the two topologies. The
details of such a duality and of its exact relationship to the Hartonas-Dunn one are left for
future work, although we will discuss a similar issue in Chapter 4. For a systematic com-
parison of the representation of complete lattices via polarities and bi-ordered sets, we refer
the reader to [136].

2.3 Correspondence Theory

In the previous section, we established an idempotent adjunction between complete lattices
and bosets and showed how to restrict it to a duality between complete lattices and b-
frames. In this section, we will see how this duality restricts further to specific classes
of complete lattices. The goal is to identify properties of b-frames which correspond to
properties of complete lattices, in the precise sense that a b-frame X has a property P if
and only if ρ(X ) is in a certain class K of complete lattices. As it will become apparent
later on, once we find such a characterizing condition on b-frames, we can always extend
our result to a correspondence between bosets and complete lattices. In this section, we
restrict ourselves to equationally definable classes and focus on characterizing the duals
of complete distributive lattices, Heyting algebras and Boolean algebras. Our approach for
Heyting algebras is also straightforwardly adapted in Section 2.5 to provide characterizations
of complete co-Heyting and bi-Heyting algebras. As mentioned in the previous section,
there is a well-established duality theory for such structures, originating with Stone duality
for Boolean algebras [245]. The Stone duals of complete Boolean algebras are extremally
disconnected Stone spaces, in which the closure of every open set is open. Building on this
characterization, Priestley [210] identifies the Priestley duals of complete distributive lattices
as those Priestley spaces in which the smallest closed upset containing S is open for every
open upset S. An equivalent characterization in terms regular opens being clopens also
exists in the bitopological duality for distributive lattices of [39, Thm. 6.25]. Finally, the
topological representations of MacNeille completions of Heyting, co-Heyting and bi-Heyting
algebras via Esakia duality obtained in [119] also yield characterizations of the Esakia duals
of complete Heyting, co-Heyting and bi-Heyting algebras.

In the context of the study of semantics for non-classical logics based on complete lattices,
we see two advantages of the discrete approach we develop here over the standard topological
approach. First, discrete, graph-theoretic semantics allow for simple geometric arguments
that are sometimes harder to adapt in a topological setting. Of course, there is always the
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option to “discretize” a topological representation. For example, one can forget about the
topology on the dual Priestley space of a distributive lattice L and focus instead on the
lattice of upsets of the resulting poset. But the obvious drawback is that this lattice will not
be isomorphic to L, but only to its canonical extension,3 which is always a superalgebraic
locale. Furthermore, all characterizations of particular classes of complete lattices mentioned
above require imposing second-order conditions on the dual topological spaces. By contrast,
the dual b-frames of the kind of complete lattices considered in this section and the next
two can be straightforwardly given first-order, geometrically intuitive characterizations in
the language of bosets, even though the corresponding characterization for bosets must be
second-order. To sum up, there is a necessary trade-off between generality and concreteness
when giving representations of lattices, and we believe that the discrete representation of
complete lattices developed here is a suitable equilibrium point for our purposes.

2.3.1 Distributive Lattices

We start by characterizing the duals of distributive lattices. It is well known that the variety
of distributive lattices, unlike the varieties of Heyting and Boolean algebras, is not closed
under MacNeille completions. A similar phenomenon manifests itself here: the characteri-
zation of the dual b-frames of complete distributive lattices is more intricate and uses the
duality in an essential way.

We start by identifying a property of b-frames that are the duals of distributive lattices.

Lemma 2.3.1. Let X = (X,≤1,≤2) be a b-frame such that ρ(X ) is distributive. Then X
satisfies the following property:

∀x, y, z((x 12⊥1y ∧ x 12⊥2z) → ∃w(y 1⊥2w ∧ w 1⊥2z)). (2.2)

Proof. Let x = (fx, ix), y = (fy, iy), z = (fz, iz) such that x 12⊥1y and x 12⊥2z. Then fx∧fy ≤
ix and fx ≤ iz ∨ ix. We claim that this implies that iz ≰ fy. Note that if this is true, then
there is w = (iz, fy) such that y 1⊥2w and w 1⊥2z. For the proof of the claim, assume towards
a contradiction that iz ≤ fy. Then

fx = fx ∧ (iz ∨ ix) ≤ fx ∧ (fy ∨ ix) ≤ (fx ∧ fy) ∨ (fx ∧ ix) ≤ ix ∨ (fx ∧ ix) = ix,

a contradiction.

It is also straightforward to see that this property is also sufficient for the dual lattice of
a b-frame to be distributive:

Lemma 2.3.2. Let X = (X,≤1,≤2) be the dual b-frame of some complete lattice L. Then
if X satisfies (2.2), L is distributive.

3See [77, 103, 104, 150, 151] for some literature on canonical extensions.
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Proof. Recall that a lattice L is distributive iff for any a, b, c ∈ L, a ∧ c ≤ b and a ≤ b ∨ c
implies that a ≤ b. So assume towards a contradiction that there are a, b, c ∈ L such that
a ≰ b, but a ∧ c ≤ b and a ≤ b ∨ c. Since this implies that 1 ≰ c ≰ 0, consider the points
x = (a, b), y = (c, 0) and z = (1, c). Note that, by assumption, we have that x 12⊥1y and
x 12⊥2z, so since (2.2) holds there is some w = (fw, iw) such that y 1⊥2w and w 1⊥2z. But
the former implies that c ≤ iw and the latter implies that fw ≤ c, and therefore fw ≤ iw, a
contradiction.

In light of the previous two lemmas, we may define a distributive boset to be a boset X
satisfying (2.2). Distributive b-frames (i.e., distributive bosets that are also b-frames) and
b-morphisms between them form a category DbF. The following theorem is an immediate
consequence of the two previous lemmas.

Theorem 2.3.3. The duality between cLat and bF restricts to a duality between cDL and
DbF.

We therefore obtain a first-order characterization of the dual b-frames of distributive
lattices. Moreover, using results from the previous section, we can also obtain a second-
order characterization of bosets X such that ρ(X ) is distributive as follows:

Lemma 2.3.4. For any boset X , ρ(X ) is distributive iff X densely embeds into a distribu-
tive b-frame.

Proof. For the left to right direction, recall that ϵX : X → αρ(X ) is a dense embedding.
Moreover, by the previous lemma, αρ(X ) is distributive if ρ(X ) is distributive. For the con-
verse direction, recall that if f : X → Y is a dense embedding, then ρ(f) is an isomorphism.
Thus if X densely embeds into a distributive b-frame, ρ(X ) must be distributive.

2.3.2 Heyting Algebras

Let us now move on to the case of Heyting algebras. We will first isolate a property of certain
points in a boset, called Heyting points and show that the existence of enough such points
in a boset X guarantees that ρ(X) is a Heyting algebra. As we will see, for an arbitrary
boset X , the existence of enough Heyting points in X is not necessary for ρ(X ) to be
a cHA, but we will show that it is in the case of b-frames. This will give us a complete,
first-order characterization of the dual b-frames of cHA’s, which can then be extended to
bosets in a straightforward way. A key notion in this characterization is that of a nucleus
on a complete lattice. Nuclei play an important role in pointfree topology [146, 207], where
they provide an algebraic generalization of the notion of subspace of a topological space.
Nuclei on complete Heyting algebras have also been used to provide alternative semantics
for intuitionistic logic [36, 37]. The connection with nuclear semantics for intuitionistic logic
will be further explored in Section 2.6.

Definition 2.3.5. Let X = (X,≤1,≤2) be a boset. A Heyting point of X is a point x∗

such that ∀y ∈ X , x∗12⊥1y iff x∗2⊥1y.
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Note that, in this definition, the right-to-left direction is satisfied by any point x in a
boset X : for any two x, y ∈ X , if there is no 2-successor of x that is also a 1-successor of
y, then in particular there is no 1-and-2-successor of x that is also a 1 successor of y. The
converse direction, however, does not hold in general. Thus Heyting points are those for
which their independence from any other point is equivalent to a weaker condition.

Definition 2.3.6. A Heyting boset is a boset X such that the Heyting points of X are
dense, i.e., the following holds:

∀x∃x∗ ≥12 x∀y(x∗12⊥1y ↔ x∗2⊥1y). (2.3)

Equivalently, Heyting bosets are bosets in which the sub-boset of Heyting points is dense.
In that sense, we may think of Heyting bosets as bosets in which there are “enough” Heyting
points. The importance of Heyting points is established by the next lemma.

Lemma 2.3.7. Let (X,≤1,≤2) be a Heyting boset. Then ¬1¬2 is a nucleus on O1.

Proof. Recall first that a nucleus on a complete lattice L is a closure operator j such that
j(a ∧ b) = j(a) ∧ j(b) for any a, b ∈ L. Since ¬1¬2 is always a closure operator on O1, we
only need to check that for any A,B ∈ O1, ¬1¬2(X) ∩ ¬1¬2(Y ) ⊆ ¬1¬2(X ∩ Y ). Suppose
x ∈ ¬1¬2(X) ∩ ¬1¬2(Y ), and let y ≥1 x. Fix some Heyting point y∗ ≥12 y, and note that
y∗ ≥1 x, which means that there is z ≥2 y

∗ such that z ∈ A. Since ¬ (y∗ 2⊥1z), we also have
¬ (y∗ 12⊥1z), so let w ≥12 y

∗ such that z ≤1 w, and fix a Heyting point w∗ ≥12 w. Since A
is a 1-upset, we have that w∗ ∈ A. Moreover, since x ≤1 y ≤1 y

∗ ≤1 w
∗, there is z′ ≥2 w

∗

such that z′ ∈ B. Since ¬ (w∗
2⊥1z

′), we also have ¬ (w∗
12⊥1z

′), so let w′ ≥12 w
∗ such

that w′ ≥1 z
′. Since both A and B are 1-upsets, we have that w′ ∈ A ∩ B. Moreover, since

y ≤2 y
∗ ≤2 w

∗ ≤2 w
′, it follows that y ∈ C2(A ∩ B). The entire argument is summarized

by the following diagram, where single lines represent the first ordering, dashed double lines
the second ordering and full double lines the intersection of the two orderings:4

x

y

y∗

z ∈ A

w

w∗

z′ ∈ B

w′

4From now on, we will use this convention to denote the various orderings diagrammatically.
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Thus ¬1¬2(A) ∩ ¬1¬2(B) ⊆ ¬1¬2(A ∩B), which establishes that ¬1¬2 is a nucleus.

The fixpoints of a nucleus on a complete Heyting algebra always form a complete Heyting
algebra [76, p. 71]. Thus the previous lemma implies that the regular opens of any Heyting
boset always form a cHA. On the other hand, it is easy to see that the converse fails: a
boset X need not be Heyting for ρ(X ) to be a cHA.

Example 2.3.8. Suppose P = (P,≤P ) is a poset such that Up(P) is not a complete Boolean
algebra (for example P = ω with the usual order). Note that this implies that there must
be some A ∈ Up(P) such that A ∪ I(P − A) ⊊ P , where I is the interior operator induced
by the upset topology. This in turn means that P = I(A ∪ P−A) ⊈ A ∪ I(P − A), so
I(U ∪ V ) ̸= I(U) ∪ I(V ) in general. Taking complements, this means that the topological
closure C induced by the upset topology on P is not a nucleus. However, the downsets of
any poset always form a cHA. Thus, if we think of C as a closure operator on the lattice of
open sets of P when P is endowed with the discrete topology, this gives us an example of a
closure operator k on the lattice of upsets of a poset which is not a nucleus even though the
fixpoints of k form a cHA.5 But it is now easy to turn this into an example of a non-Heyting
boset whose dual lattice is a cHA: letting P = (P,∆P ,≤P ), we have that ¬1¬2 on P is
precisely the closure operator C above.

Thus for an arbitrary boset X , the existence of densely many Heyting points is not
necessary for ρ(X ) to be a cHA. On the other hand, the next lemma shows that the dual
b-frame of a cHA is always Heyting.

Lemma 2.3.9. Let A be a cHA and α(A) := (X,≤1,≤2) its dual b-frame. Then α(A) is a
Heyting b-frame.

Proof. Let x = (fx, ix) ∈ X and consider the point x∗ = (fx, fx → ix). Clearly, x ≤12 x
∗.

Now for any y ∈ X, we have that x∗ 12⊥1y iff fx∧fy ≤ fx → ix iff fx∧fy ≤ ix iff fy ≤ fx → ix
iff x∗ 2⊥1y.

Moreover, by Lemma 2.3.7 and the fact that ηL : L → ρα(L) is an isomorphism, the
converse also holds:

Lemma 2.3.10. Let L be a complete lattice such that α(L) is Heyting. Then L is a Heyting
algebra.

As an immediate consequence of the previous results, we obtain the following corollary.

Corollary 2.3.11. Let L be a lattice. Then L is a Heyting algebra iff α(L) is Heyting.

Thus we obtain a complete characterization of the dual b-frames of complete Heyting
algebras. Once again, using results established in the previous section, we can now give
necessary and sufficient conditions for when the regular opens of any boset form a complete
Heyting algebra.

5More involved examples of such posets are also given in [37] and [76].



CHAPTER 2. A DISCRETE DUALITY FOR COMPLETE LATTICES 47

Lemma 2.3.12. For any boset X , ρ(X ) is a Heyting algebra iff X densely embeds into a
Heyting b-frame.

Proof. From left to right, if ρ(X ) is a Heyting algebra, then ϵX : X → αρ(X ) is a dense
embedding into a Heyting b-frame.
Conversely, if X densely embeds into a Heyting b-frame Y , then ρ(X ) is isomorphic to
ρ(Y ) and thus is a Heyting algebra by Lemma 2.3.7.

Finally, recall that morphisms of cHA’s are complete lattice homomorphisms which also
preserve the Heyting implication. In order to identify the duals of such morphisms, we need
the following strenghtening of the definition of a b-morphism:

Definition 2.3.13. Let X = (X,≤X
1 ,≤X

2 ) and Y = (Y,≤Y
1 ,≤Y

2 ) be two bosets. A Heyt-
ing b-morphism (h-morphism) from X and Y is a b-morphism satisfying the following
strengthening of condition 3:

3’. ∀x ∈ X ∀y ≥Y
1 f(x)∃z ≥X

1 x : f(z) ≥Y
12 y.

The next lemma shows that if f : X → Y is an h-morphism of Heyting bosets, then
ρ(f) preserves Heyting implications.

Lemma 2.3.14. Let f : X → Y be a h-morphism. Then for any A,B ∈ RO12(Y ), we have
f−1[I1((Y − A) ∪B)] = I1(f

−1[Y − A] ∪ f−1[B]).

Proof. Note that the left-to-right inclusion is an immediate consequence of f being 1-
monotone. For the converse, assume that for all y ≥X

1 x, f(y) /∈ A or f(y) ∈ B, and
let y ≥Y

1 f(x) be in A. We claim that y ∈ B. To see this, let z ≥Y
1 y. By condition 3′ of an

h-morphism, there is z′ ≥X
1 x such that z ≥Y

12 f(z′). Since x ≤X
1 z′, by assumption we have

that f(z′) /∈ A or f(z′) ∈ B. But since y ≤Y
1 z ≤Y

12 f(z′) and A is a 1-upset, we have that
f(z′) ∈ B. Thus y ∈ ¬1¬2(B) = B.

It follows that if f : X → Y is a h-morphism between Heyting bosets, then the dual
ρ(f) : ρ(Y ) → ρ(X ) is a complete HA-homomorphism. Conversely:

Lemma 2.3.15. Let L,M be two complete Heyting algebras, and let f : L → M be a
complete HA-homomorphism. Then α(f) : α(M) → α(L) is a h-morphism.

Proof. Recall that for any (a, b) ∈ α(M),

α(f)(a, b) = (af , bf ).

Since α(f) is a b-morphism, we only have to check that condition 3′ holds. So assume
(c, d) ≥L

1 α(f)(a, b) for some (a, b) ∈ α(M). We claim that (a ∧ f(c), f(d)) ∈ α(M). To see
this, note that, otherwise, a∧f(c) ≤ f(d), and hence a ≤ f(c) → f(d) = f(c→ d). But then
c ≤ af ≤ c → d, which implies that c ≤ d, a contradiction. Thus (a ∧ f(c), f(d)) ∈ α(M)
and clearly (a, b) ≤M

1 (a ∧ f(c), f(d)). Moreover, since (a ∧ f(c))f ≤ c and d ≤ (f(d))f , it
follows that (c, d) ≤L

12 α(f)(a ∧ f(c), f(d)). Thus α(f) is an h-morphism.
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We may therefore form the category HbF of Heyting b-frames and h-morphisms between
them. The previous results readily imply the following theorem:

Theorem 2.3.16. The duality between cLat and bF restricts to a duality between cHA
and HbF.

2.3.3 Boolean Algebras

Finally, let us consider the case of Boolean algebras. Here we will follow a similar pattern
as in the case of Heyting algebras. We start with the definition of a Boolean point.

Definition 2.3.17. Let X = (X,≤1,≤2) be a boset. A Boolean point of X is a point
x∗ ∈ X such that for any y ∈ X, x∗1⊥12y ↔ x∗2⊥12y.

Similarly to the definition of a Heyting boset as a boset having “enough” Heyting points,
we may define a Boolean boset as a boset X such that the Boolean points of X are dense,
i.e., the following holds:

∀x∃x∗ ≥12 x∀y(x∗ 1⊥12y ↔ x∗ 2⊥12y)). (2.4)

The existence of a dense set of Boolean points in a boset X has some important conse-
quences for the operator ¬1¬2.

Lemma 2.3.18. Let (X,≤1,≤2) be a Boolean boset. Then ¬1¬2 is the double negation
nucleus on O1.

Proof. We first show that ¬1¬2(A) ⊆ ¬1¬1(A) for any A ∈ O1. Let y ≥1 x for some
x ∈ ¬1¬2(A). Then since x ≤1 y

∗, there is z ≥2 y
∗ such that z ∈ A. This implies that

¬ y∗ 2⊥12z, and thus also ¬y∗ 1⊥12z. But this implies that y ∈ C1(A). Thus x ∈ ¬1¬1(A).
We now show the converse, i.e., that ¬1¬1(A) ⊆ ¬1¬2(A). Let y ≥1 x for some x ∈

¬1¬1(A). Since x ≤1 y
∗, there is z ≥1 y

∗ such that z ∈ A. Since this implies that ¬y∗ 1⊥12z,
it follows that ¬y∗ 2⊥12z. But this implies that y ∈ C2(A), and therefore x ∈ ¬1¬2(A).

Since the regular open sets of any topological space always form a complete Boolean
algebra, the previous lemma clearly implies:

Lemma 2.3.19. Let L be a lattice such that α(L) = (PL,≤L
1 ,≤L

2 ) is Boolean. Then L is a
Boolean algebra.

Moreover, the converse holds as well:

Lemma 2.3.20. Let α(L) := (X,≤1,≤2) be the dual b-frame of a Boolean algebra L. Then
α(L) is Boolean.

Proof. Given x = (fx, ix), let x∗ = (fx ∧ ¬ix,¬fx ∨ ix). Note that

(fx ∧ ¬ix) → (¬fx ∨ ix) = ¬fx ∨ ix = fx → ix ̸= 1,

thus x∗ is well defined. Moreover, for any y = (fy, iy), we have that (fx ∧ ¬ix) ∧ fy ≤ iy iff
fy ≤ (fx ∧ ¬ix) → iy iff fy ≤ (¬fx ∨ ix) ∨ iy.
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Corollary 2.3.21. A complete lattice L is a Boolean algebra iff its dual b-frame is Boolean.

Note that, once again, this first-order characterization of the b-frames that are dual to
a complete Boolean algebra extends to a characterization of bosets X for which ρ(X ) is a
Boolean algebra.

Corollary 2.3.22. For any boset X , ρ(X ) is a Boolean algebra iff X densely embeds into
a Boolean b-frame.

Proof. From left to right, if ρ(X ) is a Boolean algebra, then ϵX : X → αρ(X ) is a dense
embedding into a Boolean b-frame. Conversely, if X densely embeds into a Boolean b-frame
Y , then ρ(X ) is isomorphic to ρ(Y ) and thus is a Boolean algebra by Lemma 2.3.19.

Finally, since complete lattice homomorphisms between complete Boolean algebras are
complete Boolean homomorphisms, we obtain the following duality:

Theorem 2.3.23. Boolean b-frames and b-morphisms form a category BbF dual to the
category cBA of complete Boolean algebras and complete Boolean homomorphisms.

Before discussing other classes of complete lattices, let us derive a straightforward appli-
cation of this characterization of the dual b-frames of Boolean algebras.

Lemma 2.3.24. The class of b-frames is not first-order definable. In particular, complete-
ness is not first-order definable in the language of bosets.

Proof. Suppose that completeness is equivalent to some set Φ of first-order formulas in the
language of bosets (i.e., pure first-order logic with two relation symbols ≤1 and ≤2). Let α(C)
be the dual b-frame of the Cohen algebra C, i.e., the MacNeille completion of the countable
atomless Boolean algebra [144, Chap. 30]. Since C has size 2ℵ0 , and points in α(C) are
pairs of elements in C, α(C) also has size continuum. Let M be a countable elementary
substructure of α(C), which exists by the downward Löwenheim-Skolem theorem. Now
since separativity is a first-order condition and so is completeness by assumption, it follows
that M is a b-frame, hence M is isomorphic to α(L) for some complete lattice L. Moreover,
since the property of having a dense set of Boolean points is also first-order, M is a Boolean
b-frame, and therefore L is a complete Boolean algebra. But M is countable, hence α(L)
is also countable. Since there is a surjection π : α(L) → L \ {0} defined by (a, 0) 7→ a, it
follows that L is countable. But there is no countable complete Boolean algebra. Thus the
property of completeness is not first-order definable.

2.4 Spatial and Superalgebraic Locales

In this section, we focus on two classes of complete Heyting algebras that are of particular
relevance in the literature on semantics for intuitionistic logic: spatial and superalgebraic
locales. Both classes have been extensively studied in the literature. Spatiality is a key
notion in pointfree topology [146, 207], as spatial locales are precisely those locales that can
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be represented as the lattice of open sets of a topological space. Superalgebraic or completely
join-prime generated locales on the other hand have long been known to be precisely the
lattices that arise as the collection of downward- or upward-closed sets of a poset [68, 216].
Our goal here is to offer alternative representations of both spatial and superalgebraic locales
by restricting the duality between Heyting b-frames and complete Heyting algebras obtained
in Section 2.3.2. These results are then used in Section 2.6 to provide a unified framework
for Kripke, topological and nuclear semantics for intuitionistic logic. We start by recalling
the following definitions.

Definition 2.4.1. Let L be a cHA.

• L is spatial iff L is isomorphic to the lattice of open sets Ω(X ) for some topological
space X = (X, τ).

• L is superalgebraic iff L is isomorphic to the lattice of upward-closed sets Up(X ) of a
poset X = (X,≤).6

Our goal in this section is to characterize b-frames whose dual lattices are spatial and
superalgebraic locales. Our strategy will be the same for both classes of cHA’s: first, we
recall that spatial and superalgebraic locales are characterized by having certain algebraic
“separation properties”: any two distinct elements of a spatial locale can be separated by
a meet-prime element, while any two distinct elements of a superalgebraic locale can be
separated by a completely join-prime element. We then translate these algebraic properties
into graph-theoretic properties of b-frames and prove that those properties do characterize
the duals of spatial and superalgebraic locales. We conclude this section by an immediate
application of these results: a new, purely b-frame-theoretic proof that any spatial Boolean
locale is also superalgebraic.

2.4.1 Spatial Locales

Recall that, given a lattice L, an element c ∈ L is meet-prime if for any a, b ∈ L, a ∧ b ≤ c
iff a ≤ c or b ≤ c. It is completely join-prime if for any A ⊆ L, c ≤

∨
A iff c ≤ a for some

a ∈ A. The following is a basic result of pointfree topology.

Lemma 2.4.2 ([207, Prop. II.5.3]). A locale L is spatial iff for any a ≰ b ∈ L, there is a
meet-prime element c ∈ L such that a ≰ c and b ≤ c.

Identifying the points in a b-frame that correspond to meet-prime elements in the dual
lattice is therefore an essential step in characterizing the duals of spatial locales. This is the
role of the following definition:

Definition 2.4.3. Let X = (X,≤1,≤2) be a boset. A spatial point of X is a point x ∈ X
such that the following holds:

∀y1y2(x ≤2 y1 ∧ x ≤2 y2 → ∃z(y1 ≤1 z ∧ y2 ≤1 z ∧ x ≤2 z)).
6This terminology is used by Picado and Pultr in [207], who first define superalgebraic locales as join-prime

generated locales, before proving the equivalence with the definition given here.
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Spatial points can be understood as having a certain amalgamation property. Indeed,
by simply spelling out the previous definition, we may notice that a point x ∈ X is spatial
precisely if any diagram of the form

x

y1 y2

can be completed as follows:

x

y1 y2

z

The next two lemmas highlight the relevance of spatial points in identifying the duals of
spatial locales.

Lemma 2.4.4. Let X = (X,≤1,≤2) be a boset such that every point in X is spatial. Then
ρ(X ) is a spatial locale.

Proof. Suppose that every point in X is spatial. Note that since ¬1 and ¬2 form a Galois
connection, the regular opens ρ(X ) are isomorphic to the regular closed sets of X , i.e., the
lattice of sets U ⊆ X such that U = C2I1(U) or, equivalently, −U = ¬2¬1(−U). We claim
that the regular closed sets of X form a topology on X. Clearly for any family {Ui}i∈I of
regular closed sets, we have that C2I1(Ui) ⊆ C2I1(

⋃
i∈I Ui) for any i ∈ I, and therefore⋃

i∈I

Ui =
⋃
i∈I

C2I1(Ui) ⊆ C2I1(
⋃
i∈I

Ui).

Since C2I1 is a kernel operator on the 2-downsets of X , this implies that the regular closed
sets of X are closed under arbitrary unions. Therefore we only have to check that they are
also closed under finite intersection. Suppose U1, U2 are regular closed. Clearly U1 ∩ U2 is
also a 2-downset, and hence C2I1(U1∩U2) ⊆ U1∩U2. For the converse, suppose x ∈ U1∩U2.
Since both U1 and U2 are regular closed, this means that there is y1 ∈ I1(U1) and y2 ∈ I1(U2)
such that x ≤2 y1 and x ≤2 y2. Since by assumption x is spatial, this means that there is
z ≥2 x such that z ≥1 y1, y2. But this implies that z ∈ I1(U1)∩ I1(U2) = I1(U1 ∩U2). Hence
x ∈ C2I1(U1 ∩ U2) and U1 ∩ U2 is regular closed, which completes the proof that the regular
closed sets form a topology on X. Therefore ρ(X) is spatial.

Lemma 2.4.5. Let L be a spatial locale. Then the set of spatial points of α(L) is dense.

Proof. Suppose L is spatial and (a, b) ∈ α(L). Since L is spatial, there is a meet prime c ∈ L
such that a ≰ c and b ≤ c. Hence the point (a, c) ∈ α(L), and we have that (a, b) ≤12 (a, c).
We claim that (a, c) is a spatial point of α(L). To see this, suppose that (a, c) ≤2 (x1, y1)
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and (a, c) ≤2 (x2, y2). Since xi ≰ yi and c ≤ yi, we have that xi ≰ c for i ∈ {1, 2}. Since c is
meet-prime, this means that x1 ∧ x2 ≰ c. But then (x1 ∧ x2, c) is the required point.

As a straightforward consequence, we obtain the following characterization of the duals
of spatial locales:

Theorem 2.4.6.

1. A locale L is spatial iff the set of spatial points of α(L) is dense.

2. For any boset X , ρ(X ) is spatial iff X densely embeds into a b-frame Y with densely
many spatial points.

Proof.

1. The left-to-right direction follows from the previous lemma. For the converse, if the
spatial points of α(L) are dense, then letting X be the dense subframe of α(L) induced
by its spatial points, we have by Lemma 2.4.4 that ρ(X ) is spatial and by Lemma 2.2.19
that L is isomorphic to ρ(X ), hence also spatial.

2. This follows directly from the first part.

Let us now move on to superalgebraic locales, for which we apply a similar method.

2.4.2 Splitting Locales

As mentioned above, superalgebraic locales are precisely those locales in which any two
distinct elements can be separated by a completely join-prime one. Our characterization
of the dual b-frames of superalgebraic locales essentially uses this fact, but the following
property will be easier to work with:

Definition 2.4.7. Let L be a lattice. Given a, b ∈ L such that a ≰ b, a splitting pair for the
pair (a, b) is a pair (c, d) of elements of L such that c ≰ d, c ≤ a, b ≤ d and for any x ∈ L,
c ≤ x or x ≤ d.

A locale L is splitting if for any a ≰ b ∈ L, there is a splitting pair (c, d) for the pair
(a, b).

Splittings in lattices have a long history, going back to Whitman [261]. Splitting locales
are a special kind of separated locales, the study of which originates with Raney [216].
While separated locales coincide with supercontinuous locales and are precisely the complete
homomorphic images of frames of downsets of posets (or, equivalently, completely distributive
complete lattices [207, Prop. VII.8.5.1]), splitting locales coincide with superalgebraic locales,
as is well-known.

Lemma 2.4.8. A locale L is superalgebraic iff L is splitting.
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Proof. For the left-to-right direction, assume without loss of generality that L = Up(X )
for some poset X = (X,≤). Given U ⊈ V ∈ X , let x ∈ U−V , and let U ′ = ↑x and
V ′ = X−↓x. Then clearly U ′ ⊈ V ′, U ′ ⊆ U and V ⊆ V ′, and moreover for any Y ∈ Up(X ),
since either x ∈ Y or x /∈ Y , we must have that U ′ ⊆ Y or Y ⊆ V ′.

For the converse direction, as superalgebraic locales are precisely the completely join-
prime generated locales (see for example [207, Prop. VII.8.3]), it is enough to observe that
for any splitting pair (c, d) ∈ L, c is completely join-prime. But this is a well-known argument
[192, Remark. 4.1].

We now define the boset counterpart of splitting pairs.

Definition 2.4.9. Let X = (X,≤1,≤2) be a boset. A splitting point of X is a point x ∈ X
such that the following holds:

∀y1y2(x ≤1 y1 ∧ x ≤2 y2 → ∃z(y1 ≤2 z ∧ y2 ≤1 z)).

Similarly to spatial points, splitting points exhibit a certain amalgmation property. In-
deed, a point x ∈ X is splitting precisely if any diagram of the form

x

y1 y2

can be completed as follows:

x

y1 y2

z

The next two lemmas establish the equivalence between separation by splitting pairs in
lattices and density of splitting points in bosets:

Lemma 2.4.10. Let X = (X,≤1,≤2) be a boset such that the splitting points of X are
dense. Then ρ(X ) is splitting.

Proof. Let U, V ∈ ρ(X ) such that U ⊈ V . This means that there is x ∈ X such that
x ∈ U ∩ ¬2V . Let x′ ≥12 x be a splitting point, and notice that x′ ∈ U ∩ ¬2V . We claim
that (Ux′ , Vx′) is a splitting pair for (U, V ). By Lemma 2.4.8, this implies that ρ(X ) is
superalgebraic. For the proof of the claim, it is clear that Ux′ ⊆ U , V ⊆ Vx′ and that
Ux′ ⊈ Vx′ . Now let T be any regular open set. If x′ ∈ T , then Ux′ ⊆ T . Otherwise, if x′ /∈ T ,
there is y1 ≥1 x

′ such that y1 ∈ ¬2T . But then for any w ∈ T , if ¬x′2⊥1w, there must be
some y2 ≥2 x such that y2 ≥1 w. Since by assumption x′ is splitting, there is z ∈ X such
that z ≥2 y1 and z ≥1 y2. But this is a contradiction, since z ≥1 y2 ≥1 w implies that z ∈ T ,
while z ≥2 y1 implies that z /∈ T since y1 ∈ ¬2T . Hence for any w ∈ T , x′ 2⊥1w, which
means that T ⊆ Vx′ . This completes the proof.
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Lemma 2.4.11. Let L be superalgebraic. Then the splitting points of α(L) are dense.

Proof. Let (a, b) ∈ α(L). Since L is superalgebraic, by Lemma 2.4.2, there is a splitting
pair (c, d) for the pair (a, b). Note that by the definition of a splitting pair, we have that
(a, b) ≤12 (c, d). We claim that (c, d) is a splitting point of α(L). Suppose (c, d) ≤1 (x1, y1)
and (c, d) ≤2 (x2, y2). Now x1 ≤ c yet x1 ≰ y1, which means that c ≰ y1, and hence y1 ≤ d
since (c, d) is a splitting pair. Similarly d ≤ y2 yet x2 ≰ y2, which implies that x2 ≰ d,
and therefore that c ≤ x2. Hence (x1, y1) ≤2 (c, d), and (x2, y2) ≤1 (c, d), which shows that
¬(x1, y1)2⊥1(x2, y2) and establishes that (c, d) is a splitting point.

As a consequence, we obtain the following characterization of b-frames that are dual to
superalgebraic locales:

Theorem 2.4.12.

1. A locale L is superalgebraic iff the set of splitting points of α(L) is dense.

2. For any boset X , ρ(X ) is splitting iff X densely embeds into a b-frame Y with
densely many splitting points.

Proof.

1. The left-to-right direction follows from the previous lemma. For the converse, if the
splitting points of α(L) are dense, then by Lemma 2.4.10 ρα(L) is superalgebraic. But
since L is isomorphic to ρα(L), it is also superalgebraic.

2. This follows readily from the first part.

As an immediate application of the results of this section, we can now use b-frames to
prove the following well-known fact about Boolean locales (see [207, Section II.5.4] for a
standard proof):

Corollary 2.4.13. Any spatial Boolean locale is superalgebraic.

Proof. Let B be a spatial Boolean locale. We claim that α(B) is a splitting b-frame. To see
this, let x ∈ α(B). Since B is spatial, α(B) is a spatial b-frame, which means that there is
some spatial point x′ ≥12 x. Since B is also Boolean, there is a Boolean point x∗ ≥12 x

′.
We claim that x∗ is a splitting point. Indeed, suppose y1 ≥1 x

∗ and y2 ≥2 x
∗. Since x∗ is

Boolean and ¬y1 1⊥12x
∗, there is some y′1 ≥12 y1 such that x∗ ≤2 y1, and note that we may

assume that y′1 is Boolean. Hence we have that x′ ≤2 y2 and x′ ≤2 y
′
1, so since x′ is spatial we

have some z ≥1 y2, y
′
1. Now since y′1 is Boolean and ¬y′1 1⊥12z, there must be some z′ ≥12 z

such that z′ ≥2 y
′
1. Thus z′ ≥2 y

′
1 ≥2 y1, and z′ ≥1 z ≥1 y2. Hence x∗ is a splitting point.

The argument is summarized by the diagram below:
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x

x′

x∗
y1

y′1

y2

z

z′

2.5 A Decomposition Theorem for bi-Heyting Alge-

bras

In this section, we apply elements of our b-frame duality to prove a new result regarding
complete bi-Heyting algebras. The motivation for our result is the following theorem about
complete Boolean algebras:7

Lemma 2.5.1. For any complete Boolean algebra B, there are complete Boolean algebras
C1 and C2 such that C1 is atomic, C2 is atomless, and B = C1 × C2.

In our setting, atomic Boolean algebras must be generalized to superalgebraic locales
(notice that Boolean superalgebraic locales are precisely the atomic Boolean algebras). This
is in line with the fact that completely join-prime elements are usually taken to be the relevant
generalization of atoms for cHA’s. Accordingly, we propose as a relevant generalization of
atomless Boolean algebras the following definition:

Definition 2.5.2. A complete lattice is anti-algebraic if it has no completely join-prime
element.

We will use our b-frame duality to show that any complete Heyting algebra is, in the
category of complete lattices, a subdirect product of a superalgebraic locale and an anti-
algebraic locale. As will be made explicit below, this decomposition theorem holds in the
category cLat of complete lattices and complete lattice homomorphisms, but not in the
category of complete bi-Heyting algebras and complete bi-Heyting homomorphisms between
them, which is not a full subcategory of cLat. Of course, the issue does not arise in the
Boolean case, since cBA is a full subcategory of cLat.

7See for example [106], p. 227.
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2.5.1 Coproducts of Bosets

We start by defining the coproduct of two bosets. By duality, this induces a boset repre-
sentation of the product of two complete lattices. This is an adaptation of the standard
correspondence between products and disjoint unions.

Definition 2.5.3. Let X = (X,≤X
1 ,≤X

2 ) and Y = (Y,≤Y
1 ,≤Y

2 ) be two bosets. The disjoint
sum of X and Y , written as X ⊔Y , is the boset (Z,≤Z

1 ,≤Z
2 ), where Z = X ⊔ Y , ≤Z

1 =≤X
1

⊔ ≤Y
1 , and ≤Z

2 =≤X
2 ⊔ ≤Y

2 .

Lemma 2.5.4. For any two bosets X and Y , X ⊔Y is the coproduct of X and Y in the
category of bosets.

Proof. Note first that we have two obvious inclusion b-morphisms λ1 : X → X ⊔ Y
and λ2 : Y → X ⊔ Y . Moreover, if T is any boset such that there are b-morphisms
τ1 : X → T and τ2 : Y → T , then it is routine to check that the map h : X ⊔ Y → T
given by h(z) = τ1(z) if z ∈ X , and h(z) = τ2(z) if z ∈ Y witnesses the universal property
of the coproduct.

Lemma 2.5.5. Let X , Y be two bosets. Then ρ(X ) × ρ(Y ) = ρ(X ⊔ Y ).

Proof. Recall that, as a covariant functor from bFop into cLat, ρ has a left adjoint α. This
means that ρ preserves limits. Since X ⊔Y is the coproduct of X and Y in bF, it is their
product in bFop, and thus ρ(X ⊔ Y ) = ρ(X ) × ρ(Y ).

2.5.2 Characterizing Co- and Bi-Heyting Algebras

Next, we extend the characterization of the dual b-frames of Heyting algebras obtained in
Section 2.3 to co- and bi-Heyting algebras. Recall that a co-Heyting algebra is a distributive
lattice in which the join ∨ has a left adjoint −<, and that a bi-Heyting algebra is a Heyting
algebra that is also a co-Heyting algebra. Bi-Heyting algebras and their representation theory
were extensively studied by Rauszer [218, 219, 220, 221].

Definition 2.5.6. Let X = (X,≤X
1 ,≤X

2 ) be a boset.

• A point x∗ ∈ X is co-Heyting if for all y ∈ X , x∗ 12⊥1y iff x∗ 1⊥2y.

• X is a co-Heyting boset if the co-Heyting points of X are dense.

• A b-morphism f : X → Y is a co-Heyting morphism (denoted coh-morphism) if it
satisfies the following strengthening of condition 2:

2′ ∀x ∈ X ∀y ≥Y
2 f(x)∃z ≥X

2 xf(x) ≥Y
12 y.

Lemma 2.5.7.

1. If X is a co-Heyting boset, then ¬2¬1 is a nucleus on Up2(X ), and consequently ρ(X )
is a co-Heyting algebra.
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2. If L is a complete co-Heyting algebra, then α(L) is a co-Heyting b-fame.

3. For any boset X , ρ(X ) is a co-Heyting algebra iff X densely embeds into a co-Heyting
b-frame.

Proof.

1 Similar to Lemma 2.3.7.

2 Similar to Lemma 2.3.9. Given a pair (a, b) ∈ α(L), a ≰ b implies that a−< b ̸= b, and
thus (a−< b, b) ∈ α(L). It is routine to check that this is a co-Heyting point of α(L).

3 Similar to Lemma 2.3.12.

Lemma 2.5.8. Let f : X → Y be a b-morphism.

1. If f is a coh-morphism, then ρ(f) : ρ(Y ) → ρ(X ) is a co-Heyting homomorphism.

2. If h : L → M is a co-Heyting homomorphism of co-Heyting algebras then the map
α(h) : α(M) → α(L) is a coh-morphism.

Proof.

1. Similar to Lemma 2.3.14.

2. Similar to Lemma 2.3.15.

We therefore obtain a description of the dual of the category of co-Heyting algebras and
co-Heyting homomorphisms:

Theorem 2.5.9. Co-Heyting b-frames and coh-morphisms form a category coHbF dual to
the category cocHA of complete co-Heyting algebras and co-Heyting homomorphisms.

Standard dualities for complete co-Heyting and bi-Heyting algebras can also be obtained
via Esakia duality [32]. In our setting, we also need to identify the dual b-frames of complete
bi-Heyting algebras. Given a boset X , let us define a bi-Heyting point of X as a point
x∗ ∈ X that is both a Heyting and a co-Heyting point. Establishing the existence of
bi-Heyting points in dual b-frames of bi-Heyting algebras requires a technical lemma.

Lemma 2.5.10. Let L be a complete bi-Heyting algebra. Then for any a, b, c, d ∈ L:

1. (a−< b) ∧ c ≤ a→ b iff c ≤ a→ b;

2. a−< b ≤ (a→ b) ∨ d iff a−< b ≤ d.

Proof.
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1. Note that:

a−< b ∧ c ≤ a→ b

iff (a ∧ c) ∧ (a−< b) ≤ b

iff ((a ∧ c) ∨ b) ∧ ((a−< b) ∨ b) ≤ b

iff (a ∨ b) ∧ (c ∨ b) ∧ (a ∨ b) ≤ b

iff (a ∧ c) ∨ b ≤ b

iff c ≤ a→ b.

2. This follows from 1 applied to Lδ, the dual bi-Heyting algebra to L.

Theorem 2.5.11. Let L be a complete lattice. Then L is a bi-Heyting algebra iff the bi-
Heyting points of α(L) are dense.

Proof. The right-to-left direction follows immediately from Lemmas 2.3.9 and 2.5.8. For the
left-to-right direction, suppose L is a bi-Heyting algebra and (a, b) ∈ α(L). We claim that
(a−< b, a → b) is a bi-Heyting point of α(L). That (a−< b, a → b) ∈ α(L) follows from
the previous lemma, with c = 1. Moreover, for any (c, d) ∈ α(L) we have by the previous
lemma (item 1) that (a−< b, a → b)2⊥1(c, d) iff c ≤ a → b iff a−< b ∧ c ≤ a → b iff
(a−< b, a → b)12⊥1(c, d). Hence (a−< b, a → b) is a Heyting point. Similarly, by item 2 in
the previous lemma, we have that (a−< b, a→ b)1⊥2(c, d) iff a−< b ≤ d iff a−< b ≤ a→ b∨d
iff (a−< b, a→ b)12⊥2(c, d). Hence (a−< b, a→ b) is a bi-Heyting point, and it is immediate
that (a, b) ≤12 (a−< b, a→ b). Therefore the bi-Heyting points of α(L) are dense.

2.5.3 Subdirect Product Representation of bi-HAs

We are now in a position to prove our main result about complete bi-Heyting algebras.
Recall first that if {Bi}i∈I is a family of complete lattices, then a complete lattice A is a

subdirect product of {Bi}i∈I if there is an injective homomorphism e : A→ Πi∈IBi such that
for any i ∈ I, πi ◦ e is surjective.

We start by defining a maximal point of a boset X as a maximal point in the 1-and-2
ordering, that is a point x ∈ X such that for any y ∈ X , y ≥12 x implies that y = x. If
X is a distributive b-frame, then maximal points in X correspond to very specific pairs of
elements of the dual lattice:

Lemma 2.5.12. Let L be a complete distributive lattice and (c, d) ∈ α(L). The following
are equivalent:

1. (c, d) is maximal;

2. (c, d) is a splitting pair of L;

3. c is completely join prime, d is completely meet-prime, d =
∨
{f ∈ L | c ≰ f} and

c =
∧
{e ∈ L | e ≰ d};
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4. for any (a, b) ∈ α(L), if (c, d) ≤1 (a, b), then (a, b) ≤2 (c, d), and if (c, d) ≤2 (a, b),
then (a, b) ≤1 (c, d).

Proof.

1 ⇒ 2 Suppose that there is some k ∈ L such that c ≰ k and k ≰ d. Since L is distributive
and c ≰ d, either c ∧ k ≰ d or c ≰ k ∨ d. Either way, we have a pair (c′, d′) ̸= (c, d)
such that (c, d) ≤12 (c′, d′), contradicting maximality.

2 ⇒ 3 The equivalence between 2 and 3 is well known [192]. We include the argument for the
left-to-right direction for the sake of completeness. Let F ⊆ L. If c ≰ f for all f ∈ F ,
then, since (c, d) is a splitting pair, f ≤ d for all f ∈ F , from which it follows that∨
F ≤ d and therefore c ≰

∨
F . Similarly, if f ≰ d for all f ∈ F , then c ≤ f for all

f ∈ F , hence c ≤
∧
F and therefore

∧
F ≰ d. Thus c and d are completely join-prime

and completely meet-prime respectively. Finally, note that for any f ∈ L, f ≤ d iff
c ≰ f , from which it follows that

∨
{f | c ≰ f} ≤ d and c ≤

∧
{e | e ≰ d}. Since c ≰ d,

we conclude that
∨
{f | c ≰ f} = d and c =

∧
{e | e ≰ d}.

3 ⇒ 4 Suppose that (c, d) ≤1 (a, b). Then c ≰ b, hence b ≤ d, which implies that (a, b) ≤2

(c, d). Similarly, if (c, d) ≤2 (a, b), then a ≰ d, hence c ≤ a, and (a, b) ≤1 (c, d).

4 ⇒ 1 Suppose (c, d) ≤12 (a, b). Then since 4 holds we have that (a, b) ≤12 (c, d), so c = a
and b = d.

The next lemma relates maximal points in separative bosets and anti-algebraic locales:

Lemma 2.5.13. Let X be a separative boset with no maximal point. Then ρ(X ) is anti-
algebraic.

Proof. We show that there are no splitting pairs in ρ(X ). Let U ⊈ V ∈ ρ(X ), and suppose
x ∈ U ∩ ¬2V . Since x is not a maximal point, there is y ≥12 x such that y ≰1 x or y ≰2 x.
We distinguish two cases:

• y ≰1 x: By separativity ↑1y = Uy ∈ ρ(X ), and since x /∈ ↑1y and y ∈ ¬2V , we have
that U ⊈ Uy and Uy ⊈ V .

• y ≰2 x: By separativity there is z ∈ X such that x2⊥1z and ¬y2⊥1z, which implies
that z ∈ Vy \V , so that Vy ⊈ V . On the other hand, since y ∈ U , we have that U ⊈ Vy.

Hence (U, V ) is not a splitting pair. But this in turn implies that U is not completely
join-prime and therefore that L is anti-algebraic.

We can now prove the main theorem of this section. As will become clear below, we are
considering bi-Heyting algebras as complete lattices in the category cLat, meaning that the
morphisms considered here need not preserve the Heyting or co-Heyting implication.

Theorem 2.5.14. Let L be a complete bi-Heyting algebra. Then L is a subdirect product of
L1 × L2 in cLat, where L1 is superalgebraic and L2 is anti-algebraic.
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Proof. Let X be the subframe of α(L) induced by the set of all maximal points in α(L),
and let Y be the subframe of α(L) induced by the set of all bi-Heyting points y ∈ α(L)
such that for any z ≥12 y, z is not a maximal point. Note that, by duality, it is enough to
show that there are embeddings ν1 : X → α(L) and ν2 : Y → α(L) such that the induced
b-morphism ν : X ⊔Y → α(L) is dense, since this will imply that ρ(ν) : L→ ρ(X )×ρ(Y )
is injective and that ρ(ν1) = ρ(ν) ◦ ρ(λ1) : L → ρ(X ) and ρ(ν2) = ρ(ν) ◦ ρ(λ2) : L → ρ(Y )
are surjective.

• For any (c, d) ∈ X , define ν1(c, d) = (c, d). We claim that ν1 : X → α(L) is an
embedding. Monotonicity is clear. If ν1(c, d) ≤1 (a, b) for some (a, b) ∈ α(L), then,
since (c, d) is maximal, we have that (a, b) ≤2 ν1(c, d), which means that ν1 satisfies
condition 2 of a b-morphism. Similarly, if ν1(c, d) ≤2 (a, b), we have that (a, b) ≤1

ν1(c, d), and thus ν1 is a b-morphism. Finally, to see that it is an embedding, suppose
that ¬ν1(c, d)2⊥1ν1(c

′, d′). Then there is some (a, b) ∈ α(L) such that (c, d) ≤2 (a, b)
and (c′, d′) ≤1 (a, b). But this in turn implies that (c′, d′) ≤1 (a, b) ≤1 (c, d), so
¬(c, d)2⊥1(c

′, d′).

• For any (a, b) ∈ Y , define ν2(a, b) = (a, b). We claim that ν2 : X → α(L) is an
embedding. Once again, monotonicity is clear. To see that ν2 satisfies conditions 2 and
3 of b-morphism, note first that for any (a, b) ∈ Y and any bi-Heyting (a′, b′) ∈ α(L),
if (a, b) ≤12 (a′, b′), then (a′, b′) ∈ Y . Now fix some (a, b) ∈ Y and assume that
ν2(a, b) ≤1 (c, d) for some (c, d) ∈ α(L). Since (a, b) is bi-Heyting, we have that
(a, b) ≤12 (a′, b′) for some bi-Heyting (a′, b′) ≥2 (c, d). But then (a′, b′) ∈ Y , which
shows that ν2 satisfies property 2. Similarly, assume that ν2(a, b) ≤2 (c, d) for some
(c, d) ∈ α(L). Since (a, b) is bi-Heyting, we have some bi-Heyting (a′, b′) ≥12 (a, b)
such that (a′, b′) ≥1 (c, d). But then (a′, b′) ∈ Y , so ν2 satisfies property 3 of a b-
morphism. Finally, to see that ν2 is an embedding, assume ¬ν2(a, b)2⊥1ν2(a

′, b′) for
some (a, b), (a′, b′) ∈ Y . Then there is some (c, d) ∈ α(L) such that (a, b) ≤2 (c, d) and
(a′, b′) ≤1 (c, d). As (a, b) is bi-Heyting, there is some bi-Heyting point (a∗, b∗) ≥12 (a, b)
such that (c, d) ≤1 (a∗, b∗). But then (a′, b′) ≤1 (a∗, b∗) and (a∗, b∗) ∈ Y , which implies
that ¬(a, b)2⊥1(a

′, b′).

• Finally, by the universal property of the coproduct, the map ν : X ⊔ Y → α(L),
defined by ν(a, b) = (a, b) for any (a, b) ∈ X ⊔ Y , is a b-morphism. Moreover, we
claim that it is dense. Suppose (a, b) ∈ α(L). There are two possible cases:

– (a, b) ≤12 (c, d), for some maximal point (c, d). Then (c, d) ∈ X .

– (a, b) ≰12 (c, d) for any maximal point (c, d). Then since L is a bi-Heyting algebra,
(a, b) ≤12 (a′, b′) for some bi-Heyting point (a′, b′) such that (a′, b′) ≰12 (c, d) for
any maximal point (c, d), which implies that (a′, b′) ∈ Y .

Hence for any (a, b) ∈ α(L) there is some (c, d) ∈ X ⊔ Y such that (a, b) ≤12 ν(c, d),
and hence ν is dense.
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Thus, in cLat, L is a subdirect product of ρ(X ) and ρ(Y ). It remains to be shown that X
is superalgebraic and that Y is anti-algebraic.

• Since all points in X are maximal, they are also splitting points: if (c, d) ≤1 (c1, d1)
and (c, d) ≤2 (c2, d2), for some (c, d), (c1, d1), (c2, d2) ∈ X , then (c1, d1) ≤2 (c, d) and
(c2, d2) ≤1 (c, d), and thus ¬(c1, d1)2⊥1(c2, d2). Hence ρ(X ) is superalgebraic.

• Clearly, by construction, Y has no maximal points. So it is enough to show that Y is
separative in order to establish that ρ(Y ) is anti-algebraic. Suppose (a, b) ≰1 (a′, b′) for
some (a, b), (a′, b′) ∈ Y . Then since α(L) is separative, there is some (a′′, b′′) ≥1 (a′, b′)
such that (a′′, b′′)2⊥1(a, b). Since (a′, b′) is bi-Heyting, there is some (a∗, b∗) ≥12 (a′, b′)
such that (a∗, b∗) ≥2 (a′′, b′′). But then (a∗, b∗) ∈ Y and (a∗, b∗)2⊥1(a, b). This shows
that Y is 1-separative. The argument for 2-separativity is completely similar. Thus
Y is separative and has no maximal points, from which it follows that ρ(Y ) is anti-
algebraic.

This completes the proof of the theorem.

Let us conclude this section with some remarks on the theorem obtained in this section.
First, the proof of this theorem does not simply rely on the Allwein-MacCaull representation
of complete lattices, but requires the full power of b-frame duality. Moreover, the main idea
of the proof uses the fact that bosets can be “split” in a fairly simple way, because they are
discrete structures.8

Furthermore, it is worth emphasizing that this result only holds in cLat, i.e., the mor-
phisms under consideration here are complete lattice homomorphisms and not Heyting or
bi-Heyting homomorphisms. Indeed, as was pointed out by an anonymous referee, the fol-
lowing is an example of a subdirectly irreducible complete bi-Heyting algebra that is neither
superalgebraic nor anti-algebraic:

Example 2.5.15. Consider the chain A = N⊕ [0, 1] ⊕⊤, where N and [0, 1] have the usual
order. Every element in N is completely join-prime, while no element of [0, 1] is completely
join-prime. Moreover, A is a complete bi-Heyting algebra with a second least and a second
greatest element, which means that it is subdirectly irreducible in the category of bi-Heyting
algebras and bi-Heyting homomorphisms. But clearly, A is neither superalgebraic nor anti-
algebraic and thus cannot be written as a subdirect product of a superalgebraic and an
anti-algebraic locales.

However, the standard decomposition result about Boolean algebras follows directly from
Theorem 2.5.14, once one recalls that cBA is a full subcategory of cLat and that join-prime
generated elements in Boolean algebras coincide with co-atoms.

8I thank an anonymous referee for pointing out that one can also follow a similar strategy and prove this
result using the more standard techniques of Priestley and Esakia duality.
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Finally, while the definition of anti-algebraic locales does not seem to appear anywhere
in the literature, it is arguably a straightforward generalization of the notion of a complete
atomless Boolean algebra. Moreover, existentially-closed Heyting algebras (in the sense of
model theory) have recently been axiomatized by Darnière in [64] as those Heyting algebras
A satisfying the two “strong order” axioms of Density and Splitting, as well as a countable set
of formulas expressing the fact that the complete theory of A eliminates quantifiers. Since,
as is well known [56, p. 194], atomless Boolean algebras are precisely the existentially-closed
Boolean algebras, one may wonder whether the anti-algebraic locales we define here satisfy
Darnière’s axioms. For now, we leave this as an open problem and move on to discussing
applications of bosets to the semantics of intuitionistic logic.

2.6 Semantics for IPC

In this final section, we outline some applications of the results obtained above to the se-
mantics of intuitionistic propositional logic. As shown in [36], the algebraic approach to a
semantics S for IPC associates S to the class HS of Heyting algebras represented by the
models of S. Given two semantics S and S ′, S is more general than S ′ (denoted S ′ ≤ S)
whenever every Heyting algebra in HS′ is isomorphic to a Heyting algebra in HS . Under
this ordering, it can be shown that Kripke semantics is strictly less general than topological
semantics, which is itself strictly less general than nuclear semantics such as Dragalin [76]
and Fairtlough-Mendler [85] semantics. Indeed, the Heyting algebras that arise as the upset
of a Kripke frame are precisely superalgebraic locales and those arising as open sets of a
topological space are spatial locales. In nuclear semantics, a nucleus is defined on the upset
of a poset (P,≤), for example by endowing this poset with a function D : P → P(P(P ))
satisfying certain conditions (as is done in Dragalin semantics), or by adding a second or-
dering ≼ on P such that ≼⊆≤ (as is the case in FM semantics). Formulas of IPC are then
evaluated as upsets of (P,≤) that are also fixpoints of the nucleus thus defined. Building on
a result of Dragalin [76, pp. 75-76], Bezhanishvili and Holliday [37] proved that any locale
arises as the fixpoints of such a nucleus and that both Dragalin and FM-semantics are as
general a semantics for intuitionistic logic as locale semantics.

This semantic hierarchy is particularly relevant for the study of the incompleteness phe-
nomenon for intermediate logics. Indeed, if S ′ ≤ S, then every S ′-complete intermediate
logic is also S-complete, but the converse may fail to be true. However, in contrast with
the situation in modal logic [137], little is known about Kripke, topological or locale incom-
pleteness for intermediate logics. One possible explanation for this phenomenon is the fact
that IPC is a much less expressive language than modal propositional logic. Moreover, the
standard representation theorems that underlie each of these semantics do not fit neatly in
a hierarchy that immediately witnesses the increase of generality between them. Dragalin’s
representation of any locale as the fixpoints of a nuclear algebra does not restrict to the
Ω − pt representation of spatial locales of pointfree topology, which itself does not restrict
to the de Jongh-Troelstra representation of superalgebraic locales.

Our goal in this section is to provide a uniform framework for comparing Kripke, topo-
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logical and nuclear semantics for intuitionistic logic. We first show how Heyting bosets can
be used to provide a semantics for IPC that is as general as nuclear semantics and thus
equivalent to FM and Dragalin semantics. We then show how the characterizations of spa-
tial and superalgebraic locales obtained in Section 2.4 allow us to restrict boset semantics
to semantics that are equivalent to topological and Kripke semantics. Finally, our main
result is a strengthening of one of the only known results regarding Kripke incompleteness
of intermediate logics. Using boset semantics, we show that a logic shown in [239] to be
Kripke incomplete is in fact incomplete with respect to all complete bi-Heyting algebras.
As mentioned in Section 2.1, a similar result has recently been obtained independently by
Bezhanishvili, Gabelaia and Jibladze [35], using Esakia duality.

2.6.1 Boset Semantics

As is standard, we let V ar be a countable set of propositional variables and Fml be the set of
all formulas of IPC over this set of propositional variables and proceed to define valuations
inductively. However, it is useful to define a relation of refutation of a formula at a point, on
top of the usual definition of satisfaction. Refutation systems for propositional and modal
logic have a long history [112], going back to  Lukasiewicz [173]. Refutation relations have
also recently been used in the context of generalized Kripke semantics for non-classical logics
[57, 62, 101, 120, 123]. The introduction of such a relation alongside a satisfaction relation is
motivated by the two-sorted nature of these generalized Kripke frames, itself a consequence
of the underlying representation of complete lattices via polarity relations of [125] mentioned
in Section 2.2.5.

Definition 2.6.1. A boset model for IPC is a structure (X,≤1,≤2, V ) in which the under-
lying domain X = (X,≤1,≤2) is a Heyting boset and V is a map from V ar to ρ(X ).

Definition 2.6.2. Let (X , V ) be a boset model. We define the relations ⊩+ (satisfaction)
and ⊩− (refutation) on X × Fml inductively as follows:

• x ⊩+ p iff x ∈ V (p);

• x ⊩− p iff x ∈ ¬2V (p);

• x ⊩+ φ ∧ ψ iff x ⊩+ φ and x ⊩+ ψ;

• x ⊩− φ ∧ ψ iff ∀y ≥2 x∃z ≥1 y : z ⊩− φ or z ⊩− ψ;

• x ⊩+ φ ∨ ψ iff ∀y ≥1 x∃z ≥2 y : z ⊩+ φ or z ⊩+ ψ;

• x ⊩− φ ∨ ψ iff x ⊩− φ and x ⊩− ψ;

• x ⊩+ φ→ ψ iff ∀y ≥1 x : y ⊩+ φ implies y ⊩+ ψ;

• x ⊩− φ→ ψ iff ∀y ≥2 x∃z ≥1 y : y ⊩+ φ and y ⊩− ψ.
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For any formula φ, we write the sets {x ∈ X : x ⊩+ φ} and {x ∈ X : x ⊩− φ} as V +(φ)
and V −(φ) respectively.

This definition ensures that the semantic value of any formula is always a regular open
set. Indeed, a simple induction on the complexity of formulas establishes the following:

Lemma 2.6.3. For any formula φ:

• V −(φ) = ¬2(V
+(φ)), and V +(φ) = ¬1(V

−(φ));

• ¬1¬2V
+(φ) = V +(φ) and ¬2¬1V

−(φ) = V −(φ).

• V + is a homomorphism from the Lindenbaum-Tarski algebra of IPC into ρ(X ).

Next, we define validity in the standard way:

Definition 2.6.4. Let X be a Heyting boset. A formula φ is valid on a boset model (X , V )
if V +(φ) = X, and φ is valid on X if it is valid on (X , V ) for any valuation V .

This allows for the following soundness and completeness theorem:

Theorem 2.6.5. IPC is sound and complete with respect to boset semantics. Moreover,
boset semantics is as general as FM and Dragalin semantics.

Proof. Soundness follows directly from Lemma 2.6.3. For completeness, note first that a
model in any semantics for IPC is characterized by a HA-homomorphism from the free
Heyting algebra on countably many generators (also called the Lindenbaum-Tarski alge-
bra of IPC) into a Heyting algebra. Thus any isomorphism between Heyting algebras also
induces an isomorphism between corresponding models. By Lemma 2.2.8, any complete
Heyting algebra can be represented as the regular opens of some Heyting boset. Since the
Lindenbaum-Tarski algebra of IPC embeds into its MacNeille completion, the completeness
of IPC with respect to boset semantics follows. Moreover, since the regular opens of any
Heyting boset always form a cHA, and any cHA can also be represented as the cHA of
fixpoints of an FM or Dragalin frame (see [36]), it follows that boset semantics is as general
as FM and Dragalin semantics.

Let us conclude by remarking that the dual b-frame of a locale L is closely related
to the canonical FM-frame introduced in [36, Def. 4.32], since the latter can be obtained
from the former by defining the second ordering as the intersection of the two orderings on
α(L). The regular open sets of an FM-frame (X,≤,≼) are guaranteed to form a complete
Heyting algebra because of the requirement that ≼ be a subrelation of ≤. As discussed in
Section 2.3.2, this condition is not necessary for the regular opens of a boset to be a complete
Heyting algebra, unlike the characterization presented in Lemma 2.3.12.
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2.6.2 Spatial and Splitting semantics

Bosets semantics provides a uniform framework for semantics for IPC. Indeed, now that we
have established that boset semantics is as general a semantics based on complete lattices as
possible, we can also use our characterization of spatial and superalgebraic locales to define
more stringent semantics which are easily seen to be equivalent to topological and Kripke
semantics respectively.

Definition 2.6.6. Let (X , V ) be a boset model.

• (X , V ) is a spatial model if for any x ∈ X and any formulas φ, ψ, x ⊩− φ ∧ ψ iff
x ⊩− φ or ⊩− ψ.

• (X , V ) is a splitting model if for any x ∈ X and any formula φ, x ⊩+ φ or x ⊩− φ.

Note that every splitting model is also spatial: suppose (X , V ) is splitting and let x ∈ X
and φ, ψ be two formulas. Then if x ⊮− φ and x ⊮− ψ, this implies that x ⊩+ φ and x ⊩+ ψ,
and thus x ⊩+ φ ∧ ψ.

Next, we show how spatial and splitting models relate to spatial and splitting points in
a boset:

Lemma 2.6.7. Let X be a Heyting boset.

1. A point x in X is spatial iff for any boset model (X , V ) and any formulas φ and ψ,
x ⊩− φ ∧ ψ iff x ⊩− φ or ⊩− ψ.

2. A point x in X is splitting iff for any boset model (X , V ) and any formula φ, either
x ⊩+ φ or x ⊩− φ.

Proof.

1. For the left-to-right direction, assume x ⊮− φ and x ⊮− ψ. Then we have y1, y2 ≥2 x
such that y1 ⊩+ φ and y2 ⊩+ ψ. If x is spatial, we can complete the diagram with
a point z ≥2 x such that z ≥1 y1, y2. But this implies that z ⊩+ φ and z ⊩+ ψ, so
x ⊮− φ ∧ ψ. Thus x ⊩− φ ∧ ψ implies that x ⊩− φ or x ⊩− ψ, and the converse
direction is always true.
For the right-to-left direction, suppose x is not spatial and we have y1, y2 ≥2 x such
that for any z ≥1 y1, y2, z ≱2 x. Let V (p) = Uy1 and V (q) = Uy2 . Then y1 ⊩+ p and
y2 ⊩+ q, which means that x ⊮− p and x ⊮− q. On the other hand, since X is Heyting,
we have that V +(p ∧ q) = Uy1 ∩ Uy2 = ¬1¬2(↑1y1) ∩ ¬1¬2(↑1y2) = ¬1¬2(↑1y1 ∩ ↑1y2).
Since x ∈ ¬2(↑1y1 ∩ ↑1y2), this implies that x ⊩− p ∧ q.

2. For the left-to-right direction, assume x ⊮+ φ and x ⊮− φ. Then there are y1 ≥1 x
and y2 ≥2 x such that y1 ⊩− φ and y2 ⊩+ φ. But then, if z ≥2 y1 and z ≥1 y2, we have
that z ⊩+ φ and z ⊩− φ, a contradiction. Thus, by contraposition, if x is a splitting
point, we have that x ⊩+ φ or x ⊩− φ.
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Conversely, assume x is not a splitting point and let y1 ≥1 x, y2 ≥2 x such that
y1 2⊥1y2. Define V (p) = Uy2 . Then clearly y2 ∈ V +(p) and y1 ∈ V −(p), which in turn
implies that x ⊮− φ and x ⊮+ φ.

Recall that, as we have shown in Section 2.4, any superalgebraic locale is isomorphic to
a boset in which all points are splitting, and any spatial locale is isomorphic to a boset in
which all points are spatial. Together with the previous result, this implies the following
corollary:

Corollary 2.6.8.

1. An intermediate logic L is Kripke complete iff it is complete with respect to a class of
Heyting bosets C such that for any X ∈ C, any model (X , V ) is splitting.

2. An intermediate logic L is topologically complete iff it is complete with respect to a
class of Heyting bosets C such that for any X ∈ C, any model (X , V ) is spatial.

Finally, let us conclude by showing how spatial and splitting models can be respectively
turned into topological and Kripke models on the same set:

Lemma 2.6.9. Let X be a Heyting boset and V a spatial valuation on X . Then there is
a topology τ on X and a topological valuation V ∗ such that for any x ∈ X , x, V ⊮− φ iff
x, V ∗ ⊨ φ.

Proof. Let (X , V ) be a spatial model, and let τ be generated by the sets {[φ] | φ ∈ Fml},
where for any formula φ, [φ] = {x ∈ X | x ⊮− φ}. Note that for any φ, ψ, we have that

[φ ∧ ψ] = {x ∈ X | x ⊮− φ ∧ ψ} = {x ∈ X | x ⊮− φ and x ⊮− ψ} = [φ] ∧ [ψ],

where the third equality holds because (X , V ) is a spatial model. This implies that the sets
of the form [φ] form a basis for τ . Similarly, we have that

[φ ∨ ψ] = {x ∈ X | x ⊮− φ ∨ ψ} = {x ∈ X | x ⊮− φ or x ⊮− ψ} = [φ] ∪ [ψ].

Moreover, we claim that [φ → ψ] = Iτ (−[φ] ∪ [ψ]). Assume first that x ∈ [φ → ψ]. Then,
x ⊮− φ → ψ. Now if x ⊮− φ, we have that x ⊮− φ ∧ (φ → ψ), which implies that x ⊮− ψ.
Thus x ∈ −[φ] ∪ [ψ]. Conversely, assume x ∈ Iτ (−[φ] ∪ [ψ]). Since sets of the form [φ] form
a basis for τ , this means that x ∈ [χ] for some formula χ such that [χ] ⊆ −[φ] ∪ [ψ]. Now
suppose that x ⊩− φ→ ψ. Since x ⊮− χ, there is y ≥2 x such that y ⊩+ χ and y ⊩− φ→ ψ.
Thus there is z ≥1 y such that z ⊩+ χ, z ⊩+ φ and z ⊩− ψ. But then z ∈ [χ]∩ ([φ]− [ψ]), a
contradiction. Thus x ∈ [φ→ ψ], which establishes that [·] defines a valuation V ∗ on (X, τ).
Clearly, for any x ∈ X , we have that x, V ⊮− φ iff x, V ∗ ⊨ φ for any formula φ.

Lemma 2.6.10. Let (X,≤1,≤2, V ) be a splitting model. Then there is a Kripke valuation
V ∗ on (X,≤1) such that for any x ∈ X and any formula φ, x, V ⊩+ φ iff x, V ∗ ⊨ φ.
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Proof. Let (X,≤1,≤2, V ) be a splitting model, and consider the Kripke model (X,≤1, V
∗),

where for any formula φ, V ∗(φ) = {x ∈ X | x ⊩+ φ}. Note that it is enough to show that
V ∗ is a well-defined valuation in order to complete the proof. To see this, note that for any
x ∈ X and any formulas φ, ψ, we have that x ∈ V ∗(φ ∧ ψ) iff x ⊩+ φ ∧ ψ iff x ⊩+ φ and
x ⊩+ ψ iff x ∈ V ∗(φ) ∩ V ∗(ψ). Similarly, we have that V ∗(φ → ψ) = −↓(V ∗(φ)−V ∗(ψ)).
Finally, since (X,≤1,≤2, V ) is splitting, for any x, φ and ψ, we have that

x ⊩+ φ ∨ ψ iff x ⊮− φ ∨ ψ
iff x ⊮− φ or x ⊮− φ

iff x ⊩+ φ or x ⊩+ ψ.

But this implies at once that for any formulas φ, ψ, V ∗(φ ∨ ψ) = V ∗(φ) ∪ V ∗(ψ), which
completes the proof.

Dragalin [76] showed that the open sets of any topological space are isomorphic to the
fixpoint of some Dragalin frame. Similarly, Kripke [160] showed that the upset of any poset
are isomorphic to the fixpoints of a certain kind of nuclear frame known as a Beth frame (see
[36] for more details on Beth semantics). The previous two lemmas can be seen as relating
nuclear semantics to Kripke and topological semantics in a similar fashion, although there
are two notable differences. First, Dragalin’s and Kripke’s results in the literature go from
less general to more general semantics, while Lemmas 2.6.9 and 2.6.10 go from boset models
to Kripke and topological semantics, so from a more general semantics to less general ones.
Moreover, while the results mentioned above show how to turn Heyting algebras arising
from some semantics into Heyting algebras arising from another one, our results are in some
sense more fine-grained, as they show how to turn valuations into valuations, i.e., how to
turn Heyting homomorphisms from the Lindenbaum-Tarski algebra of IPC into a complete
Heyting algebra into Heyting homomorphisms that arise as valuations in some alternative
semantics.

2.6.3 Complete Bi-Heyting algebras and the Shehtman Logic

Finally, we conclude this section with a generalization of an important result in the literature
on intermediate logics. Consider the following inference rule schema, which we call Litak’s
Rule, where ϵ is some uniform substitution:

(1) (ψ ∨ (ψ → ϵ(χ))) → χ

(2) ψ ↔ (σ → τ)

(3) (σ ∨ τ) → ϵ(σ) ∧ ϵ(τ)

(4) χ↔ (ψ ∨ ϵ(τ))
χ

Proofs of (variants of) the following theorems can be found in [239] and [172]:
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Theorem 2.6.11. Let L be an intermediate logic in which Litak’s Rule is not admissible.
Then for every class C of Kripke frames adequate for L, there is a frame F ∈ C and a point
in F which refutes the Gabbay-de Jongh bounded branching axiom bb2.9

Theorem 2.6.12. There exists an intermediate logic SL such that SL ⊢ bb2 and Litak’s
rule R is not admissible in SL.

As a corollary, the Shehtman logic SL is Kripke-incomplete. We strengthen this result
as follows:

Theorem 2.6.13. The Shehtman logic SL is incomplete with respect to all complete bi-
Heyting algebras.

This is established via the following generalization of Theorem 2.6.11:

Theorem 2.6.14. Let L be an intermediate logic in which Litak’s Rule is not admissible.
Then for every class C of b-frames dual to complete bi-Heyting algebras, if C is adequate for
L, then there is a b-frame X ∈ C such that the Gabbay-de Jongh bounded branching axiom
bb2 is refuted at some point in X .

The proof will take several lemmas. Suppose first that C is a class of b-frames dual to a
bi-Heyting locale, and notice that this implies that for any X ∈ X, the bi-Heyting points of
X are dense. Assume that C is adequate for L. Then since L is valid on any b-frame in C,
the following holds:

Lemma 2.6.15. Let X ∈ C and V be a valuation on X . The following are true for any
x ∈ X and n ∈ ω:

1. x, V ⊩+ ϵn(σ ∨ τ) implies x, V ⊩+ ϵi(σ) ∧ ϵj(τ) for all i, j ≥ n;

2. x, V ⊩+ ϵn(χ) implies x, V ⊩+ ϵi(χ) for any i ≤ n; moreover, x, V ⊩+ ϵn(ψ) implies
x, V ⊩+ ϵi(χ) for all i ≤ n.

3. x, V ⊩+ ϵn(σ) implies x, V ⊩+ ϵm(χ) for all m ∈ ω;

4. x, V ⊩+ ϵn(σ) and x, V ⊩− ϵn(τ) together imply that x, V ⊩− ϵn(ψ).

5. x, V ⊩− ϵn(χ) implies that there exists y, z ≥1 x such that y, V ⊩+ ϵn(σ), y, V ⊩− ϵn(τ),
z, V ⊩+ ϵn(ψ) and z, V ⊩− ϵn+1(χ).

Proof.

1. By a repeated use of axiom (3).

2. By a repeated use of axiom (1).

9See below for the definition of bb2.
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3. Fix n,m ∈ ω, and let k = max{n,m}. By 1 above, x ⊩+ ϵn(σ) implies x ⊩+ ϵk+1(τ).
By axiom (4), this in turn implies that x ⊩+ ϵk(χ). But then from 2 above it follows
that x ⊩+ ϵm(χ).

4. Assume y ≥2 x. Then y ⊩+ ϵn(σ) and y ⊮+ ϵn(τ), from which it follows that y ⊮+

ϵn(ψ). Hence x ⊩− ϵn(ψ).

5. Assume x ⊩− ϵn(χ). Then, by axiom (1), x ⊩− ϵn(ψ), hence, (by axiom (2)) we have
x ⊩− ϵn(σ) → ϵn(τ) and x ⊩− ϵn(ψ) → ϵn+1(χ)). This means that there is y ≥1 x
such that y ⊩+ ϵn(σ) and y ⊩− ϵn(τ), and there is z ≥1 x such that z ⊩+ ϵn(ψ) and
z ⊩− ϵn+1(χ).

Now since Litak’s Rule is not admissible in L, there is some X = (X,≤1,≤2) ∈ C and a
valuation V on X such that all the premises of Litak’s rule are true at all points in X and
there is x ∈ X such that x ⊩− χ.

In what follows, for i ∈ {0, 1, 2}, we write i + 1 and i + 2 for i + 1 and i + 2 mod 3
respectively. Recall that bb2 is the axiom:∧

i∈{0,1,2}

(pi → (pi+1 ∨ pi+2) → (pi+1 ∨ pi+2)) → (p0 ∨ p1 ∨ p2).

Definition 2.6.16. For every n < ω, let Sn =
⋂
m ̸=n<ω V (ϵm(ψ))−V (ϵn(ψ)).

It is easy to see that for any n < ω,
⋂
m<ω V (ϵm(ψ))∪Sn is a ≤1-upset (this is because if

x ≤1 y and x ∈ Sn for some n < ω, then since y ∈ V (ϵn(ψ)) ∪ (X−V (ϵn(ψ))), we have that
either y ∈

⋂
n<ω V (ϵn(ψ)) or y ∈ Sn).

Now let p0, p1, p2 be three fresh propositional variables and define a valuation V ′ as
follows:

• V ′(q) = V (q) for any propositional variable q ∈ LIPC such that q ̸= pi for i ∈ {0, 1, 2};

• V ′(pi) = ¬1¬2(
⋂
n<ω V (ϵn(ψ)) ∪

⋃
n<ω S3n+i) for i ∈ {0, 1, 2}.

We will now need to prove three lemmas that will give the key to the proof. The general
idea is the following: We first prove that any x that refutes χ must also refute the disjunction
p0 ∨ p1 ∨ p2. We then show that any point that refutes one of the antecedent of bb2 must
be the root of an analogue of the Beth comb10 in the setting of b-frames. Finally, showing
that the teeth of such a Beth comb must satisfy precisely one of {p0, p1, p2} will imply, by
contradiction, that x must also satisfy the antecedent of bb2.

We start with the refutation of the consequent of bb2.

10Recall that the Beth comb is the set {an}n∈ω ∪ {dn}n∈ω endowed with the following structure:

d0

a0

d1

a1

d2

a2
. . .
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Lemma 2.6.17. For all x ∈ X, if x ⊩− χ, then x ⊩− pi for i ∈ {0, 1, 2}, which implies that
x ⊩− p0 ∨ (p1 ∨ p2).

Proof. Assume x ⊩− χ, and let y ≥2 x. We claim that y /∈ V ′(pi) for i ∈ {0, 1, 2}. To see
this, let z ≥2 y. Note first that since z ⊩− χ, we must have that z ⊩− ϵn(ψ) for any n < ω
by Lemma 2.6.15.2. But this implies that for all z ≥2 y, z /∈

⋂
n<ω V (ϵn(ψ)) ∪

⋃
n<ω S3n+i.

Hence y /∈ V ′(pi) for i ∈ {0, 1, 2}. From this it follows that x ⊩− pi for i ∈ {0, 1, 2}, and
hence x ⊩− p0 ∨ (p1 ∨ p2).

Let us now move on to the lemmas that will be used to prove that x must also satisfy
the antecedent of bb2.

Lemma 2.6.18. For any x ∈ X, if x ⊩− p0 ∨ (p1 ∨ p2), then there is n < ω such that
x ⊮+ ϵn(χ).

Proof. Assume x0 ⊩+ ϵn(χ) for all n < ω, and x0 ⊩− p0 ∨ (p1 ∨ p2). Let x ≥12 x0 be a bi-
Heyting point, and note that this implies that x ⊩+ ϵn(χ) for all n < ω, and x ⊩− p0∨(p1∨p2).
This implies that x ⊮+ ϵn(ψ) for some n < ω, for otherwise x ∈

⋂
n<ω V (ϵn(ψ)), which means

that x ⊩+ pi for all i ∈ {0, 1, 2} (since
⋂
n<ω V (ϵn(ψ)) is a ≤1-upset). Let j be the smallest

number n such that x ⊮+ ϵn(ψ). Then there is some y0 ≥1 x such that y0 ⊩− ϵj(ψ), and
since x is bi-Heyting, y0 ≤2 y for some bi-Heyting point y ≥12 x. Now since x ⊩+ ϵj(χ),
we also have that y ⊩+ ϵj(χ), so by axiom (4) we have that y ⊩+ ϵj(ψ) ∨ ϵj+1(τ). But this
implies that there is z0 ≥2 y such that z ⊩+ ϵj+1(τ), and since y is a bi-Heyting point, this
implies that there is some z ≥1 z0 such that y ≤12 z. Thus z ⊩+ ϵj+1(τ), and hence, since j
is the smallest number n such that x0 ⊮+ ϵn(ψ), we have that z ∈

⋂
n<ω V (ϵn(ψ)) ∪ Sj, and

therefore z ⊩+ pi for i = j mod 3. But this contradicts the fact that x ⊩− p0 ∨ (p1 ∨ p2),
since x ≤12 y ≤12 z. Therefore for any x ∈ X, if x ⊩− p0 ∨ (p1 ∨ p2), then there is n < ω
such that x ⊮+ ϵn(χ).

The previous lemma used the fact that the bi-Heyting points of X are dense. It is
straightfoward to verify that this is the only place where this fact is used in the proof of
Theorem 2.6.14.

Lemma 2.6.19. For all x ∈ X, if there is n ∈ ω such that x ⊩+
∧
j<n ϵ

j(ψ) ∧ ϵn(σ) and
x ⊩− ϵn(τ), then x ⊩+ pi and x ⊩− pi+1 ∨ pi+2 for i ∈ {0, 1, 2} such that n = i mod 3.

Proof. Assume x ⊩+
∧
j<n ϵ

j(ψ)∧ ϵn(σ) and x ⊩− ϵn(τ). Note that this implies that x ∈ Sn,
and therefore x ⊩+ pi for i = n mod 3. Moreover, let y ≥2 x. Then we have that y ⊮+ ϵn(ψ),
and therefore y /∈

⋂
m<ω V (ϵm(ψ))∪Sk for any k ̸= n. Hence y ⊮+ pj for any j ̸= i ∈ {0, 1, 2}.

Hence x ⊩− pj for j ̸= i ∈ {0, 1, 2}.

We have now gathered all the ingredients for the proof of Theorem 2.6.14:

Proof. Recall that there is x ∈ X such that x ⊩− χ. We will prove that axiom bb2 is refuted
at x, i.e., we prove that x ⊩+ (pi → (pi+1 ∨ pi+2)) → (pi+1 ∨ pi+2) for all i ∈ {0, 1, 2} and
that x ⊩− p0 ∨ (p1 ∨ p2). To see this, note first that the latter follows immediately from



CHAPTER 2. A DISCRETE DUALITY FOR COMPLETE LATTICES 71

Lemma 2.6.17. Moreover, assume that for some i ∈ {0, 1, 2}, x ⊮+ (pi → (pi+1 ∨ pi+2)) →
(pi+1∨pi+2). This means that there is y ≥1 x such that y ⊩+ pi → (pi+1∨pi+2) and y ⊩− pi+1∨
pi+2. Note that this implies that y ⊩− p0 ∨ (pi+1 ∨ pi+2). Now by Lemma 2.6.18, this means
that y ⊮+ ϵn(χ) for some n ∈ ω and hence that there is z ≥1 y such that z ⊩− ϵn(χ). Let n
be the smallest number such that z ⊩− ϵn(χ). This means that z ⊩+

∧
j<n(ϵj(ψ) ∨ ϵj+1(τ)).

Now since z ⊩+ ϵj(τ) → ϵn(τ) for any j ≤ n, this implies that z ⊩+
∧
j<n(ϵj(ψ) ∨ ϵn(τ)),

i.e., z ⊩+
∧
j<n ϵ

j(ψ) ∨ ϵn(τ). This means that there is z′ ≥2 z such that z′ ⊩+
∧
j<n ϵ

j(ψ)

or z′ ⊩+ ϵn(τ). But the latter is impossible, since z ⊩− ϵn(χ). Hence z′ ⊩+
∧
j<n ϵ

j(ψ).
But then, by repeated use of Lemma 2.6.15.5, there must be z′′ ≥1 z′ ≥1 z ≥1 y such
that z′′ ⊩+

∧
j<m ϵ

j(ψ) ∧ ϵmσ and z′′ ⊩− ϵm(τ) for m ≥ n such that m = i mod 3. By
Lemma 2.6.19, this implies that z′′ ⊩+ pi and z′′ ⊩− pi+1 ∨ pi+2, contradicting the fact that
y ⊩+ pi → (pi+1 ∨ pi+2). Hence x ⊩+ (pi → (pi+1 ∨ pi+2)) → (pi+1 ∨ pi+2) for all i ∈ {0, 1, 2},
which completes the proof that x refutes bb2.

A similar example of an intermediate logic that is incomplete with respect to complete
bi-Heyting algebras has recently and independently been obtained by G. Bezhanishvili, D.
Gabelaia and M. Jibladze in [35]. It is worth mentioning that the proof presented here is but
a minor variation on Litak’s proof for Kripke incompleteness, while the proof in [35] requires
a significantly different argument. This fact can be seen as an additional reason to believe
that boset semantics might offer a generalization of Kripke semantics that still retains many
of its attractive features. We should also note that it seems unlikely that the same proof
could be generalized any further. Indeed, from an algebraic perspective, the proof appears
to be exploiting in a key way the fact that complete bi-Heyting algebras satisfy the Meet
Infinite Distributive Law (i.e., arbitrary meets distribute over finite joins). Since complete
bi-Heyting algebras are the largest class of cHA’s satisfying this law, this can be seen as
evidence that we have pushed Shehtman’s method to its limits and that new ideas might be
needed in order to construct, if at all possible, topologically incomplete logics.

Conclusion

We conclude by outlining some areas for further research.
First of all, we have only presented preliminary results regarding a correspondence theory

between lattice equations and b-frame properties. While we have been able to isolate first-
order conditions on b-frames that are equivalent to various properties of complete lattices,
we are still lacking a systematic procedure for translating lattice equations into b-frame
conditions, akin to Sahlqvist correspondence in modal logic.

Moreover, although we focused in our applications on certain classes of complete Heyting
algebras, the adjunction we presented holds for all complete lattices. This means in partic-
ular that one could use bosets in the study of some categories of enriched lattices, including
for example ortholattices, residuated lattices, or lattices expanded with various modal oper-
ators. In that respect, the connection with polarity-based semantics for non-classical logics
developed in [57, 62, 101, 120, 123] should be explored further.
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Finally, the dualities developed here are all discrete dualities between complete lattices
and relational structures. This means that we decided to trade off the ability to deal with
incomplete lattices for a greater simplicity of the geometric structures we work with. A
natural next step would therefore be to topologize the duality presented here and to connect
such a generalization both to the Dunn-Hartonas duality for bounded lattices [124, 125] and
to the choice-free duality recently developed in [41]. We will now enter the realm of choice-
free topological dualities, and our journey there will eventually take us back to this issue in
Chapter 4. But first, let us remain within the safer walls of distributivity.
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Chapter 3

Constructive Dualities beyond the
Boolean Case

3.1 Introduction

Stone’s [245] representation of Boolean algebras as clopen sets of compact, Hausdorff and
zero-dimensional topological spaces has had a profound influence on the study of interac-
tions between logic, algebra and topology. The realization that some properties of topological
spaces could be retrieved by considering the algebraic properties of their lattices of open sets
led to the development of pointfree topology [146, 147, 207], in which open sets are taken
as basic elements of a frame rather than defined as sets of points. Stone’s representation
theorem, and therefore Stone duality, relies on the Boolean Prime Ideal Theorem (BPI), a
fragment of the Axiom of Choice. By contrast, the pointfree approach has a more construc-
tive flavor: even in the absence of the Axiom of Choice, the open set functor Ω mapping a
topological space to its lattice of open sets has an adjoint functor pt, mapping a frame to its
set of “points” endowed with a natural Stone-like topology. But the restriction of this ad-
junction to Stone spaces and compact zero-dimensional frames is only a duality under (BPI).
In [41], a choice-free duality between Boolean algebras and a category of UV -spaces has been
developed. It is based on the simple but powerful idea that the appeal to (BPI) could be
eliminated by working with a partially-ordered set of filters rather than a set of ultrafilters
and by viewing these filters as partial approximations of a classical point. This approach
has strong ties to both possibility semantics in modal logic [135, 134, 137] and the Vietoris
functor on Stone spaces [258] and provides a semi-pointfree approach, i.e., both spatial and
choice-free, to the representation of algebraic objects in semi-constructive mathematics, i.e.,
mathematics carried out in ZF +DC [186, 230].

In [69], de Vries generalized Stone duality to a duality between de Vries algebras (complete
Boolean algebras equipped with a subordination relation) and compact Hausdorff spaces.
Just like Stone, de Vries used (BPI) in his representation of complete compingent algebras
as the regular open sets of a compact Hausdorff space. On the pointfree side, Isbell [142]
showed that the Ω-pt adjunction restricts to a duality between compact Hausdorff spaces and
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compact regular frames, also under the assumption of (BPI). This leaves open the question of
whether a choice-free duality between these algebraic categories and a category of topological
spaces can be defined. Similarly, we discussed in Chapter 1 extensions of Stone duality to
distributive lattices via spectral and Priestley spaces. Since both generalizations rely on ideas
very similar to Stone’s original result, one may again wonder whether the main techniques
of the UV -duality transfer to the wider setting of distributive lattices.

In this chapter, we show that choice-free dualities for de Vries algebras and distributive
lattices can indeed be achieved by generalizing the approach of [41]. For de Vries algebras,
we work with a poset of filters rather than with a set of maximal filters, and we define
our dual spaces both in terms of their topological properties and in terms of order-theoretic
aspects of the induced specialization order. We also show how the spaces we define naturally
relate to the Vietoris functor on compact Hausdorff spaces and compact regular frames. For
distributive lattices, we work with a special kind of pairs of filters and ideals. We present
two choice-free dualities for distributive lattices, one inspired from Priestley duality, and one
inspired from a variant of Priestley’s result that uses a category of bitopological spaces called
pairwise Stone spaces. In both cases, we are able to connect our choice-free duality to the
standard dualities for DL via Upper Vietoris constructions. We take this as evidence of the
naturality and fruitfulness of this semi-pointfree approach, in which the basic “points” of
our spaces coincide with the closed sets of the standard, non-constructive duality.

The chapter is organized as follows. After reviewing some background on de Vries al-
gebras, compact regular frames, and several categories of topological spaces (Section Sec-
tion 3.2), we start with de Vries algebras. In Section 3.3, we provide a choice-free duality
for de Vries algebras via a category of ordered topological spaces which we call dV -spaces.
In Section Section 3.4, we connect our duality to pointfree topology and provide an alter-
native characterization of dV -spaces via the Vietoris functor on compact regular frames,
before listing two straightforward applications of this duality. We then move on to obtaining
choice-free dualities for distributive lattices. In Section 3.5, we present a representation the-
orem for distributive lattices by bitopologizing a set of “relatively maximal” filter-ideal pairs.
Those spaces are then axiomatized as pairwise UV -spaces, which allows the choice-free rep-
resentation of distributive lattices to be lifted to a full choice-free duality in Section 3.6. In
Section 3.7, we take a slightly different approach and derive a choice-free version of Priestley
duality via a certain kind of ordered topological spaces which we call UV P spaces. Fi-
nally, pairwise UV -spaces and UV Priestley spaces are related in Section 3.8 to the Vietoris
functor on pairwise Stone and Priestley spaces respectively, establishing once again that Vi-
etoris constructions provide a canonical way of bridging the gap between constructive and
non-constructive dualities.

3.2 Background

In this section, we briefly recall the de Vries and Isbell dualities for compact Hausdorff spaces
as well as the choice-free Stone duality between Boolean algebras and UV -spaces presented
in [41]. Because they will also play a role later on, we also recall a variation of Priestley
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duality via pairwise Stone spaces [39] and Moshier and Jipsen’s duality for lattices via HMS
spaces [197]. We start by fixing some notation that we will use throughout the chapter. Let
L be a complete lattice and (X, τ) be a topological space.

1. When no confusion arises, we write ≤ to designate the order on L. We designate the
meet and join operations on L by ∧ and ∨ respectively, and, whenever L is pseudo-
complemented, we use ¬ for the pseudo-complement operation.

2. We will designate (a subset of) the set of all maximal filters on L by XL and (a subset
of) the set of all filters on L by SL.

3. By a Stone-like topology on a set Y of filters of L, we mean the topology generated
by the sets of the form pa = {F ∈ Y | a ∈ F}, and we will often designate such a
topology by σ. We will also sometimes use the notation qa to denote sets of the form
{F ∈ Y | a /∈ F}. Moreover, when we are considering pairs (F, I) of a filter F and an
ideal I on L rather than just filters, we will use the notation a+ and a− for the sets
{(F, I) | a ∈ F} and {(F, I) | a ∈ I} respectively.

4. For any U ⊆ X, we write −U for X \ U , U for the closure of U and U⊥ for −U . We
write CO(X ) for the set of compact open subsets of X and RO(X ) for the Boolean
algebra of regular open subsets of X, i.e., subsets U such that U⊥⊥ = U .

5. The specialization preorder on (X, τ) is represented by the symbol ≤ when no confusion
arises, and it is defined as x ≤ y iff x ∈ U implies y ∈ U for every U ∈ τ .

6. The upset topology on X is the topology generated by the set of all upward closed
subsets in the specialization preorder. Given U ⊆ X, we let ↣U be the interior of U
in the upset topology, ↓U the closure of U , and ¬U the set −↓U . We write RO(X )
for the Boolean algebra of order-regular open subsets of X, i.e., subsets U such that

↣↓U = U , and CORO(X ) for CO(X ) ∩RO(X ).

7. An ordered topological space is a tuple (X, τ,≼) such that (X, τ) is a topological space
and (X,≼) is a partial order. We write Up(X ) and Dn(X ) for the collections of
upsets and downsets of (X,≼).

8. Given an ordered topological space (X, τ,≼), an open filter is a subset U ⊆ X such
that U is open in (X, τ) and a filter on the poset (X,≼).

9. Finally, given an ordered topological space X = (X, τ,≼), we let OF(X ) be the
collection of open filters on X , COF(X ) = CO(X ) ∩ OF(X ), and COROF(X ) =
CORO(X ) ∩ OF(X ).

3.2.1 De Vries Algebras

De Vries algebras were introduced in [69] as an algebraic dual to compact Hausdorff spaces.
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Definition 3.2.1. A compingent algebra is a pair (B,≺) such that B is a Boolean algebra
with induced order ≤, and ≺ is a relation on B ×B satisfying the following set of axioms:

(A1) 1 ≺ 1;

(A2) a ≺ b implies a ≤ b;

(A3) a ≤ b ≺ c ≤ d implies a ≺ d;

(A4) a ≺ b and a ≺ c together imply a ≺ b ∧ c;

(A5) a ≺ b implies ¬b ≺ ¬a;

(A6) a ≺ c implies that there is b ∈ B such that a ≺ b ≺ c;

(A7) a ̸= 0 implies that there is b ̸= 0 ∈ B such that b ≺ a.

A de Vries algebra is a compingent algebra V = (B,≺) such that B is a complete Boolean
algebra. It is zero-dimensional if for any a ≺ b ∈ V there is c ∈ V such that a ≺ c ≺ c ≺ b.

Compingent algebras constitute a specific kind of contact algebras, Boolean algebras
equipped with a binary relation of subordination satisfying (A1)-(A5). One motivation for
contact algebras is to develop a region-based theory of space [73, 166], according to which
regions of space form a Boolean algebra and a region a is subordinated to a region b precisely
if b completely surrounds a. For more on contact and subordination algebras, we refer the
reader to [38, 40, 72, 86].

Definition 3.2.2. Let V = (B,≺) be a de Vries algebra. For any filter F on B, let

↠F = {a ∈ F | ∃b ∈ F : b ≺ a}. A concordant filter on V is a filter F such that ↠F = F .
An end is a maximal concordant filter.

The dual space of a de Vries algebra V is obtained by taking the set XV of all ends
of V and endowing it with the Stone-like topology σ generated by all sets of the form
{p ∈ XV | a ∈ p} for some p ∈ V . Conversely, the dual de Vries algebra of a compact
Hausdorff space (X, τ) is the complete Boolean algebra RO(X ) of regular open sets, with
the subordination relation < given by U < V iff U ⊆ V .

Theorem 3.2.3 ([69], Thm. I.4.3-5). For any de Vries algebra V = (B,≺), (XV , σ) is
compact Hausdorff, and (B,≺) is isomorphic to (RO(XV ),<). Conversely, for any compact
Hausdorff space (X, τ), (RO(X ),<) is a de Vries algebra, and (X, τ) is homeomorphic to
(X(RO(X ),<), σ).

We now introduce the relevant notion of morphism between de Vries algebras.

Definition 3.2.4. Let V1 = (B1,≺1) and V2 = (B2,≺2) be de Vries algebras. A de Vries
morphism from V1 to V2 is a function h : B1 → B2 satisfying the following set of conditions:
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(V1) h(0) = 0;

(V2) h(a ∧ b) = h(a) ∧ h(b);

(V3) a ≺1 b implies ¬h(¬a) ≺2 h(b);

(V4) h(a) =
∨
{h(b) | b ≺1 a}.

Given two de Vries morphisms h : V1 → V2 and k : V2 → V3, their composition k⋆h : V1 → V3
is defined as the map a 7→

∨
{kh(b) : b ≺1 a}.

One easily verifies that de Vries morphisms preserve both the order ≤ and the subor-
dination relation ≺. Given a de Vries morphism h : V1 → V2, the map h∗ : XV2 → XV1

given by h∗(p) = ↠h
−1[p] for any end p on V2 is a continuous function. Conversely, for

any continuous function f : (X1, τ1) → (X2, τ2), the map f∗ : RO(X ) → RO(Y ) given by
f∗(U) = (f−1[U ])⊥⊥ for any regular open set U is a de Vries morphism. This allowed de
Vries to obtain the following:

Theorem 3.2.5. The category deV of de Vries algebras and de Vries morphisms between
them is dually equivalent to the category KHaus of compact Hausdorff spaces and continuous
maps between them.

3.2.2 Compact Regular Frames

Recall that a frame is a complete lattice L that satisfies the join-infinite distributive law, i.e.,
is such that a ∧

∨
B =

∨
{a ∧ b | b ∈ B} for any a ∈ L and B ⊆ L. Frames are the central

object of study of pointfree topology, for which [146, 147, 207] are standard introductions.
A frame L is compact if 1L =

∨
B for some B ⊆ L implies that 1L =

∨
B′ for some finite

B′ ⊆ B. A morphism between frames is a map preserving finite meets and arbitrary joins.

Definition 3.2.6. Let L be a frame and a, b ∈ L. Then a is said to be rather below b [207,
Def. V.5.2], denoted a ≺ b, if b ∨ ¬a = 1L. A compact regular frame is a compact frame L
such that for any a ∈ L, a =

∨
{b ∈ L | b ≺ a}.

Given any topological space (X, τ), one can define its frame of open sets Ω(X ). Con-
versely, given a frame L, one can define a Stone-like topology on the set of completely prime
filters pt(L). These constructions give rise to adjoint functors Ω and pt between the cate-
gories Frm of frames and frame morphisms and Top of topological spaces and continuous
functions. Assuming (BPI), Isbell [142] showed that this adjunction restricts to a duality in
the specific case of compact regular frames:

Theorem 3.2.7. The category KRFrm of compact regular frames is dually equivalent to
KHaus.
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As an immediate consequence of Theorems Theorem 3.2.5 and Theorem 3.2.7, the cat-
egories deV and KRFrm are equivalent. This equivalence has also been given a direct
description in [31], which has the advantage of being choice-free. Given a frame L, an ele-
ment a ∈ L is regular if ¬¬a = a. The Booleanization of L [7], denoted B(L), is the subframe
of all the regular elements of L. It is straightforward to verify that if L is a compact regular
frame, B(L) equipped with the rather below relation ≺ is a de Vries algebra. In order to go
from de Vries algebras to frames, we need the following definition:

Definition 3.2.8. Let V = (B,≺) be a de Vries algebra. An ideal on B is round if for any
a ∈ I, there is b ∈ I such that a ≺ b.

It is immediate to see that a proper ideal I on a de Vries algebra V is round if and only
if its dual filter Iδ = {¬a | a ∈ I} is concordant. Given a de Vries algebra V , its set of round
ideals ordered by inclusion forms a compact regular frame R(V ). The equivalence between
KRFrm and deV is then given by the following result:

Theorem 3.2.9. Any compact regular frame L is isomorphic to R(B(L)). Conversely, any
de Vries algebra V is isomorphic to B(R(V )), and the maps B and R lift to an equivalence
between KRFrm and deV.

3.2.3 UV -spaces

Let us now introduce the choice-free version of Stone duality presented in [41], and mentioned
already in Chapter 1.

Definition 3.2.10. A topological space (X, τ) is a UV -space if it satisfies the following
conditions:

1. (X, τ) is compact and T0;

2. CORO(X ) is closed under ∩ and −↓ and forms a basis for τ ;

3. Any filter on CORO(X ) is CORO(x) = {U ∈ CORO(X ) | x ∈ U} for some x ∈ X.

Given a Boolean algebra B, one considers the set SB of all filters on B, equipped with
the usual Stone-like topology σ. It can then be showed without appealing to (BPI) that
UV -spaces are the duals of Boolean algebras:

Theorem 3.2.11 ([41], Thm. 5.4). For any Boolean algebra B, (SB, σ) is a UV -space, and
B is isomorphic to CORO(SB). Conversely, for any UV -space (X, τ), CORO(X ) is a
Boolean algebra, and (X, τ) is homeomorphic to (SCORO(X ), σ).

Definition 3.2.12. Given two UV -spaces (X, τ1) and (Y, τ2) with induced specialization
orders ≤1 and ≤2, a UV -map from (X, τ1) to (Y, τ2) is a spectral map f : X → Y that is
also a p-morphism with respect to ≤1 and ≤2, i.e., for any x ∈ X, y ∈ Y , if f(x) ≤2 y, then
there is x′ ≥1 x such that y = f(x′).
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Any UV -map f : (X, τ1) → (Y, τ2) gives rise to a Boolean algebra homomorphism f∗ :
CORO(Y ) → CORO(X ) given by f∗(U) = f−1[U ] for any U ∈ RO(Y ). Conversely, for
any Boolean homomorphism h : B1 → B2, the map h∗ : (SB2 , σ2) → (SB1 , σ1) given by
h∗(F ) = h−1[F ] for any filter F on B2 is a UV -map. This yields the following result, which,
unlike Stone duality, does not rely on the Axiom of Choice:

Theorem 3.2.13. The category BA of Boolean algebras and Boolean homomorphisms be-
tween them is dually equivalent to the category UV of UV -spaces and UV -maps between
them.

3.2.4 Pairwise Stone Spaces and HMS Spaces

We conclude this section by introducing two dualities that will be the inspiration for the two
choice-free dualities for distributive lattices presented in Sections 3.6 and 3.7. We start with
pairwise Stone spaces, introduced in [39].

Definition 3.2.14. A bitopological space X = (X, τ1, τ2) is a pairwise Stone space if it
satisfies the following conditions:

• X is pairwise compact, i.e., any cover of X by sets in τ1 ∪ τ2 has a finite subcover;

• X is pairwise Hausdorff, i.e., for any x ̸= y ∈ X, there are disjoints sets Ui ∈ τi and
Vj ∈ τj for some i ̸= j ∈ {1, 2} such that x ∈ Ui and y ∈ Vj;

• X is pairwise 0-dimensional, i.e., the open sets in τi that are also closed in τj form a
basis for τi for all i ̸= j ∈ {1, 2}.

A function between pairwise Stone spaces is bicontinuous if it is continuous in both
topologies.

Bezhanishvili et al. show in [39] that pairwise Stone spaces coincide with Priestley spaces
and spectral spaces in the following way. Recall that Priestley spaces are obtained from
spectral spaces by taking the patch topology on a spectral space (X, τ), i.e., by taking the
topology generated by the compact open sets in τ and their complements. Similarly, one can
turn a spectral space (X, τ) into a pairwise Stone space (X, τ1, τ2) by defining τ1 = τ and τ2
as the topology generated by the complements of the compact open sets in τ1. Equivalently,
the dual pairwise Stone space of a distributive lattice L is obtained by endowing Spec(L)
with the topology τ+ generated by the sets {pa | a ∈ L} and the topology τ− generated by
the sets {qa | a /∈ L}. Conversely, given a pairwise Stone space X = (X, τ1, τ2), its dual
distributive lattice is obtained by the lattice Cl2Op1(X ) of sets that are both open in τ1
and closed in τ2. One can then establish the following.

Theorem 3.2.15 (Pairwise Stone Duality). For any distributive lattice L, the map
p· : L→ Cl2Op1(Spec(L)) is an isormophism. Dually, for any pairwise Stone space (X, τ1, τ2),
the map ∈̇ : X → Spec(Cl2Op1(X )) is a bicontinuous homeomorphism. Moreover, Cl2Op1
and Spec establish a dual equivalence between DL and the category PStone of pairwise Stone
spaces and bicontinuous maps between them.
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Finally, we briefly mention a topological duality for meet-semilattices developed by Jipsen
and Moshier in [197].

Definition 3.2.16 (Jipsen-Moshier [197]). A HMS space is a sober space (X, τ) such that
COF (X ) forms a basis for τ .

Moshier and Jipsen show that for any meet-semilattice L, the set SL of proper filters
of L endowed with the Stone-like topology generated by the sets of the form pa is an HMS-
space. Moreover, any HMS space X = (X, τ) can be viewed as an ordered topological space
(X, τ,≤), where the order ≤ is the specialization preorder induced by τ . The original meet-
semilattice structure of L can be retrieved by looking at the lattice COF(SL) of compact
open filter of SL. When L is a lattice, however, more work is needed to recover also the joins
of L in COF(X ).

Moshier and Jipsen define a closure operator fsat by mapping every U ⊆ X to the
intersection of all F -saturated sets that contain U , where a subset of X is F -saturated if it
is an intersection of open filters in (X, τ,≤). They show that when L is a lattice, the fsat
operation on its dual HMS-space (SL, σ) maps open sets to open sets. The joins in L can
the be retrieved in COF(SL) by taking the fsat-closure of the union of two sets. Finally,
Moshier and Jipsen show that the property that fsat maps open sets to open sets completely
characterize the dual HMS-spaces of lattices, which they call BL-spaces. Putting things
together, they obtain the following duality:

Theorem 3.2.17 ([197], Thm. 5.2 & 5.4). The category of meet-semilattices and meet-
preserving homomorphisms between them is dual to the category of HMS spaces and F -
continuous maps between them, where a map f between HMS spaces is F -continuous if the
preimage of any compact open filter under f is a compact open filter. Moreover, this duality
restricts to a duality between Lat and the category of BL-spaces and F -stable functions,
where a function between BL-spaces if F -stable if f−1[fsat(U)] = fsat(f−1[U ]) for any open
set U .

3.3 Choice-free Duality for de Vries Algebras

The goal of this section is to prove a choice-free analogue of de Vries duality. First, we
provide a choice-free representation of any de Vries algebra as the regular open sets of some
topological space (Section Section 3.3.1). In Section Section 3.3.2, we then characterize the
choice-free duals of de Vries algebras, which we call dV -spaces. Section Section 3.3.3 deals
with morphisms and ends with our main result, a choice-free dual equivalence between the
category of de Vries algebras and the category of dV -spaces.

3.3.1 A Choice-free Representation for de Vries Algebras

In this section, we complete the first step of the duality by obtaining a choice-free repre-
sentation of any de Vries algebra as the regular open sets of some topological space. Our
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approach combines the techniques of Sections Section 3.2.1 and Section 3.2.3 in a natural
way.

Definition 3.3.1. Let V = (B,≺) be a de Vries algebra. The dual filter space of V is the
topological space (SV , σ), where:

• SV is the set of all concordant filters on V ;

• σ is the Stone-like topology generated by {pa = {F ∈ SV | a ∈ F} | a ∈ V }.

The following two lemmas will help us investigate the structure of the space of concordant
filters on a de Vries algebra.

Lemma 3.3.2. Let V = (B,≺) be a de Vries algebra. Then:

1. For any a ̸= 0, F = {c ∈ V | a ≺ c} is a concordant filter.

2. If F and G are concordant filters and c ∧ d ̸= 0 for any c ∈ F, d ∈ G, then the set
H = {c ∧ d | c ∈ F, d ∈ G} is a concordant filter.

Proof. For part (i), by (A3), F is upward-closed, and by (A4), it is downward directed. To
verify that ↠F = F , note that if a ≺ c, then by (A6) there is c′ such that a ≺ c′ ≺ c, so
c ∈ ↠F .

For part (ii), let H = {c ∧ d | c ∈ F, d ∈ G}. I claim that H is a concordant filter. It
is routine to verify that H is a proper filter. To see that ↠H = H, take c ∈ F and d ∈ G.
Since F and G are concordant there are c′ ≺ c in F and d′ ≺ d in G. Thus c′ ∧ d′ ∈ H and
c′ ∧ d′ ≺ c ∧ d by (A4), which means that c ∧ d ∈ ↠H. This shows that H ⊆ ↠H, and the
converse is immediate from (A2).

Lemma 3.3.3. Let V = (B,≺) be a de Vries algebra, a ∈ V and F a concordant filter on
V . If a /∈ F , then there is a concordant filter G ⊇ F such that for any concordant filter
H ⊇ G, a /∈ H.

Proof. Suppose a /∈ F , and consider the set G = {c ∧ d | c ∈ F,¬a ≺ d}. I claim that
G is a concordant filter. If c ∧ d = 0 for some c ∈ F and d such that ¬a ≺ d, then
c ≤ ¬d ≺ ¬¬a = a, which contradicts the assumption that a /∈ F . Thus by Lemma
Lemma 3.3.2 G is a concordant filter.

Now suppose H is a concordant filter such that H ⊇ G. If a ∈ H, then there is d ∈ H
such that d ≺ a. But this implies that ¬a ≺ ¬d, so ¬d ∈ G ⊆ H, a contradiction.

Given a de Vries algebra V with dual space (SV , σ), we now show that the map a 7→ pa is
a Boolean embedding of V into RO(SV ):

Lemma 3.3.4. Let V = (B,≺) be a de Vries algebra with dual filter space (SV , σ). Then
for any a, b ∈ V :

1. pa ∩pb = za ∧ b;
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2. The set {pa | a ∈ V } is a basis for σ, and the specialization order on (SV , σ) coincides
with the inclusion order;

3. pa ⊆ pb iff a ≤ b;

4. pa⊥ = x¬a;

5. ↣↓pa = pa = pa⊥⊥.

Proof. Part (i) is a consequence of the fact that the elements of SV are filters, and part (ii)
immediately follows from part (i). For part (iii), the right-to-left direction is immediate,
and for the converse, since B is a Boolean algebra it is enough to show that for any a ̸= 0,
there is some concordant filter F such that a ∈ F . To see this, note that, by (A7), if a ̸= 0
there is b ̸= 0 such that b ≺ a. Then F = {c ∈ V | b ≺ c} is a concordant filter by Lemma
Lemma 3.3.2, and a ∈ F .

For part (iv), since the set {pa | a ∈ V } is a basis for σ by (ii), we have that for any

F ∈ SV , F ∈ pa iff for any basic open pb, F ∈ pb implies pa ∩pb ̸= ∅. By (i) and (iii), this means
that F ∈ pa iff b ∧ a ̸= 0 for all b ∈ F iff ¬a /∈ F iff F /∈ x¬a. Hence pa⊥ = x¬a.

Finally, for part (v), pa = pa⊥⊥ follows directly from (iv). To show that ↣↓pa = pa, note
that the right-to-left inclusion is immediate since pa is upward-closed. Since the specialization
order on (SV , σ) coincides with the inclusion ordering, establishing the converse amounts to
showing that for any F ∈ SV , if a /∈ F , then there is G ⊇ F such that for all H ⊇ G, a /∈ H.
But this is precisely Lemma Lemma 3.3.3.

Corollary 3.3.5. Let V = (B,≺) be a de Vries algebra with dual filter space (SV , σ). Then
B is isomorphic to RO(SV ).

Proof. Lemma Lemma 3.3.4 implies that the map a 7→ pa is an injective Boolean homomor-
phism of B into RO(SV ). Therefore it only remains to show that every regular open subset
of SV is of the form pa for some a ∈ V . Let U =

⋃
a∈A pa be a regular open set. Recall that∨

A ∈ B since B is a complete Boolean algebra. I claim that U = y

∨
A. Since U is regular

open, this will readily imply that U = y

∨
A. For the proof of the claim, recall that for any

F ∈ SV , F ∈ y

∨
A iff ¬

∨
A /∈ F . Similarly, F ∈ U iff for any b ∈ F there is a ∈ A such

that b ≰ ¬a. But the latter condition is equivalent to b ≰
∧
{¬a | a ∈ A}, which is in turn

equivalent to ¬
∨
A /∈ F . Hence F ∈ U iff F ∈ y

∨
A for any F ∈ SV , which means that

U = y

∨
A. This completes the proof that B is isomorphic to RO(SV ).

We now turn to representing the subordination relation on a de Vries algebra. For any
topological space (X, τ) and any U, V ⊆ X, let U ≪ V iff U ⊆ ↓V .

Lemma 3.3.6. Let V = (B,≺) be a de Vries algebra with dual filter space (SV , σ). For any

a, b ∈ V , a ≺ b iff pa≪ pb.
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Proof. For the first direction, suppose that a ≺ b. Then if F is a concordant filter such that
¬a /∈ F , by Lemma Lemma 3.3.2 G = {c ∧ d | c ∈ F, a ≺ d} is a concordant filter extending
F and containing b. Now for any concordant filter F , F ∈ pa iff ¬a /∈ F . This shows that
pa ⊆ ↓pb. Conversely, assume that a ⊀ b. I claim that there is a concordant filter F such that
¬a /∈ F and b /∈ G for any concordant filter G ⊇ F . Let F = {c ∧ d | a ≺ c,¬b ≺ d}. By
Lemma Lemma 3.3.2, F is a concordant filter if c ∧ d ̸= 0 for any a ≺ c, ¬b ≺ d. But if
c ∧ d = 0, then a ≺ c ≤ ¬d ≺ ¬¬b = b, so a ≺ b by (A3), contradicting our assumption.
Hence F is a concordant filter. Now if ¬a ∈ F there must be some e ∈ F such that e ≺ ¬a.
But this means that a ≺ ¬e and therefore ¬e ∈ F , a contradiction. Similarly for any
concordant G ⊇ F , if b ∈ G there must be some e ∈ G such that e ≺ b. But then ¬b ≺ ¬e
so ¬e ∈ F ⊆ G, a contradiction. Therefore F ∈ pa \ ↓pb.

Putting Corollary Corollary 3.3.5 and Lemma Lemma 3.3.6 together yields the desired
representation theorem.

Theorem 3.3.7. Let V = (B,≺) be a de Vries algebra with dual filter space (SV , σ). Then
V is isomorphic to (RO(SV ),≪).

3.3.2 De Vries Spaces

In this section, we characterize the choice-free duals of de Vries algebras. In other words, we
give an axiomatization of topological spaces of the form (SV , σ) for some de Vries algebra
V . In order to do so, we first need to introduce the following separation axioms:

Definition 3.3.8.

1. A topological space (X, τ) is order-regular if for any closed set B and any x /∈ ↣B,
there are disjoint open sets U , V such that x ∈ U and ↣B ⊆ V .

2. A topological space (X, τ) is order-normal if for any closed set A and any regular closed
set B such that A is disjoint from ↣B, there are disjoint open sets U and V such that
A ⊆ ↓U and ↣B ⊆ V .

Order-regularity and order-normality are straightforward variations of the usual regu-
larity and normality separation axioms in general topology. Separation axioms for ordered
topological spaces have been studied in the past [190, 198, 209], but here we are concerned
with a very specific kind of ordered topological spaces, in which the order is determined by
the topology. In the case of compact T1 spaces, these separation properties are essentially
equivalent to Hausdorffness:

Lemma 3.3.9. Let (X, τ) be a compact T1-space. The following are equivalent:

1. (X, τ) is Hausdorff;

2. (X, τ) is order-regular;
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3. (X, τ) is order-normal and order-regular.

Proof. Recall that if (X, τ) is T1, then the specialization preorder on X is just the identity
relation. Thus a T1 order-regular space is regular Hausdorff, which implies that it is also
Hausdorff. As compact Hausdorff spaces are also regular, this shows that (i) and (ii) are
equivalent. Moreover, (iii) clearly implies (ii), and compact Hausdorff spaces are also normal,
which for T1 spaces implies order-normality, showing that (i) implies (iii).

As we will now see, for spaces in which the regular opens are also order-regular open,
order-normality suffices to establish that they form a de Vries algebras when equipped with
the relation ≪ defined above.

Lemma 3.3.10. Let (X, τ) be an order-normal space such that RO(X ) ⊆ RO(X ). For
any U, V ∈ RO(X ), let U ≪ V iff U ⊆ ↓V . Then (RO(X ),≪) is a de Vries algebra.

Proof. Since RO(X ) is a complete Boolean algebra, we only need to verify axioms (A1)-(A7):

(A1) X ≪ X. Immediate.

(A2) U ≪ V implies U ⊆ V . Suppose U ⊆ ↓V . Taking complements, this yields
−↓V ⊆ U⊥. Because every closed set is a downset, ↓A ⊆ A for any A ⊆ X, so
↓−↓V ⊆ U⊥. Complementing again, we conclude that U = U⊥⊥ ⊆ ↣↓V = V .

(A3) U1 ⊆ U2 ≪ V1 ⊆ V2 implies U1 ≪ V2. We have the following chain on inclusions:
U1 ⊆ U2 ⊆ ↓V1 ⊆ ↓V2.

(A4) U ≪ V1 and U ≪ V2 together imply U ≪ V1 ∩ V2. Suppose both U ⊆ ↓V1
and U ⊆ ↓V2. Then since U, V1, V2 ∈ RO(X ), we have that −↓(U⊥) ⊆ V1 and
−↓(U⊥) ⊆ V2, hence ↓−↓(U⊥) ⊆ ↓(V1 ∩ V2). Now since U⊥ ∈ RO(X ), we have that
↓−↓(U⊥) = −(U⊥) = U , and therefore U ⊆ ↓(V1 ∩ V2).

(A5) U ≪ V implies V ⊥ ≪ U⊥. Suppose U ⊆ ↓V . Then ↓−↓V ⊆ ↓(U⊥). Taking
complements, we have −↓(U⊥) ⊆ ↣↓V = V since V ∈ RO(X ). Now since V ∈
RO(X ), −V = V ⊥. Therefore, taking complements again, we have that V ⊥ ⊆ ↓(U⊥),
hence V ⊥ ≪ U⊥.

(A6) U ≪ V implies that there is W such that U ≪ W ≪ V . Suppose U ⊆ ↓V ,
and consider the set X \ ↓V = ↣−V . As U and ↣−V are disjoint and −V is regular
closed, by order-normality we get some disjoint open sets W1,W2 such that U ⊆ ↓W1

and ↣−V ⊆ W2. Note that this implies that W1 ∩ ↣−V = ∅, and therefore W1 ⊆ ↓V .
Letting W = W⊥⊥

1 , we have that U ⊆ ↓W1 ⊆ ↓W , and W = W1 ⊆ ↓V .

(A7) If U ̸= ∅ then there is V ̸= ∅ such that V ≪ U . Suppose U ̸= ∅ and let x ∈ U .
Consider X \ ↓U = ↣−U . Note that ↓x is disjoint from ↣−U and is closed, since
↓x =

⋂
x/∈U,U∈τ −U . By order-normality, we have disjoint open sets V1 and V2 such

that ↓x ⊆ ↓V1 and ↣−U ⊆ V2. Note that this implies that V1 ̸= ∅ and that V1 ⊆ ↓U .
Now letting V = V ⊥⊥

1 , it follows that V ̸= ∅ and V = V1 ⊆ ↓U .
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Thus (RO(X ),≪) is a de Vries algebra.

We are now in a position to define the choice-free duals of de Vries algebras:

Definition 3.3.11. A de Vries space (dV -space for short) is a topological space (X, τ)
satisfying the following conditions:

1. (X, τ) is T0, compact and order-normal;

2. RO(X ) is a basis for τ and RO(X ) ⊆ RO(X );

3. For every x ∈ X, RO(x) = {U ∈ RO(X ) | x ∈ U} is a concordant filter on RO(X ),
and for every filter F on RO(X ), there is x ∈ X such that ↠F = RO(x).

Lemma 3.3.12. Let V = (B,≺) be a de Vries algebra. Then (SV , σ) is an order-regular
dV -space.

Proof. Condition (ii) follows from Lemma Lemma 3.3.4, and condition (iii) is immediate
from Theorem Theorem 3.3.7, so we only have to check that (SV , σ) is T0, compact, order-
normal and order-regular. It is routine to verify that (SV , σ) is T0. For compactness, note
that ↠{1} = {1} ∈ SV , so if SV ⊆

⋃
a∈A pa for some A ⊆ V , it follows that 1 ∈ A and thus

SV has a finite subcover.
For order-regularity, let B =

⋂
a∈A−pa be a closed set and F /∈ ↣B. Then F ∈ ↓−B =⋃

a∈A ↓pa, which means that there is a ∈ A and c ≺ a such that ¬c /∈ F . By (A6) there

is some c′ ∈ V such that c ≺ c′ ≺ a. Now F ∈ −x¬c = pc ⊆ ↓pc′, and −x¬c′ = c′ ⊆ ↓pa, so

↣B ⊆ x¬c′. Thus pc′ and x¬c′ are the required open sets.
Finally, for order-normality, fix a closed set U =

⋂
a∈A−pa and a regular closed set B such

that
⋂
a∈A−pa ⊆ ↓−B. Because B is regular closed it is of the form −pb for some b ∈ V . Now

consider the concordant filter F = {c ∈ V | ¬b ≺ c}. If there is G ⊇ F such that G ∈ pb,
then there must be c ∈ G such that c ≺ b. But then ¬c ∈ F ⊆ G, and G is not a proper
filter, a contradiction. Thus F /∈ ↓pb, which means that F ∈

⋃
a∈A pa. Hence there is some

a ∈ A and some c ∈ V such that ¬b ≺ c ≺ a, which in turn implies that ¬a ≺ ¬c ≺ b. This
implies that −pa = x¬a ⊆ ↓x¬c, and −pc = x¬c ⊆ ↓pb, and therefore we have two disjoint open
sets, x¬c and pc, such that

⋂
a∈A−pa ⊆ ↓x¬c and ↣−pb ⊆ pc.

Theorem 3.3.13. Let (X, τ) be a dV -space. Then (X, τ) is homeomorphic to (S(RO(X ),≪), σ).

Proof. Let f : X → S(RO(X ),≪) be given by f(x) = RO(x). Then f is well-defined and
surjective by condition (iii), and it is injective because X is T0. Moreover, for any U ∈
RO(X ), we have that x ∈ U iff U ∈ RO(x) iff U ∈ f(x) iff f(x) ∈ pU . By Theorem
Theorem 3.3.7 and since RO(X ) is a basis for X, this is enough to conclude that f is open
and continuous and therefore a homeomorphism.

Note that, as a corollary to Lemma Lemma 3.3.12 and Theorem Theorem 3.3.13, we
obtain that any dV -space is order-regular.

Let us conclude this section by characterizing UV -spaces as a special kind of dV -spaces.
In order to do so, it is convenient to introduce first the following notion.
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Definition 3.3.14. Let (X, τ) be a topological space. An open subset of (X, τ) is well
rounded if for any closed set B such that B ⊆ ↓U , there are disjoint open sets V and W
such that B ⊆ ↓V and −W ⊆ ↓U .

Well-rounded subsets of a dV -space will play an important role later on when connecting
our results with some standard notions of pointfree topology. For now, let us note that
a topological space in which every open is well-rounded is also order-regular and order-
normal. Indeed, order-normality amounts to the requirement that every regular open set be
well-rounded, and order-regularity follows from the fact that ↓x is closed in every topological
space. While not every open subset of a dV -space is well rounded, this is true for a special
class of those, namely UV -spaces.

Lemma 3.3.15. A topological space (X, τ) is a UV -space if and only if it is a dV -space
such that (RO(X ),≪) is zero-dimensional.

Proof. For the left-to-right direction, suppose (X, τ) is a UV -space. We may therefore view
it as (SB, σ) for some Boolean algebra B. This can be used to show that every open set
(X, τ) is well-rounded. Indeed, let U =

⋂
a∈A−pa and V =

⋂
c∈C −pc for some A, C, subsets

of B such that
⋂
a∈A−pa ⊆ ↓

⋃
c∈C pc. Without loss of generality, we may assume that C is a

proper ideal: if F ∈ ↓pc′ for some c′ = c1 ∨ . . . ∨ cn with c1, ..., cn ∈ C, then there must be
some i ≤ n such that ¬ci /∈ F , and therefore F ∈ ↓pci. So let F = {¬c | c ∈ C} be the dual
filter of C. Clearly F /∈ ↓

⋃
c∈C pc, so A ∩ F ̸= ∅. This means that there is some a ∈ A such

that ¬a ∈ C. Thus U ⊆ −pa ⊆ ↓x¬a, and x¬a = ↓x¬a ⊆ ↓−V . This shows that (X, τ) satisfies
condition (i).

By [41, Prop. 4.3.1], RO(X ) ⊆ RO(X ), so condition (ii) follows from condition (ii)
of UV -spaces. Finally, condition (iii) follows from condition (iii) on UV -spaces once we
show there is a one-to-one correspondence between concordant filters on RO(X ) and proper
filters on B, given by F 7→ {a ∈ B | pa ∈ F}. Recall first the observation that for any
compact open set U in a UV -space, U = ↓U [41, Prop. 4.1]. This means that pa≪ pa for any
W ∈ CORO(X ). Now assume U ≪ V for some U, V ∈ RO(X ). By [41, Fact 8.2], we may
write U =

⋃
a∈A pa and V =

⋃
c∈C pc for some ideals A,C ⊆ B. It is straightforward to see

that
⋃
a∈A pa ⊆ ↓

⋃
c∈C pc implies that there is c ∈ C such that a ≤ c for all a ∈ A, and thus

that U ⊆ ↓pc for some c ∈ C. Since pc ∈ CORO(X ), we also have that pc ⊆ ↓pc ⊆ ↓V , hence
U ≪ pc ≪ pc ≪ V . This shows that RO(X ) is zero-dimensional. Moreover, if F and G are
distinct concordant filters on RO(X ), without loss of generality there is V ∈ F \ G. But
then there is some U ∈ F such that U ≪ V , hence U ≪ pc≪ V for some c ∈ B. This shows
that the map F 7→ {c ∈ B | pc ∈ F} is injective. For surjectivity, note that given any proper
filter G on B, G′ = {U ∈ RO(X ) | ∃c ∈ G : pc≪ U} will be a preimage of G. This completes
the proof that X is a dV -space such that RO(X,≪) is a zero-dimensional de Vries algebra.

Conversely, suppose that (X, τ) is a dV -space such that (RO(X ),≪) is zero-dimensional.
Let B = {U ∈ RO(X ) | U ≺ U}. Clearly, B is a Boolean algebra, so we may consider its
dual UV -space UV (B). Since points in X are in one-to-one correspondence with concordant
filters on RO(X ), by the same argument as above, there is a one-to-one correspondence
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between X and UV (B), given by x 7→ {U ∈ B | x ∈ U}. As this map is easily seen to be a
homeomorphism, it follows that (X, τ) is a UV -space.

3.3.3 Morphisms

Having established the object part of our duality, the last step to obtain our duality result is
to isolate the adequate notion of morphism between dV -spaces. It turns out to be a natural
generalization of UV -maps:

Definition 3.3.16. Let (X, τ1) and (Y, τ2) be dV -spaces, and let ≤1 and ≤2 be the spe-
cialization orders induced by τ1 and τ2 respectively. A de Vries map (dV -map for short)
f : X → Y is a continuous function that is also weakly dense, i.e., is such that for any
x ∈ X, if f(x) ≤2 y for some y ∈ Y , then there is x′ ≥1 x such that y ≤2 f(x′).

Let dVS be the category of dV -spaces and dV -maps between them. It is straightforward
to verify that if f : (X, τ1) → (Y, τ2) is weakly dense, then for any upward-closed V ⊆ Y ,
↓f−1[V ] = f−1[↓V ]. This implies in particular that the preimage of any order-regular open
set under a weakly dense map is order-regular open. This fact plays a role in the proof of
the following lemma:

Lemma 3.3.17. Let f : (X, τ1) → (Y, τ2) be a dV -map between dV -spaces. Then Φ(f) :
(RO(Y ),≪2) → (RO(X ),≪1), given by Φ(f)(U) = (f−1[U ])⊥⊥ for any U ∈ RO(Y ), is a
de Vries morphism.

Proof. We check the four conditions on de Vries morphisms in turn:

(V1) Φ(f)(∅) = ∅. Immediate.

(V2) Φ(f)(U ∩ V ) = Φ(f)(U)∩Φ(f)(V ). Simply compute that:

Φ(f)[U ] ∩ Φ(f)[V ] = (f−1[U ])⊥⊥ ∩ (f−1[V ])⊥⊥

= (f−1[U ] ∩ f−1[V ])⊥⊥

= Φ(f)(U ∩ V ).

(V3) U ≪2 V implies (Φ(f)(U⊥))⊥ ≪1 Φ(f)(V ). Suppose U ⊆ ↓V . This means that
f−1[U ] ⊆ f−1[↓V ] = ↓f−1[V ], since f is weakly dense. Complementing, this gives us

−↓f−1[V ] ⊆ f−1[U⊥] ⊆ Φ(f)(U⊥),

which, using the fact that f−1[V ] is order-regular open, yields

−↓(Φ(f)(U⊥)) ⊆ f−1[V ] ⊆ Φ(f)(V ).

Taking order-closure and complements again, this yields

−↓(Φ(f)(V )) ⊆ Φ(f)(U⊥) = (Φ(f)(U⊥))⊥⊥,

and therefore
(Φ(f)(U⊥))⊥ ⊆ ↓(Φ(f)(V )).
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(V4) Φ(f)(V ) = (
⋃⋃⋃
{Φ(U) | U ≪2 V })⊥⊥. The right-to-left direction is immediate.

For the converse, suppose that f(x) ∈ V , and let x′ ≥1 x. Then f(x′) ∈ V , which
implies that there is some U ≪2 V such that f(x′) ∈ ↓U . This means that f(x′) ≤2 y
for some y ∈ U . Since f is weakly-dense, there is z ≥1 x

′ such that f(z) ≥2 y, and
therefore z ∈ Φ(f)(U). This shows that f−1[V ] ⊆ (

⋃
{Φ(U) | U ≪2 V })⊥⊥, which

clearly implies that Φ(f)(V ) ⊆ (
⋃
{Φ(U) | U ≪2 V })⊥⊥.

Therefore Φ(f) is a de Vries morphism.

It follows that we may define a contravariant functor Φ : dVS → deV by letting
Φ(X, τ) = (RO(X ),≪) for any dV -space (X, τ) and mapping any f : (X, τ1) → (Y, τ2)
to Φ(f) as in Lemma Lemma 3.3.17. It is straightforward to verify that Φ preserves compo-
sition and identity arrows. Going from de Vries algebras to dV -spaces requires the following
result:

Lemma 3.3.18. Let h : V1 → V2 be a de Vries morphism. Then the function Λ(h) :
(SV2 , σ2) → (SV1 , σ1), given by Λ(h)(F ) = ↠h

−1[F ] for any F ∈ SV2, is a dV -map.

Proof. Let us first show that Λ(h) is continuous. For any a ∈ V1 we compute:

Λ(h)−1[pa] = {F ∈ SV2 | Λ(h)(F ) ∈ pa}
= {F ∈ SV2 | a ∈ ↠h

−1[F ]}
= {F ∈ SV2 | ∃c ≺ a : h(c) ∈ F}

=
⋃
c≺a

zh(c).

Now we check that Λ(h) is weakly dense. Let F ∈ SV2 and G ∈ SV1 be such that ↠h
−1[F ] ⊆ G.

I claim that
H = {a ∈ V2 | a ≥ ¬h(¬c) ∧ d for some c ∈ G, d ∈ F}

is a concordant filter. To see that this is a proper subset of V2, note that if h(¬c) ∈ F for
some c ∈ G, then there is c′ ≺ c ∈ G, which implies that ¬c ≺ ¬c′ and thus that ¬c′ ∈ G,
a contradiction. To see that H is a filter, it is enough to verify that for any c1, c2 ∈ G,
¬h(¬c1)∧¬h(¬c2) ∈ H. Since G is concordant, there is c′ ∈ G such that c′ ≺ c1 ∧ c2, which
implies that

¬h(¬c) ≺ ¬h(¬(c1 ∧ c2)) ≤ ¬h(¬c1) ∧ ¬h(¬c2),
and therefore ¬h(¬c1) ∧ ¬h(¬c2) ∈ H. A similar argument shows that ↠H = H, which
completes the proof of the claim.

By construction of H, F ⊆ H. Moreover, if c ∈ G, then there are c1, c2 ∈ G such
that c2 ≺ c1 ≺ c. Then ¬h(¬c2) ≺ h(c1), which shows that c ∈ Λ(h)[H], and therefore
G ⊆ Λ(h)[H]. This completes the proof that Λ(h) is a dV -map.

We can therefore construct a functor Λ : deV → dVS by mapping any de Vries algebra
V to Λ(V ) = (SV , σ) and any de Vries morphism h to Λ(h) as in Lemma Lemma 3.3.18.
Again, it is straightforward to verify that Λ preserves composition and identity arrows. We
conclude with the main result of this chapter:
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Theorem 3.3.19. The functors Φ and Λ establish a dual equivalence between the categories
deV and dVS.

Proof. In light of Theorems Theorem 3.3.7 and Theorem 3.3.13, we only need to verify that:

1. for any de Vries morphism h : V1 → V2, ΦΛ(h)(pa) = yh(a) for any a ∈ V1;

2. for any dV -map f : (X, τ1) → (Y, τ2), ΛΦ(f)(RO(x)) = RO(f(x)) for any x ∈ X.

For (i), it is enough to compute that:

ΦΛ(h)(pa) = ((Λ(h))−1[pa])⊥⊥

= (
⋃

{yh(b) | b ≺ a})⊥⊥

=
{

∨
{h(b) | b ≺ a}

= yh(a).

For (ii), we first compute that:

ΛΦ(f)(RO(x)) = ↠(Φ(f))−1[RO(x)]

= ↠{U | Φ(f)(U) ∈ RO(x)}
= ↠{U | (f−1[U ])⊥⊥ ∈ RO(x)}.

Now if V ∈ RO(f(x)), then there is U ≪ V such that U ∈ RO(f(x)), and therefore x ∈
f−1[U ] ⊆ (f−1[U ])⊥⊥, and hence V ∈ ΛΦ(RO(x)). For the converse direction, suppose that
x ∈ (f−1[U ])⊥⊥ and that U ≪ V for some U, V ∈ RO(Y ). I claim that for any y ≥2 f(x),
y ∈ U . Since U ⊆ ↓V , this implies that f(x) ∈ ↣↓V , and therefore that v ∈ RO(f(x)).
For the proof of the claim, note first that x ∈ (f−1[U ])⊥⊥ implies that there is some regular
open set Z ∈ RO(x) such that for any x′ ∈ Z and any open set W , x′ ∈ Z ∩W implies
that W ∩ f−1[U ] ̸= ∅. Now fix some y ∈ Y such that f(x) ≤2 y. Since f is weakly dense,
there is x′ ≥1 x such that y ≤2 f(x′). The claim is proved if f(x′) ∈ U . Assume towards
a contradiction that this is not the case. Then x′ ∈ f−1[U⊥], which is open since f is
continuous. But x ≤1 x

′ implies that x′ ∈ Z, so f−1[U⊥]∩ f−1[U ] ̸= ∅, a contradiction. This
completes the proof.

3.4 An Upper Vietoris Perspective and Some Applica-

tions

Let us conclude this part on de Vries algebras with an exploration of some of the consequences
of our choice-free duality. We will first connect it with the pointfree approach to compact
Hausdorff spaces via compact regular frames and to the Vietoris functor on KHaus, before
discussing two simple applications of our “semi-pointfree” duality.
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3.4.1 Pointfree and Hyperspace Approaches

In this section, we relate dV -spaces to compact regular frames. Because both the equivalence
between de Vries algebras and compact regular frames on the one hand, and the duality
between de Vries algebras and dV -spaces on the other hand, do not rely on the Axiom of
Choice, we already know that there is a choice-free duality between compact regular frames
and dV -spaces. In order to describe this duality more precisely, we first need the following
lemma:

Lemma 3.4.1. For any de Vries algebra V = (B,≺), there is an order isomorphism between
the poset wORO(Λ(V )) of well-rounded ORO subsets of Λ(V ) and the round ideals on V .

Proof. Let R(V ) be the frame of all round ideals of V and wORO(Λ(V )) the poset of all
well-rounded ORO subsets of Λ(V ) ordered by inclusion. Define α : R(V ) → wORO(Λ(V ))

as I 7→
⋃
b∈I

pb and β : wORO(Λ(V )) → R(V ) as U 7→ {b ∈ B | pb ⊆ ↓U}. I claim that α and
β are order preserving and inverses of one another.

First, let us verify that α(I) is a well-rounded ORO set for any round ideal I. Clearly,
for any round ideal I, α(I) is open. To see that it is order-regular open, suppose F /∈ α(I)
for some concordant filter F , and consider the set G = {c ∧ ¬d | c ∈ F, d ∈ I}. I claim
that G ∈ Λ(V ). Since I is round, Iδ = {¬d | d ∈ I} is a concordant filter, so by Lemma
Lemma 3.3.2 we only need to verify that c ∧ ¬d ̸= 0 for any c ∈ F, d ∈ I. But this follows
immediately from the assumption that F /∈ α(I). Thus G ∈ Λ(V ), and clearly we have that
F ⊆ G and G /∈ ↓α(I). Thus F /∈ ↣↓α(I), which shows that α(I) ∈ RO(Λ(V )). Finally, let
us check that α(I) is well-rounded. Suppose W ⊆ ↓α(I) is a closed set of the form

⋂
a∈A−pa

for some A ⊆ B. Note that Iδ is a concordant filter and clearly Iδ /∈ ↓α(I), so A ∩ Iδ ̸= ∅.
This means that ¬a ∈ I for some a ∈ A. But then x¬a and pa are the required open sets.
This completes the proof that α(I) ∈ wORO(Λ(V )).

Conversely, let us show that for any wORO set U , β(U) is a round ideal. Clearly,

β(U) is downward closed. Now suppose we have a, b ∈ V such that pa, pb ⊆ ↓U . Then

pa ∪pb = za ∨ b ⊆ ↓U . Since U is well-rounded, there must be disjoint open sets W1,W2 such

that za ∪ b ⊆ ↓W1 and −W2 ⊆ ↓U . By Theorem Theorem 3.3.7, W⊥⊥
1 = pc for some c ∈ V ,

and it is straightforward to verify that za ∨ b ⊆ ↓pc and pc ⊆ ↓U . This shows that a ∨ b ≺ c
and that c ∈ β(U), establishing that β(U) is a round ideal.

It is immediate to see that both maps are order preserving, so we only need to show
that they are inverses of one another. Let I be a round ideal. If b ∈ I, then b ≺ a for

some a ∈ I. But then pb ⊆ ↓pa ⊆ ↓α(I), so b ∈ βα(I). Conversely, assume b /∈ I, and let
F = {c ∧ ¬d | b ≺ c, d ∈ I}. If c ∧ ¬d ≤ ¬b for some d ∈ I and c such that b ≺ c, then
b ∧ ¬d ≺ c ∧ ¬d ≤ ¬b, hence b ∧ ¬d ≤ b ∧ ¬d ∧ ¬b ≤ 0. But this implies that b ≤ d and
thus that b ∈ I, contradicting our assumption. Thus ¬b /∈ F . By Lemma Lemma 3.3.2, this

shows that F is a concordant filter and moreover F ∈ pb by Lemma Lemma 3.3.4 (iv). But

clearly F /∈ ↓α(I) =
⋃
d∈I ↓pd. By contraposition, it follows that if pb ⊆ ↓α(I), then b ∈ I.

This shows that βα(I) = I for any round ideal I.
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Similarly, if F ∈ U for U ∈ wORO(Λ(V )), then since U is open there must be some
a ∈ F such that pa ⊆ U . Since F is concordant, there is b ≺ a for some b ∈ F . But then

F ∈ pb and pb ⊆ ↓pa ⊆ ↓U , so F ∈ αβ(U). Conversely, suppose F ∈ αβ(U). Then there is
a ∈ F such that pa ⊆ ↓U . Since pa = −x¬a and for any concordant G ⊇ F , ¬a /∈ G, it follows
that F ∈ ↣↓U = U . This shows that αβ(U) = U , which completes the proof.

As a consequence, the well-rounded ORO subsets of any dV -space form a compact regular
frame, and we can lift this correspondence to a functor wORO : deV → KRFrm. To go
from compact regular frames to dV -spaces, it is enough to recall that the round ideals
on a de Vries algebra V are precisely the duals of concordant filters on V . Thus given a
compact regular frame L, we may simply define the topological space Ξ(L) = (L−, δ), where
L− = L \ 1L and δ is the topology generated by sets of the form ǎ = {b | ¬a ≺ b} for any
a ∈ L. Indeed, since L is isomorphic to R(B(L)), we may think of any b ∈ L as a round
ideal Ib on the de Vries algebra (B(L),≺) such that for any b ∈ L and c ∈ B(L), c ≺ b iff
¬c ∈ Ib. But since B(L) = {¬a | a ∈ L}, we therefore have for any a ∈ L:

ǎ = {b ∈ L− | ¬a ≺ b}
= {b ∈ L− | ¬¬a ∈ Ib}
= {b ∈ L− | ¬a ∈ (Ib)

δ}
= {b ∈ L− | (Ib)

δ ∈ x¬a}.

This shows that the correspondence b 7→ (Ib)
δ is a homeomorphism between Ξ(L) and

Λ(B(L)). It follows that Ξ lifts to a contravariant functor from KRFrm to dVS and that
we have the following theorem:

Theorem 3.4.2. For any compact regular frame L, L is isomorphic to wORO(Ξ(L)). Con-
versely, any dV -space (X, τ) is homeomorphic to Ξ(wORO(X )). Moreover, wORO and Ξ
establish a duality between KRFrm and dVS.

We may think of Theorem Theorem 3.4.2 as establishing a choice-free analogue of Isbell
duality. In the presence of (BPI), any compact regular frame is spatial, meaning that any
compact regular frame L is isomorphic to Ω(pt(L)), or equivalently that any compact regular
frame is the lattice of open sets of some compact Hausdorff space. In our choice-free case,
we do not represent L as the open sets of a topological space (since doing so would imply
Isbell duality), but only as the well-rounded order-regular open sets of a dV -space. We might
however be interested in better understanding the relationship between the Isbell dual of a
compact regular frame and its de Vries dual. The answer turns out to involve the upper
Vietoris functor on compact regular frames.

Recall that the Vietoris hyperspace of a compact Hausdorff space (X, τ) is obtained by
taking as points the closed subsets of X. That a Vietoris-like construction would play a role
in our duality is far from surprising. De Vries had already remarked [69, Theorem I.3.12] that
there was a dual order-isomorphism between the closed sets of a compact Hausdorff space
and the concordant filters on its de Vries algebra of regular open sets. Moreover, assuming
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(BPI), the dual UV -space of a Boolean algebra B is homeomorphic to the upper Vietoris
hyperspace of the dual Stone space of B [41, Theorem 7.7]. The upper Vietoris construction
can also be defined on compact regular locales [41, 146, 149]:

Definition 3.4.3. Let L be a compact regular locale. The upper Vietoris space of L is
the topological space UV (L) = (L−, τ2), where τ2 is the topology generated by the sets
2a = {b ∈ L− | a ∨ b = 1L} for any a ∈ L.

Lemma 3.4.4. For any locale L, Ξ(L) is homeomorphic to UV (L).

Proof. Since Ξ(L) and UV (L) have the same domain, it is enough to show that the two
topologies coincide. For any a ∈ L:

ǎ = {b ∈ L− | ¬a ≺ b}
= {b ∈ L− | ¬¬a ∨ b = 1L}
= 2¬¬a,

which shows that δ ⊆ τ2. Conversely, I claim that for any a ∈ L,

2a =
⋃
b≺a

b̌ = {c ∈ L | ∃b ≺ a : ¬b ≺ c}.

To see this, notice first that if ¬b ≺ c for some b ≺ a, then c∨¬¬b = 1L and ¬¬b ≤ a, which
implies that a ∨ c = 1L. This shows the right-to-left inclusion. For the converse, suppose
that a ∨ c = 1L. Since L is regular, a =

∨
{b ∈ L | b ≺ a}, and hence 1L =

∨
{b ∨ c | b ≺ a}.

Since L is also compact, this means that there are b1, ..., bn such that b1 ∨ ... ∨ bn ≺ a and
c ∨ b1 ∨ ... ∨ bn = 1L. Letting b = ¬¬(b1 ∨ ... ∨ bn), it follows that b ≺ a and that ¬b ≺ c.
This shows that 2a =

⋃
b≺a b̌, and therefore that τ2 ⊆ δ.

As an immediate corollary of the previous lemma, we obtain the following characterization
of dV -spaces, which can be seen as a generalization of Theorem 7.7 in [41]:

Theorem 3.4.5. A topological space is a dV -space if and only if it is homeomorphic to the
upper Vietoris space of a compact regular locale.

Finally, let us note that connections between de Vries duality and the Vietoris functor on
compact Hausdorff spaces have already been studied in [33, 34]. In particular, the authors
define modal de Vries algebras and prove that they are the duals of coalgebras of the Vietoris
functor. For lack of space, we leave as an open problem the relationship between modal de
Vries algebras and dV -spaces.

3.4.2 Two Applications

We conclude by briefly mentioning two straightforward applications of the duality presented
here. The first one is a choice-free version of Tychonoff’s Theorem for compact Hausdorff
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spaces and the second one deals with the topological semantics of the strong implication
calculus defined in [41].

The following is a well-known result in pointfree topology [146, 148, 207]:

Lemma 3.4.6. The category KRFrm is closed under coproducts.

By the duality obtained in the previous section, this means that the category of dV -spaces
is closed under products. This means that a version of Tychonoff’s Theorem for dV -spaces
(the product in dVS of a family of dV -spaces is compact) holds in a choice-free setting.
Moreover, this also motivates the following definition.

Definition 3.4.7. Let {(Xi, τi)}i∈I be a family of compact Hausdorff spaces. The choice
free product of this family is the dV -space Ξ(

⊕
i∈I Ω(Xi)).

As an immediate consequence of the results in the previous section, we get the following
choice-free Tychonoff Theorem for compact Hausdorff spaces:

Theorem 3.4.8. For any family of compact Hausdorff spaces {(Xi, τi)}i∈I , their choice-free
product is compact. Moreover, under (BPI), it is homeomorphic to the upper-Vietoris space
of

∏
i∈I(Xi, τi).

It is worth contrasting this result to one that can be obtained using Isbell duality. Since
the category of compact regular frames is closed under coproducts, it can be proved without
appealing to the Axiom of Choice that the coproduct of the frames of opens of any family
{(Xi, τi)}i∈I of compact Hausdorff spaces is a compact frame. Under (BPI), this frame is
precisely the frame of opens of the product of {(Xi, τi)}i∈I in the category of topological
spaces. In the absence of (BPI) however, it may fail to be spatial. We may therefore see
Theorem Theorem 3.4.8 as a semi-pointfree version of Tychonoff’s Theorem, that is choice-
free yet remains spatial.

Let us now move on to the second application. De Vries duality has been used in [38]
to prove that the Symmetric Strong Implication Calculus S2IC is sound and complete with
respect to the class of compact Hausdorff spaces. This calculus is obtained by adding a
binary relation ⇝ to the language of classical propositional calculus, to be interpreted as a
strong implication connective. Given a contact algebra (B,≺), one can interpret the strong
implication connective by letting a ⇝ b = 1B if a ≺ b and a ⇝ b = 0 otherwise. This gives
rise to a binary normal and additive operator ∆(a, b) := ¬(a⇝ ¬b), meaning that one may
think of the pair (B,⇝) as a BAO. For details on the axiomatization of S2IC, we refer to [38].
In order to provide a choice-free topological semantics for S2IC, we introduce the following
notion:

Definition 3.4.9. A de Vries topological model is a triple (X, τ, V ) such that (X, τ) is a
dV -space, and V is a valuation such that for any formulas φ, ψ of S2IC:

• If φ is propositional letter p, then V (φ) ∈ RO(X );
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• V (¬φ) = V (φ)⊥ and V (φ ∧ ψ) = V (φ) ∩ V (ψ);

• V (φ⇝ ψ) = X if V (φ) ⊆ ↓V (ψ) and V (φ⇝ ψ) = ∅ otherwise.

A formula φ is valid on a dV -space (X, τ) iff V (φ) = X for any de Vries topological model
(X, τ, V ).

As a consequence of Theorem Theorem 3.3.19, we have the following result, which does
not assume the Axiom of Choice:

Theorem 3.4.10. The system S2IC is sound and complete with respect to the class of all
dV -spaces.

Proof. By Theorem 5.10 and Remark 5.11 in [38], de Vries algebras provide a sound and
complete algebraic semantics for S2IC, and this result can be obtained choice-free. Combining
this result with Theorem Theorem 3.3.19, it follows that dV -spaces also provide a choice-free
sound and complete semantics for S2IC.

Since dV -spaces constitute a choice-free, filter-based representation of de Vries algebras,
we may think of our choice-free de Vries duality as providing a possibility semantics for the
logic of region-based theories of space, just as the choice-free Stone duality through UV -
spaces serves as a foundation for possibility semantics for classical and modal propositional
logic [135, 134, 137].

3.5 Choice-Free Representations of Distributive Lat-

tices

Let us now move on to another generalization of Bezhanishvili and Holliday’s choice-free
duality for Boolean algebras, this time to the category of distributive lattices. We will
first provide a choice-free duality via bitopological spaces which we will call pairwise UV -
spaces. Then, taking inspiration from the way in which Priestley spaces can be obtained
from pairwise Stone spaces by taking the join of the two topologies, we will turn pairwise
UV -spaces into ordered topological spaces of a certain kind, which we call UV -Priestley
spaces.

3.5.1 Distributive bispaces

Throughout this section, we will be considering bitopological spaces of the form (X, τ+, τ−).
We start with the following notation:

Notation 3.5.1. Given a bi-topological space X = (X, τ+, τ−), let ≤+ and ≤− be the
specialization preorders for τ+ and τ− respectively, and π+ and π− be the corresponding
upset topologies. We define:

• ¬− : π+ → π− such that ¬−U = −↓−U ;
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• ¬+ : π− → π+ such that ¬+U = −↓+U .

• ∼−: τ+ → τ− be defined as ∼− U = −C−(U)

• ∼+: τ− → τ+ be defined as ∼+ V = −C+(V )

The interest of these definitions lies in the following lemma.

Lemma 3.5.2. The maps ¬− and ¬+ form a Galois connection, i.e. for any U ∈ π+, V ∈ π−,
V ⊆ ¬−U iff U ⊆ ¬+V . Similarly, ∼− and ∼+ form a Galois connection between τ+ and
τ−.

Proof. This is essentially the same proof as in Section 2.2.1, and it is therefore omitted.

As a consequence of this lemma, we have that the fixpoints RO(X )+ and RO(X )− of
the maps ¬+¬− and ¬−¬+ respectively are both complete lattices, and that ¬+ and ¬− are
order anti-isomorphisms.

Notation 3.5.3. Given a bi-topological space X = (X, τ+, τ−), let σ+ and σ− denote the
compact opens in τ+ and τ− respectively. We write CORO(X )+ and CORO(X )− for the
sets σ+ ∩RO(X )+ and σ− ∩RO(X )− respectively.

Let us now introduce the following definitions.

Definition 3.5.4. A bi-topological space X = (X, τ+, τ−) is pairwise distributive if the
following two conditions hold:

i) For any U1, U2 ∈ τ+, U1 ∩ C−(U2) ⊆ C−(U1 ∩ U2)

ii) For any V1, V2 ∈ τ−, V1 ∩ C+(V2) ⊆ C+(V1 ∩ V2)

It is straightforward to verify that any topological space (X, τ) viewed as a bitopological
space (X, τ, τ) is pairwise distributive. In fact, this definition generalizes an elementary fact
from general topology. In the bitopological setting however, the definition is non-trivial,
which motivates the introduction of the following notion.

Definition 3.5.5. A distributive bispace is a bi-topological space X = (X, τ+, τ−) such that:

1. σ+ and σ− are closed under finite intersections;

2. the maps ¬+ and ¬− restrict to maps between σ+ and σ−;

3. (X, π+, π−) is pairwise distributive.

Theorem 3.5.6. Let X = (X, τ+, τ−) be a distributive bispace. Then the families of subsets
of X CORO(X )+ and CORO(X )− are distributive lattices.
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Proof. I claim that condition 3 implies that the maps ¬+¬− and ¬−¬+ are nuclei on π+ and
π− respectively. This will imply that RO(X )+ and RO(X )− are cHA, hence distributive
lattices. Conditions 1 and 2 then ensure that CORO(X )+ and CORO(X )− are sublattices.
For the proof of the claim, it suffices to show that for any U1, U2 ∈ π+, ¬+¬−(U1) ∩
¬+¬−(U2) ⊆ ¬+¬−(U1 ∩ U2). By condition 3, we have that U1 ∩ Cπ−(U2) ⊆ Cπ−(U1 ∩ U2),
so by taking complements and closure in π+ we have that

Cπ+¬−(U1 ∩ U2) ⊆ Cπ+(−U1 ∪ ¬−(U2)).

Since U1 ∈ π+ and closure distributes over unions, by taking complements this yields

U1 ∩ ¬+¬−U2 ⊆ ¬+¬−(U1 ∩ U2).

Substituting ¬+¬−U1 for U1, and then swapping U1 and U2 yields

¬+¬−U1 ∩ ¬+¬−U2 ⊆ ¬+¬−(¬+¬−U1 ∩ U2) ⊆ ¬+¬−¬+¬−(U1 ∩ U2),

and we’re done since ¬+¬− is idempotent.
The proof that ¬−¬+ is a nucleus on π− is completely dual.

We are now in a position to introduce our first choice-free representation theorem for
distributive lattices.

3.5.2 A Representation Theorem for Distributive Lattices

We start with the following definition, which was independently put forward in the context of
distributive lattices in [188, 143] (see also [30] for a more recent work in which an equivalent
notion seems to have independently appeared again).

Definition 3.5.7. Let L be a distributive lattice. A pseudo-prime pair on L is a pair (F, I)
such that F ∈ F(L), I ∈ I(L) satisfying the following properties:

• F ∩ I = ∅;

• a ∈ F and a ∧ b ∈ I implies b ∈ I (RMP);

• a ∨ b ∈ F and b ∈ I implies a ∈ F (LJP).

Intuitively, pseudo-prime pairs can be thought of as pairs of a filter and an ideal that are
“relatively prime” to one another. Indeed, it is easy to see that the pair (p, L \ p) is pseudo-
prime whenever p is a prime filter on a distributive lattice L. However, pseudo-prime pairs
are much more constructive objects than prime filters, as the following lemma establishes.

Lemma 3.5.8. Let L be a DL. For any pair (F, I) such that F ∩ I = ∅, there is a pseudo-
prime pair (F ′, I ′) such that F ⊆ F ′ and I ⊆ I ′.

Proof. Let (F, I) be such that F ∩I = ∅, and define F ′ = {c | a ≤ b∨c for some a ∈ F, b ∈ I}
and I ′ = {d | a ∧ d ≤ b for some a ∈ F, b ∈ I}.
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• Clearly F ′ is upward closed and I ′ is downward closed. To verify that F ′ is a filter,
note that if a1 ≤ c1 ∨ b1 and a2 ≤ c2 ∨ b2, then

a1 ∧ a2 ≤ (c1 ∨ (b1 ∨ b2)) ∧ (c2 ∨ (b1 ∨ b2)) ≤ (c1 ∧ c2) ∨ (b1 ∨ b2),

thus c1 ∧ c2 ∈ F ′. Similarly, if a1 ∧ d1 ≤ b1 and a2 ∧ d2 ≤ b2, then

(a1 ∧ a2) ∧ (d1 ∨ d2) ≤ ((a1 ∧ a2) ∧ d1) ∨ ((a1 ∧ a2) ∧ d2) ≤ b1 ∨ b2,

which implies that I ′ is an ideal.

• Morever, if there is c ∈ F ′ ∩ I ′, then we must have a1, a2 ∈ F and b1, b2 ∈ I such
that a1 ≤ b1 ∨ c and a2 ∧ c ≤ b2, which implies that a1 ∧ a2 ≤ (b1 ∨ b2) ∨ c and
(a1 ∧ a2) ∧ c ≤ b1 ∨ b2. But since L is distributive this implies that a1 ∧ a2 ≤ b1 ∨ b2,
contradicting F ∩ I = ∅.

• To check that (F ′, I ′) has the RMP, suppose c ∧ x ∈ I ′ for some c ∈ F . This means
that we have a1, a2 ∈ F , b1, b2 ∈ I such that a1 ≤ c∨ b1 and a2 ∧ (c∧ x) ≤ b2. But this
implies that (a1 ∧ a2) ∧ x ≤ c ∨ (b1 ∨ b2) and ((a1 ∧ a2) ∧ x) ∧ c ≤ b1 ∨ b2. Since L is
distributive, this implies that (a1 ∧ a2) ∧ x ≤ b1 ∨ b2, and thus x ∈ I ′.

• Similarly, for the LJP, suppose d ∨ x ∈ F ′ for some d ∈ I ′. Then we have a1, a2 ∈
F , b1, b2 ∈ I such that a1 ≤ (d ∨ x) ∨ b1 and a2 ∧ d ≤ b2. Now this implies that
(a1 ∧ a2) ∧ d ≤ (b1 ∨ b2) ∨ x, and that (a1 ∧ a2) ≤ d ∨ ((b1 ∨ b2) ∨ x), which since L is
distributive implies that a1 ∧ a2 ≤ (b1 ∨ b2) ∨ x, and hence that x ∈ F ′.

The previous lemma can be thought of as a choice-free version of the Prime Filter Theo-
rem. It will be of crucial relevance when proving our representation theorem for distributive
lattices. Let us now turn to the definition of the dual bispace of a distributive lattice.

Definition 3.5.9. Let L be a DL. The dual distributive bispace of L is the bispace B(L) =
(X, τ+, τ−) where:

• X is the set of all pseudo-prime pairs on L;

• τ+ is generated by the basis {a+ | a ∈ L}, where a+ = {(F, I) | a ∈ F};

• τ− is generated by the basis {a− | a ∈ L}, where a− = {(F, I) | a ∈ I}.

The following is immediate.

Lemma 3.5.10. Let L be a DL with dual bispace (X, τ+, τ−). For any (F, I), (F ′, I ′) ∈ X,
we have that (F, I) ≤+ (F ′, I ′) iff F ⊆ F ′, and (F, I) ≤− (F ′, I ′) iff I ⊆ I ′.

As a consequence, we know that the specialization preorders induced by the topologies
τ+ and τ− coincide with the inclusion orderings on filters and ideals respectively. This gives
us an elegant way of relating the operations ¬+/¬− and ∼+ / ∼− defined above.
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Lemma 3.5.11. Let a, b ∈ L. Then:

1. ¬−a
+ =∼− a

+ = a−;

2. ¬+a
− =∼+ a

− = a+;

3. ¬−(a+ ∪ b+) = ∼− (a+ ∪ b+) = (a ∨ b)−;

4. ¬+(a− ∪ b−) = ∼+ (a− ∪ b−) = (a ∧ b)+.

Proof.

1. (F, I) ∈∼− a
+ iff there is b ∈ L such that a+ ∩ b− = ∅ and b ∈ I iff there is b ∈ L such

that a ≤ b and b ∈ I iff a ∈ I iff (F, I) ∈ a−. Moreover since F ∩ I = ∅ we have that
a− ⊆ −↓−a+ = ¬−a

+. For the converse, if a /∈ I, then F ∨ a ∩ I = ∅ since (F, I) has
the RMP, and therefore (F, I) ∈ ↓−a+.

2. Similar to 1 above. We need that every pair (F, I) has the LJP to prove that −a+ ⊆
↓+a−.

3. By 1), we have the following:

¬−(a+ ∪ b+) = −(C−a
+ ∪ C−b

+)

= ¬−a
+ ∩ ¬−b

+

= a− ∩ b−

= ∼− a
+∩ ∼− b

+

=∼− (a+ ∪ b+)

. But clearly a− ∩ b− = (a ∨ b)−.

4. Similar to 3.

We have now gathered all the necessary components of our representation theorem.

Theorem 3.5.12. Let L be a DL and B(L) = (X, τ+, τ−) its dual bispace. Then B(L) is a
distributive bispace, and L is isomorphic to CORO(X )+.

Proof. Note first that sets in σ+ and σ− respectively are sets of the form a+1 ∪ ... ∪ a+n and
a−1 ∪ ...∪a−n for some a1, ..., an ∈ L. Now given elements a1, ..., an and b1, ..., bm in L, we have
that (F, I) ∈ a+1 ∪ ... ∪ a+n ∩ b+1 ∪ ... ∪ b+m iff there is i ≤ n and j ≤ m such that ai ∧ bj ∈ F
iff (F, I) ∈

⋃
i≤n,j≤m(ai ∧ bj)+, and similarly (F, I) ∈ a−1 ∪ ... ∪ a−n ∩ b−1 ∪ ... ∪ b−m iff there is

i ≤ n and j ≤ m such that ai ∨ bj ∈ I iff (F, I) ∈
⋃
i≤n,j≤m(ai ∨ bj)−. Thus σ+ and σ− are

closed under finite intersections. Moreover, the previous lemma guarantees that ¬−U ∈ σ−
and ¬+V ∈ σ+ for any U ∈ σ+, V ∈ σ−, and that ·+ : L → CORO(X )+ is a surjective
homomorphism. For injectivity, it suffices to notice that if a ≰ b, then there is (F, I) ∈ X
such that a ∈ F and b ∈ I, and therefore a+ ≰ b+.
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Therefore it only remains to be checked that (X, π+, π−) is pairwise distributive. I only show
that for any U1, U2 ∈ π+, U1 ∩ Cπ−(U2) ⊆ Cπ−(U1 ∩ U2). Suppose (F, I) ∈ U1 ∩ Cπ−(U2).
This means that (F, I) ∈ U1 and there is (F ′, I ′) ∈ U2 such that I ⊆ I ′. I claim that
F ∨ F ′ ∩ I = ∅. To see this, suppose a ∧ b ∈ I for some a ∈ F, b ∈ F ′. Then since (F, I)
has the RMP, b ∈ I ⊆ I ′, and therefore F ′ ∩ I ′ ̸= ∅, a contradiction. Now this implies that
there is (F ∗, I∗) ∈ X such that F ∨ F ′ ⊆ F ∗ and I ⊆ I∗. Since both U1 and U2 are upsets,
we have that (F ∗, I∗) ∈ U1 ∩ U2, and therefore (F, I) ∈ Cπ−(U1 ∩ U2).

3.5.3 Morphisms

We conclude this section with a treatment of morphisms between distributive bispaces. The
following is inspired from the definition of a UV -map, which has both a topological require-
ment and an order theoretic one.

Definition 3.5.13. Let X = (X, τ+, τ−) and X ′ = (X ′, τ ′+, τ
′
−) be two distributive bispaces.

A bi-distributive map is a bicontinuous function f : X → X ′ such that:

1. For any U ∈ CORO(X ′)+, f−1(U) ∈ CORO(X )+;

2. For any V ∈ CORO(X ′)−, f−1(U) ∈ CORO(X )−;

3. For any U ∈ π′
+, f−1Cπ′

−
(U) = Cπ−f

−1(U);

4. For any V ∈ π′
−, f−1Cπ′

+
(V ) = Cπ+f

−1(V ).

The following remark establishes a connection between bi-distributive maps and the b-
morphisms from Section 2.2.1.

Remark 3.5.14.

• A map f satisfies condition 3 if it is monotone with respect to ≤− and ≤′
− and has the

following property: for any x ∈ X, x′ ∈ X ′, if f(x) ≤′
− x′, then there is y ≥− x such

that f(y) ≥′
+ x

′.

• Similarly, f satisfies condition 4 if it is monotone with respect to ≤+ and ≤′
+ and has

the following property: for any x ∈ X, x′ ∈ X ′, if f(x) ≤′
+ x′, then there is y ≥+ x

such that f(y) ≥′
− x

′.

Finally, the next two lemmas suggest that bidistributive maps are the correct notion of
morphism between distributive bispaces for our purposes.

Lemma 3.5.15. Let f : X → X ′ be a bi-distributive map. Then f−1 restricts to lattice ho-
momorphisms from CORO(X ′)+ to CORO(X )+ and from CORO(X ′)− to CORO(X )−.



3.6. CHOICE-FREE PAIRWISE STONE DUALITY 100

Proof. We only prove that f−1 restricts to a lattice homomorphism from CORO(X ′)+ to
CORO(X )+, as the other case is similar. Note first that conditions 3 and 4 imply that for
any U ∈ π′

+, we have that

f−1(¬+¬−U) = f−1[−Cπ′
+
− Cπ′

−
(U)] = −Cπ+ − Cπ−f

−1(U) = ¬+¬−f
−1(U).

Together with condition 1, this implies that f−1 is well-defined. Checking that f−1 preserves
intersections and unions is routine, and moreover the previous equality implies that for any
U, V ∈ CORO(X ′)+,

f−1[¬+¬−(U ∪ V )] = ¬+¬−f
−1(U ∪ V ) = ¬+¬−(f−1(U) ∪ f−1(V )).

This completes the proof.

Lemma 3.5.16. Let h : L → M a lattice homomorphism between two DL L and M . Then
B(h) : B(M) → B(L), defined as B(h)(F, I) = (h−1(F ), h−1(I)) is a bi-distributive map.

Proof. It is routine to check that B(h) is well-defined. We verify conditions 1 and 3 of a
bi-distributive map (conditions 2 and 4 are checked similarly).

1. For any a ∈ L and (F, I) a pair on M , we have that B(h)(F, I) ∈ a+ iff a ∈ h−1(F ) iff
f(a) ∈ F iff (F, I) ∈ f(a)+.

3. B(h) is clearly monotone with respect to the ideal inclusion ordering. Moreover, if
(F, I) is a pair on M and (G, J) is a pair on L such that (h−1(F ), h−1(I)) ≤− (G, J),
then consider the pair (h[G], I), where h[G] = ↑{h(c) | c ∈ G}. Clearly, h[G] ∩ I = ∅,
for otherwise there is c ∈ G such that h(c) ∈ I, hence c ∈ h−1(H) ⊆ J , a contradiction.
So there is a pseudo-prime (F ′, I ′) such that h[G] ⊆ F ′ and I ⊆ I ′, which implies that
G ⊆ h−1(F ′). Thus, B(h) satisfies property 3 by Remark 3.5.14.

3.6 Choice-Free Pairwise Stone Duality

In this section, we axiomatize the dual bispaces of distributive lattices, which we call pairwise
UV -spaces (PUV -spaces for short), and we prove a choice-free duality between pairwise UV -
spaces and distributive lattices which we then restrict to a duality between Heyting algebras
and a subcategory of pairwise UV -spaces which we call Heyting UV -spaces.

3.6.1 Pairwise UV -spaces

We first recall the following definition.

Definition 3.6.1. A bispace X = (X, τ+, τ−) is pairwise T0 if for any x ̸= y ∈ X, there is
U ∈ τ+ ∪ τ− such that U contains precisely one of x, y.
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Just like the definition of a UV -space appeals to the notion of a filter on the CORO sub-
sets of a topological space, we will need the following version of this notion in a bitopological
context.

Definition 3.6.2. Let X = (X, τ+, τ−) be a distributive bispace. We write CORO(X )
for the set CORO(X )+ ∪ CORO(X )−. A filter on CORO(X ) is a filter S on the poset
CORO(X ) ordered by inclusion, i.e.:

• S ⊆ CORO(X ) is non-empty;

• for any U, V ∈ S and W ∈ CORO(X ), U ∩ V ⊆ W implies W ∈ S.

The following links the previous definition with pseudo-prime pairs.

Lemma 3.6.3. Let X be a distributive bispace. There is a bijection between proper filters
on CORO(X ) and pseudo-prime pairs on CORO(X+).

Proof. Given a proper filter S on CORO(X ), let FS = CORO(X )+ ∩ F and IS = {U ∈
CORO(X )+ | ¬−U ∈ F}. It is routine to check that FS is a filter and IS is an ideal. For
the right-meet property, suppose U ∈ FS and U ∩ V ∈ IS. Then U,¬−(U ∩ V ) ∈ S, and
since U ∩C−V ⊆ C−(U ∩ V ), we have that U ∩¬−(U ∩ V ) ⊆ ¬−V , and therefore ¬−V ∈ S,
which implies that V ∈ IS. The LJP is proved similarly.

Conversely, if (F, I) is a pseudo-prime pair on CORO(X ), let

SF,I = {W ∈ CORO(X ) | U ∩ ¬−V ⊆ W

for some U ∈ F , V ∈ I}. Then clearly F ∪ {¬−V | V ∈ I} ⊆ SF,I . Suppose now that there
are W1,W2 ∈ SF,I such that W1 ∩W2 ⊆ W . Then we have U1 ∩U2 ∈ F and V1 ∪V2 ∈ I such
that U1 ∩ U2 ∩ ¬−(V1 ∪ V2) ⊆ W , so W ∈ SF,I . Thus SF,I is a filter on CORO(X ).
Moreover, I claim that SF,I ⊆ F ∪ {¬−V | V ∈ I}. To see this, suppose U ∩ ¬−V ⊆ W for
some U ∈ F , V ∈ I, and W ∈ CORO(X ). We have two cases:

• if W ∈ CORO(X )−, we have that W = ¬−Z for some Z ∈ CORO(X )+. Thus
U ∩ C−Z ⊆ C−V , which by taking complements yields ¬−V ⊆ −U ∪ ¬−Z. Taking
closure in π+ and complements, we obtain that

U ∩ Z = U ∩ ¬+¬−Z ⊆ ¬+¬−V = V.

Thus U ∩ Z ∈ I, and since (F, I) has the RMP, it follows that Z ∈ I.

• if W ∈ CORO(X )+, then U ⊆ W ∪ C−V , which implies that

¬−(W ∪ V ) = ¬−W ∩ ¬−V ⊆ ¬−U.

Taking closure in π+ and complements yields that U ⊆ ¬+¬−(W ∪V ). But this means
that ¬+¬−(W ∪ V ) ∈ F , and since (F, I) has the LJP, it follows that W ∈ F .
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We are now in a position to define pairwise UV -spaces. This definition can be seen as
a straightforward translation of the definition of a UV -space to the bitopological setting,
just like the definition of a pairwise Stone space adapts the definition of a Stone space to
bitopological spaces.

Definition 3.6.4. A pairwise UV -space is a pairwise T0 bispace X = (X, τ+, τ−) such that:

1. X is a distributive bispace;

2. CORO(X )∗ is a basis for τ∗ for ∗ ∈ {+,−};

3. for any x, y ∈ X, x ≰∗ y implies that there is U ∈ CORO(X )∗ such that x ∈ U and
y /∈ U , for ∗ ∈ {+,−};

4. Any filter on CORO(X ) is CORO(x) for some x ∈ X.

We can now show that this definition axiomatizes the dual bispaces of distributive lattices.

Theorem 3.6.5. Let X = (X, τ+, τ−) be a pairwise UV -space. Then X is isomorphic to
B(CORO(X )+).

Proof. Consider the map θ : X → B(CORO(X )+) given by θ(x) = (FCORO(x), ICORO(x)).
Injectivity follows from condition 2 of pairwise UV -spaces and the fact that X is pairwise
T0. Surjectivity is given by condition 3. So we only have to check that θ and θ−1 are
bi-distributive maps. We verify conditions 1 and 3.

1. We have isomorphisms ·+ between CORO(X )+ and CORO(B(CORO(X )+))+, and
·− between CORO(X )− and CORO(B(CORO(X )+))−. But then for any U ∈
CORO(X )+, x ∈ X , we have that

θ(x) ∈ U+ ⇔ U ∈ FCORO(X ) ⇔ x ∈ U.

3. By condition 2, we have that for any x, y ∈ X , x ≤− y iff ICORO(x) ⊆ ICORO(y),
hence both θ and θ−1 are monotone with respect to ≤−. But this also implies that
θ(x) ≤− (FCORO(y), ICORO(y)) iff x ≤− y, and thus by Remark 3.5.14 3.2 both θ and
θ−1 satisfy property 3.

We conclude with our main theorem for this section.

Theorem 3.6.6. The category DL is dual to the category of pairwise UV -spaces and bi-
distributive maps.
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Proof. In light of Theorems 3.5.12 and 3.6.5, we only have to check the naturality condition
for ·+ and θ. Suppose we have the following diagram:

L ·+ //

h

��

CORO(B(L))+

B(h)−1

��
M

·+ // CORO(B(M))+

Then for any a ∈ L, we have that

(F, I) ∈ (h(a))+ ⇔ a ∈ h−1(F ) ⇔ B(h)(F, I) ∈ a+ ⇔ (F, I) ∈ B(h)−1(a+).

Thus h ◦ ·+ = B(h)−1.

Similarly, suppose that we have the following diagram:

X θ //

f

��

B(CORO(X +))

B(f−1)
��

Y θ // B(CORO(Y +))

Then for any x ∈ X ,

B(f−1)(θ(x)) = B(f−1(FCORO(x), ICORO(x))

= (U | f−1(U) ∈ CORO(x)}, {V | ¬−f
−1(V ) ∈ CORO(x)})

= ({U | f(x) ∈ U}, {V | f(x) ∈ ¬−V })

= (FCORO(f(x)), ICORO(f(x))) = θ(f(x)).

This completes the proof.

3.6.2 Heyting algebras

As a direct application of Theorem 3.6.6, we may restrict the duality obtained above to
a choice-free duality for Heyting algebras. We start with the following definition, which
identifies the dual bispaces of Heyting algebras.

Definition 3.6.7. A Heyting UV -space is a pairwise UV -space X satisfying the following
condition:

- For any U ∈ CORO(X )+, V ∈ CORO(X )−, ¬+(U ∩ V ) ∈ CORO(X )+.

Lemma 3.6.8. Let L be a distributive lattice. Then L is a Heyting algebra iff B(L) is
Heyting.

Proof.
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• Suppose first that L is a Heyting algebra. Then if U ∈ CORO(B(L))+ and V ∈
CORO(B(L))−, we have that U = a+ and V = b− for some a, b ∈ L. I claim that
Cπ+(a+ ∩ b−) = C+(a → b)−. This will imply that ¬+(a+ ∩ b−) = ¬+¬−(a → b)+,
and thus that B(L) is a Heyting UV -space. For the proof of the claim, note that since
any pair (F, I) has the RMP, a ∈ F and b ∈ I implies that a → b ∈ I, and thus
Cπ+(a+ ∩ b−) ⊆ Cπ+(a→ b)−. Conversely, note that if a→ b /∈ F , then F ∨ a∩ ↓b = ∅
(since otherwise there is c ∈ F such that c ∧ a ≤ b, and thus c ≤ a → b). Hence
there is a pseudo-prime pair (F ′, I ′) such that F ∨ a ⊆ F ′ and b ∈ I ′, which means
that (F, I) ∈ Cπ+(a+ ∩ b−). Since C+(a → b)− = −(a → b)+, this shows that C+(a →
b)− ⊆ C+(a+ ∩ b−).

• Conversely, I show that if B(L) is a Heyting UV -space, then CORO(B(L))+, and
therefore also L, is a Heyting algebra. I claim that for any U, V,W ∈ CORO(B(L)),
we have that U ∩W ⊆ V iff W ⊆ ¬+(U ∩ ¬−V ):

– For the left-to-right direction, note that if U ∩W ⊆ V , then

U ∩ Cπ−W ⊆ Cπ−(U ∩W ) ⊆ Cπ−V,

and hence U ∩ ¬−V ⊆ ¬−W . Taking closure in π+ and complements yields

W = ¬+¬−W ⊆ ¬+(U ∩ ¬−V ).

– For the right-to-left direction, note that ¬−V ⊆ −U ∪ (U ∩ ¬−V ) implies, by
taking closure in π+, that

Cπ+¬−V ⊆ Cπ+(−U ∪ (U ∩ ¬−V )) = −U ∪ Cπ+(U ∩ ¬−V ),

and hence, by taking complements,

U ∩W ⊆ U ∩ ¬+(U ∩ ¬−V ) ⊆ ¬+¬−V = V.

In order to obtain our choice-free bitopological duality for Heyting algebras, we must also
restrict bi-distributive maps to the duals of Heyting morphisms.

Definition 3.6.9. A bi-distributive map f : X → X ′ is Heyting if for any U ∈ π′
+, V ∈ π′

−,
f−1(Cπ′

+
(U ∩ V )) = Cπ+(f−1(U) ∩ f−1(V )).

The following connects Heyting bi-distributive maps and Heyting b-morphisms from Sec-
tion 2.3.2

Remark 3.6.10. Similarly to remark 3.2 above, any map that is monotone with respect to
≤+ and ≤′

+ and is such that for any x ∈ X, x′ ∈ X ′, if f(x) ≤′
+ x

′, then there is y ≥+ x such
that f(y) ≥+ x

′ and f(y) ≥− x
′ is Heyting.
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Let us now verify that Heyting bi-distributive maps correspond exactly to homomor-
phisms of Heyting algebras.

Lemma 3.6.11. Let f : X → Y be a Heyting bi-distributive map between two Heyting UV -
spaces X and Y . Then f−1 : CORO(Y )+ → CORO(X )+ is a Heyting homomorphism.

Proof. It is enough to prove that for any U, V ∈ CORO(Y )+,

f−1(¬+(U ∩ ¬−V )) = ¬+(f−1(U) ∩ ¬−f
−1(V )).

But clearly f being Heyting and bi-distributive implies that

f−1(−Cπ+(U ∩ ¬−V )) = −f−1(Cπ+(U ∩ ¬−V )) = ¬+(f−1(U) ∩ f−1(¬−V ))

= ¬+(f−1(U) ∩ ¬−f
−1(V )).

This completes the proof.

Lemma 3.6.12. Let h : L→M be a Heyting homomorphism between two Heyting algebras
L and M . Then B(h) : B(M) → B(L) is a Heyting bi-distributive map.

Proof. By remark 5.4, it is enough to verify that for any (F, I) ∈ B(M), (G, J) ∈ B(L) for
which we have that (h−1(F ), f−1(I)) ≤+ (G, J), we can find (F ′, I ′) ≥+ (F, I) ∈ B(M) such
that (G, J) ≤+ (h−1(F ′), h−1(I ′)) and (G, J) ≤− (h−1(F ′), h−1(I ′)). I claim that F ∨ h[G] ∩
h[J ] = ∅. Suppose towards a contradiction that there is d ∈ F ∨ h[G] ∩ h[J ]. Then there is
a ∈ F, c ∈ G and b ∈ J such that a ∧ h(c) ≤ d ≤ h(b). Thus a ≤ h(c) → h(b) = h(c → b),
and since h−1(F ) ⊆ G, we have that c ∧ c → b ∈ G, contradicting the fact that G ∩ J = ∅.
Hence there is a pseudo-prime pair (F ′, I ′) such that F ∨h[G] ⊆ F ′ and h[J ] ⊆ I ′. But then
(F ′, I ′) is the required pair in B(M).

As a consequence, we have the following restriction of Theorem 3.6.6:

Theorem 3.6.13. The category of Heyting UV -spaces and Heyting bi-distributive maps is
dual to the category of Heyting algebras and Heyting homomorphisms.

3.7 Choice-Free Priestley Duality

After showing how to translate the pairwise Stone space duality to a choice-free version via
pairwise UV -spaces, let us now make a similar attempt in the case of Priestley duality. As
we shall see below, one can define choice-free analogues of Priestley spaces by combining the
two topologies in a pairwise UV -space, but working out the details of this approach requires
some significant work. As in the previous section, we start from a choice-free representation
theorem for distributive lattices via ordered topological spaces, before identifying conditions
on such spaces that characterize the duals of distributive lattices.
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3.7.1 A choice-free representation of DL via ordered topological
spaces

In this section, we show how to obtain a representation of any distributive lattice as a
collection of subsets of an ordered topological space. This can be thought of as a choice-free
analogue to Priestley’s representation of distributive lattices as clopens of ordered Stone
spaces.

Fix a distributive lattice L, and let X be the set of all pseudo-prime pairs on L. We will
occasionally write Lδ for the dual lattice of L, and Xδ for the set of all pseudo-prime pairs of
Lδ. Let τ be the topology generated by sets of the form a+ or a− for some a ∈ L, and ≤ the
specialization preorder on (X, τ). We will once again use the notation ↓U to designate the
closure operator in the topology induced by this specialization preorder, and ¬U to designate
the set −↓U . As a word of caution, we will soon add an order ≼ to this topological space.
We will then reserve the words “upset” and “downset” to the upward and downward closed
sets in the order ≼, but keep the notation ↓U for the closure in the topology generated by
the specialization preorder, hoping that no confusion will arise. We first make the following
observations.

Lemma 3.7.1.

1. (F, I) ≤ (F ′, I ′) iff F ⊆ F ′ and I ⊆ I ′;

2. For any a, b ∈ L, ¬a+ = a− and ¬b− = b+;

3. Any open subset of X is of the form
⋃
j∈J a

+
j ∩ b−j for some {aj, bj | j ∈ J} ⊆ L;

4. For any a, b ∈ L, a+ ∩ b− is COROF.

5. Any COF subset of X is of the form a+ ∩ b− for some a, b ∈ L.

Proof.

1. Note first that a basic open in τ is a finite intersection of sets of the form a+ or b− for
some a, b ∈ L. So let U =

⋂
j∈J a

+
j ∩

⋂
k∈K b

−
k for some finite sets J and K. Then a

point (F, I) is in U iff aj ∈ F for all j ∈ J and bk ∈ I for all k ∈ K iff
∧
aj ∈ F and∨

bk ∈ I iff (F, I) ∈ (
∧
aj)

+∩ (
∨
bk)

−. Hence any basic open is of the form a+∩ b− for
some a, b ∈ L. Now since ≤ is the specialization order on τ , for any two points (F, I)
and (F ′, I ′), (F, I) ≤ (F ′, I ′) iff for any basic open U , (F, I) ∈ U implies (F ′, I ′) ∈ U
iff for any a, b ∈ L, (F, I) ∈ a+ ∩ b− implies (F ′, I ′) ∈ a+ ∩ b− iff F ⊆ F ′ and I ⊆ I ′.

2. Recall that for any (F, I) ∈ X and a, b ∈ L, (F ∨ a, I) and (F, I ∨ b) extend to pseudo-
prime pairs iff a /∈ I and b /∈ F respectively. Thus for any (F, I) ∈ X and a, b ∈ L,
(F, I) ∈ ↓a+ iff a /∈ I iff (F, I) /∈ a−, and (F, I) ∈ ↓b− iff b /∈ F iff (F, I) /∈ b+. Thus

¬a+ = X \ ↓a+ = X \ (X \ a−) = a−

and
¬b− = X \ ↓b− = X \ (X \ b+) = b+.
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3. Any open set U is a union of basic open sets. Since basic opens in τ are of the form
a+ ∩ b−, U =

⋃
j∈J a

+
j ∩ b−j for some set J .

4. Clearly a+ ∩ b− is open, and moreover since ¬¬a+ = a+ and ¬¬b− = b−, we have that
¬¬(a+ ∩ b−) = ¬¬(a+) ∩ ¬¬(b−) = a+ ∩ b−. We check that a+ ∩ b− is compact. Note
that this is trivial if a ≤ b, so suppose a ≰ b and a+ ∩ b− ⊆

⋃
j∈J c

+
j ∩ d+j . Let (F, I) be

the pseudo-prime pair extending (↑a, ↓b). Since (F, I) ∈ a+ ∩ b−, there is j ∈ J such
that (F, I) ⊆ c+j ∩ d−j . Note however that for any pseudo-prime pair (F ′, I ′) ∈ a+ ∩ b−,
F ⊆ F ′ and I ⊆ I ′, hence cj ∈ F ′ and dj ∈ I ′. Hence a+ ∩ b− ⊆ c+j ∩ d−j , which
establishes that a+ ∩ b− is compact. Moreover, the pair (F, I) is the ≤-least element
in a+ ∩ b−, thus a+ ∩ b− is a filter.

5. Let U be a COROF subset of X. By 3., U =
⋃
j∈J a

+
j ∩ b−j , and since U is compact, we

can take J to be finite. We claim that, since U is a filter, there is j ∈ J such that for
all k ∈ J , a+k ∩ b−k ⊆ a+j ∩ b−j . We may assume without loss of generality that aj ≰ bj
for all j ∈ J . For any j ∈ J , let (Fj, Ij) be the pseudo-prime pair extending (↑aj, ↓bj).
Since U is a filter, there is (F, I) ∈ U such that (F, I) ≤ (Fj, Ij) for all j ∈ J . This
means that F ⊆

⋂
j∈J Fj and I ⊆

⋂
j∈J Ij, and since (F, I) ∈ U , there is j ∈ J such

that aj ∈ F and bj ∈ I. But this implies that for any k ∈ J , aj ∈ Fk and bj ∈ Ik. Since
(Fk, Ik) is the pseudo-prime pair extending (↑ak, ↓bk), this means that ak ≤ aj ∨ bk and
ak ∧ bj ≤ bk. But the former implies that a+k ∩ b−k ⊆ a+j , and the latter implies that
a+k ∩ b−k ⊆ b−j . Therefore a+k ∩ b−k ⊆ a+j ∩ b−j for any k ∈ J , and U = a+j ∩ b−j .

Note that this lemma implies that COF sets are also regular opens. In order to charac-
terize sets of the form a+ for some a ∈ L as COF sets of a certain type, we need to add a
partial order to (X, τ). Let ≼ be defined on X so that (F, I) ⊆ (F ′, I ′) iff F ⊆ F ′ and I ′ ⊆ I.
The following technical definition and lemma will be needed below.

Definition 3.7.2. Let (a, b) be a pair of elements of L. A right-complement for (a, b) is
an element k ∈ L such that k ∧ b ≤ 0 and a ≤ b ∨ k, and a left-complement for (a, b) is
an element j ∈ L such that 1 ≤ a ∨ j and a ∧ j ≤ b. A pair (a, b) of elements of L is
right-complement free (resp. left-complement free) if the pair (a, b) has no right-complement
(resp. left-complement).

Lemma 3.7.3. Let a, b ∈ L.

1. If (a, b) is a right-complement free pair in L, then there are pseudo-prime pairs (F, I)
and (F ′, I ′) ∈ X such that (F, I) ∈ a+ ∩ b−, (F, I) ≼ (F ′, I ′), and b /∈ I ′.

2. If (a, b) is a left-complement free pair in L, then there are pseudo-prime pairs (F, I)
and (F ′, I ′) ∈ X such that (F, I) ∈ a+ ∩ b−, (F ′, I ′) ≼ (F, I), and a /∈ F ′.

Proof.
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1. Note first that a ≰ b, for otherwise 0 would be a pseud-complement for (a, b). This
means that the pair (↑a, ↓b) extends to a pseudo-prime pair (F, I) such that for any
c, d ∈ L, c ∈ F iff a ≤ b ∨ c and d ∈ I iff a ∧ d ≤ b. Now consider the pair (F ∨ b, ↓0).
We claim that F ∨ b∩ ↓0 = ∅. Indeed, if c ∈ F ∨ b∩ ↓0, then c = k ∧ b for some k such
that a ≤ b ∨ k, and k ∧ b ≤ 0. But then k is a pseudo complement for the pair (a, b),
contradicting our assumption. Thus let (F ′, I ′) be the pseudo-prime pair extending
(F ∨ b, 0). This means that for any c, d ∈ L, c ∈ F ′ iff k ∧ b ≤ c for some k such that
a ≤ b ∨ k, and d ∈ I ′ iff k ∧ b ∧ d ≤ 0 for some k such that a ≤ b ∨ k. Now we make
the following two claims:

• (F, I) ≼ (F ′, I ′): clearly F ⊆ F ′. To see that I ′ ⊆ I, suppose d is such that
k ∧ b ∧ d ≤ 0 for some k such that a ≤ b ∨ k. Then

a ∧ (d ∧ b) ≤ (b ∨ k) ∧ (d ∧ b) ≤ (b ∧ d ∧ b) ∨ (k ∧ d ∧ b) ≤ d ∧ b ≤ b,

hence a ∧ d ≤ b, and d ∈ I.

• b /∈ I ′: if b ∈ I ′, then k ∧ b ∧ b = k ∧ b ≤ 0 for some k such that a ≤ b ∨ k. But
then k is a pseudo-complement for the pair (a, b).

2. Suppose (a, b) is left-complement free, and work in the dual lattice Lδ. Then the pair
(b, a) is right-complement free, so there is (F, I), (F ′, I ′) ∈ Xδ such that (F, I) ∈ b+∩a−,
a /∈ I ′, F ⊆ F ′ and I ′ ⊆ I. But then, (I, F ) and (I ′, F ′) are the required pseudo-prime
pairs in X, since (I ′, F ′) ≼ (I, F ) and (I, F ) ∈ a+ ∩ b−.

In Priestley duality, the original distributive lattice L in the Priestley space Spec(L) can
only be retrieved by adding the inclusion order on prime filters and taking the clopen upsets.
We shall see a similar phenomenon occurring here.

Lemma 3.7.4. Let L be a distributive lattice.

1. For any a, b ∈ L, a+ is an upset, and b− is a downset;

2. Any COF upset is of the form a+ for some a ∈ L, and any COF downset is of the form
b− for some b ∈ L.

Proof.

1. Let a, b ∈ L and suppose that (F, I) ≼ (F ′, I ′). Then a ∈ F implies a ∈ F ′, and b ∈ I ′

implies b ∈ I, since F ⊆ F ′ and I ′ ⊆ I. Hence a+ is an upset and b− is a downset.

2. Let U be a COF set. By the previous lemma, U = a+∩ b− for some a, b ∈ L. Note that
if (a, b) is a right-complement free pair, then by Lemma 3.7.3 U cannot be an upset.
Similarly, if (a, b) is a left-complement free pair, then U cannot be a downset. Thus if
U is an upset there is k ∈ L such that b ∧ k ≤ 0 and a ≤ b ∨ k. But this implies at
once that a+ ∩ b− ⊆ k+ and k+ ⊆ b−, and hence that a+ ∩ b− = a+ ∩ k+ = (a ∧ k)+.
Similarly, if U is a downset, there is j ∈ L such that 1 ≤ a ∨ j and a ∧ j ≤ b. This
implies that a+ ∧ b− ⊆ j− and j− ⊆ a+, hence that a+ ∩ b− = b− ∩ j− = (b ∨ j)−.
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We may now prove our choice-free representation theorem for distributive lattices via
ordered topological spaces.

Theorem 3.7.5. Let L be a distributive lattice and X = (X, τ,≼) as above. Then L is
isomorphic to the lattice (COFUP(X ),∩,∨), where for any two COFUP sets U, V , U ∨ V =
¬¬(U ∪ V ).

Proof. By Lemma 3.7.4, any COF upset U is a+ for some a ∈ L. Thus the map ·+ :
L → COFUP(X ) is surjective, and clearly preserves meets. Moreover, for any a, b ∈ L,
¬¬(a+ ∪ b+) = ¬(¬a+ ∩ ¬b+) = ¬(a− ∩ b−) = ¬(a ∨ b)− = (a ∨ b)+. Thus ·+ is a lattice
homomorphism. Finally, if a ≰ b, then there is (F, I) ∈ X extending the pair (↑a, ↓b), thus
·+ is injective. Hence L is isomorphic to COFUP(X ).

Note that, in (X, τ,≼), the order ≼ can be seen to be compatible with the regular open
complement ¬ in the sense that, for any COF upset U , ¬U is a COF downset, and for any
COF downset D, ¬D is a COF upset. In fact, this can be seen as a combination of two
distinct properties. The first one is topological in nature, since we impose that ¬U be COF
whenever U is a COF upset or downset. The second requirement is order-theoretic, and
amounts to the requirement that ↓U is an upset whenever U is a COF upset, and a downset
whenever U is a COF downset. The following strengthening of this latter condition has a
nice characterization in terms of compatibility conditions for ≤ and ≼:

Lemma 3.7.6. Let (X,≤,≼) be a bi-preordered set.

1. The following are equivalent:

a) For any upset U , ↓U is an upset;

b) X satisfies the following Diamond principle (D): for any x, y, z ∈ X such that
x ≤ y and x ≼ z, there is w ∈ X such that y ≼ w and z ≤ w:

x

yz

w

2. The following are equivalent:

a) For any downset D, ↓D is a downset;

b) X satisfies the following Exchange principle (E): For any x, y, z ∈ X such that
x ≼ y ≤ z, there is q ∈ X such that x ≤ q ≼ z:

x

y

z

q



3.7. CHOICE-FREE PRIESTLEY DUALITY 110

Proof.

1. To see that a) implies b), just apply a) to the upset generated by z. For the converse,
assume U is an upset and x ∈ ↓U . Then x ≤ y for some y ∈ U . Now since (D) holds,
for any z ≽ x, there is w ≥ z such that w ≽ y. But then w ∈ U since U is an upset,
hence z ∈ ↓U . Thus ↓U is an upset.

2. To see that a) implies b), apply a) to the downset generated by z. For the converse,
assume D is a downset and x ≼ y for some y ∈ ↓D. Then y ≤ z for some z ∈ D. Since
(E) holds, there is some q such that x ≤ q ≽ z. Since D is a downset this implies that
q ∈ D, hence x ∈ ↓D.

In fact, we can show that these stronger order-theoretic conditions also hold on the order
topological space X above.

Lemma 3.7.7. Let U,D be subsets of X.

1. If U is an upset, then ↓U is an upset.

2. If D is a downset, then ↓D is a downset.

Proof.

1. We verify that (X,≤,≼) satisfies the Diamond principle (D) above. Suppose we have
x, y, z ∈ X with x ≤ y and x ≼ z. Let x = (Fx, Ix), y = (Fy, Iy) and z = (Fz, Iz). We
claim that Fy∨Fz∩Iz = ∅. To see this, notice that if a∧c ∈ Iz for some a ∈ Fy, c ∈ Iz,
then a ∈ Iz. But since Iz ⊆ Ix ⊆ Iy, this implies that Fy∩Iy ̸= ∅, a contradiction. Now
let w = (Fw, Iw) be the pseudo-prime pair extending (Fy ∨ Fz, Iz). Clearly, Iz ⊆ Iw,
Fz ⊆ Fw and Fy ⊆ Fw. Hence z ≤ w, and, to verify that y ≼ w, we only need to check
that Iw ⊆ Iy. So let d ∈ Iw. This means that a ∧ c ∧ d ∈ Iz for some a ∈ Fy, c ∈ Fz.
Thus a ∧ d ∈ Iz ⊆ Iy, from which it follows that d ∈ Iy.

2. We verify that (X,≤,≼) satisfies the Exchange principle (E) above. Suppose we have
x, y, z ∈ X with x ≼ y ≤ z, and let x = (Fx, Ix), y = (Fy, Iy) and z = (Fz, Iz). Observe
that xδ = (Ix, Fx), y

δ = (Iy, Fy) and zδ = (Fz, Iz) are pseudo-prime pairs on the dual
lattice of L, i.e. xδ, yδ, zδ ∈ Xδ. Moreover, since x ≼ y, we have that yδ ≼ xδ, and
since y ≤ z, we have that yδ ≤ zδ. Thus by the previous result there is w = (Fw, Iw)
such that xδ ≤ w and z ≼ w. But then, letting q = (Iw, Fw), we have that q ∈ X,
x ≤ q, and q ≼ z.

3.7.2 UV P spaces

In this section, we identify the ordered topological spaces that are isomorphic to the spaces
constructed in the previous section. We start by connecting the construction above with the
Jipsen-Moshier duality for lattices. Given a DL L, let D(L) be the ordered topological space
(X, τ,≼) constructed in the previous section.
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Lemma 3.7.8. For any DL L, D(L) is an HMS space.

Proof. Recall that any open U can be written as
⋃
j∈J a

+
j ∩ b−j . Since a+j ∩ b−j is COF for any

a, b ∈ L, it follows that KOF (X ) is a basis for τ . Therefore we only have to check that D(L)
is sober, i.e., that every completely prime filter on τ is O(F, I) for some (F, I) ∈ X. So let
F be a completely prime filter, and let F = {a ∈ L | a+ ∈ F} and I = {b ∈ L | b− ∈ I }.
The sets F and I are easily seen to be a filter and an ideal on L respectively, and since F
is non-trivial, F ∩ I = ∅. Now for any a, b ∈ L, a+ ∩ (a ∧ b)− ⊆ b− and (a ∨ b)+ ∩ b− ⊆ a+,
from which it follows that (F, I) is a pseudo-prime pair, and hence (F, I) ∈ X. Finally, let
U =

⋃
j∈J a

+
j ∩ b−j be an open set in X. Then (F, I) ∈ U iff aj ∈ F and bj ∈ I for some j ∈ J

iff a+j ∩ b−j ∈ F for some j ∈ J iff U ∈ F .

Corollary 3.7.9. For any DL L, D(L) is a spectral space.

Proof. This follows from Theorem 2.5 in [197].

Thus our choice-free ordered topological duals of distributive lattices will be spectral
spaces with some additional properties. Let us also note the following.

Lemma 3.7.10. Let h : L→M be a lattice homomorphism between two DL. Then the map
h∗ : D(M) → D(L) defined by (F, I) 7→ (h−1[F ], h−1[I]) is a spectral map. Moreover, for any
upset U and downset D ∈ D(L), h−1

∗ [↓U ] = ↓h−1
∗ [U ] and h−1

∗ [↓D] = ↓h−1
∗ [D].

Proof. Recall that any compact open subset U of D(L) is of the from
⋃
j∈J a

+
j ∩b−j for aj, bj ∈

L. Clearly, h−1
∗ [U ] =

⋃
j∈J h

−1
∗ [a+j ]∩h−1

∗ [b−j ], so it is enough to show that h−1
∗ [a+] = h(a)+ and

h−1
∗ [b−] = h(b)− for any a, b ∈ L. But this was already established in Lemma 3.5.16. Hence
h∗ is a spectral map. Since this implies that h∗ is open, it is also monotone with respect to
the specialization ordering ≤, so for any subset S of D(L), then ↓h−1

∗ [S] ⊆ h−1
∗ [↓S]. Now

suppose U is an upset in D(L), and x = (F, I) ∈ h−1
∗ [↓S]. This means that there is some

(F ′, I ′) ∈ U such that (h−1[F ], h−1[I]) ≤ (F ′, I ′). By a standard argument, F ∨h[F ′]∩I = ∅,
so there is (F ∗, I∗) ∈ D(M) which extends the pair (F ∨ h[F ′], I) to a pseudo prime pair.
Clearly, (F, I) ≤ (F ∗, I∗), and we claim that (F ′, I ′) ≼ (h−1[F ∗], h−1[I∗]). Since U is an
upset, this will show that (F, I) ∈ ↓h−1

∗ [U ]. Clearly, if c ∈ F ′, then f(c) ∈ F ∗, hence
F ′ ⊆ h−1[F ∗]. Moreover, let d ∈ h−1[I∗]. This means that h(d) ∈ I∗, i.e., there is a ∈ F
and c ∈ F ′ such that a ∧ h(c) ∧ h(d) ∈ I. Since h is a homomorphism, this implies that
a ∧ h(c ∧ d) ∈ I, and since (F, I) has the RMP, h(c ∧ d) ∈ I. But then c ∧ d ∈ h−1[I] ⊆ I ′,
and since c ∈ F ′ and (F ′, I ′) has the RMP it follows that d ∈ I ′. Thus (F ′, I ′) ≼ (F ∗, I∗).
Thus h−1

∗ [↓U ] = ↓h−1
∗ [U ]. The corresponding statement for downsets is proved in a similar

way.

Definition 3.7.11. The functor D : DL → oTop maps any DL L to the ordered topological
space D(L), and any lattice homomorphism h : L → M to the monotone continuous map
D(h) := h∗ : D(M) → D(L).

We can now introduce the main definition of this section:
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Definition 3.7.12. A UV P -space is a triple (X, τ,≼) such that:

1. (X, τ) is a T0-space with specialization order ≤, and ≼ is a partial order on X;

2. A subset S of X is COF if and only if S = U ∩ ¬V for some COF upsets U and V ;

3. COF(X ) is a basis for (X, τ);

4. COFUP(X ) is a sublattice of RO(X );

5. For any subset S of X, if S is an upset (resp. downset), then ↓S is an upset (resp.
downset);

6. Any filter on COF(X ) is COF(x) for some point x ∈ X;

7. For any x, y ∈ X, if x ̸≼ y, then there is an upset U ∈ COF(X ) such that x ∈ U and
y /∈ U , or x /∈ ¬U and y ∈ ¬U .

The following is immediate from this definition:

Lemma 3.7.13. Let (X, τ,≼) be an UV P space. Then COFUP(X ) is a distributive lattice.

Proof. By axiom 4, COFUP(X ) is a sublattice of RO(X ). Since RO(X ) is a Boolean
algebra, it follows that COFUP(X ) is distributive.

Let us now define the relevant notion of morphisms between UV P spaces:

Definition 3.7.14. Let (X, τ,≼) and (Y, τ ′,≼′) be UV P spaces. A UV P map is a function
f : X → Y such that:

1. f is F-continuous, i.e., f−1[S] is COF for any COF subset S of Y ;

2. f is monotone: if x ≼ x′, then f(x) ≼′ f(x′);

3. If S is an upset or a downset in Y , then ↓f−1[S] = f−1[↓S].

Lemma 3.7.15. Let f : (X, τ,≼) → (Y, τ ′,≼) be a UV P map. Then f−1 : COFUP(Y ) →
COFUP(X ) is a lattice-homomorphism.

Proof. Since f is F-continuous and monotone, it maps COF upsets to COF upsets. Moreover,
f−1 clearly preserves meets. To see that it preserves joins, suppose U, V are COF upsets in
Y . Note that this implies that ¬U and ¬V are downsets, thus that ¬(U ∪ V ) = ¬U ∩¬V is
also a downset. Hence:

f−1[¬¬(U ∪ V )] = ¬f−1[¬(U ∪ V )] = ¬¬f−1[U ∪ V ] = ¬¬(f−1[U ] ∪ f−1[V ]).

This completes the proof.

Let us now connect the dual ordered topological space of a distributive lattice defined in
the previous section and UV P spaces.
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Lemma 3.7.16. For any distributive lattice L, D(L) is a UV P space.

Proof. We check that all conditions in Definition 3.7.12 are satisfied by (X, τ,≤):

1. This condition is clear from the definition of τ and ≼;

2. Recall that, by Lemma 3.7.1, if S is a COF subset of X, then U = a+ ∩ b− for some
a, b ∈ L. But a+, b+ are COF upsets and b− = ¬b+.

3. By Lemma 3.7.4, sets of the form a+ ∩ b− form a basis for τ and are COF.

4. By Lemma 3.7.4, any COF upset is regular open and of the form a+ for some a ∈ L.
Given a, b ∈ L, a+ ∩ b+ = (a ∧ b)+ is the greatest lower bound of the set {a+, b+} in
COF , and ¬¬(a+ ∪ b+) = (a ∨ b)+ is its least upper bound. Thus COFUP(X ) is a
sublattice of RO(X ).

5. This was proved in Lemma 3.7.7.

6. Let K be a filter on COF (X ), and let K+ = {a ∈ L | a+ ∈ K} and K− = {b ∈ L |
b− ∈ K}. We claim that (K+, K−) is a pseudo-prime pair in X, and moreover that
for any a, b ∈ L, (K+, K−) ∈ a+ ∩ b− iff a+ ∩ b− ∈ K, i.e. COF (K+, K−) = K. Note
first that, since K is a filter, K+ is clearly a filter on L and K− is clearly an ideal, and
moreover K+ ∩K− = ∅. To see that (K+, K−) has the RMP, assume (a∧ b)− ∈ K for
some a, b ∈ L such that a+ ∈ L. Since all pairs in X have the RMP, a+∩ (a∧b)− ⊆ b−,
thus b− ∈ K and b ∈ K−. Similarly, suppose that (a ∨ b)+ ∈ K and b− ∈ K. Since
all pairs in X have the LJP, (a ∨ b)+ ∩ b− ⊆ a+, thus a ∈ K+, which establishes that
(K,K ′) also has the LJP. Hence (K,K ′) ∈ X. Finally, note that for any a, b ∈ L,
(K+, K−) ∈ a+∩ b− iff a+ ∈ K and b− ∈ K iff a+∩ b− ∈ K. Thus K = COF(K+, K−).

7. Suppose x ̸≼ y for some x, y ∈ X. Let x = (Fx, Ix) and y = (Fy, Iy). Then either there
is a ∈ Fx \ Fy, or there is b ∈ Iy \ Ix. In the first case, x ∈ a+ but y /∈ a+, and a+ is a
COF upset, while, in the second case, x /∈ b− but y ∈ b−, and b− = ¬b+.

Moreover, we have the following result for lattice homomorphisms.

Lemma 3.7.17. Let h : L → M be a lattice homomorphism between two DL L and M .
Then D(h) is a UV P map.

Proof. The proof of Lemma 3.7.10 reveals that D(h) is an F-continous map that satisfies
condition 3, and it is clearly monotone with respect to ≼.

Thus the functor D maps DL into the category of UV P spaces and UV P maps between
them. We now show that this functor is an equivalence.

Theorem 3.7.18. Let X = (X, τ,≤) be a UV P space. Then X is isomorphic to
D(COFUP(X )).
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Proof. For any x ∈ X, let COFUP(x)+ = {U ∈ COFUP(X ) | x ∈ U} and COFUP(x)− =
{V ∈ COFUP(X ) | x ∈ ¬V }, and let θ : X → D(COFUP(X )) be defined such that
θ(x) = (COFUP(x)+,COFUP(x)−). We first claim the following:

1. θ is well-defined. It is routine to check that COFUP(x)+ and COFUP(x)− are a filter
and an ideal on COFUP(X ) with empty intersection. To see that θ(x) has the RMP,
suppose we have COF upsets U, V such that U ∈ COFUP(x)+ and U∩V ∈ COFUP(x)−.
Then x ∈ U ∩ ¬(U ∩ V ). Since the regular opens of X form a Boolean algebra, we
have that U ∩ ¬(U ∩ V ) ⊆ ¬V , hence x ∈ ¬V and V ∈ COFUP(x)−. Similarly, if
x ∈ ¬¬(U ∪ V ) ∩ ¬V , then since ¬¬(U ∪ V ) ∩ ¬V ⊆ U , it follows that x ∈ U . Thus
if ¬¬(U ∪ V ) ∈ COFUP(x)+ and V ∈ COFUP(x)−, we have that U ∈ COFUP(x)+,
which shows that theta(x) also has the LHP. Hence θ(x) is a pseudo-prime pair on
COFUP(X ), so θ is well-defined.

2. θ is surjective. Let (F, I) be a pseudo-prime pair on COFUP(X ), and consider K =
{S ∈ COF(X ) : ∃U ∈ F, V ∈ I(U ∩ ¬V ⊆ S)}. Clearly, K is a filter on COF (X ), so
K = COF(x) for some x ∈ X. Now for any COF upset U , U ∈ COFUP(x)+ iff x ∈ U
iff U ∈ CORO(x) iff V1 ∩ ¬V2 ⊆ U for some V1 ∈ F and V2 ∈ I. Now if V1, V2 and U
are regular opens such that V1∩¬V2 ⊆ U , it follows that V1 ⊆ ¬¬(V2∪U), hence since
(F, I) has the LJP V1 ∈ F and V2 ∈ I implies that U ∈ F . Thus COFUP(x)+ ⊆ F ,
and the converse direction is obvious. One proves similarly that COFUP(x)− = I, and
therefore (F, I) = θ(x).

3. θ preserves and reflects ≼. Note that this also implies that θ is injective, since ≼ is
a partial order. Suppose x ≼ y. Then every upset containing x also contains y, and
every downset containing y also contains x. Thus θ(x) ≼ θ(y). Conversely, suppose
x ̸≼ y. Then there is a COF upset U such that either x ∈ U and y /∈ U , or y ∈ ¬U
and x /∈ ¬U . In the first case, COFUP(x)+ ̸⊆ COFUP(y)+, and in the second case
COFUP(y)− ̸⊆ COFUP(x)−. Either way, θ(x) ̸≼ θ(y).

Thus θ has an inverse θ−1. Now we claim that both θ and θ−1 are UV P morphisms:

1. Any COF set in D(COFUP(X )) is of the form U+ ∩ V − for COF upsets U, V in X .
Since θ−1[U+ ∩ V −] = θ[U+] ∩ θ[V −], and the COF sets of X are closed under finite
intersections, it is enough to check that θ−1[U+] and θ−1[V −] is COF to conclude that
θ is F-continuous. Now θ(x) ∈ U+ iff U ∈ COFUP(x)+ iff x ∈ U , and θ(x) ∈ V −

iff V ∈ COFUP(x)− iff x ∈ ¬V . Thus θ−1[U+] = U and θ−1[V −] = ¬V , hence θ is
spectral.

2. Similarly, any COF set in X is of the form U ∩¬V for COF upsets U and V . Now for
any (F, I) ∈ D(X ), θ−1(F, I) ∈ U iff U ∈ F iff (F, I) ∈ U+, and θ−1(F, I) ∈ ¬V iff
V ∈ I iff (F, I) ∈ V −, so θ[U ] = U+ and θ[¬V ] = V −. Hence θ−1 is F-continuous.

3. Since θ preserves and reflects ≼, both θ and θ−1 are monotone.
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4. Finally, since both θ and θ−1 are F-continuous, they are also continuous, hence mono-
tone with respect to ≤. But then it follows at once that for any subset S of X ,
↓θ[S] = θ[↓S], and for any subset T of D(COFUP(X )), ↓θ−1[T ] = θ−1[↓T ].

We conclude with the main theorem of this section, which establishes a choice free duality
between DL and UV P spaces.

Theorem 3.7.19. The category UVP of UV P spaces and UV P maps is dual to the category
DL of distributive lattices and monotone maps.

Proof. By Theorems 3.7.5 and 3.7.18, the maps + and θ are natural transformations from
1DL to COFUP ◦ D and from 1UVP to D ◦ COFUP. Naturality follows from Theorem 3.6.6
and the observation that B = D and CORO = COFUP on morphisms.

3.8 Relation to Upper Vietoris Constructions

In this final section, we connect our two choice-free dualities with their non-constructive
counterparts via Vietoris constructions. As mentioned before, assuming the Boolean Prime
Ideal theorem is enough to show that the dual UV -space of a Boolean algebra is homeo-
morphic to the Vietoris hyperspace of its dual Stone space endowed with the Upper-Vietoris
topology instead of the full Vietoris topology. We show that a similar result holds in the
case of the dual pairwise UV -space of a distributive lattice under the assumption of the
(equivalent) Prime Filter Theorem. Recall first that the dual pairwise Stone space of L is
the bi-topological space (X, τ1, τ2), where X is the collection of all prime filters on L, and τ1
and τ2 are the topologies generated by the sets {pa | a ∈ L} and {qb | b ∈ L} respectively. We
let δ1 and δ2 be the closed sets in τ1 and τ2 respectively, and β1 = τ1 ∩ δ2 and β2 = τ2 ∩ δ1.

Theorem 3.8.1 ([39]). Given a DL L and its dual pairwise Stone space (X, τ1, τ2) there is
an order isomorphism between (Filt(L),⊇) and (δ2,⊆) on the one hand, and (Idl(L),⊆)
and (τ1,⊆) on the other hand.

The Vietoris construction was developed for pairwise Stone spaces by Lauridsen in [169].

Definition 3.8.2. Let (X, τ1, τ2) be a pairwise Stone space, and let K(X ) = {G1 ∩ G2 ̸=
∅ | G1 ∈ δ1, G2 ∈ δ2}. The Vietoris hyperspace of X is the set K(X ) endowed with the
topologies generated by the subbases {3U,2U}u∈β1 and {3U,2U}u∈β2 , where

3U = {x ∈ K(X ) | x ∩ U ̸= ∅},

and

2U = {x ∈ K(X ) | x ⊆ U}.

Moreover, we let BK(X ) be the bi-topological space obtained by endowing K(X ) with the
upper Vietoris topologies π1 and π2 generated by {2U}U∈β1 and {2U}U∈β2 respectively.
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Lauridsen [169] shows how the previous definition constitutes the object part of an endo-
functor on the category on pairwise Stone spaces, which corresponds to the Vietoris functor
on the category of Priestley spaces. We show that for any DL L with dual pairwise Stone
space (X, τ1, τ2), (K(X ), π1, π2) is bi-homeomorphic to B(L). This result should not be sur-
prising: points in K(X ) are determined by a closed set in δ1 and a closed set in δ2. Since,
by the duality in [39], the complement of the former corresponds to an ideal on L and the
latter corresponds to a filter, each point in K(X ) determines a pair of a filter and an ideal.
We will show that this pair is actually pseudo-prime, and that conversely any pseudo-prime
pair determines a point in K(X ). From now on, fix a DL L with dual pairwise Stone space
(X, τ1, τ2) and dual pairwise UV -space (Y, τ+, τ−). Recall that:

• basic opens in τ1 are of the form pa = {p ∈ X | a ∈ p};

• basic opens in τ2 are of the form qb = {p ∈ X | b /∈ p};

• basic opens in τ+ are of the form a+ = {(F, I) ∈ Y | a ∈ F};

• basic opens in τ− are of the form b− = {(F, I) ∈ Y | b ∈ I}.

Definition 3.8.3. Let β : Y → K(X ) be defined such that for any (F, I) ∈ Y , β(Y ) =⋂
a∈F pa ∩

⋂
b∈I

qb.

Since pa is closed in τ2 and qb is closed in τ1, β is well-defined. Moreover, it is easy to see
that that for any pair (F, I), β(F, I) = {p ∈ X | F ⊆ p and I ∩ p = ∅}.

Conversely, we map K(X ) into Y as follows:

Definition 3.8.4. Let x ∈ K(X ). Define Fx = {a ∈ L | x ⊆ pa} and Ix = {b ∈ L | x∩pb = ∅},
and let α : K(X ) → Y be defined as α(x) = (Fx, Ix).

Lemma 3.8.5. The map α is well-defined, i.e., for any x ∈ X, (Fx, Ix) is a pseudo-prime
pair.

Proof. It is routine to verify that Fx is a filter and Ix is an ideal, and that Fx ∩ Ix = ∅
if x ̸= ∅. Suppose a ∧ b ∈ Ix and a ∈ Fx for some a, b ∈ L. This means that x ⊆ pa and
x∩za ∧ b = ∅. Since za ∧ b = pa∧pb, this implies that x∩pb = ∅, hence b ∈ Ix. Similarly, suppose
that a ∨ b ∈ Fx and b ∈ Ix. Then x ⊆ za ∨ b and x ∩pb = ∅. Since za ∨ b = pa ∪pb, this implies
that x ⊆ pa, and thus a ∈ Fx. Therefore for any x ∈ K(X ), (Fx, Ix) is a pseudo-prime pair
on L, and α is well-defined.

Lemma 3.8.6.

1. For any (F, I) ∈ X, αβ(F, I) = (F, I).

2. For any x ∈ K(X ), βα(x) = x.

Proof.
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1. Note first that αβ(F, I) = (Fβ(F,I), Iβ(F,I)). Now:

Fβ(F,I) = {a ∈ L | β(F, I) ⊆ pa} = {a ∈ L | ∀p ∈ X(F ⊆ p ∧ I ∩ p = ∅ → a ∈ p)}

and:

Iβ(F,I) = {b ∈ L | β(F, I) ∩pb = ∅} = {b ∈ L | ∀p ∈ X(F ⊆ p ∧ I ∩ p = ∅ → b /∈ p)}.

This immediately implies that if F ⊆ Fβ(F,I) and I ⊆ Fβ(F,I). Now suppose a /∈ F .
Since (F, I) is pseudo prime, F ∩ a ∨ I = ∅, so by the Prime Filter Theorem there
is p ∈ X such that F ⊆ p and p ∩ a ∨ I = ∅. Hence a /∈ Fβ(F,I). This shows that
F = Fβ(F,I). Similarly, if b /∈ I, then F ∨ b ∩ I = ∅, from which it follows that there is
p ∈ X such that F ∨ b ⊆ p and p ∩ I = ∅, and hence that b /∈ Iβ(F,I). This establishes
that I = Iβ(F,I), which completes the proof.

2. Let x ∈ K(X ), and note first that βα(x) = {p ∈ X | Fx ⊆ p and p ∩ Ix = ∅}. Now if

p ∈ x, then for any a ∈ L such that x ⊆ pa, a ∈ p, and for any b ∈ L such that x∩pb = ∅,
b /∈ p. But this implies that Fx ⊆ p and Ix ∩ p = ∅, thus x ⊆ βα(x). Conversely, note

that, since x ∈ K(X ), there are G, J ⊆ L such that x =
⋂
a∈G pa ∩

⋂
b∈J

qb. Now for

any a, b ∈ L, if a ∈ G, then x ⊆ pa, and if b ∈ J , then x ∩pb = ∅, from which it follows
that a ∈ Fx and b ∈ Ix, hence H ⊆ Fx and J ⊆ Ix. Hence:⋂

a∈Fx

pa ∩
⋂
b∈Ix

qb ⊆
⋂
a∈G

pa ∩
⋂
b∈J

qb ⊆ x,

which concludes the proof that βα(x) = x.

Thus α = β−1. We now show that β and α are bi-continuous maps.

Lemma 3.8.7. The maps β : B(L) → BK(X ) and α : BK(X ) → B(L) are bi-continuous.

Proof. We claim that for any a, b ∈ L:

1. α[2pa] = a+ and α[2qb] = b−;

2. β[a+] = 2pa and β[b−] = 2−pb.

For 1, note that:

α[2pa] = {α(x) ∈ B(L) | x ⊆ pa}
= {(Fx, Ix) ∈ B(L) | x ⊆ pa}
= {(F, I) ∈ B(L) | a ∈ F}
= a+,
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and :

α[2qb] ∈ B(L) = {α(x) | x ⊆ qb}
= {(Fx, Ix) ∈ B(L) | x ∩pb = ∅}
= {(F, I) ∈ B(L) | b ∈ I}
= b−.

For 2, we have that:

β[a+] = {β(F, I) ∈ K(X ) | a ∈ F}

= {
⋂
a∈F

pa ∩
⋂
b∈I

qb ∈ K(X ) | a ∈ F}

= {x ∈ K(X ) | x ⊆ pa}
= 2pa,

and:

β[b−] = {β(F, I) ∈ K(X ) | b ∈ I}

= {
⋂
a∈F

pa ∩
⋂
b∈I

qb ∈ K(X ) | b ∈ I}

= {x ∈ K(X ) | x ∩pb = ∅}
= 2qb.

Thus both α and β maps basic open sets to basic open sets in both topologies, and are
therefore bi-continuous.

Corollary 3.8.8. The spaces BK(X ) and B(L) are homeomorphic.

Proof. Immediate from the previous lemma and the fact that α and β are inverses to one
another.

Therefore pairwise UV -space are precisely the upper Vietoris pairwise Stone spaces. One
might wonder whether a similar result can be achieved for UV P spaces. Unsurprisingly,
this is also the case. In fact, we show that for any DL L, D(L) is order-homeomorphic to
UV (Pries(L)), i.e., to the upper Vietoris hyperspace of the dual Priestley space of L.

Definition 3.8.9. Let L be a DL and Pries(L) = (X, τ,≤) its dual Priestley space. Let
C(X ) be the collection of non-empty convex closed subsets of X, and V (Pries(L)) =
(C(X ), τV ,⊑), where τV is the Vietoris topology generated by the subbasis

{2U,3U}U∈ClopUp(X ) ∪ {2U,3U}U∈ClopDn(X ),

and ⊑ is the Egli-Milner lift of ≤, i.e., for any U, V ∈ C(X ), U ⊑ V iff U ⊆ ↓V and V ⊆ ↑U .
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It is straightforward to check that any closed convex set S is equal to U ∩ V for some
closed upset U and some closed downset V . Since closed upsets in X correspond to filters
on L and open upsets correspond to ideals on L, we have that C(X ) = K(X ), and thus
we may view α and β as inverse maps between D(L) and C(X ). Now let UV (Pries(L)) =
(C(X ), πV ,⊑), where πV is the upper Vietoris topology generated by sets of the form 2U
for U ∈ CpUp(X ) ∪ CpDn(X ).

Lemma 3.8.10. The maps α : UV (Pries(L)) → D(L) and β : D(L) → UV (Pries(L)) are
continuous and monotone.

Proof.

• Recall that clopen upsets and clopen downsets in Pries(L) are of the form pa and qb

for a, b ∈ L, hence subbasic opens in UV (Pries(L)) are of the form 2pa or 2 − pb.
Similarly, subbasic opens in D(L) are of the form a+ or b− for some a, b ∈ L. Thus
by Lemma 3.8.7 α and β map subbasic opens to subbasic opens, and are therefore
continuous since they are inverses of each other. Hence we only have to check that
they are both monotone.

• Let U, V ∈ C(X ) such that U ⊑ V . We claim that α(U) = FU , IU ≤ α(V ) = FV , IV ,
i.e., FU ⊆ FV and IV ⊆ IU . Suppose that a ∈ FU . Then U ⊆ pa, and, since pa is an
upset, V ⊆ ↑U ⊆ pa, from which it follows that a ∈ FV . Similarly, suppose that b ∈ IV .
Then V ∩pb = ∅, i.e., V ⊆ qb, and since qb is a downset, we have that U ⊆ ↓V ⊆ qb, and
thus b ∈ IU . Therefore α(U) ≤ α(V ), which shows that α is monotone.

• Suppose (F, I) ≤ (G, J). We claim that β(F, I) ⊑ β(G, J). Note that (F, I) ≤ (G, J)
implies that F ⊆ G and J ⊆ I. Now assume p ∈ β(F, I), i.e., F ⊆ p and p ∩ I = ∅.
We claim that p ∨ F ∩ J = ∅. Indeed, if c ∧ a ∈ J for some c ∈ p, a ∈ J , since (G, J)
has the RMP we have that c ∈ J . But this is a contradiction, as J ⊆ I and I ∩ p = ∅.
Thus let q be a prime filter such that p ∨ G ⊆ q and J ∩ q = ∅. Then p ⊆ q and
q ∈ β(G, J), and hence β(F, I) ⊆ ↓β(G, J). Similarly, assume q ∈ β(G, J), i.e., G ⊆ q
and J ∩ q = ∅. Let qδ be the dual prime ideal of q, i.e., qδ = {d ∈ L | d /∈ q}. We claim
that F, qδ ∨ I = ∅. Indeed, suppose that d ∨ b ∈ F for some d ∈ qδ, b ∈ I. Then since
(F, I) has the LJP, d ∈ F . But this is a contradiction, as F ⊆ q and q ∩ qδ = ∅. Thus
let p be a prime filter such that F ⊆ p and p ∩ qδ ∨ I = ∅. Clearly, p ∈ β(F, I) and
p ⊆ q, and therefore β(G, J) ⊆ ↑β(F, I). Hence β(F, I) ⊑ β(G, J), which establishes
that β is order-preserving.

Corollary 3.8.11. Any UV P space is order homeomorphic to the upper Vietoris space of a
Priestley space.

We conclude with a brief summary of our results in this chapter. As we have seen, the
methods used in [41] to obtain a choice-free duality for Boolean algebras can be extended in a
relatively straightforward way to de Vries algebras, distributive lattices and Heyting algebras.
In all three cases, the reliance on the Prime Filter Theorem can be avoided by considering



3.8. RELATION TO UPPER VIETORIS CONSTRUCTIONS 120

either filters or filter-ideal pairs, and introducing more structure into the geometric duals of
the algebraic structures under consideration. Moreover, there is a very tight link between
choice-free and non-constructive representations, which can always be made explicit via
Upper Vietoris constructions. As we shall see in the next chapter, Vietoris functors and
their algebraic duals will play an important although slightly different role in generalizing
the dualities presented here to a duality for the category of all lattices.
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Chapter 4

A Duality for Lattices and
Fundamental Logic

4.1 Introduction

In the previous chapter, we have seen how mild generalizations of Bezhanishvili and Hol-
liday’s choice-free version of Stone duality via UV -spaces can be obtained by following a
strategy that is essentially similar to the one adopted in Boolean case. Instead of construct-
ing directly the dual space of a given lattice by taking as points a set of filters with some
maximality requirements, one approximates such points via a poset of filters. Topologically,
this corresponds to a certain kind of Vietoris hyperspace construction, in which points are
approximated by closed subsets. The original lattice L can then be recovered as the fixpoints
of some closure operator on its dual space. Importantly, this does not yield a representation
of L as a subalgebra of a field of sets, because joins are not computed as set-theoretic unions.
While this can be seen as a drawback compared to standard representations via the Prime
Filter Theorem in the distributive case, this also opens up the possibility of extending these
techniques beyond the distributive setting in a straightforward way.

In this chapter, we will present a duality for the category of lattices that is based on
similar ideas. The motivation for this is threefold. First, we already developed a discrete
duality for complete lattices in Chapter 2, but left open the issue of topologizing this duality
in order to represent all lattices. Our first goal is to obtain such a duality. In other words,
just like the UV duality topologizes the forcing duality, the duality we present here topol-
ogizes b-frame duality. Second, the dual spaces of lattices that we obtain are very familiar
structures, and in many ways our duality is very similar to established dualities for lattices
that have been mentioned in the first chapter, such as the filter-ideal based dualities of All-
wein and Hartonas [1] and of Hartonas and Dunn [125, 124, 126, 121]. The novelty of our
approach is that we derive filter-ideal spaces from an embedding of the category of lattices
into the category of distributive lattices, and use then a variation of Priestley duality. In
other words, one could think of our work here as deriving the Hartonas-Dunn duality from



4.2. PRELIMINARIES 122

Priestley duality. This raises the issue of whether this duality could be obtained without
the Axiom of Choice, which we will briefly discuss. Finally, the third motivation for the
duality we introduce here is that it is closely related to the semantics for Fundamental Logic
in terms of compatibility relations presented in [131, 132]. Accordingly, it may be seen as
a way of lifting Holliday’s correspondence between compatibility frames and lattices to a
full duality, obtaining in the process a topological characterization of the duals of lattices.
Because the lattices associated with Fundamental Logic are equipped with a unary opera-
tion ¬ called a weak pseudo-complement, we will also have to extend our basic duality for
lattices to one for weakly pseudo-complemented lattices. As we will see, the ideas that play
a key role in the duality for lattices will be equally relevant in establishing a duality for
weakly pseudo-complemented lattices. Although we will not have the space to do here, this
suggests a promising way of proving versions of some cornerstone results in the semantics
of non-classical logics, such as Goldblatt-Thomason-style theorems [110], in the setting of
compatibility frames for Fundamental Logic. Indeed, duality-theoretic approaches, particu-
larly those that are close to Stone and Priestley duality are often powerful tools in obtaining
elegant proofs of Goldblatt-Thomason theorems [162, 114, 61].

The rest of the chapter is organized as follows. In Section 4.2, we review the main
ingredients of our approach, which are a certain of free constructions on lattices and Vietoris
hyperspaces on Priestley spaces. In Section 4.3, we use these functors to lift Priestley duality
to dualities between two categories of maps between distributive lattices that preserve either
the meet or join operation, and two categories on relations between Priestley spaces. These
dualities are then use in Section 4.4 to obtain a duality between lattices and FI-spaces that
is similar the Hartonas-Dunn duality. Finally, a variation of this duality for weakly-pseudo
complemented lattices is proved in Section 4.5, while Section 4.6 concludes with some remarks
relating our work in this chapter to b-frames and the relational semantics for Fundamental
Logic.

4.2 Preliminaries

In this section, we introduce the basic duality-theoretic ingredients that we will use in the
rest of this chapter. Most of the material presented here is already known, in some form
or other, in the literature, but we give a fairly detailed and systematic presentation here
that is tailored to our purposes. Recall that our main goal in this chapter is to use Priestley
duality to obtain a duality for the category of all lattices, as well as a method for representing
monotone maps between lattices. The first component of our solution will be the definition
of two free functors into the category of distributive lattices. We will then define Priestley
duals of such free constructions via Vietoris hyperspaces. Because it will simplify several
computations later on, we will also introduce a Priestley dual to the “dualizing” endofunctor
on the category of lattices.
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4.2.1 Free 2 and 3 Constructions

We start by introducing the following categories:

Definition 4.2.1. Let MLat∗ be the category of bounded meet-semilattices (i.e., meet-
semilattices with a largest element 1) and top-preserving monotone maps between them. We
define the following restrictions of this category:

• MLat is the subcategory of bounded meet-semilattices and meet-preserving maps be-
tween them (where a meet-preserving map also preserves the top element 1);

• DL∧ is the subcategory of bounded distributive lattices and meet-preserving maps
between them.

Dually, let JLat∗ be the category of bounded join-semilattices (i.e., join-semilattices with a
smallest element 0) and bottom-preserving monotone maps between them. We also define
the following restrictions of this category:

• JLat is the subcategory of bounded join-semilattices and join-preserving maps between
them (where a join-preserving map also preserves the bottom element 0);

• DL∨ is the subcategory of bounded distributive lattices and join-preserving maps be-
tween them.

It is easy to see from the previous definition that the category Lat∗ of lattices and
monotone maps between them is precisely the intersection of MLat∗ and JLat∗, the category
Lat of lattices and lattice homomorphisms is precisely the intersection of MLat and JLat,
and finally that DL is the intersection of DL∧ and DL∨.

Definition 4.2.2. The functors M2 : MLat∗ → DL∨ and M3 : JLat∗ → DL∧ are defined
as follows:

• For any bounded meet-semilattice L, M2(L) is the free distributive lattice given by the
set of generators {2a | a ∈ L} and the relations {2a ∧ 2b = 2(a ∧ b),21 = 1,20 =
0 | a, b ∈ L}.

• For any bounded join-semilattice L, M3(L) is the free distributive lattice given by the
set of generators {3a | a ∈ L} and the relations {3a ∨3b = 3(a ∨ b),31 = 1,30 =
0 | a, b ∈ L}.

• For any bounded meet-semilattices L and M and any monotone map f : L → M ,
M2(f) : M2(L) → M2(M) is defined by letting M2(f)(

∨
i∈I 2ai) =

∨
i∈I 2f(ai) for

any {ai | i ∈ I} ⊆ L.

• For any bounded join-semilattices L and M and any monotone map f : L → M ,
M3(f) : M3(L) → M3(M) is defined by letting M3(f)(

∧
j∈J 3aj) =

∧
j∈J 3f(aj) for

any {aj | j ∈ J} ⊆ L.



4.2. PRELIMINARIES 124

Note that M2 and M3 are well-defined on morphisms because every element in M2(L)
and M3(L) can be written as a join of generators and as a meet of generators respectively. It
is also straightforward to verify that M2 and M3 restrict to functors from MLat and JLat
respectively to DL. Moreover, M2 and M3 have the following properties:

Lemma 4.2.3. Let L be a meet-semilattice and M a join-semilattice.

1. There is a meet-semilattice embedding of L into M2(L) given by a 7→ 2a, and a join-
semilattice embedding of M into M3(M) given by a 7→ 3a.

2. For any meet-semilattice N and monotone map f : L 7→ N , M2(f) is the unique join-
semilattice homomorphism g : M2(L) → M2(N) such that g(2a) = 2f(a) for any
a ∈ L.

3. Dually, for any join-semilattice N and monotone map f : M 7→ N , M3(f) is the unique
meet-semilattice homomorphism g : M3(M) → M3(N) such that g(3a) = 3f(a) for
any a ∈ L.

4. For any distributive lattice N and any meet-semilattice homomorphism f : L → N ,

there is a unique lattice homomorphism
∼
f : M2(L) → N such that

∼
f(2a) = f(a) for

any a ∈M .

5. Dually, for any distributive lattice N and any join-semilattice homomorphism f : M →
N , there is a unique lattice homomorphism f

∼
: M3(M) → N such that f

∼
(3a) = f(a)

for any a ∈M .

Proof. Part 1 is immediate. For part 2, it is enough to observe that, if g;M2(L) → M2(M)
is a join-semilattice map, then g(

∨
i∈I 2ai) =

∨
i∈I g(2ai) for any {ai | i ∈ I} ⊆ L, so that

g(2a) = 2f(a) for all a ∈ L implies that g = M2(f). Part 3 is proved completely similarly.

For part 4, let f : L→ N be a meet-semilattice homomorphism, and define
∼
f : M2(L) →

N by letting
∼
f(
∨
i∈I 2ai) =

∨
i∈I 2f(ai). Clearly,

∼
f is join-preserving. To see that it also
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preserves meets, note that:

∼
f(
∨
i∈I

2ai) ∧
∼
f(

∨
j∈J

2bj) =
∨
i∈I

f(ai) ∧
∨
j∈J

f(bj)

=
∨

i∈I,j∈J

(f(ai) ∧ f(bj))

=
∨

i∈I,j∈J

f(ai ∧ bj)

=
∼
f(

∨
i∈I,j∈J

2(ai ∧ bj))

=
∼
f(

∨
i∈I,j∈J

(2ai ∧2bj))

=
∼
f(
∨
i∈I

2ai ∧
∨
j∈J

2bj),

where the second equality holds because N is distributive and the third one because f is
meet-preserving. Uniqueness is proved by the same argument as in part 2, and part 5 is a
completely dual argument to part 4.

The following observation makes more precise the sense in which M2 and M3 are dual
to one another. Let δ be the functor mapping a poset to its order-dual, and any order-
preserving or order-reversing map to itself. Note that δ restricts to functors on MLat∗,
JLat∗, MLat, JLat, DL∧, DL∨, Lat and DL and establishes an isomorphism of categories
between MLat∗ and JLat∗, MLat and JLat and between DL∧ and DL∨.

Lemma 4.2.4. For any meet-semilattice L, δM2(L) ≃ M3δ(L), and for any join-semilattice
M , δM3(M) ≃ M2δ(M).

MLat∗ JLat∗

DL∨ DL∧

M2

δ

M3
δ
δ

δ

Proof. Since δ establishes isomorphisms between MLat∗ and JLat∗ and between DL∧ and
DL∨, it is clearly enough to show that δM2(L) ≃ M3δ(L) for any meet-semilattice L.
In what follows, if L is a meet-semilattice (resp. join-semilattice) with meet (resp. join)
operation ∧ (resp. ∨), we let ⊔ (resp. ⊓) denote the join (resp. meet) operation on its
order dual, and if a ∈ L, we write a for the corresponding element in the order dual. Now
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fix a meet-semilattice L. For any {ai | i ∈ I}, let ζL(
∨∨∨

i∈I 2ai) =
∧
i∈I 3ai. Clearly ζL

is surjective. Now for any {ai | i ∈ I}, {bj | j ∈ J} ⊆ L, one has the following chain of
equivalences:

ζL(
∨∨∨
i∈I

2ai) ≤ ζL(
∨∨∨
j∈J

2bj) ⇔
∧
i∈I

3ai ≤
∧
j∈J

3bj

⇔ ∀j ∈ J∃i ∈ I : 3ai ≤ 3bj

⇔ ∀j ∈ J∃i ∈ I : bj ≤ ai

⇔ ∀j ∈ J∃i ∈ I : 2bj ≤ 2ai

⇔
∨
j∈J

2bj ≤
∨
i∈I

2ai

⇔
∨∨∨
i∈I

2ai ≤
∨∨∨
j∈J

2bj ,

where the third and fourth equivalences hold because M2(L) and M3(L) are free construc-
tions. This establishes that ζL is an order-isomorphism.

The relationships between all the functors introduced so far are summed up in the com-
mutative diagram below, where unlabelled arrows are the obvious inclusion maps and we
use the same notation for a functor and its restriction to a subcategory.

DL∧ DL∨

DL DL

JLat∗ MLat∗

JLat MLat

Lat Lat

M3

δ

δ

M3

δ

δ

δ

M2

M2

4.2.2 Two Vietoris Endofunctors

Let us now introduce some well-known Vietoris constructions on Priestley spaces. For some
of the results mentioned in this section, we refer the reader to [257, 30].

Definition 4.2.5. The Upper Vietoris functor is the functor V2 : PS → PS defined as
follows:
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• For any Priestley space (X , τ,≤), V2(X ) is the Priestley space given by the set
↑K(X ) of all non-empty closed upsets of X , ordered by reverse inclusion and endowed
with the topology generated by sets of the form 2U = {C ∈ ↑K(X ) | C ⊆ U} for
some U ∈ ClopUp(X ) and their complements.

• For any Priestley map f : X → Y , V2(f) : V2(X ) → V2(Y ) maps any C ∈ V2(X )
to ↑f [C].

Dually, the Lower Vietoris functor is the functor V3 : PS → PS defined as follows:

• For any Priestley space (X , τ,≤), V3(X ) is the Priestley space given by the set
↓K(X ) of all non-empty closed downsets of X , ordered by inclusion and endowed
with the topology generated by the sets 3U = {C ∈ ↓K(X ) | C ∩ U ̸= ∅} for some
U ∈ ClopUp(X ) and their complements.

• For any Priestley map f : X → Y , V3(f) : V3(X ) → V3(Y ) maps any C ∈ V3(X )
to ↓f [C].

Of course, one would need to verify that the two functors introduced in Definition 4.2.5 are
indeed endofunctors on PS, and in particular that V2(X ) and V3(X ) are indeed Priestley
spaces for any Priestley space X . Instead of checking this directly, however, it is enough
to show that V2 and V3 are the “topological counterparts” of the restrictions to DL of M2

and V3 respectively. In order to do this, we start with the following definition, which will
play a significant role throughout this chapter.

Definition 4.2.6. Let L be lattice. The Filter space of L is the ordered topological space
F(L) = (Filt(L), τF ,⊆), where Filt(L) is the set of all proper filters on L and τF is the
topology generated by sets of the form pa = {F ∈ F(L) | a ∈ F} for every a ∈ L, as
well as their complements. Dually, the Ideal space of L is the ordered topological space
I(L) = (Idl(L), τI ,⊇), where Idl(L) is the set of all proper ideals on L and τI is the
topology generated by set of the form qa = {I ∈ I(L) | a /∈ I} and their complements.

The following is well known:

Lemma 4.2.7. Let L be a distributive lattice. The following are order-preserving homeo-
morphisms natural in L:

1. The map ηL2 : SpecM2(L) → F(L) given by ηL2(p) = {a ∈ L | 2a ∈ p};

2. The map ϵL2 : F(L) → V2Spec(L) given by ϵL2(F ) =
⋂
a∈F pa;

3. The map ηL3 : SpecM3(L) → I(L) given by ηL3(p) = {a ∈ L | 3a /∈ p};

4. The map ϵL3 : I(L) → V3Spec(L) given by ϵL3(I) =
⋂
a∈I qa.
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Proof. It is routine to verify that all maps defined are order-isomorphisms. To check that
they are also homeomorphisms, it is enough to observe that each of them and their inverses
map basic open sets to basic open sets. We check that this is the case for ηL2 and ϵL3, and
leave the other cases to the reader.

For ηL2, it is enough to show that ηL2[ x2a] = pa for every a ∈ L, since basic opens upsets in

SpecM2(L) are of the form {

∨
a∈A a =

⋃
a∈A pa for some finite A ⊆ L. But we easily compute:

ηL2(p) ∈ pa⇔ a ∈ ηL2p

⇔ 2a ∈ p

⇔ p ∈ x2a,

which shows that ηL
−1

2 [pa] = x2a, and thus that pa = ηL2[ x2a].
Similarly, for ϵL3, it is enough to show that ϵL3[qa] = 3pa. But we have:

ϵL3(I) ∈ 3pa⇔
⋂
b∈I

qb ∩ pa ̸= ∅

⇔ a /∈ I

⇔ I ∈ qa,

where the right to left direction in the second equivalence follows from the Prime Filter
Theorem. This means that ϵL

−1

3 [3pa] = qa, and thus that ϵL3[qa] = 3pa.

As an immediate consequence of Lemma 4.2.7, we have that the maps θL2 : SpecM2(L) →
V2Spec(L) and θL3 : SpecM3(L) → V3Spec(L) are order-homeomorphisms and thus that
V2Spec(L) and V3Spec(L) are Priestley spaces.

F(L) I(L)

SpecM2(L) V2Spec(L) SpecM3(L) V3Spec(L)

ϵL2ηL2

θL2 θL3

ϵL3ηL3

Moreover, we have the following:

Lemma 4.2.8. Let f : M → L be a homormorphism betweeen distributive lattices. Then
the following diagrams commute:

SpecM2(L) SpecM2(M) SpecM3(L) SpecM3(M)

V2Spec(L) V2Spec(L) V3Spec(L) V3Spec(M)

θL2 θM2

SpecM2(f)

V2Spec(f)

θL3 θM3

SpecM3(f)

V3Spec(f)
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Proof. We only prove the claim for the diagram on the left. The other case is similar.
Let p ∈ SpecM2(L). First, we compute that for any b ∈ M , 2b ∈ SpecM2(f)(p) iff

2f(b) ∈ p, hence θM2 ◦ SpecM2(f) =
⋂

2f(b)∈p
pb. Moreover, Since θL2(p) =

⋂
2a∈p pa, we have

that V2Spec(f) ◦ θL2 = ↑{q | ∃p′ ∈
⋂

2a∈p pa : f−1[p′] = q}. Hence it suffices to show that for

any q ∈ V2Spec(M), q ∈
⋂

2f(b)∈p
pb if and only if there is p′ ∈

⋂
2a∈p pa such that q ⊇ f−1[p′].

For the right-to-left inclusion, note that 2f(b) ∈ p implies that 2f(b) ∈ p′ and thus that

b ∈ f−1[p′] ⊆ q. For the converse, suppose that q ∈
⋂

2f(b)∈p
pb. Let F = {a | 2a ∈ p} and

I = {f(b) | b /∈ q}. Clearly, F is a filter and I is an ideal. Moreover, if there is c ∈ F ∩ I,
then 2f(c) ∈ p and c /∈ q, contradicting our assumption on q. By the Prime Filter Theorem,
there is p′ ∈ Spec(M) such that F ⊆ p′ and p′∩I = ∅. This shows the left-to-right inclusion,
which completes the proof.

As a consequence, V2 and V3 are well-defined endofunctors on PS, and the fami-
lies {θL2}L∈DL and {θL3}L∈DL are natural isomorphisms between the functors SpecM2 and
V2Spec and SpecM3 and V3Spec respectively. By Priestley duality, we also have natural
isomorphisms {κX

2 }X ∈PS between the functors ClopUpV2 and M2ClopUp on one hand,
and {κX

3 }X ∈PS between the functors ClopUpV3 and M3ClopUp on the other hand. Al-
though we leave the details to the reader, one can compute that for any Priestley space
X and any set {Ui | i ∈ I} of clopen upsets in X , κX

2 (
∧
i∈I 2Ui) =

⋂
i∈I 2Ui, and

κX
3 (

∨
i∈I 3Ui) =

⋃
i∈I 3Ui.

Finally, we will use below the observation that the functors V2 and V3 are also dual to
one another in the same sense that M2 and M3 are also dual. Let us conclude this section
by spelling this out in more detail.

4.2.3 Dualization

Definition 4.2.9. For any Priestley space X = (X, τ,≤), let γ(X ) be the Priestley space
(X, τ,≥). For any order-continuous map f : X → Y between Priestely spaces, let γ(f) :
γ(X ) → γ(Y ) be simply f . This induces a functor γ : PS → PS.

It is straightforward to verify that γ is well defined. In particular, if x ≱ y for some
x, y ∈ γ(X ), then y ≰ x in X , so by the Priestley Separation Axiom in X there is a clopen
upset U such that y ∈ U and x /∈ U . But then −U is a clopen upset in γ(X ) such that
x ∈ −U and y /∈ −U . This shows that γ(X ) satisfies the Priestley Separation Axiom as
well.

Lemma 4.2.10. There are natural isomorphisms {αL}L∈DL and {βX }X ∈PS respectively
between the functors γ◦Spec and Spec◦δ and between the functors ClopUp◦γ and δ◦ClopUp.

Proof. For any distributive lattice L, let αL : γSpec(L) → Specδ(L) be the map p 7→ L \ p
for any p ∈ Spec(L). Note that this is well-defined since the complement of a prime filter on
L is a prime ideal on L, and thus a prime filter on δ(L). Clearly, αL is bijective, monotone
and order-reflecting, and α−1

L [pa] = qa for any a ∈ L, which is enough to establish that it is in
fact a homeomorphism of Priestley spaces.
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Similarly, for any Priestley space X = (X, τ,≤), let βX : ClopUpγ(X ) → δClopUp(X )
be the map U 7→ −U . Note that this is well defined, since clopen upsets in γ(X ) are precisely
the clopen downsets in X , hence their complements are the clopen upsets of X . Clearly,
βX is bijective and order reversing as a map into (ClopUpX ),⊆), hence it is an order
isomorphism between ClopUpγ(X ) and δClopUp(X ). Finally, the naturality conditions
for {αL}L∈DL and {βX }X ∈PS are easy to check and left to the reader.

Corollary 4.2.11. For any Priestley space X , γV2(X ) ∼= V3γ(X ), and V2γ(X ) ∼=
γV3(X ) naturally in X .

Proof. Since γ is a self-inverse endofunctor, it is enough to define an order-homeomorphism
from γV2(X ) to V3γ(X ). By Priestley duality, we may assume that X is Spec(L) for
some distributive lattice L. But then we define the order-homeomorphism ξL as shown in
the following diagram:

SpecδM2(L) SpecM3δ(L)

γSpecM2(L) V3Specδ(L)

γV2Spec(L) V3γSpec(L)

γ(θL2
−1

)

αM2(L)

Spec(ζL)

θ
δ(L)
3

V3(αδ(L)
−1)

ξL

Note that the first and penultimate arrows are order-homeomorphisms by Lemma 4.2.8,
the second and last are order-homeomorphisms by Lemma 4.2.10, and the middle one is an
order-homeomorphism by Lemma 4.2.4. Again, naturality is left to the reader.

We conclude this section with a diagram summarizing the various relationships between
the endofunctors on DL introduced so far. All triangles in the diagram below commute up
to isomorphism.
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PS PS

DL DL

DL DL

PS PS

V2

Spec

ClopUp
γ

M2

δ

M3

Spec

ClopUp

V3

Spec

ClopUp

δ

Spec

ClopUp
γ

4.3 Lifting Priestley Duality

In this section, we lift Priestley duality to dualities between the arrow categories of DL∨ and
DL∧ and categories of relations between Priestley spaces. The key idea is inspired from the
standard way of lifting Stone Duality to a duality between modal Boolean algebras and Stone
spaces with relations. The same approach has also already been extended to distributive
lattices and Priestley spaces, in order to obtain a duality-theoretic treatment of positive
modal logic. There are, however, two main difference between this approach and the one
developed here. First, the modal algebras considered in positive modal logic are distributive
lattices expanded with both a meet-preserving and a join-preserving operation. By contrast,
our approach in this section treats the two separately. Second, in positive modal logic, 2 and
3 are operators from a distributive lattice into itself. As a consequence, the corresponding
relations on Priestley spaces are relations on a single Priestley space. By contrast, we will
be interested in join-preserving and meet-preserving maps from one distributive lattice into
another. Consequently, the relations we will be working with are relations from a Priestley
space to another. We start by clarifying the relationship between such closed relations on
Priestley spaces and Vietoris hyperspaces.

4.3.1 Closed Relations on Priestley Spaces

We start with the following definitions.

Definition 4.3.1. Let X = (X, τX ,≤X) and Y = (Y, τY ,≤Y ) be Priestley spaces. A
relation R ⊆ X × Y is a lower closed relation if it has the following properties:

1. For any x ∈ X, R(x) = {y ∈ Y | xRy} is closed;

2. For any U ∈ ClopUp(Y ), R−1[U ] = {x ∈ X | R(x) ∩ U ̸= ∅} is a clopen upset;
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3. ≥Y ◦R◦ ≥X ⊆ R. In other words, for any x, x′ ∈ X and y, y′ ∈ Y , x ≥X x′, x′Ry and
y ≥Y y

′ together imply xRy′, as shown in the diagram below.

x y′

x′ yR

≥X ≥Y

R

Dually, a relation R ⊆ X×Y is an upper closed relation if it has the following properties:

1. For any x ∈ X, R(x) = {y ∈ Y | xRy} is closed;

2. For any U ∈ ClopDn(Y ), R−1[U ] = {x ∈ X | R(x) ∩ U ̸= ∅} is a clopen downset;

3. ≤Y ◦R◦ ≤X ⊆ R. In other words, for any x, x′ ∈ X and y, y′ ∈ Y , x ≤X x′, x′Ry and
y ≥Y y

′ together imply xRy′, as shown in the diagram below.

x y′

x′ yR

≤X ≤Y

R

The following establishes a correspondence between closed relations and morphisms into
Vietoris hyperspaces. It is a straightforward generalization of the coalgebraic approach to
Kripke semantics for classical modal logic.

Lemma 4.3.2. For any Priestley spaces X = (X, τX ,≤X) and Y = (Y, τY ,≤Y ), there is a
one-to-one correspondence between the set R↓(X ,Y ) of lower closed relations on X×Y and
the set of morphisms in PS from X to V3(Y ). Dually, there is a one-to-one correspondence
between the set R↑(X ,Y ) of upper closed relations on X × Y and the set of morphisms in
PS from X to V2(Y ).

Proof. Given an order-continuous morphism f : X → V3(Y ), let Rf ⊆ X × Y be defined
by letting xRy iff y ∈ f(x). It is routine to check that R is a lower closed relation (note
in particular that property 2 holds because R−1[U ] = 3U ∈ ClopUp(V3(Y )) for any U ∈
ClopUp(Y ). Conversely, given a lower closed relation R on X × Y , let fR : X → V3(Y )
be the map x 7→ R(x). Then it is easy to check that properties 1 and 3 of lower closed
relations imply that fR is well defined and monotone, and that property 2 implies that it is
continuous, since f−1

R [3U ] = R−1[U ] for any U ∈ ClopUp(Y ). Finally, we clearly have that
the maps f 7→ Rf and R 7→ fR are inverses of one another.

Hence we have a bijection ν between HomPS(X ,V3(Y )) and R↓(X ,Y ), where the
latter is the set of all lower closed relations on X × Y . Let us now see that we also have a
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bijection between HomPS(X,V2(Y )) and R↑(X ,Y ). Notice first that R ∈ R↓(X ,Y ) iff
R ∈ R↑(γ(X ), γ(Y )). Moreover, since γ is self-inverse, we also have that application of γ
yields a bijection between HomPS(X ,V2(Y )) and HomPS(γ(X ), γV2(Y )). Finally, recall
that we have an order-homeomorphism ξ : γV2(X ) → V3γ(Y ), which induces by post-
composition with ξ a bijection from HomPS(γ(X ), γV2(Y )) to HomPS(γ(X ),V3γ(Y )).
Putting things together, this yields the following chain of bijections:

HomPS(γ(X ),V3γ(Y ))

HomPS(γ(X ), γV2(Y )) R↓(γ(X ), γ(Y ))

HomPS(X ,V2(Y )) R↑(X ,Y )

=

ν

γ

ξ◦−

µ

which yields a bijection µ between HomPS(X ,V2(Y )) and R↑(X ,Y ).

Clearly, the maps µ and ν defined in the previous lemma are natural in X and Y ,
although we leave the proof of this to the reader. Let us conclude with the following defini-
tions.

Definition 4.3.3. Let PSR↓ be the category whose objects are lower closed relations be-
tween Priestley spaces and where a morphism f from R : X1 → X2 to S : Y1 → Y2 is a pair
of maps (f1, f2) such that fi : Xi → Yi for i = 1, 2 and the following diagram commutes:

X1 V3(X2)

Y1 V3(Y2)

ν(R)

ν(S)

f1 V3(f2)

Equivalently, for all x ∈ X1 and y ∈ Y2, f1(x)Sy iff there is x′ ∈ X2 such that xRx′ and
y ≤Y2 f2(x

′).

Dually, PSR↑ is the category whose objects are upper closed relations between Priestley
spaces and where a morphism f from R : X1 → X2 to S : Y1 → Y2 is a pair of maps (f1, f2)
such that fi : Xi → Yi for i = 1, 2 and the following diagram commutes:
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X1 V2(X2)

Y1 V2(Y2)

µ(R)

µ(S)

f1 V2(f2)

Equivalently, for all x ∈ X1 and y ∈ Y2, f1(x)Sy iff there is x′ ∈ X2 such that xRx′ and
y ≥Y2 f2(x

′).

4.3.2 Flat and Sharp Functors

We are now in a position to establish a dual equivalence between join-preserving (resp.
meet-preserving) maps between distributive lattices and lower (res. upper) closed relations
between Priestley spaces. We first introduce the following definitions:

Definition 4.3.4. Let DL↓ (resp. DL↑) be the category whose objects are join-preserving
maps (resp. meet-preserving maps) between distributive lattices and where a morphism f
from g : L1 → L2 to h : M1 → M2 is a pair (f1, f2) such that fi : Li → Mi is a lattice
morphism for i = 1, 2, and the following diagram commutes in DL∨ (resp. in DL∧):

L1 L2

M1 M2

g

h

f1 f2

Let us now define a functor S♭ : DL↓ → PSR↓ as follows. Recall first that any join-
preserving map f : L→M between two distributive lattices lifts uniquely to a lattice homo-
morphism f

∼
: M3(L) → M with a property that f

∼
(3a) = f(a) for all a ∈ L. By Priestley

duality, this yields an order-continuous map Spec(f
∼

) : Spec(M) → SpecM3(L). Moreover,

post-composing with the map θL3 yields a map θL3 ◦ Spec(f
∼

) : Spec(M) → V3Spec(L). Fi-

nally, we define S♭(f) as the relation ν−1(θL3 ◦ Spec(f
∼

)) on Spec(M) × Spec(L). It is worth

describing directly the relation S♭(f). For any p ∈ Spec(M) and q ∈ Spec(L):
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pS♭(f)q ⇔ q ∈ θL3 ◦ Spec(f
∼

)(p)

⇔ q ∈ θL3(f
∼

−1[p])

⇔ q ∈
⋂

3a/∈f
∼
−1[p]

qa

⇔ q ∈
⋂

f(a)/∈p

qa

⇔ q ⊆ f−1[p].

Let us now define S♭ on morphisms. Notice first that the pair (f1, f2) is a morphism in
DL↓ if and only if the following diagram commutes:

M3(L1) L2

M3(M1) M2

f2

g
∼

M3(f1)

h
∼

Indeed, for any
∧
i∈I 3ai ∈ V3(L1),

f2(g
∼

(
∧
i∈I

3ai)) = f2(
∧
i∈I

g(ai)) =
∧
i∈I

f2(g(ai)),

and

h
∼

(M3(f1)(
∧
i∈I

ai)) = h
∼

(
∧
i∈I

3f1(ai)) =
∧
i∈I

h(f1(ai)).

Moreover, in the following diagram:

Spec(L2) SpecM3(L1) V3Spec(L1)

Spec(M2) SpecM3(M1) V3Spec(M1)

Spec(f2)

Spec(g
∼
)

SpecM3(f1)

Spec(g
∼
)

θ
L1
3

θ
M1
3

V3Spec(f1)

the left square commutes by Priestley duality, and the right square commutes by Lemma 4.2.8.
Therefore the pair (Spec(f2), Spec(f1)) is a morphism from S♭(g) to S♭(h), so may set
S♭(f1, f2) = (Spec(f2), Spec(f1)).

Let us now define a functor C♭ : PSR↓ → DL↓ that is dual to S♭. Given a relation
R ∈ R↓(X ,Y ), let C♭(R) : ClopUp(Y ) → ClopUp(X ) be defined as C♭(R)(U) = R−1[U ]
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for any U ∈ ClopUp(Y ). Note that C♭(R) is well defined by property 2 of closed relations.
Moreover, we have that R−1[∅] = ∅, and for any x ∈ X and U, V ∈ ClopUp(Y ),

x ∈ R−1[U∪V ] ⇔ R(x)∩(U∪V ) ̸= ∅ ⇔ R(x)∩U ̸= ∅ or R(x)∩V ̸= ∅ ⇔ x ∈ R−1[U ]∪R−1[V ].

Hence C♭(R) is an object in DL↓. Suppose that (f1, f2) is a morphism from R ∈
R↓(X,X) to S ∈ R↓(Y,Y). Then we have the following commutative diagram:

X1 V3(X2)

Y1 V3(Y2)

ν(R)

ν(S)

f1 V3(f2)

Consequently, we have the following diagram:

M3ClopUp(Y2) ClopUpV3(Y2) ClopUp(Y1)

M3ClopUp(X2) ClopUpV3(X2) ClopUp(X1)

ClopUpV3(f2)

ClopUp(ν(S))

ClopUp(f1)

ClopUp(ν(R))

M3ClopUp(f2)

κ
Y2
3

κ
X1
3

where the left square commutes by the duality of M3 and V3, and the right square
commutes by Priestley duality. Moreover, we easily check that ClopUp(ν(S)) ◦ κY2

3 (3U) =
C♭(S)(U) for every U ∈ ClopUp(Y2), and that ClopUp(ν(R)) ◦ κX2

3 (3V ) = C♭(R)(V ) for
every V ∈ ClopUp(X2), which means that ClopUp(ν(S))◦κY2

3 = C♭(S)
∼

and ClopUp(ν(R))◦

κX2
3 = C♭(R)

∼
. Hence the following square commutes:

M3ClopUp(Y2) ClopUp(Y1)

M3ClopUp(X2) ClopUp(X1)

ClopUp(f1)

C♭(S)
∼

M3ClopUp(f2)

C♭(R)
∼

By the observation above, this square commutes if and only if the following square also
commutes:

ClopUp(Y2) ClopUp(Y1)

ClopUp(X2) ClopUp(X1)

ClopUp(f1)

C♭(S)
∼

ClopUp(f2)

C♭(R)
∼
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from which we conclude that (ClopUp(f1), ClopUp(f2) is a morphism from C♭(S) to
C♭(R) in DL↓, and we may therefore set C♭(f1, f2) = (ClopUp(f1), ClopUp(f2)).

It remains to show that S♭ and C♭ establish a dual equivalence of categories. But this,
in fact, almost immediately follows from Priestley duality and the definitions of S♭ and C♭.
Indeed, recall that the dual equivalence witnessed by Spec and CloUp is established via
the families of natural isomorphisms {p·L : L → ClopUpSpec(L)}L∈DL and {∈̇X : X →
SpecClopUp(X )}X ∈PS. Although we leave the details to the reader, we can easily verify
that the following diagrams also commute for any f ∈ DL↓ and R ∈ PSR↓:

L ClopUpSpec(L) X SpecClopUp(X )

M ClopUpSpec(M) V3(Y ) V3SpecClopUp(Y )p·M

p·L

f C♭S♭(f) ν(R)

∈̇X

∈̇Y

ν(S♭C♭(R))

which is essentially enough to establish our dual equivalence.

Finally, we may use this result to also obtain a dual equivalence between DL↑ and PSR↑
in a straightforward way. Indeed, using our dualizing functors δ and γ, we may simply use
the functors S♯ : DL↑ → PSR↑ and C♯ : PSR↑ → DL↑ by letting S♯ := γ ◦ S♭ ◦ δ and
C♯ := δ ◦ C♭ ◦ γ. It will be useful later on to have a more direct definition of S♯ and C♯ on
objects. We leave it to the reader to check that this definition is essentially the same as the
one above.1 Given a meet-preserving map f : L→M , S♯(f) is the upper closed relation on
Spec(M) × Spec(L) given by:

pS♯(f)q ⇔ q ∈ θL2 ◦ Spec(
∼
f)(p)

⇔ q ∈ θL2(
∼
f
−1

[p])

⇔ q ∈
⋂

2a∈
∼
f
−1

[p]

pa

⇔ q ∈
⋂

f(a)∈p

pa

⇔ f−1[p] ⊆ q.

Conversely, given an upper closed relation R on X ×Y , the meet-preserving map C♯(R) :
ClopUp(Y ) → ClopUp(X ) is given by:

1To be precise, the direct and indirect definitions yield the same functors up to isomorphism, which is
witnessed by the natural isomorphisms {αL}L∈DL and {βX }X ∈PS defined above.
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C♯(R)(U) = −C♭(R)(−U)

= −R−1[−U ]

= {x ∈ X | R(x) ∩ −U = ∅}
= {x ∈ X | R(x) ⊆ U}.

Putting things together, we have the following theorem.

Theorem 4.3.5. The functors S♭ and C♭ establish a dual equivalence between DL↓ and
PSR↓. Dually, the functors S♯ and C♯ establish a dual equivalence between DL↑ and PSR↑.

The diagram below summarizes the various relationships between the new functors in-
troduced in this section and those introduced before.

PSR↓ PSR↑

PS

DL

DL↓ DL↑

Spec ClopUp

δ

γ

S♭ S♯C♭ C♯

Note that, in this diagram, the various functors commute up to isomorphism. Moreover,
the inclusion maps from DL to DL↓ and DL↑ are obtained by mapping a distributive lattice
L to the identity on L viewed as a join-preserving or meet-preserving morphism respectively.
Similarly, the inclusion maps from PS to PSR↓ and PSR↑ are obtained by mapping a
Priestley space X to the relations ≥X and ≤X on X , viewed as lower and upper closed
relations respectively.

Let us conclude this section with a straightforward characterization of the duals of lattice
morphisms in PSR↓ and PSR↑.

Definition 4.3.6. A lower closed relation R between Priestley spaces X and Y is lower
functional if R(x) is a principal downset for every x ∈ X . Dually, an upper closed relation
S between X and Y is upper functional if R(x) is a principal upset for every x ∈ X .

Lemma 4.3.7. For any join-preserving map f : L → M , f is a lattice homomorphism if
and only if S♭(R) is lower functional. Dually, for any meet-preserving map g : L → M , g
is a lattice homormophism if and only if S♯(R) is upper functional. Finally, for any lattice
homomorphism h : L→M and any p ∈ Spec(M), S♭(R)(p) ∩ S♯(R)(p) = {Spec(f)(p)}.
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Proof. We show that a join-preserving map f : L → M is a lattice homomorphism if and
only if S♭(R) is lower functional. The case for meet-preserving maps is completely dual and
therefore left to the reader. Suppose f is a lattice homomorphism and let p ∈ Spec(M). Then
f−1[p] is a prime filter, and therefore f−1[p] ∈ Spec(L). But then we have for any q ∈ Spec(L)
that pS♭q iff f−1[p] ⊆ q, so S♭(p) = ↓f−1[p]. This shows that S♭(f) is lower functional.
Conversely, suppose that S♭(f) is lower functional, and fix U, V ∈ ClopUpSpec(L). I claim
that C♭S♭(f)(U) ∩ C♭S♭(f)(V ) ⊆ C♭S♭(f)(U ∩ V ). This will show that C♭S♭(f) is meet-
preserving and thus a lattice homomorphism, which by duality implies that f is also a
lattice homomorphism. For the proof of the claim, suppose p ∈ C♭S♭(S)(U) ∩ C♭S♭(S)(V ).
This means that there are q1, q2 ∈ S♭(p) such that q1 ∈ U and q2 ∈ V . Since S♭(p) is a
principal downset, there is q ∈ S♭(p) such that q1, q2 ⊆ q. Since U and V are both upsets,
this means that q ∈ U ∩ V . Therefore p ∈ C♭S♭(S)(U ∩ V ). This completes the proof of the
claim.

Finally, if h : L → M is a lattice-homomorphism and p ∈ Spec(M), then S♭(f)(p) =
{q ∈ Spec(L) | q ⊆ f−1[p]} = ↓Spec(f)(p) and S♯(f)(p) = {q ∈ Spec(L) | f−1[p] ⊆ q} =
↑Spec(f)(p). Hence S♭(f)(p) ∩ S♯(f)(p) = {Spec(f)(p)}.

Intuitively, this lemma shows that, unsurprisingly, some of the information about the
lattice structure of a distributive lattice L is lost by the embedding into DL↓ or DL↑.
However, the full structure of L can always be recovered by combining information from
DL↓ and DL↑. In the next section, we essentially adopt this strategy in the case of an
arbitrary lattice. We define embeddings of the category of lattices into DL↓ and DL↑, use
our new dualities to partially represent an arbitrary lattice as two closed relation between
Priestley spaces, before recovering the full lattice by combining those two representations
together.

4.4 The Category of FI-Spaces

In this section, we will establish a duality between Lat and a category of relations on
Priestley spaces. We proceed as follows. First, we represent every lattice as the fixpoint of
some Galois connection between two free distributive lattice. We then use our two dualities
for DL↓ and DL↑ to translate this representation of an arbitrary lattice to the setting of
relations on Priestley spaces. Finally, we axiomatize the dual category of Lat that arises
from this representation.

4.4.1 A Fixpoint Representation for Arbitrary Lattices

We start with the following definitions.

Definition 4.4.1. Let L be a lattice. We define the maps λL : M2(L) → M3(L) and
ρL : M3(L) → M2(L) as follows:

• λL(
∨
i∈I 2ai) = 3

∨
i∈I ai;
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• ρL(
∧
j∈J 3bj) = 2

∧
j∈J bj.

Whenever the lattice L is clear from context, we will omit the subscript L in λL and ρL
to avoid notational clutter.

Lemma 4.4.2. Let L be a lattice. The maps λL and ρL form a Galois connection

Proof. Fix a lattice L, and two subsets {ai | i ∈ I} and {bj | j ∈ J} of L. We have the
following chain of equivalences:

λ(
∨
i∈I

2ai) ≤
∧
j∈J

3bj ⇔ 3
∨
i∈I

ai ≤
∧
j∈J

3bj

⇔ 3
∨
i∈I

ai ≤ 3bj, all j ∈ J

⇔
∨
i∈I

ai ≤ bj, all j ∈ J

⇔ ai ≤ bj, all i ∈ I, j ∈ J

⇔ ai ≤
∧
j∈J

bj, all i ∈ I

⇔ 2ai ≤ 2
∧
j∈J

bj, all i ∈ I

⇔
∨
i∈I

2ai ≤ 2
∧
j∈J

bj

⇔
∨
i∈I

2ai ≤ ρ(
∧
j∈J

3bj),

where the third and sixth equivalences hold because M3(L) and M2(L) are free constructions
on L respectively.

Since lower adjoints in a Galois connection between lattices preserve joins and upper
adjoints preserve meets, it follows that λL and ρL are objects in DL↓ and DL↑ respectively.
Moreover, we have the following:

Lemma 4.4.3. For any join-preserving map f : L → M , the pair (M2(f),M3(f)) : λL →
λM is a morphism in DL↓. Dually, for any meet-preserving map g : L → M , the pair
(M3(f),M2(f)) : ρL → ρM is a morphism in DL↑.

Proof. We prove the first case, since the second one is completely dual. Fix a join-preserving
map f : L→M . We must show that the following diagram commutes:

M2(L) M3(L)

M2(M) M3(M)

λL

λM

M2(f) M3(f)
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Fix
∨
i∈I 2ai ∈ M2(L). We compute:

M3(f) ◦ λL(
∨
i∈I

2ai) = M3(f)(3
∨
i∈I

ai)

= 3f(
∨
i∈I

ai)

= 3
∨
i∈I

f(ai)

= λM(
∨
i∈I

2f(ai))

= λM ◦M2(f)(
∨
i∈I

2ai),

where the third equality holds because f is join-preserving. This shows that the pair
(M2(f),M3(f)) is a morphism from λL to λM in DL↓.

We therefore have embeddings Λ and R of Lat into DL↓ and DL↑ respectively. Finally,
we conclude by the following easy observation:

Lemma 4.4.4. Let L be a lattice. The maps a 7→ 2a and a 7→ 3a are isomorphisms between
L and the fixpoints of the maps ρL ◦ λL : M2(L) → M2(L) and λL ◦ ρL : M3(L) → M3(L)
respectively.

Proof. Fix a lattice L. Because λ and ρ form a Galois connection, the fixpoints of ρλ :
M2(L) → M2(L) form a lattice with meets given by ∧L and joins given by a⊔ b = ρλ(a∨ b).
Clearly, the map a 7→ 2a is bijective and preserves meets. Moreover, for any a, b ∈ L, we
have that 2a ⊔ 2b = ρλ(2a ∨ 2b) = ρ(3(a ∨ b) = 2(a ∨ b), which shows that a 7→ 2a is a
lattice isomorphism. Dually, the fixpoints of λρ : M3(L) → M3(L) form a lattice with joins
given by ∨ and meets given by a ⊓ b = λρ(a ∧ b). Once again, it is easy to see that the map
a 7→ 3a is an isomorphism, by an argument similar to the one above.

This shows that we are always able to easily retrieve the original lattice L as fixpoints of
either M2(L) or M3(L), provided that we use both free constructions. Moreover, the same
is true for lattice morphisms, as shown by the following lemma.

Lemma 4.4.5. For any two lattices L,M and any join-preserving map f : M2(L) →
M2(M), there is a join-preserving map g : L → M such that f = M2(g) if and only if
f ◦ ρLλL = ρMλM ◦ f . Dually, for any meet-preserving map f : M3(L) → M3(M), there is
a meet-preserving map g : L→M such that f = M3(g) if and only if f ◦λLρL = λMρM ◦ f .

Proof. Again, we only prove the first case. Suppose first that f = M2(g) for some g : L→M .
Then we compute for any

∨
i∈I 2ai:
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ρMλMM2(g)(
∨
i∈I

2ai) = ρMλM(
∨
i∈I

2g(ai))

= 2
∨
i∈I

g(ai)

= 2g(
∨
i∈I

ai)

= M2(g)(2
∨
i∈I

ai)

= M2(g)ρLλL(
∨
i∈I

2ai).

Conversely, suppose that f ◦ ρLλL = ρMλM ◦ f . Note first that this implies that, for
any a ∈ L, f(2a) = fρLλL(2a)) = ρMλMf(2a). Hence f(2a) is a fixpoint of ρMλM and is
therefore of the form 2b for some b ∈ M . Let g : L → M be such that 2g(a) = f(2a) for
any a ∈ L. I claim that g is join-preserving. Note that, by Lemma 4.2.3.4, this implies that
f = M2(g). For the proof of the claim, let a, b ∈ L. Because M2(L) is a free construction,
it is enough to show that 2g(a∨ b) = 2(g(a)∨ g(b)) to establish that g(a∨ b) = g(a)∨ g(b).
Now we compute:

2g(a ∨ b) = f2(a ∨ b)
= fρLλL(2a ∨2b)
= ρMλMf(2a ∨2b)
= ρMλM(f(2a) ∨ f(2b))
= ρMλM(2g(a) ∨2g(b))

= 2(g(a) ∨ g(b)),

which completes the proof.

We have now gathered all the ingredients necessary for our topological representation of
arbitrary lattices, to which we now turn.

4.4.2 A Topological Representation of the Category of Lattices

As mentioned in the previous section, our two dualities between DL↓ and PSR↓ and be-
tween DL↑ and PSR↑ respectively both only preserve “one half” of the structure of lattices.
Fortunately, we can combine them in a straightforward and elegant way in order to retrieve a
full topological representation of arbitrary lattices. The basic idea is the following. We may
first represent an arbitrary lattice L by the pair λL, ρL, where λL is an object in DL↓ and ρL
is an object in DL↑. By the results in Section 4.3, this yields a pair (S♭(λL), S♯(ρL)), where
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the first term is a lower closed relation on SpecM3(L) × SpecM2(L) and the second one is
an upper relation on SpecM2(L) × SpecM3(L). Using the representation of SpecM2(L) as
F(L) and the representation of SpecM3(L) as I(L), this means that we obtain two relations
on I(L) × F(L) and F(L) × I(L) respectively. As we will see, those relations are in fact
converse to one another so we may focus on only one of them, say the one on I×F(L). Using
the fact that Priestley spaces have binary products, we will lift this relation to an upper-
closed endo-relation on F(L) × γ(I(L)). Thus we will send any lattice L to the Priestley
space F(L) × γ(I(L)) endowed with a relation λ♮L, which, as we will see below, is given by
(F, I)λ♮L(G, J) iff G∩ I = ∅. Finally, we will use the relation λ♮L to recover L as the fixpoints
of a closure operator on ClopUp(F(L) × γ(I(L))) that mimicks the ρLλL representation
above. Let us now get into the details of this representation. We start with the following
observation.

Lemma 4.4.6. Let L,M be distributive lattices and let f : L → M and g : M → L
be join-preserving and meet-preserving respectively. Then g is the right adjoint of f iff
S♯(g) = S♭(f)−1, i.e., iff for any p ∈ Spec(L) and q ∈ Spec(M) pS♯(g)q if and only if
qS♭(f)p.

Proof. Fix f : L → M and g : M → L. Assume first that g is the right adjoint of f .
Since f and g form a Galois connection, f is join-preserving and g is meet preserving. Now
recall that for any p ∈ Spec(L) and q ∈ Spec(M), qS♭(f)p iff p ⊆ f−1[q], and pS♯(g)q iff
g−1[p] ⊆ q. For any a ∈ L, we have that a ≤ gf(a), I claim that p ⊆ f−1[q] iff g−1[p] ⊆ q,
which implies that S♯(g) = S♭(f)−1. For the proof of the claim, assume first that p ⊆ f−1[g]
and let g(a) ∈ p. Then f(g(a)) ∈ q, and since f(g(a)) ≤ a, it follows that a ∈ q. Conversely,
suppose that g−1[p] ⊆ q and let a ∈ p. Since a ≤ g(f(a)) we have that g(f(a)) ∈ p, hence
f(a) ∈ q, and therefore a ∈ f−1[q]. This completes the proof of the claim.

Conversely, assume that S♯(g) = S♭(f). I claim that C♯S♯(g) is right adjoint to C♭S♭(f),
which by duality is enough to establish that g is the right adjoint of f . For the proof of the
claim, note that we have the following chain of equivalences for any U ∈ ClopUpSpec(L)
and any C ∈ ClopUpSpec(M):

U ⊆ C♯S♯(g)(V ) ⇔ ∀p ∈ U(S♯(g)(p) ⊆ V )

⇔ ∀p ∈ U∀q ∈ Spec(M)(pS♯(g)q → q ∈ V )

⇔ ∀p ∈ U∀q ∈ Spec(M)(qS♭(f)p→ q ∈ V )

⇔ ∀q ∈ Spec(M)(∃p ∈ U qS♭(f)p→ q ∈ V )

⇔ (S♭(f))−1[U ] ⊆ V

⇔ C♭S♭(f)(U) ⊆ V,

which completes the proof.

The previous lemma shows that we may decide to work only with one of the two relations
S♭(λL), S♯(ρL), since they are the converse of one another. Now recall that we have two
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natural order-homeomorphisms ηL2 : SpecM2(L) → F(L) and ηL3 : SpecM3(L) → I(L).
This means that we can lift the relations S♭(λL) and S♯(λL) to two relations λ∗ ⊆ I(L)×F(L)

and ρ∗ ⊆ F(L) × I(L) respectively by setting Iλ∗F iff ηL3
−1

(I)S♭(λL)ηL2
−1

(F ) and Fρ∗I iff

ηL2
−1

(F )S♭(λL)ηL3
−1

(I). For ease of notation, let us write pF for ηL2
−1

(F ) and qI for ηL3
−1

(I).
We may compute that for any F ∈ F(L) and I ∈ I(L):

Iλ∗F ⇔ qIS
♭(λL)pF

⇔ pF ⊆ λ−1
L [qI ]

⇔
∨
i∈I

2ai ∈ pF implies λL(
∨
i∈I

2ai) ∈ qI , all
∨
i∈I

2ai ∈ M2(L)

⇔
∨
i∈I

2ai ∈ pF implies 3
∨
i∈I

ai ∈ qI , all
∨
i∈I

2ai ∈ M2(L)

⇔ a ∈ F implies a /∈ I, all a ∈ L

⇔ F ∩ I = ∅.

Note also that, by Lemma 4.4.6, ρ∗ = λ∗−1, i.e., Fρ∗I iff F ∩ I = ∅.

Now let FI(L) be the direct product in DL of F(L) and γ(I(L)). Using the projections
π1 : FI(L) → F(L) and π2 : FI(L) → γ(I(L)), we can lift λ∗ and ρ∗ to relations on
γ(FI(L))×FI(L) and FI(L)×γ(FI(L)) respectively. More explicitly, we let (F, I)λ♮(G, J)
iff G ∩ I = ∅, and (F, I)ρ♮(G, J) iff F ∩ J = ∅. It is straightforward to verify that λ♮ and ρ♮

are a lower closed and an upper closed relation on γ(FI(L))×FI(L) and FI(L)×γ(FI(L))
respectively, and that moreover the two following diagrams are morphisms from ρ♮ to ρ ∈
PSR↑ and from λ♮ to λ respectively:

FI(L) γ(FI(L)) γ(FI(L)) FI(L)

F(L) I(L) I(L) F(L)

SpecM2(L) SpecM3(L) SpecM3(L) SpecM2(L)

λ♮

π1π2

λ∗

ηL3
−1

ηL2
−1

λ

ρ♮

ρ∗

ρ

π1

ηL2
−1

π2

ηL3
−1

Dually, this yields the following diagram of distributive lattices, where σL1 is the map∨
i∈I 2ai 7→

⋃
pai × I(L) and σL2 is the map

∧
j∈J bj 7→ F(L) ×

⋂
j∈J

qbj. Note that the first
square commutes in DL↓ and the second one commutes in DL↑.
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ClopUp(FI(L)) ClopUpγ(FI(L)) ClopUp(FI(L))

M2(L) M3(L) M2(L)λ ρ

C♭(λ♮) C♯(ρ♮)

σL
1 σL

2 σL
1

Moreover, for any U ∈ ClopUp(F(L)), V ∈ ClopUp(I(L)) \ {I(L)} and (F, I) ∈ FI(L),
we have that:

(F, I) ∈ C♭(λ♮)(U ×−V ) ⇔ λ♮(F, I) ∩ U ×−V ̸= ∅
⇔ ∃(G, J) ∈ U ×−V : I ∩ J = ∅,

which means that C♭(λ♮)(U ×−V ) = F(L) ×W for some W ∈ ClopUp(I(L)).
Since any clopen upset in FI(L) is a union of sets of the form U × −V for some

U ∈ ClopUp(F(L)), V ∈ ClopUp(I(L)) and C♭(λ♮) is join-preserving, this implies at once
that ran(C♭(λ♮)) ⊆ ran(ClopUp(σL2 )), and hence that the fixpoints of C♯(ρ♮)C♭(λ♮) are iso-
morphic to the fixpoints of ρλ. By Lemma 4.4.4, this means that we can represent the
original lattice as the fixpoints of C♯(ρ♮)C♭(λ♮) via the map υL : a 7→ pa× I(L).

Moreover, for any lattice morphism f : M → L, the pair (M2(f),M3(f)) induces a
unique map f ♮ : FI(L) → FI(M), as shown in the following diagram:

FI(L)

γSpecM3(L) FI(M) SpecM2(L)

γSpecM3(M) SpecM2(M)

Spec(σL
2 )

γSpecM3(f) SpecM2(f)

Spec(σL
1 )

Spec(σM
2 ) Spec(σM

1 )

f♮

Moreover, we clearly have that ClopUp(f ♮) ◦ C♯(ρ♮M)C♭(λ♮M) = C♯(ρ♮L)C♭(λ♮L) ◦ ClopUp(f ♮),
as evidenced by the following diagram (the detailed argument is left to the reader):

M3(M) M3(L)

ClopUpγ(FI(M)) M2(M) M2(L) ClopUpγ(FI(L))

ClopUp(FI(M)) ClopUp(FI(L))

M3(f)

λM

ρM
σM
2

M2(f)

σM
1

λL

ρL

σL
1

σL
2

C♯(ρ♮L)

C♭(λ♮L)

ClopUp(f♮)

C♭(λ♮M )

C♯(ρ♮M )
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But this implies that υL ◦ f = ClopUp(f ♮) ◦ υM .
Putting things together, this means that we obtain a functor S♮ : Lat → PSR↓ mapping

any lattice L to the lower closed relation λ♮L ⊆ γ(FI(L))×FI(L), and any lattice homomor-
phism f : M → L to the pair (f ♮, f ♮), and a natural transformation {υL}L∈Lat : 1Lat → C♮S♮.
Let us now turn to the issue of identifying a category corresponding to the range of that
functor.

4.4.3 Axiomatizing FI Spaces

We start with the following definition.

Definition 4.4.7. A FI-space is a pair (X , R−) such that:

1. X = (X, τ,≤) is a Priestley space;

2. R− ⊆ X ×X is a lower closed relation on γ(X )×X , and its converse R+ is an upper
closed relation on X × γ(X ).

3. The set R+(X ) ∪R−(X ) is a basis for τ , where:

• R+(X ) = {U ∈ ClopUp(X ) | U = C♯(R+)C♭(R−)(U)};

• R−(X ) = {V ∈ ClopUp(X ) | −V = C♭(R−)C♯(R+)(−V )};

4. For any non-empty W ∈ ClopUp(X ) of the form
⋃
i∈I Ui ∩

⋃
j∈J Vj for some finite

{Ui}i∈I ⊆ R+(X ), {Vj}j∈J ⊆ R−, C♭(R−)(W ) = C♭(R−)(
⋃
i∈I Ui).

The following establishes that FI-spaces correspond to the dual of lattices under the
representation given above.

Theorem 4.4.8. A pair (X , R−) is a FI-space if and only if it is order-homeomorphic to
(FI(L), λ♮L) for some lattice L.

Proof. For the right-to-left direction, it is straightforward to verify that the pair (FI(L), λ♮L)
is a FI-space for every lattice L. Indeed, every W ∈ ClopUp(FI(L)) is a union of sets

of the form
⋃
i∈I pai × −

⋂
j∈J

qbj for some finite {ai}{i∈I}, {bj}{j∈J} ⊆ L, and the fixpoints

of C♯(ρ♮L)C♭(λ♮L) and C♯(ρ♮L)C♭(λ♮L) are precisely sets of the form pa × I(L) and F(L) × qb
respectively. Moreover, one has that

C♭(λ♮L)(
⋃
i∈I

pai ×−
⋂
j∈J

qbj) =
~

∨
i∈I

ai

= C♭(λ♮L)(
⋃
i∈I

pai)

for any finite {ai}{i∈I}, {bj}{j∈J} ⊆ L.
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Conversely, fix a FI-space (X , R−). Notice first that, since R− is a lower closed relation
on γ(X ) × X and R+ is an upper closed relation X × γ(X ), by Lemma 4.4.6 the maps
C♭(R−) and C♯(R+) form a Galois connection on ClopUp(X ). Moreover, R+(X ) and
R−(X )) are precisely the lattice of C♯(R+)C♭(R−)-closed subsets of X and the dual of
the lattice of C♭(R−)C♯(R+)-closed subsets of ClopUpγ(X ) respectively. Let ωX : X →
FI(R+(X )) be the map x 7→ (Fx, Ix), where Fx = {U ∈ R+(X ) | x ∈ U} and Ix = {V ∈
R−(X ) | x ∈ V }. I claim that ωX is the required order-homeomorphism. By duality,
it is enough to check that ClopUp(ωX ) is an isomorphism and that the following diagram
commutes:

ClopUp(FI(R+(X ))) ClopUpγ(FI(R+(X )))

ClopUp(X ) ClopUpγ(X )C♭(R−)

C♭(λ♮
R+(X )

)

ClopUp(ωX ) ClopUpγ(ωX )

Notice that any set in ClopUp(FI(R+(X ))) is a union of sets of the form⋃
i∈I

pUi × −
⋂
j∈J − qVj for some finite {Ui}i∈I ⊆ R+(X ) and {Vj}j∈J ⊆ R−(X ). More-

over, ClopUp(ωX )(
⋃
i∈I

pUi × −
⋂
j∈J − qVj) =

⋃
i∈I Ui ∩

⋃
j∈J Vj, from which it follows that

ClopUp(ωX ) is an order embedding which is also surjective by property 3 of FI-spaces.

Finally, for any
⋃
i∈I

pUi ×−
⋂
j∈J − qVj ∈ ClopUp(FI(R+(X ))), we have that:

ClopUp(ωX ) ◦ C♭(λ♮R+(X ))(
⋃
i∈I

pUi ×−
⋂
j∈J

− qVj) = ClopUp(ωX )(
⋃
i∈I

pUi)

= C♭(R−)(
⋃
i∈I

Ui)

= C♭(R−)(
⋃
i∈I

Ui ∩
⋃
j∈J

Vj)

= C♭(R−) ◦ ClopUp(ωX )(
⋃
i∈I

pUi ×−
⋂
j∈J

− qVj),

where the third equality holds by property 4 of FI-spaces.

Let us now define the correct notion of morphism for our category.

Definition 4.4.9. Let (X , R−) and (Y , S−) be FI-spaces. A FI-morphism is an order-
continuous map f : X → Y with the following properties for any x ∈ X and y ∈ Y :

1. for all x′ ∈ X, xR−x
′ implies f(x)S−f(x′);

2. if f(x)S−y, then there is x′ ∈ X such that xR−x
′ and y ≤Y f(x′);

3. if yS−f(x), then there is x′ ∈ X such that x′R−x and y ≤Y f(x′).
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Lemma 4.4.10. Let (X , R−) and (Y , S−) be FI-spaces with dual lattices L and M respec-
tively. Then a map f : X → Y is a FI-morphism if and only if there is a unique g : M → L
such that f = g♮.

Proof. Let us first show that g♮ : FI(L) → FI(M) is a FI-morphism whenever g : M → L
is a lattice morphism. We know already that g♮ is order-continuous. Moreover, an easy
computation reveals that g♮(F, I) = (g−1[F ], g−1[I]) for any (F, I) ∈ FI(L). Hence we must
check the following for any (F, I) ∈ FI(L), (G, J) ∈ FI(M):

1. (F, I)λ♮L(F ′, I ′) implies (g−1[F ], g−1[I])λ♮M(g−1[F ], g−1[I]);

2. (g−1[F ], g−1[I])λ♮M(G, J) implies that there is (F ′, I ′) ∈ FI(L) such that we have both
(F, I)λ♮L(F ′, I ′) and (G, J) ≤FI(M) (g−1[F ′], g−1[I ′]);

3. (G, J)λ♮M(g−1[F ], g−1[I]) implies that there is (F ′, I ′) ∈ FI(L) such that we have both
(F ′, I ′)λ♮L(F, I) and (G, J) ≤FI(M) (g−1[F ′], g−1[I ′]).

The first item amounts to proving that F ′ ∩ I = ∅ implies that g−1[F ′] ∩ g−1[I] = ∅, which
is clear. For the second item, assuming that G ∩ g−1[I] = ∅, we must find (F ′, I ′) such
that F ′ ∩ I = ∅, G ⊆ g−1[F ′] and J ⊆ g−1[I ′]. Let F ′ = ↑g[G] and I ′ = ↓g[J ]. Clearly,
G ⊆ g−1[F ′] and J ⊆ g−1[I ′]. Moreover, if g(a) ≤ b for some a ∈ G, b ∈ I, then a ∈ G∩g−1[I],
contradicting our assumption. Hence (F ′, I ′) is the required pair. Finally, the third item is
proved by the same argument as item 2.

Conversely, let us now assume that f : (FI(L), λ♮L) → (FI(M), λ♮M) is a FI-morphism.
It follows from conditions 1 and 2 that the pair (γ(f), f) is a morphism between the lower
closed relations λ♮L and λ♮M , and the pair (f, γ(f)) is a morphism between the upper closed
relations ρ♮L and ρ♮M . By duality, this means that we have the following diagram:

ClopUp(FI(M)) ClopUpγ(FI(M)) ClopUp(FI(L)) ClopUpγ(FI(M))

ClopUp(FI(L)) ClopUpγ(FI(L)) ClopUp(FI(L)) ClopUpγ(FI(L))C♭(λ♮L) C♯(ρ♮L)

C♭(λ♮M ) C♯(ρ♮M ) C♭(λ♮M )

C♭(λ♮L)

ClopUp(f) ClopUpγ(f) ClopUp(f) ClopUpγ(f)

which shows that ClopUp(f) ◦ C♯(ρ♮M)C♭(λ♮M) = C♯(ρ♮L)C♭(λ♮L) ◦ ClopUpγ(f) and that
ClopUpγ(f) ◦ C♭(λ♮M)C♯(ρ♮M) = C♭(λ♮L)C♯(ρ♮L) ◦ ClopUpγ(f).

Moreover, let f+ : SpecM2(L) → SpecM2(M) map every pF ∈ SpecM2(L) to p′F , where
(F ′, J) = f(F, ↓{0}), and let f− : SpecM3(L) → SpecM3(M) map every qI ∈ SpecM3(L)
to q′I , where (G, I ′) = f(↑{1}, I). It is straightforward to verify that both f+ and f− are
order-continuous and that the following diagram commutes:
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FI(L)

γSpecM3(L) FI(M) SpecM2(L)

γSpecM3(M) SpecM2(M)

Spec(σL
2 )

γ(f−) f+

Spec(σL
1 )

Spec(σM
2 ) Spec(σM

1 )

f

By Lemma 4.4.5, this means that there is a (necessarily unique) g : M → L such that
f+ = SpecM2(g) and f− = SpecM3(g), and hence that f = g♮. This completes the
proof.

Putting things together, this means that we are able to define a functor C♮ mapping every
FI-space X to R+(X ) and every FI-morphism f : X → Y to the unique g : R+(Y ) →
R+(X ) such that f = g♮. Moreover, this functor finally yields our topological duality for
lattices.

Theorem 4.4.11. Let FI be the category of FI-spaces and FI-morphisms. There is a dual
equivalence between Lat and FI, given by the functors S♮ : Lat → FI and C♮ : FI → Lat.

Proof. By construction of the functors C♮ and S♮, the maps υL : L → C♮S♮(L) for every
lattice L and ωX : X → S♮C♮(X ) for every FI-space X are isomorphisms. Naturality also
straightforwardly follows from the definitions of C♮ and S♮, and is left to the reader.

4.5 Application to Fundamental Logic

In this section, we apply our duality for lattices to the category of weakly-pseudo comple-
mented lattices, which provide the algebraic semantics for the Fundamental Logic [131]. As
we shall see, the duality we obtain yields spaces that are very close to the relational frames
considered by Holliday.

4.5.1 Positive and Negative Projections of FI-Spaces

We start by the following observation about FI-spaces. Since any FI-space is the dual space
of a lattice L and thus of the form FI(L), we can view X as the product of two Priestley
spaces, namely F(L) and γ(I(L)). Intuitively, this means that X can be “split” into two
Priestley spaces corresponding to M2(L) ≃ M2(R+(L)) and δ(M3(L)) ≃ M2(δ(L)) ≃
M2(R−(L)). respectively. This motivates the following definition:

Definition 4.5.1. Let X be a FI-space. The positive projection of X is the topological
space X + = (X+, τ+∼ ,≤+

∼) where:
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• τ+ is the topology on X generated by R+, and ≤+ is the induced specialization
preorder;

• X+ is the quotient of X obtained by turning ≤+ into a partial order ≤+
∼;

• τ+∼ is the quotient topology on X+ induced by the patch topology of τ+.

Dually, the negative projection of X is the topological space X − = (X−, τ−∼ ,≤−
∼) where:

• τ− is the topology on X generated by R−, and ≤− is the induced specialization
preorder;

• X− is the quotient of X obtained by turning ≤− into a partial order ≤−
∼;

• τ−∼ is the quotient topology on X− induced by the patch topology of τ−.

Finally, given a FI-morphism f : X → Y , let f+ : X + → Y + and f− : X − → Y − be the
unique order-continuous maps such that the following diagram commutes:

X

X + Y X −

Y + Y −

π+
X

f+ f−

π−
X

π+
Y π−

Y

f

where π+
X and π−

X are the natural quotient maps from X to X + and X − respectively, and
similarly for π+

Y and π−
Y .

Although we will not do so here, it is straightforward to prove that, for any FI-space X ,
ClopUp(X +) ≃ M2(R+(X )) and ClopUp(X −) ≃ M2(R−(X )), and for any FI-morphism
f : X → Y , f+ = M2C

♮(f) and f− = M2C
♮(γ(f)). In other words, ·+ and ·− are functors

from FI to PS such that the following two diagrams commute up to isomorphism:

Lat FI Lat FI

DL PS DL PS

M2 ·+

S♮

C♮

Spec

ClopUp

S♮

C♮

Spec

ClopUp

M2◦δ ·−

Using this correspondence, we may now lift our duality between Lat and FI to a duality
between monotone maps between lattices and relations on FI-spaces. We will apply essen-
tially the same strategy as the one we used to lift Priestley duality to a duality between DL↓
and PSR↓.
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4.5.2 Monotone Maps between Lattices

Let f : L → M be an order-preserving map between lattices L and M . Then M2(f) :
M2(L) → M2(M) is a join-preserving between distributive lattices, i.e., an object in DL↓.
By Theorem 4.3.5 and Lemma 4.3.7, this means that we may associate to it a lower closed
relation S♭(f) : Spec(M2(M)) → Spec(M2(L). Since, as we saw in the previous section,
Spec(M2(L) and Spec(M2(M)) are order-homeomorphic to FI(L)+ and FI(M)+ respec-
tively, this means that we may view S♭(f) as a relation on FI(L)+ ×FI(M)+ instead. This
motivates the following definition.

Definition 4.5.2. Let X and Y be FI-spaces A lower closed relation R ⊆ X × Y is
π+-projective if there is a lower closed relation R+ ⊆ X + × Y + such that the following
diagram commutes:

X Y

X + Y +

R

π+
X π+

Y

R+

in the sense that, for any x ∈ X , y ∈ Y xRy iff π+
X (x)R+π+

X .

It is easy to see that if R is a lower closed relation on X × Y , then the lower closed
relation R+ witnessing that R is π+-projective, if it exists, is necessarily unique. Let us now
see how π+-projective relations on FI-spaces relate to monotone maps on lattices.

Lemma 4.5.3. Let f : M → L be a monotone map between lattices. Then the relation
Π+(f) ⊆ FI(L) × FI(M) given by (F, I)Π+(f)(G, J) iff G ⊆ f−1[F ] is a π+-projective
lower closed relation.

Proof. It is routine to verify that the relation Π+(f) is lower closed. Moreover, I claim that for

any (F, I) ∈ FI(L), (G, J) ∈ FI(M), (F, I)Π+(f)(G, J) iff ηL2
−1

(π+
L (F, I))S♭ηM2

−1
(π+

M(G, J)).
If true, this means that there is a lower closed relation Π+(f)+ on F(L) ×F(M), as shown
in the following diagram:

FI(L) FI(M)

F(L) F(M)

SpecM2(L) SpecM2(M)

Π+(f)

π+
FI(L)

π+
FI(M)

Π+(f)+

ηL2
−1

ηM2
−1

S♭M2(f)
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and thus that Π+(f) is π+-projective. For the proof of the claim, fix (F, I) ∈ FI(L) and

(G, J) ∈ FI(M), and let pF = ηL2
−1

(F ) and pG = ηM2
−1

(G). By the definition of the
functor S♭, we have that pFS

♭(M2(f))pG iff pG ⊆ M2(f)−1[pF ], i.e.,
∨
i∈I 2ai ∈ pG implies

M2(f)(
∨
i∈I 2ai) =

∨
i∈I 2f(ai) ∈ pF . But this is easily seen to be equivalent to the condi-

tion that G ⊆ f−1[F ] by the definition of the maps F 7→ pF and G 7→ pG. This completes
the proof.

Hence any monotone map f : L → M induces a π+-projective relation Π+(f) from
FI(L) → FI(M). Let us now go in the converse direction.

Lemma 4.5.4. Let X , Y be FI-spaces. Any π+-projective relation R : X → Y induces a
monotone map Σ+(R) : R+(Y ) → R+(X ).

Proof. Fix a π+-projective relation R ⊆ X × Y . This means that we have a lower closed
relation R+ : X + → Y +. Recall that we also have two order-homeomorphisms σ+

X :
X + → SpecM2(R+(X )) and σ+

Y : Y + → SpecM2((RR+(Y )). Thus we have the following
commuting diagram of lower closed relations:

X Y

X + Y +

SpecM2(R+(X )) SpecM2(R+(Y ))

R

π+
X π+

Y

R+

σ+
X σ+

Y

R+
σ

By the duality between lower closed relations and join-preserving morphisms between
distributive lattices, this induces the following commuting diagram in Lat (treating ClopUp
and Spec as inverses of one another for simplicity):

R+(Y ) R+(X )

M2(R+(Y )) M2(R+(X ))

Y + X +

Σ+(R)

C♭(R+)

ClopUp(σ+
X )ClopUp(σ+

Y )

C♭(R+
σ )

2 2

where Σ+(R) is the map given by U 7→ C♭(R+)(U) for any U ∈ R+ and is the unique map
f : R+(Y ) → R+(X ) such that 2f(U) = C♭(R+

σ ) for all U ∈ R+(Y ).
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Finally, let us quickly introduce the correct notion of morphisms between π+-projective
lower closed relations:

Definition 4.5.5. Let R : X1 → Y1 and S : X2 → Y2 be π+-projective lower closed
relations. A π+-projective morphism is a pair of order-continuous maps (f1, f2) such that
(f+

1 , f
+
2 ) is a morphism from R+ to S+ in PSR↓.

We can now lift our duality between lattices and FI-spaces to a duality between monotone
maps between lattices and π+-projective relations on FI-spaces.

Theorem 4.5.6. Let LatI be the category whose objects are monotone maps between lattices
and morphisms from f1 : L1 → L2 to f2 : M1 →M2 are pairs (g1, g2) such that gi : Li →Mi

for i = 1, 2 and g2 ◦ f1 = f2 ◦ g1. Let FIΠ+ be the category of π+-projective relations and
π+-projective morphisms between them. Then the maps f 7→ Π+(f) and R 7→ Σ+(R) lift
to functors Π+ : LatI → FIΠ+ and Σ+ : FIΠ+ → LatI which establish a dual equivalence
between the two categories.

Proof. By Lemmas 4.5.3 and 4.5.4, we know already that the maps Π+ and Σ+ map monotone
maps to π+-projective relations and π+-projective relations to monotone maps. Moreover, it
is straightforward to verify that the following diagrams commute for any f : L→M ∈ LatI ,
and R ⊆ X × Y ∈ FIΠ+ :

L M X Y

R+(FI(L)) R+(FI(M)) FI(R+(X )) FI(R+(Y ))

f

Σ+Π+(f)

υL υM

R

ωX ωY

Π+Σ+(f)

For any morphism (g1, g2) ∈ LatI , we let Π+(g1, g2) be the pair (S♭M2(g1), S
♭M2(g2)).

Note that this is well-defined since (M2(g1),M2(g2)) is a morphism in DL↓, hence Π+(g1, g2)
is a morphism in PSR↓. Conversely, for any π+-projective morphism (f1, f2) from R1 ⊆
X1 × X2 to R2 ⊆ Y1 × Y2, we let Σ+(f1, f2) = (h1, h2), where hi for i = 1, 2 is the unique
monotone map such that the following diagram commutes:

R+(Xi) R+(Yi)

M2R+(X ) M2R+(Y ))

hi

2 2

ClopUp(f+i )

The rest of the proof is straightforward and left to the reader.
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We conclude by observing that the Π+/Σ+ duality presented in this section essentially
lifts the duality between DL↓ and PSR↓ from Section 4.3, in the sense that the following
diagram of functors commutes up to isomorphisms:

LatI FIΠ+

DL↓ PSR↓

·+

S♭

C♭

Π+

Σ+

M2

Using the functors M3 and ·− and the duality between DL↑ and PSR↓ instead, we could
just as well obtain a duality witnessed by functors Π− and Σ−, defined so that the following
diagram:

PSR↓ PSR↑

DL↓ DL↑

LatI LatI

FIΠ+ FIΠ−

·+

S♭

C♭

Π+

Σ+

M2

C♯

S♯

·−

Π−

Σ−

M3

δ

δ

γ

𭟋

commutes up to isomorphism, where 𭟋 : FI → FI maps any FI-space (X , λ♮) to (X , ρ♮)
(i.e., 𭟋 merely swaps the projections X + and X −), and FIΠ− is the image of FIΠ+ under
𭟋.

4.5.3 Duality for Weakly Pseudo-complemented Lattices

We are now finally ready to reach the second goal of this chapter. Using our new duality
between monotone maps and π+-projective relations, we will now be able to derive a duality
for weakly pseudo-complemented lattices. Note that one of the main advantages of our
framework is that, in principle, it allows us to obtain a duality for any category of lattices
augmented by unary monotone or antitone operations. Thus there could be many more
applications of this general than the one we will focus on here. We start by with the
following definition.

Definition 4.5.7. A weak involution on a lattice L is a map ¬ : L → L such that a ≤L ¬b
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iff b ≤L ¬a for all a, b ∈ L. A weakly pseudo-complemented lattice is a pair (L,¬) such that
¬ is a weak involution on L satisfying the additional condition that a∧¬a = 0 for all a ∈ L.

Equivalently, a weak involution on a lattice L is a self-adjoint map from L to L. In
particular, it is antitone, and turns joins into meets. This means that we may think of a
weak involution ¬ : L→ L as a monotone map from L to δ(L) with a right adjoint going from
δ(L) to L. Moreover, there is a clear one-to-one correspondence between pairs (L,¬) where
¬ is a weak involution on L, and monotone maps ¬ : L → δ(L) that have a right adjoint.
Hence our strategy for obtaining a duality for weakly-pseudo complemented lattices will be
the following. Using our Π+/Σ+ duality, we will first identify the duals of weak involutions
and represent those via relations on FI-spaces. Then we will identify a condition on such
FI-spaces that corresponds to the weak involution being a weak pseudo-complement. Let
us start with the following characterization of weak involutions.

Lemma 4.5.8. Let f : L → δ(L) be a monotone map. Then f is a weak involution if and
only if Π+(f), viewed as a relation on FI(L) × FI(L), has the following properties:

1. For any U ∈ R+(FI(L)), C♭(Π+(f))(U) ∈ R−(FI(L));

2. Π−(δ(f)) = Π+(f)−1;

3. For any V ∈ R−(FI(L)), C♯(Π−(δ(f))−1)(V ) ∈ R+(FI(L)).

Proof. Suppose first that f is a weak involution. Viewing f as a monotone map from
L → δ(L), we have that Π+(f) is a π+-projective lower closed relation on
FI(δ(L))×FI(L). Note that FI(δ(L)) = F(δ(L))×γ(I(L)) = γ(I(L))×F(L) = 𭟋(FI(L)).
Hence we may think of FI(Lδ) as FI(L), but with its projections swapped. In other words,
(FI(Lδ), λ♮

Lδ) = (FI(L), ρ♮L), and we have that R+(FI(Lδ)) = R−(FI(L)). By duality,
we have that Σ+Π+(f)(υL(a)) = υδ(L)(f(a)) ∈ R+(FI(Lδ)). But this implies at once that
C♭(Π+(f))(U) ∈ R−(FI(L)).

Now let us consider δ(f) : Lδ → L. Using the Σ−/Π− duality mentioned at the
end of the previous section, it follows from a straightforward diagram chasing argument
that C♯(Π−(δ(f))−1)(V ) ∈ R+(FI(L)) for any V ∈ R−(FI(L)). Moreover, I claim that
Π−(δ(f)) = Π+(f). Again, a simple diagram chasing argument shows that for any
(F, I), (G, J) ∈ FI(L), (F, I)Π−(f)(G, J) iff f−1[F ] ⊆ J . Since we have that
(G, J)Π+(f)(F, I) iff F ⊆ f−1[J ], we only have to show that F ⊆ f−1[J ] iff f−1[F ] ⊆ J
to establish properties 2 and 3. But this is a standard fact for weak involutions. For the left
to right direction, suppose that f−1[F ] ⊆ J , and let a ∈ F . Since f is a weak involution,
a ≤ f(f(a)), hence f(f(a)) ∈ F . By assumption, this implies that f(a) ∈ J . Conversely,
assume that F ⊆ f−1[J ], and let f(a) ∈ F . By assumption f(f(a)) ∈ J . Since f is a weak
involution, we have that a ≤ f(f(a)), hence a ∈ J .

Conversely, let us now assume that Π+(f) has all the properties listed in the statement of
the lemma. From properties 1 and 3, we have maps Σ+Π+(f) : R+(FI(L)) → R−(FI(L))
and Σ−Π−(δ(f)) : R−(FI(L)) → R+(FI(L)). By duality, we have that Σ+Π+(f)(υL(a)) =
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υδ(L)(f(a)) and similarly Σ−Π−(δ(f))(υδ(L)(a) = f(a), so we only need to verify that
Σ+Π+(f) is left-adjoint to Σ−Π−(δ(f)). Using property 2, we compute for any U ∈ R+(FI(L)),
V ∈ R−(FI(L)):

Σ+Π+(f)(U) ⊆ V ⇔ C♭Π+(f)(U) ⊆ V

⇔ ∀(F, I) : (∃(G, J) ∈ V : (F, I)Π+(f)(G, J)) ⇒ (F, I) ∈ V

⇔ ∀(F, I), (G, J) : ((G, J) ∈ U&(G, J)Π+(f)−1(F, I)) ⇒ (F, I) ∈ V

⇔ ∀(F, I), (G, J) : ((G, J) ∈ U&(G, J)Π−(δ(f))−1(F, I)) ⇒ (F, I) ∈ V

⇔ ∀(G, J) ∈ U : Π−(δ(f))−1(G, J) ⊆ V

⇔ U ⊆ C♯Π−(δ(f))(V )

⇔ U ⊆ Σ−Π−(δ(f))(V ).

This completes the proof.

Using the lemma above, we can therefore represent every weak involution ¬ on a lattice L
as a relation on FI(L). Moreover, it is straightforward to check that, for any weak involution
¬ : L → L and any a ∈ L, C♯(ρ♮)(−C♭(Π+(¬))(υL(a))) = υL(¬a). Indeed, by the Σ+/Π+

duality, we know that C♭(Π+(¬))(υL(a)) = F(L)×x¬a. Moreover, −(F(L)×x¬a) = F(L)×|¬a,
and C♯(ρ♮)(F(L) × |¬a) = x¬a× I(L), as shown in Section 4.4. Thus we may conclude that

C♯(ρ♮)(−C♭(Π+(¬))(υL(a))) = C♯(ρ♮)(F(L) × |¬a) = x¬a× I(L) = υL(¬a)

for any a ∈ L. Described explicitly, this defines a function ¬Π+ : R+(FI(L)) → R+(FI(L))
given by

¬Π+(U) = {(F, I) | ∀(G, J)λ♮L(F, I)∀(F ′, I ′) : (G, J)Π+(¬)(F ′, I ′) ⇒ (F ′, I ′) /∈ U}.

Let us now identify a condition on Π+ corresponding to the weak pseudo-complement prop-
erty.

Lemma 4.5.9. For any weak involution ¬ : L→ L, ¬ is a weak pseudo complement if and
only if Π+(¬) ◦ ρ♮ is reflexive.

Proof. Suppose first that a ∧ ¬a = 0 for any a ∈ L, and let (F, I) ∈ FI(L). We must find
(G, J) such that (F, I)ρ♮(G, J) and (G, J)Π+(¬)(F, I). In other words, we must find (G, J)
such that F ∩ J = ∅ and F ⊆ ¬−1[J ]. Let G = {1} and J = ↓{¬a | a ∈ F}. Note that
J is an ideal, since ¬a ∨ ¬b ≤ ¬(a ∧ b) follows from the fact that ¬ is a weak involution.
Moreover, we have that F ∩ J = ∅, since otherwise there is a ∈ F such that ¬a ∈ F , which
implies that a ∧ ¬a = 0 ∈ F and thus that F is not proper.

Conversely, suppose now that Π+(¬)◦ρ♮ is reflexive. It is enough to show that ¬(U)∩U =
∅ for any U ∈ R+(FI(L)). Suppose (F, I) ∈ FI(L). By assumption, we have (G, J) such
that (F, I)ρ♮(G, J) and (G, J)Π+(¬)(F, I). But then (F, I) ∈ ¬Π+(U) implies (F, I) /∈ U .
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Finally, we can define the duals of weakly pseudocomplemented lattices.

Definition 4.5.10. A FIN -space is a triple (X , λ♮, R¬) = such that (X , λ♮) is a FI-space
and R¬ is a relation on X ×X satisfying the following conditions:

1. R¬ is a π+-projective lower-closed relation from (X , ρ♮) to (X , λ♮);

2. R−1
¬ is a π+-projective lower-closed relation from (X , λ♮) to (X , ρ♮);

3. The relation R¬ ◦ ρ♮ is reflexive.

A FIN -morphism between two FIN -spaces (X , λ♮X , R¬) and (Y , λ♮Y S¬) is an
order-continuous map f : X → Y such that the pair (𭟋(f)+, f+) is a morphism from
R+

¬ ⊆ (X , ρ♮)+ × (X , λ♮)+ to S+
¬ ⊆ (Y , ρ♮)+ × (Y , λ♮)+ in PSR↓.

By the lemmas above together with the duality from Section 4.5.2, we finally obtain the
following:

Theorem 4.5.11. The category Lat¬ of weakly pseudo-complemented lattices and weak
pseudo-complement-preserving lattice homomorphisms between them is dual to the category
FIN of FIN-spaces and π+-projective morphisms between them.

Proof. Note first that Lat¬ is isomorphic to the category of monotone maps ¬ : L → Lδ

such that δ(¬) : L → Lδ is the right-adjoint of ¬, and a ∧ δ(¬)(a) = 0 for all a ∈ L, and
morphisms (f, δ(f)) : ¬ → δ(¬). By Lemmas 4.5.8 and 4.5.9, the π+ projective relations
dual to such monotone maps are in a natural one-to-one correspondence with FIN -spaces,
and the morphisms between them correspond precisely to FIN -morphisms by the Π+/Σ+

duality. Hence Lat¬ is dual to FIN.

4.6 Concluding Remarks

We conclude this chapter with some remarks briefly relating FI and FIN spaces to other
representations of complete lattices.

4.6.1 FI-Spaces and B-frames

We start by connecting FI-spaces with the b-frames of Chapter 2. As mentioned in Sec-
tion 4.1, one of our motivations for developing our duality in the first place was to extend
b-frame duality to a topological duality for the category of lattices. Prima facie, it is clear
that the representation of arbitrary lattices via FI-spaces shares some resemblance with
the representation of complete lattices via b-frames. In both cases, the points in the dual
space of a lattice L are pairs in which the first and second components capture, informally
speaking, “positive” and “negative” information respectively. Moreover, in both cases, the
original lattice is recovered as a (sub)algebra of fixpoints of some closure operator on the
powerset of the dual space. However, the way such a closure operator is defined is, at least
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superficially, different in both cases. In the case of b-frames, the closure operator is given
by the composition of the closure operation in the upset topology induced by the second
ordering and the interior operation in the upset topology induced by the first ordering. In
the case of FI-spaces, one uses a relation λ♮ and its converse ρ♮, and the operations C♭ and
C♯. However, there is a standard way of passing from FI-spaces to bosets, which essentially
coincides with the correspondence between bi-ordered structures and compatibility relations
introduced in [136]. Given a boset (X,≤1,≤2), we may let ⊤ the complement of the relation

2⊥1, i.e, for any x, y ∈ X, x⊤y iff there is z ∈ X such that z ≤2 x and z ≤1 y. Conversely,
given a FI-space X = (X, τ,≤, λ♮), recall that the “projections” X + and X − are induced
by orderings ≤+ and ≤− on X . If we assume that X = (FI(L)λ♮) for some lattice L, it
is easy to check that ≤+ and ≤− corresponding to the filter and ideal orderings on FI(L)
respectively. However, the compatibility relation induced by ≤1 and ≤2 is the universal
relation on F(L) × γ(I(L)), since for any F ∈ F(L), I ∈ I(L), the pair (F, I) is in FI(L).
However, we may consider the following subspace of FI(L).

Lemma 4.6.1. Let L be a lattice and FI(L)R the subspace of FI(L) induced by the set
{(F, I) ∈ FI(L) | (F, I)λ♮(F, I)}. Then the compatibility relation on FI(L)R induced by the
restrictions of the orders ≤+, ≤− to FI(L)R coincides with λ♮R = λ♮|FI(L)∗. Moreover, for
any U ⊆ FI(L)R, one has that C♯(ρ♮R)C♭(λ♮R)(U) ⊆ I+C−(U), where I+ and C− are the
interior and closure operations on FI(L)R induced by ≤+ and ≤− respectively, and that the
converse holds if U is a ≤+-upset.

Proof. Let us first show that λ♮R is the compatibility relation induced by ≤+ and ≤−. Fix
(F, I), (G, J) ∈ FI(L)R. Then we have:

(F, I)⊤(G, J) ⇔ ∃(F ′, I ′) ∈ FI(L)R : (F, I) ≤− (F ′, I ′)&(G, J) ≤+ (F ′, I ′)

⇔ ∃F ′ ∈ F(L), I ′ ∈ I(L) : F ′ ∩ I ′ = ∅&G ⊆ F ′&I ⊆ I ′

⇔ G ∩ I = ∅
⇔ (F, I)λ♮R(G, J)

Moreover, fix U ⊆ FI(L)R. First we compute that:

I+C−(U) = {(F, I) | ∀(G, J) ≥+ (F, I)∃(F ′, I ′) ≥− (G, J) : (F ′, I ′) ∈ U},

and that

C♯(ρ♮R)C♭(λ♮R)(U) = {(F, I) | ∀(G, J)λ♮R(F, I)∃(F ′, I ′)ρ♮R(F, I) : (F ′, I ′) ∈ U}.

Let us first show the left-to-right inclusion. Suppose that (F, I) ∈ I+C−(U), and let
(G, J)λ♮R(F, I). Then F ∩ J = ∅, so the pair (F, J) ∈ FI(L)R. Hence there is (F ′, I ′) ∈ U
such that J ⊆ I ′ and I ′∩F ′ = ∅. But then (F ′, I ′)ρ♮R(G, J). Hence (F, I) ∈ C♯(ρ♮R)C♭(λ♮R)(U).
For the converse, suppose that (F, I) ∈ C♯(ρ♮R)C♭(λ♮R)(U), and let (G, J) ∈ FI(L)R such that
F ⊆ J . Since G ∩ J = ∅, we have that F ∩ J = ∅, hence (G, J)λ♮R(F, I). By assumption,
there is (F ′, I ′) ∈ U such that (F ′, I ′)ρ♮R(G, J) i.e., F ′ ∩ J = ∅. Since U is a ≤+-upset, the
pair (F ′, J) ∈ U , and we clearly have that (G, J) ≤− (F ′, J). Hence (F, I) ∈ I+C−(U).
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This lemma shows that, when restricting FI(L) to a subset on which the relation λ♮

is reflexive, working with the relation λ♮ becomes essentially equivalent to working with
the two orders ≤+ and ≤−, and the representation of the original lattice L via the closure
operator induced by λ+ coincides with the representation via the operation I+C−. Of course,
the resulting subspace is not itself an FI-space, but it is nonetheless a Priestley space.
Indeed, since FI(L) is defined as the product of F(L) and γ(I(L)), which are themselves
the Priestley duals of M2(L) and δ(M3(L)), we may think of the Priestley dual of FI(L)
as the coproduct in DL of M2(L) and δ(M3(L)) = M2(Lδ). Since this is a coproduct
of free constructions, we may equivalently view it as the distributive lattice M■2(L) freely
generated by elements of the form {2a,■a | a ∈ L} and subject to the relations {2a∧2b =
2a∧b,■a∧■b = ■(a∨b),21 = ■0 = 1,20 = ■1 = 0}. We can then easily establish a one-
to-one correspondence between prime filters on M■2(L) and points in (F, I) by mapping any
prime filter p to the pair (Fp, Ip), where Fp = {a ∈ L | 2a ∈ p} and Ip = {a ∈ L | ■a ∈ p}.
By duality reasoning, selecting a subset of FI(L) corresponds to quotienting M■2(L) by
adding more relations. In the case of FI(L)R, we can easily compute that the additional
relations should be {2a ∧ ■a = 0 | a ∈ L}. As we shall see, a similar strategy can
be applied to the comparison between FI-spaces and the choice-free duals of distributive
lattices, as well as to the comparison between FIN -spaces and Holliday’s compatibility
frames for Fundamental Logic.

4.6.2 FI-Spaces and Topological Dualities

In the previous chapter, we presented two choice-free dualities for distributive lattices based
of filter-ideal pairs, and we also briefly described Mosher and Jipsen’s duality between lat-
tices and BL-spaces. Let us now briefly compare all three with the topological duality for
lattices presented in Section 4.4.

Let us start with a comparison with Moshier and Jipsen’s BL-duality. In short, one might
see a rather striking resemblance between BL-spaces and our overall strategy in this section.
Moshier and Jipsen establish first a duality for meet-semilattices via HMS spaces, which are
a specific kind of spectral spaces. They then restrict this duality to BL-spaces by defining
a closure operator fsat, and show that this operator restricts to a closure operator on open
sets if and only if the compact open filters of an HMS space form a lattice. Moreover, the
dual BL-space of a lattice L is constructed as the set of all proper filters on L, endowed with
the Stone topology generated by sets of the form pa for any a ∈ L. Equivalently, the dual
BL-space of a lattice is the dual spectral space of M2(L). Accordingly, we may summarize
the similarities and distinctions between the BL-duality and our FI-spaces as follows. Both
dualities essentially rely on an embedding of Lat into DL, and on an existing topological
duality for distributive lattices. But the Moshier-Jipsen duality passes through Stone du-
ality for distributive lattices and through the free construction M2 exclusively, while our
construction of FI-spaces relies on Priestley duality and on the two free constructions M2

and M3. As a consequence of the latter, Jipsen and Moshier arguably have more work to
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do to recover the join-structure of a lattice L inside its dual BL-space. Intuitively speaking,
working with their notion of F -saturated sets (which are intersections of open filters) allows
them to represent the ideals of L. By contrast, our construction through filter-ideal pairs
allows us to work directly with ideals, thus giving an arguably more concrete flavor to our
topological representation of lattices.

Let us also quickly address the difference between using spectral spaces and Priestley
spaces. In the case of distributive lattices, Priestley spaces are often seen as more convenient
structures to work with than spectral spaces, as their topological behavior closely resembles
that of Stone spaces. In our case however, it is straightforward to verify that we did not use
any specific features about Priestley spaces beyond the fact that they are dual to distributive
lattices. In fact, our main reason for using Priestley spaces over spectral spaces was one
of convenience. As mentioned in Section 4.2.3, the functor γ, which is the topological
counterpart of the dualizing functor δ on lattices, has a very simple definition for Priestley
spaces, since γ(X ) is simply the space X with its order reversed. But this follows in an
essential way from the fact that the topology on a Priestley space is the patch topology of
the topology on the corresponding spectral space. If we wanted to define γ on spectral spaces
instead, we would essentially need to take the de Groot dual of the spectral space X , i.e.
the topology generated by the intersections of compact open sets. Given the importance of γ
and many constructions above, this would certainly make some arguments more cumbersome
than they already are. There is, however, a very good reason to do so, having to do with
the essentially choice-free nature of our FI-duality. Prima facie, because our duality passes
through Priestley duality, it cannot be carried out in a semi-constructive setting. However,
it is worth remarking that the actual use we make of the resources of Priestley duality is
very limited. This is because all instances of the duality we use are about free constructions
of the form M2 or M3 and their Priestley duals, which are spaces of filters or ideals. In
such free constructions, prime filters are in one-to-one correspondence with filters in another
algebraic structure, a fact we used repeatedly. But this means in particular that any such
free construction satisfies the following weak form of the Prime Filter Theorem.

Lemma 4.6.2 (Weak PFT). Let M = M2(L) for some lattice L, and let a, b ∈ M be such
that a ≰ b. Then there is a prime filter p on M such that a ∈ p and b /∈ p.

Proof. Let us write a as
∨
i∈I 2ai and b as

∨
j∈J 2bj for some finite {ai | a ∈ I}, {bj | j ∈

J} ⊆ L. Then a ≰ b implies that there is i ∈ I such that ai ≰ bj for all j ∈ J . But then,

letting p = ηL2
−1

(↑a), we have that a ∈ p and b /∈ p.

Consequently, the injectivity of the mapp· : M2(L) → ClopUpSpec(M2(L)) can be proved
without appealing to PFT for any lattice L. However, we run into some issues when trying
to prove without PFT that Spec(M2(L)) is compact. Indeed, proving that any open cover
in the patch topology contains a finite subcover requires either using PFT or appealing to
Alexander’s Subbasis Lemma, which is itself equivalent to PFT. Importantly, this issue only
arises because we declare as open both sets of the form pa and sets of the form qa. If we were to
consider only the spectral topology generated by the sets pa, then proving that Spec(M2(L))
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is spectral could be achieved within ZF . Indeed, the specialization preorder on Spec(L) in-
duced by the spectral topology coincides with the inclusion order on the set of prime filters,
and therefore has a least element p0, namely ηL2

−1
({1L}. But then any cover of Spec(M2(L))

must contain an open set U such that p0 ∈ U , which implies that Spec(M2(L)) ⊆ U . We
can therefore conclude from this discussion that our FI-duality is essentially choice-free, in
the sense that a merely notational variant of it that uses spectral spaces instead of Priestley
spaces holds in a semi-constructive setting.2.

Finally, let us briefly address the relationship between FI-spaces and the choice free
duals of distributive lattices introduced in Chapter 3. Here, there are two observations
worth making. First, if L is a distributive lattice, it will not follow that FI(L) is UV P -
space, nor that (FI(L), τ+, τ−) is a pairwise UV -space. Intuitively, the main reason for this
is that the specialization order on FI(L) is the inclusion order on both filters and ideals,
while the representation for distributive lattices in the previous chapter was based on the
inclusion ordering on filters and the reverse inclusion on ideals. Admittedly, this mismatch
between the two constructions is somewhat of a mystery (at least to me). On the one hand,
the fact that both pairwise UV -spaces and UV P -spaces arise as upper Vietoris hyperspaces
on pairwise Stone spaces and Priestley spaces respectively suggests that the reverse ordering
on ideals is the natural choice in this setting. However, setting the dual FI-space of a lattice
L to be the Priestley space F(L) × I(L) introduces some obstacles to the functoriality of
S♮. More precisely, given a lattice homomorphism f , we would in general lose the ability to
define S♮(f) as the map (F, I) 7→ (f−1[F ], f−1[I]), as we would then not be able to prove
that it is an FI-morphism. The issue could be avoided by mapping f to the pair of maps
(F, I) 7→ (f−1[F ], {0}), (F, I) 7→ ({1}, f−1[I]), but this approach is clearly less elegant.

Finally, let us conclude with an observation similar to the one we made regarding b-
frames. In the construction of the choice-free duals of distributive lattices, we restricted
ourselves to sets of pseudo-prime pairs. It is a straightforward exercise to verify that we
this restriction corresponds in the setting of FI-spaces to quotienting the free construction
M■2(L) by the additional relations

{2(a ∨ b) ∧■b ≤ 2a, 2a ∧■(a∧ b) ≤ ■b | a, b ∈ L}.

Constructing this lattice as the coproduct of M2(L) and M3(L) instead, these relations
translate to

{2(a ∨ b) ≤ 2a ∨3b, 2a ∧3b ≤ 3(a ∧ b)2,
which play a key role in positive modal logic [143, 257].

4.6.3 FIN-Spaces and Compatibility Frames

Compatibility frames provide a semantics for Fundamental Logic that is based on a discrete
representation for weakly pseudo-complemented lattices. As shown in [131], given a relation

2In that sense, the situation is similar to the choice-free version of Goldblatt’s duality for ortholattices
that was developed in [191]
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◁ on a set X, one can define closure operator C◁ on P(X) by letting

c◁(U) = {x ∈ X | ∀y ◁ x∃z ▷ y : z ∈ U},

where ▷ is the converse of the relation ◁. Moreover, one can also define an operation ¬◁ on
the lattice L(X) of c◁-fixpoints of X by letting

¬◁(U) = {x ∈ X | ∀y ◁ x : y /∈ U}.

Holliday shows that every weakly pseudo-complemented lattice can be represented as a
sublattice of the complete lattice (L(X),¬◁) for some set X and relation ◁ on some X
satisfying some conditions. Let us now quickly compare the representation of weakly pseudo-
complemented lattices via compatibility frames and via FIN -spaces.

Note first that, given a lattice L, R+(FI(L)) is the intersection of ClopUp(FI(L)) with
the fixpoints of the closure operator C♯(ρ♮)C♭(λ♮). Moreover, as we computed above, we
have that

C♯(ρ♮R)C♭(λ♮R)(U) = {(F, I) | ∀(G, J)λ♮R(F, I)∃(F ′, I ′)ρ♮R(F, I) : (F ′, I ′) ∈ U}

for any U ⊆ FI(L). But this means that we may view FI(L) as a compatibility frame
with the relation ◁ being precisely λ♮. Moreover, as shown in the previous section, a weak
involution on L is represented in FI(L) by the operation ¬Π+ on R+, given by:

¬Π+(U) = {(F, I) | ∀(G, J)λ♮L(F, I)∀(F ′, I ′) : (G, J)Π+(¬)(F ′, I ′) ⇒ (F ′, I ′) /∈ U}.

Hence the representation of the weak pseudo-complement in FI(L) differs from its defi-
nition in a compatibility frame. However, just like FI-spaces and b-frames can be brought
closer by taking subspaces, a similar strategy applies in this case.

Lemma 4.6.3. Let (L,¬) be a weak involution with dual FIN-space (FI(L), λ♮,Π+(¬).
Let FI(L)Q be a subspace of FI(L) determined by some subset Q, and ¬Q

λ♮
and ¬QΠ+ the

operations on P(Q) induced by ¬λ♮ and ¬Π+ respectively. Then:

1. If Q ⊆ {(F, I) | I ⊆ ¬−1[F ]}, then ¬Q
λ♮

(U) ⊆ ¬QΠ+(U) for all U ⊆ Q;

2. If Q ⊆ {(F, I) | ¬−1[F ] ⊆ I}, then ¬QΠ+(U) ⊆ ¬Q
λ♮

(U) for all U ⊆ Q.

Proof. We prove both items in turn.

1. Suppose first that I ⊆ ↓¬−1[F ] for all F, I ∈ Q. I claim that (Π+(¬)◦ρ♮)∩Q ⊆ ρ♮∩Q.
Clearly, this will imply that ¬Q

λ♮
(U) ⊆ ¬QΠ+(U) for all U ⊆ Q. For the proof of the claim,

suppose that we have (F, I), (G, J), (F ′, I ′) ∈ Q such that (F, I)ρ♮(G, J)Π+(¬)(F ′, I ′).
Then we have that F ∩ J = ∅ and that F ′ ⊆ ¬−1[J ]. Since ¬ is a weak involution, the
latter is equivalent to ¬−1[F ′] ⊆ J . But by assumption I ′ ⊆ ¬−1[F ′]. Hence I ′∩F = ∅,
which implies that (F, I)ρ♮(F ′, I ′).
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2. Suppose now that ¬−1[F ] ⊆ I for all (F, I) ∈ Q. Since ¬ is a weak involution, this is
equivalent to F ⊆ ¬−1[I], and hence to (F, I)ρ♮(F, I) for all (F, I) ∈ Q. But it clearly
follows from the reflexivity of ρ♮ on Q that ¬QΠ+(U) ⊆ ¬Q

λ♮
(U) for all U ⊆ Q.

Hence the two operations coincide if we restrict FI(L) to the set of pairs (F, I) such that
¬−1[F ] = I. Note also that this does not imperil the representation of L. Indeed, the map
a 7→ pa × I(L) is still injective, since the pair (↑a, ↓¬a) has the required property. Alge-
braically, restricting FI(L) to such pairs corresponds once again to quotient the distributive
lattice M■2(L) by additional relations. This time, it is also straightforward to see that the
additional relation is {2f(a) = ■a | a ∈ L}. It is worth mentioning that, if we wanted to
add the extra condition {2a ∧■a = 0 | a ∈ L} in order to recover the equivalence with the
boset representation of L, this would immediately imply that our distributive lattice satisfies
2a ∧ 2f(a) = 0. One can indeed check also geometrically that the conditions that λ♮ and
Π+(¬) be symmetric immediately imply that Π+(¬) ◦ ρ♮ is reflexive, which implies that ¬Π+

is a weak pseudo complement by Lemma 4.5.9.

It follows from this last observation that one can combine a boset representation of a
lattice L with a compatibility representation of a weak involution ¬ on L if and only if
¬ is weak pseudo-complement. In a sense, this provides an independent motivation for
weak pseudo-complements, as they appear to arise as natural algebraic structures that can
have an elegant representation. But one should also take this example as a cautionary
tale. Competing desiderata on the representation of operations on lattices may sometimes
be incompatible unless such operations satisfy some additional properties. At the same
time, our results here seem to indicate a promising way of addressing such issues. Our FI
duality provides, so to speak, a canonical way of representing lattices and monotone maps
on them. Given such a representation, one can then take subspaces of the dual FI-space
of a lattice L in order to obtain simpler, more elegant representations. Finally, using the
duality between FI(L) and M■2(L), one can control algebraically that such restrictions do
not imperil the representation of the original lattice, by checking that the map a 7→ 2a is
still an embedding. We leave a deeper exploration of the full possibilities afforded by such a
conceptual framework for future work.
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Chapter 5

Orthologic and the Open Future

5.1 Introduction

The intuition that the future is open in ways that the present and the past are not is the
source of famously difficult problems at the intersection of logic, semantics and metaphysics.
On the one hand, if an assertion made today about a sea battle occurring tomorrow is true
today, is it genuinely possible for the sea battle not to happen? If I claim that a sea battle
may or may not happen tomorrow, can I also assert that the sea battle will in fact happen
without contradicting myself? If the future is genuinely open, then it seems that statements
about the future may merely turn out to be true or false, not that they are already true or
false when uttered. On the other hand, it seems that such an intuition about the openness of
the future commits us to the thesis that a statement cannot be true without being inevitably
true and that truth coincides with settled truth. This, however, takes us dangerously close
to classical arguments for logical determinism, which purport to give purely a priori proofs
that the future is entirely determined. Can’t a statement be true without being inevitably
true?

My goal in this chapter is to flesh out a position that vindicates the intuition of an open
future without erasing the distinction between truth and settled truth. The key move of
this position, which I call orthofuturism, is to argue that the correct logic of the open future
is not classical logic, but rather orthologic. As we will see below, this allows one to hold
that statements about the future cannot be true and contingent at the same time, without
having to admit that truth entails settled truth. In this way, the solution I propose resembles
the treatment of epistemic modals recently developed by Holliday and Mandelkern in [138].
In their account based on orthologic, propositions such as “It’s raining and it might not be
raining” are contradictions, yet “It’s raining” does not entail “It must be raining”. Similarly,
the orthologic of the open future that I present here allows one to hold that “There will be a
sea battle tomorrow but there might not be one” is contradictory, even though “There will
be a sea battle tomorrow” does not entail “Inevitably, there will be a sea battle tomorrow”.

The chapter is organized as follows. In Section 5.2, I recall the famous sea battle problem
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and present a slight variant of it that will help me highlight the specificity of orthofuturism.
In Section 5.3, I introduce orthofuturism, first by outlining a strategy for refuting the two
arguments presented in Section 5.2 and then by defining a bimodal orthologic OF that
provides a formal solution to the sea battle problem. In Section 5.4, I compare this new
approach to some well-established solutions based on branching-time semantics and argue
that it avoids some of the problems that these competing alternatives have. In Section 5.5,
I sketch an intuitive conception of the flow of time for the orthofuturist by providing a
concrete, Kripke-like semantics for OF which I call fragment semantics. This semantics
is in the spirit of possibility semantics [135, 140], and its frames are collections of partial
descriptions of moments in time rather than instants that form branching timelines. This
allows me to discuss in Section 5.6 the relationship between orthofuturism and MacFarlane’s
relativist solution to the sea battle problem [178, 179]. Finally, I conclude with some further
directions for orthofuturism. The chapter also includes a technical appendix with some
details regarding ortholattices and fragment semantics.

5.2 The Sea Battle and the Narrow Pass

Consider the following situation, inspired by a famous passage in Aristotle [6, De Interpre-
tatione, Chap. IX]. In the summer of 480 BC, the Athenian general Themistocles prepares
for an encounter with a large Persian fleet off the coast of Artemisium, on the Greek island
of Euboea. Themistocles has convinced the other members of the Greek alliance that this is
where the Greek fleet should attempt to stop the naval forces of King Xerxes. On the evening
of the first day of the battle, after superior tactics delivered the Greeks a significant victory,
Themistocles wonders whether there will be another battle on the next day. Although the
Persian fleet still vastly outnumbers his, an incoming storm together with the losses of the
day may convince the Persian generals to avoid a direct confrontation with the Greek fleet,
and the Greeks themselves could decide to engage the invader’s fleet or to merely try to deter
them from attacking again. Although it seems that whether a sea battle will happen on the
next day is yet to be decided by meteorological and military considerations, the following
argument convinces Themistocles that, in fact, it is already settled one way or the other.

(A1) There will be a sea battle tomorrow or there won’t be a sea battle tomorrow.

(A2) Suppose it is the case that there will be a sea battle tomorrow. Then it is already
settled that there will be a sea battle tomorrow.

(A3) Suppose it is not the case that there will be a sea battle tomorrow. Then it is already
settled that there won’t be a sea battle tomorrow.

(A4) Therefore, if either there will be a sea battle tomorrow or there won’t be one, then it
is already settled that there will be a sea battle tomorrow or it is already settled that
there won’t be a sea battle tomorrow.
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(A5) Therefore, it is already settled that there will be a sea battle tomorrow or it is already
settled that there won’t be a sea battle tomorrow.

This, of course, is a version of the famous sea battle argument. It is commonly assumed
to rely on two premises. According to the first one, often called the Future Excluded Middle,
either a sea battle will happen tomorrow or a sea battle won’t happen tomorrow. According
to the second premise, a true statement is also inevitably true. Variations of the fatalist
argument sometimes establish this second premise by invoking the fixity of the past [201,
Section 2]: whatever happened cannot be changed, and if a statement, even one about the
future, was true in the past, then it is now impossible for that statement not to have been
true. But such a detour through the past is unnecessary if one holds, as is commonly ad-
mitted, that the present is just as fixed as the past: although the future might still be open,
it is too late to change either the past or the present. This asymmetry therefore entails a
collapse of modalities: if something is or was the case, it is now settled that it is or was the
case. Accordingly, I will call the thesis that truth implies settled truth the Modal Collapse
thesis. Statements (A2) and (A3) are then instantiations of the Modal Collapse thesis in
the case of the statements “There will be a sea battle tomorrow” and “There won’t be a sea
battle tomorrow”, respectively. If one accepts the validity of the argument, then one of the
two premises must therefore be rejected. But before discussing this argument in more detail,
let us consider a second, slightly different situation.

While Themistocles wonders about the sea battle to come, a few miles to the west, the
Spartan king Leonidas holds the narrow pass of Thermopylae against the vast terrestrial
forces of King Xerxes. Because the Greeks’ defensive strategy against the Persian invasion
requires both Themistocles’s forces to hold the Persian fleet at Artemisium and Leonidas’s
forces to block the advance of the Persian army at Thermopylae, messages are constantly
exchanged between the two positions. After a gruesome first day of fighting during which his
men, although outnumbered by a factor of more than ten to one, manage to hold the pass,
Leonidas ponders what message to send Themistocles. Will they or won’t they manage to
hold on to the pass on the next day? It certainly seems that this is not yet settled. Perhaps
Leonidas will manage to exhort his men to keep their positions for one more day, or perhaps
(as would famously come to happen on the third day of the battle) the Persians will find a
way to outflank the Greeks. Although he believes that the fate of the next day’s battle is yet
to be decided, Leonidas also wants to give a reply to his ally that is as detailed as possible
and considers the following argument:

(B1) We may hold the pass tomorrow and we may not hold the pass tomorrow.

(B2) Either we will hold the pass tomorrow or we won’t hold the pass tomorrow.

(B3) Suppose we will hold the pass tomorrow. Then we will hold the pass tomorrow and
yet we may not hold it.

(B4) Suppose we won’t hold the pass tomorrow. Then we won’t hold the pass tomorrow
and yet we may hold it.
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(B5) Therefore, we will hold the pass tomorrow and yet we may not hold it, or we won’t
hold the pass tomorrow and yet we may hold it.

Swayed by the seemingly flawless logic of the argument, Leonidas concludes that there
are only two messages that he could send to Themistocles: either “We will hold the pass
tomorrow but we may not hold it”, or “We won’t hold the pass tomorrow but we may
hold it”. Although he may not know which message to send, Leonidas also has the distinct
impression that either message would profoundly confuse Themistocles. Because the Greeks’
defensive strategy relies on them stopping both Xerxes’s fleet and his army, Themistocles
will retreat if he knows that the Persians have taken Thermopylae, and he will keep fighting
if he knows that Leonidas’s men are holding firm. But what should he conclude if Leonidas’s
message is “We will hold the pass tomorrow but we may not hold it”? Intuitively, the second
part of Leonidas’s message seems to contradict the first part. If Themistocles receives only
the first part, then he can confidently tell his men to get ready to hold the Persian fleet at
bay for the next day. But if he reads the second part, he will need to decide whether to hope
that the bravery of Leonidas’s men will keep the Persian army from crossing the pass or to
start planning a strategic retreat. Of course, a similar problem would arise if the message
that Leonidas sends is “We won’t hold the pass, but we may hold it”. Both messages sound
contradictory and would deeply puzzle his ally. Faced with such a dilemma, Leonidas might
conclude as follows:

(B6) It is contradictory to say that we will hold the pass tomorrow and yet we may not
hold it, and it is contradictory to say that we won’t hold the pass and yet we may hold
it.

(B7) Therefore, it is contradictory to say that we may hold the pass tomorrow and that we
may not hold it.

Leonidas’s dilemma therefore reaches the same ending as Themistocles’s meditation: de-
spite all appearances, the future is already settled. The argument above shares one premise
with the first one, namely (B2), the thesis that any future event either will or won’t happen.
The other premise, however, is slightly different in Leonidas’s argument. Rather than as-
serting directly that truth implies settled truth, it states that a statement about the future
may not at the same time be true and contingent. In that sense, this premise is reminiscent
of another of Aristotle’s examples, that of a cloak that may be cut up yet won’t be, because
it will wear out instead.1 I will call the thesis that the truth of a statement about the future
cannot be consistent with its contingent status the Open Future intuition. In Leonidas’s
argument above, (B6) is the conjunction of two instances of the Open Future intuition.
Of course, classically, the Open Future intuition is equivalent to the Modal Collapse thesis
mentioned in the first argument. If the truth of a statement is inconsistent with it being
contingent, then it implies that that statement is also necessary. But, as I will argue below,

1For a detailed discussion of this passage and of whether Aristotle’s position is consistent with his views
on the sea battle problem, see for example [100, Chap. 7].
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there is room to deny one thesis while accepting the other, provided one is willing to give
up some of the inference rules of classical logic.

In order to analyse further the two arguments presented above, let us introduce a simple
propositional language L given by the following grammar:

φ ::= p | ⊥ | ¬φ | φ ∧ φ | 2φ | T φ

where p belongs to a countably infinite set of propositional variables. Intuitively, 2φ should
be interpreted as “It is settled that φ” and T φ as “Tomorrow, it will be the case that φ”.
As usual, we will define disjunction as the dual of conjunction, i.e., φ ∨ ψ := ¬(¬φ ∧ ¬ψ),
truth as the dual of falsum, i.e., ⊤ := ¬⊥, and possibility as the dual of necessity, i.e.,
3φ := ¬2¬φ.

In order to formalize the two arguments above, let us isolate the following principles
that one may impose on our logic, understood as a consequence relation ⊢ between a finite
(possibly empty) set of L -formulas Γ and an L -formula φ:

(F ) ⊢ T φ ∨ T ¬φ (the Future Excluded Middle);

(M) T φ ⊢ 2T φ (the Modal Collapse thesis);

(O) T φ,3T ¬φ ⊢ ⊥ (the Open Future intuition);

(C) φ ⊢ χ and ψ ⊢ χ together imply φ ∨ ψ ⊢ χ (Reasoning by Cases);

(D) Γ, φ ⊢ χ and Γ, ψ ⊢ χ together imply Γ, φ ∨ ψ ⊢ χ (Reasoning by Cases with Side
Assumptions).

The first three of these principles are theses that we have encountered before in describing
Themistocles’s and Leonidas’s thoughts about the future. The last two are inference patterns
that are classically valid. A fully rigorous formalization of the arguments also requires some
intermediary steps relying on other principles that will not play a major role in what follows
and that I list here:

(L1) Γ, φ ⊢ ψ and ∆ ⊢ φ together imply Γ,∆ ⊢ ψ;

(L2) φ ∧ ψ ⊢ φ, φ ∧ ψ ⊢ ψ;

(L3) φ ⊢ φ ∨ ψ, ψ ⊢ φ ∨ ψ.

We may now offer the following formal reconstruction of Themistocles’s argument A
(α1 − α7) and of Leonidas’s argument B (β1 − β7):
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(α1) ⊢ T p ∨ T ¬p (F )

(α2) T p ⊢ 2T p (M)

(α3) T ¬p ⊢ 2T ¬p (M)

(α4) T p ⊢ 2T p ∨2T ¬p (L1), (L3), α2

(α5) T ¬p ⊢ 2T p ∨2T ¬p (L1), (L3), α3

(α6) T p ∨ T ¬p ⊢ 2T p ∨2T ¬p (C), α4, α5

(α7) ⊢ 2T p ∨2T ¬p (L1), α1, α6

(β1) ⊢ T p ∨ T ¬p (F )

(β2) T p,3T ¬p ⊢ ⊥ (O)

(β3) T ¬p,3T p ⊢ ⊥ (O)

(β4) T p,3T p ∧3T ¬p ⊢ ⊥ (L1), (L2), β2

(β5) T ¬p,3T p ∧3T ¬p ⊢ ⊥ (L1), (L2), β3

(β6) T p ∨ T ¬p,3T p ∧3T ¬p ⊢ ⊥ (D), β4, β5

(β7) 3T p ∧3T ¬p ⊢ ⊥ (L1), β1, β6

This formalization highlights the apparent symmetry between the two arguments. As I
will now argue, there is however an appealing way of rejecting both arguments that does not
treat them as symmetric versions of one another.

5.3 Orthofuturism

In this section, I introduce a new solution to the sea battle problem that preserves the Open
Future intuition without collapsing modalities. I will first informally describe this position,
which I call orthofuturism, before making my proposal formal by introducing the logic OF.

5.3.1 Open Future without Modal Collapse

The core idea of orthofuturism is that the two arguments above should not be rejected for
the same reason. For the orthofuturist, Themistocles’s argument A is valid, but one of its
premises is false, namely the Modal Collapse thesis, i.e., the thesis that truth coincides with
settled truth. By contrast, she thinks that the premises in Leonidas’s argument B are both
true but that the argument is invalid, because reasoning by cases with side assumptions is
not a valid logical principle when reasoning about the future. In other words, the orthofu-
turist believes that one may not assert at the same time that some proposition about the
future is both true and contingent on pain of contradicting oneself, even though the truth of
such a statement does not imply that it is settled. Although the future is open in the sense
that one may not make true statements about it when what will happen is not yet settled,
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there is no modal collapse, and settled truth is genuinely distinct from plain truth. This
leads her to accept (O) and to reject (M).

In order to consistently do so, the orthofuturist must therefore reject the inference from
T p,3T ¬p ⊢ ⊥ to T p ⊢ 2T p. Because she accepts the duality between 3 and 2, this means
that she must reject the inference from

T p,¬2¬T ¬p ⊢ ⊥ (a)

to T p ⊢ 2T p. Now if the orthofuturist accepts (F ), then she also accepts

¬T p,¬T ¬p ⊢ ⊥ (b)

. But if she accepts in general that one can conclude φ ⊢ ¬ψ from φ, ψ ⊢ ⊥, then accepting
(a) (together with double negation elimination) means that she should also accept

T p ⊢ 2¬T ¬p, (a’)

and accepting (b) (again assuming double negation elimination) means that she should also
accept

¬T ¬p ⊢ T p. (b’)

But (a’) and (b’), together with some basic modal reasoning, directly entail (M).
A possible option for the orthofuturist would be to simply reject the Future Excluded

Middle. While this option exists in the literature ([174, 254], see also the Piercean view
below), the Future Excluded Middle seems to have a pretty strong intuitive pull. A more
appealing option for the orthofuturist is therefore to deny that, in general, one may infer
φ ⊢ ¬ψ from φ, ψ ⊢ ⊥. In particular, the orthofuturist argues that whenever ψ := 3T ¬φ,
then T φ ∧3T ¬φ ⊢ ⊥ is true but T φ ⊢ 2T φ may be false.2

The orthofuturist therefore thinks that the future tense and openness modalities share
some aspects with epistemic modals. As philosophers of language have argued [113, 265],
statements like

(1)∗ It is raining and it might not be raining.

are contradictory, even though the proposition “It is raining” does not intuitively imply “It
must be raining”. In light of these phenomena, Holliday and Mandelkern have recently de-
veloped [138] an account of epistemic modals that relies on orthologic rather than classical
logic. As I will show below, a similar account can be offered for the interplay of the future
tense and openness modalities in a way that fleshes out the orthofuturist position in detail.

2Note that this move also allows her to keep (F ) and double negation elimination, without having to
endorse that ¬T p ⊢ T ¬p.



5.3. ORTHOFUTURISM 172

This is not to say, of course, that we should interpret “it is open that T p” epistemically; nor
am I claiming that native speakers of English use the phrases “it is settled that” or “It will be
the case that” in the same way as they use the epistemic modals “must” or “might”. Rather,
the point of the parallel is to argue that, just as one can in a consistent way model the fact
that statements like “It is raining and it might not be raining” are contradictory in natural
language without collapsing epistemic modals, one may also do justice to the Open Future
intuition that statements of the form “We will hold the pass tomorrow and it is open that
we won’t hold the pass tomorrow” are contradictory without endorsing the Modal Collapse
thesis that settled truth coincides with truth.

As explained in detail in [138], orthologic differs from classical logic in that it rejects the
distributive laws:

φ ∧ (ψ ∨ χ) ⊢ (φ ∧ ψ) ∨ (φ ∧ χ)

(φ ∨ ψ) ∧ (φ ∨ χ) ⊢ φ ∨ (ψ ∧ χ).

At the same time, negation behaves almost classically in orthologic, meaning that the
following principles remain valid:

Complementation φ ∧ ¬φ ⊢ ⊥, and ⊢ φ ∨ ¬φ;

Contraposition φ ⊢ ψ implies ¬ψ ⊢ ¬φ;

Reductio ¬¬φ ⊢ φ;

De Morgan φ ∧ ψ ⊣⊢ ¬(¬φ ∨ ¬ψ), φ ∨ ψ ⊣⊢ ¬(¬φ ∧ ¬ψ).

Let us now see why the orthofuturist must reject the distributive laws if she wants to
hold (O) as valid without also admitting (M). In fact, the problem arguably runs even
deeper than distributivity. Consider the following weaker form of distributivity, known as
the modular law:

φ ⊢ ψ ⇒ (φ ∨ χ) ∧ ψ ⊢ φ ∨ (χ ∧ ψ)

If one admits that truth implies possibility, which in the case of the openness modality is
uncontroversial, then the modular law implies that “There will be a sea battle tomorrow
or there won’t be a sea battle tomorrow, and there may be a sea battle tomorrow” ((T p ∨
T ¬p) ∧ 3T p) entails “There will be a sea battle tomorrow, or there won’t be a sea battle
tomorrow but there may be one” (T p ∨ (T ¬p ∧ 3T p)). But (F ) implies that the first
proposition is equivalent to “There may be a sea battle tomorrow”, while (O) implies that
the second proposition is equivalent to “There will be a sea battle tomorrow”. Thus (M)
is an immediate consequence of (F ), (O) and the modular law. As the modular law is a
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consequence of the distributive laws, this gives the orthofuturist a strong reason to adopt
orthologic rather than classical logic.

Moreover, the rejection of the distributive laws also allows the orthofuturist to object to
the use of inference pattern (D) in Leonidas’s argument B. Indeed, the first distributive
law can be easily derived from reasoning by cases with side assumptions:

φ, ψ ⊢ (φ ∧ ψ) ∨ (φ ∧ χ)

φ, χ ⊢ (φ ∧ ψ) ∨ (φ ∧ χ)

φ, ψ ∨ χ ⊢ (φ ∧ ψ) ∨ (φ ∧ χ) (D)

φ ∧ (ψ ∨ χ) ⊢ (φ ∧ ψ) ∨ (φ ∧ χ).

In fact, the specific instance of (D) that appears at step β6 above is also directly seen as
invalid for the orthofuturist. Just because two formulas φ and ψ are inconsistent with χ does
not mean that the disjunction φ ∨ ψ is also inconsistent with χ, unless one already assumes
some form of distributivity. Rejecting the distributive laws of classical logic therefore allows
the orthofuturist to make sense of the Open Future intuition that statements about the
future cannot be contingent and true at the same time, without collapsing settled truth
onto truth. Giving up distributivity allows her to refute both Themistocles’s and Leonidas’s
arguments above at once, but for different reasons. Let me now make my proposal more
formal by defining a logic that captures the orthofuturist’s solution as I have sketched it so
far.

5.3.2 The Logic OF

As is customary in orthologic [109], let us start by defining our logic as a consequence relation
on the set of L -formulas.

Definition 5.3.1. The logic OF is the smallest relation ⊢ on L satisfying the following
conditions for any formulas φ, ψ and χ:

• Order:

1. φ ⊢ φ;

2. φ ⊢ ψ and ψ ⊢ χ together imply φ ⊢ χ;

• Connectives:

3. φ ∧ ψ ⊢ φ and φ ∧ ψ ⊢ ψ;

4. φ ⊢ ψ and φ ⊢ χ together imply φ ⊢ ψ ∧ χ;

5. φ ∧ ¬φ ⊢ ⊥, and ⊥ ⊢ ψ;

6. φ ⊢ ψ implies ¬ψ ⊢ ¬φ;

7. φ ⊢ ¬¬φ, and ¬¬φ ⊢ φ;
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• Modalities:

8. φ ⊢ ψ implies 2φ ⊢ 2ψ and T φ ⊢ T ψ;

9. ¬⊥ ⊢ 2¬⊥, and ¬⊥ ⊢ T ¬⊥;

10. 2φ ∧2ψ ⊢ 2(φ ∧ ψ);

11. T φ ∧ T ψ ⊢ T (φ ∧ ψ), and ¬T ¬φ ∧ ¬T ¬ψ ⊢ ¬T ¬(φ ∧ ψ);

12. 2φ ⊢ φ;

13. T ¬φ ⊢ ¬T φ;

14. T φ ∧ ¬2¬T ¬φ ⊢ ⊥.

A formula φ is a theorem of OF if ¬⊥ ⊢ φ.

The logic OF is closely related to the logic EO of epistemic modals introduced in [138]. If
we recall the abbreviations ⊤ := ¬⊥, φ∨ψ := ¬(¬φ∧¬ψ) and 3φ := ¬2¬φ, we can verify
in a straightforward way that (O) and (F ) are theorems of OF.

Lemma 5.3.2. For any L -formula φ, ¬(T φ∧3T ¬φ) and T φ∨T ¬φ are theorems of OF.

Proof. To show that (O) is valid, it is enough to observe that it is equivalent to condition
14, since T φ ∧ 3T ¬φ := T φ ∧ ¬2¬T ¬φ. But then by condition 6 we also have that
¬(T p ∧3T ¬p) is a theorem of OF.

For (F ), note first that T φ ∨ T ¬φ := ¬(¬T φ ∧ ¬T ¬φ) and hence by condition 6 it
is enough to show that ¬T φ ∧ ¬T ¬φ ⊢ ⊥. Moreover, since φ and ¬¬φ are equivalent by
condition 7, it is in fact enough to show that ¬T ¬¬φ ∧ ¬T ¬φ ⊢ ⊥. By condition 11, we
have that ¬T ¬¬φ∧¬T ¬φ ⊢ ¬T ¬(¬φ∧φ). By condition 5, ¬φ∧φ ⊢ ⊥, so by conditions 6
and 8, we have ¬T ¬(¬φ ∧ φ) ⊢ ¬T ¬⊥. But by condition 9 together with conditions 6 and
7 we get that ¬T ¬⊥ ⊢ ⊥, so by condition 2 we can conclude that ¬T ¬(¬φ ∧ φ) ⊢ ⊥. This
completes the proof that (F ) is a theorem of OF.

It is also straightforward to verify that the inference pattern (C) is valid in OF, i.e., that
for any formulas φ, ψ and χ, φ ⊢ χ and ψ ⊢ χ together imply φ ∨ ψ ⊢ χ.3 To establish
that OF is an adequate logic for the orthofuturist, it therefore only remains to show that
2T φ ∨ 2T ¬φ is not a theorem of OF. Note that this will also imply that the Modal Col-
lapse thesis (M) is not a theorem of OF and that (D) is not a valid inference pattern. An
elegant way of doing so is to provide a sound an complete algebraic semantics for OF based
on ortholattices, before giving an example of a valuation V on an ortholattice L that makes
(M) invalid. In order to make my proposal as accessible as possible, I will only sketch such
an approach here and postpone most of the technical details to Section 5.8.1.

3For a proof of this, we refer the reader to the remark before Theorem 3.13 in [138].
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Intuitively, one may think of a lattice as an abstract algebra of propositions that can
be assigned to the formulas of a propositional language, ordered by the entailment relation.
The propositions we are interested in must be closed under conjunctions, negations, and the
“Inevitably” and “Tomorrow” modal operators. We therefore need our algebras of propo-
sitions to be partially ordered sets with a binary operation ∧ (usually called “meet”) and
three unary relations ¬ (complementation), 2 (“box”) and T (“Tomorrow”). Given such
an algebra L, any function assigning a proposition in L to every propositional variable can
then be recursively lifted to a valuation on L -formulas in the obvious way. Given two L -
formulas φ and ψ and such an algebra L with order ≤L, we may then write that ψ is a logical
consequence of φ relative to L, denoted φ |=L ψ, if V (φ) ≤L V (ψ) for every valuation V
defined on L.4 Of course, if we want OF to be sound with respect to this semantics, we must
impose some conditions on the kind of algebras we may use to evaluate L -formulas. These
conditions follow naturally from the conditions imposed on the logic OF in Definition 5.3.1
and determine the class C of OF lattices (see Definition 5.8.2 in Section 5.8.1).

For any two L -formulas φ and ψ, let φ |=C ψ if φ |=L ψ for every OF lattice L. The
proof of the following theorem uses standard techniques from algebraic logic [229] and can
be found in Section 5.8.1.

Theorem 5.3.3. The logic OF is sound and complete with respect to the consequence relation
|=C: for any two L -formulas φ and ψ, φ ⊢ ψ if and only if φ |=C ψ.

Figure 5.1 depicts some of the entailment relations that the orthofuturist admits between
propositions regarding a sea battle to come, with a proposition φ directly entailing another
proposition ψ if and only if there is an edge from φ to ψ with φ below ψ. One can verify that
such a configuration of propositions arises from a valuation on an OF lattice, namely the
valuation v(p) = b on the OF lattice O10 shown in Figure 5.6 in Section 5.8.1. Notice in par-
ticular that in this instance 2T p entails T p but that the converse does not hold. Nonetheless,
the only proposition that entails both T p and 3T ¬p is the contradictory proposition ⊥, as
required by the Open Future intuition. Moreover, the only proposition entailed by both T p
and T ¬p is the tautology ⊤, in accordance with the Future Excluded Middle. By contrast,
the proposition expressing that the sea battle is already settled, i.e., 2T p∨2T ¬p, is strictly
below ⊤. Together with Theorem 5.3.3, this shows that 2T p∨2T ¬p is not a theorem of OF.

In Section 5.5, I will present a more concrete, Kripke-style semantics for OF. For now, let
me just conclude this section with two remarks. First, the lattice-theoretic perspective allows
one to highlight in a particularly sharp way the connection between orthofuturism and the
failure of the modular law mentioned above. Indeed, if L is any algebra of propositions such
that the principles φ ⊢ 3φ, (F ) and (O) are valid, but (M) is not, then the configuration
of propositions depicted in fig. 5.2 must appear in L. By a celebrated result in lattice theory
due to Dedekind (see [66, Thm. 4.10] for a proof), the lattice N5 embeds in an arbitrary

4For the reader familiar with Kripke semantics for classical modal logic, an ortholattice is the analogue
of the algebra of propositions given by the powerset of a set of possible worlds of a Kripke frame F , and a
valuation on such an ortholattice corresponds to a model defined on F .
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⊤

3T p 2T p ∨2T ¬p 3T ¬p

T p T ¬p

2T p 3T p ∧3T ¬p 2T ¬p

⊥

Figure 5.1: Entailment relations between future-tensed propositions according to the ortho-
futurist.

lattice L if and only if L is not modular, i.e., does not satisfy the lattice-theoretic equation
corresponding to the modular law. This shows that the failure of the modular law, and
thus also of the distributive laws, is not merely a convenient way of blocking the fatalist’s
arguments but a core feature of the orthofuturist’s position.

⊤

3T ¬a T a

T ¬a

⊥

Figure 5.2: The lattice N5

The second remark concerns the strength of the logic OF. I do not claim here that OF
is the strongest logic that fits the orthofuturist’s position. Rather OF should be thought of
as a “basic logic” when reasoning about the open future from an orthofuturist’s perspective.
In particular, one might consider strengthening conditions 13 and 14 respectively to the
following:

13’. T ¬φ ⊢ ¬T φ, and ¬T φ ⊢ T ¬φ.

14’. φ ∧3¬φ ⊢ ⊥.
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Condition 13’ would make the operator T commute with negation, while Condition 14’
is directly lifted from the treatment of epistemic modals in [138]. Notice that the lattice
in Figure 5.6 satisfies both conditions, which shows that we could add them to OF without
collapsing modalities. There might be however, other reasons for the orthofuturist to refrain
from endorsing conditions 13’ and 14’. For one, one might argue that although T p∧3T ¬p ⊢
⊥ is a plausible way of capturing the Open Future intuition, the intuitive status of the closely
related T p∧¬2T p ⊢ ⊥ is more debatable (compare for example “There will be a sea battle
tomorrow and it’s open that there won’t be one” with “There will be a sea battle tomorrow,
but it’s not settled that there will be one”). But one can easily derive the second principle
from condition 14’. Similarly, one can show that, over the standard rules of orthologic,
condition 13’ and 14 together entail that φ ∨ 2¬φ is a theorem for any formula φ. But
certainly “There will be a sea battle tomorrow or it’s settled that there won’t be one”
(T p ∨ 2T ¬p) does not sound intuitively valid. This suggests that the orthofuturist must
tread carefully when reasoning about the principles governing the interaction between the
openness modality, the tense operator and negation.

5.4 Branching-Time Solutions

In this section, I compare orthofuturism to some classical solutions to the sea battle problem
based on branching-time semantics, and I argue that it is a more appealing position than any
of them. Since Prior’s work on tense logic [211, 212], branching-time semantics has appeared
as a promising way of solving the sea battle problem [63, 201]. Intuitively, the future is open
at a moment t in time because there is more than one way in which the world could evolve
at that time, more than one possible timeline to which t belongs. This basic intuition of
branching-time semantics, however, allows for more than one possible theory. Prior himself
favored what he called the Piercean approach, but he also developed an Ockhamist solution,
although it has been argued that Ockham’s own views are closer to what is usually called the
true futurist or Thin Red Line approach [15, 67, 201]. On the other hand, Thomason’s super-
valuationism [252] offers an alternative solution to the problem that deviates from classical
logic. Finally, a recent proposal based on branching time has been offered by MacFarlane
[178, 179]. However, since his relativist approach is less suitable to a direct comparison with
the orthofuturist solution as I have presented it so far, I will delay such a comparison until
Section 5.6 and focus for now on the Piercean, supervaluationist and true futurist approaches.

The starting point of all branching-time solutions is the definition of satisfaction of a
formula relative not only to a moment in time but also to a timeline, a maximal linearly
ordered set of moments in time. A branching-time model is determined by a partially ordered
set (T,≤) that has a tree-like structure (meaning that the past of any moment in time looks
like a line or, formally, y ≤ x and z ≤ x together imply y ≤ z or z ≤ y) and a valuation
function mapping each propositional variable to a set of moments in time. The diagram
in Figure 5.3 depicts an elementary model in which the moment t belongs to two distinct
timelines C0 = {t, t0} and C1 = {t, t1}.
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t0 p

t

t1 ¬p

C0

C1

Figure 5.3: A simple branching model

Pierceanism, supervaluationism and true futurism all agree about the following satisfac-
tion conditions of a formula given a valuation V , a moment in time t and a timeline C such
that t ∈ C:

V, t, C |=PST p iff t ∈ V (p); V, t, C |=PST ⊥ never;

V, t, C |=PST ¬φ iff V, t, C ̸|=PST φ;

V, t, C |=PST φ ∧ ψ iff V, t, C |=PST φ and V, t, C |=PST ψ;

V, t, C |=PST 2φ iff V, t, C ′ |=PST φ for every timeline C ′ such that t ∈ C ′.

A first difference appears between Pierceanism and the other two theories when one
considers the semantics of the future tense operator T . If we assume a discrete model for the
sake of interpreting our language L , given a moment t and a timeline C to which t belongs,
there is exactly one moment F (t, C) that immediately follows t and belongs to C. According
to the Piercean, “It will be the case that p” means “Inevitably, it will be the case that p”,
and the semantic clause for the T operator should therefore be the following:

V, t, C |=P T φ iff V, F (t, C ′), C ′ |=P φ for every timeline C ′ such that t ∈ C ′.

By contrast, the supervaluationist and the true futurist hold that whether T φ is satisfied at
a moment t with respect to a timeline C is completely determined by whether p is satisfied
at F (t, C) with respect to C:

V, t, C |=ST T φ iff V, F (t, C), C |=ST φ.

Moreover, the Piercean, the true futurist and the supervaluationist differ when it comes
to defining truth at a moment simpliciter, i.e., defining a notion of satisfaction that is not
relative to a timeline. For the Piercean, it is straightforward to verify that satisfaction of
a proposition at a moment in time does not actually depend on a timeline, in the sense
that for any valuation V , any moment t and any two timelines C,C ′ such that t ∈ C ∩ C ′,
V, t, C |=P φ iff V, t, C ′ |=P φ. The Piercean can therefore define truth at a moment in time
t as truth at t relative to some (or every) timeline C to which t belongs:

V, t |=P φ iff V, t, C |=P φ for some timeline C such that t ∈ C.
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The supervaluationist, on the other hand, holds that truth at a moment t means supertruth
at t, i.e., truth in every timeline passing through t:

V, t |=S φ iff V, t, C |=ST φ for every timeline C such that t ∈ C.

Finally, the true futurist holds that to any moment in time corresponds an actual future, one
timeline singled out from the other possible ones as the actual one by a “thin red line” [15,
67]. Accordingly, truth at a moment t is defined as truth at t relative to the actual timeline
of t, C(t):

V, t |=T φ iff V, t, C(t) |=ST φ.

As an example, we may consider again the model presented in Figure 5.3. If we assume
that, for the true futurist, C0 is the actual timeline of t, then we can see that the three
approaches each give a different truth value to the formula T p at t:

V, t |=P ¬T p, although V, t ̸|=P T ¬p;

V, t ̸|=S T p and V, t ̸|=S T ¬p, although t |=S T p ∨ T ¬p;

V, t |=T T p, although V, t |=T ¬2T p.

How does each proposal block the two arguments discussed in Section 5.2? For the
Piercean, truth implies settled truth. In other words, principles (O) and (M) are both
valid. Because the Piercean’s logic is fully classical, contingent propositions about the future
are therefore false: 3T ¬p |=P ¬T p. If it is still open whether a sea battle may happen
tomorrow, then for the Piercean the statements “There will be a sea battle tomorrow” and
“There will not be a sea battle tomorrow” are both false. As a consequence, the Piercean
blocks both Themistocles’s and Leonidas’s argument by denying (F ), the Future Excluded
Middle: ̸|=P T φ ∨ T ¬φ, even though every instance of the Excluded Middle, including
T φ ∨ ¬T φ, remains valid.

By contrast, the true futurist makes a clear distinction between truth and settled truth.
For the true futurist, true propositions about the future can also be contingent, and there is
no contradiction is asserting: “We will hold the pass tomorrow, yet we may not hold it.” As
a consequence, neither (O) nor (M) are valid, which allows the true futurist to block both
Themistocles’s and Leonidas’s argument by denying one of its premises, while preserving
classical logic and the validity of (F ).

Finally, the supervaluationist accepts both the Future Excluded Middle (F ) and that
truth coincides with settled truth, as φ |=S 2φ. The supervaluationist also accepts the
validity of (O), although one has to be careful here: a formula of the form φ ∧ 3¬φ may
never be supertrue or true at a moment simpliciter, but it may be satisfied relative to a
moment in time and a timeline. Although it preserves all the validities of classical logic, the
supervaluationist blocks Themistocles’s and Leonidas’s arguments by rejecting both classical
inference patterns (C) and (D).
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|=P |=S |=T |=O

(F ) ⊢ T φ ∨ T ¬φ × � � �
(M) T φ ⊢ 2T φ � � × ×
(O) T φ,3T ¬φ ⊢ ⊥ � � × �
(C) φ ⊢ χ&ψ ⊢ χ⇒ φ ∨ ψ ⊢ χ � × � �
(D) Γ, φ ⊢ χ& Γ, ψ ⊢ χ⇒ Γ, φ ∨ ψ ⊢ χ � × � ×

Table 5.1: Orthofuturism vs. Branching-Time Solutions

As we can see summarized in Table 5.1, the orthofuturist’s position is the only one that
offers a different diagnosis for each one of the arguments from Section 5.2. As a consequence,
the orthofuturist’s position can be seen as a rather nuanced view that agrees in some respect
with each of the three branching-time positions. Against the Piercean and the supervalu-
ationist, the orthofuturist agrees with the true futurist that truth is distinct from settled
truth and that the openness modality should not collapse. For this reason, she rejects the
unrestricted validity of (M). Against the Piercean, she also agrees with the supervalua-
tionist and the true futurist that the Future Excluded Middle is valid, although she might
resist going one step further and holding that the tense operator T commutes with negation.
On the other hand, the orthofuturist agrees with the Piercean’s intuition that one may not
assert at the same time that Leonidas’s men will hold the pass and that they may not hold
it. Against the true futurist, she thinks that T φ ∧3T ¬φ is contradictory, and, by contrast
with the supervaluationist, she even goes as far as to agree with the Piercean that its nega-
tion ¬(T φ ∧3T ¬φ) is a theorem. Finally, she agrees with the supervaluationist that some
classical inference patterns are not valid when reasoning about an open future. But while
the supervaluationist objects to both reasoning by cases (C) and reasoning by cases with
side assumptions (D), the orthofuturist needs only to reject the second inference pattern.
She does not argue that our classical understanding of disjunction is flawed but rather that
the logic of the open future fails to be distributive.

As a consequence, orthofuturism emerges as a strong candidate for addressing the sea
battle problem. Indeed, there are strong reasons to reject the Modal Collapse thesis (M).
First, since the converse principle, namely that settled truth implies truth, seems uncon-
troversial, principle (M) therefore amounts to an identification of truth with settled truth.
Intuitively, however, there seems to be a difference between asserting that a certain event E
will happen and asserting that E will happen inevitably. The case can also be made quite
strikingly if one considers the credences that rational agents may have about the future.
Leonidas and his men, knowing that the Persian army vastly outnumbers their forces, may
very well consider it quite likely that they won’t be able to hold the Thermopylae pass for a
second day but very unlikely that the issue is already settled. In other words, their credence
in “We won’t hold the pass tomorrow” may be high without their credence in “Inevitably,
we won’t hold the pass tomorrow” being at least as high. But if we hold that credences
should respect logical entailment, as is commonly admitted, then it follows that “We won’t
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hold the pass tomorrow” cannot entail “Inevitably, we won’t hold the pass tomorrow” and
that we must reject (M).

A second argument against the Modal Collapse thesis comes from a more careful analysis
of the openness modality. As mentioned in Section 5.2, the notion of necessity involved is
meant to capture the intuition of an asymmetry between the past and the present on one
hand, and the future on the other hand. Consequently, the motivation for (M) given above
was to appeal to the fixity of the past and the present. If φ is true now, then it is too late to
change that fact; φ is now inevitable, and therefore 2φ is also true. But if the modality 2 is
meant to capture the particular way in which the past and the present are fixed, by contrast
with the future, then the unrestricted validity of (M) is untenable. This is essentially the
point famously made by Ockham [200], when he distinguishes statements that are about the
past and the present de re, like “John is in heaven now”, from those that are truly about the
future, and about the past or the present merely de dicto, such as “John is predestined” or
“God knows today that John will enter heaven tomorrow”. For Ockham, the fallacy in the
fatalist’s argument resides precisely in the unrestricted application of the Modal Collapse
thesis to statements that may not be genuinely about the past or the present. Regardless of
whether one thinks that Ockhamist solutions to the sea battle problem are satisfactory, the
mismatch between the intuitive justification of (M) and its unrestricted application puts
great pressure on the Modal Collapse thesis.

Lastly, one may consider the dual notion of possibility that arises from endorsing (M).
If one assumes contraposition, then an instance of (M) of the form T p ⊢ 2T p entails
3¬T p ⊢ ¬T p, which, assuming that the operator T commutes with negations, entails
3¬T p ⊢ T ¬p. But clearly that last inference is unacceptable. From the mere fact that
there may not be a sea battle tomorrow, it does not follow that there won’t in fact be a sea
battle tomorrow. Of course, both the Piercean and the supervaluationist admit that such
an inference would yield too strong a notion of possibility, but their endorsement of (M)
means that they can only do so at a high cost. In order to avoid that the tense operator T
commute with negation, the Piercean must reject the Future Excluded Middle, in spite of
its intuitive validity [55]. The supervaluationist, meanwhile, is forced to reject that contra-
position is a valid inference pattern, on top of rejecting reasoning by cases. By contrast, the
orthofuturist’s rejection of (M) allows her to maintain both the Future Excluded Middle
and contraposition as a valid principle and inference pattern respectively.

At the same time, any branching-time solution that rejects (O) arguably comes short
of genuinely securing the openness of the future. If it is not settled whether there will be
a sea battle tomorrow or not, then introducing an asymmetry between the two possible
outcomes seems illegitimate. If time is genuinely branching at any given moment, then no
branch should receive a special ontological status as the one that will actually happen. The
question whether the true-futurist solution to the sea battle problem is compatible with
indeterminism raises difficult and intricate metaphysical issues [8, 15, 67, 178, 225] that are
largely beyond the scope of this chapter. For now, I will limit myself to pointing out that
rejecting the Open Future intuition yields a notion of possibility that is arguably too weak.
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Suppose Leonidas only tells his ally Themistocles that the Greeks may or may not hold
the pass for a second day. Frustrated with Leonidas’s reply, Themistocles hastily consults
the oracle in Delphi, which gives him the following answer: “Leonidas spoke truthfully, yet,
in fact, his men won’t be able to hold the pass for another day”. If Themistocles believes
that the oracle is never wrong, then should the oracle’s reply not be enough of a reason
for Themistocles to retreat with the Greek fleet? For if he chooses instead to try and keep
the Persian fleet at bay for another day, he certainly may be making the right choice but
knows that he will, in fact, be making the wrong one. In other words, once Themistocles
knows that the Greeks will not stop the Persian army at Thermopylae, Leonidas’s (true!)
statement that it is still possible for his men to do so becomes entirely irrelevant.

Of course, the true-futurist could reply that, although true, a future contingent can never
be known in advance, so that Themistocles could never be in a position to know whether
Leonidas and his men would or wouldn’t hold the pass. Although there is a fact of the matter
regarding the Persian army’s victory or defeat on the second day, there is no determinate
fact of the matter, and so the outcome of the battle to come cannot be known in advance.
But clearly the openness of the future that one has in mind when describing the situation
at Thermopylae is not merely epistemic. What prompts Leonidas to tell his ally that they
may hold the pass and they may not hold it is not a mere ignorance of the full situation, but
rather the conviction that some of the facts that will decide the outcome of the battle have
yet to obtain. So the true-futurist must now account for a notion of determinateness that
doesn’t coincide with knowability, as well as argue that the openness of the future is best
understood as the lack of a determinate fact of the matter rather than the lack of a mere
fact of the matter. In that respect, it seems that the true-futurist is no better position than
the “classical indeterminacy theorist” discussed by Field in [92] in the context of vagueness.

To sum up, accepting the Modal Collapse thesis for the openness modality yields a no-
tion of necessity that is too weak to account for the asymmetry between the past and the
future, while rejecting the Open Future intuition, as I argued, threatens to yield a notion of
possibility that is too weak to play any significant role in our reasoning about the future. Yet
because the two principles are classically equivalent, a classical logician must either accept
both the Modal Collapse thesis and the Open Future intuition, or reject both. But this
is precisely where the orthofuturist has an advantage over all the branching-time solutions
discussed here. Because she does not accept the distributive laws, she is able to hold that
the Modal Collapse thesis (M) is false without giving up the Open Future intuition (O). In
doing so, she can allow for a notion of necessity that is strong enough not to be confused with
mere truth and for a dual notion of possibility that is strong enough to secure a genuinely
open future.

Let me conclude this sections by briefly discussing how the orthofuturist can address two
objections that are often raised against any view that upholds a version of the Modal Collapse
thesis or of the Open Future intuition. The first objection raises the assertion problem: if
a view predicts that a contingent statement about the future can never be assertable, then
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how come we do seem to routinely make such statements? The second objection raises the
credence problem: if it is contradictory to hold that statements about the future can be both
true and contingent at the same time, then how come one can have credence 1 that the
future is open regarding whether a sea battle will happen tomorrow and still have positive
credence that the sea battle will in fact occur?

To answer the first challenge, the orthofuturist can essentially follow the strategy outlined
by MacFarlane in [177, Section 9.9], and simply argue that assertions about an open future
are only correct when made by way of ellipsis. Whenever one makes an assertion about a
future contingent, one is merely expressing an intention (“I will come at noon tomorrow”) or
what one takes to be overwhelmingly likely (“This summer will be hotter than the previous
one”). Under that view, asserting future contingents is technically incorrect, but pragmat-
ically justifiable. But the orthofuturist can in fact go one step further. Because she does
not accept Modal Collapse, there is a sense in which she might view an assertion about
a future contingent valuable even if it cannot be ascribed a classical truth-value. Indeed,
unlike the Piercean, she does not view future contingent statements as false, and, unlike the
supervaluationist, she also does not view them as having an undefined truth-value. Rather,
because she rejects the principle of bivalence, she thinks that statements about the future
may have semantic values that go beyond truth and falsity. This opens up the possibility for
the orthofuturist of developing a theory of assertion in which asserting statements that are
not classically true can be justifiable, provided that they are also not classically false and
have a determined semantic value.

Regarding the credence problem, there are at least two ways that the orthofuturist could
reply. First, recall that although ¬(T p ∧ 3T¬p) is a theorem of OF, we do not have that
T p ∧ ¬2T p ⊢OF ⊥. In other words, although the orthofuturist thinks the sentence “There
will be a sea battle tomorrow and it’s open that there won’t be one” is contradictory (and
thus should always receive credence 0), this does not prevent her from thinking that the
sentence “There will be a sea battle tomorrow but it’s not settled that there will be one”
is not contradictory. This means that she could answer the credence problem by arguing
that we do sometimes have positive credence in future contingent propositions, provided that
by this we mean propositions that we take to be true but not settled as true, rather than
propositions that we take to be true even though their negation is open. Once again, it is
worth mentioning that this option is only available to the orthofuturist because, unlike the
Piercean or the supervaluationist, she does not take Modal Collapse to be a valid principle.
Finally, the second option for the orthofuturist is to simply adopt the answer offered by
Holliday and Mandelkern regarding a similar problem for credences in propositions involving
epistemic modals. In a nutshell, the idea is that the revision of classical logic advocated for
in the case of epistemic modals calls for a similar revision of classical probability theory. In
particular, one should not assume that having credence 1 in a proposition φ entails having
equal credence in φ ∧ ψ and in ψ. It is easy to see how this could be used to address the
credence problem. Whenever T p is a future contingent proposition, one could have credence
1 in 3T ¬p and credence .5 in T p, but still have credence 0 in the proposition T p∧3T ¬p.5

5See [138, Section 5] for a more comprehensive treatment of this approach.



5.5. FRAGMENT SEMANTICS 184

5.5 Fragment Semantics

So far, I have presented orthofuturism only from an axiomatic perspective, by laying out
which principles and inference patterns the orthofuturist holds as valid and which ones she
rejects, and I have defined the logic OF as a logic of the open future that captures the ortho-
futurist’s position. In this section, I present a concrete, Kripke-like semantics for this logic.
Unlike the branching-time semantics discussed in the previous section, the basic objects of
this semantics are not fully determined instants organized in a tree-like structure of splitting
timelines, but rather temporal fragments, i.e., partial descriptions of the world at an instant
that may or may not be compatible with one another.6 My goal here is not so much to make
a metaphysical claim about what the actual structure of moments in time may be like if or-
thofuturism is correct but rather to provide a fairly intuitive picture of how an orthofuturist
may conceive of the flow of time.

Because OF is not a classical modal logic, standard possible-world semantics is not a
suitable technical framework for our purposes. Instead, I will present a possibility semantics
for OF that shares many aspects with the semantics for epistemic modals developed by
Holliday and Mandelkern in [138]. Unlike in possible-world semantics, the basic objects of
possibility semantics [135, 140] are not maximal objects such as possible worlds but rather
possibilities, which can be thought of as partial descriptions of possible worlds. Models for
OF will consist of a set S of fragments endowed with a reflexive and symmetric relation △ of
compatibility, an accessibility relation R of openness, and a transition function τ : S → S.
Intuitively, one may think of the compatibility relation △ as determining when two fragments
do not rule one another out (which is not to say, as will become apparent below, that the
two fragments could be combined into a single one). The openness relation R holds from a
fragment s to a fragment s′ whenever everything that is settled at s also holds at s′, while the
transition function τ describes what the future looks like from the point of view of a fragment
s. Formally, the compatibility relation on S allows us to model the orthocomplementation
operation of OF, while the openness relation R and the transition function τ will be used to
handle the necessity operator 2 and the tense operator T respectively.

In possibility semantics, propositions are not evaluated as sets of possible worlds, but
rather as subsets of the domain S of possibilities of a certain kind. Let us consider first the
following definition.

Definition 5.5.1. Let △ be a reflexive and symmetric relation on a set S. A △-fixpoint of
S is a subset A of S such that for any s ∈ S,

s ∈ A⇔ ∀s′△s∃s′′△s′ : s′′ ∈ A.

The set of △-fixpoints of S is denoted F△(S).

6The fragment semantics presented here should not be confused with Fine’s fragmentalism about time
and reality [93]. Fine’s fragments are maximally coherent collections of facts, while the fragments considered
are only partial descriptions of a moment in time.
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Because fragments are only partial descriptions, a fragment s may fail to satisfy a proposition
φ without outright refuting it. In fact, it seems intuitive to say that s refutes φ precisely
when no fragment t compatible with s satisfies φ. Similarly, s may fail to refute φ without
satisfying φ. But if φ is not satisfied at s, then it should at least be possible to refute
it, meaning that there should be a fragment s compatible with t that refutes φ. But this
amounts to requiring that the set of fragments that satisfy φ be a △-fixpoint of S. In what
follows, we will therefore always make sure that the set of fragments satisfying a proposition
is a △-fixpoint.

In order to ensure the soundness of OF with respect to our fragment semantics, we must
impose some conditions on the interaction between the relations △ and R the function τ .
Following [138], let us first introduce the following definition.

Definition 5.5.2. Let S be a set, △ be a reflexive and symmetric relation on S, R another
relation on S and τ a function. Then for any s, s′ ∈ S:

• s refines s′, denoted s ⊑ s′, if ∀z ∈ S(z△s→ z△s′);

• s is compatibly open to s′, denoted s△Rs′, if ∃z : sRz ∧ z△s′;

• s anticipates s′, denoted s△T s′, if ∀z ∈ S(z△s′ → ∃x(s△x ∧ τ(x) ⊑ z)).

Intuitively, a possibility s refines another possibility s′ if s′ only rules out possibilities
that are also ruled out by s. In other words, s imposes more stringent conditions on what
the actual world is like than s′ does. It is straightforward to see that whenever s ⊑ s′ and
A ∈ F△(S), s′ ∈ A implies that s ∈ A, i.e., every proposition true at s′ is also true at s. The
other two notions have a merely technical interest. We are now in a position to define the
adequate frames for our logic:

Definition 5.5.3. A fragment frame is a tuple S = (S,△, R, τ) such that:

1. △ is a reflexive and symmetric relation on S, R is a relation on S and τ is a function
from S to S;

2. For any s ∈ S and any s′△Rs, ∃z△s∀z′△z : s′△Rz′ (Openness propositions are propo-
sitions);

3. For any s ∈ S and any s′△τ(s), ∃z△s∀z′△z : s′△τ(z′) (Future-tensed propositions are
propositions).

4. ∀s ∈ S : sRs (Everything that is settled at s is also true at s);

5. ∀s ∈ S ∃z ∈ S : (s△z∧∀x(z△Rx→ τ(x)△τ(s))) (It is compatible with s that everything
that is true at τ(s) is also settled);

6. ∀s, s′ ∈ S : s△s′ → τ(s)△τ(z) (Two compatible fragments evolve in compatible ways);



5.5. FRAGMENT SEMANTICS 186

7. For any s ∈ S and any s′△s, ∃z : s△T z ∧ z△τ(s′) (Two compatible fragments can
compatibly anticipate each other’s future).

Intuitively, conditions 2 and 3 guarantee that the set of fragments satisfying formulas of
the form 2φ and T φ respectively are △-fixpoints and thus genuine propositions. Conditions
4 and 5 are imposed on the openness relation to ensure that settled truth implies truth,
and that no fragment can both make T φ true and make T ¬φ possible. Finally, condition 6
ensures that a fragment satisfies a formula of the form ¬T φ if it also satisfies the formula
T ¬φ, and condition 7 ensures that the complex operator ¬T ¬ preserves conjunctions. Let
us now see how to interpret L -formulas in fragment frames:

Definition 5.5.4. A fragment model M is a tuple (S,△, R, τ, V ) such that (S,△, R, τ)
is a fragment frame and V is a propositional valuation such that V (p) ∈ F△(S) for any
propositional variable p. The satisfaction relation on a fragment model (S,△, R, τ, V ) is
defined inductively for any s ∈ S and any formula φ:

• M, s |= p iff s ∈ V (p);

• M, s |= φ ∧ ψ iff s |= φ and s |= ψ;

• M, s |= ¬φ iff s′ ̸|= φ for any s′△s;

• M, s |= 2φ iff s′ |= φ for any s′ such that sRs′;

• M, s |= T φ iff τ(s) |= φ.

Let F be the class of all fragment frames. We define the relation of logical consequence in
the standard way: for any two formulas φ, ψ, ψ is a logical consequence of φ with respect to
F, denoted φ |=F ψ, if for any fragment frame S = (S,△, R, τ), any fragment model M based
on S and any s ∈ S, M, s |= φ implies M, s |= ψ. One can show in a straightforward way
that the logic OF is sound and complete with respect to this semantics (see Theorem 5.8.7
in Section 5.8.2 for a proof).

To get a feel for fragment semantics, let us consider in some detail the fragment model M
presented in Figure 5.4, where p stands for “There is a sea battle”. The compatibility relation
△ is represented by black lines and the relation R arrows (reflexive lines being omitted for
both), while the function τ is represented by blue arrows. The model is determined by
the valuation mapping p to the black dot in Figure 5.4, i.e., the valuation V such that
V (p) = {x1}. Intuitively, the bottom row, which is structurally similar to the Epistemic
Scale of [138], represents all the present possibilities regarding the sea battle to come, while
the top row represents three possible futures: one in which the sea battle is settled as
happening, one in which the sea battle is settled as not happening, and one in which the
issue is still open.7 It is straightforward to verify that M is a fragment model. Note in

7Note that the transition function is reflexive on the fragments in the top row. Consequently, the model
describes a high-stakes situation: whether there is a sea battle tomorrow will determine whether the world
will be in a state of eternal war or eternal peace. This choice is in no way forced upon us, but one advantage
is that this makes our toy model finite (unlike the model in Figure 5.5 below).
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particular that {x1} ∈ F△(S), since any s distinct from x1 is compatible with some s′ that
is incompatible with x1. Our semantic clauses imply that M, s1 |= T p, since τ(s1) = x1. At
the same time, M, s1 |= 2T p if and only if M, τ(s) |= p for all s such that s1Rs. But s1Rr
and τ(r) = z, so in fact M, s1 ̸|= 2T p. Intuitively, because the future fragment from the
point of view of s1, which is x1, differs from the future fragment of the accessible fragment r,
which is z, s1 is a fragment in which a sea battle will happen tomorrow, but not in a settled
way. At the same time, we may also check that M, s1 ̸|= 3T ¬p. Given the equivalence
between 3T ¬p and ¬2¬T ¬p in our semantics, it is enough to show that there is s′△s1 such
that M, s′ |= 2¬T ¬p. Clearly, s2 is such a point.

z y1x1

r t1 t2s1s2

3T p ∧3T ¬p2T p T p T ¬p 2T ¬p

2p 2¬p2p ∨2¬p

Figure 5.4: The fragment model M.

Similarly, we may consider the fragment r. It is straightforward to verify that M, z ̸|= p
and M, z ̸|= ¬p, from which it follows that M, r ̸|= T p and M, r ̸|= T ¬p. However, any
fragment s compatible with r is compatible with a fragment s′ that models either T p or
T ¬p, from which it follows that M, r |= T p ∨ T ¬p. In fact, r satisfies the even stronger
condition T 2p ∨ T 2¬p. At the same time, because the only fragment satisfying 2T p and
2T ¬p are s2 and t2 respectively, we have that M, r |= 3T p ∧3T ¬p. In other words, from
the point of view r, the sea battle tomorrow is completely undetermined: it is possible that
it will happen, and, in fact, r does not rule out that it is already true that it will happen.
But it is equally possible that it won’t happen, and r does not rule out that it is already
true that it won’t happen, since r△t1.

Of course, that the possibility of a sea battle not happening tomorrow is compatible with
the fact that a sea battle will in fact happen does not mean that both facts can be realized
by one and the same fragment. In other words, just because s1 and r are compatible, this
does not mean that they are compossible, i.e., that there is a fragment that refines both of
them. Indeed, as noted by Holliday and Mandelkern in [138], the logic of a possibility frame
is classical exactly when compatibility implies compossibility, i.e., when any two compatible
possibilities have a common refinement.

Let me conclude this section by briefly comparing fragment semantics with branching-
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time semantics. A first contrast between the two models is the way in which the openness
of the future is secured. While branching-time semantics is built on the idea that a single
moment in time may have several distinct futures, every fragment in a fragment frame has
a unique future fragment, determined by the transition function τ . But unlike instants in
a branching model, fragments are not maximally consistent descriptions of ways the world
could be, but only partial descriptions, able to be extended in various incompatible ways. In
other words, for the orthofuturist, the openness of the future does not follow from the fact
that there could be many mutually incompatible and completely determined futures lying
ahead but rather from the fact that, as of now, the unique future lying ahead of us is not
completely determined. Moreover, this incompleteness is cashed out by the fact that an open
future does not rule out alternative fragments with which it is nonetheless not compossible.
From today’s point of view, the future does not rule out tomorrow’s sea battle, nor does
it rule out the absence of such a sea battle. But obviously no future can be a fragment in
which the sea battle happens, does not happen, and may or may not happen all at once.

A second difference between the two kinds of models is the way in which they account
for the flow of time. A branching-time model provides a purely external perspective on
time: as time passes by, we move from one point to the next on the tree of moments in time
according to one of the possible timelines determined by the model. By contrast, fragment
models adopt an internal perspective. As time passes by, the moment that best describes
the actual world is not entirely determined by the moment that best described it a moment
ago and the transition function τ . If it is still open whether there will be a sea battle tomor-
row, then, from today’s point of view, a sea battle is neither happening nor not happening
tomorrow. But come tomorrow, the fragment in which the sea battle is neither happening
nor not happening will not be an optimal description of the actual world. Rather, it will
be another fragment, compatible with that one, that settles the sea battle as happening or
as not happening. In other words, what the future looks like today is not what it will look
like when it becomes the present. If the future is genuinely open, this seems like a rather
obvious observation, but it is a key feature of the fragment semantics presented here and, as
such, it will play a significant role in the next section.

5.6 Orthofuturism and Relativism

In this section, I turn to discussing the relationship between orthofuturism and MacFar-
lane’s recent relativist solution [178, 179] to the sea battle problem. MacFarlane argues that
there are two competing intuitions regarding statements about the future. According to
the indeterminacy intuition, some statements about the future such as “There will be a sea
battle tomorrow” are neither true nor false, because at the time that they are uttered the
future could still unfold in different ways. On the other hand, according to the determinacy
intuition, once tomorrow has arrived and the sea battle has or has not happened, the state-
ment uttered the day before retrospectively seems to have had a definite truth value. Once
Leonidas’s men have managed to hold off the Persians for one more day, they rejoice and
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agree that, after all, it was true that they would hold the pass. MacFarlane argues that both
intuitions are correct and should therefore be preserved, despite their apparent inconsistency.
His proposal is to relativize the truth of a statement not only to a context of utterance (the
moment at which the statement is uttered), but also to a context of assessment (the mo-
ment from which the truth-value of the statement is assessed). Thus as assessed on the first
evening by Themistocles, the statement “There will be a sea battle tomorrow” is neither true
nor false. But assessed from the second evening, after which his fleet destroyed a small patrol
of isolated Persian ships, Themistocles can now consider that that statement was true after
all. In other words, MacFarlane agrees with the supervaluationist that a statement about
the future cannot be contingent, i.e., true in some timelines and false in some others, and
yet true, as long as its truth-value is assessed at a moment that belongs to such disagreeing
timelines. But since timelines must split eventually, MacFarlane argues that, in the long
run, the true-futurist is right, but only retrospectively : some statements were true when they
were uttered, even though they were only contingently so at that time.

Because MacFarlane’s determinacy intuition involves looking into the past in an essential
way, it is worth discussing first how to add a backwards-looking modality to OF. Just
as temporal logic has both forward looking and backward looking operators, we may add
a “Yesterday” connective Y as a counterpart to our “Tomorrow” connective T . We can
therefore define the language LY generated by the following grammar:

φ ::= p | ⊥ | ¬φ | φ ∧ φ | 2φ | T φ | Yφ

where again p belongs to a countably infinite set of propositional variables. What conditions
should we impose on the interplay between the two temporal modalities? A simple and
attractive option is to treat Y as an inverse of T , in the sense that for any formula φ, we
should have that T Yφ is equivalent to φ and φ is equivalent to YT φ. A convenient way to
spell out this requirement is to impose the following conditions on our logic:

L1 Yφ ⊢ ψ implies φ ⊢ T ψ;

L2 φ ⊢ T ψ implies Yφ ⊢ ψ;

R1 T φ ⊢ ψ implies φ ⊢ Yψ;

R2 φ ⊢ Yψ implies T φ ⊢ ψ.

One can verify that, over OF, the conjunction of L1 and L2 is equivalent to the conditions
φ ⊢ T Yφ and YT φ ⊢ φ, together with the monotonicity of Y , i.e., the condition that φ ⊢ ψ
implies Yφ ⊢ Yψ. Similarly, the conjunction of R1 and R2 is equivalent to the conditions
φ ⊢ YT φ and T Yφ ⊢ φ, together with the monotonicity of Y .

It is worth noting that L1 and L2 are conditions that intuitively follow the flow of time,
while R1 and R2 are conditions that “go against” the flow of time. Intuitively, L1 and L2
assert that the way in which the past affects the present is the same as the way in which the



5.6. ORTHOFUTURISM AND RELATIVISM 190

present affects the future. A similar intuition applies to the equivalent principles φ ⊢ T Yφ
(“There is a sea battle occurring today; therefore tomorrow it will be the case that there was
a sea battle occurring the day before”) and YT φ ⊢ φ (“Yesterday it was the case that there
would be a sea battle the next day; therefore there is a sea battle today”): in both cases, the
truth of a proposition at a certain time entails the truth of another proposition at a later
time. By contrast, R1 and R2 go in the opposite direction, as they assert that the way
in which the future affects the present is the same as the way in which the present affects
the past and are equivalent to the principles φ ⊢ YT φ (“There is a sea battle occurring
today; therefore yesterday it was the case that there would be a sea battle the next day”)
and T Yφ ⊢ φ (“Tomorrow it will be the case that there was a sea battle occurring the day
before; therefore there is a sea battle occurring today”). One might therefore be tempted
to introduce two distinct operators Y and W , satisfying conditions L1-L2 and R1-R2
respectively. Although we cannot pursue this option here, this seems like a promising way
of formalizing Plantinga’s distinction between soft and hard facts about the past [67, 208],
i.e., between facts regarding the past that depend in some way on the future and facts that
do not. One could indeed argue for the intuitive validity of the “forward-looking” rules
YT φ ⊢ φ and φ ⊢ T Yφ when Y is interpreted as “It was a hard fact yesterday that”,
and for the validity of the “backward-looking” rules T Wφ ⊢ φ and φ ⊢ WT φ when W is
interpreted as “It was a soft fact yesterday that”. For now, let us define the logic OFY as
the smallest relation ⊢ on LY satisfying conditions 1-11, L1, L2, R1 and R2.

Fragment frames can be modified in a straightforward way to provide a semantics for
OFY.

Definition 5.6.1. A linear fragment frame is a fragment frame (S,△, R, τ) such that τ is a
bijection and for any s ∈ S and any s′△τ−1(s), ∃z△s∀z′△z : s′△τ−1(z′).

By requiring the transition function τ to be a bijection, we can therefore define the past
of any fragment s as τ−1(s), i.e., as the unique fragment s′ such that τ(s′) = s. A OFY
model M is defined in the natural way, by letting M, s |= Yφ iff M, τ−1(s) |= φ. The proof
of the following theorem is postponed to Section 5.8.3.

Theorem 5.6.2. The logic OFY is sound and complete with respect to linear fragment
frames.

Let us now return to MacFarlane’s relativism. How does the orthofuturist position com-
pare to MacFarlane’s? Fragment semantics can certainly account for the indeterminacy in-
tuition. If we consider again the model M depicted in Figure 5.4, we have that M, z1 ̸|= T p
and M, z1 ̸|= T ¬p, which one can interpret as the truth-value of the statement T p not being
determined at z1. At the same time, if the orthofuturist endorses R1, then φ ⊢ YT φ becomes
a theorem of her logic, which seems to establish that she can account for the retrospective
determinacy intuition as well. However, there is a major difference between orthofuturism
and MacFarlane’s relativism. For the relativist, an utterance can be both true and contin-
gent in the right context of assessment, while this is a contradiction for the orthofuturist.
Indeed, if one considers again the branching time model presented in Figure 5.3, then the
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z y1 y2x1x2

r t1 t2s1s2

3T p ∧3T ¬p2T p T p T ¬p 2T ¬p

YT pY2T p YT ¬p Y2T ¬p

Figure 5.5: The model N

relativist claims that, relative to a context of assessment whose moment is t0, T p is true as
uttered at t, because it is true at t relative to timeline C for every timeline C to which t0
belongs, which in this case is only the timeline {t, t0}. At the same time, 3T ¬p is also true
when uttered at t relative to a context of assessment whose moment is t0, since 3T ¬p is
true at t relative to timeline {t, t0}, as T ¬p is true at t relative to timeline {t, t1}. Unlike
the orthofuturist, the relativist therefore rejects the Open Future intuition (O), even though
only in some specific contexts. Nonetheless, this does not mean that the orthofuturist must
outright reject MacFarlane’s point.

Indeed, the orthofuturist may agree with MacFarlane that the determinacy and indeter-
minacy intuitions are not incompatible, while at the same time maintaining that they are
not compossible. This point can made in a particularly clear way by appealing to fragment
semantics and its internal approach to the flow of time mentioned in the previous section.
For example, one may consider the fragment model N partially depicted in Figure 5.5. Once
again, black lines represent the compatibility relation, red ones the openness relation (with
reflexive loops omitted in both cases), and dotted blue lines represent the transition function.
The underlying frame consists of infinitely many copies of the top row in Figure 5.5 above
infinitely many copies of the bottom row. Since every fragment has both a predecessor and
a successor according to the transition function, τ is a bijection and the past of a fragment
s is precisely the fragment τ−1(s). The model N is determined by the valuation mapping p
to the black fragments in Figure 5.5.

Intuitively, r describes the moment at which Themistocles, after having led his fleet
through the first day of the battle, wonders whether there will be another sea battle on the
next day. In r, the sea battle to come is still a contingent event, and it is neither true that
there will be one nor true that there won’t be one, since the accurate description of the
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future at this point is the fragment z, and z satisfies neither p nor ¬p. On the second day
however, since there is indeed a sea battle occurring between the Persians and the Greeks,
the accurate description of the present is not z anymore, but rather x1. We can check that
N , x1 |= YT p; indeed τ−1(x1) = s1 and N , s1 |= T p because τ(s1) = x1. Because OFY is
valid in N , it follows that N , x1 ̸|= Y3T ¬p, which we can verify easily by noticing that
N , s1 ̸|= 3T ¬p since s1△s2. In other words, although, yesterday (i.e., in r), it was true that
the sea battle could have failed to happen, today (i.e., in x1), it is not the case anymore that
the sea battle could have failed to happen. At the same time, this does not mean that it was
already settled yesterday that today’s sea battle would occur. Indeed, N , s1 ̸|= 2T p, since
N , r ̸|= T p, and therefore N , x1 ̸|= Y2T p. Although it is now settled that the sea battle
would occur, it was not settled yesterday that it would. Crucially, what the future looked
like on the eve of the second day (i.e., z), is not what the present looks like on the second
day (i.e., x1).

The internal perspective on the flow of time adopted by fragment semantics therefore
allows the orthofuturist to account for both the determinacy and the indeterminacy intu-
itions, without having to give up the Open Future intuition. In fact, one may argue that
the relativist’s rejection of (O) stems from a superposition of the internal and the external
perspective. Once we look back at the day before the sea battle happened, the way in which
it could have failed to happen (back then, the present looked like there may not be a sea
battle on the next day) is different from the way in which it was true that it would happen
(now that we look into the day before, we can see that the sea battle was going to happen).
In the latter case, we are simply considering internally what the past looks like from today’s
viewpoint, while, in the former case, we need to adopt an external perspective on what the
past looked like when it was the present. At the same time, even from the internal viewpoint,
a shadow of the way things used to be persists: although it is not true anymore that the sea
battle could have failed to happen (i.e., Y3T ¬p does not hold), it is still not true that it
was bound to happen (i.e., Y2T p does not hold either).

To sum up, the relativist thinks that we can solve the sea battle problem from the
external viewpoint on the flow of time, provided that we establish a distinction between
context of utterance and context of assertion. In doing so, the relativist develops a two-
dimensional theory of meaning in order to resolve the antinomy between the determinacy and
the indeterminacy intuitions. In that sense, her solution is essentially (post)-semantic. By
contrast, the orthofuturist concludes from the fact that the determinacy and indeterminacy
intuitions are never true at the same time that there is no need to reject the Open Future
intuition, even retrospectively. But the price that she has to pay is to give up on the
possibility of an external, all-encompassing view on the flow of time, and this is reflected in
the fact that she must abandon classical logic for orthologic. In that sense, her solution to
the sea battle is logical rather than semantic.
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5.7 Conclusion

Orthofuturism offers a novel approach to the sea battle problem that has the advantage of
making sense both of the intuition of a genuinely open future and of the distinction between
truth and settled truth. As I have argued, the orthofuturist holds a nuanced view in the
debate between those who think that there is one true future and those who think that there
are many equally possible futures ahead of us. Indeed, she thinks that there is only one
future but understands its openness as the fact that it is compatible with other ways that
the world may turn out to be. Unlike the proponent of branching-time semantics, however,
she does not think that all those possible futures coexist as splitting timelines. Rather, she
thinks that compatibility does not imply compossibility, and this is ultimately what leads
her to reject the distributive laws of classical logic and to favor orthologic instead.

Although orthologic is not classical logic, it is a well-established and tractable formal
system, and the algebraic and relational semantics presented here provide powerful tools for
investigating the interactions between tense and modality beyond the distributive world. At
the same time, there is still much left to explore. On the axiomatic side, a natural next
step would be to investigate the addition of a conditional connective to the logic OFY. The
interaction of tense with conditionals is a subtle problem [253], and one must be particularly
careful in the case of orthologic, as adding a conditional satisfying the deduction theorem
would collapse the logic to classical logic. Nonetheless, a modular approach based on modali-
ties [138] or on weak implication connectives [131] seems promising. Moreover, I do not claim
that the logic I have introduced is the correct logic of the open future. Rather, I believe
that the work presented here motivates further research on logics between pure orthologic
and classical logic, and on extensions of orthologic with operations such as modalities, tense
operators and conditionals. On the semantic side, further exploration of models for OFY is
needed. In particular, a reconciliation of the internal and external perspectives on the flow
of time could be a useful enhancement of fragment semantics. One would also hope that this
could grow into a conception of the orthofuturist’s metaphysics of time that could truly rival
branching time semantics. On both accounts, I suspect that a two-dimensional approach,
similar to Cariani’s recent investigation on classical possibility semantics for the open future
[54], could be fruitful. Whether this will help us come to a fully satisfactory answer to a
century-old problem, however, is a question that is left for future work.

5.8 Technical Appendix

5.8.1 Appendix A

This appendix contains some technical details regarding the algebraic semantics for OF
mentioned in Section 5.3.2. We start with the following definition:

Definition 5.8.1. A bimodal ortholattice is a structure (L,≤,∧,∨,¬, 0, 1,2, T ) satisfying
the following axioms:



5.8. TECHNICAL APPENDIX 194

• (L,≤,∧,∨, 0, 1) is a bounded lattice:

1. ≤ is a partial order on L, i.e., a reflexive, transitive and antisymmetric relation;

2. ∧ and ∨ are functions from L×L to L mapping any pair of elements a, b of L to
their greatest lower bound a∧ b and least upper bound a∨ b in (L,≤) respectively;

3. 0 and 1 are the smallest and greatest elements of L respectively.

• ¬ is an orthocomplementation on L, i.e., a function from L to L such that for any
a, b ∈ L:

4. a ≤ b implies ¬b ≤ ¬a;

5. a = ¬¬a;

6. a ∧ ¬a = 0 and a ∨ ¬a = 1.

• 2 and T are modal operators on L, i.e., functions from L to L such that for any
a, b ∈ L:

7. 21 = 1 and T 1 = 1;

8. 2(a ∧ b) = 2a ∧2b, and T (a ∧ b) = T a ∧ T b.

The reader may consult [138, Section 3] for a detailed description of modal ortholat-
tices and their relationship to Boolean algebras with operators, which provide the standard
algebraic semantics for classical modal logic. In order to isolate the adequate bimodal or-
tholattices for OF, we need to impose some additional conditions on the modal operators,
which correspond in a straightforward way to conditions 11-14 in Definition 5.3.1.

Definition 5.8.2. An OF lattice is a bimodal ortholattice (L,≤,∧,∨,¬, 0, 1,2, T ) such that
for any a ∈ L:

9. 2a ≤ a;

10. ¬T ¬ is also a modal operator on L;

11. T a ∧ ¬2¬T ¬a ≤ 0;

12. T ¬a ≤ ¬T a;

Figure 5.6 presents Hasse diagrams for two simple OF lattices. As is customary in Hasse
diagrams, a line from an element x to an element y pictured above x means that x ≤ y and
that there is no distinct element z such that x ≤ z ≤ y. The modal operator 2 is represented
by red full arrows, and the tense operator T is represented by dashed blue arrows.

We may now define rigorously the notion of a valuation on a OF lattice L.

Definition 5.8.3. Let (L,≤,∧,∨,¬, 0, 1,2, T ) be an OF lattice. A valuation on L is a
function v mapping L -formulas to elements of L so that for any two formulas φ, ψ:
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1

a d ¬c

b ¬b

c ¬d ¬a

0

1

a d ¬c

e b ¬b ¬e

c ¬d ¬a

0

Figure 5.6: The OF lattices O10 and O12

• v(⊥) = 0;

• v(φ ∧ ψ) = v(φ) ∧ v(ψ);

• v(¬φ) = ¬v(φ);

• v(2φ) = 2v(φ);

• v(T φ) = T v(φ).

A formula φ is valid on L if for any valuation v on L, v(φ) = 1. For any two formulas φ and
ψ, ψ is a logical consequence of φ on L, denoted φ |=L ψ, if v(φ) ≤ v(ψ) for any valuation v
on L.

Finally, we have the following soundness and completeness theorem.

Theorem 5.8.4. The logic OF is sound and complete with respect to the consequence relation
|=C: for any two L -formulas φ and ψ, φ ⊢ ψ if and only if φ |=C ψ.

Proof. For soundness, one can check in a straightforward way that the relation |=C satisfies
conditions 1-11 in Definition 5.3.1. Since by definition ⊢ is the smallest relation satisfying
those conditions, it follows that φ ⊢ ψ implies φ |=C ψ for any two L -formulas φ, ψ.

For completeness, assume that φ ⊬ ψ. I claim that there is an OF lattice L and a
valuation v on L such that v(φ) ≰ v(ψ). This lattice is the Lindenbaum-Tarski algebra LOF

of the logic OF, defined as follows. We start by defining an equivalence relation on the set
of L -formulas, letting φ ∼OF ψ iff φ ⊢ ψ and ψ ⊢ φ. That ∼OF is an equivalence relation
follows from conditions 1 and 2 in Definition 5.3.1. Given a formula φ, its ∼OF equivalence
class is denoted φ∗. We may then take as elements of LOF the set L of all equivalence classes
φ∗ for some formula φ and define the following relations and operations for any two formulas
φ, ψ:
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• φ∗ ≤ ψ∗ iff φ ⊢ ψ;

• φ∗ ∧ ψ∗ = (φ ∧ ψ)∗;

• ¬φ∗ = (¬φ)∗;

• φ∗ ∨ ψ∗ = ¬(¬φ∗ ∧ ¬ψ∗);

• 0 = ⊥∗, 1 = ⊤∗;

• 2φ∗ = (2φ)∗;

• T φ∗ = (T φ)∗.

It is a tedious but simple exercise to verify that these operations are well defined and
that LOF = (L,≤,∧,∨,¬, 0, 1,2, T ) is an OF lattice. Now if φ ⊬ ψ, then by construction
φ∗ ≰ ψ∗. But since the map χ 7→ χ∗ for any formula χ is clearly a valuation on LOF, this
implies that there exists an OF lattice L and a valuation v on L such that v(φ) ≰L v(ψ) and
therefore that φ ̸|=C ψ.

5.8.2 Appendix B

This appendix contains some details regarding the fragment semantics for OF presented in
Section 5.5. Recall first that a complete lattice is a partially ordered set L such that any
subset of L has both a least upper bound and a greatest lower bound. The powerset of any
set W of possible worlds ordered by inclusion is a complete lattice, which is precisely what
allows one to think of propositions in classical modal logic as sets of possible worlds. More
generally, given a reflexive and symmetric relation △ on a set S, the map:

A 7→ {s ∈ S | ∀s′△s∃s′′△s′ : s′′ ∈ A}

is a closure operator on the complete lattice of subsets of S. This ensures that the △-fixpoints
of S always form a complete lattice. In fact, more is true:

Theorem 5.8.5 ([42],§§32-4). Let △ be a reflexive and symmetric relation on a set S, Then
the △-fixpoints of S form a complete ortholattice F△(S), with the meet given by intersection
and the orthocomplementation given by ¬△A = {s ∈ S | ∀s′△s : s′ /∈ A}.

. Let us now prove that F△(S) is a complete OF lattice whenever S is a fragment frame.

Lemma 5.8.6. Let (S,△, R, τ) be a fragment frame. Then F△(S) is a complete OF lattice.

Proof. In light of [138, Prop. 4.28], we only need to verify properties 10-12 in Definition 5.8.2.
For any A ⊆ S, we let T A = {s ∈ S | τ(s) ∈ A} and 2RA = {s ∈ S | ∀s′ ∈ S : sRs′ → s′ ∈
A}. It is straightforward to verify that conditions 2 and 3 in Definition 5.5.4 ensure that T
and 2 map △-fixpoints to △-fixpoints.
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For condition 10, note first that given a map f : F△(S) → F△(S) and a relation Q such
that f(A) = {s ∈ S | ∀s′ ∈ S : sRs′ → s′ ∈ A} for any A ∈ F△(S), one easily verifies
that f is a normal modal operator on F△(S). Since ¬△T ¬△ is a composition of maps from
△-fixpoints to △-fixpoints, it also maps △-fixpoints to △-fixpoints. Therefore, is enough to
check that for any △-fixpoint A, ¬△T ¬△A = {s ∈ S | ∀s′ ∈ S : s△T s′ → s′ ∈ A}. Fix a
△-fixpoint A, and assume first that s ∈ ¬△T ¬△A. This means that for any x△s, τ(x) /∈ ¬△A.
Now assume that s△T s′. We want to show that s′ ∈ A. Since A is a △-fixpoint, it is enough
to show that there is y′△y with y′ ∈ A for any y△s′. Fix such a y. By the definition of
the relation △T , there is z such that s△z and τ(z) ⊑ y. By assumption on s, we have that
τ(z) /∈ ¬△A, so there is y′ ∈ A such that τ(z)△y′. But from τ(z) ⊑ y it follows that y△y′.
This shows that s′ ∈ A, and thus that ¬△T ¬△A ⊆ {s ∈ S | ∀s′ ∈ S : s△T s′ → s′ ∈ A}.
For the converse, assume that s /∈ ¬△T ¬△A. This means that there is s′△s such that
τ(s′) ∈ ¬△A. By condition 7 in Definition 5.5.4, there is z ∈ Z such that sδT z and zδτ(s′).
But this means that z /∈ A, and hence that s /∈ {s ∈ S | ∀s′ ∈ S : s△T s′ → s′ ∈ A}. This
completes the proof of condition 10.

For condition 11, fix a △-fixpoint A and assume that s ∈ T A. We need to show that
s /∈ ¬△2R¬△T ¬△A. By condition 5 in Definition 5.5.4, there is z△s such that for any x such
that x△Rz, we have that τ(x)△τ(s). I claim that z ∈ 2R¬△T ¬△A, which will show that
s /∈ ¬△2R¬△T ¬△A. To see this, note that if zRy and x△y, then z△Rx, so τ(x)△τ(s). Since
s ∈ T A, τ(s) ∈ A, so x /∈ T ¬△A. This shows that for any y such that zRy, y ∈ ¬△T ¬△A,
and hence that z ∈ 2R¬△T ¬△A.

Finally, we show that T ¬△A ≤ ¬△T A for any A ∈ F△(S). To see this, assume that
s ∈ T ¬△A. This means that τ(s) ∈ ¬△A. Let s′△s. Then by condition 6 in Definition 5.5.4,
τ(s′)△τ(s), so τ(s′) /∈ A since τ(s) ∈ ¬△A. This shows that s′ /∈ T A for any s′△s and thus
that s ∈ ¬△T A.

This result allows us to prove a soundness and completeness theorem for fragment seman-
tics. The proof is a straightforward adaptation of the soundness and completeness theorem
for the logic EO obtained in [138].

Theorem 5.8.7. The logic OF is sound and complete with respect to OF frames. In other
words, for any two formulas φ and ψ, φ ⊢OF ψ iff φ |=S ψ.

Proof. For soundness, given a fragment model M based on an OF frame (S,△, R, τ), let
[φ]M = {s ∈ S | M, s |= φ}. A straightforward induction shows that [φ]M ∈ F△(S) for
any formula φ, and that the map φ 7→ [φ]M is a valuation on F△(S). But it follows from
this that the consequence relation |=C is a subrelation of |=S, i.e., we have that φ |=C ψ
implies φ |=S ψ for any L formulas φ, ψ. But then soundness follows immediately from the
soundness part of Theorem 5.8.4.

For completeness, recall from the proof of Theorem 5.8.4 that LOF is the Lindenbaum-
Tarski algebra of OF. We consider the frame (F ,△, R, τ), where:

• F is the set of all proper filters F over LOF;
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• for any two filters F,G ∈ F , F△G iff there is no a ∈ F such that ¬a ∈ G, and FRG
iff 2a ∈ F implies a ∈ G;

• for any filter F , τ(F ) = {a ∈ LOF | T a ∈ F}.

Next, I claim that (F ,△, R, τ) is an OF frame and that the map a 7→ pa = {F ∈ F | a ∈ F}
is an injective OF embedding of LOF into F△(F). In light of the proof of Theorem 4.34 in
[138], it is enough to check that conditions 5, 6 and 7 in Definition 5.5.3 are satisfied and

that xT a = T pa for any a ∈ LOF.
Let us start by making the following observations for any F,G ∈ F :

1. F ⊑ G iff G ⊇ F ;

2. F△RG iff 2a ∈ F implies ¬a /∈ G;

3. F△TG iff ¬T ¬a ∈ F implies a ∈ G.

The first two items are seen from the proof of Theorem 4.34 in [138], so I will only prove
the third item. Assume first that F△TG, and assume that ¬T ¬a ∈ F . Note that if a /∈ G,
then G△↑¬a, where ↑¬a is the principal filter generated by ¬a. Hence it is enough to show
that ¬a /∈ H for any H△G. So suppose G△H. Since F△TG, there is K such that F△K
and τ(K) ⊑ H. Now if ¬a ∈ H, then ¬a ∈ τ(K), so T ¬A ∈ K. But this is contradiction,
since ¬T ¬a ∈ F and F△K. Conversely, suppose that ¬T ¬a ∈ F implies a ∈ G, and let H
be such that G△H. Let K = ↑{T a | a ∈ H}. It is straightforward to see that K is a filter
and that H ⊆ τ(K). Moreover, if there is b ∈ F such that ¬b ∈ K, then there is a ∈ H such
that Ta ≤ ¬b. But this means that b ≤ ¬T a, hence that ¬T a ∈ F . By assumption on F
and G, it follows that ¬a ∈ G, but this contradicts G△H. Hence F△K, which establishes
that F△TG.

Let us now show that conditions 5-7 in Definition 5.5.4 hold, starting with condition 5. Fix
some F ∈ F , and let G = ↑{2¬T ¬a | T a ∈ F}. Note that for any a, b, 2¬T ¬a∧2¬T ¬b =
2(¬T ¬a ∧ ¬T ¬b) = 2¬T ¬(a ∧ b) by conditions 8 and 10 in the definition of a OF lattice,
so G is a filter. To see that F△G, suppose there is b ∈ F such that 2¬T ¬a ≤ ¬b for
some T a ∈ F . Then b ≤ ¬2T ¬a, so Ta ∧ ¬2¬T ¬a ∈ F , contradicting condition 11 in
Definition 5.8.2. Moreover, suppose G△RH, and a ∈ τ(F ). Then T a ∈ F , so 2¬T ¬a ∈ G.
Since G△RH, this means that T ¬a /∈ H, and hence ¬a /∈ τ(H). This shows that τ(F )△τ(H),
which completes the proof that condition 5 holds.

To show that condition 6 holds, let F△G ∈ F . Suppose towards a contradiction that
there is a ∈ τ(F ) such that ¬a ∈ τ(G). Then T a ∈ F and T ¬a ∈ G. But T ¬a = ¬T a,
which contradicts F△G. Hence τ(F )△τ(G).

For condition 7, suppose that F△G, and let H = {a | ¬T ¬a ∈ F}. Note that H is a filter
by condition 10 in Definition 5.5.4. Clearly, F△TH. Moreover, if ¬a ∈ τ(G), then T ¬a ∈ G,
so ¬T ¬a /∈ F . But this means that a /∈ H, which shows that H△τ(G) and completes the
proof that condition 7 holds.



CHAPTER 5. ORTHOLOGIC AND THE OPEN FUTURE 199

Lastly, observe that for any a ∈ LOF and any F ∈ F ,

F ∈ xT a⇔ T a ∈ F ⇔ a ∈ τ(F ) ⇔ τ(F ) ∈ pa⇔ F ∈ T pa.

To conclude the proof of completeness, let φ and ψ be formulas such that φ ⊬OF ψ. Then
φ∗ ≰LOF

ψ∗, which implies that xφ∗ ⊈ xψ∗. Letting M be the model based on (F ,△, R, τ) and
determined by the propositional valuation p 7→ pp∗, it follows that there is F ∈ F such that
M, F |= φ but M, F ̸|= ψ. Hence φ ̸|=S ψ.

5.8.3 Appendix C

This appendix discusses semantics for the logic OFY introduced in Section 5.6. We first
adopt an algebraic approach. In order to add a past tense operator to our OF lattices, let
us recall the following standard definition in order theory:

Definition 5.8.8. Let F be a monotone operation on a partial order (P,≤). A left adjoint
of F is a map G : P → P such that for any x, y ∈ P :

Gx ≤ y ⇔ x ≤ Fy.

Dually, a right adjoint of F is a map H : P → P satisfying:

Fx ≤ y ⇔ x ≤ Hy.

This motivates the following definition.

Definition 5.8.9. A OFY lattice is a tuple (L,∧,∨,¬, 0, 1,2, T ,Y) such that
(L,∧,∨,¬, 0, 1,2, T ) is an OF lattice and Y is a both a left- and right-adjoint of T .

Valuations for LP formulas on an OF lattice equipped with an additional operator Y are
defined in the obvious way. A moment’s reflection shows that OFY lattices are precisely the
OF lattices in which conditions L1, L2, R1 and R2 are valid. As a consequence, we have
the following theorem, which is proved in a completely similar way as Theorem 5.8.4.

Theorem 5.8.10. The logic OFY is sound and complete with respect to the class of all OFY
lattices.

One also verifies easily that an OF lattice L induces a OFY lattice if and only if the
operator T is invertible, i.e., there is a monotone map g : L → L such that g(T a) =
T g(a) = a for any a ∈ L. This in turns is equivalent to T being a bijection that reflects the
order, i.e., is such that for any a, b ∈ L, T a ≤ T b implies a ≤ b. The lattice O12 depicted
in Figure 5.6 is such an example. Together with the valuation described in Figure 5.1, this
shows that 2T p ∨2T ¬p is not a theorem of OFY.

We now move on to fragment semantics for OFY. The following is an analogue of
Lemma 5.8.6.
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Lemma 5.8.11. For any linear fragment frame (S,△, R, τ), F△(S) is a OFY lattice.

Proof. Define the operation Y : P(S) → P(S) by letting YA = {s ∈ S | τ−1(s) ∈ A}. It is
easy to verify that the condition on linear fragment frames in Definition 5.6.1 implies that
Y maps △-fixpoints to △-fixpoints. By definition of Y , it is then straightforward to see that
YT A = A = T YA for any A ∈ F△(S) and thus that F△(S) is a OFY lattice.

This lemma allows us to give a soundness and completeness proof which closely resembles
the proof of Theorem 5.8.7.

Theorem 5.8.12. The logic OFY is sound and complete with respect to linear fragment
frames.

Proof. Soundness follows directly from Lemma 5.8.11. For completeness, we consider the
frame defined from the Lindenbaum-Tarski algebra LOFY of OFY in the same way as the
frame defined in the proof of Theorem 5.8.7. Since Y has a left adjoint, it preserves meets,
meaning that for any proper filter F on LOFY, we have that υ(F ) = {a ∈ LOFY | Ya ∈ F} is
a proper filter such that τ(υ(F )) = υ(τ(F )) = F . This shows that τ is invertible. Moreover,
suppose that υ(F )△G, and let H = {¬Y¬a | a ∈ G}. I claim that H is a filter. To see this,
observe that, since Y has a right adjoint, it preserves all joins. But this implies at once that
¬Y¬ preserves all meets, which is enough to show that H is a filter. Now if b ∈ H, then
b = ¬Y¬a for some a ∈ G. But then ¬a /∈ υ(F ), which means that ¬b = Y¬a /∈ F . Hence
H△F . Moreover, suppose that K△H. I claim that G△υ(H). To see this, assume a ∈ G.
Then ¬Y¬a ∈ H, so Y¬a /∈ K. But this means that ¬a /∈ υ(H).

This shows that the condition from Definition 5.6.1 is satisfied and thus that the fragment
frame of filters on LOFY is a B-OF frame. Finally, one easily checks that Ypa = xYa for any
a ∈ LOFY, which completes the completeness proof.
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Chapter 6

Possibility Semantics for First-Order
Logic

The second part of this dissertation will focus on a different aspect of the research program
in possibility semantics. While in the first part we were concerned with possibility semantics
for various kinds of non-classical propositional logics, from now on we will be exploring
some applications of possibility semantics for classical first-order logic. Moreover, while the
applications of possibility semantics we explored in the first part were mostly technical, here
we will be mostly concerned with philosophical and foundational applications.

Possibility semantics for first-order languages is arguably less developed than its proposi-
tional counterpart. The seminal work on the topic is a manuscript by van Benthem [23], and
a detailed presentation can be found in [135]. From a mathematical perspective, it shares a
lot with the technique of forcing in set theory, especially the correspondence between forcing
extensions and Boolean-valued models [10], and with a specific kind of sheaf semantics in
topos theory [181]. These connections will be explored in more detail in Sections 7.4 and 7.5
below. From a philosophical perspective, possibility semantics can be seen as a general-
ization of Kripke semantics for first-order modal logic with a constant domain. In Kripke
semantics, models are collections of possible worlds, which can be identified with maximal
sets of consistent formulas. By contrast, the points in a possibility structure are “partial”
worlds, i.e., they correspond to consistent sets of formulas that may contain neither a formula
nor its negation. Points in a possibility structure are naturally ordered by how informative
they are, where a point is more informative than another if it satisfies more formulas. In
that respect, possibility semantics can also be seen as a variation on Kripke semantics for
first-order intuitionistic logic, again with constant domains. The crucial difference however
lies in the semantic clauses for disjunction: in possibility semantics, a disjunction may be
satisfied at a point p without any of the disjuncts being satisfied at p. This is what allows
the law of excluded middle to always be true at a partial world, even when that world is not
maximally determined.

An attractive feature of first-order possibility semantics is the existence of a fully con-
structive completeness theorem for first-order logic, while the usual completeness theorem
for first-order logic with respect to Tarskian semantics is known to require the Axiom of



6.1. POSSIBILITY STRUCTURES 204

Choice (see [11], p. 140). This makes possibility semantics a very natural option for the
development of model-theoretic techniques in a semi-constructive setting. In fact, the com-
mon thread among the next three chapters will be the notion of a generic power. Generic
powers are a special kind of possibility structures which are meant to be an analogue of
ultrapowers in classical model theory. Because non-trivial ultrapowers require the existence
of non-principal ultrafilters, their use is highly non-constructive. In the next three chapters,
we will see how generic powers can be used to avoid this problem in a constructive and semi-
constructive setting. More generally, this will also give us a good opportunity to test the
potential of possibility semantics for reproducing important pieces of classical mathematics
in a semi-constructive setting.

The first chapter will be concerned with the foundations of nonstandard analysis. I will
show that one can provide a rigorous and elegant foundation for nonstandard analysis à la
Robinson in a semi-constructive setting, and I will argue that this approach solves a number
of issues regarding the foundational status of the hyperreal line and whether the methods of
nonstandard analysis can legitimately be applied to ordinary mathematics.

In the second chapter, we will be interested in a recent debate in the philosophy of the
infinite regarding an alternative to the Cantorian notion of size known as the theory of
numerosities, and a related issue in the philosophy of probability theory having to do with
the recent development of Non-Archimedean Probability theory. Both proposals are heavily
influenced by nonstandard analysis, and rely heavily on ultrapowers. I will argue that
an alternative approach to numeorisities and Non-Archimedean Probability theory based
on possibility structures and generic powers is well-equipped to address the most serious
objections that have been raised against both theories, and that possibility structures are
uniquely suited to model the Euclidean infinite, an alternative to the Cantorian infinite that
preserves Euclid’s common notion that the whole is always strictly greater than any of its
proper parts.

Finally, the last chapter will also be concerned with a non-Cantorian conception of the
infinite, but our focus will be more historical. I will argue that possibility structures can be
a powerful tool in providing a rich and coherent formal reconstruction of ninteenth-century
mathematician Bernard Bolzano’s views on infinite sums and infinitely large quantities.

In the rest of this introductory chapter, I will present the basics of possibility semantics
for classical first-order logic, before introducing generic powers and proving three results
about those that will play a crucial role throught the next three chapters.

6.1 Possibility Structures

In what follows, I will introduce some basics about possibility semantics for first-order logic,
starting from the definition of satisfaction in a possibility structure. Let me mention first
that I will define first-order possibility structures in a slightly different fashion than in [135],
by introducing a minor alteration to the way Holliday defines the interpretation of functions
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symbols. The motivation for this choice is purely technical. As Holliday remarks in [135,
fn. 20], this modification is of no real significance for the constructive completeness theorem
obtained in [135, Theorem 4.3.8].

6.1.1 Forcing Semantics

Definition 6.1.1 (Possibility structure). Let L be a first-order language. A possibility
structure is a tuple (P, D,I ) such that:

• P = (P,≤) is a partially ordered set (poset for short) of viewpoints ;

• D is a set of guises ;

• I is a function mapping any p ∈ P and any n-ary relation symbol R (including the
equality symbol =) in L to a subset of Dn, and any n-ary function symbol f in L to
a function from Dn into D, so that for any p, q ∈ P , any n-ary relation R in L , any
n-ary function symbol f and any n-tuple a, the following conditions hold:

Persistence If a ∈ I (p,R) and q ≤ p, then a ∈ I (q, R);

Refinability If a /∈ I (p,R), then there is q ≤ p such that for all r ≤ q, a /∈ (r, R);

Equality-as-equivalence I (p,=) is an equivalence relation on D ×D;

Equality-as-congruence if a = (a1, ..., an) and b = (b1, ..., bn) is an n-tuple such
that (ai, bi) ∈ I (p,=) for all i ≤ n, then (I (f)(a),I (f)(b)) ∈ I (p,=), and
a ∈ I (p,R) iff b ∈ I (p,R).

Intuitively, any point in a possibility structure provides us with a “partial viewpoint”
on how the model actually looks. In particular, the “guises” in the domain D are not
objects themselves, but merely distinct ways of presenting objects. Two different guises may
actually correspond to one and the same object from one viewpoint, hence the need for the
relation symbol for equality to be interpreted as an equivalence relation, rather than as strict
equality. As we move from less informative viewpoints to more informative ones, more guises
are identified with one another, and more information is gained regarding the relations that
hold between the objects that the guises designate. The persistence condition encapsulates
the idea that the partial order on the poset does indeed capture the increase of information
between viewpoints: no information is lost when we move from a viewpoint to a stronger
viewpoint.1 The refinability condition, by contrast, ensures that our information states,

1For a reader unfamiliar with forcing, it might seem counterintuitive that a “smaller” viewpoint is also a
“stronger” one. But if one take a viewpoint p to stand in for “all the ways compatible with p in which the
model could actually be” and the relation ≤ to indicate containment, then it is straightforward to see that
p ≤ q precisely when “all the ways compatible with p in which the model could actually be” are also “ways
compatible with q in which the model could actually be”, thus meaning that p imposes stronger conditions
than q on what the model could actually be. It is worth mentioning that nothing really hinges upon this
choice of defining “less than” as “stronger than”, rather than “weaker than”, although, as it will become
more apparent later on, doing so underscores the tight connection between possibility semantics, forcing,
and sheaf semantics.
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while partial, are as informative as they could be. More precisely, it is the contrapositive of
the following “sure thing” principle: if no further refinement of our current viewpoint could
make sure that the tuple a does not stand in relation R, then we might as well conclude
already that the tuple a does stand in relation R. This refinability condition is what sets
apart possibility semantics from Kripke semantics for first-order intuitionistic logic. It also
appears in the inductive definition of satisfaction of a formula, to which I now turn.

Definition 6.1.2 (Forcing relation). Let M = (P, D,I ) be a L -possibility structure for
a first-order language L . The forcing relation ⊩ is inductively defined for any p ∈ P , any
L -formula φ(x) with n free variables, and any n-tuple a of elements of D as follows:

• If φ := R(t1(x1), ..., tj(xj)), where t1, ..., tj are L -terms of arity n1, ..., nj summing up
to n and R is a j-ary relation symbol, then

p ⊩ R(t1(a1), ..., tj(aj)) iff (I (t1)(a1), ...,I (tj)(aj)) ∈ I (p,R),

where a = a1...aj, ai is an ni-ary tuple for any i ≤ j, and the interpretation of an
L -term is inductively defined from the interpretation of function symbols as usual;

• If φ := ¬ψ, then p ⊩ φ iff for all q ≤ p, q ⊮ ψ;

• If φ := ψ ∧ χ, then p ⊩ φ iff p ⊩ ψ and p ⊩ χ;

• If φ := ψ ∨ χ, then p ⊩ φ iff for all q ≤ p there is r ≤ q such that r ⊩ ψ or r ⊩ χ;

• If φ := ψ → χ, then p ⊩ φ iff for all q ≤ p, q ⊩ ψ implies q ⊩ χ;

• If φ := ∀xψ, then p ⊩ φ iff p ⊩ ψ(a) for every a ∈ D;

• If φ := ∃xψ, then p ⊩ φ iff for all q ≤ p there is r ≤ q such that r ⊩ φ(a) for some
a ∈ D.

Given a L -formula φ and an n-tuple a, φ(a) is valid in M (denoted M |= φ(a)) if p ⊩ φ(a)
for all p ∈ P .

The forcing clauses introduced above are of course reminiscent of both Kripke semantics
and the forcing relation in set theory. The refinability condition appears in the clauses
for disjunctions and existentials, which can be straightforwardly derived from the clauses for
negations, conjunctions and universals and De Morgan’s laws. From an algebraic perspective,
they also ensure that every L -sentence is given a value in a Boolean algebra of subsets of
the poset P . More precisely, we may introduce the following notation:

Notation 6.1.3. Given an L -formula φ(x) with n free variables and a n-tuple a, the r-value
of φ(a) is the set Jφ(a)K = {p ∈ P | p ⊩ φ(a)}.
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Then a simple induction on the complexity of formulas shows that Jφ(a)K is always a
regular-open subset of P , i.e., that for any p ∈ P :

p ∈ Jφ(a)K ⇔ ∀q ≤ p ∃r ≤ q : r ∈ Jφ(a)K.

Since the regular open sets of any poset always form a Boolean algebra [41, 106], one may
therefore think of a possibility structure as a generalized Tarskian model in which sentences
are Boolean-valued rather than 2-valued (the relationship with Boolean-valued models will
be discussed in more detail in Section 7.5). In fact, Tarskian structures are precisely those
possibility structures M = (P, D,I ) in which P is a single element poset, and the equality
symbol is interpreted as the identity relation. Moreover, first-order logic is still sound with
respect to this larger class of models, but the proof that it is also complete can now be
carried out even in the absence of the Axiom of Choice:

Theorem 6.1.4 ([135], ZF). For any first-order language L , first-order logic is sound and
complete with respect to the class of L -possibility structures.

6.1.2 Possibility Embeddings

Let us now introduce some basic results about embeddings between possibility structures.
My goal here is not to develop a full-fledged analogue of basic model-theoretic tools for
possibility structures (see [23] for some results in this direction) but merely to prove some
lemmas that will come in handy in the next chapters when exploring the properties of several
possibility structures. I start by recalling the following definition.

Definition 6.1.5. Let P = (P,≤P) and Q = (Q,≤Q) be posets. An order-preserving map
π : P → Q is weakly dense if for any p ∈ P and any q ∈ Q such that q ≤Q π(p), there is
p′ ≤P p ∈ P such that π(p′) ≤Q q. The map π is dense if for any q ∈ Q there is p ∈ P such
that π(p) ≤Q q.

Weakly dense maps are the correct notion of r-value-preserving maps, since any weakly
dense map π : P → Q induces a complete Boolean-homomorphism π∗ : RO(Q) → RO(P)
given by the inverse image function. If π is also dense, then π∗ will be injective. Possibility
structures differ from Tarskian structures in having an order-theoretic structure on top of
a domain of individuals. Consequently, a natural way to adapt the notion of embedding
between Tarskian structures to the setting of possibility semantics is to consider a pair of
maps where the first map is a weakly dense map between the underlying posets and the
second one is a function between the underlying domains. Perhaps surprisingly, the most
fruitful notion is actually one in which the domains and codomains of the two maps are
“crossed”.

Definition 6.1.6. Let P = (P, D,I ) and Q = (Q, E,J ) be two possibility structures
in the same language L . A possibility embedding (p.e. for short) is a pair (π, α) such that
π : Q → P is weakly dense, and α : D → E has the following properties for any q ∈ Q,
a ∈ D, function symbol f ∈ L and relation symbol R ∈ L :
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• Q |= f(α(a)) = α(I (f, a));

• π(q) ⊩ R(a) ⇔ q ⊩ R(α(a)).

A p.e. (π, α) is dense if π is a dense map and elementary (e.p.e. for short) if π(q) ⊩ φ(a) iff
q ⊩ φ(α(a)) for every q ∈ Q, a ∈ D and L -formula φ(x).

Just like in classical model theory, elementary possibility embeddings preserve all the
first-order properties of their domain and can be characterized by a criterion for existential
formulas, as shown by the Density Lemma.

Lemma 6.1.7 (Density Lemma). Let M = (P, D,I ) and N = (Q, E,J ) be two possibility
structures in the same signature L , and assume that (π, α) : M → N is a p.e. Then:

1. (π, α) is elementary iff it satisfies the following “Tarski-Vaught” criterion:

(TV) For any q ∈ Q, a ∈ D and φ(x, y) ∈ L , if q ⊩ φ(α(a), c) for some c ∈ E, then
there is p ≤P π(q) and b ∈ D such that p ⊩ φ(α(a), α(b)).

2. If (π, α) is dense and elementary, then M |= φ(a) iff N |= φ(α(a)) for any L -formula
φ(x) and any a ∈ D.

Proof. Let us start by proving item 1. Suppose first that (π, α) is elementary, and assume
that q ⊩ φ(α(a), c) for some c ∈ E. Then π(q) ⊩ ∃yφ(a, y). Since (π, α) is elementary, this
means that p ⊩ ∃yφ(a, y). Hence there is p ≤P π(q) and b ∈ D such that p ⊩ φ(a, b). By

elementarity of (π, α) again, it follows that π(p) ⊩ φ(α(a), α(b)).
Conversely, suppose now that (π, α) satisfies (TV). Note first that the statement that

(π, α) is elementary is equivalent to the statement that π∗(Jφ(a)KP) = Jφ(α(a))KQ for any
formula φ(x) and any tuple a ∈ D. We show the latter by induction on the complexity of
the formula φ(x). By assumption, we have that π∗(Jφ(a)KP) = Jφ(α(a))KQ for any atomic
formula φ(x) and any a ∈ D. Moreover, the Boolean cases of the inductive step immediately
follow from the fact that π∗ is a complete Boolean homomorphism, which is true since π is
weakly dense. Hence we only need to verify the existential step. I claim that we have the
following chain of identities:

π∗(J∃xφ(a, x)KP) = π∗(
∨
b∈D

Jφ(a, b)KP)

=
∨
b∈D

π∗(Jφ(a, b)KP)

=
∨
b∈D

Jφ(α(a), α(b))KQ

=
∨
c∈E

Jφ(α(a), c)KQ

= J∃xφ(α(a), x)KQ.
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The first and last identities hold by the semantic clauses of possibility semantics, while the
second and third hold because π∗ is a complete Boolean homomorphism and by induction
hypothesis respectively. Hence we only need to verify the fourth identity. The left-to-right
inclusion is trivial, and the right-to-left inclusion follows in a straightforward way from (TV).
This completes the proof of item 1.

For item 2, suppose that (π, α) is elementary. Since π is dense, π∗ is an injective Boolean
homomorphism and hence π∗(U) = Q iff U = P for any U ∈ RO(P). But this means that
we have the following chain of equivalences for any L -formula φ(x) and a ∈ D:

M |= φ(a) ⇔ Jφ(a)KP = P

⇔ π∗(Jφ(a)KP) = π∗(P)

⇔ Jφ(α(a))KQ = Q

⇔ N |= φ(α(a)).

This completes the proof.

6.1.3 The Colimit Construction

Let us now briefly see how one can use possibility embeddings to define the colimit of a
directed system of possibility structures. This construction will be particularly useful in
Chapter 9. Recall first that a monotone map f : P → Q between posets is a p-morphism if
whenever f(p) ≤Q q, there is p′ ≤P p such that f(p′) = q.

Definition 6.1.8. Let I = (I,≤I) be a directed poset. A tight inverse system of posets over
I is a family ({Pi}i∈I, {πij}i≤Ij) with the following properties:

• For any i ∈ I, Pi is a poset;

• For any i ≤I j, πij : Pi → Pj is a p-morphism;

• πii is the identity map for any i ∈ I, and for any i ≤I j ≤I k, πij ◦ πjk = πik;

• Whenever {iβ}β<λ is an increasing chain of elements of I for some ordinal λ and {pβ}β<λ
is a sequence such that pβ ∈ Piβ for any β < λ and πiβiγ (pγ) = πβ for any β < γ < λ,
then for any q ∈ Pλ such that pβ ≤Piβ

πiβiλ(q) for any β < λ, there is pλ ≤Piλ
q such

that πiβiλ(pλ) = πβ for any β < λ.

The first three conditions in the definition of a tight inverse system are not surprising,
although we do need to strengthen the notion of a weakly-dense map to that of a p-morphism
for our purposes here. The last condition simply makes sure that the system of p-morphisms
is well behaved at “limit stages”. Of course, it is trivially satisfied whenever I has no in-
finite bounded chains. Let us now introduce the notion of a directed system of possibility
structures.
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Definition 6.1.9. Fix a language L . Let I be a directed poset. A directed system of
possibility embeddings over I is a tuple ({Pi}i∈I, {ϵij}i≤Ij) satisfying the following conditions:

• For any i ∈ I, Pi = (Pi, Di,Ii) is a L -possibility structure;

• For any i, j ∈ I such that i ≤I j, ϵij = (πij, αij) : Pi → Pj is a possibility embedding;

• ({Pi}i∈I, {πij}i≤Ij) is a tight inverse system over I;

• For any i ∈ I, αii is the identity map, and for any i, j, k ∈ I such that i ≤I j ≤I k,
αik = αjk ◦ αij.

A directed system ({Pi}i∈I , {ϵij}i≤Ij) is elementary if ϵij is elementary for any i ≤I j.

Given a directed system of possibility embeddings over an index set I, our goal is to
define an analogue of the direct limit or colimit of a directed system of Tarskian structures.
Accordingly, the domain of such a structure will be similar to what one would expect,
namely a disjoint union of all the domains of the possibility structures in the directed system.
However, the dense map components of the possibility embeddings in a directed system form
an inverse system, meaning that their limit should be an inverse limit rather than a colimit.
This motivates the following definition.

Definition 6.1.10. Let I be a directed poset and ({Pi}i∈I , {ϵij}i≤Ij) a directed system over

I. The colimit of the directed system ({Pi}i∈I , {ϵij}i≤Ij) is the possibility structure
−→
PI =

(
⊗

I Pi,
⊕

IDi,I ), where:

•
⊗

IPi is the poset of all functions f from I into the disjoint union of the posets Pi for
i ∈ I such that:

– f(i) ∈ Pi for any i ∈ I, and

– ϵij(f(j)) = f(i) whenever i ≤I j,

with the order defined pointwise, i.e., f ≤⊗
I Pi

g iff f(i) ≤Pi
g(i) for all i ∈ I;

•
⊕

IDi is the disjoint union of the domains Di for i ∈ I;

• For any function symbol f(x1, ..., xk) and any a1, ..., ak such that an ∈ Din for all n ∈
{1, ..., k}, there is j ≥I i1, ..., ik such that I (f, a1, ..., ak) = Ij(αi1j(a1), ..., αikj(ak));

• For any relation symbol R(x1, ..., xk), any a1, ..., ak with an ∈ Din for all n ∈ {1, ..., k}
and any f ∈

⊗
I Pi, (a1, ..., ak) ∈ I (f,R) iff there is j ≥I i1, ..., ik such that

(αiij(a1), αikj(ak)) ∈ Ij(f(j), R).

For convenience, I will assume in what follows that the domains Di in a directed system
are always disjoint, so that we may identity

⊕
IDi with the union

⋃
i∈IDi. Our goal is

to show that the structure defined above is a proper notion of colimit for directed systems
of possibility embeddings. This will be established by the Colimit Lemma below. Before
proving this lemma, we need the following technical observation.
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Lemma 6.1.11 (DC|I|). Let I be a directed poset and ({Pi}i ∈ I, {πij : Pj → Pi}i≤I
) a tight

inverse system over I. Then for any i ∈ I, any f ∈
⊗

I Pi and any q ≤Pi
f(i), there is

g ≤⊗
I Pi

f such that g(i) = q.

Proof. Fix f , i and q, and let {iβ}β<λ be a cofinal chain of elements of I with i = i0 (note that
such a chain can be constructed using DC|I|). We define inductively a sequence of elements
{qβ}β<λ as follows:

• q0 = q;

• Assuming that qβ is defined such that qβ ≤Piβ
p(β), note that πiβ ,iβ+1

(p(β+1)) = p(β).

Since πiβ ,iβ+1
is a p-morphism, there is q′ ≤Piβ+1

p(β + 1) such that πiβ ,iβ+1
(q′) = qβ.

So we set qβ+1 = q′.

• For ν < λ a limit ordinal, we have a sequence {qβ}β<ν such that πiβiγ (qγ) = qβ whenever
β < γ < ν and qβ ≤Piβ

πiβiν (p(ν) for any β < ν. Since ({Pi}i ∈ I, {πij : Pj → Pi}i≤I
)

is a tight inverse system, we have q′ ∈ Piν such that q′ ≤ p(ν) and πiβiν (q′) = qβ for
all β < ν. So we set qν = q′.

Note that the existence of such a sequence is guaranteed by DC|I| again. Finally, we defined
g ∈

⊗
I Pi by letting g(i) = qβ whenever i = iβ for some β < λ, and g(i) = πiiβ(g(iβ)) for

some iβ such that i ≤I iβ otherwise. It is routine to check that this is well-defined and that
g ≤⊗

I Pi
f .

Lemma 6.1.12 (First Colimit Lemma). Let I be a directed poset and ({Pi}i∈I , {ϵij}i≤Ij) a
directed system over I. Then:

1.
−→
PI is a possibility structure;

2. There is a system of maps {ϵi := (πi, αi)}i∈I such that:

• πi :
⊗

I Pi → Pi is a p-morphism for any i ∈ I, and αi : Di →
⊕

IDi is a
function,

• whenever i ≤I j, πi = πij ◦ πj and
−→
PI |= αi(a) = αj ◦ αij(a) for any a ∈ Di, and

• ϵi : Pi →
−→
PI is a possibility embedding;

3. If ({Pi}i∈I , {ϵij}i≤Ij) is elementary, then each ϵi is elementary, and for any f ∈
⊗

Pi,
any formula φ(x) and tuple a1, ..., ak ∈

⊕
IDi with an ∈ Din for all n ∈ {1, ..., k},

f ⊩ φ(a1, ..., ak) iff there is j ≥I i1, ..., ik such that f(j) ⊩ φ(αi1j(a1), ..., αikj(ak)).

Proof. Fix a directed poset I and a directed system ({Pi}i∈I , {ϵij}i≤Ij) over I.

1. We check all four conditions in turn.
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Persistence Suppose that g ≤ f and f ⊩ R(a1, ...ak), with an ∈ Din for all n ∈
{1, ..., k}. Then there is j ∈ I such that f(j) ⊩ R(αi1j(a1), ..., αikj(ak)). Since
g ≤ f , we have that g(j) ≤Pj

f(j), and hence g(j) ⊩ R(αi1j(a1), ..., αikj(ak)).
But this implies that g ⊩ R(a1, ..., ak).

Refinability Suppose that g ≤ f and f ̸⊩ R(a1, ...ak), with an ∈ Din for all n ∈
{1, ..., k}. Let j ≥I i1, ..., ik. Note that f(j) ̸⊩ R(αi1j(a1), ..., αikj(ak)). By persis-
tence, there is q ≤Pj

f(j) such that for all r ≤Pj
q, r ̸⊩ R(αi1j(a1), ...αikj(ak)).

By Lemma 6.1.11, there is g ≤⊗
I Pi

f such that g(j) = q. Now I claim that for
any h ≤⊗

I Pi
g, h ̸⊩ R(a1, ..., ak). Indeed, let h ≤⊗

I Pi
g and j′ ≥I i1, ..., ik. Let j∗

be such that j, j′ ≤I j
∗. Since h(j) ≤Pj

g(j), we have the following:

h(j) ̸⊩ R(αi1j(a1), ..., αikj(ak)) ⇔ πjj∗(h(j∗)) ̸⊩ R(αi1j(a1), ..., αikj(ak))

⇔ h(j∗) ̸⊩ R(αjj∗ ◦ αi1j(a1), ..., αjj∗ ◦ αikj(ak))
⇔ h(j∗) ̸⊩ R(αi1j∗(a1), ..., αikj∗(ak))

⇔ h(j∗) ̸⊩ R(αj′j∗ ◦ αi1j′(a1), ..., αj′j∗ ◦ αikj′(ak))
⇔ πj′j∗(h(j∗)) ̸⊩ R(αi1j′(a1), ..., αikj′(ak))

⇔ h(j′) ̸⊩ R(αi1j′(a1), ..., αikj′(ak)).

This completes the proof of refinability.

Equality-as-equivalence Reflexivity and symmetry are clear, so we only check tran-
sitivity. Suppose f(j) ⊩ αi1j(a1) = αi2j(a2) and f(j′) ⊩ αi2j′(a2) = αi3j′(a3).
Let j∗ ≥I j, j

′. Then we have that πjj∗(f(j∗)) = f(j) ⊩ αi1j(a1) = αi2j(a2), so
f(j∗) ⊩ αjj∗ ◦ αi1j(a1) = αjj∗ ◦ αi2j(a2), and πj′j∗(f(j∗)) = f(j′) ⊩ αi2j′(a2) =
αi3j′(a3), so f(j∗) ⊩ αj′j∗ ◦ αi2j′(a2) = αj′j∗ ◦ αi3j′(a3). Hence f(j∗) ⊩ αi1j∗(a1) =
αi2j∗(a2) = αi3j∗(a3), from which it follows that f(j∗) ⊩ αi1j∗(a1) = αi3j∗(a3).
Hence f ⊩ a1 = a3.

Equality-as-congruence The proof is similar to the proof of Equality-as-
equivalence above. Fix a k-ary relation symbol R and a k-ary function sym-
bol g. Given tuples a1, ...ak and b1, ...bk, fix j large enough so that f(j) ⊩
αinj(an) = αinj(bn) for all n ∈ {1, ..., k}. Using directedness again if necessary, it
is then easy to find j′ such that f(j′) ⊩ R(αi1j′(b1), ..., αikj′(bk)) and j∗ such that
f(j∗) ⊩ g(αi1j′(a1), ..., αikj′(ak)) = g(αi1j′(b1), ..., αikj′(bk)).

2. For any i ∈ I, let πi :
⊗

I Pi → Pi and αi : Di →
⊕

IDi be the maps f 7→ f(i)
and a 7→ a. It is clear that, whenever i ≤I j, we have that πi = πij ◦ πj and that
−→
PI |= αi(a) = αj◦αij(a) for any a ∈ Di, since for any f ∈

⊗
I Pi, f(j) ⊩ αij(a) = αij(a).

Moreover, each πi is clearly order-preserving, and if q ≤i∈I πif , then by Lemma 6.1.11
there is g ≤ f such that πi(g) = g(i) = q, which shows that each πi is a p-morphism.

Now let us show that for any i ∈ I tuple a ∈ Di and relation symbol R, πi(f) ⊩ R(a)
iff f ⊩ R(αi(a)). The left-to-right direction is obvious. For the right-to-left direction,
suppose that f ⊩ R(αi(a)). Then there is j ≥I i such that f(j) ⊩ R(αij(a). But
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then f(i) = πij(f(j) ⊩ R(a). Finally, let us check that
−→
PI |= h(αi(a)) = αi(Ii(h, a))

for any a ∈ Di and any function symbol h. Note that I (h, a) = Ij(h, αij(a)) for

some j ≥I i. But then for any f ∈
⊗

I Pi, f(j) ⊩ h(αij(a)) = αij(Ii(h, a)). Hence
f ⊩ h(a) = Ii(h, a). This shows that ϵi is a possibility embedding for every i ∈ I.

3. Assume that ({Pi}i∈I , {ϵij}i≤Ij) is elementary. Let us first show that for any f ∈
⊗

Pi,
any formula φ(x) and tuple a1, ..., ak ∈

⊕
IDi with an ∈ Din for all n ∈ {1, ..., k},

f ⊩ φ(a1, ..., ak) iff there is j ≥I i1, ..., ik such that f(j) ⊩ φ(αi1j(a1), ..., αikj(ak)). We
prove this by induction on the complexity of φ. The atomic case is clear.

• Suppose that f ⊩ ¬φ(a1, ..., ak), and let j ≥I i1, ..., ik. Fix q ≤Pj
f(j), and

note that since πj is a p-morphism, there is g ≤⊗
I Pi

f such that g(j) = q.
By the induction hypothesis, this means that q ̸⊩ φ(αi1j(a1), ..., αikj(ak)), for
otherwise g ⊩ φ(a1, ..., ak), contradicting our assumption on f . But then it
follows that f(j) ⊩ ¬φ(αi1j(a1), ..., αikj(ak)). Conversely, suppose that f ̸⊩
φ(a1, ...ak). Then there is g ≤⊗

I Pi
f such that g ⊩ φ(a1, ..., ak). Now sup-

pose that j ≥I i1, ..., ik. By the induction hypothesis, there is j′ ∈ I such
that g(j′) ⊩ φ(αi1j′(a1), ..., αikj′(ak)). Without loss of generality, assume that
j′ ≥I j. Then g(j) ⊩ φ(αi1j(a1), ..., αikj(ak)). But this implies that f(j) ̸⊩
¬φ(αi1j(a1), ..., αikj(ak))

• Suppose that f ⊩ φ(a1, ..., ak) ∧ ψ(a1, ..., ak). Then f ⊩ φ(a1, ..., ak) and f ⊩
ψ(a1, ..., ak). By the induction hypothesis, there are j, j′ ∈ I such that f(j) ⊩
φ(αi1j(a1), ..., αikj(ak)) and f(j′) ⊩ ψ(αi1j′(a1), ..., αikj′(ak)). Let j∗ ≥I j, j

′.
Then f(j∗) ⊩ φ(αi1j∗(a1), ..., αikj∗(ak)) and f(j∗) ⊩ ψ(αi1j∗(a1), ..., αikj∗(ak)), so
f(j∗) ⊩ φ(αi1j∗(a1), ..., αikj∗(ak)) ∧ ψ(αi1j∗(a1), ..., αikj∗(ak)). Conversely, suppose
that there is j ∈ I such that f(j) ⊩ φ ∧ ψ(αi1j(a1), ..., αikj(ak)). Then f(j) ⊩
φ(αi1j(a1), ..., αikj(ak)) and f(j) ⊩ ψ(αi1j(a1), ..., αikj(ak)), so by the induction
hypothesis f ⊩ φ(a1, ..., ak) and f ⊩ ψ(a1, ..., ak). Hence f ⊢ φ(a1, ..., ak) ∧
ψ(a1, ..., ak).

• Suppose that f ⊩ ∃xφ(a1, ..., ak, x). Let j ≥I i1, ..., ik, and let q ≤Pj
f(j).

Since πj is a p-morphism, there is g ≤⊗
I Pi

f such that g(j) = q. Since f ⊩
∃xφ(a1, ..., ak, x), there is g′ ≤⊗

I Pi
g and c ∈ Di′ for some i′ ∈ I such that

g′ ⊩ φ(a1, ..., ak, c). By the induction hypothesis, there is j′ ≥I i1, ..., ik, i
′ such

that g′(j′) ⊩ φ(αi1j′(a1), ..., αikj′(ak), αi′j′(c)). Now let j∗ ≥I j, j
′, and note that

g′(j∗) ⊩ φ(αi1j∗(a1), ..., αikj∗(ak), αi′j∗(c)) by elementarity of ϵj′j∗ . Moreover, since
ϵjj∗ is also elementary, by the Tarski-Vaught criterion there is q′ ≤Pj

g′(j) ≤Pj
q

and b ∈ Dj such that q′ ⊩ φ(αi1j(a1), ..., αikj(ak), b). But this means that
f(j) ⊩ ∃xφ(αi1j(a1), ..., αikj(ak), x).

For the converse, suppose that we have some j ≥I i1, ..., ik such that
f(j) ⊩ ∃xφ(αi1j(a1), ..., αikj(ak), x), and let g ≤⊗

I Pi
f . Then there is q ≤Pj

g(j)
and c ∈ Dj such that q ⊩ φ(αi1j(a1), ..., αikj(ak), c). Since πj is a p-morphism,
there is g′ ≤⊗

I Pi
g such that g′(j) = q. By the induction hypothesis, we have
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that g′ ⊩ φ(a1, ..., ak, c). But this shows that f ⊩ ∃xφ(a1, ..., ak, x).

We may now prove that each ϵi : Pi →
−→
PI is elementary. By the Density Lemma,

we only need to check the Tarski-Vaught criterion for ϵi. Suppose f ⊩ φ(αi(a), c) for
some a ∈ Di and c ∈ Di′ for some i′ ∈ I. By the result above, there j ≥I i, i

′ such
that f(j) ⊩ φ(αij(a), αi′j(c)). Since ϵij is elementary, by the Tarski-Vaught criterion
there is b ∈ Di and q ≤ πij(f(j)) = f(i) such that q ⊩ φ(a, b). But this means that
ϵi satisfies the Tarski-Vaught criterion and is therefore elementary. This completes the
proof.

Let us conclude this section with a small remark about the Colimit Lemma. In classical
model theory, the embeddings from each model Ai into the colimit

−→
AI that one obtains by

the standard colimit construction all commute with the embeddings {αij}i≤Ij between the
models in the system. By contrast, the embeddings one obtains in the colimit of a directed
system of possibility structures only commute “internally” with the embeddings of the form
αij, in the sense of item 2 in the Colimit Lemma. Of course, we could modify the definition

of the domain of the colimit
−→
PI to make the embeddings commute “externally”, by taking

equivalence classes over the disjoint union of the domains rather than taking the disjoint
union itself. The point, however, is that taking equivalence classes is not needed in the case
of possibility structures, since the equality is interpreted as a mere equivalence class. Indeed,
colimits still enjoy the following universal mapping property.

Lemma 6.1.13 (Second Colimit Lemma). Let I be a directed poset and ({Pi}i∈I , {ϵij}i≤Ij)
a directed system over I. Suppose that there is a possibility structure Q and a system {ηi =
σi, βi} such that each ηi : Pi → Q is a possibility embedding and for any i ≤I j and any

a ∈ Di, Q |= βi(a) = βj ◦ αij(a). Then there is a possibility embedding η = (σ, β) :
−→
PI → Q

such that η ◦ ϵi = ηi for all i ∈ I. Moreover, if every ηi is elementary, then so is η.

Proof. Define η = (σ, β) :
−→
PI → Q by letting σ(q)(i) = σi(q) for any q ∈ Q and i ∈ I, and

η(a) = ηi(a) for any a ∈ Di. It is clear that σ ◦ πi = σi and that β ◦ αi = βi, and hence
that η ◦ ϵi = ηi for any i ∈ I. Moreover, checking that η is a (possibly elementary if each
ηi is elementary) possibility embedding is routine, except possibly for the first condition
on possibility embeddings, which we now show. Fix an k-ary function symbol f and a
tuple a1, ..., ak with an ∈ Din for n ∈ {1, ..., k}. I claim that Q |= f(β(a1), ..., β(ak)) =
β(I (f, a1, ..., ak)). By definition, I (f, a1, ..., ak) = Ij(f, αi1j(a1), ..., αikj(ak)) for some j ≥I

i1, ..., ik. Hence β(I (f, a1, ..., ak)) = βj(Ij(f, αi1j(a1), ..., αikj(ak))). Using the fact that
Q |= βi(a) = βj ◦ αij(a) whenever iIj and a ∈ Di and βj is a possibility embedding, we have
that Q |= βj(Ij(f, αi1j(a1), ..., αikj(ak))) = f(βi1(a1), ..., βik(ak)). But from this it follows at
once that Q |= f(β(a1), ..., β(ak)) = β(I (f, a1, ..., ak)). This completes the proof.

6.2 Generic Powers

The rest of this introductory chapter is devoted to a specific kind of possibility structures
which I will call generic powers. These structures will play a crucial role in the next three
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chapters, and their main features will follow from three key results about them, which I will
refer to as the Structure Lemma, the Truth Lemma and the Genericity Lemma. Let me start
with the following definitions.

Definition 6.2.1. Let I be a set. A rich family is a collection E of filters on I such that for
any A ⊆ I and F ∈ E , if A /∈ F , then there is G ⊇ F such that I \ A ∈ G.

Definition 6.2.2. The E-generic power of a first-order structure M in a language L is given
by the tuple ME = (E,MI ,I ), where:

• E is the poset (E ,⊇), where E is a rich family.

• MI is the set of all functions a : I → M;

• for any function symbol f ∈ L and any tuple a of elements of MI , I (f)(a)(i) = a(i)M

for any i ∈ I;

• for any relation symbol R ∈ L (including equality), any F ∈ E and any tuple a ∈ MI ,
a ∈ I (F,R) iff {i ∈ I | M |= R(a(i)} ∈ F .

Intuitively, the E-generic power of M can be thought of as a collection of partial approxi-
mations of what a classical ultrapower of M modulo a non-principal ultrafilter U on I might
look like. Elements in such an ultrapower are equivalence classes of functions in M I , where
two functions f and g are considered equivalent if they agree on a U-large set, meaning that
{i ∈ I | f(i) = g(i)} ∈ U. By contrast, in (E,MI ,I ), a function f is a mere guise for what
its equivalence class would be in a Tarskian ultrapower, and consequently, f is identified
at some F ∈ E with another function g precisely when f and g agree on a large enough
set from the viewpoint of F , i.e., whenever {i ∈ I | f(i) = g(i)} ∈ F . This identification
of viewpoints in F with partial approximations of an ultrapower will be made more precise
below. For now, we will focus on establishing the sense in which generic powers can be seen
as an analogue of ultrapowers in classical model theory. There are two key results about
classical ultrapowers of first-order structures: they are themselves first-order structures, and
their first-order properties are entirely determined by the filter one uses to define them. Let
us now see that generic powers have similar properties by proving the Structure and Truth
Lemmas respectively.

6.2.1 The Structure Lemma

Our first key result about generic powers shows that they are possibility structures. In order
to establish this, we introduce the following notation, which is standard in the literature on
ultrapowers.

Notation 6.2.3. Let M be a Tarskian L -structure and I a set. Given a n-tuple f =
(f1, ...fn) of functions in M I , let f(i) be the n-tuple of elements (f1(i), ..., fn(i)) ∈ Mn for
any i ∈ I. Given any φ(x) an L -formula in n-variables, and any n-tuple f , let ||φ(f)||I =
{i ∈ I | M |= φ(f(i))}.
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Given an L -sentence φ, one should distinguish its I-value ||φ||I , which is a subset of
I, from its r-value JφK, introduced in Notation 6.1.3, which is a subset of F. As we will
see below, there is however a tight connection between the two sets. Using the notation
just introduced, the interpretation function I in (E,MI ,I ) can be conveniently rephrased.
Given a viewpoint F ∈ E , an n-ary relation symbol R and an n-tuple a in M I , a ∈ I (F,R)
iff ||R(a)||I ∈ F .

Lemma 6.2.4 (Structure Lemma). For any first-order structure M and any rich family E,
ME is a possibility structure.

Proof. Fix filters F,G ∈ E , a tuple a of elements in MI , a relation symbol R and a function
symbol f . We check the four conditions on I in turn.

Persistence Suppose G ⊇ F and a ∈ I (F,R). Then ||R(a)||I ∈ F , and therefore
||R(a)||I ∈ G, which implies that a ∈ I (G,R).

Refinability Assume a /∈ I (F,R). Then ||R(a)||I /∈ F . Since E is a rich family, this
implies that there is a filter G ⊇ F ∪{I \ ||R(a)||I}. But then clearly ||R(a)||I /∈ H for
any H ⊇ G, and therefore a /∈ I (H,R) for any H ⊇ G.

Equality-as-equivalence Note first that for any a ∈ M I , ||a = a||I = I. Moreover, for
any a, b, c ∈ M I , ||a = b||I ⊆ ||b = a||I , and ||a = b||I ∩ ||b = c||I ⊆ ||a = c||I . This
shows that for any filter F , ||a = a||I ∈ F , ||a = b||I ∈ F implies ||b = a||I ∈ F ,
and ||a = b||I and ||b = c||I ∈ F together imply ||a = c||I ∈ F . Thus I (F,=) is an
equivalence relation on M I for any F ∈ E .

Equality as congruence Suppose that (ai, bi) ∈ I (F,=) for any i ≤ n, fix a function
symbol f and a relation symbol R, and let a = (a1, ..., an) and b = (b1, ..., bn). Note
that

⋂
i≤n ||ai = bi||I ⊆ ||f(a) = f(b)||I , hence that ||f(a) = f(b)||I ∈ F and thus that

(f(a), f(b)) ∈ I (F,=). Moreover, assume that a ∈ I (F,R). Note that
⋂
i≤n ||ai =

bi||I ∩ ||R(a)||I ⊆ ||R(b)||I , which implies that ||R(b)||I ∈ F and hence that b ∈
I (F,R).

6.2.2 The Truth Lemma

As we shall see,  Loś’s Theorem generalizes in a natural way to generic powers and enables
us to understand the forcing relation in such structures very concretely. Note that a version
of the Truth Lemma was already obtained by Van Benthem in [23] for his closely related
notion of filter product.

Definition 6.2.5. Let L be a first-order language and ME = (E,MI ,I ) the E-generic power
of M. For any L-formula φ(x) and tuple a, the I-value of φ(a), denoted ||φ||I is the set
{i ∈ I | M |= φ(a(i))}.

Lemma 6.2.6 (Truth Lemma). Assume AC|I|. For any first-order L-structure M, any rich
family E, any F ∈ E, any L-formula φ(x) and any tuple a ∈ MI , F ⊩ φ(a) iff ||φ(a)||I ∈ F .
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Proof. The proof proceeds by induction on the complexity of formulas. The atomic case
follows immediately from the definition of the interpretation function I . For the inductive
case, I only treat the cases of negation, conjunction and existential quantification, since the
other Boolean connectives and quantifiers are definable from this set.

• Suppose φ := ¬ψ. Then F ⊩ φ(a) iff for all G ⊇ F ∈ E , G ⊮ ψ(a). By the induction
hypothesis, the latter is equivalent to the claim that for all G ⊇ F ∈ E , ||ψ(a)||I /∈ G.
Since E is rich, this means that I \ ||ψ(a)||I ∈ F . Clearly, I \ ||ψ(a)||I = ||¬ψ(a)||I ,
from which it follows that F ⊩ φ(a) iff ||φ(a)||I ∈ F .

• Suppose φ := ψ1 ∧ ψ2. Then F ⊩ φ(a) iff F ⊩ ψ1(a) and F ⊩ ψ2(a). By the
induction hypothesis, this is equivalent to ||ψ1(a)||I ∈ F and ||ψ2(a)||I ∈ F , which in
turn is equivalent to ||ψ1(a)||I ∩ ||ψ2(a)||I ∈ F as F is a filter. But the latter is clearly
equivalent to ||φ(a)||I ∈ F .

• Suppose φ := ∃xψ(x). If F ⊩ ∃xψ(x, a), then for any G ⊇ F , there is b ∈ Mω and
H ⊇ G such that H ⊩ ψ(b, a). By the induction hypothesis, this means that for all
G ⊇ F , there is H ⊇ G and b ∈ Mω such that ||ψ(b, a)||I ∈ H. Since, for any b ∈ Mω,
||ψ(b, a))||I ⊆ ||∃xψ(x, a)||I , it follows that for any G ⊇ F , there is H ⊇ G such that
||∃xψ(x, a)||I ∈ H. This in turn implies that for any G ⊇ F , I \ ||∃xψ(x, a)||I /∈ G,
from which it follows that ||∃xψ(x, a)||I ∈ F since E is a rich family.
Conversely, suppose ||∃xψ(x, a)||I ∈ F . Using AC|I|, define b : I → M such that
M |= ψ(b(i), a(i)) whenever i ∈ ||∃xψ(x, a)||I , and b(i) is arbitrary otherwise. Then
||ψ(b, a)||I ⊇ ||∃xψ(x, a)||I , so ||ψ(b, a)||I ∈ F . By the induction hypothesis, this means
that F ⊩ φ(b, a) and hence F ⊩ ∃xψ(x, a), which completes the proof.

A few remarks can be made regarding the proof of Theorem 7.2.5:

Remark 6.2.7.

1. Using the notation in 6.1.3 and 6.2.3, Theorem 7.2.5 can be succinctly phrased as
follows: for any L -formula φ(x) with n free variables and any n-tuple a ∈ ME,

Jφ(a)K = {F ∈ F | ||φ(a)|| ∈ F}.

2. Closer inspection of the existential case of the proof reveals that ME is a full model in
the following sense: for any formula φ(x, y), any tuple a and any F ∈ F, F ⊩ ∃xφ(x, a)
iff there is b ∈ ME such that F ⊩ φ(b, a). In other words, although standard possibility
semantics allows for the witness to an existential sentence to vary across refinements,
a stronger condition actually holds in the case of generic powers.

3. The right-to-left direction of the existential case is the only part of the theorem that
requires some fragment of the Axiom of Choice, namely AC|I|. This means in particular
that the Truth Lemma holds in ZF +DC whenever I is a countable set.



6.2. GENERIC POWERS 218

6.2.3 The Genericity Lemma

Finally, our last key result about generic powers connects them with ultrapowers in a powerful
way. The core idea of the Genericity Lemma is to establish that satisfaction in a generic
power (E,MI ,I ) coincides with truth in every ultrapower that (E,MI ,I ) “stands for” or
“approximates”. The precise way to state this in its full generality requires some terminology
from forcing in set theory, but the proofs themselves are fairly simple. For some background
on forcing, we refer the reader to [161]. We first need the following definitions.

Definition 6.2.8. Let P be a poset. A subsetD ⊆ P is dense if the inclusion map ι : D → P
is dense. Two elements p, q ∈ P are incompatible (denoted p⊥q) if there is no r ∈ P such
that r ≤P p, q.

Definition 6.2.9. Let P = (P, D,I ) be a possibility structure in a first-order language L .
A definable subset of P is a subset of the form Jφ(a)K∪J¬φ(a)K for some L -formula φ(x) and
some tuple a ∈ D. A Henkin subset of P is a subset of the form P\J∃yφ(a, y)K∪

⋃
b∈DJφ(a, b)K

for some L -formula φ(x, y) and some tuple a ∈ D.

Definition 6.2.10. Let P = (P, D,I ) be a possibility structure in a first-order language
L . A subset G of P is a P-generic filter if it satisfies the following conditions:

1. G is downward directed and upward closed;

2. G ∩D ̸= ∅ for any definable subset D;

3. G ∩H ̸= ∅ for any Henkin subset H.

4. For any p ∈ P, p ∈ G or there is q ∈ G such that p⊥q.

This definition can be seen as a weakening of the notion of a generic filter on a poset in
forcing. A generic filter on a poset P meets every dense subset of P, and it follows from the
semantic clauses of possibility semantics that any subset that is either definable of Henkin
in a possibility structure P is dense. Moreover, for any p ∈ P, the set {q ∈ P | q ≤P p or
p⊥q} is also dense.

A result very similar to the following lemma was already proved by van Benthem [23],
who defines a notion of generic branches similar to our notion of a P-generic filter.

Lemma 6.2.11. Let P = (P, D,I ) be a possibility structure in a first-order language L and
G a P-generic filter. Then there is a Tarskian model PG = (DG,IG) and a map ·G : D → DG

such that for any formula φ(x), PG |= φ(aG) iff there is p ∈ G such that p ⊩ φ(a).

Proof. Define an equivalence relation on D by letting a ∼G b iff there is p ∈ G such that
p ⊩ a = b. Let PG be the Tarskian model (DG,IG) where DG = {aG | a ∈ D} is the set of all
equivalence classes under the relation ∼G, and for any a ∈ D, aG ∈ IG(R) iff there is p ∈ G
such that p ⊩ R(a). It is routine to verify that this is a well-defined Tarskian structure.
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Moreover, a straightforward induction on the complexity of formulas establishes that for any
L -formula φ(x) and any tuple a ∈ D, we have

PG |= φ(aG) ⇔ ∃p ∈ G : p ⊩ φ(a).

The base case follows from the definition of IG. For the inductive step, the case of conjunc-
tions follows from basic properties of filters, the case for negation follows from the fact that
G meets every definable subset of P, and the case for existential formulas follows from the
fact that G meets every Henkin subset.

We will follow van Benthem in calling such Tarskian structures generic models. They are
of particular interest for the following kind of possibility structures:

Definition 6.2.12. A possibility structure P = (P, D,I ) is normal if for any p ∈ P there
is a P-generic filter G such that p ∈ G.

The following result establishes the sense in which points in a possibility structure approx-
imate Tarskian models. Again, it is related to van Benthem’s remarks on generic branches
in [23]:

Lemma 6.2.13. Let P = (P, D,I ) be a normal possibility structure in a language L .
Then for any p ∈ P, any L -formula φ(x) and any tuple a ∈ D, p ⊩ φ(a) iff PG |= φ(aG)
for every P-generic filter G such that p ∈ G.

Proof. Suppose first that p ⊩ φ(a). Then, by Lemma 6.2.11, PG |= φ(aG) whenever p ∈ G.
Conversely, suppose that p ̸⊩ φ(a). Then there is q ≤P p such that q ⊩ ¬φ(a). Since P is
normal, there is a P-generic filter G such that q ∈ P . But then we have that p ∈ G and
PG |= ¬φ(aG).

Finally, let us now turn to the specific case of generic powers. The Genericity Lemma
will be a special case of Lemma 6.2.13 which connects the forcing relation on the generic
power of a Tarskian model M with ultrapowers of M. We start with the following definition.

Definition 6.2.14. Let E be a rich family on a set I. For any ultrafilter U on I, let
α(U) = {F ∈ E | F ⊆ U}. An ultrafilter U on I is E-generic if U =

⋃
α(U).

Lemma 6.2.15 (Genericity Lemma). Let ME = (E,MI ,I ) be the E-generic power of a
first-order L-structure M.

1. For any E-generic ultrafilter U, α(U) is a ME-generic filter, and ME
α(U) is isomorphic

to MI/U, the ultrapower of M modulo U.

2. Moreover, if for any F ∈ E there is a E-generic ultrafilter U such that F ⊆ U, then
ME is normal and for any L -formula φ(x), any tuple a of elements of MI and any
F ∈ E, F ⊩ φ(a) iff for any E-generic ultrafilter U such that F ⊆ U , MI/U |= φ(aU).
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Proof. Note first that item 2 follows immediately from item 1. To prove item 1, assume that U
is E-generic, and let us first show that α(U) is ME-generic. Clearly, α(U) is upward closed and
downward directed. Moreover, let D be a definable subset of E. Then D = Jφ(a)K∪ J¬φ(a)K
for some L -formula φ(x) and tuple a ∈ D. Since U is an ultrafilter, either ||φ(a)||I or
I \ ||φ(a)||I = ||¬φ(a)||I belongs to U. By assumption, U =

⋃
α(U), so there is F ∈ α(U)

such that ||φ(a)|| ∈ F or ||¬φ(a)|| ∈ F . But then it follows from the Truth Lemma that
F ∈ Jφ(a)K ∪ J¬φ(a)K and hence α(U) ∩ F ̸= ∅. Next, note that, because ME is full in
the sense of Remark 6.2.7.2, we have that any Henkin set is actually E and thus trivially
has non-empty intersection with α(U). Finally, suppose F /∈ α(U). Then there is A ∈ F
such that A /∈ U. Since U is an ultrafilter, this means that I \ A ∈ U, and therefore, since
U =

⋃
α(U), there is F ′ ∈ α(U) such that I \ A ∈ F ′. But clearly F⊥F ′, which completes

the proof that α(U) is ME-generic.
Moreover, for any a ∈ MI , let aU be the equivalence class of a modulo the U. Note that,

for any atomic L -relation symbol R(x) (including the equality), we have:

MI/U |= R(aU) ⇔ ||R(a)|| ∈ U

⇔ ∃F ∈ α(U) : ||R(a)|| ∈ F

⇔ ME
α(U) |= R(aα(U)),

where the first equivalence holds from  Loś’s Theorem, the second from the fact that U is
E-generic, and the last one from Lemma 6.2.11. But this shows that the map aU 7→ aα(U) is
an isomomorphism between MI/U and ME

α(U).

The Genericity Lemma shows that ultrapowers can often be represented as generic models
over some possibility structure. Interestingly, the notion of genericity that we introduced for
ultrafilters is not dependent on the language L , while the notion of genericity we introduced
for generic models does depend on the language. This explains why, in general, although
every ultrapower can be represented as a generic model, the converse may not hold, as the
language L may be “too weak” for every generic model to be isomorphic to an ultrapower.
Let us conclude this discussion of the Genericity Lemma by giving sufficient conditions on
the language L for the converse to hold for a specific kind of rich families of filters.

Definition 6.2.16. A rich family E of filters on a set I is dense if for any F, F ′ ∈ E , if there
is a proper filter G on I such that F, F ′ ⊆ G, then there is G′ ∈ E such that F, F ′ ⊆ G′.

Lemma 6.2.17. Let ME = (E,MI ,I ) be the E-generic power of a first-order L-structure
M determined by a dense family E, and suppose that there is a predicate symbol A in L for
every A ⊆ M. Then every generic model ME

G is isomorphic to an ultrapower of M modulo a
E-generic ultrafilter.

Proof. Suppose that there is a predicate symbol A in L for every A ⊆ M. Let f ∈ MI be
any function, and let U = {f−1[A] | ME

G |= A(f)}. I claim that U is a E-generic ultrafilter
and moreover that α(U) = G. Note that this will conclude the proof by the Genericity
Lemma. It is routine to verify that U is an ultrafilter on I, as this follows from the fact that
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f−1 : P(M) → P(I) is a Boolean homomorphism and the fact that M elementarily embeds
into ME

G via the map sending any b ∈ M to cbG, where cb is the function with range {b}. To
see that U is E-generic, notice that, for any A ⊆ M,

ME
G |= A(f) ⇔ ∃F ∈ G : F ⊩ A(f)

⇔ ∃F ∈ G : ||A(f)|| ∈ F

⇔ ∃F ∈ G : f−1[A] ∈ F,

where the first equivalence follows from Lemma 6.2.11 and the second one from the Truth
Lemma. Next, let us verify that α(U) = G. Let us first show that G ⊆ α(U). Suppose
F ∈ G. We want to show that F ⊆ U. Let X ∈ F , and let A ⊆ M be the set {f(i) | i ∈ X}.
Clearly we have that X = f−1[A] which, by the chain of equivalences above, also implies
that X ∈ U. Hence F ⊆ U. Conversely, suppose that F /∈ G. Then since G is ME-generic,
there is F ′ ∈ G such that F⊥F ′. Because E is a dense family, this implies that there is
X ⊆ I such that X ∈ F and I \ X ∈ F ′. But then, letting A = {f(i) | i ∈ X}, it follows
that f−1[A] ∈ G and yet ME

G |= ¬A(f). Hence F ⊈ U. This completes the proof.
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Chapter 7

The Fréchet Hyperreals

7.1 Introduction

Non-standard analysis is a branch of mathematical logic which focuses on the application of
powerful metamathematical methods to ordinary mathematics, following the groundbreaking
work of Abraham Robinson [223] in the 60s. Although it has now developed into a diverse
field interested in more than one structure, it originated from the development of a system
of hyperreal numbers which is powerful and suggestive enough to serve as an alternative
foundation to classical analysis. The common way of introducing such numbers is via the
hyperreal line ∗R, constructed as some ultrapower of the standard real line modulo a free
ultrafilter on the set ω of the natural numbers [155]. The main advantage of this ultrapower
construction is that it can easily be seen to satisfy two fundamental principles: the Transfer
Principle, which guarantees that the hyperreal line is standard enough to have the same
first-order theory as the real line, and the (Countable) Saturation Principle, which allows
one to derive the existence in ∗R of many non-standard objects that can play a key role in
simplifying many classical arguments in analysis. The existence of a first-order structure ex-
tending the reals in which every finitary relation A on the reals has a non-standard extension
A∗ and which satisfies both the Transfer and Saturation Principle is enough to deliver most
applications of nonstandard methods to ordinary mathematics [111].

The existence of free ultrafilters on ω, however, is a set-theoretic result that exceeds
the resources of semi- or quasi-constructive mathematics as described in [230], i.e., classical
mathematics that can be carried out in ZF with the addition of the Axiom of Dependent
Choices (DC). As Schechter writes ([230, Chap. 14]), ZF + DC is a natural setting for
analysis, as it neither assumes nor rejects some of the more counter-intuitive consequences
of the Axiom of Choice in analysis, such as the existence of a well-ordering of the reals
or of non-Lebesgue measurable sets. Free ultrafilters on infinite Boolean algebras exist in
the presence of the Ultrafilter Lemma, a fragment of the Axiom of Choice which is known
to be independent from ZF + DC [89]. As one can straightforwardly define non-Lebesgue
measurable sets from a free ultrafilter on ω, such objects go beyond the resources of semi-
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constructive mathematics, and they form what Schechter calls intangibles, objects whose
existence can be proved in classical mathematics even though they cannot themselves be
explicitly constructed.

On the other hand, in a strictly semi-constructive setting, preserving both the Transfer
and Saturation Principles seems hopeless. A straightforward argument shows that the ex-
istence of an elementary embedding e : R → M in a sufficiently rich language L implies
the existence of a free ultrafilter on ω. Indeed, the Countable Saturation Principle implies
the existence of at least one infinite hypernatural integer N , larger than any finite number
n. If M contains a nonstandard extension A∗ for every finitary relation A on R, then one
may consider the set U = {A ⊆ ω | M |= A∗(N)}. By the Transfer Principle and the truth-
conditions of Tarskian semantics, U is then easily seen to be a free ultrafilter on ω. We are
therefore faced with the following trilemma: we must either give up the Transfer Principle,
the Saturation Principle, or Tarskian semantics. It is this third option that I would like to
pursue here, by appealing to an alternative semantics for classical logic known as possibility
semantics. As we will see, possibility semantics allows for the construction of a first-order
structure that shares many features with the classical hyperreal line, including versions of the
Transfer and Saturation Principles, yet is entirely independent of the Ultrafilter Lemma. An
alternative solution to the problem has recently been independently developed by Hrbáček
and Katz in [139]. The problem they discuss is very similar to the one I mentioned here, but
the solution they propose is syntactic (i.e., to work in a weaker, semi-constructively accept-
able axiomatic theory rather than in Nelson’s Internal Set Theory) rather than semantic.1

By contrast, the key idea of the Fréchet hyperreals is to replace one single, static first-order
model determined by an ultrafilter with a system of viewpoints, partial approximations of
such a model each determined by a filter. This idea itself is not new, although, as I argue
below, it can be presented in a particularly powerful, simple and concrete way thanks to the
machinery of possibility semantics. Not only does the resulting structure have some techni-
cal advantages over some other alternative approaches to nonstandard analysis, it also has
some methodological and conceptual advantages over the classical hyperreal line obtained
via ultrapowers. In particular, I argue that it is well-suited to address concerns that have
been raised in the literature regarding the application of nonstandard methods to standard
mathematics, including issues about the purity (in the sense of [4, 5]) of nonstandard meth-
ods and the canonicity of the hyperreal line.

The chapter is organized as follows. In Section 7.2, I introduce a specific kind of possibility
structures, Fréchet powers, which constitute an alternative to classical ultrapowers modulo
a free ultrafilter on ω. This allows me to define the Fréchet hyperreals †R as a Fréchet
power of the reals and to explore some of its mathematical properties. In particular, I show
that versions of the Transfer and Saturation Principles of classical nonstandard analysis hold
on †R and that the Fréchet hyperreals enjoy many features of the classical hyperreal line,
including a natural characterization of continuous real-valued functions and a robust theory
of internal sets.

1I will come back to their proposal in Section 7.6 below.
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Sections 7.3 to 7.5 are then devoted to assessing the technical merits of †R over other
alternatives to classical nonstandard analysis. As we will see, the central idea behind the
Fréchet hyperreals, i.e., to avoid relying on a single free ultrafilter by working with a system
of filters instead, can be traced back to several distinct mathematical endeavors. I distinguish
three kinds of alternative approaches to nonstandard analysis and argue that †R constitutes a
natural meeting point for all three approaches. Indeed, it can be seen as a suitable framework
to develop the natural and historically influential idea that the properties of infinite sequences
“in the limit” are determined by the properties of all but finitely many of their values, thus
continuing some historically-minded work by Laugwitz and offering a formal counterpart
to a more recent proposal of Tao (Section 7.3). On the other hand, the dynamic aspect
of possibility semantics, and its connections with sheaf semantics and topos theory, also
allows one to think of †R as a “varying” reduced power of the reals (Section 7.4). Moreover,
†R can be viewed as a Boolean-valued model of analysis in which viewpoints are partial
approximations of classical ultrapowers, which then arise as generic constructions in the
precise sense of forcing (Section 7.5).

Finally, in Section 7.6, I turn to some philosophical objections to the application of
nonstandard methods in ordinary mathematics and argue that the Fréchet hyperreals offer a
novel way to tackle the problems raised by these objections. In particular, the fact that †R
can be constructed in a semi-constructive setting means that it is better suited to address
purity concerns regarding the use of nonstandard methods in analysis, and the use of a
system of filters in lieu of a single ultrafilter turns it into a canonical structure.

7.2 The Fréchet Hyperreals

In this section, I introduce the Fréchet hyperreals as a concrete possibility structure. Because
the points in a possibility structure are partial possibilities, instead of maximal possible
worlds, the construction of possibility structures is typically more constructive than the
construction of standard, possible worlds models. In possibility semantics, the role usually
played by maximal, non-constructive objects (possible worlds, ultrafilters), is taken up by
partial, constructive objects (partial worlds, filters). As we will see below, it is precisely this
feature that will allow for a construction of the hyperreals that bypasses the usual reliance on
a free ultrafilter on ω. I start by introducing Fréchet powers as a particular kind of generic
powers, before defining the Fréchet hyperreals †R as a Fréchet power of the real line and
investigating their main properties.

7.2.1 Fréchet Powers

In the setting of possibility semantics, Fréchet powers are an alternative to the ultrapowers
modulo a free ultrafilter on ω of Tarskian semantics, which I will call Luxemburg ultrapowers
from now on, as, according to Keisler in [155], their relevance to nonstandard analysis was
first identified by Luxemburg in [175]. As mentioned in the previous chapter, an analogue of
classical ultraproducts in the setting of possibility semantics was already discussed in [23].
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However, van Benthem is interested in defining a general notion of product for all possibility
structures, while I will only be interested in defining Fréchet powers of Tarskian models,
which simplifies van Benthem’s construction quite significantly. It is also worth mentioning
that Fréchet powers can be defined constructively, and that only the Axiom of Countable
Choices, which is a theorem of ZF + DC, will be required to prove the Transfer Principle
in Section 7.2.2.

Let us start with the definition of the poset that will play a crucial role throughout this
chapter. Recall first that a filter F on ω is free if the set of all cofinite subsets of ω is a
subset of F . Throughout this chapter, I will assume that a free filter F is always proper,
meaning that F ̸= P(ω).

Definition 7.2.1 (Fréchet Poset). The Fréchet poset is the poset F = (F ,⊇), where F is
the set of all free filters on ω, ordered by reverse inclusion.

The Fréchet poset takes its name from the fact that any element in F extends the filter of
all cofinite subsets of ω, which is usually called the Fréchet filter, and that I will denote by
F0. One quickly verifies that F is a dense family: for any A ⊆ ω and any F ∈ F , if A /∈ F ,
then the set G = {ω \ A ∩ B | B ∈ F} is a proper filter extending F and containing ω \ A.
The second condition on dense families is clear. This motivates the following definition.

Definition 7.2.2 (Fréchet Power). Let M be a Tarskian model of a first-order language L .
The Fréchet power †M = (F,Mω,I ) of M is the L -possibility structure determined by the
following data:

• (F,⊇) is the Fréchet poset;

• Mω is the set of all functions from ω into the domain of M;

• For any n-ary relation symbol R ∈ L and any n-tuple a, a ∈ I (F,R) iff {i ∈ ω |
M |= R(a(i))} ∈ F ;

• For any n-ary function symbol f(x) ∈ L and any a1, ..., an ∈ Mω, I (f)(a1, ..., an) is
the function g : ω →M such that for any i ∈ ω, g(i) = f(a1(i), ..., an(i)).

The observation that F is a dense family, together with the Structure Lemma, immedi-
ately yields the following result:

Lemma 7.2.3. Let M be a Tarskian model of a first-order language L . The Fréchet power
†M = (F,Mω,I ) of M is a possibility structure.

We can now introduce the main construction of this chapter, the Fréchet hyperreals, as
the Fréchet power of the reals in a significantly rich first-order language.

Definition 7.2.4 (Fréchet hyperreals). Let L be a first-order language with a relation
symbol for every finitary relation on R and a function symbol for every finitary function on
R, and let R be the Tarskian L -structure with domain R in which every relation or function
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symbol is interpreted as the relation or function on R it corresponds to. The Fréchet hyperreal
line is the Fréchet power of R, i.e., the L -possibility structure †R = (F,Rω,I ), where for
any n-tuple a ∈ Rω, I (f)(a)(i) = f(a(i)) for any n-ary function symbol f ∈ L and any
i ∈ ω, and a ∈ I (F,R) iff ||R(a)|| ∈ F for any n-ary relation symbol R in L and any
F ∈ F.

Having reached a definition of the Fréchet hyperreals, we may now investigate the prop-
erties of this structure more closely. As my main interest is to highlight its similarity with
the classical hyperreal line as presented for example in [108], I will be focusing on some of
the most well-known features of Robinsonian nonstandard analysis, such as the definition of
continuity and the theory of internal sets. I show first that a version of the Transfer Principle
holds on †R, which allows me to establish that †R contains some infinitesimals and to give
a natural characterization of continuity which mirrors the classical nonstandard one. I then
show that a notion of internal set can be fruitfully developed on †R for which several proper-
ties of classical internal sets hold, including a version of the Countable Saturation Principle.
This establishes that possibility semantics offers a way out of the trilemma presented in the
introduction: we can preserve the Transfer and Saturation Principles in a semi-constructive
setting, if we are willing to move away from Tarskian semantics.

7.2.2 Transfer Principle and Continuity

As we shall see in the next two sections, the Fréchet hyperreals are sufficiently well-behaved
to share many features with the classical hyperreal line. In particular, natural versions of
two of the most fundamental tools of nonstandard analysis, the Transfer and Saturation
Principles, hold in †R. That classical ultrapowers of the reals satisfy the Transfer Principle
is a direct consequence of  Loś’s Theorem [11]. In our setting, the following is an immediate
application of the Truth Lemma:

Theorem 7.2.5 ( Loś’s Theorem for †R). For any L -formula φ(x) with n free variables,
any n-tuple a ∈ †R and any F ∈ F, F ⊩ φ(a) iff ||φ(a)|| ∈ F .

The Transfer Principle for †R can then be obtained as an easy corollary.

Corollary 7.2.6 (Transfer Principle). There exists a function δ : R → †R such that for any
L -sentence φ(x) and any tuple of reals r, R |= φ(r) iff the Fréchet filter F0 ⊩ φ(δ(r)) iff
†R |= φ(δ(r)). In particular, for any L -sentence φ, R |= φ iff †R |= φ iff F0 ⊩ φ.

Proof. For any r ∈ R, let δ(r)(i) = r for all i ∈ ω. Then for any L -sentence φ(x), any
tuple of reals r and any i ∈ ω, R |= φ(r) iff i ∈ ||φ(δ(r))||. In particular, this means that
||φ(δ(r))|| is either ∅ or ω, meaning that F ⊩ φ(δ(r)) iff ||φ(δ(r))|| = ω iff F0 ⊩ φ(δ(r)).

It is worth emphasizing that this version of the Transfer Principle only holds because we
are using possibility semantics rather than the more standard Kripke semantics. In a sense,
this is not surprising: if the Transfer Principle is to hold between R and †R, then in particular
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all the classical validities must be valid on †R. Using the recursive clauses of Kripke seman-
tics would only deliver intuitionistic logic, and would therefore make the Transfer Principle
fail. The issue, in a nutshell, can be traced back to the semantics of disjunction. By contrast
with the case of the existential quantifier mentioned in Remark 6.2.7.2, a disjunction maybe
be forced at a viewpoint F without any of the disjunct being forced at F .2 If we were to
adopt Kripke semantics, such disjunctions would not be satisfied at every viewpoint in †R,
and the Transfer Principle would therefore fail.

 Loś’s Theorem and the Transfer Principle for †R allows us to draw two important con-
sequences. First, there is a rather robust sense in which R elementarily embeds into †R:
even though †R is not a classical Tarskian structure, if one thinks of every viewpoint in F
as a partial approximation of what such a Tarskian structure could look like, then, by the
Transfer Principle, any such approximation makes sure that this Tarskian structure would
have the same first-order theory as R and would also contain a copy of the reals. By con-
trast, if one prefers to think of every point in F as a “local” viewpoint on a non-constant,
ever-changing hyperreal line, then the Transfer Principle guarantees that the reals are fixed,
unmovable points of this line. The second consequence that one can draw is that validity
on †R coincides with satisfaction at F0: a formula will be satisfied at any F ∈ F precisely if
it is forced by F0. Whether one treats points in F as approximations of a Tarskian model,
or as snapshots of a changing model, this guarantees that the formulas that are true “for
sure” or “always”, are precisely those formula φ(a) that are true in R “cofinitely often”, i.e.,
all formulas such that ||φ(a)|| is a cofinite subset of ω. F0 can therefore be thought of as
a “generic” viewpoint on the Fréchet hyperreals: it forces precisely what must be true of it
and nothing else. I will come back to the significance of this fact in Section 7.6 below.

Just as in Luxemburg ultrapowers, we may now define the nonstandard extension of an
n-ary relation R on R as an n-ary relation †R on †R:

Definition 7.2.7 (Nonstandard Extension). Let R be an n-ary relation on R. The F -
nonstandard extension of R, noted †RF , is the set {a ∈ (†R)n | F ⊩ R(a)} = I (F,R).
Similarly, if f is an n-ary function on R, we let †fF be the n-ary function I (f).

Note that, because of our choice of defining functions on †R, the nonstandard extension
of a function f on R is a bona fide function that is not relativized to a filter F . Nonetheless,
whether some b ∈ †R is the image of a tuple a under †f is relative to a filter F , since equality is
interpreted as an equivalence relation on each filter. As is customary in nonstandard analysis,
I will identify a function f with its nonstandard extension †f whenever no ambiguity arises.
Let us also introduce the following definitions, which mirror usual notions in nonstandard
models:

Definition 7.2.8. For any a ∈ †R and any F ∈ F, let aF = {b ∈ †R | F ⊩ a = b}, and let
the F -halo of a be the set (a)F = {b ∈ †R | F ⊩ |a− b| < 1

n
for all n ∈ N}.

2A simple example of this is the statement α = 0∨ α = 1, for α(i) = j iff i ≡ j mod 2, which is satisfied
at F0 even though neither α = 0 nor α = 1 are forced at F0.
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In other words, for any a ∈ †R and any F ∈ F, aF is the collection of all guises that are
identified from the viewpoint F with the same hyperreal as the one a designates, while (a)F
is the set of all guises which are infinitesimally close to a from the viewpoint F . Obviously,
aF ⊆ (a)F , but the converse is never true:

Lemma 7.2.9. For any a ∈ †R and any F ∈ F, there is b ∈ (a)F \ aF .

Proof. Fix a ∈ †R and F ∈ F, and let b : ω → R be defined as b(i) = a(i) + 1
i

for all i ∈ ω.
Then note that ||a = b|| = ∅, which means that F ⊩ a ̸= b and hence that b /∈ aF . However,
|||a − b| < 1

n
|| = {i ∈ ω | i > n} for any n ∈ N, which means that |||a − b| < 1

n
|| ∈ F , since

F is free. Hence, by Theorem 7.2.5, b ∈ (a)F .

This lemma guarantees that we can meaningfully talk about infinitesimals in the Fréchet
hyperreals. Of course, whether two elements a, b ∈ †R are infinitesimally close to one another
may vary with F . Nonetheless, this still allows us to give a straightforward adaptation of
the usual definition of continuity on the hyperreal line.

Definition 7.2.10 (F -continuity). A function f : †R → †R is F -continuous at a point
c ∈ †R if for any x ∈ (c)F , f(x) ∈ (f(c))F .

Just as in Luxemburg ultrapowers, this definition aims to capture in an intuitive way the
idea that continuous functions are those functions f for which a small change in the argument
of f will only entail a small change in the value of f . Since we want to use our notion of
infinite closeness to characterize the idea of a “small change”, we must relativize the notion of
continuity on the †R to a viewpoint F . We nonetheless easily obtain the following theorem,
which shows that our notion of F -continuity corresponds to the Weierstrass definition of
standard analysis.

Theorem 7.2.11. A function f : R → R is continuous at a point c if and only if †f is
F -continuous at c for any F ∈ F.

Proof. Assume first that f : R → R is continuous, and let F ∈ F, c ∈ R, and x ∈ (c)F .
Since f is continuous at c, for any n ∈ ω, there is a positive δ ∈ R such that for any
a ∈ R, |c− a| < δ implies |f(c) − f(a)| < 1

n
. Fix n ∈ ω and choose such a δ ∈ R. Note that

F ⊩ |c−x| < δ, and thus |||c−x| < δ|| ∈ F . By choice of δ, for any i ∈ |||c−x| < δ||, we have
that R |= |f(c(i))−f(x(i))| < 1

n
. Thus |||f(c)−f(x)| < 1

n
|| ∈ F , and F ⊩ |f(c)−f(x)| < 1

n
.

Since n was chosen arbitrarily, it follows that f(x) ∈ (f(c))F .

Conversely, suppose that there is some F ∈ F such that x ∈ (c)F implies f(x) ∈ (f(c))F .
Note that this means that for any positive ϵ ∈ R, and any positive δ ∈ (0)F , F ⊩ ∀x(|c−x| <
δ =⇒ |f(c)−f(x)| < ϵ). Since (0)F is non-empty, we have that F ⊩ ∃δ(δ > 0∧∀x(|c−x| <
δ =⇒ |f(c)− f(x)| < ϵ)). By Corollary 7.2.6, since this first-order sentence only has a real
parameter ϵ, it is also true in R. But then there must be a positive δ ∈ R such that for any
a ∈ R, |c− a| < δ implies |f(c) − f(a)| < ϵ, thus establishing that f is continuous at c.
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This establishes that one of the most appealing features of classical nonstandard analysis,
an intuitive characterization of continuity that uses infinitesimals in a coherent and powerful
way, is still available in our semi-constructive setting. In fact, as I will argue in Section 7.6.2,
there is a sense in which our non-constructive definition constitutes a better alternative to
the Weierstrassian definition of continuity than the classical nonstandard one.

How much infinitesimal calculus could †R provide a foundation for? In the Epilogue of
his textbook introducing calculus via the infinitesimal method [154], Keisler writes that all
the results obtained in the textbook can be derived from the axioms of a complete ordered
field for R and two axioms for the hyperreal line B∗, the Extension axiom and the Transfer
axiom. From the results obtained so far, it is easy to verify that the Extension axiom is valid
on †R, while the Transfer axiom is a weaker version of Corollary 7.2.6. This means that †R
could be used as an alternative foundation for Keisler’s textbook. Because it is a possibility
structure, however, some caution is in order, and some arguments need to be slightly altered.
For instance, Keisler proves the following from his axiom system for R and R∗:

Standard Part Principle For any finite hyperreal number b (i.e., any b ∈ R∗ such that
|b| < r for some r ∈ R), there is exactly one real number r infinitely close to b.

Of course, this fundamental result of nonstandard analysis is what allows for the definition of
the standard part function on the finite hyperreals, a key tool in deriving results of classical
analysis. It is not true, however, that for any F ∈ F and any a ∈ †R such that F ⊩ |a| < δ(r)
for some real number r, we have a ∈ (δ(r))F for some unique real r. For example, letting

a ∈ Rω be given by a(i) = (−1)i

2
, we have that F0 ⊩ −1 < a < 1, yet clearly a /∈ (δ(r))F0

for any real number r. Moreover, there does not seem to be a principled way of determining
what the standard part of a should be at F0, since, letting G1 and G2 be the filters in F
generated by adding the set of even and odd natural numbers to F0, respectively, one would
clearly want the G1-standard part of a to be −1

2
and the G2-standard part of a to be 1

2
.

The way out of this conundrum is to “internalize” the Standard Part Principle, i.e.,
to turn it into a first-order statement in an extended language and show that it is valid on
†R. The argument, which becomes a straightforward adaptation of Keisler’s, can be found in
Section 7.8.1. The need for such a detour is essentially due to the fact that the standard part
function, just like the standardness predicate, are external objects in nonstandard analysis.
Once the Standard Part Principle has been internalized, however, †R can play the same
foundational role for Keisler’s infinitesimal calculus as Luxemburg ultrapowers. Moreover,
as we will see in the next section, a straightforward theory of internal objects can also be
developed for †R.

7.2.3 Internal Sets and Countable Saturation

Internal sets play a central role in classical nonstandard analysis, as they form a collection
of “well-behaved” subsets of a nonstandard extension of the real line. As we shall see, we
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can also define in a natural way the notion of an internal subset of †R, although this must
first be relativized to a point F ∈ F.

Definition 7.2.12 (F -internal set). Let {An}n∈ω be a family of subsets of R, and let AF =
{a | {i | R |= Ai(a(i))} ∈ F}. An F -internal set is a subset of D such that D = AF for
some family {An}n∈ω of subsets of R.

This definition mirrors the usual definition of an internal set in an ultrapower of the
reals, as it can be found for example in [108, Chap. 11]. Since †R is a possibility structure,
however, each filter in F gives us a different viewpoint on what an internal set determined
by a countable sequence {An}n∈ω looks like. To keep track of how F -internal sets relate to
one another across different filters, it is useful to expand the language L , adding a predicate
symbol (which I will call an internal predicate) A for each sequence {An}n∈ω of subsets of R.
Let L + be the new language. †R can be seen as an L +-structure by letting a ∈ I (F,A)
iff ||A(a)|| = {i ∈ ω | R |= Ai(a(i))} ∈ F for any internal predicate A, any a ∈ †R and any
F ∈ F. The following lemma is straightforward and ensures that this interpretation satisfies
the conditions of Definition 6.1.1.

Lemma 7.2.13. Let {An}n∈ω be a sequence of subsets of R with corresponding internal
predicate A, and a ∈ †R. Then for any F,G ∈ F :

Persistence if G ⊇ F and a ∈ I (F,A), then a ∈ I (G,A);

Refinement if a /∈ I (F,A), then there is G ⊇ F such that for all H ⊇ G, a /∈ I (H,A);

Equality as congruence if a ∈ I (F,A) and (a, b) ∈ I (F,=) for some b ∈ †R, then
b ∈ I (F,A).

Proof. Fix a countable sequence {An}n∈ω of subsets of R with associated internal predicate
A, a, b ∈ †R and F ∈ F.

Persistence Note that a ∈ I (F,A) iff ||A(a)|| ∈ F ⊆ G, so a ∈ I (G,A).

Refinement If a /∈ I (F,A), then there is G ∈ F such that G ⊇ F ∪ (ω \ ||A(a)||). Clearly,
for any H ⊇ G, ||A(a)|| /∈ H, from which it follows that a /∈ I (H,A).

Equality as congruence Note that ||a = b|| ∩ ||A(a)|| = {i ∈ ωR |= a(i) = b(i) ∧
Ai(a(i)} ⊆ ||A(b)||. Hence (a, b) ∈ I (F,=) and a ∈ I (F,A) together imply that
b ∈ I (F,A).

More generally, for any L +-formula φ(A1, ..., AK , x) with n free variables where A1, ..., Ak

are the internal predicates appearing in φ, and the corresponding sequences of subsets of R
are {A1

i }i∈ω, ..., {Aki }i∈ω, let ||φ(A1, ..., Ak, a)|| = {i ∈ ω | R |= φ(A1
i , ..., A

k
i , a(i))} for any

n-tuple a ∈ †R. Note that this is well defined since φ(A1
i , ...A

k
i , x) is an L -formula for any

i ∈ ω. By adapting the proof of Theorem 7.2.5 in a straightforward way, we also obtain the
following corollary.
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Corollary 7.2.14. For any L + formula φ(x) with n free variables and any n-tuple a of
elements of †R, we have that F ⊩ φ(a) iff ||φ(a)|| ∈ F for any F ∈ F.

This result allows us to describe the F -internal subsets of †R “internally”, that is, using
the satisfaction relation at F . In particular, we can define the following:

Theorem 7.2.15 (F -Internal Set Definition Principle). Let φ(A, x, y) be an L + formula
with n + 1 variables and where A is a tuple of internal predicates. Then for any n-tuple
a ∈ †R and any F ∈ F, {b ∈ †R | F ⊩ φ(A, a, b)} is an F -internal subset of †R.

Proof. By induction on the complexity of φ. Note that this is trivial if φ(x) = A(x) for some
internal predicate A.

• If R is an n + 1-ary L relation symbol, then let {Ri}i∈ω be such that Ri = {b ∈ R |
R(a(i), b)}, and let †Ra be the corresponding internal predicate in L +. Then clearly
for any F ∈ F F ⊩ †R(a, b) iff ||R(a, b)|| ∈ F iff || †Ra(b)|| ∈ F iff b ∈ †Ra

F .

• If φ := ¬ψ(A, x, y), then by induction hypothesis we have a countable sequence {Sψi }i∈ω
such that {b ∈ †R | F ⊩ ψ(A, a, b)} = SψF for any F ∈ F. Define {Sφi }i∈ω by letting
Sφi = R\Sψi for any i ∈ ω. Then, for any b ∈ †R, we have that ||Sφ(b)|| = ω \ ||Sψ(b)||,
from which it follows that {b ∈ †R | F ⊩ φ(A, a, b)} = SφF .

• If φ := ψ ∧ χ(A, x, y), then by induction hypothesis we have countable sequences
{Sψi }i∈ω and {Sχi }i∈ω such that {b ∈ †R | F ⊩ ψ(A, a, b)} = SψF and {b ∈ †R | F ⊩
χ(A, a, b)} = SχF for any F ∈ F. Define {Sφi }i∈ω by letting Sφi = Sψi ∩ Sχi for any
i ∈ ω, and note that ||Sφ(b)|| = ||Sψ(b)|| ∩ ||Sχ(b)|| for any b ∈ †R, thus showing that
{b ∈ †R | F ⊩ φ(A, a, b)} = SφF .

• If φ := ∃zψ(A, x, y, z), then by induction hypothesis we have countable sequences

{Sψ(c)i }i∈ω such that {b ∈ †R | F ⊩ ψ(A, a, b, c)} = S
ψ(c)
F for any c ∈ †R. For any

i ∈ ω, let Sφi =
⋃
c∈†R S

ψ(c)
i . I claim that ||∃zψ(A, a, b, z)|| = ||Sφ(b)|| for any b ∈ †R,

which is enough to show that {b ∈ †R | F ⊩ φ(b)} = SφF . For the proof of the claim,
note first that, using the Axiom of Countable Choices, we can define c ∈ Rω such
that ||∃zψ(A, a, b, z|| ⊆ ||ψ(A, a, b, c|| = ||Sψ(c)(b)|| ⊆ ||Sφ(b)||. Finally, the converse
direction is straightforward: if i ∈ ||Sφ(b)||, then R |= ψ(Ai, a(i), b(i), c(i)) for some c ∈
†R, which implies that R |= ∃zφ(Ai, a(i), b(i), z), and hence i ∈ ||∃xφ(A, a, b, c)||.

As an immediate corollary of Theorem 7.2.15, we obtain the following result on the
structure of F -internal sets.

Corollary 7.2.16. Let F ∈ F. Every nonstandard extension of a subset of the reals is an
F -internal set. Moreover, the F -internal sets form a Boolean algebra.

Proof. Recall that if S ⊆ R, then †SF = {b ∈ †R | F ⊩ S(b)}. By Theorem 7.2.15, it
follows at once that †SF is F -internal for any F ∈ F. Moreover, for any internal predicates
A,B, let ¬FAF = {b ∈ †R | F ⊩ ¬A(b)}, AF ∧F BF = {b ∈ †R | F ⊩ A(b) ∧ B(b)}, and
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AF ∨F BF = {b ∈ †R | F ⊩ A(b) ∨ B(b)}. By Theorem 7.2.15, the operations ¬F , ∧F and
∨F map F -internal sets to F -internal sets, and, using Corollary 7.2.14, it is straightforward
to verify that IF = ({AF}A∈L +\L ,∧F ,∨F ,¬F , †R, ∅) is a Boolean algebra.

The Definition Principle above therefore gives us a powerful way of defining F -internal
sets and ensures that many subsets of †R are F -internal for any F . Note however that,
because we are working in a possibility structure, the extension of an internal subset of †R
must always be relativized to a filter F . In other words, the Definition Principle ensures
that the same internal subsets, understood intensionally, exist at any point F ∈ F. But
whether an element in †R belongs to a given internal set S will vary with the filter F , i.e.,
the extension of internal sets is relative to the viewpoints in F. To illustrate this point,
consider the internal predicate †N , corresponding to the sequence {Ni}i∈ω where Ni is the
set of all natural numbers for any i ∈ ω. In other words, †N represents the nonstandard
extension of the natural numbers, i.e., the internal set of hypernatural numbers. For any
F ∈ F, the hypernatural-numbers-at-F are an F -internal set, namely †NF . But this does not
mean that the set of hypernatural numbers is stable across points in F. As a matter of fact,
if we consider the sequence a ∈ †R defined by a(2k) = k and a(2k + 1) = π for all k ∈ ω,
then a ∈ †NF precisely when {2k | k ∈ ω} ∈ F . From now on, I will adopt the “intensional”
perspective on internal sets whenever possible, meaning that I will use the phrase “internal
set” to designate the varying extension of an internal predicate S.

In Luxemburg ultrapowers, a crucial feature of internal sets is their countable saturation
property: any countable decreasing sequence of non-empty internal sets has a non-empty in-
tersection. As we shall see, the same property, once relativized in a natural way to viewpoints
in F, can also be proved for the internal sets on †R.

Notation 7.2.17. Let A and B be internal predicates corresponding to countable sequences
{Ai}i∈ω and {Bi}i∈ω respectively. Then ||A ⊆ B|| is defined as the set {i ∈ ω | Ai ⊆ Bi},
and ||A ̸= ∅|| as the set {i ∈ ω | Ai ̸= ∅}.

By Corollary 7.2.14, it is straightforward to verify that for any F ∈ F, and any internal
predicates A and B, ||A ⊆ B|| ∈ F iff F ⊩ ∀x(A(x) → B(x)), and ||A ̸= ∅|| ∈ F iff
F ⊩ ∃x ∈ A. We are now in a position to prove the second important feature of †R:

Theorem 7.2.18 (Countable F -saturation Principle). Let F ∈ F and let {X i}i∈ω be a family
of F -internal sets such that for any k ∈ ω, F ⊩ ∃xXk(x) and F ⊩ ∀x(Xk+1(x) → Xk(x)).
Then there is a ∈ †R such that F ⊩ Xk(a) for all k ∈ ω.

Proof. The proof mirrors the usual proof for Luxemburg ultrapowers as it can be found for
example in [108, Theorem 11.10.1]. For any k ∈ ω, let {Akn}n∈ω be the countable sequence
of subsets of R such that Xk = AkF . Since F ⊩ ∃xXk(x), this means that ||Ak ̸= ∅|| ∈ F
for each k ∈ ω. Similarly, since F ⊩ ∀x(Xk+1(x) → Xk(x)) for any k ∈ ω, this means that
||Ak+1 ⊆ Ak|| ∈ F for all k. Hence for any k ∈ ω, letting Jk = ∩i<k||Ai+1 ⊆ Ai|| ∩ ||Ak ̸= ∅||,
we have that Jk ∈ F and J i ⊆ Jk for any i ≥ k. Now if we construct a ∈ †R such that for
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any k ∈ ω and any n ≥ k, if n ∈ Jk, then a(n) ∈ Akn, then as {n ∈ ω | k ≤ n}∩Jk ∈ F since
F extends the Fréchet filter on ω, we will have that a ∈ AkF for all a ∈ F . We define a in
the standard way: for any n ∈ J1, let kn = max{k | k ≤ n and n ∈ Jk}. Clearly, n ∈ Jkn ,
so by definition n ∈ ||Akn ̸= ∅||, i.e., R |= ∃xAknn (x) and moreover, Aj+1

n ⊆ Ajn for any j < k.
So let a(n) ∈ Akn if n ∈ J1, and let a(n) be arbitrary otherwise. Finally, fix k ∈ ω, and note
that, if n ≥ k and n ∈ Jk, then k ≤ kn, hence a(n) ∈ Aknn ⊆ Akn. Thus a ∈

⋂
k∈ω(Xk)F .

Let us conclude this section with some results on the cardinality of F -internal sets. Of
course, since our internal notion of equality is an equivalence relation relative to a point F ∈
F, we must be careful in defining internally what finiteness, countability and uncountability
mean for internal sets. For example, we would clearly want the set of natural numbers less
than some positive natural number n to be finite. But it is easy to see that for any F ∈ F,
there are at least countably many a ∈ †R for which F ⊩ a < n, since for any k ∈ ω, the
function ak : ω → R given by ak(i) = 0 if i < k and ak(i) = n− 1 otherwise will be one such
element of †R. This motivates the following definitions:

Definition 7.2.19. Let F ∈ F. A subset A of †R is F -finite if AF =
⋃
i∈I a

i
F for some

finite set I with ai ∈ †R for all i ∈ I, F -countable if there is a countable sequence {ai}i∈ω of
elements of †R such that A =

⋃
i∈ω a

i
F , and F -uncountable otherwise.

It is clear from the previous definition that sets such as the set of all natural numbers
below some positive number n are F -finite for any F ∈ F, just as the set of standard
natural numbers is F -countable for any F . However, the following lemma also shows that
our relativized notions of finiteness and countability interact with the notion of an internal
set in a meaningful way.

Lemma 7.2.20.

1. Let A be a subset of †R and F ∈ F be such that for all a ∈ †R, a ∈ A iff there is r ∈ R
such that a ∈ δ(r)F . Then A is F -internal iff it is F -finite.

2. Any internal subset of †R is either finite or uncountable.

Proof.

1. Let B ⊆ R be the set {r ∈ R | δ(r) ∈ A}. By assumption, we have that A =⋃
r∈B δ(r)F . Note that A is F -finite iff B is finite. Clearly, if B = {r1, ..., rn} is finite,

then for all a ∈ †R, a ∈ A iff F ⊩ a = δ(r1)∨ · · · ∨ a = δ(rn), hence A is F -internal by
Theorem 7.2.15. Conversely, suppose that A is F -internal, i.e., that there is a sequence
{Bi}i∈ω such that BF = A. Assume B is infinite, and let {ri}i∈ω be a countable
sequence of elements of B.3 Let J be the set of all i ∈ ω such that Bi is infinite, and
relabel J and ω \ J as {ni}i∈ω and {mi}i∈ω respectively. Define a : ω → R as follows.
For any i ∈ ω, a(mi) = rm for m largest such that rm ∈ Bmi

(or some fixed r /∈ B if

3Note that we are using the Axiom of Countable Choices here to ensure that the infinite set B is also
Dedekind-infinite.
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Bmi
is empty), and a(ni) = rn for n smallest such that rn ∈ Bni

\ {a(nj) | j < i}. By
construction, i ∈ ||Bi(a)|| whenever Bi ̸= ∅, hence a ∈ BF . Moreover, for any i ∈ ω,
|||a = ri||∩J | ≤ 1, and therefore ω\(||a = ri||∩J) ∈ F . Note also that j ∈ ||a = ri||\J
implies that |Bj| ≤ i. But since F ⊩ ∃x1, ..., xi+1

∧
k ̸=l≤i+1 xk ̸= xl ∧

∧
k≤i+1B(xk), it

follows that ||a = ri|| \ J /∈ F . But this implies that ||a = ri|| /∈ F for any i ∈ ω, and
hence that a ∈ BF \A, contradicting our hypothesis. Hence if A is F -internal, it must
also be finite.

2. Let A be an internal subset of †R with {Ai}i∈ω its associated countable sequence of
subsets of R, and suppose that A is F -countable. This means that we have a sequence
{ai}i∈ω of elements of †R such that AF =

⋃
i∈ω a

i
F . By the Definition Principle, for any

n ∈ ω, the set Ai = A\{a1, . . . .ai} is F -internal. But if F ⊩ ∃xAi(x) for all i ∈ ω, then
by Theorem 7.2.18 there is a ∈ †R such that F ⊩ Ai(a) for all i ∈ ω, a contradiction.
Therefore AkF must be empty for some k ∈ ω, which implies that AF =

⋃
i≤k a

k
F , and

thus that A is F -finite. Hence any F -internal set is either F -finite or uncountable.

The previous lemma echoes a well-known result for Luxemburg ultrapowers, namely that
the only internal subsets of R on the hyperreal line are the finite ones and that any internal
subset of the hyperreal line is either finite or uncountable [108, Sections 11.7 and 11.12]. As
an immediate consequence, we have that the set of all standard natural numbers N and the
set of all standard real numbers R are always F -external.

Let us sum up our progress so far. As we have seen in this section, the Fréchet hyperreals
†R form a structure that enjoys many important features of the classical hyperreal line,
including versions of the Transfer and Saturation Principles, infinitesimals, and a robust
notion of internal set. The crucial difference though is that, while the classical hyperreal
is a Tarskian structure whose existence requires strong non-constructive hypotheses like the
Ultrafilter Lemma, †R is a possibility structure which can be defined in a semi-constructive
setting, assuming only ZF +DC. As mentioned in Section 7.1, the idea of proposing more
constructive frameworks for nonstandard analysis is far from new and is in fact arguably as
old as Robinsonian nonstandard analysis itself [231]. As we will see in the next three sections,
†R can be thought of as an “intersection point” of three such research programs: the use of
the Fréchet filter in place of a free ultrafilter on ω, the use of sheaves instead of sets as the
carrier of a model, and the use of Boolean-valued instead of classical, two-valued, Tarskian
models. As we will see, the comparison of †R with each such proposal in the literature also
allows for different perspectives on †R and on its relationship with the classical hyperreal
line.

7.3 The Asymptotic Approach

The first alternative approach to the hyperreal line that I will discuss aims to do away with
the non-constructive aspect of Robinsonian nonstandard analysis by substituting the Fréchet
filter to a free ultrafilter on ω. Although constructive, the structure thus obtained, known
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as a reduced power, has some significant drawbacks, most importantly the lack of a Transfer
Principle. On the other hand, according to its proponents, this idea has the advantage of
not introducing in analysis an “exotic” object like a free ultrafilter—an intangible, to use
Schechter’s terminology in [230]—and appears to be closer both to ordinary mathematical
practice and to historical work that involves reasoning about mathematical objects “in the
limit”. I will first present Laugwitz’s work in [168], before discussing a recent proposal by
Tao in [251], which can be seen as a refinement of Laugwitz’s idea, and comparing each
proposal to †R.

7.3.1 Laugwitz and Reduced Powers

Laugwitz’s starting point is slightly different from what we have discussed so far. Indeed,
while we have been taking the Cantor-Dedekind real line for granted and exploring how to
expand it to a hyperreal line, Laugwitz is first interested in exploring the kind of structures
that can be obtained from sequences of rationals. Drawing a contrast with Cantor’s con-
struction of the reals as equivalence classes of Cauchy-converging sequences of rationals, he
writes:

The two steps of the sequential approach to the real numbers are (i) to restrict
the set of admissible rational sequences to “fundamental” sequences, and (ii) to
furnish this set of fundamental sequences with an equivalence relation. Since our
extended number system is expected to contain “more” numbers than R itself,
we have to change these assumptions, and there are two possibilities to achieve
this aim: (i) to admit more sequences, (ii) to relax the equivalence relation. In a
radical way, we shall (i) admit all sequences, and (ii) we shall identify only those
sequences which are equal for almost all numbers n, a ≡ b iff the complement of
{n ∈ N|an = bn} is finite. [168, p. 11]

Formally, Laugwitz works with a reduced power of a field (K,+, ·, 0, 1) modulo the Fréchet
filter F0. The domain of such a structure, noted ΩK by Laugwitz, is given by equivalence
classes of sequences a : ω → K, where two such sequences a and b are equivalent if and
only if they agree on cofinitely many values of n. Operations on K can be extended to
ΩK pointwise: for example, given two sequences a, b with equivalence classes aF0 and bF0 ,
aF0 + bF0 is the equivalence class of the function c : ω → K defined by c(n) = a(n) + b(n)
for every n ∈ ω. The properties of a filter are enough to guarantee that (ΩK,+, ·) is a
well-defined first-order structure. But, as Laugwitz notes, working with a reduced power has
some important drawbacks:

It is an easy task to show that (ΩK,+, ·) is a commutative ring with unit element
[1] [. . . ]. Unfortunately ΩK fails to be a field. Consider the sequences

an = 1 + (−1)n, bn = 1 − (−1)n (3)
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then α ̸= 0 and β ̸= 0 since neither the set of odd numbers nor the set of even
numbers is cofinite. But, obviously, α · β = 0. So (ΩK,+, ·) is a ring with
divisors of zero and certainly not a field. Moreover, the generalized numbers α,
β defined by (3) are neither positive nor negative, which means that our ring is
only partially ordered by <. [p. 13]

Of course, this is an immediate consequence of the use of the Fréchet filter rather than
a free ultrafilter: while a weaker version of  Loś’s Theorem holds for a fairly large class of
first-order sentences that includes equations,4 it does not hold for all first-order sentences,
particularly sentences involving disjunctions and negations. This means that the “expanded
real line” that Laugwitz is considering does not have the structure of a field and is not even
a linear order. Interestingly, Laugwitz argues that this feature is not necessarily an issue,
by drawing a parallel to the fact that the complex numbers are a domain extension of the
ordered field of reals that is not itself an ordered field:

Now this situation is not surprising. We are used to the fact that not all good
properties of a number system extend automatically to a larger system. For
instance, the order structure of R cannot be extended to the complex numbers.
But nevertheless we reach the essential goal of the complex numbers, to solve
algebraic equations. Since we aimed at introducing infinitely large numbers as
well as infinitesimals we shall look for elements of ΩK enjoying these properties.
[p. 13]

Laugwitz’s argument seems to be that working in a structure that is neither a field nor
a linear order is an acceptable price to pay in order to have infinitesimal and infinitely
large numbers, just like working in a non linearly-ordered field is an acceptable price to
pay to obtain a field that is algebraically closed. Of course, much could be said about this
analogy. Although no algebraically closed field can be linearly ordered, since it follows from
the ordered field axioms that x2 > 0 whenever x < 0 or x > 0, it is not true that a linearly
ordered field must always be Archimedean: the hyperreal line is a counterexample, but so
are Conway’s surreal numbers, or the Levi-Civita field [79]. As we have seen in the previous
section, †R is also a possibility structure on which all the axioms of a field are valid.

Nevertheless, Laugwitz goes on to show how his framework allows him to rigorously
reproduce several historical arguments from Leibniz, Euler, and Cauchy, among others. He
argues, quite convincingly, that the reduced power construction captures a powerful and
historically significant intuition that the behavior of sequences “in the limit” is determined
by their behavior “almost everywhere”, i.e., on cofinitely many of their values:

I should like to emphasize that our rather simple definitions already permit cor-
rect interpretations of large parts of the history of infinitesimal mathematics as
well as of the use of divergent expressions. [...] The proofs invariably run as fol-
lows: Write n instead of Ω and show that everything holds for almost all n ∈ N!
[p. 14]

4In fact, Horn sentences true in the base structure remain true in the reduced power, see [56]
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Finally, Laugwitz shows how a system isomorphic to the Cantor-Dedekind real numbers
can be obtained as a quotient of the structure ΩQ. His notation is at times a bit obscure,
but the main idea is to define a cut number in ΩQ as a sequence a : ω → Q such that the
absolute value of a(n) is bounded by some rational q cofinitely often, and for any rational
number r, |a(n) − r| is smaller than any fraction 1

m
for any m ∈ ω for some large enough

n (in which case a is infinitesimally close to r), or a(n) < r cofinitely often, or a(n) > r
cofinitely often. In other words, a cut number is a bounded element aF0 of the reduced power
of Q modulo the Fréchet filter for which a form of the trichotomy law holds with respect
to the rationals: for all q ∈ Q, either ΩQ |= aF0 < q ∨ aF0 > q, or aF0 is in the monad of
q (denoted mon q) i.e., ΩQ |= |aF0 − q| < 1

m
for every natural number m.5 Laugwitz goes

on to prove that the cut numbers form a subring C of the bounded numbers of ΩQ, and
that mon 0, i.e., the set of numbers infinitesimally close to 0, is a maximal ideal C. Taking
the quotient C/mon 0 thus yields a field, which can then be shown to be isomorphic to the
Cantor-Dedekind reals. This construction of the reals from the hyperrational numbers can
be carried out in a similar fashion in classical nonstandard analysis, by just quotienting the
ring of bounded hyperrationals by the relation of infinitesimal closeness. Laugwitz’s setting
however requires slightly more work, since the ring ΩQ is not totally ordered. Laugwitz uses
this result to give an intuitive interpretation of the cut numbers, comparing once more the
role they can play in calculus to the role that the complex numbers play in algebra:

We are now in a position to give some intuitive interpretations of our concepts.
Though the cut numbers themselves are not a totally ordered set their equivalence
classes or monads enjoy this property. We can imagine them as clusters like pearls
on a string. Of course between each two of these clusters there are others.[...]
The elements of these clusters can be regarded as representatives of the fine
structure of real numbers. [...] Though these numbers lack a representation in
the geometrical continuum we use them as calculation devices just as everybody
uses complex numbers to get real results more easily. [p. 18]

To sum up, Laugwitz works with a reduced power of a field K modulo the Fréchet filter
in order to introduce new infinite and infinitesimal numbers in K. He shows how many
classical results about infinite series and calculus can be derived in an elegant fashion in
this framework and how the reduced power of Q allows for an alternative construction of
the Cantor-Dedekind reals. The major drawback of this approach, of course, is the lack
of a Transfer Principle between the field K and the reduced power ΩK, which fails to be
a field and is not totally ordered. It is worth mentioning that, in some precise sense, the
Fréchet hyperreals †R contain a copy of the reduced power of R modulo the Fréchet filter
F0. Indeed, taking the quotient of Rω modulo the relation ∼F0= {(a, b) ∈ Rω | F0 ⊩ a = b},
and interpreting any L -relation symbol R(x) by {aF0 ∈ (Rω)/∼F0

| F0 ⊩ R(a)}, one obtains

exactly Laugwitz’s ΩR. Note however that this does not imply in any way that the forcing
relation at F0 coincides with satisfaction in ΩR, since the Transfer Principle guarantees that

5Laugwitz’s monads correspond to what we called halos in Definition 7.2.8, following [108].
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the axioms of an ordered field are forced at any F ∈ F. The difference comes down to the
recursive clauses of the forcing conditions in possibility semantics, which, unlike the recursive
clauses in Tarskian semantics, allow us to consider not only satisfaction of atomic formulas
at a reduced power of R modulo the Fréchet filter but also at any other reduced power of R
modulo a free ultrafilter on ω.

Since validity on †R coincides with the forcing relation at F0, we may therefore argue
that †R, just like Laugwitz’s framework, formalizes the idea that many classical arguments
from calculus rely on the intuition that the behavior of mathematical objects “in the limit”
is determined by how often they exhibit such a behavior in the finite and that this intuition
can be given a rigorous and elegant presentation in a structure that contains infinitely large
and infinitely small elements. But where Laugwitz weakens the requirements on the axioms
that such an enlarged structure should satisfy (requiring it to be merely a ring rather than an
ordered field), we weaken the requirement that this enlarged structure be a classical, Tarskian
structure and construct it instead as a possibility structure that satisfies all the axioms of
ordered fields. This trade-off between standard semantics and powerful axiomatics appears
also in Tao’s proposal of a “cheap” nonstandard analysis, which shares many features with
Laugwitz’s approach, but can also be thought of as an informal version of †R.

7.3.2 Tao and “Cheap” Nonstandard Analysis

In [251], Tao introduces what he calls “cheap” nonstandard analysis as an informal frame-
work that allows one to apply some of the elegant reasoning of nonstandard analysis, without
relying on the existence of free ultrafilters and the construction of ultrapowers. Tao’s moti-
vation seems both foundational, as the use of infinitary methods to obtain “finitary” results
seems to violate some purity concern, as well as purely technical:

On the other hand, nonprincipal ultrafilters do have some unappealing features.
[...O]ne cannot actually write down any explicit example of a nonprincipal ultra-
filter, but must instead rely on nonconstructive tools such as Zorn’s lemma, [...]
or the [Ultrafilter Lemma] to locate one. As such, ultrafilters definitely belong
to the “infinitary” side of mathematics, and one may feel that it is inappropriate
to use such tools for “finitary” mathematical applications, such as those which
arise in hard analysis. From a more practical viewpoint, because of the presence
of the infinitary ultrafilter, it can be quite difficult [...] to take a finitary result
proven via nonstandard analysis and coax an effective quantitative bound from
it.

Tao’s suggestion is very close to Laugwitz’s idea, as it involves working with the Fréchet
filter rather than with a free ultrafilter on ω. Tao also seems to think that, unlike free
ultrafilters, the Fréchet filter is not an “exotic” mathematical object but rather already
plays a key role in any kind of ordinary mathematical reasoning that involves passing to a
limit:
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There is however a “cheap” version of nonstandard analysis which is less powerful
than the full version, but is not as infinitary in that it is constructive [...]. It is
obtained by replacing the nonprincipal ultrafilter in fully nonstandard analysis
with the more classical Fréchet filter of cofinite subsets of the natural numbers,
which is the filter that implicitly underlies the concept of the classical limit
limn→∞ an of a sequence when the underlying asymptotic parameter n goes off to
infinity. As such, “cheap nonstandard analysis” aligns very well with traditional
mathematics [...].

More precisely, the starting point of Tao’s proposal is to consider mathematical objects
that may vary along some parameter n, which ranges over ω. Such a mathematical object xn
can therefore be thought of as a countable sequence of classical objects. The mathematical
universe of Tao’s cheap nonstandard analysis is therefore two-sorted: there are standard or
classical mathematical objects, which do not depend on the parameter n, and nonstandard
ones, which may vary with n. Of course, we may always think of standard objects as
nonstandard ones that happen to not vary with n. Two nonstandard objects xn and yn
are considered equal if they differ on only finitely many values of the parameter n. More
generally, a tuple of nonstandard objects xn stand in a relation R if and only if they stand in
relation R for cofinitely many values of the parameter n. From this, it follows pretty clearly
that Tao’s approach amounts to working with equivalence classes of the countable sequences
of objects modulo the Fréchet filter and is thus very similar to Laugwitz’s proposal. As Tao
himself remarks, it has similar shortcomings:

The catch is that the Fréchet filter is merely a filter and not an ultrafilter, and
as such some of the key features of fully nonstandard analysis are lost. Most
notably, the law of the excluded middle does not transfer over perfectly from
standard analysis to cheap nonstandard analysis [...]. The loss of such a funda-
mental law of mathematical reasoning may seem like a major disadvantage for
cheap nonstandard analysis, and it does indeed make cheap nonstandard analysis
somewhat weaker than fully nonstandard analysis.

Tao’s framework therefore not only does not satisfy the Transfer Principle but does not
even allow for classical reasoning. Tao argues that the problem can often be bypassed by
reasoning intuitionistically and that a large class of formulas transfer from the standard
universe to the nonstandard universe, although he does not precisely isolate a fragment of
the first-order language for which the Transfer Principle would remain valid. Moreover,
he also discusses a way of retrieving some form of the law of excluded middle, by using a
technique that he calls “passing to a subsequence”:

Furthermore, the law of the excluded middle can be recovered by adopting the
freedom to pass to subsequences with regards to the asymptotic parameter n;
this technique is already in widespread use in the analysis of partial differential
equations, although it is generally referred to by names such as “the compactness
method” rather than as “cheap nonstandard analysis”.
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What does Tao mean by “passing to a subsequence” here? His treatment of the notion
remains informal, but the idea is that a given mathematical object xn, indexed by some
parameter n that ranges over ω, may be identified with another mathematical object x′n,
in which the parameter n now only ranges over some proper infinite subset Σ ⊆ ω, and
x′(n) ̸= x(n) for only finitely many n ∈ Σ. The example he gives is that of two parametrized
reals xn and yn such that xnyn = 0. Clearly, this does not imply that xn = 0 or yn = 0, but it
implies that there must be some infinite Σ ⊆ ω such that x(n) = 0 for all n ∈ Σ or y(n) = 0
for all n ∈ Σ, since {n ∈ ω : x(n)y(n) = 0} = {n ∈ ω | x(n) = 0} ∪ {n ∈ ω | y(n) = 0} is
infinite. Therefore, by “passing to the subsequence” parametrized by n ranging over Σ, it
follows that xn = 0 or yn = 0. Now let FΣ be the filter on ω extending the Fréchet filter
and generated by Σ. Clearly, “passing to the subsequence” determined by Σ amounts to
declaring that xn or yn is equivalent to 0, provided we weaken the notion of equivalence
between two parametrized objects from being equal on a cofinite set to being equivalent
on a set in FΣ. Thus Tao’s technique of passing to a subsequence in cheap nonstandard
analysis can be identified with our use in †R of the entire poset F of free filters on ω, since
reducing the range of the parameter n amounts to identifying together more parametrized
objects, just like more elements of †R are forced to be equal at a filter G than at a filter F
when G ⊇ F . More evidence that Tao’s cheap nonstandard analysis can be meaningfully
interpreted as an informal version of †R comes from his remark that “in cheap nonstandard
analysis one only works with statements which remain valid under the operation of restricting
the underlying domain of the asymptotic parameter”, which is analogous to the persistence
condition imposed on formulas in possibility semantics. Moreover, Tao also discusses what
he calls a version of the Saturation Principle:

Let us call a nonstandard property P (x) pertaining to a nonstandard object x
satisfiable if, no matter how one restricts the domain Σ from its current value,
one can find an x for which P (x) becomes true, possibly after a further restriction
of the domain Σ. The countable saturation property is then the assertion that if
one has a countable sequence P1, P2, . . . of properties, such that P1(x), . . . , Pn(x)
is jointly satisfiable for any finite n, then the entire sequence P1(x), P2(x), . . . is
simultaneously satisfiable.

Once again, the analogy between a parameter space Σ and the free filter FΣ on ω gener-
ated by the finite set Σ on one hand, and between passing to a subsequence Σ′ and extending
the filter to one containing Σ′, allows us to see the similarity between Tao’s principle and
Theorem 7.2.18, as Tao’s notion of satisfiability of a property P (x) on a parameter space Σ
becomes quite transparently analogous to the formula ∃xP (x) being forced at FΣ.

To sum up, Tao’s cheap nonstandard analysis has the same starting point as Laugwitz’s
proposal, namely considering objects that vary along a parameter n and whose properties are
exactly those properties that these varying objects have on cofinitely many of their values.
The main drawback of such a framework is that it does not satisfy the law of excluded middle
and therefore lacks the powerful Transfer Principle of classical nonstandard analysis. As we
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have argued, †R stems from a similar idea but solves the Transfer Principle problem thanks
to the machinery of possibility semantics, which also allows one to reason classically within
the structure. Although it remains informal, Tao’s proposal of having the freedom to pass to
a subsequence by varying the range of the parameter n can conceivably be seen as analogous
to the freedom to vary the free filter on ω that is afforded by possibility semantics. In this
sense, †R can a seen as formal way to capture Tao’s proposal, with the added benefit of
having a powerful version of the Transfer Principle. Interestingly, Tao himself argues that
“[t]he dynamic nature of the parameter space Σ makes it a little tricky to properly formalise
cheap nonstandard analysis in the usual static framework of mathematical logic”. This seems
to suggest that the central feature of †R that allows it to formalize Tao’s idea lies in its more
“dynamic” nature, i.e., in the fact that it is able to reason across various classical models
rather than just within one. As we shall see in the next section, this “dynamic” character
of †R can be captured quite precisely, by comparing it to another constructive version of
nonstandard analysis that uses sheaf semantics and topos theory.

7.4 The Dynamic Approach

The second kind of work I will be considering approaches nonstandard analysis from a con-
structive and intuitionistic perspective. There are, of course, many different constructive or
quasi-constructive approaches to analysis, which differ more or less dramatically from classi-
cal analysis, such as Bishop’s constructive analysis [43] or Weyl’s predicative analysis [260].
The development of topos theory and sheaf semantics has also allowed for the construction
of several rich models of the intuitionistic continuum [9, 96, 235, 236]. In a series of articles
[202, 203, 204], Erik Palmgren has developed a constructive version of nonstandard analysis
which shares many aspects of †R.6 Palmgren’s model, however, uses sheaf semantics, and
the nonstandard extensions of a set he defines are not themselves sets but rather set-valued
functors on a large category of filters. As such, his version of the hyperreal line can be
thought of as a dynamic or varying model, a model whose exact domain varies along each
object in the category of filters. As we shall see below, Palmgren’s construction can be dra-
matically simplified in a semi-constructive setting, which yields a structure that is essentially
equivalent to †R.

7.4.1 Palmgren’s Sheaf Model

Palmgren’s starting point is the observation that, from a constructive perspective, the ex-
istence of a nonstandard extension of the real line on which the Transfer and Saturation
Principle hold seems to pose some insurmountable problems. Indeed, if φ(x) is any state-
ment about the natural numbers, then the following is constructively valid:

R |= ∀n ∈ N(∀m ≤ n(m ∈ N → (φ(m) ∨ ¬φ(m)))).

6A more syntactic approach building in part on Palmgren’s work was also developed in [25, 115]
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Thus if there is a nonstandard extension R∗ of R for which the Transfer Principle holds, it
follows that:

R∗ |= ∀n ∈ N∗(∀m ≤ n(m ∈ N∗ → (φ(m) ∨ ¬φ(m)))),

But if R∗ satisfies the Saturation Principle, it contains some infinitely large hypernatural
number N , which implies that:

R∗ |= ∀m ≤ N(m ∈ N∗ → (φ(m) ∨ ¬φ(m))).

Thus for any natural number m,

R∗ |= φ(m) or R∗ |= ¬φ(m),

which by Transfer implies that

R |= φ(m) or R |= ¬φ(m),

which is certainly a problematic conclusion for the constructivist, as it would imply that the
Law of Excluded Middle holds on the natural number domain. Thus, just like the existence
of a Tarskian structure satisfying the Transfer and Saturation Principle implies in a semi-
constructive setting the existence of a free ultrafilter on ω, it also implies in a constructive
setting the Law of Excluded Middle on the domain of the natural numbers. Building on some
previous work by Moerdijk [194], Palmgren’s solution is similar to the solution offered by
†R in that the model of constructive nonstandard analysis he develops uses sheaf semantics
rather than a constructive version of Tarskian semantics. As a consequence, the nonstandard
extension of the reals that Palmgren obtains is a sheaf living in a Grothendieck topos, rather
than a Tarskian model in the universe of sets. In what follows, I assume some elementary
knowledge of category theory (objects and arrows in a category, functors between categories,
natural transformations) and limit myself to a description of Grothendieck toposes and sheaf
semantics that is precise enough to give the reader a sense of the relationship between Palm-
gren’s model and †R. A detailed exposition of topos theory is beyond the scope of this
chapter but can be found in [181].

Given a category C, a sieve S on an object A in C is a collection of arrows in C with
codomain A and closed under precomposition, i.e., such that for any arrow f : B → A in
S and any arrow g : C → B, their composition f ◦ g : C → A is in S. A Grothendieck
topology J on C assigns to every object A in C a collection J(A) of covering sieves on A in
a “compatible” way. The pair (C, J), where J is a Grothendieck topology, is called a site. A
presheaf on C is a contravariant functor α : C → Sets, meaning that α(A) is a set for any
object A in C, and α(f) is a function from α(B) to α(A) whenever f : A → B is an arrow
in C. Given a site (C, J), a presheaf α on C and a sieve S = {fi : Bi → A}i∈I covering
some object A in C, a matching family for S is a family {ai}i∈I such that ai ∈ α(Bi) for
every i ∈ I, and for any arrow in C g : D → Bj for some j ∈ I, α(g)(aj) = ak, where
g ◦ fj = fk. Finally, a sheaf on a site (C, J) is a presheaf on C such that for any matching
family {ai}i∈I for some covering sieve S = {fi : Bi → A}i∈I , there is a unique a ∈ α(A) such
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that α(fi)(a) = ai for any fi ∈ S. The category of all sheaves on a site (C, J) and natural
transformations between them, usually written S (C, J), is a Grothendieck topos.

Informally, one can think of a Grothendieck topos as a universe of varying sets. Just like
the category Sets of sets and functions between them, it has enough structure and closure
properties to support a significant amount of set-theoretic reasoning. But unlike in Sets the
objects in a Grothendieck topos S (C, J) are sheaves, i.e., contravariant functors from the
base category C to the category of sets. This means that an object α in a Grothendieck
topos may be thought of as a C-indexed set, meaning that α designates a set α(A) that may
vary along the objects in C. Just like a Tarskian model is a set endowed with an interpre-
tation for the non-logical vocabulary of some first-order language, one can turn sheaves in
a Grothendieck topos into models of a first-order language by defining an interpretation for
non-logical vocabulary and some recursive clauses for first-order formulas. Because a sheaf
α is a varying set, the interpretation and recursive clauses must be defined on every possible
value that α can take, and some requirements must be imposed in order to guarantee the
validity of certain logical laws. Such a framework is precisely the one provided by sheaf
semantics. Formally, given a sheaf α on a site (C, J) and a first-order language L , one
defines first a forcing relation between a set α(A) for some object A in C, elements of α(A)
and atomic L -formulas that must satisfy the following two conditions:

Monotonicity For any n-ary L -relation symbol R, any n-tuple a of elements of α(A), and
any f : B → A, if α(A) ⊩ R(a), then α(B) ⊩ R(α(f)(a));

Local Character For any covering sieve S = {fi : Bi → Ai}i∈I and any n-tuple a of
elements of α(A), if α(Bi) ⊩ R(α(fi)(a)) for every i ∈ I, then α(A) ⊩ R(a).

This forcing relation is then extended to first-order formulas by the following inductive
clauses:

• If φ := ¬ψ, then α(A) ⊩ φ(a) iff for all f : B → A, α(B) ⊮ ψ(α(f)(a));

• If φ := ψ ∧ χ, then α(A) ⊩ φ iff α(A) ⊩ ψ and α(A) ⊩ χ;

• If φ := ψ ∨ χ, then α(A) ⊩ φ(a) iff there is a covering sieve S = {fi : Bi → A}i∈I of A
such that, for any i ∈ I, α(Bi) ⊩ ψ(α(fi)(a)) or α(Bi) ⊩ χ(α(fi)(a));

• If φ := ψ → χ, then α(A) ⊩ φ(a) iff for all f : B → A, α(B) ⊩ ψ(α(f)(a)) implies
α(B) ⊩ χ(α(f)(a));

• If φ := ∀xψ, then α(A) ⊩ φ(a) iff for all f : B → A, α(B) ⊩ ψ(α(f)(a), b) for every
b ∈ α(B);

• If φ := ∃xψ, then α(A) ⊩ φ(a) iff there is a covering sieve S = {fi : Bi → A}i∈I of A
such that, for any i ∈ I, α(Bi) ⊩ ψ(α(fi)(a), b) for some b ∈ α(Bi).
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As the reader probably noticed, these clauses are strikingly similar to the inductive clauses
of possibility semantics as they were defined in Definition 6.1.2. The next section will expand
on the relationship between the two semantics, but, for now, we must note an important
discrepancy between them. Indeed, these inductive clauses only guarantee that the axioms
and rules of first-order intuitionistic logic are valid on any sheaf model, whereas the clauses
of possibility semantics guarantee the validity of first-order classical logic on any possibility
structure. This is the reason why the “internal logic” of Grothendieck toposes, described by
its sheaf semantics, is always intuitionistic, but rarely classical, a feature that is particularly
appealing to constructivists like Palmgren.

We are now in a position to describe Palmgren’s constructive model of nonstandard anal-
ysis.7 This involves first describing the base category B of filter bases and its Grothendieck
topology, and then identifying the sheaves on this site that play the role of the nonstandard
extension of standard sets.

Definition 7.4.1. A filter base F is a pair (SF , {Fi}i∈I) such that SF is a set and {Fi}i∈I
is a collection of subsets of SF such that {U ⊆ SF | Fi ⊆ U for some i ∈ I} is a filter on SF .
A continuous morphism between two filter bases F = (SF , {Fi}i∈I) and G = (SG, {Gj}j∈J)
is a map α : SF → SG such that for any j ∈ J there is i ∈ I such that Fi ⊆ α−1[Gj]. Filter
bases and continuous morphisms form a category B.

Note that, by its definition, B is a large category, since any set induces a distinct set of
filter bases in B, which implies that the collection of objects in B is a proper class. It is
however easy to see that B is locally small, meaning that there are only set many arrows
betwen any two objects. This implies in particular that the contravariant representable
functors yA, i.e., functors mapping any object B to the collection of all arrows in B from B
to some fixed object A, are set-valued and therefore presheaves. Defining sheaves requires
the notion of a cover of a filter base:

Definition 7.4.2. For any filter base F = (SF , {Fi}i∈I), a cover of F is a finite set of maps
{αk}k≤n with αk : (SGk

, {Gj}j∈Jk) → F for each k ≤ n, and such that for any Gj1 , ..., Gjn

with Gjk ∈ {Gj}j∈Jk for each k ≤ n, there is i ∈ I such that Fi ⊆
⋃
k≤n αk[Gjk ].

Palmgren goes on to prove that this notion of covering generates a well-behaved Grothendieck
topology on B.

Theorem 7.4.3. The covers on filter bases in B form a subcanonical Grothendieck topology
J on B. As a consequence, every representable presheaf on B is a sheaf.

Given a set A, Palmgren considers the filter base A = (A, {A}) and defines the non-
standard extension of A as the representable presheaf yA . More concretely, for a filter base
F = {SF , {Fi}i∈I}, yA (F ) is the reduced power of A modulo the filter on SF generated

7Palmgren’s background theory in [204] is Martin-Löf’s constructive type theory, but here I will work in
ZF +DC for the sake of simplicity.
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by {Fi}i∈I . Since any representable presheaf is a sheaf by Theorem 7.4.3, the Grothendieck
topos S (B,J ) provides a model for a constructive version of Nelson’s Internal Set Theory
[199], in which any standard set has a nonstandard extension, and versions of the Trans-
fer and Saturation Principles hold. Palmgren also proves constructively that analogues of
some classical theorems of analysis such as the Heine-Borel Theorem hold in this model.
Palmgren’s framework has therefore the advantage of being entirely constructive, but quite
powerful, which he takes to be an advantage of constructive nonstandard analysis over some
other frameworks like Bishop’s constructive analysis. From a semi-constructive perspective
however, the choice of a Grothendieck topos as a model of nonstandard analysis comes at
quite a significant cost, as the logic of such a topos is intuitionistic, but not classical, and
sheaf semantics is significantly more involved than Tarskian semantics. One way of over-
coming both problems is to modify the base category B so that presheaves on that category
become easier to describe, and the recursive clauses of sheaf semantics become tractable
enough to guarantee the validity of classical logic. As we shall see, this can be achieved
by choosing F as our base category, and this construction will yield that †R is essentially a
presheaf on F, but not a sheaf.

7.4.2 Presheaves on the Fréchet Category

The first step in our simplification of Palmgren’s approach is to turn the poset F into a site.
Equivalently, this amounts to decategorifying Palmgren’s base category B, by replacing it
with a poset, which are typically more concrete and tractable objects.

Definition 7.4.4. The Fréchet Category is the poset category F, whose objects are all proper
filters on ω extending the Fréchet filter of cofinite subsets, and for any two such filters F, F ′,
there is a unique arrow F ′ → F iff F ⊆ F ′. Two filters F, F ′ ∈ F are incompatible (noted
F⊥F ′) if there is no H ∈ F such that H ⊇ F, F ′.

Definition 7.4.5. A collection of filters {Hi}i∈I covers a filter F ∈ F if it satisfies the
following three properties:

• For any i ∈ I, Hi ⊇ F ;

• For any i ∈ I and H ∈ F, if H ⊇ Hi, then H = Hj for some j ∈ I;

• For any G ⊇ F , there is i ∈ I such that Hi ⊇ G.

For any filter F ∈ F, we let C (F ) be the collection of all covers on F .

Note that it follows straightforwardly from the definition of a cover that for any F ∈ F,
a collection of filters {Hi}i∈I covers F if and only if it is a dense open subset of the downset
of F in the downset topology on F. As a consequence, we have the following result:

Lemma 7.4.6. The covers {C (F )}F∈F form a Grothendieck topology on F.
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This result is a special case of a well-known result in topos theory, namely that the dense
topology on any poset category is a Grothendieck topology [181, Section III.2].

Let us now fix an L -structure A with domain A.

Definition 7.4.7. The nonstandard extension of A is the presheaf ∗A : F → Sets defined
as follows:

• Given F ∈ F, ∗A(F ) is the reduced power of A modulo F , that is, the set of equivalence
classes of functions a : ω → A under the equivalence relation:

a ∼F a
′ ⇔ {i ∈ ω : a(i) = a′(i)} ∈ F.

• Given f : F ′ ⊇ F ∈ F, ∗A(f) : ∗A(F ) → ∗A(F ′) is defined by ∗A(f)(aF ) = aF ′ , where
aF and aF ′ are the equivalence classes of the function a : ω → A under ∼F and ∼F ′

respectively.

Note that if F ⊆ F ′, then a ∼F a
′ implies a ∼F ′ a′, and hence the map ∗A(f) : ∗A(F ) →

∗A(F ′) is well-defined. In order to turn ∗A into a structure for some language L , we need to
define a forcing relation for atomic formulas. By analogy with Palmgren’s model, the natural
choice here is to use classical satisfaction in the reduced powers ∗A(F ) for any F ∈ F. Using
the notation introduced in Notation 6.2.3, for any F ∈ F, any n-ary L -relation symbol R
and any n-tuple a, we let ∗A(F ) |= R(aF ) iff ||R(a)|| ∈ F . We can then show that this
relation satisfies the monotonicity and local character condition of sheaf semantics:

Lemma 7.4.8. The forcing relation ⊩ defined as ∗A(F ) ⊩ R(aF ) iff ||R(a)|| ∈ F for any
F ∈ F, any n-ary L -relation symbol R and any n-tuple a of elements of Aω satisfies the
monotonicity and local character conditions of sheaf semantics, namely:

1. Monotonicity: For any f : F ′ ⊇ F , ∗A(F ) ⊩ R(aF ) implies ∗A(F ′) ⊩ R(∗A(f)(aF ));

2. Local Character: For any cover {fi : Fi ⊇ F}i∈I of some F ∈ F, if ∗A(Fi) ⊩
R(∗A(fi)(aF )) for all i ∈ I, then ∗A(F ) ⊩ R(aF ).

Proof. First, let us recall that for any morphism f : F ′ ⊇ F in F and any a ∈ Aω, ∗A(f)(aF ) =
aF ′ . Now we prove that the forcing relation satisfies monotonicity and local character in turn:

1. Suppose f : F ′ ⊇ F and ∗A(F ) ⊩ R(aF ). This means that ||R(a)|| ∈ F ⊆ F ′, so
∗A(F ′) ⊩ R(aF ′).

2. Let {fi : Fi ⊇ F}i∈I be a cover of F , and suppose that ∗A(F ) ⊮ R(aF ). It is enough to
show that there is some i ∈ I such that ∗A(Fi) ⊮ R(aFi

). By definition of the forcing
relation, ||R(a)|| /∈ F . Let H be the filter generated by F ∪ −||R(a)||. Since {fi}i∈I
covers F , there is i ∈ I such that Fi ⊇ H. But then it follows that ||R(a)|| /∈ Fi, so
∗A(Fi) ⊮ R(aFi

).
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We can then extend this forcing relation to any first-order formula φ using the inductive
clauses of sheaf semantics. If A = R, we therefore obtain a presheaf ∗R which can be
thought of as a “varying reduced power”. As a matter of fact, we obtain a structure that is
equivalent to †R in the following sense:

Theorem 7.4.9. There is a system of functions {πF}F∈F such that for any F,G ∈ F:

• πF : Rω → ∗R(F );

• if f : G ⊇ F , then ∗R(f) ◦ πF = πG;

• for any L -formula φ(x) and any tuple a of elements of Rω, ∗R(F ) ⊩ φ(πF (a)) iff
†R, F ⊩ φ(a).

Proof. For any F ∈ F, let πF map any a ∈ Rω to its equivalence class aF in the reduced
power ∗R(F ). The rest of the proof is a straightforward induction on the complexity of
formulas which exploits the similarity between possibility semantics and sheaf semantics.
In particular, in the atomic case, the persistence and refinability conditions correspond to
the monotonicity and local character conditions of sheaf semantics respectively, and in the
inductive step for disjunctions and existential quantification, one uses the fact that covers
on a filter F coincide with dense sets of filters extending F .

Theorem 7.4.9 highlights the similarities between Palmgren’s approach and ours. His
nonstandard extensions are varying reduced powers of a classical model modulo a proper class
of filters in which satisfaction is defined according to sheaf semantics, while we may think of
†R as a “dynamic” reduced power of R modulo the free filters on ω, in which satisfaction is
defined locally and amalgamated in a coherent way by possibility semantics. However, taking
the Grothendieck topos of sheaves over the site (F, {C (F )}F∈F) does not yield a nonstandard
universe of sets, as many presheaves, including the presheaf corresponding to †R, fail to be
sheaves.

Fact 7.4.10. Let A be an L -structure with a domain A such that there is a injection
π : 2ω → A. Then ∗A is not a sheaf.

Proof. Recall that for any F ∈ F and any cover {Fi}i∈I of F , a matching family is a family
{ai}i∈I such that ai ∈ ∗A(Fi) for any i ∈ I, and for any i, j ∈ I with f : Fj ⊇ Fi,

∗A(f)(ai) =
aj. To show that ∗A is not a sheaf, it is enough to find a cover {Fi}i∈I of a some F ∈ F and
a matching family {ai}i∈I such that for all a ∈ Aω there is i ∈ I with a /∈ ai.
Let F be the Fréchet filter, and recall that one can prove in ZF +DC that there is an almost
disjoint family {Af}f∈2ω of infinite subsets of ω indexed by functions from ω to {0, 1} [144,
p. 118]. For any f : ω → 2, let Ff be the filter generated by F ∪ Af . Note that, whenever
f ̸= g, Ff and Fg have no common extension since |Af ∩ Ag| < ℵ0. Let {Hj}j∈J be the
collection of all H ⊇ F such that H⊥Ff for every f ∈ 2ω, and let D =

⋃
f∈2ω{H ∈ F | H ⊇

Ff} ∪ {Hj}j∈J . By construction D is a cover of F . Now for any f ∈ 2ω, let af : ω → A be
the constant function with range {π(f)}, and let α : ω → A be such that α(i) = π(χ{i}) for
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any i ∈ ω, where χ{i} is the characteristic function of the singleton set {i}. Now consider the

family C =
⋃
f∈2ω{a

f
H | H ⊇ Ff} ∪ {αHj

}j∈J . Clearly, since on the one hand we selected the

Hj-equivalence class of α for any j ∈ J and the H-equivalence class of af for any f ∈ 2ω and
any H extending Ff , and since on the other hand for any f ∈ 2ω, Ff is incompatible with Hj

for any j ∈ J and with any H ⊇ Fg for any g ̸= f ∈ 2ω, C is a matching family. However,
for any a : ω → A and any distinct f, g : ω → 2, observe that ||a = af || ∩ ||a = ag|| = ∅.
Moreover, since ω ⊇

⋃
f∈2ω ||a = af ||, it must be the case that ||a = af || = ∅ for some f ∈ 2ω

(otherwise, one could define a injection from 2ω into ω, contradicting Cantor’s theorem).
Hence for any a : ω → A there is f ∈ 2ω such that a /∈ afFf

, which shows that ∗A is not a
sheaf.

Let us note that, if we assume the Axiom of Choice, the argument above can be easily
be modified to show that ∗A is not a sheaf for any uncountable structure A . Whether this
is a necessary condition on A for ∗A not to be a sheaf is left as an open problem. In any
case, since we can define in ZF +DC an injection from 2ω into R, it follows that ∗R is not
a sheaf. Since the nonstandard extensions we defined are not sheaves in general, we cannot
work in the Grothendieck topos of sheaves over F and straightforwardly apply the machinery
of sheaf semantics. Fortunately, possibility semantics still allows us to have a notion of a
model which, as we have seen in the first section, is robust enough to develop a significant
part of nonstandard analysis à la Robinson. In other words, the “decategorification” of the
category of filters in Palmgren’s approach, while allowing for a drastic simplification of many
technical details, comes at the cost of not providing a nonstandard “ambient universe”, like
the one postulated in Nelson’s Internal Set Theory or offered by the Grothendieck topos
of sheaves over B. In that sense, †R can be seen as a watered down version of Palmgren’s
constructive nonstandard analysis: because we work in a semi-constructive setting, we do
not need the full generality of sheaf semantics nor the full power of topos theory, and we
can work instead in a possibility structure which resembles more closely Tarskian semantics.
Additionally, the fact that †R can be presented as a presheaf on a poset category endowed
with the dense topology is, in itself, not surprising in the slightest. Indeed, sheaf semantics
was originally conceived as a generalization of Cohen forcing, which corresponds precisely in
topos theory to working in a topos of sheaves over a poset category endowed with the dense
topology [181, Section 6.2]. As we will now see, †R itself is tightly connected to forcing and
to Boolean-valued models of analysis.

7.5 The Generic Approach

The third and last alternative approach to classical nonstandard analysis that I consider here
involves using Boolean-valued models rather than two-valued models. Unlike the previous
two, it does not stem from a desire to make nonstandard analysis more constructive but
instead from an interest in viewing the ultrapower construction as a special case of a more
general kind of algebraic construction. This approach is also the one with the tightest
relationship to set-theoretic forcing, and, as we will see, will motivate our last perspective
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on †R as a generic approximation of a Luxemburg ultrapower.

7.5.1 Boolean-Valued Analysis

In [234], Scott remarks that Boolean-valued models, even though they appeared originally
in the context of forcing in set theory, can also be seen as a generalization of ultraproducts:

The idea of constructing Boolean-valued models could have been (but was not)
discovered as a generalization of the ultraproduct method used now so often
to obtain nonstandard models for ordinary analysis. Roughly, we can say that
ultraproducts use the standard Boolean algebras (the power-set algebras) to ob-
tain models elementarily equivalent to the standard model, whereas the Boolean
methods allows the nonstandard complete algebras (such as the Lebesgue algebra
of measurable sets modulo sets of measure zero or the Baire algebra of Borel sets
modulo sets of the first category). Thus the Boolean method leads to nonstan-
dard nonstandard models that are not only not isomorphic to the standard model
but are not even equivalent. Nevertheless, they do satisfy all the usual axioms
and deserve to be called models of analysis. [234, pp. 87-88]

Scott goes on to explain how ultraproducts can be seen as a special case of quotients of a
Boolean-valued model. Given a family of Tarskian L -structures {Ai}i∈I , one may consider
the Boolean-valued model whose domain is the direct product A = Πi∈IAi of the domains
of the models {Ai}i∈I , the Boolean algebra of truth-values is the powerset of the index set
P(I), and for any tuple a of elements of A, and any L -formula φ(x), the truth-value of
φ(a) is ||φ(a)|| = {i ∈ ω | Ai |= φ(a(i))}. A straightforward induction on the complexity of
formulas shows that this indeed correctly defines a Boolean-valued model. An ultraproduct
of the models {Ai}i∈I can then be obtained by taking an ultrafilter on P(I), which is the
same as a Boolean homomorphism fU : P(I) → {0, 1}, quotienting the domain A by the
equivalence relation a ∼U b iff fU(||a = b||) = 1, and defining a Tarskian model on this
domain by letting φ(aU) be true in the model iff fU(||φ(a)||) = 1 for φ(x) a L -formula and
aU the tuple of equivalence classses of a tuple a of elements of A. By  Loś’s Theorem, the
model thus obtained is precisely the ultraproduct of the family of models {Ai}i∈I by the
ultrafilter U . As Scott concludes:

In short, we have divided the ultraproduct construction into two stages: prod-
uct followed by ultra. It is the generalization of the product part we wish to
emphasize. [p. 89]

Scott goes on to show how to define a B-valued model of analysis in a similar fashion
when B is a complete Boolean algebra, but not necessarily the powerset set of some set I,
and that one may still retrieve Tarskian models as quotients of such Boolean-valued mod-
els modulo an ultrafilter on B. In other words, the Boolean-valued models of analysis so
constructed are “one ultrafilter away” from being Tarskian, nonstandard models of analysis.
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This Boolean-valued approach was picked up by Takeuti in a series of articles [247, 248, 249,
250], and continues to bear fruits in the contemporary Russian School of Boolean-valued
analysis [163, 164, 165].

Let us now briefly see how †R connects to Boolean-valued models. As mentioned in
Chapter 6, given an L -possibility structure (P, D,I ), an L -formula φ(a) and a tuple a
of elements of D, the set Jφ(a)K = {p ∈ P | p ⊩ φ(a)} is always a regular-open subset of
P and the regular opens of any poset P always form a complete Boolean algebra RO(P).
We may therefore think of any possibility structure (P, D,I ) as a Boolean-valued model
with domain D and algebra of truth values RO(P). Since any complete Boolean algebra is
isomorphic to RO(P) for some poset P, this means that possibility semantics is as general
as the Boolean-valued models discussed by Scott.

What about the algebra of truth-values of †R specifically? The free filters on P(ω) are
in one-to-one correspondence with the proper filters on P(ω)∗, the Boolean algebra obtained
by quotienting P(ω) by the ideal of finite sets. Moreover, it follows from [134, Theorem
5.49] that the algebra of regular open sets of the poset of all proper filters on a Boolean
algebra B is isomorphic to the canonical extension of B, usually written Bδ.8 Thus †R can
be thought of as a (P(ω)∗)δ-valued Boolean valued model of analysis. Since the Ultrafilter
Lemma is equivalent to the statement that the canonical extension of any Boolean algebra B
is always isomorphic to the powerset of some set (in fact, of the set XB of all ultrafilters on
B), it holds for P(ω) if and only if †R is a “standard” nonstandard Boolean-valued model
of analysis, to use Scott’s terminology. As we will see in the next section, there is indeed a
strong sense in which †R is “one ultrafilter away” from a Luxemburg ultrapower.

7.5.2 Generic Models and Luxemburg ultrapowers

As the comparison with Scott’s Boolean-valued models of analysis in the previous section
showed, we may think of †R as a Boolean-valued model that captures the semi-constructive
part of the standard ultrapower construction, i.e., the “product” part. If we think of a
Boolean-valued model as a “fuzzy” Tarskian model, in which the classical truth-value of every
formula is not always settled, we may therefore think that †R is a partial approximation of
a Luxemburg ultrapower, the best thing we can get in the absence of the Axiom of Choice.
Similarly, viewpoints in F can also be interpreted as approximations of classical Luxemburg
ultrapowers in a fairly strong sense. A simple way to flesh out the details of the idea is to
appeal to the Genericity Lemma. Let us recall once again the definition of a generic filter
on a poset.

Definition 7.5.1. A subset D of F is dense if for any F ∈ F there is F ′ ∈ D such that
F ⊆ F ′. A generic filter on F is a directed subset G of F (meaning that for any F, F ′ ∈ G
there is H ∈ G such that H ⊇ F, F ′) that is upward closed (meaning that F ⊆ F ′ ∈ G
implies F ∈ G) and has non-empty intersection with every dense subset of F.

8See [77] for more on canonical extensions.
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A generic filter on a forcing poset P can usually be thought as a coherent way of choosing
a maximal set of conditions in that poset. As mentioned in the previous chapter, any generic
filter on F is also a †R-generic filter. This means in particular that every generic filter will
induce a generic model of †R. Recall that generic models are the Tarskian models that are
being approximated by viewpoints in a possibility structure. As we shall see below, in the
case †R they are tightly connected to Luxemburg ultrapowers. The next lemma establishes
a one-to-one correspondence between generic filters on F and free ultrafilters on ω, which can
then be used to show that every generic model is isomorphic to a Luxemburg ultrapower,
and vice-versa.

Lemma 7.5.2. The generic filters on F are in one-to-one correspondence with the free
ultrafilters on ω.

Proof. Given G a generic filter on F, let β(G) =
⋃
G. To see that this is well defined, observe

first that, since G is a filter on F, it is a directed family of filters on ω, and thus its union is
also a filter on ω. More over, for any A ⊆ ω, the set DA = {F ∈ F | A ∈ F or − A ∈ F} is
dense. Since G is generic, this means that DA ∩ G ̸= ∅, hence A ∈

⋃
G or −A ∈

⋃
G. This

shows that β(G) is an ultrafilter on ω, and since β(G) contains the Fréchet filter, it is clearly
free.

Conversely, given a free ultrafilter U on ω, let α(U) = {F ∈ F | F ⊆ U}. Since α(U) is
the principal upset generated by U in F, it is clearly a filter. Moreover, if U is an ultrafilter,
then it is an atom in F, meaning that F ′ = U for any F ′ ⊇ U. Hence U ∈ D for any dense
subset D of F, from which it follows that α(U) is generic.

Next, we check that for any generic G, α(β(G)) = {F ∈ F | F ⊆
⋃
G} = G. The

right-to-left inclusion is immediate. For the converse, suppose F /∈ G, and consider the set
DF = {H ∈ F | H ⊇ F or H⊥F}. Clearly, DF is dense, so there is H ∈ DF ∩ G. Moreover,
since F /∈ G, it must be the case that F⊥H. Hence there is B ∈ H such that ¬B ∈ F . Since
H ⊆

⋃
G and

⋃
G is a filter on ω, this means that F ⊈

⋃
G.

Similarly, I claim that for any ultrafilter U , β(α(U)) =
⋃
{F ∈ F | F ⊆ U} = U. The left-

to-right inclusion is clear, and the converse follow from the fact that β(α(U)) is an ultrafilter,
hence maximal.

Let us note that, assuming the Ultrafilter Lemma, there is also an elegant proof of the
result above that uses the theory of Boolean algebras. By the observation made at the end of
Section 7.5.1, the algebra RO(F) of regular open subsets of F is isomorphic to the canonical
extension of P(ω)∗, which, by Stone duality, is itself isomorphic to P(XP(ω)∗), the powerset
of the set of ultrafilters on P(ω)∗. Moreover, it is a well-known result in the forcing literature
[145, p. 156] that a generic filter on a poset P corresponds to a complete free ultrafilter on
RO(P), where an ultrafilter U on a complete Boolean algebra B is complete if

∧
S ∈ U

whenever S ⊆ U , for any S ⊆ B. This means that any generic filter on F is essentially
a principal ultrafilter on P(XP(ω)∗), i.e., it is induced by a point in XP(ω)∗ . But points
in P(XP(ω)∗) are ultrafilters on P(ω)∗, which are in one-to-one correspondence with free
ultrafilters on ω. However, the direct construction of the one-to-one correspondence between
generic filters on F and free ultrafilters on ω described in the proof of Lemma 7.5.2 also
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allows us to use the genericity results from the previous chapter to establish an equivalence
between generic filters, †R-generic filters and free ultrafilters on ω.

Theorem 7.5.3. A subset G of F is a †R-generic filter iff it is generic over F, and an
ultrafilter on ω is F-generic iff it is free. Moreover, if †R is normal, then for any F ∈ F, any
L -formula φ(x) and any tuple a, F ⊩ φ(a) iff for any free ultrafilter U on ω, Rω/U |= φ(aU).

Proof. Let us first show that G is †R-generic iff it is generic. The right-to-left direction is
clear. For the left-to-right direction, suppose that G is †R-generic and note that, since there
is a predicate symbol in L for every subset of R, †R satisfies the conditions of Lemma 6.2.17.
But this means that

⋃
G is a F-generic ultrafilter on ω, which clearly implies that it is also

free, since no F ∈ F contains a finite set. But this in turn means that α(
⋃
G) is a generic

filter, and moreover α(
⋃

(G)) = G by the proof of Lemma 6.2.17. Hence G is generic. Next,
let us see check that every free ultrafilter on ω is F-generic since, as mentioned above, the
converse is clear. Suppose U is free, and let A ∈ U. Then the filter F = {A ∩ B | B ∈ F0}
extends F0 and contains A, and clearly we have that F ⊆ U. Hence U =

⋃
{F ∈ F | F ⊆ U}.

By the Genericity Lemma and Lemma 6.2.17, it follows that every Luxemburg ultrapower
of R is isomorphic to a generic model †RG, and conversely every generic model over †R is
isomorphic to a Luxemburg ultrapower Rω/U. The rest of the theorem follows from the
Genericity Lemma.

As a consequence of Theorem 7.5.3, we may now think of points in F as partial approxi-
mations of a Luxemburg ultrapower in a very precise way. It is easy to see that, assuming
the Ultrafilter Lemma for P(ω)∗, or, equivalently, that F is a normal family, satisfaction of a
formula φ at a viewpoint F corresponds to truth in all ultrapowers induced by an ultrafilter
extending F . In the presence of a strong enough fragment of the Axiom of Choice like the
Ultrafilter Lemma, this means that one can take any F ∈ F for a representative of the set
of all Luxemburg ultrapowers induced by an ultrafilter extending F . As satisfaction at F
coincides with truth in all ultrapowers induced by an ultrafilter extending F , this means
that any filter F can be thought of as providing a partial viewpoint on †R, in the sense that
the satisfaction relation on F captures exactly how much information we would have about
a classical hyperreal line if we knew only that F is in the ultrafilter. This also means that
F0, the Fréchet filter, truly stands for a “generic” ultrapower, since F0 forces precisely those
formulas that would be satisfied by any Luxemburg ultrapower.

7.6 Fréchet hyperreals and Objections to the Hyper-

reals

In the previous sections, I have explored some of the mathematical properties of †R (Sec-
tion 7.2) and argued that it arises naturally as a point of convergence for several distinct
mathematical endeavors (Sections 7.3 to 7.5). Along the way, I have also compared †R with
these alternative approaches to nonstandard analysis and argued that it has several tech-
nical advantages over its competitors, as it is a more powerful version of Laugwitz’s and
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Tao’s approach with reduced powers, a simpler framework than Palmgren’s sheaf-theoretic
approach, and a more concrete version of the Boolean-valued approach of Scott. In this
final section, I will relate the Fréchet hyperreals to the classical Robinsonian hyperreal line
from a philosophical and methodological perspective. Robinson’s work and its significance
for the role that infinitesimals can play both in mathematics and in the empirical sciences
has sparked many debates over the years. Here, I want to focus on objections that have
been raised against the applicability of nonstandard analysis to mathematics itself, rather
than the broader debate of its applicability to other sciences. In particular, I will examine in
turn two distinct worries about Robinsonian hyperreals, namely, that they introduce impure
methods in analysis and that they do not form a canonical structure. In both cases, I will
argue that our semi-constructive Fréchet hyperreals fare better than the classical hyperreal
line with respect to these arguments.

7.6.1 The Argument from Purity and Definability

There is a longstanding tradition of criticisms of Robinsonian nonstandard analysis. As we
have seen in Section 7.3.2, Tao expressed some uneasiness towards the fact that classical
nonstandard analysis uses infinitary, highly non-constructive objects like free ultrafilters to
derive results about ordinary mathematical objects such as sets of real numbers. Dauben
[65] recalls that Bishop, who proposed an alternative, constructive approach to analysis,
criticized the use of notions from nonstandard analysis to teach elementary calculus in harsh
terms, claiming that “[i]t is difficult to believe that debasement of meaning could be carried
so far” [44, pp. 513-514]. Dauben also argues that Robinson’s interest in the history of
infinitesimal calculus was, at least in part, motivated by the desire to show that the tools
and methods of nonstandard analysis provided in fact a natural conceptual framework for
standard analysis:

History could serve the mathematician as propaganda. Robinson was apparently
concerned that many mathematicians were prepared to adopt a “so what” atti-
tude toward nonstandard analysis because of the more familiar reduction that
was always possible to classical foundations [...]. But, as Robinson also began
to argue with increasing frequency and in greater detail, historically the concept
of infinitesimals has always seemed natural and intuitively preferable to more
convoluted and less intuitive sorts of rigor. [65, p. 184]

It seems that the debate between Robinson and his critics here can be conveniently
phrased in terms of purity of methods, in particular in terms of topical and elemental purity.
As discussed in detail in [4, 5], topically pure proofs of a theorem are proofs whose content
does not exceed the content of the theorem, i.e., proofs that do not involve objects or con-
cepts that are foreign to the topic of the theorem. By contrast, elementally pure proofs of
a theorem are proofs whose proof-theoretic or foundational resources do not exceed those
of the theorem. Both kinds of concerns seem to be routinely raised against the methods of
nonstandard analysis. Bishop’s criticism that the use of nonstandard concepts in elementary
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calculus is a “debasement of meaning” can be understood as the complaint that such proofs
disregard the meaning of elementary notions of calculus like that of a limit, while Tao’s
uneasiness with free ultrafilters and the infinitary aspect of nonstandard methods speaks to
a desire for elementally pure proofs.

How does †R compare to the classical hyperreal line in that respect? I think we may
argue that it performs strictly better than Robinson’s hyperreal line both from the topical
point of view, i.e., regarding the continuity with historical and contemporary mathemat-
ical practice, and from the foundational or elemental viewpoint. Indeed, the asymptotic
perspective on †R presented in Section 7.3 highlights its continuity with both historical de-
velopments in infinitesimal calculus, as evidenced by the fact that †R is a strengthening of
Laugwitz’s approach with reduced powers, and with contemporary mathematical practice,
since it can be seen as a formal counterpart to Tao’s cheap nonstandard analysis. As a sim-
plified version of Palmgren’s approach, it might even seem more appealing to constructivists
than the classical hyperreal line. Moreover, the fact that †R can be constructed in ZF +DC
when the Robinsonian hyperreals cannot is an advantage from the point of view of Arana
and Detlefsen’s analysis of the epistemic merit of pure proofs over impure proofs [5]. They
argue that the key advantage of pure proofs of a theorem is their stability under retraction.
According to them, one may think of a mathematical proof as providing a solution to a given
problem. Both the problem and the solution offered by a proof, however, may rely on some
background assumptions or commitments that one takes for granted when entertaining the
problem as an interesting one or accepting the proof as a valid solution to the problem (p. 9).
When one gives an impure proof of a theorem, one runs the risk of making some commit-
ments that are necessary for the proof to count as a valid proof, but not for the problem
to remain a problem worth investigating. In that case, should we come to later revise our
background assumptions and to retract our some of our commitments, an impure proof may
cease to provide a answer to a problem that would remain nonetheless a pressing one. By
contrast, the very nature of topically pure proofs makes them immune to this sort of worry:
indeed, retracting one of the commitments that is necessary for the proof to be admitted as a
valid one would also imply retracting one of the commitments that make the problem worth
raising in the first place (i.e., pure proofs provide what Arana and Detlefsen call a cofinal
solution to the problem, p. 10). Here, it seems that the analysis by Arana and Detlefsen
captures well the distinction between †R and the classical hyperreal line. Indeed, one may
argue that any nonstandard proof of a theorem of analysis that relies on the existence of
a classical hyperreal line is impure, because one may retract some commitments that are
necessary for such a structure to exist, such as the Ultrafilter Lemma, without altering much
of the structure of the reals or analysis as a mathematical field. By contrast, retracting
some of the commitments that are necessary for the construction of †R would most likely
dramatically alter the practice of analysis as we know it.

This later point also relates to the discussion of the elemental purity of nonstandard
methods. From the foundational perspective, I believe indeed that the fact that the existence
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of †R only requires a semi-constructive setting makes it clearly closer to the usual conceptual
resources of analysis. One might think that the reliance on some amount of choice puts †R in
a similar situation as the classical hyperreal line, but I think that argument can be resisted.
Indeed, many central results from nineteenth-century analysis rely heavily on the Axiom of
Dependent Choices, while the original reception of Zermelo’s full Axiom of Choice among
analysts was lukewarm at best [84, Chap. 23]. As Moschovakis writes in [196]:

We have remarked that before it was formulated precisely by Zermelo, the Axiom
of Choice had been used many times “silently” in classical mathematics, and in
particular in analysis. These classical applications, however, can all be justified
on the basis of the Axiom of Dependent Choices—in fact most of them need only
the weaker Countable Principle of Choice. [...] This difference between the choice
principles needed for classical mathematics and those required by Cantor’s new
theory of sets explains in part the strident reaction to the axioms of Zermelo
by the distinguished analysts of his time (including the great Borel), who had
used choice principles routinely in their work—and continued using them, as they
denounced general set theory and called it an illusion: in the context of 19th cen-
tury classical analysis, the Axiom of Dependent Choices is natural and necessary,
while the full Axiom of Choice is unnecessary and even has some counterintuitive
consequences, including certainly the Wellordering Theorem. [196, pp. 116-117]

We may therefore argue that the proof-theoretic resources required by †R fit squarely
within the natural resources required by classical analysis. Unlike in Robinsonian nonstan-
dard analysis, the fragment of the Axiom of Choice that belongs to the semi-constructive
setting does not yield counter-intuitive consequences from the point of view of the theory of
the real numbers, like a well-ordering of the reals or the existence of a non-Lebesgue mea-
surable set. In fact, this latter point also allows us to draw a sharp contrast between †R and
the classical hyperreal line with respect to an influential criticism of nonstandard analysis
recently voiced by Alain Connes.

In a famous passage in the first chapter of [60], Connes, discussing the relationship
between “logic and reality”, raises the following objection to the use of nonstandard analysis
in ordinary mathematics:

But in the final analysis, I became aware of an absolutely major flaw in this
theory, an irremediable defect. It is this: in nonstandard analysis, one is supposed
to manipulate infinitesimals; yet, if such an infinitesimal is given, starting from
any given nonstandard number, a subset of the interval [0, 1] automatically arises
which is not measurable in the sense of Lebesgue. [...] The conclusion I drew
was that no one will ever be able to show me a nonstandard number. [60, p. 16]

This leads him to argue that nonstandard analysis does not describe the “primordial
mathematical reality” that he claims is the true subject of mathematics:
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What conclusion can we draw about nonstandard analysis? This means that,
since no one will ever be able to name a nonstandard number, the theory remains
virtual [...]. [p. 17]

Connes doesn’t specify exactly what he means by “naming” or “showing” a non-standard
number, but his argument seems to go along the following lines. Non-measurable sets of real
numbers are highly abstract objects, which tend not to appear in ordinary mathematical
practice. Connes cites here Solovay’s model of ZF + DC + “All sets of reals are Lebesgue
measurable” in [242] as evidence that no non-measurable set of reals would ever be en-
countered in ordinary mathematics. However, one may use a free ultrafilter on ω to define
a non-measurable set of reals. As we have seen before, such ultrafilters can moreover be
defined themselves from hyperfinite natural numbers in a sufficiently saturated elementary
extension of the reals. Consequently, such hyperfinite natural numbers must be as abstract
and ineffable as nonmeasurable sets of reals. Although Connes does not explicitly phrase
his argument in terms of purity considerations, it seems nonetheless possible to understand
his worry as such and stemming from similar considerations as Schechter’s distinction be-
tween quasi-constructive mathematics and intangibles. The crucial problem of nonstandard
analysis is that it uses resources beyond the universe of ordinary mathematics, “virtual”
mathematical objects that cannot be “named” or explicitly constructed, in order to derive
results about what Connes calls the primordial mathematical reality.

As noted by Kanovei et al. in [152], the issue of whether hyperreal numbers can be
“named” or “defined” is a delicate problem. One the one hand, Solovay showed that it is
consistent with ZFC that no nonmeasurable set of the reals is ordinal definable (as the
ordinal definable sets in this model form precisely Solovay’s model of ZF + DC+ “All sets
of reals are Lebesgue measurable”), which yields a model in which no free ultrafilter on ω is
ordinal definable. On the other hand, Gödel’s constructible universe L provides a well-known
example of a model of ZFC in which nonmeasurable sets appear very low in the projective
hierarchy and are not only ordinal definable but in fact constructible. Kanovei et al. also
cite a result in [153] in which the existence of an ordinal definable hyperreal extension is
proved in ZFC.

I do not wish to adjudicate here the debate between Connes and his critics regarding
whether Robinsonian hyperreals can be named or not, but I would rather like to point
out that the debate does not arise in the case of the Fréchet hyperreals. Indeed, since †R
is constructed assuming only ZF + DC, it can be constructed even in Solovay’s model.
Moreover, elements in †R can easily be named and are very familiar objects, since they are
merely countable sequences of real numbers. Exhibiting an F -infinitesimal for any F ∈ F
is exceedingly easy, since any F0-infinitesimal is an F -infinitesimal for any F ∈ F, and such
infinitesimals are easily defined. Of course, determining whether a given element a ∈ †R
is an F -infinitesimal for some F ∈ F is a much more complex task, just like determining
whether two elements a, b ∈ F are identified at F . One might be tempted to conclude from
this that not much is truly gained by moving away from a Luxemburg ultrapower to †R.
Indeed, one might argue that one could slightly modify the ultrapower construction to take
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countable sequences of reals as elements, and define the semantics of the equality predicate
as the equivalence relation on this domain induced by the ultrafilter, rather than as bona
fide equality. Clearly, in such a construction, one could “name” infinitesimals just as easily
as in †R. But there is a significant difference between the two constructions that I think
is worth emphasizing. As noted in Section 7.2, validity in †R coincides with the forcing
relation at F0, which is itself absolute from the existence of ultrafilters in a rather strong
sense. By Corollary 7.2.14, determining whether a first-order sentence is forced at F0 only
requires examining whether the set of natural numbers it determines is cofinite and does not
depend on the existence of any free ultrafilter on ω. By contrast, even with the modification
proposed above, Luxemburg ultrapowers still require the existence of free ultrafilters to be
defined, and  Loś’s Theorem shows that satisfaction in such a model is truly determined by
the ultrafilter. Thus the real gain from taking †R as our hyperreal line comes from the
fact that satisfaction in the model becomes more tractable, without losing the power of the
Transfer and Saturation Principles.

Therefore, in contrast with the classical hyperreal line, †R seems to be an acceptable
structure even from Connes’s viewpoint. In fact, the generic perspective on †R seems to
align quite well with Connes’s claim that the theory of Luxemburg ultrapowers “remains
virtual”, since it establishes in a semi-constructive setting that Luxemburg ultrapowers are
essentially obtained by forcing over F. At the same time, it allows us to disentangle a
theory of hyperreals from the theory of ultrapowers and to identify only the latter as “vir-
tual”, because of its reliance on the Ultrafilter Lemma. To sum up, I have argued that,
regarding criticisms against nonstandard analysis that are rooted in purity concerns broadly
understood, the semi-constructive approach fares better than the classical approach. The
reasons to argue for a topical continuity between nonstandard methods and historical and
contemporary mathematical practice remain valid, while from the foundational or elemental
viewpoint, the fact that the Axiom of Dependent Choices is enough for the semantics of †R
to behave in a tractable way is a clear advantage over the classical hyperreal line.

7.6.2 The Argument from Canonicity

I will now discuss a second kind of argument against the nonstandard approach, which
points out a certain kind of arbitrariness of the hyperreal line. By contrast with the first
kind of argument, which targets the methods of nonstandard analysis and in particular its
reliance on the Axiom of Choice, this second line of argument targets the very structure
of the hyperreal line, arguing that it lacks the kind of mathematical properties enjoyed
by other standard number systems. An eloquent proponent of this view is Machover in
[180]. Reflecting on the developments in nonstandard analysis in the first thirty years after
Robinson’s seminal work, Machover observes that the mathematical community at large has
not embraced nonstandard methods as quickly as some had hoped and offers a explanation
for this phenomenon. According to him, a central problem with nonstandard analysis lies
in the fact that the structures it studies, enlargements of the standard universe, fail to be
canonical in the way that the natural numbers or the reals are:
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The point is that whereas the classical number systems (the integers, the rationals
the reals etc.) are canonical, there is no such thing as the canonical system of
∗integers, ∗rationals or ∗reals. The former can be characterized (informally or
within set theory) uniquely up to isomorphism by virtue of their mathematical
properties: for example, the field of rationals is the smallest field containing the
integers, and the field of reals is the completion of the field of rationals. But there
is no such thing as the [enlarged] field of ∗reals. The ∗reals (and in particular
the infinitesimal ∗reals) we happen to deal with in a given nonstandard discourse
depend on the enlargement chosen. There is no known way of singling out a
particular enlargement that can plausibly be regarded as canonical, nor is there
any reason to be sure that a method for obtaining a canonical enlargement will
necessarily be invented. [180, pp. 207-208]

Setting aside the broader context of enlargements, the issue that Machover discusses
arises already at the level of Luxemburg ultrapowers, since, if the Continuum Hypothesis
fails, two ultrapowers of the reals may fail to be isomorphic. Machover’s point is then that
speaking of the hyperreal line is an abuse of language and that nothing in the practice of
nonstandard analysis guarantees that the structure that is being studied is fixed precisely
enough, that is, up to isomorphism. Here, the fact that Luxemburg ultrapowers rely on the
Ultrafilter Lemma is relevant once again: since free ultrafilters are abstract objects which can
be proved to exist but cannot be explicilty constructed, it is not possible to fix one particular
ultrafilter as a canonical one, and consequently no Luxemburg ultrapower can claim to be
the privileged hyperreal line. In other words, fixing one ultrapower as the hyperreal line
seems both necessary, due to the consistency of the existence of non-isomorphic ultrapowers,
and impossible without introducing an element of arbitrariness. In [152], Kanovei et al. note
that Machover’s point should be nuanced by two existing results. First, the existence of an
ordinal definable model of the hyperreals due to Kanovei and Shelah mentioned above, and
second, a result of Morley and Vaught establishing that ultrapowers induced by ultrafilters
on a cardinal κ such that 2<κ = κ are all isomorphic. I am not certain, however, that
this entirely addresses Machover’s criticism, as I believe that there is more to the notion of
canonicity than the simple fact that a structure is specified up to isomorphism or “definable”
in a very narrow set-theoretic sense. Indeed, if the only reason to declare the Kanovei-Shelah
model or one of the ultrapowers shown by Morley and Vaught to be unique up to isomor-
phism as the hyperreal line is to rebuke Machover’s criticism, then this hardly eliminates
the charge of arbitrariness that is at the heart of the canonicity objection. Why should we
choose the Kanovei-Shelah model, or one of the Morley-Vaught ones, over one another, as
the privileged hyperreal line?

According to Machover, the lack of a canonical hyperreal line also means that the well-
definedness of many concepts from nonstandard analysis ultimately relies on the existence
of their standard counterpart. He takes as a paradigmatic example of this the nonstandard
definition of continuity of a real-valued function f at a real number r. As mentioned in
Section 7.2, one of the most appealing features of nonstandard analysis is that infinitesimals
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can be used in a rigorous way to give an intuitive definition of continuity at a real number
r: f is continuous at r if and only if for any ∗real x, f(x) is infinitesimally close to f(r)
whenever x is infinitesimally close to r. In other words, the nonstandard halo of r must be
mapped by f to the nonstandard halo of f(r). But, as Machover observes:

[W]hat we want to define here is a binary relation between two standard objects,
f and r; in order to legitimize [the nonstandard definition of continuity] as a
definition of this relation, we must make sure that it is independent of the choice
of the enlargement. (Otherwise, what is being defined would be a ternary relation
between f , r and the enlargement.) The easiest way—in fact, the only practicable
way, as far as I know—to prove this invariance of [the nonstandard definition]
is to show that it is equivalent to the standard δ − ϵ definition. Therefore, [the
nonstandard definition] cannot displace the old standard definition altogether, if
one’s aim is to achieve proper rigour and methodological correctness. [p. 208]

Because the halo of a real number is dependent on the ambient hyperreal line or nonstan-
dard universe, the nonstandard definition of continuity must be supplemented with a proof
that it is actually independent from the choice of an enlargement. According to Machover,
such a proof can in practice only be given by showing the equivalence with the standard
definition of continuity. Hence the nonstandard definition owes a conceptual debt to the
standard definition, which, according to Machover, means that nonstandard analysis cannot
aim at rigorously replacing classical analysis.

Machover’s example of the definition of continuity is a particularly good point to compare
the classical hyperreal line with †R. As we have seen in Theorem 7.2.11, a real-valued
function f is continuous at a point r if and only if f is F -continuous at r for any F ∈ F, i.e.,
x ∈ (r)F implies f(x) ∈ (f(r))F for any x ∈ Rω. It seems at first sight that the situation is
comparable to the nonstandard one: we first define continuity as a ternary relation between
a real-valued function, a real number and a filter F , before showing that the relation actually
holds independently of the filter F by showing that it is equivalent to the standard definition
of continuity. However, in our case, there is a simple argument that allows us to show that
a function f is either F -continuous at some real number r for every F ∈ F or for no F ∈ F.
Indeed, we may expand our language L to a language L ∗ with a new binary relation symbol
≃ to represent infinitesimal closeness of two Fréchet hyperreals. Formally, this means that
we interpret this new symbol ≃ so that for any a, b ∈ Rω and any F ∈ F, F ⊩ a ≃ b iff
|||a − b| < 1

n
|| ∈ F for every n ∈ ω. It is straightforward to verify that this interpretation

of ≃ satisfies the persistence and refinability conditions of possibility semantics. Hence we
may now view †R as an L ∗-possibility structure, in which F -continuity of a function f at
some real r is equivalent to F ⊩ ∀x(x ≃ r → f(x) ≃ f(r)). Similarly to Corollary 7.2.14,
 Loś’s Theorem holds for all L ∗-formulas. I now claim the following:

Lemma 7.6.1. For any function f : R → R and any r ∈ R, F0 ⊩ ∀x(x ≃ r → f(x) ≃ f(r)),
or F0 ⊩ ∃x(x ≃ r ∧ ¬(f(x) ≃ f(r)). As a consequence, f is either F -continuous at r for
every F ∈ F or for no F ∈ F.
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Proof. By persistence, it is immediate to see that if F0 forces that f is continuous at r or
that F is not continuous at r, then f must either be F -continuous at r for every F ∈ F, or
F -discontinuous at r for any F ∈ F respectively. So let us show that either F0 ⊩ ∀x(x ≃
r → f(x) ≃ f(r)) or F0 ⊩ ∃x(x ≃ r ∧ ¬f(x) ≃ f(r)). Suppose that F0 ̸⊩ ∀x(x ≃ r →
f(x) ≃ f(r)). Then there is some F ∈ F and some a ∈ Rω such that F ⊩ a ≃ r and
F ⊩ ¬f(a) ≃ f(r). This means that |||a− r| < 1

n
|| ∈ F for all n ∈ ω, and that there is some

m ∈ ω such that |||f(a) − f(r)| ≥ 1
m
|| ∈ F . Since F is a free filter on ω, this means that for

any i ∈ ω, the set Ai =
⋂
k<i |||a−r| <

1
k
||∩|||f(a)−f(r)| ≥ 1

m
|| is infinite. Let b : ω → R be

defined by letting b(i) = a(j), where j is the least n ∈ Ai such that n > i. By construction,
we have that i ∈ |||b − r| < 1

n
|| whenever n < i, which means that F0 ⊩ b ≃ r. Moreover,

|||f(b) − f(r)| ≥ 1
m
|| = ω, hence F0 ⊩ ¬f(b) ≃ f(r). This completes the proof.

Note that the proof above does not mention the standard definition of continuity in any
way. Indeed, the core of the argument is to show that any counterexample to the F -continuity
of f for some free filter F can be turned into a counterexample to the F0-continuity of f . As
a consequence, F -continuity of a function is a property that is entirely determined by the
Fréchet filter, and we could therefore substitute F -continuity for the standard definition of
continuity without any risk of ambiguity. Interestingly, the argument above also gives a way
out of Machover’s criticism of the nonstandard definition of continuity. Indeed, as the com-
parison between †R and the generic approach to nonstandard analysis has made apparent,
Luxemburg ultrapowers of R are precisely generic models over F. It is straightforward to
verify that the results in Section 7.5.2 would extend to †R considered as an L ∗-structure.
In particular, this means that for any ultrafilter U on ω, a function f will be continuous at
a real number r according to the ultrapower R/U if and only if it is F -continuous for some
U ⊇ F ∈ F. But this, in connection with Lemma 7.6.1, straightforwardly implies that the
non-standard definition of continuity is independent of the choice of the ultrapower R/U .
This shows that, if one takes Machover’s challenge seriously, †R has some significant foun-
dational consequences for nonstandard analysis even in the presence of the Ultrafilter Lemma.

What about Machover’s broader point regarding the lack of canonicity of the classical
hyperreal line? From the purely mathematical perspective, there is a precise way in which
†R is canonical in the sense of being characterized up to isomorphism. As outlined in
Section 7.5, †R can be seen as a Boolean-valued model with domain Rω and algebra of
truth-values RO(F), where the interpretation of relation symbols in the language L is given
by the map R(a) = JR(a)K) for any n-ary L symbol R and any n-tuple a of elements of
Rω. In fact, one can show that †R is, up to isomorphism, the unique Boolean valued-model
satisfying certain properties. The argument is straightforward but slightly tedious, and can
be found in Section 7.8.2.

Moreover, as I have mentioned above, there is probably more to the informal notion
of canonicity than a mere characterization up to isomorphism. In the case of †R, I think
it is also possible to argue that the structure we obtain is a natural mathematical object
to investigate. Indeed, as I have argued at length in the previous sections, †R seems to
arise as a common ground for many distinct mathematical projects. It is a strengthening of
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Laugwitz’s attempt to provide rigorous foundations to Leibniz and Cauchy’s calculus and
to Euler’s work with infinite sequences, and at the same time it is a formalization of Tao’s
attempt to bring nonstandard analysis closer to ordinary mathematical practice. It is a
simplification of Palmgren’s topos-theoretic approach to constructive nonstandard analysis,
as well as a more concrete approach to Boolean-valued models of analysis. Finally, it brings
a generic perspective to classical nonstandard analysis, allowing Luxemburg ultrapowers to
be seen as generic models in the sense of forcing.

As such, †R can also be seen as providing both a diagnosis and a cure to the canon-
icity problem identified by Machover. If we agree with Laugwitz that the core idea of the
infinitesimal method is that the properties of sequences “in the limit” are determined by
the properties of all but finitely many of their values, then only the cofinite sets of ω can
be deemed as large enough to determine truth in the hyperreal line. As Tarskian semantics
requires an ultrafilter for the Transfer Principle to apply, Robinsonian hyperreals force us to
select some infinite and co-infinite sets to count as “large enough” as well, thus introducing
an element of seemingly unavoidable arbitrariness. By contrast, the dynamic character of
possibility semantics allows us to consider all possible such choices at once and to restore
the Transfer Principle at the only canonical stage, that of the Fréchet filter.

Finally, let me conclude this section by comparing the theoretical virtues that I have ar-
gued †R enjoys with the axiomatic approach recently developed independently by Hrbáček
and Katz in [139]. The authors investigate several fragments of Nelson’s system IST and
Kanovei’s variant BST . The most relevant system for a direct comparison with †R is the sys-
tem that they call SCOT , as they show that SCOT is a conservative extension of ZF +DC
in which a nonstandard extension of the reals satisfying a version of the Transfer and Satu-
ration principles hold. Interestingly, their proof of this result involves a construction that is
remarkably close to that of †R: working in an arbitrary model M of ZF + DC, they show
how to build a forcing extension M∗ that models SCOT and is such that M coincides with
the standard sets in M∗ (Sections 4 and 5). I believe, however, that their axiomatic perspec-
tive is less likely to convincly address the objections to the use of nonstandard methods that
I have considered in this section than the semantic approach based on possibility semantics.
For one, it is not clear that the axiomatic approach would help with the canonicity prob-
lem raised by Machover. Katz and Hrbáv̧ek do not discuss the issue, but it does not seem
that SCOT can prove that there is a structure resembling the Robinsonian hyperreals that
can be characterized uniquely up to isomorphism in the way that †R can be characterized
in ZF + DC. Moreover, I think there are also reasons to doubt that Hrbáček and Katz’s
axiomatic approach convincingly addresses the issues discussed in Section 7.6.1, although
the issue is more subtle. From a strictly formalist or instrumentalist viewpoint, one could
certainly be satisfied with the conservativity result proved by Hrbáček and Katz. Indeed, if
one views hyperreals as mere tools that one appeals to in order to obtain results about real
numbers (or even just finite objects), and if one also considers that this is, in a sense, all there
is to the practice of mathematics, then one could happily adopt the axiomatic approach to
nonstandard analysis that Hrbáček and Katz develop, knowing that any theorem one could
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derive about the reals in SCOT could in principle be proved in ZF +DC. But it is not clear
that this would achieve much towards convincing the critics of nonstandard analysis whom
I have mentioned in Section 7.6.1, since few of them would consider themselves formalists or
instrumentalists. Formalists, and instrumentalists in general, are not likely to be bothered
by the introduction of ideal numbers to prove more theorems of analysis, especially when
the new structure introduced satisfies something like the Transfer Principle.9 By contrast,
it seems to me that the most vocal critics of nonstandard methods have a more substan-
tial notion of reality that the practice of mathematics is meant to reveal, such as Connes’s
“primordial mathematical reality”. Here, I think that the conservativity results in [139]
would likely fall short of convincing anyone who thinks that any existence claim regarding
Robinsonian infinitesimals is simply false. Without going too far into debates regarding the
relationship between conservativity, interpretability and mathematical truth, it is enough
to point out that one could consistently argue that all the axioms of ZF + DC are true in
Connes’ “primordial mathematical reality”, even though some of axioms of SCOT , namely
those asserting the existence of nonstandard entities, happen to be false. In short, although
the conservativity results should reassure Connes that no false consequence about the reals
could be derived from SCOT , the fact that SCOT holds in a forcing extension of any model
of ZF +DC may fail to completely dispel his misgivings about nonstandard methods.

7.7 Conclusion

In this chapter, I have used possibility semantics for first-order logic to define the Fréchet
hyperreal line †R as an alternative to the classical ultrapower approach to nonstandard anal-
ysis. As I have argued, †R shares many of the technical advantages of the classical hyperreal
line, arguably coming closer to it than the asymptotic, dynamic and generic approaches I
have discussed. At the same time, its more constructive character makes it an attractive op-
tion from a foundational and methodological standpoint. I therefore hope to have convinced
the reader that the semi-constructive approach to nonstandard analysis I have sketched here
is a mathematically natural and philosophically rich alternative to explore.

The work presented here does not exhaust the ways in which possibility semantics may
interact with nonstandard analysis. For one, I have only discussed an alternative to the use
of countably saturated ultrapowers, but nonstandard analysis is a much wider field. In par-
ticular, it routinely studies a larger class of structures, such as enlargements of the standard
universe of sets, and it remains to be seen whether one could also develop a satisfactory al-
ternative to such structures in a semi-constructive setting. Similarly, I have only touched on
the idea that the Fréchet hyperreals are a straightforward attempt at capturing an intuition
about the properties of sequences being determined by their values “almost everywhere”.
Whether this idea is as historically significant as hinted by Laugwitz and whether it could
motivate a proper conception of the continuum, in the sense of [87], will have to be explored
in future work.

9It is perhaps worth recalling here that Robinson himself was a self-avowed formalist [222].
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7.8 Appendix

7.8.1 The Standard Part Function

In this appendix, I show how to define an analogue of the standard part function on †R.
As mentioned in Section 7.2, it is not possible to define an actual function f : Rω → R
that would map any finite Fréchet hyperreal to its standard part, on pain of arbitrariness
or inconsistency. Nonetheless, it is possible to define such a function internally, meaning
that one may extend the language of †R so as to include a binary relation symbol st(x, y),
to be interpreted as “x is the standard part of y”. One can then show that any viewpoint
F ∈ F forces that any finite Fréchet hyperreal has a unique standard part. The first step is
to extend the language introduced in Section 7.6.2 to include a standardness predicate:

Definition 7.8.1. Let L † be the language L ∗ augmented with a unary predicate symbol
S(x) and a binary relation symbol st(x, y). We extend the interpretation function I to L †

as follows:

• For any a ∈ †R and any F ∈ F, a ∈ I (F, S) iff ||
∨
r∈S a = δ(r)|| ∈ F for some finite

subset S of R.

• For any a, b ∈ †R and any F ∈ F, (a, b) ∈ I (F, st) iff F ⊩ S(a) ∧ a ≃ b.

It is mostly straightforward to verify that the interpretation of S(x) and st(x, y) satisfies
the conditions of Definition 6.1.1. We only show that refinability condition holds, and leave
the rest as an exercise to the reader. Suppose first that a /∈ I (F, S), and let G be the filter
generated by F ∪{||a ̸= δ(r)|| | r ∈ R}. I claim that G is a proper filter, and thus that G ∈ F.
Suppose towards a contradiction that G is not proper. Then for some finite R ⊆ R, we have
that ω \

⋂
r∈R ||a ̸= δ(r)|| ∈ F . But ω \

⋂
r∈R ||a ̸= δ(r)|| =

⋃
r∈R ||a = δ(r)|| = ||

∨
r∈R a =

δ(r)||, so this contradicts our assumption on F . Hence G is a proper filter extending F .
Clearly, ω \ ||

∨
r∈R a = δ(r)|| ∈ G for any finite subset R of R, so a /∈ I (H,S) for any

H ⊇ G. This shows that the interpretation of S(x) satisfies the refinability condition. To
show that the interpretation of st(x, y) also satisfies it, suppose F ̸⊩ st(a, b). Then F ⊬ S(a)
or F ̸⊩ a ≃ b. Hence either there is G ⊇ F such that H ̸⊩ S(a) for any H ⊇ G, or there
is G ⊇ F such that H ̸⊩ a ≃ b for every H ⊇ G. Either way, there is G ⊇ F such that
H ̸⊩ st(a, b) for every H ⊇ G, which shows that the interpretation of st(x, y) also satisfies
the refinability condition.

We may now show that st(x, y) is interpreted as a total function on finite Fréchet hyper-
reals in †R:

Lemma 7.8.2. For any F ∈ F,

F ⊩ ∀y(∃z1∃z2(S(z1) ∧ S(z2) ∧ z1 < y < z2) → ∃!x(st(x, y)).

Proof. Fix some F ∈ F and some b ∈ Rω such that F ⊩ z1 < b < z2 for some F -standard
z1, z2 which we may assume to be real numbers. Let us first establish that F ⊩ ∃x(st(x, b)).
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By Definition 6.1.2, we must show that for any G ⊇ F , there is H ⊇ G and a ∈ Rω such
that H ⊩ st(a, b). Fix such a filter G. We consider the following two cases:

• Case 1: For some r ∈ R, ||b ̸= δ(r)|| /∈ G. Then letting H be the filter generated by
G∪||b = δ(r)||, we have that H ⊩ b = δ(r). Since δ(r) is clearly H-standard, it follows
that H ⊩ st(δ(r), b).

• Case 2: For all r ∈ R, ||b ̸= δ(r)|| ∈ G. Then let A be the set {r ∈ R | G ̸⊩ b ≤ δ(r)}.
Note that z1 ∈ A and that z2 is an upper bound of A, so by the completeness of the
real line A has a least upper bound r. Now we distinguish again two cases:

– Case 2.1: G ⊩ b < r. Since r is the least upper bound of the set A, we must
have that G ̸⊩ b ≤ δ(r − 1

n
) for any n ∈ N, since otherwise r − 1

n
would be an

upper bound of A. But this means that ||b ≤ δ(r − 1
n
)|| /∈ G for any n ∈ N, and

thus the set G ∪ {||δ(r) − b < 1
n
|| | n ∈ N} generates a filter H. By construction,

H ⊩ δ(r) ≃ b, and therefore H ⊩ st(δ(r), b).

– Case 2.2: G ̸⊩ b < r. For any n ∈ N, let Bn = ||0 < b− δ(r) < 1
n
||. I claim that

the set G ∪ {Bn | n ∈ N} generates a filter. To show this, it is enough to show
that ω \Bn /∈ G for any n ∈ N. Suppose towards a contradiction that ω \Bn ∈ G
for some n ∈ N. This means that G ⊩ b ≤ δ(r)∨ δ(r+ 1

n
) ≤ b. Since r is an upper

bound of A, r + 1
n
/∈ A, which means that G ⊩ b ≤ δ(r + 1

n
). By distributivity,

this means that

G ⊩ (b ≤ δ(r) ∧ b ≤ δ(r +
1

n
)) ∨ (δ(r +

1

n
) ≤ b ∧ b ≤ δ(r +

1

n
)),

which is equivalent to

G ⊩ b < δ(r) ∨ b = δ(r) ∨ b = δ(r +
1

n
).

Since ||b ̸= δ(s)|| ∈ G for all s ∈ R, this implies thatG ⊩ b < δ(r), a contradiction.
Thus G ∪ {Bn | n ∈ N} generates a filter H ∈ F. By construction, H ⊩ δ(r) ≃ b,
and therefore H ⊩ st(δ(r), b).

This completes the proof that F ⊩ ∃x(st(x, b)). For uniqueness, it suffices to show that
F ⊩ st(a1, b) ∧ st(a2, b) implies F ⊩ a1 = a2 for any a1, a2 ∈ Rω and F ∈ F. Let F ′ ⊇ F .
From F ′ ⊩ st(a1, b), we have that ||a1 = δ(r1)|| ∈ G for some r1 ∈ R and G ⊇ F ′ and that
G ⊩ a1 ≃ b. But this means that |||δ(r1) − b| < 1

n
|| ∈ G for any n ∈ N. Similarly, there

is r2 ∈ R and H ⊇ G such that |||δ(r2) − b| < 1
n
|| ∈ H for any n ∈ N. By the triangle

inequality, |δ(r1)(i) − δ(r2)(i)| ≤ |δ(r1)(i) − y(i)| + |δ(r2)(i) − y(i)| for any i ∈ ω, hence for
any n ∈ N, |||δ(r1)−y| < 1

2n
||∩|||δ(r2)−y| < 1

2n
|| ⊆ |||δ(r1)−δ(r2)| < 1

n
||, which implies that

|||δ(r1)− δ(r2)| < 1
n
|| ∈ H and is thus non-empty. But this implies at once that |r1− r2| < 1

n

for any n ∈ N, and therefore r1 = r2. Thus ||a1 = δ(r1)|| ∩ ||a2 = δ(r2)|| ⊆ ||a1 = a2||, and
H ⊩ a1 = a2. Thus we’ve shown that for any F ′ ⊇ F there is H ⊇ F ′ such that H ⊩ a1 = a2,
from which we conclude that F ⊩ a1 = a2.
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7.8.2 A Characterization of the Fréchet Hyperreals

In this appendix, I give a characterization of †R as a Boolean-valued model that is unique
up to isomorphism. Recall first that Boolean-valued models are given by a triple (D,B,I ),
where D is a set, B is (usually complete) Boolean algebra, and I maps any n-ary rela-
tion symbol in the language to a function with domain Dn and co-domain B.10 Given two
Boolean-valued models M1 = (D,B,I ) and M2 = (E,C,J ), an isomorphism between
M1 and M2 is given by a pair (η, θ) such that η : D → E is a bijection, θ : B → C is
a Boolean isomorphism, and η(I (R)(a1, ..., an)) = J (R)(θ(a1), ..., θ(an)). As discussed in
Section 7.5.1, the Boolean algebra RO(F) of truth-values in †R is the canonical extension of
P(ω)∗. Since the canonical extension of a Boolean algebra B can always be characterized
purely algebraically up to a unique isomorphism fixing B (see for instance [103]), character-
izing RO(F) uniquely up to isomorphism reduces to characterizing up to isomorphism the
Boolean algebra P(ω)∗. This turns out to be a slightly more involved matter. In the pres-
ence of the Continuum Hypothesis, this can be done directly, as shown in [193]. Without
assuming CH, one can still argue in an indirect way as follows. By the Lindenbaum-Tarski-
Jónsson duality between complete atomic Boolean algebras and sets (see [146, Chap. 6]),
P(ω) is the unique complete Boolean algebra generated by a countable set of atoms. More-
over, a compact element in a complete Boolean algebra B is some element b ∈ B such that
for any X ⊆ B, b ≤

∨
X implies b ≤

∨
X ′ for some finite X ′ ⊆ X. It is straightforward

to verify that the compact elements of a Boolean algebra B always form an ideal on B, and
that if f : B → P(ω) is a Boolean isomorphism, then b is a compact element of B iff f(b)
is a finite subset of ω. Thus, up to isomorphism, RO(F) is the unique canonical extension of
the quotient of the unique complete Boolean algebra generated by a countable set of atoms
modulo its ideal of compact elements. We may now offer the following characterization of
†R:

Lemma 7.8.3. The Fréchet hyperreals †R = (Rω,RO(F), J·K) is, up to isomorphism, the
unique Boolean-valued L -structure (D,B,I ) such that:

• there is a countable set U and a Boolean isomorphism χ from B into (P(U)/F in)δ, the
canonical extension of the quotient P(U)/F in of P(U) modulo its ideal of compact
elements;

• there is a complete ordered field X and a bijection f from D onto the set of functions
with domain U and codomain X such that, for any n-ary relation R and tuple a ∈ Dn,
I (R)(a) = ϵ({u ∈ U | X |= R(f(a)(u))}), where ϵ is the Boolean homomorphism
obtained by composing the canonical map from P(U) to (P(U)/F in)δ with χ.

Proof. Let us prove that a Boolean-valued L -structure M = (D,B,I ) satisfies the condi-
tion of the lemma if and only if it is isomorphic to †R. Clearly, if (η, θ) is an isomorphism
from M to †R, then ω is the required set U , R is the required field X , η is the required

10Function and constant symbols can be treated as special relation symbols mapped by I to a function
with codomain {0B, 1B} for all relevant purposes here.
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isomorphism χ and θ is the required bijection f . This shows the right-to-left direction of
the biconditional. For the converse, suppose now that we have U , X , χ and f as in the
statement of the lemma. Before defining the maps η and θ, we introduce the following maps:

• We fix a bijection s : ω → U . This maps induces a Boolean isomorphism σ1 : P(U) →
P(ω) given by σ1(S) = {i ∈ ω | s(i) ∈ S}.

• The canonical extension of P(U)/F in, denoted (P(U)/F in)δ, can be constructed as
the Boolean algebra of regular open sets of the poset of filters on P(U) that extend the
filter of all cofinite subsets of U , ordered by reverse inclusion. The map δ1 : P(U) →
(P(U)/F in)δ given by S 7→ {F | S ∈ F} is the canonical embedding of P(U) into
(P(U)/F in)δ, so ϵ = χ ◦ δ1.

• Similarly, let δ2 : P(ω) → RO(F) be given by δ2(S) = {F ∈ F | S ∈ F}. The
Boolean isomorphism σ1 can be lifted along δ1 and δ2 to a Boolean isomorphism σ2 :
(P(U)/F in)δ → RO(F).

• Finally, we fix an isomorphism γ : X → R. Combined with s : ω → U , this induces a
bijection γs : X U → Rω where, for any a : U → X , γs(a)(i) = γ(a(s(i))).

We now let η : B → RO(F) be the map σ2 ◦ χ−1 and θ : D → Rω as the map γs ◦ f .
All definitions above are summed up in the two commutative diagrams below. The arrows
in the leftmost diagram are Boolean homomorphisms, and functions between sets in the
rightmost one. In both diagrams, double arrows are maps that are invertible (i.e., Boolean
isomorphisms in the leftmost diagram and bijections in the rightmost one). Note in particular
that δ2 ◦ σ1 = σ2 ◦ δ1 = σ2 ◦ χ−1 ◦ χ ◦ δ1 = η ◦ ϵ.

P(U) (P(U)/F in)δ B D X U

P(ω) RO(F) Rω

σ1

δ2

δ1 χ

ϵ

ησ2 γs

f

θ

Clearly, η is a Boolean isomorphism and θ is a bijection. So we only need to check that for any
n-ary relation symbol R and any tuple d1, ..., dn of elements of D, η(I (R))(d1, ..., dn)) =
JR(θ(d1), ..., θ(dn))K . By Theorem 7.2.5, we have that JR(θ(d1), ..., θ(dn))K = {F ∈ F |
||R(θ(d1), ..., θ(dn)|| ∈ F} = δ2(||R(θ(d1), ..., θ(dn)||). Now we compute:
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JR(θ(d1), ..., θ(dn))K = δ2(||R(θ(d1), ..., θ(dn))||)
= δ2({i ∈ ω | R |= R(θ(d1)(i), ..., θ(dn)(i))})

= δ2({i ∈ ω | R |= R(γs(f(d1))(i), ..., γs(f(dn))(i))})

= δ2({i ∈ ω | R |= R(γ(f(d1))(s(i)), ..., γ(f(dn))(s(i)))})

= δ2({i ∈ ω | X |= R(f(d1)(s(i)), ..., f(dn)(s(i)))})

= σ2(σ1({u ∈ U | X |= R(f(d1)(u), ..., f(dn)(u))}))

= η(ϵ({u ∈ U | X |= R(f(d1)(u), ..., f(dn)(u))}))

= η(I (R)(d1, ..., dn)),

where the last equality follows from the assumption on ϵ and f . This concludes the
proof.
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Chapter 8

Possibility Semantics and the
Euclidean Infinite

8.1 Introduction

In this chapter, I explore another application of generic powers and possibility semantics in
the philosophy of the mathematical infinite. Just as nonstandard analysis aims to provide
a powerful mathematical framework for an alternative conception of the continuum, tech-
niques inspired from NSA have recently been used to develop a sophisticated mathematical
theory of the size of infinite sets that vastly differs from the Cantorian one. The key point is
that the modern notion of cardinality, as is well known, does not preserve the pre-theoretic
intuition that a whole should always be greater than any of its proper parts. Because this
principle can be traced back to the Common Notions in Euclid’s Elements, theories of size
of infinite sets that preserve it are often called Euclidean. The interest in Euclidean theories
of size has recently been revived by the theory of numerosities, developed primarily by Benci
and di Nasso [18, 19, 16]. Originally, numerosity structures were introduced as nonstandard
extensions of the natural numbers and usually constructed as ultrapowers of N. Their key
feature is that one could assign a numerosity to every subset of the natural numbers in a
manner that would preserve the part-whole intuition. More recently, numerosities have also
been applied to address some issues regarding probabilistic scenarios on an infinite sample
space. Just as one may have the pre-theoretic intuition that the whole is always bigger than
any of its proper parts, one may also have the pre-theoretic intuition that events that are
strictly more likely than others should be assigned a strictly greater probability of occurring.
But this intuition is famously not preserved by standard probability theory, since possible
events often receive probability 0 of occurring whenever the space of outcomes is infinite. In
a series of recent papers, Benci, Horsten and Wenmackers [21, 20, 259] have used techniques
similar to numerosities to propose a novel approach to probability theory on infinite sam-
ple spaces. Their theory, Non-Archimedean Probability (NAP) theory, has the advantage
of allowing one to define probability measures on infinite sample spaces that preserve the
intuition that only impossible events should be assigned probability 0 of occurring.
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My goal in this chapter is to use possibility semantics to explore an alternative approach
to numerosities and NAP theory. Just as the Fréchet Hyperreals offer an alternative way
of constructing the hyperreals that has some foundational benefits over Luxemburg ultra-
powers, I will argue that possibility structures can be used to construct numerosity and
NAP functions that have several conceptual advantages over their Tarskian counterparts.
While we investigated applications of possibility semantics in analysis in the previous chap-
ter, we will this time be concerned with basic results of algebra regarding partially ordered
(semi)rings and fields. Since algebra is notoriously an area of classical mathematics in which
non-constructive principles such as Zorn’s Lemma are routinely used, this will provide us
with a good opportunity to test the robustness and limits of possibility semantics for the
development of classical mathematics in a semi-constructive setting. To keep the discussion
contained, I will be focusing for most of the chapter on two important problems, Galileo’s
Paradox and fair lotteries on infinite sets, as both offer a simple and concrete way to under-
stand the issues that Euclidean theories of the infinite typically face.

The chapter is organized as follows. In Section 8.2, I briefly recall the aspects of the cur-
rent debate on the Euclidean infinite that I will be discussing. In particular, I emphasize the
significance of numerosities and NAP functions for debates in the philosophy of mathematics
and the philosophy of probability, respectively. In Section 8.3, I give some background on
numerosities and NAP functions, with the aim to provide an intuitive and accessible presen-
tation on the main technical achievements of both. In Section 8.4, I discuss some objections
that have been raised against Euclidean theories in the literature, focusing in particular of
the claim that numerosity assignments and NAP functions do not capture robust notions
of size and probability respectively, because many of their features are neither invariant un-
der permutations of their domains nor conceptually well-motivated. This prompts me to
develop in Section 8.5 what I call a generic approach to numerosities and NAP functions
based on possibility structures, before arguing in Section 8.6 that generic numerosities and
NAP functions do not face the same issues as their Tarskian counterparts.

8.2 Galileo’s Paradox and De Finetti’s Lottery

In this section, I introduce the two problems in the philosophy of the mathematical infinite
that will occupy us in this chapter. In both cases, what can be seen as the “mathematically
orthodox” solution to the problem can be contrasted with an alternative, “heterodox” solu-
tion that has nonetheless some intuitive pull and historical predecessors. I will present each
problem in turn and briefly recall the broader philosophical context that makes each of them
relevant.

8.2.1 Infinite Sizes and the Part-Whole Principle

The first problem involves extending the concepts of counting and size from finite to infinite
collections. Galileo offered a vivid presentation of it in his Dialogue of the Two New Sciences
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[99], although, as thoroughly established by Mancosu in [184], the problem itself has a much
longer and very rich history. On the first day of their dialogue, Salviati (Galileo’s stand-in
the Dialogue) is challenged by a perplexed Simplicio who asks the following question: how
is it possible that a line, containing infinitely many points, may however be a proper part of
another line, who must therefore contain a greater infinity of points? Salviati replies:

This is one of the difficulties which arise when we attempt, with our finite minds,
to discuss the infinite, assigning to it those properties which we give to the finite
and limited; but this I think is wrong, for we cannot speak of infinite quantities
as being the one greater or less than or equal to another. [99, p. 30]

Salviati argues for his position by giving another example. By a series of questions
to Simplicio about the collection of all square numbers and the collection of all numbers,
Salviati manages to make Simplicio contradict himself. On the one hand, since every square
is a natural number, but the converse is false, there must be stricly more natural numbers
than squares. On the other hand, since every square number can be mapped uniquely to its
root, and every natural number is the root of some square, there must in fact be as many
squares as there are roots of squares, and thus as many square numbers as there are natural
numbers. Salviati draws the following conclusion from the situation:

So far as I see we can only infer that the totality of all numbers is infinite, that
the number of squares is infinite, and that the number of their roots is infinite;
neither is the number squares less than the totality of all numbers, nor the latter
greater than the former; and finally the attributes “equal”, “greater”, and “less”
are not applicable to infinite, but only to finite, quantities. [p. 31-32]

Galileo’s solution to the paradox is therefore to retreat: it is simply impossible to extend
coherently the concept of size in a way that would allow us to meaningfully compare infinite
collections. There seems to be two competing intuitions, which, following [184], I will call the
Bijection and Part-Whole principles ((BP) and (PW) for short). If one takes the notions
of collection and parthood among them as primitive, both principles can then be stated as
follows for any two collections A,B:

(BP) size(A) = size(B) iff there is a bijection f : A→ B;

(PW) if A is a proper part of B, then size(A) < size(B).

If one only considers finite collections, then the two principles are not only compatible
but true, assuming that one takes the size of a collection to be the number of its elements.
But if one understands the notion of a collection as being synonymous with that of a set, and
that of being a part of a collection as being synonymous with being a subset of a set, then as
soon as one allows for the existence of a Dedekind-infinite set, the two principles come apart.
Indeed, if B is a Dedekind-infinite set, then there is a proper subset A of B and a bijection
f : B → A. But then, by (BP), we should conclude that size(A) = size(B), while (PW)
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implies that size(A) < size(B). Galileo’s Paradox is simply an instance of this phenomenon
in which one takes B to be the set of all natural numbers and A the set of all square numbers.

Cantor famously solved the issue by endorsing (BP) and rejecting (PW). In doing so,
he developed the modern notion of cardinality, which is often taken to be an extension of
the notion of size to infinite sets. In short, one may view the Cantorian notion of an ordinal
as an extension of the concept of counting into the transfinite. Ordinals, however, turn out
to be too fine-grained to also deliver a satisfactory notion of size: distinct ordinals may
be bijectable with one another, and ordinal arithmetic fails to be commutative. Cardinals,
by contrast, defined either as equivalence classes of equinumerous ordinals or as canonical
representatives thereof (i.e., as least ordinals in such equivalence classes) form a rich and
well-behaved structure that satisfies (BP) and on which the natural notions of addition and
multiplication are commutative.

The success of the Cantorian approach has led to a widespread belief that choosing
(BP) over (PW) was essentially the only way to extend the concept of size into the infinite.
Gödel [107] famously argued for such a position when discussing the status of the Continuum
Hypothesis in set theory:

Cantor’s continuum problem is simply the question: How many points are there
on a straight line in Euclidean space? In other terms, the question is: How many
different sets of integers do there exist?
This question, of course, could arise only after the concept of “number” had
been extended to infinite sets; hence it might be doubted if this extension can be
effected in a uniquely determined manner and if, therefore, the statement of the
problem in the simple terms used above is justified. Closer examination, however,
shows that Cantor’s definition of infinite numbers really has this character of
uniqueness, and that in a very striking manner. For whatever “number” as
applied to infinite sets may mean, we certainly want it to have the property that
the number of objects belonging to some class does not change if, leaving the
objects the same, one changes in any way whatsoever their properties or mutual
relations (e.g., their colors or their distribution in space). From this, however,
it follows at once that two sets (at least two sets of changeable objects of the
space-time world) will have the same cardinal number if their elements can be
brought into a one-to-one correspondence, which is Cantor’s definition of equality
between numbers. [107, p. 515]

Such a view, however, is challenged by the development of alternative theories of size for
infinite sets. Mancosu [184] lists several historical attempts to develop an arithmetic of the
infinite based on the Part-Whole Principle rather than on the Bijection Principle. A promi-
nent figure among such attempts in the Bohemian polymath Bernard Bolzano, who tried to
develop such a “Calculation of the Infinite” in his Paradoxes of the Infinite [14, 227]. More
recently, modern model-theoretic tools have been used to develop the theory of numerosities
[18, 19, 16], which assigns sizes to infinite sets (and in particular to sets of natural numbers)
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in a way that is consistent with (PW). A distinctive feature of numerosities is that the
existence of a bijection is a necessary but not sufficient condition for the equinumerosity of
two sets. As such, numerosities are a vastly more fine-grained notion of size than cardinal-
ity: while all infinite subsets of the natural numbers have the same cardinality, they have
infinitely many distinct numerosities. Despite their sophistication, several arguments have
been raised against the claim that the theory of numerosities offers a genuine alternative to
the Cantorian path (see Section 8.4 below).

The issue around the existence of an alternative way of extending the concept of size into
the infinite is significant for several other debates in the philosophy of mathematics. First,
the original purpose of Gödel’s argument is to show that the continuum hypothesis, which is
strictly speaking an issue about cardinality, can also be understood as a basic question about
the size of sets of real numbers. For Gödel, the fact that the continuum hypothesis can be
presented as such a basic problem is evidence that it must, in fact, have a definite answer,
since it asks an elementary question about our concept of set. Should cardinality, however,
be one among several ways of extending our pre-theoretic notion of size into the infinite,
this fact would therefore also be significant for the debate in the philosophy of set theory
regarding whether the continuum hypothesis is a definite problem [90, 118]. Moreover, the
status of the Bijection Principle is also relevant in the debate on neologicism as a foundation
for mathematics. One of the central tenets of the neologicist program [264] is the claim that
Hume’s Principle, from which the Dedekind-Peano axioms can be derived in second-order
logic, is analytic. Hume’s Principle states that the number of objects falling under a concept
F is the same as the number of objects falling under another concept G if and only if there
is a bijection between the F s and the Gs. Neologicists hold that this is a conceptual truth,
self-evident for anyone who grasps the concept of number. This view is consistent with the
idea that (BP) is the one principle that one must follow in extending the concept of size
(and the closely related concept of number of elements) into the transfinite. However, as
remarked in [128, 183], if one thinks that there are alternative ways of extending the concept
of number from the finite to the infinite, including some that are consistent with (PW)
rather than with (BP), then the neologicist’s claims become much harder to maintain. In
particular, this leads to the “Good Company” objection to the neologicist program: since
there are consistent principles based on (PW) that can deliver the Dedekind-Peano axioms
yet are incompatible with Hume’s Principle, on what grounds could the claim that the latter
is a conceptual truth about the concept of number be based? Finally, the existence of notions
of size for infinite sets that preserve part-whole intuitions is also relevant for a debate in the
philosophy of probability regarding regularity. Let me now turn to this issue in more detail.

8.2.2 Regularity and Probability

Kolmogorov’s axioms [158] form the backbone of modern probability theory. In Kolmogorov’s
framework, a probability measure is given by a set of outcomes Ω, together with a σ-algebra of
events B (i.e., a Boolean subalgebra of P(Ω) closed under countable unions and intersections)
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and a function µ : B → R satisfying the following conditions:

(K1) µ(A) ≥ 0 for all A ∈ B (Non-negativity);

(K2) µ(Ω) = 1 (Normality);

(K3) whenever {Ai}i∈ω is a countable sequence of pairwise disjoint sets in B, µ(
⋃
i∈ω Ai =∑

i∈ω µ(Ai) (Countable Additivity).

It is well known, however, that standard probability theory faces some serious issues when
dealing with uniform probability measures on infinite sample spaces. A famous example is
de Finetti’s Lottery [94] (also called “God’s Lottery” in [189]), in which a natural number
is chosen at random. It is easy to see that no probability function defined on all singletons
could model such a situation. Indeed, such a function µ should assign the same probability
ϵ to every singleton {i} ∈ ω, and, by Axiom (K1), ϵ ≥ 0. One the one hand, if ϵ = 0, then
by Axiom (K3) µ(ω) = 0, contradicting Axiom (K2). On the other hand, if ϵ > 0, then
by the Archimedeanity of the reals there must be some n ∈ N such that ϵ > 1

n
, and thus

µ(ω) > 1 by (K3), once again contradicting (K2). De Finetti’s own solution was to give up
countable additivity in favor of finite additivity and to argue that each finite subset of ω has
probability 0 of containing the winning ticket. Such a solution, however, is counter-intuitive,
as it forces us to admit that some event that has probability 0 of occurring will in fact occur.
Our pre-theoretic intuition of quantitative probability arguably respects the constraint that
any possible event should receive a positive probability of occurring. Within the set-theoretic
framework of Kolmogorov probability theory, this gives rise to the following constraint:

Regularity For any A ∈ B, A ̸= 0 implies µ(A) > 0.1

A example related to de Finetti’s lottery is the case of an infinitely thin dart thrown at
the [0, 1] interval of the real line at random. Here, the issue of how to accurately model
this situation is tied to Lebesgue’s measure problem [58]. Can one define a function µ from
the powerset of the reals into the reals that is 1) countably additive 2) translation invariant
3) assigns to every interval [a, b] its length b − a? Lebesgue famously defined a algebra of
events for which this was possible (the Lebesgue-measurable sets), and Vitaly showed that,
under the Axiom of Choice, not every set of reals was Lebesgue measurable. The connection
between the measure problem and the dart thrown at the real line is almost immediate.
Given a subset of [0, 1], we would intuitively want the probability that the dart lands on a
point contained in that subset to be the “length” of that set, given by its Lebesgue measure.
But here we face two problems. First, the Lebesgue measure is not total under the Axiom
of Choice, so we would be forced to admit that some possible events do not get assigned
any probability at all. Second, any singleton gets assigned measure 0 under the Lebesgue
measure, and for a good reason: by countable additivity together with the Archimedeanity

1Some authors such as Hájek [116] have a more stringent definition of regularity, according to which any
subset of the sample space must be assigned a positive probability (i.e., regularity fails if a non-empty subset
of the domain has probability 0 or is not measurable).
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of R, this is the only way for the whole interval [0, 1] to have finite measure. In this case
again, the regularity constraint is incompatible with the Kolmogorovian setup.

There is an extensive debate in the literature regarding whether regularity should be
a constraint on probabilities understood both as chances [130, 262, 213] and as credences
[171, 241, 116, 78]. On the one hand, regularity has some intuitive pull, and moreover the
fact that possible events may get assigned probability 0 raises a number of issues for ortho-
dox bayesianism, especially regarding how one may learn that such an event happened or
how one may conditionalize on such an event. On the other hand, accepting the regularity
constraint would force us to revise standard probability theory, and in particular we would
have to generalize the notion of a probability function to functions whose codomain is a
non-Archimedean field. However, because the Dedekind-completeness of a field implies that
it is also Archimedean, any probability theory developed over a non-Archimedean field will
have to abandon countable additivity, since the existence of limits of bounded increasing
series is not guaranteed anymore.

Advocates of regularity as a constraint on probabilities have appealed to the existence of
fields containing infinitesimals such as the hyperreals. In particular, Lewis [171] suggested
that the issue could be solved by considering results in nonstandard analysis [29] establishing
the existence of a hyperreal-valued total measure defined on a nonstandard unit interval.
More recently, an alternative probability theory has been put forward by the proponents of
Non-Archimedean Probability theory (NAP) [20, 21, 259]. Their theory has strong ties with
the theory of numerosities. Just as numerosities are an attempt at developing an arithmetic
of infinite collections that preserves many aspects of finite arithmetic, NAP presents itself as
a probability theory that closely resembles probability theory on finite sample spaces, but
also applies to infinite sample spaces. More broadly, the connection between regularity in
probability theory and part-whole reasoning in comparing the sizes of infinite sets can be
easily captured by the following observation.

Fact 8.2.1. Let B be a field of sets and (V,+, 0, <) an ordered Abelian group. Then for
every finitely additive function f : B → V , f satisfies Regularity if and only if f satisfies
(PW).

Proof. Note first that f being finitely additive implies that f(∅) = 0. Now if f is regular,
then for any A,B ∈ B such that A ⊊ B, f(B \A) > 0 so f(B) = f(A) +f(B \A) > f(A) by
finite additivity, which shows that f satisfies (PW). Conversely, if f satisfies (PW ), then
for any A ∈ B such that A ̸= ∅, we have that 0 = f(∅) < f(A), which shows that f is
regular.

NAP can therefore be seen as a generalization of the theory of numerosities from size to
probability. In the case of de Finetti’s lottery, the connection to Galileo’s Paradox is even
more immediate. If one has a way of ascribing a size ν(A) to every set of natural numbers in
a way that obeys (PW), then one can simply set the probability that a set A contains the

winning ticket on the lottery as ν(A)
ν(N) , by analogy with fair lotteries on a finite sample space.
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Let me now describe in more detail the version of the theory of numerosities that I will be
interested in this chapter as well as its relationship to NAP.

8.3 The Euclidean Infinite

In this section, I briefly present the theory of numerosities and its application to probability
theory in NAP. There have been several presentations of the main idea over the years [18,
19, 17], with the most recent and more comprehensive treatment being [16]. My goal here
is not to present all the aspects of the theory in detail. Rather, I will focus on the way
in which the theory deals with arguably the two simplest cases, namely Galileo’s Paradox
and de Finetti’s Lottery. This is because most of the conceptually interesting aspects of the
theory happen already at the level of sets of natural numbers, and there are some rather
strong pre-theoretic intuitions that we can use to assess the merits of the proposal. In
what follows, I will try to motivate the construction both from a technical and intuitive
viewpoint. Moreover, although I believe that my presentation is faithful to the spirit of the
original proposal, I do not wish to claim that it would be wholeheartedly endorsed by the
proponents of numerosities themselves.

8.3.1 Numerosities of Sets of Natural Numbers

The theory of numerosities for sets of natural numbers was developed by Benci and di Nasso
in [18]. The starting point is the idea that one would like to construct a number structure
N and a function n : P(N) → N satisfying the following desiderata:

1. N can be endowed with two operations ⊕ and ⊗ and an order relation < such that
the resulting structure is a discrete, linearly-ordered positive semiring (numerosities
resemble the natural numbers);

2. For any B ∈ P(N) and α ∈ N , α < n(B) iff α = n(A) for some A ⊊ B (numerosities
preserve (PW))

3. For any A,B ∈ P(N) with A ∩ B = ∅, n(A ∪ B) = n(A) ⊕ n(B) and n(A × B) =
n(A) ⊗ n(B) (n respects disjoint unions and cartesian products).2

The central idea of the construction of numerosities is that the numerosity of any set of
natural numbers A can be approximated with increasing precision by considering the size of
the finite sets An = A∩{i ∈ ω | i < n}. Formally, one may associate to any set A of natural
numbers its approximating sequence σA : ω → N given by n 7→ |An|. Whenever A is a finite
set, σA is eventually constant, and outputs the cardinality of A cofinitely often. When A

2Benci and di Nasso’s original requirement is stronger than this, since they don’t include the condition
that A and B be disjoint. However, if A and B are not disjoint then their disjoint union cannot be identified
with a subset of N. This is not a problem in their setting since they define the numerosity function of what
they call labelled sets, but I am simplifying their account here.
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is infinite however, σA is an unbounded non-decreasing function. Clearly, the function that
“grows” the slowest is σ∅, which is constantly 0, and the function that grows the fastest is σN,
which is also the identity function i 7→ i. Moreover, we can make the following observation:

Fact 8.3.1. Let (I,≤) be the set of all non-decreasing functions α : ω → N satisfying
α(i + 1) ≤ α(i) + 1 for all i ∈ ω and ordered pointwise. Then σ : (P(N),⊆) → (I,<) is an
order-isomorphism.

Proof. Let us show first that σA ̸= σB whenever A ̸= B. Suppose A ̸= B, and let i ∈ ω be the
smallest element in their symmetric difference A∆B, i.e., in the set (A \B)∪ (B \A). Then
it follows that |Ai| ≠ |Bi|, hence σA(i) ̸= σB(i). This shows that σ : A 7→ σA is injective.
For surjectivity, fix a non-decreasing sequence α : ω → N such that α(i + 1) ≤ α + 1 for all
i ∈ ω, and let Aα be such that i ∈ Aα iff α(i) < α(i + 1). Then one verifies quickly that
σAα = α. Finally, to verify that σ preserves and reflects the order, note first that for any
A,B ⊆ N, we have that A ⊊ B, iff |Ai| ≤ |Bi| for all i ∈ ω iff σA(i) ≤ σB(i) for all i ∈ ω iff
σA ≤ σB.

Non-decreasing countable sequences of natural numbers ordered pointwise therefore con-
tain a “copy” of the order-structure of P(N). But this structure is too fine-grained to be
the required structure of numerosities. Intuitively, equinumerous finite sets should have the
same numerosity, while σA ̸= σB whenever A ̸= B, even when both A and B are finite sets
of the same cardinality. A related issue is the fact that (I,<) is only a partial order, while
we would want numerosities to be linearly ordered if our arithmetic of infinite sets is to
bear any resemblance to finite arithmetic. Benci and di Nasso’s solution is inspired from the
construction of hyperreal fields in nonstandard analysis and more generally of ultrapowers
in model theory. Specifically, they work with an ultrapower of the natural numbers modulo
a Ramsey ultrafilter, which is a specific kind of ultrafilter on ω.

Definition 8.3.2. For any set X and any cardinal κ ≤ |X|, we write [X]κ for the set of all
subsets of X of size κ. A Ramsey ultrafilter on ω is a non-principal ultrafilter U satisfying
any of the following equivalent conditions:

1. For any coloring c : [ω]2 → 0, 1, there is S ∈ U such that c(x) = c(y) for any x, y ∈ [S]2.

2. For any A ⊆ [ω]2, there is S ∈ U such that [S]2 ⊆ A or [S]2 ∩ A = ∅.

3. For any f : ω → N, there is S ∈ U such that f |S is non-decreasing.

The following can be given as an intuitive motivation for the choice of an ultrapower of
the natural numbers modulo a Ramsey ultrafilter. As mentioned above, the cardinality of a
finite set is the value that its approximating sequence outputs cofinitely often. Consequently,
any two equinumerous finite sets will have the same approximating sequence up to finitely
many indices. This is a good indication that we could represent numerosities as equivalence
classes of non-decreasing countable sequences of natural numbers. However, whenever A is
an infinite set, then no finite point in the approximating sequence of A gives us a complete
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viewpoint on the numerosity of A as if the process of counting all the elements in A had
been terminated. One can think of a non-principal ultrafilter on ω as providing such a
viewpoint as it abstractly describes, so to speak, a “natural number at infinity” by listing
all the properties that such a number would have (i.e., by determining which subsets of ω it
would belong to). A non-principal ultrafilter on ω therefore offers us a vantage point on the
completed structure of numerosities, allowing us to determine order relationships between
them as well as when two sequences of natural numbers approximate the same numerosity.
Finally, the Ramsey property of the ultrafilter guarantees that our “vantage point at infinity”
does not make too many distinctions: every function is equivalent to a non-decreasing one or,
equivalently, every numerosity below n(N) is the numerosity of some set of natural numbers.

Definition 8.3.3. Let U be a Ramsey ultrafilter on ω. The ring of numerosities (N ,⊕,⊗, <)
is defined as the ultrapower of (N,+,×, <) modulo U. More precisely:

• Elements of N are equivalence classes αU of functions α : ω → N, where β ∈ αU iff
||α = β|| = {i ∈ ω | α(i) = β(i)} ∈ U;

• Operations and relations are defined pointwise, i.e., αU ⊕ βU = (α + β)U, αU ⊗ βU =
(α× β)U, and αU < βU iff ||α < β|| = {i ∈ ω | α(i) < β(i)} ∈ U for any α, β : ω → N.

Moreover, the numerosity function is the map n : P(N) → N given by n(A) = (σA)U for
any A ⊆ ω.

Theorem 8.3.4 (Benci and di Nasso). The structure (N ,⊕,⊗, <) has the following prop-
erties:

1. There is an elementary embedding ι : N → N . In particular, N has the same first-order
theory as N and is a discrete, linearly-ordered positive semiring;

2. For any A,B ⊆ N with A ⊊ B, n(A) < n(B);

3. For any finite A ⊆ N, n(A) = ι(|A|);

4. Whenever A ∩B = ∅, n(A ∪B) = n(A) ⊕ n(B) and n(A) ⊗ n(B) = n(A×B);

5. For any α : ω → N, there is a non-decreasing function β : ω → N such that α ∈ βU.

The ultrapower construction therefore delivers all the desiderata that Benci and di Nasso
wanted for numerosities. It is worth however pointing out which properties are used in
establishing items 1-5 in Theorem 8.3.4. In order to establish properties 2-4, it would be
enough to consider equivalence classes of functions from ω into N modulo the equivalence
relation α ∼ β iff ||α = β||ω = {i ∈ ω | α(i) = β(i)} is cofinite. This would be equivalent
to working with the reduced power of N modulo the Fréchet filter on ω. However, such a
structure would not be elementarily equivalent to the natural numbers, and in particular
it would not be linearly ordered. Requiring that U be a non-principal ultrafilter instead of
the Fréchet filter is what guarantees that 1 holds as well. Finally, property 5 immediately
follows from taking U to be a Ramsey ultrafilter.
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8.3.2 Non-Archimedean Probability Theory

Having provided some technical and intuitive background on numerosities, let me now dis-
cuss their application to probability theory and de Finetti’s Lottery. It is well-known that
the standard resources of Kolmogorov probability theory allow for a straightforward repre-
sentation of any finite fair lottery. Given a finite set Ω and a set A ⊆ Ω, one may define
the probability that a randomly selected element x of Ω belongs to A as |A|

|Ω| . The key idea
of NAP is that this approach can be extended to the case of an infinite sample space by
conditionalizing on finite sets. Given a finite set A ⊆ Ω and an event U ⊆ Ω, we can define
the probability of U conditional on A as the real number P (U |A) = |A∩U |

|A| . This gives us a
partial approximation of the probability of U , indexed by the finite set A. In other words,
we obtain a function χU : PFin(Ω) → R, where PFin(Ω) is the set of all finite subsets of Ω,
defined by χU(A) = P (U |A) for any finite A ⊆ Ω.

The second step of the approach developed by NAP theory is to define for each function
χU that approximates the unconditional probability of U a limit to which it converges. Here,
a natural choice is to use the function χU itself to define the limit, just like one takes the
limit of a Cauchy sequence of rationals to be represented by that sequence itself in Cantor’s
construction of the real numbers. Concretely, this means that one should consider the ring
F(PFin(Ω),R) of all functions from PFin(Ω) into R. When one defines the ring operations
+ and · and the order ≤ on F(PFin(Ω),R) pointwise, F(PFin(Ω),R) becomes a partially
ordered non-Archimedean ring in which the reals embed via the map sending every real r
to the constant function r defined by r(A) = r for all A ∈ PFin(Ω). But F(PFin(Ω),R) is
not an adequate structure, as it is in some sense too fine-grained. Indeed, it is easy to see
that for any two distinct sets U, V , χU ̸= χV : simply pick some x ∈ U∆V (the symmetric
difference of U and V ), and note that it must be the case that χU({x}) ̸= χV ({x}). This
is a most unwelcome consequence if we want to have a uniform distribution on an infinite
sample space. Indeed, in the case of a fair lottery on an infinite set Ω, we would want that
µ({x}) = µ({y}) for any x, y ∈ Ω. But this fails if we take µ(U) to be χU and the codomain
of our function to be F(PFin(Ω),R). In order to solve this issue, we must find a way to
identify some of our functions with one another. A standard way to do this is to quotient
F(PFin(Ω),R) by an ideal. Here, a useful idea is to identify two functions together whenever
they coincide up to some finite error. Concretely, this means that we should identify two
functions α, β ∈ F(PFin(Ω),R) whenever α− β(A) = 0 for “almost all” A ∈ PFin(Ω). The
formal definition we need is the following.

Definition 8.3.5. A function α ∈ F(PFin(Ω),R) vanishes almost everywhere if there is
A ∈ PFin(Ω) such that ∀B ⊇ A, α(B) = 0. The fine ideal I0 is the ideal of all almost-
everywhere vanishing functions.

Quotienting the ring F(PFin(Ω),R) by the fine ideal I0 solves the problem mentioned
above. Indeed, if A,B ⊆ Ω are two finite sets such that |A| = |B|, then it is easy to see that,
for any C ⊇ A ∪ B, χA(C) = χB(C), and hence that χA − χB ∈ I0. But F(PFin(Ω),R)
fails to be an adequate range of values for another reason, which is not addressed by merely
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quotienting it by I0. Indeed, it is easy to see that F(PFin(Ω),R) fails to be an ordered field,
because it has zero divisors and incomparable elements. Indeed, consider the functions ϵ and
o, defined by ϵ(A) = 1 if |A| is odd, ϵ(A) = 0 if |A| is even, and o(A) = 1− ϵ(A). Clearly, for
any finite set A, there is B,C ⊇ A such that ϵ(B) ̸= 0 and o(C) ̸= 0, so neither B nor C are
identified with 0 in the quotient ring F(PFin(Ω),R)/I0. However, it is easy to see that the
pointwise product ϵ · o is the constantly 0 function 0, which shows that F(PFin(Ω),R)/I0 is
not a field as it contains zero divisors. One can similarly show that for any α ∈ I0, we have
that ϵ ≰ o+ α and o ≰ ϵ+ α, which shows that the order on F(PFin(Ω),R)/I0 induced by
the pointwise order on F(PFin(Ω),R) is not linear.

This result is not surprising. Indeed, by an elementary result in abstract algebra, a
quotient ring R/I is a field if and only if I is a maximal ideal of R. In order to turn
F(PFin(Ω),R) into a field, the NAP theorist therefore extends I0 to a maximal fine ideal J .
Let F/J be the field obtained by quotienting F(PFin(Ω),R) by such a maximal fine ideal
J , and PJ : P(Ω) → F/J be given by PJ(U) = [χU ]J , which we will refer to as the fair NAP
function on Ω induced by J . It turns out that F/J is a totally ordered field, and that PJ
is a well-behaved probability function. Benci, Horsten and Wenmackers prove the following
theorem.

Theorem 8.3.6. The function PJ has the following properties:

1. PJ [P(Ω)] ⊆ [0, 1], PJ(Ω) = 1.

2. PJ is finitely additive, i.e., PJ(U ∪ V ) = PJ(U) + PJ(V ) whenever U ∩ V = ∅.

3. PJ({x}) = PJ({y}) for any x, y ∈ Ω.

4. PJ(U) = 0 implies U = ∅ for any U ⊆ Ω.

Let us conclude this section by making explicit the link between NAP functions and
numerosity functions. There is an immediate analogy between the two constructions. In both
cases, an ordered (semi)ring structure is obtained by first taking the set of all functions from
a countable set into a (semi)ring, before quotienting by a maximal object such as a Ramsey
ultrafilter or a maximal ideal. Moreover, from a purely mathematical perspective, there is a
very tight connection between the construction of numerosities as ultrapowers of the natural
numbers and the definition of the range of NAP functions as quotients of functions modulo
a maximal ideal. Indeed, whenever I is a maximal ideal of F(PFin(Ω),R), the quotient
field F(PFin(Ω),R)/I is isomorphic to an ultrapower of R modulo an ultrafilter UI on
P(PFin(Ω)). In that sense, NAP functions can be seen as a generalization of numerosities.
Note however that the semiring of numerosities is defined as an ultrapower of N modulo a
Ramsey ultrafilter on ω, while the range of a NAP function is an ultrapower of R modulo a
fine ultrafilter on a set of finite subsets ordered by inclusion. When discussing the connection
between numerosity functions for sets of natural numbers and NAP functions (e.g., in [21,
Section 5.1-2]), Benci, Horsten and Wenmackers often mention that one could also define a
more general notion of NAP functions for a sample space Ω in which one replaces PFin(Ω)
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with a subset Λ satisfying some properties.3 In the case of a lottery on N, the codomain of the
NAP function becomes isomorphic to an ultrapower of N modulo a non-principal ultrafilter
on ω whenever one takes Λ to be the set of all initial segments of N. We will return to
the significance of the correspondence between ranges of NAP functions and ultrapowers in
Section 8.5 and to the distinction between working with PFin(Ω) and working with a subset
Λ in Section 8.6.

8.4 Objections to the Euclidean Infinite

In this section, I introduce some of the criticisms that have been raised against numerosi-
ties and NAP theories as solutions to Galileo’s Paradox and the problem of fair lotteries
on infinite sets respectively. Since the introduction of numerosities in [18], and particularly
since their relevance for the philosophy of the infinite was pointed out in [184] and their
possible application to de Finetti’s Lottery was investigated in [259, 21], there has been a
rich literature on whether numerosities constitute a genuine alternative to the Cantorian
transfinite, and whether NAP can be a credible alternative to Kolmogorovian probability
theory. Arguments against numerosities and NAP can be roughly divided in two categories:
those targeting numerosities and NAP specifically, and those targeting any theory of size
preserving the part-whole principle, or any probability theory satisfying the regularity con-
straint. Although most opponents of the Euclidean infinite often appeal to the two kinds of
arguments, I will be most interested in discussing arguments of the first kind, i.e., arguments
to the effect that numerosities/NAP are flawed implementations of a nonetheless possible
alternative to the standard view on the infinite. The reason for this is twofold: first, I will
argue in the next section that possibility structures allow for the development of a Euclidean
approach to Galileo’s Paradox and infinite fair lotteries that fares better than numerosities
and NAP functions with respect to objections of this kind. Second, as we will see below, many
arguments of the second kind arguably presuppose a certain affinity towards the Cantorian
infinite, which makes them less relevant to my project in this chapter. In other words, I will
not focus much on arguments that make claims that are incompatible with either (PW) or
Regularity. Rather, I will discuss arguments that point out flaws of numerosities and NAP
functions without being hostile to the Euclidean infinite itself. With respect to numerosities,
I will particularly focus on some arguments in Parker’s paper on the part-whole principle
[205], and, with respect to NAP functions, on some arguments made by Easwaran regarding
regularity and hyperreal-valued probability functions [78]. I will also briefly discuss some
other work by Parker [206], Pruss [213, 214] and Williamson [262]. Finally, the arguments
that I will focus on roughly fall within two categories: claims that numerosities and NAP
functions fail to satisfy certain invariance conditions and claims that numerosities and NAP
functions are too fine-grained and arbitrary. I will discuss each type of argument in turn.

3More specifically, Λ should be a directed subset of PFin(Ω) (meaning that for any A,B ∈ Λ there is
C ∈ Λ such that A ∪B ⊆ C), and Λ should also be such that

⋃
Λ = Ω.
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8.4.1 The Invariance Problem

Let us start with claims to the effect that numerosities and NAP functions fail to deliver a
satisfactory theory of size and probability respectively, because they do not satisfy certain
invariance conditions. In the case of numerosities, this is one of the major points that Parker
argues for in [205]. According to Parker, any theory of size that preserves the part-whole
principle (which Parker calls a Euclidean theory) must be “either too weak or arbitary”.
By “weak”, Parker means a theory that would either have very limited applicability or that
would not be informative enough. By “arbitrary”, he means a theory that makes fine-grained
predictions that do not seem conceptually or pragmatically motivated:

“Arbitrary” can mean many things, but the main thing I mean by it here is that
Euclidean size assignments are unmotivated in many of their specific details.
Particular sizes could be chosen differently without any significant loss of utility
or elegance. [205, p. 9]

Parker’s main argument to establish the arbitrariness of Euclidean theories of size amount
to showing that size assignments that preserve the part-whole principle fail to be invariant
under certain functions. Parker’s examples are in the setting of metric spaces, and the
functions he considers are rigid transformations such as translations, i.e., bijections that
preserve the metric structure. I think however that the choice of metric spaces makes Parker’s
point more obscure (I will return to this below). Accordingly, the examples I will discuss
in this section are simply sets of natural numbers. In this context, a translation becomes
simply a permutation on N, i.e., a bijection π : N → N. Any permutation π induces a
function π∗ : P(N) → P(N), given by π∗(A) = {π(a) | a ∈ A} for every A ⊆ N. Parker
considers two kinds of invariance criteria for a size assignment ν, which in the setting of size
assignments to sets of natural numbers can be presented as follows:

Absolute Invariance Criterion For any permutation π and any A ⊆ N, ν(A) = ν(π∗(A)).

Relative Invariance Criterion For any permutation π and any A,B ⊆ N, ν(A) ≤ ν(B)
implies that ν(π∗(A)) ≤ ν(π∗(B)).

It is straightforward to see that the Absolute Invariance Criterion implies the Relative
Invariance Criterion, but that the converse need not be the case. In fact, I will argue that
one should agree with Parker that the Relative Invariance Criterion should be satisfied by a
good Euclidean theory of size, while one should disagree with Parker regarding the Absolute
Invariance Criterion. Before I make this point, however, let us see how, according to Parker,
any Euclidean theory of size must fail to satisfy either criterion. For the first criterion, sup-
pose that ν : P(N) → N is a function into a partially ordered set N satisfying (PW). Recall
that, given a permutation π : N → N, the orbit O(i) of some i ∈ N is the set of all elements in
N that can be reached by successively applying π, starting from i. Let π be a permutation and
i ∈ N such that O(i) is infinite (for example, let π be defined by π(0) = 1, π(2(n+ 1)) = 2n
and π(2n+1) = 2(n+1)+1, and let i = 0). Then it is easy to see that O(π(i)) ⊊ O(i), hence,
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by (PW), ν(O(π(i))) < ν(O(i)). At the same time, π∗(O(i)) = O(π(i)), so this shows that
ν does not satisfy the Absolute Invariance Criterion. In the specific case of numerosities,
one doesn’t even need to appeal to a permutation with an infinite orbit. Indeed, let n be a
numerosity function determined by some Ramsey ultrafilter U, and let 2N and 2N+ 1 be the
set of even and odd numbers respectively. An easy argument shows that n(2N) = n(2N+ 1)
if the set {2i | i ∈ ω} ∈ U, and n(2N) > n(2N + 1) if {2i + 1 | i ∈ ω} ∈ U. In the latter
case, the function π swapping the parity of every natural number (i.e., π(2n) = 2n + 1 and
π(2n+1) = 2n) is such that ν(π∗(2N)) = n(2N+1) < n(2N), while in the former case, letting
π′ be the function swapping the parity of every positive natural number while letting 0 fixed
(i.e., π′(2(n+1)) = 2n and π′(2n+1) = 2(n+1)), we have that π′

∗(2N+1) ⊊ (2N), and hence
that n(π′

∗(2N+1)) < n(2N) = n(2N+1). Either way, numerosities must therefore violate the
Absolute Invariance Criterion. Notice that the same argument shows that they also violate
the Relative Invariance Criterion. Indeed, if n(2N) = n(2N + 1), then n(2N) ≤ n(2N + 1)
yet n(π′

∗(2N + 1) < n(2N) = n(2N + 1) < n(π′
∗(2N)), and if n(2N + 1) < n(2N), then

n(π∗(2N) = n(2N + 1) < n(2N) = n(π∗(2N + 1). Parker shows that the failure of the Rela-
tive Invariance Criterion is more general and applies to any Euclidean theory in which sizes
satisfy certain conditions.

It seems to me, however, that a proponent of the Euclidean infinite could resist Parker’s
claim that a good theory of size should satisfy the Absolute Invariance Criterion. Arguing
for his view, Parker writes that the failure of the Absolute Invariance Criterion implies that
“[t]wo sets [...] can be entirely alike in structure, and yet, due only to which particular ele-
ments are contained within this structure and where they happen to be, unequal in size”[205,
p. 14]. The idea here is that the rigid transformations that Parker considers preserve all the
“structure” of mathematical objects and thus should also preserve their size. I think however
that Parker is too quick here and that ultimately his point rests on an ambiguity about the
notion of “structure”. To make that point clear, let me start with a somewhat crude picture
of mathematical objects. Most mathematical objects are typically represented as structures
in the sense of model theory, i.e., tuples of sets including a domain of individuals and various
relations or operations on that domain. One may understand the domain of individuals as
the “matter” which the mathematical object is made of, while the tuple of relations and
operations correspond to its “form”, i.e., the structure that is imposed on the domain. For
lack of a better term, call this view about mathematical objects the hylomorphic view. For
the hylomorphist, the structure of a mathematical object is entirely given by the relations
and operations defined on it, and not by its domain, which is a set, i.e., the prototype of an
amorphous, unstructured mathematical entity. Accordingly, a “structure-preserving” map
will be a map from the domain of a mathematical object into the domain of another of the
same type that commutes with all the relations and operations defined on both of them.
Under that view, then, the “size” of a mathematical object need not be preserved by a
structure-preserving map, just like two busts of Caesar may be identical in shape but not
in size. One may argue that, as dense linear orders without endpoints, Q and R have the
same structure even though they differ in (Cantorian) cardinality, or that all finite groups of
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prime order have the same structure, because they are all cyclic groups, even though they
have distinct finite sizes. According to such a view, the notion of a homomorphism is strong
enough to indicate preservation of structure. On the other hand, one may instead consider
that the “size” of a mathematical object is in fact part of its structure and that “structure-
preserving” maps should also preserve size. But someone advocating for such a view will
then not be satisfied with a definition of a structure-preserving map as a map that commutes
with all relations and operations. Instead, they will want to impose more conditions on such
a map, depending on what they consider a good criterion of size-preservation. Typically,
they will require the map to be a bijection on top of a homomorphism.

My point here is not to discuss whether a “structure-preserving” map between mathe-
matical objects should preserve its size, as this strikes me as a mostly verbal dispute. Rather,
my goal is to point out that there can be some genuine ambiguity regarding whether a map is
“structure-preserving” or not and that, regardless of how one defines “structure-preserving”,
the fact that a map commutes with the relations and operations defined on the domain of
a mathematical object gives us no more indication that the “size” of a mathematical object
is being preserved than the fact that a golf ball and a tennis ball have the same spherical
shape is an indication that they have the same size. It seems to me, however, that Parker
relies precisely on this ambiguity between two notions of structure-preservation in his argu-
ment that Euclidean theories of size are flawed because they violate the Absolute Invariance
Criterion. Indeed, Parker claims at the same time that “structure-preserving maps” should
preserve size and that maps such as rigid transformations are “structure-preserving”. Under
the first sense of “structure” mentioned above, Parker is correct that rigid transformations
preserve structure, since they commute with relations and operations. But only under the
second sense of “structure” are “structure-preserving” maps supposed to also preserve size.
Parker would need to provide an independent argument as per why the rigid transformations
he considers are “structure-preserving” in that stronger sense. Here however, there does not
seem to be a way of arguing that bijections preserve size without appealing to (BP) and to
the Cantorian notion of size. Parker anticipates the objection of circularity and answers it
as such:

Even if we are prepared to drop [(BP)], it would be useful if the size of a set in-
dicated some antecedent fact about its structure. So preferably, transformations
that preserve structure or a great deal of structure ought to preserve size. In
general, one-to-one correspondence preserves very little structure, while a trans-
lation preserves as much as possible without necessarily preserving the internal
structures of the individual elements. So it is one thing to say that Euclidean
sizes violate [(BP)], and quite another to say that they violate principles like
[AIC]. Violating [AIC] suggests that set size is not determined by structure at
all. [p. 16]

Again, I think that Parker’s point here rests on an ambiguity between the two notions
of structure discussed above. Under the hylomorphic view, there is nothing wrong with the
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suggestion that “set size is not determined by structure at all”. In fact, one might even
argue that set size should not be determined by structure at all. Since sets are unstructured
entities and yet have a size, how could their (lack of) structure determine their size? On
the other hand, if one thinks that the size of a mathematical object is part of its structure,
then Parker has not given us any reason to believe that rigid transformations or translations
preserve size along with other structural features of the mathematical objects he considers.

Ultimately, it therefore seems to me that Parker’s claim that a good theory of size should
satisfy the Absolute Invariance Criterion presupposes that one adheres to (BP) in the first
place and can thus be dismissed by the proponents of the Euclidean infinite. Note that a
similar discussion arises in the context of NAP. Williamson [262], Parker [206] and Pruss
[214] all argue that probability functions should be invariant under certain symmetries of
the sample space. Williamson considers the example of a fair coin being tossed infinitely
many times and argues that the probability that the coin always lands on heads should be
equal to the probability that it always lands on heads from the second flip onward, because
the two events are “isomorphic”. According to Williamson, the probability of the first event
should also be half of the probability of the second one since the coin flips are independent,
and therefore both events must receive probability 0, thus violating Regularity. Pruss and
Parker, on the other hand, independently discuss the case of a dart thrown at the unit circle
and show that a rotation-invariant probability function cannot be regular. In all such cases,
the core of the argument seems to rely on the intuition that two events modelled by sets that
can be mapped onto one another by a “structure-preserving” function should have the same
probability, because the corresponding sets must have the same size. Once again, it seems
to me that the intuition driving these arguments ultimately rests on an ambiguity regarding
the notion of “structure” implicitly assumed.

The situation, however, is much different with respect to the Relative Invariance Crite-
rion. Let me start by remarking that, unlike the Absolute Invariance Criterion, the Relative
Invariance Criterion does immediately seem to contradict (PW). Indeed, if π : X → X is a
permutation of the elements of a set X and A ⊊ B ⊆ X, then clearly also π∗(A) ⊊ π∗(B).
Strict part-whole relations are preserved by permutations. As a consequence, whenever a
strict size comparison between two sets holds in virtue of the part-whole principle, the same
relation also holds between the images of those two sets under π. Thus there is no prima
facie incompatibility between (PW) and the Relative Invariance Criterion. I would also
argue that there is an independent reason to hold on to the Relative Invariance Criterion.

According to either of the Cantorian and Euclidean picture of the infinite, relative size
assignments track part-whole relations between sets as captured by the subset relation.
To put the point differently, both Cantorian and Euclidean size assignments determine a
(possibly partial) order on the powerset of a set that extends the inclusion order. As such,
they can be thought of as more coarse-grained relations on powersets than the inclusion order.
But if size relations between subsets of a set are more coarse-grained than the inclusion order,
then it follows that they should be preserved by permutations, since, for any permutation
π : X → X, π∗ : P(X) → P(X) preserves the inclusion order. Therefore, a size assignment
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that does not satisfy the Relative Invariance Criterion must be tracking relational properties
between sets that go beyond the inclusion order and, in the case of pure sets, it is hard
to see what such properties could be (although I will come back in more detail to this
point in Section 8.6). For now, let me conclude by emphasizing the distinction between this
justification of the Relative Invariance Criterion and Parker’s argument for the Absolute
Invariance Criterion. Parker argues that rigid transformations on a set X induce maps on
P(X) that map every subset of X to a structurally-identical set and that therefore size
is a property that should be preserved under such maps. By contrast, my claim is that
every permutation π on a set X induces an order isomorphism π∗ on P(X) endowed with
the inclusion order and that, since the ordering induced on P(X) by a size assignment
is coarser than the inclusion ordering, it should also be preserved by π∗. In other words,
Parker claims that rigid transformations (or permutations) preserve the local structure of
individual sets, while my point is that permutations preserve the global structure of the set
of subsets. This is why I think that Parker’s claim is ultimately dubious, because it relies on
an ambiguity regarding whether size is a “structural” property of sets, while my argument
for the Relative Invariance Criterion does not have this issue. Since the “structure” under
consideration here is that of the ordered set (P(X),⊆), π∗ is always a structure-preserving
map, regardless of whether one thinks of the size of a set as part of its individual structure.

8.4.2 Arbitrariness and Non-Uniqueness

The second type of arguments against numerosity and NAP functions intends to establish
that they deliver a defective notion of size and probability because many of their specific
features are not well-motivated. Here, the main thrust of these arguments does not lie in
the fact that a given numerosity or NAP function is not invariant under certain structure-
preserving maps on its underlying domain, but rather in the fact that such functions are not
uniquely specified. This is a direct consequence of the fact that semirings of numerosities
and codomains of NAP functions are always defined relative to a maximal object such as a
Ramsey ultrafilter or a maximal fine ideal. Consequently, specifying a particular numerosity
function (resp. a NAP function) requires choosing a particular Ramsey ultrafilter (resp. a
maximal fine ideal). But since the existence of such objects is only guaranteed under the
Axiom of Choice, there is no principled way of choosing one such object as a canonical one,
and one must therefore allow for the existence of infinitely many functions.

Moreover, not only will such functions assign different values to the same set, but also
they often contradict one another in determining relative size relationships. Let us il-
lustrate this with a simple example in the case of numerosities. For i ∈ {0, 1, 2, 3}, let
Ui = {4n+ i | n ∈ N}, and let V0 = U0 ∪U3 and V1 = U1 ∪U2. A simple computation shows
that for any numerosity function n determined by a Ramsey ultrafilter U, n(V0) < n(V1) if
U1 ∈ U, n(V0) = n(V1) if U0 ∪U2 ∈ U, and n(V0) > n(V1) if U3 ∈ U. Since U0, ..., U4 partition
ω, exactly one of them must be in U. Since the existence of one Ramsey ultrafilter guarantees
the existence of Ramsey ultrafilters containing each of U0, ..., U4 (see Lemma 8.5.6 below),
this means that having just one numerosity function implies having also distinct numerosities
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assigning all possible size relationships to V0 and V1. Of course, a proponent of numerosities
could answer that some Ramsey ultrafilters should be preferred to others. In the example
above, one could argue that, in fact, all of U0,...,U3 should have the same numerosity, which
can be achieved by making sure that U0 ∈ U. In fact, numerosity theorists often point out
that one could require that every set of the form nN = {nm | m ∈ N} belong to the Ramsey
ultrafilter U, with the consequence that any partition of N determined by Euclidean division
modulo any natural number m will yield cells of equal numerosity. Nonetheless, there are
reasons to think that this approach doesn’t entirely solve the issue at stake here. For exam-
ple, given a natural number n, let b(n) be the number of digits of the binary expansion of n.
As before, define sets X0, ..., X3 by Xi = {n | b(n) = i mod 4}, and let Y0 = X0 ∪X3 and
Y1 = X1 ∪ X2. Again, one might want to impose that n(Y0) = n(Y1). But it is easy to see
that the set {i ∈ ω | σY0(i) = σY1(i)} is infinite but does not contain any set of the form nN,
meaning that one would need to impose further conditions on the Ramsey ultrafilters under
consideration to ensure that n(Y0) = n(Y1).

Arguably, this sense of arbitrariness is made worse by the fact that semirings of nu-
merosities and ranges of NAP functions are linearly ordered. Indeed, this means that the
numerosities of any two sets, or the probability of any two events in an infinite fair lottery,
must always be comparable. But there are many instances for which it seems that such or-
der relationships, whatever they maybe, would appear to be poorly motivated. For example,
Kremer [159] shows that there exists a set of natural numbers S∞ such that for any rational
number q ∈ (0, 1), there is a NAP function µ according to which the probability that the
winning ticket in a fair lottery on N belongs to S∞ is exactly q. Kremer argues that this
shows that the probability of the event corresponding to this set is simply indeterminate
according to NAP theory and that this might be a desirable feature:

As for the set S∞ constructed below, we might welcome the fact that its prob-
ability is indeterminate, since we have no fixed intuitions about it. Maybe this
indeterminacy is a feature, not a bug.[159, p. 1759]

The underlying assumption in Kremer’s reasoning here is that one should take NAP
theory to be modelling a fair lottery on an infinite set Ω with a set of probability functions,
all determined by a distinct maximal fine ideal on F(PFin(Ω),R), rather than with a single
probability function. Whenever all NAP functions agree on a certain value for the probability
of an event U or an order relationship between the probabilities of two events U and V , one
should take this to be a genuine prediction of the theory. Whenever NAP functions disagree,
however, one should simply conclude that the theory doesn’t give a determinate answer.
Horsten and Wenmackers make a similar point when discussing an early version of NAP as
a way of modelling de Finetti’s Lottery:

The problem stated as “Find a probability measure on all of N that satisfies
FAIR, ALL and SUM” is highly underdetermined: there are as many different
ways to draw a random number from N in a fair way as there are free ultrafilters,
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and the probability function [given] should be seen as a whole family of solutions,
all of which are, as far as we can presently see, equally relevant.[259, p. 19]

Together with Benci, they make a similar point when arguing that the fact that NAP
functions are determined by a maximal fine ideal (or, equivalently, by a fine ultrafilter) does
not put the NAP theorist at a disadvantage against the classical probability theorist:

[I]n order to model a given conceptually possible probabilistic situation, three
choices need to be made. The first two choices [(a sample space Ω and a weight
function)] are familiar from classical probability theory. If one believes in the
existence of objective probabilities, then these choices can be constrained: one
can require Ω to be a subset of the ‘universal sample space’ of physically possible
point events, and one can take the weight function to be physically determined.
In the classical setting, a third choice has to be made (in uncountably infinite
sample spaces): one has to pick a σ-algebra of events. The defender of NAP also
has a third choice to make: the choice of an ultrafilter. In both approaches, this
third choice may involve arbitrariness. [...] [O]n both the classical approach and
in NAP, probability is partially arbitrary, in the sense that it involves a choice
that is not empirically accessible. Once a choice has been made (for a particular
σ-algebra of events or an ultrafilter, respectively), the probability function is
unique (relative to this choice).[20, pp. 541-542]

The proponents of NAP theory therefore seem to acknowledge that the fact that their
solution relies on the choice of a maximal, non-constructive object such as a non-principal
ultrafilter ultimately introduces an element of arbitrariness to the way in which they model
de Finetti’s Lottery. According to them, the arbitrariness introduced by the choice of ultra-
filter is on a par with the arbitrariness introduced by the choice of a σ-algebra of events in
classical probability theory. But there are reasons to push back on this. The arbitrariness
of the choice of a σ-algebra of events means that some events will not be measurable and
thus will not receive any probability. The choice of an ultrafilter, by contrast, will influence
the particular values that the corresponding events receive, both in an absolute way (the
range of a NAP function is defined modulo the ultrafilter, so two distinct ultrafilters will
yield entirely different sets as ranges) and in a relative way (two events may receive equal
probability, or one may have smaller probability than the other, depending on the ultrafil-
ter). As such, it is not entirely clear that NAP theory manages to model a genuinely fair
lottery on N. Depending on the choice of ultrafilter, the set 2N of even numbers will either
receive probability equal to or strictly greater (by an infinitesimal) than the set 2N + 1 of
odd numbers. One could therefore be tempted to argue that, in the first case, the choice of
the ultrafilter favors the odds, and in the latter case, it favors the evens. In other words,
it might be the case that de Finetti’s Lottery is genuinely indeterminate; but that does not
mean that NAP functions are all equally valid ways of adequately modelling it, rather than
equally correct ways of modelling different, unfair lotteries.
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The arbitrariness of NAP functions has prompted some opponents of Regularity such
as Easwaran [78] to argue that they introduce too much structure among the probabilities of
events in a fair lottery on an infinite set. Easwaran argues that the intuition that an event
A represented by a proper subset of the set representing an event B should receive smaller
probability than B can be captured via a qualitative, partial ordering on events that extends
both the inclusion order on the set of events and the order induced by a classical probability
distribution. In the case of de Finetti’s Lottery, we could take µ to be a real-valued finitely
additive probability function assigning probability 0 to every finite subset of N, and define
the relation ≺ on P(N) by letting U ≺ V iff µ(U) < µ(V ) or U ⊊ V . This yields a
qualitative (i.e., non-numerical) probability function on P(N) that satisfies the regularity
constraint. According to Easwaran, this solution is based on the observation that the entire
structure of the classical probabilistic setup can be used to decide, for example, whether one
should bet on the winning ticket being even or being even or prime. Requiring that relevant
data such as the inclusion order on events be reflected by the probability assignment itself
amounts to what Easwaran calls a “numerical fallacy”. There are reasons to think, however,
that Easwaran’s proposal is still lacking. For example, suppose that a bookmaker offers me
a choice between betting that the winning number will be even, or betting that the winning
number will be even and above 4, or strictly positive. In the second case, my winning set
is U = 2N \ {0} ∪ {1, 3}. Intuitively, giving up on the chance of winning if the ticket turns
out to be 0 for the chance of winning if the ticket is either 1 or 3 seems like a bet I should
take. But under a real-valued finitely additive probability distribution, both 2N and U have
the same probability, and neither is a subset of the other, so we do not have that 2N ≺ U .
Moreover, one could also argue that numerical relationships between events, rather than
mere ordinal ones, should also be available. Suppose that I have a bet on 2N, and that I
am willing to pay a non-0 (but possibly infinitesimal) price ϵ to swap my bet on 2N to a bet
on 2N ∪ {1}. Imagine now that the bookmaker offers to swap my bet on 2N for a bet on
V = 2N ∪ {1, 3} for a price of 3ϵ. Should I take this bet on V or swap for 2N ∪ {1} for a
price of ϵ instead? Intuitively, it seems that I should choose to swap my bet on 2N to a bet
on 2N∪{1}, but not to a bet on V . Although V is more likely to happen than 2N∪{1}, it is
so exactly to the extent that 2N∪{1} is more likely to happen than 2N. Thus what I should
recognize as a fair price to swap my bet on 2N for a bet on V is 2ϵ, and not 3ϵ. Clearly, this
reasoning requires me to be able to determine not only that some events are more likely than
some others, but also to have a sense of when the probability of a event A is closer to the
probability of an event B or to that of an event C. To use the terminology of measurement
theory [244], probability assignments should at least be on an interval scale, not merely
on an ordinal scale. Parker [205] makes a similar point when discussing the possibility of
partially ordered Euclidean sizes. According to Parker, defining an order on the powerset
of the natural number by letting U < V iff U ⊊ V or U, V are finite and |U | < |V | does
not yield an interesting notion of size, and only obscures the conceptual distinction between
being a proper subset and being smaller in cardinality, which one can clearly state in set-
theoretical terms. Unless one can endow such an order with richer properties such as totality
or numerical operations, there is little value in exploring this relation.
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Consequently, it seems that, both in the case of Euclidean notions of sizes of sets and in
the case of regular probability distributions on infinite sample spaces, we are faced with a
dilemma. On the one hand, a genuine alternative to cardinalities or classical probabilities
requires us to construct a rich and robust mathematical structure on which various kinds of
computations can be performed. On the other hand, the guiding principles and intuitions
on which we aim to ground our theory seem too weak to motivate such a richly detailed
structure, and the proposals we have discussed seem to introduce such a structure artificially
and in an arbitrary way. This is exactly where, as I will now argue, possibility structures can
play a major role. By giving up on the explicit assumption that the structure we need must
be Tarskian and by allowing ourselves to consider generic powers, we will be in a position
to reach a natural equilibrium point between the need for a strong theory and the threat of
arbitrariness.

8.5 The Euclidean Infinite via Possibility Structures

In this section, I will use possibility structures to address some of the criticisms raised against
the Euclidean infinite in the previous section. I will treat Galileo’s Paradox and de Finetti’s
Lottery one after the other, but the strategy in both cases will be very similar. Instead
of defining a Tarskian structure (a semiring of numerosities, or a field of values for NAP
functions) using a maximal object (Ramsey ultrafilter, maximal fine ideal), I will instead
construct a possibility structure in which the goal of the poset structure is to approximate
such a maximal object. Once such a possibility structure has been defined, it is easy to
verify that it satisfies, via a genericity argument, the first-order properties that are common
to all corresponding Tarskian structures.

8.5.1 Generic Numerosities

Let us start with the following definition.

Definition 8.5.1. For any A,B ⊆ ω, A is almost contained in B, denoted A ⊆∗ B, if A \B
is finite.

The relation of almost containment is clearly reflexive and transitive, and therefore it
induces an equivalence relation ∼∗ on P(ω) and a partial order on the set of equivalence
classes.

Definition 8.5.2. The poset G is given by the set {A∗ | A ∈ P(ω)} \ {∅∗} of equivalence
classes under the relation ∼∗, ordered by almost containment.

This poset is well known in the literature on infinite combinatorics. Indeed, it is easy to
see that it is essentially P(ω)∗+, i.e., the non-zero elements in the quotient of P(ω) by the
ideal of finite sets. As the set of infinite subsets of ω preordered by the relation ⊆∗, it was
topologized by Ellentuck [80], yielding results in Ramsey theory that have been generalized
further [74, 75].

We can now give the main definition of this section:
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Definition 8.5.3. Let L be the language of ordered semirings. The semiring of generic
numerosities is the possibility structure G = (G,Nω,I ), where:

• I (0) and I (1) are defined as the constant functions 0 and 1 respectively;

• I is defined pointwise for the operations + and ×;

• for any A∗ ∈ G, R ∈ {=,≤} and α, β ∈ Nω, (α, β) ∈ I (A∗, R) iff A∗ ⊆∗ ||αRβ||, where
||αRβ|| = {i ∈ ω | N |= α(i)Rβ(i)}.

An intuitive motivation for the definition of G can be given along the following lines.
Just like in the standard construction of numerosities, we aim to construct a semiring of
numerosities out of the set of all ω-sequences of natural numbers, by identifying together
two sequences whenever they approximate the same numerosity from the viewpoint of an
ideal “natural number at infinity” ι. However, by contrast with the standard construction,
we do not take a Ramsey ultrafilter to be a stand-in for ι; rather, we approximate this
viewpoint via the poset structure. Each infinite set A acts as a partial description of ι, in
the sense that, according to A, ι has all the properties that correspond to sets in which A is
almost included. As is standard in possibility semantics, going down along the ordering ≤
on G therefore means gaining some information, since the smaller the infinite set A gets, the
more precise a description of ι it yields.

The next two lemmas establish that G is the correct structure for our purposes, as it
behaves like a “generic” semiring of numerosities.

Lemma 8.5.4. The generic numerosities G form a possibility structure. Moreover, for any
L-formula φ(x), any tuple a ∈ Nω and any A∗ ∈ G, A∗ ⊩ φ(a) if and only if ||φ(a)|| ⊇∗ A.

Proof. For any infinite set A ⊆ ω, let FA be the filter {B ∈ ω | ∃C ⊆ ω cofinite such that A∩
C ⊆ B}. Note that for any two infinite sets A,B ⊆ ω, B ∈ CA if and only if A \B is finite.
Let H = {FA | A ⊆ ω is infinite}. I first claim that H is a dense family. Indeed, if B /∈ FA
for some infinite set A, then A \ B is infinite. But clearly FA\B ⊇ FA and ω \ B ∈ FA\B.
Moreover, it is easy to see that for any two infinite sets A,B ⊆ ω, there exists a proper filter
F such that F ⊇ FA, FB if and only if A ∩ B is infinite. But, in that case, we have that
FA∩B ∈ H and FA, FB ⊆ FA∩B, which shows that H is dense. Moreover, the map A∗ 7→ FA
is clearly an order-isomorphism between G and H. This induces an isomorphism between G
and the H-generic power of N. The rest of the lemma follows directly from the Structure
and Truth Lemmas.

Corollary 8.5.5. Let n be the map A 7→ σA. The generic numerosities G have the following
properties:

1. G has the same first-order theory as N. Moreover, the map ι : N → Nω is such that
N |= φ(n) iff G |= φ(ι(n)) for any L formula φ and tuple of natural numbers n;

2. The map n satisfies (PW), in the sense that G |= n(A) < n(B) whenever A ⊊ B;
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3. For any finite A ⊆ N, G |= n(A) = ι(|A|);

4. Whenever A ∩B = ∅, n(A ∪B) = n(A) ⊕ n(B) and n(A) ⊗ n(B) = n(A×B);

5. For any α ∈ Nω and any infinite A ⊆ ω, there is B ⊆∗ A and β ∈ Nω non-decreasing
such that B ⊩ α = β.

Proof. Items 1-4 follow directly from Lemma 8.5.4. Indeed, for any sentence φ true in N,
||φ|| = ω, so A ⊆∗ ||φ|| for any A ⊆ ω and thus A∗ ⊩ φ for every A∗ ∈ G. Similarly, if
A ⊊ B, then ||σA < σB|| is cofinite, hence A ⊆∗ ||σA < σB||, and therefore A∗ ⊩ σA < σB.
The rest is proved similarly.

Item 5 requires a slightly longer albeit standard argument. Fix α ∈ Nω and an infinite
A ⊆ ω, and let π : A → ω be an order-preserving bijection. Define a coloring c : [ω]2 →
{0, 1} by letting c({i, j}) = 1 iff α(π−1(i)) ≤ α(π−1(j)) whenever i < j. By the infinite
Ramsey Theorem, there is a homogeneous infinite X ⊆ ω. This mean that we have either
α(π−1(i)) ≤ α(π−1(j)) whenever i < j ∈ X, or α(π−1(i)) > α(π−1(j)) whenever i < j ∈ X.
But the latter is impossible, since otherwise we would have an infinite descending sequence
of natural numbers. Now let B ⊆ A be the inverse image of X under π. By construction, for
any i < j ∈ B, we have that π(i) < π(j) ∈ X, so α(π−1π(i)) ≤ α(π−1π(j)), and therefore
α(i) < α(j) whenever i < j ∈ B. Now let β : ω → N be defined by β(i) = α(ji), where ji
is the least j ∈ B such that i ≤ j. Then it follows that β is non-decreasing, and moreover
B ⊆ ||α = β||, which completes the proof of item 5.

Modulo adapting some notions to the setting of possibility structures, this shows that
G enjoys the same features as the semirings of numerosities constructed by Benci and di
Nasso. Showing that it is indeed a “generic” semiring of numerosities involves some set-
theoretic assumptions that go beyond ZFC. In particular, we will need the assumption that
Ramsey ultrafilters exist. For the latter, note that assuming the existence of a single Ramsey
ultrafilter is enough to derive the existence of many, as is well known.

Lemma 8.5.6. Assume that there exists a Ramsey ultrafilter. Then every infinite subset of
ω belongs to some Ramsey ultrafilter.

Proof. Let U be a Ramsey ultrafilter. It is straightforward to verify that, if φ : ω → ω is a
permutation on ω, then the lift φ∗ : P(ω) → P(ω) preserves the Ramsey property of U,
meaning that φ∗[U] = {φ∗(A) | A ∈ U} is a Ramsey ultrafilter. Now let A ⊆ ω be infinite.
If A ∈ U, we are done. Otherwise, ω \A ∈ U. Let φ be a bijection between A and ω \A, and
notice that φ induces a permutation on ω such that φ∗(A) = ω \ A. But then A ∈ φ∗(U),
hence A belongs to some Ramsey ultrafilter.

Lemma 8.5.7. Assume that there is a Ramsey ultrafilter. For any A∗ ∈ G, any L-formula
φ(x) and any tuple a ∈ Nω, A∗ ⊩ φ(a) iff Nω/U |= φ(aU) for every Ramsey ultrafilter U such
that A ∈ U.
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Proof. Recall first the observation in the proof of Lemma 8.5.4 that G is order-isomorphic
to H for the dense family H of principal proper filters extending the Fréchet filter on ω.
It is easy to see that, if U is a non-principal ultrafilter, it is also H-generic. Since every
Ramsey ultrafilter is non-principal, by the first part of the Genericity Lemma together with
Lemma 8.5.6, this means that G satisfies a strong version of the condition of the second part
of the Genericity Lemma, with the property of being G-generic replaced with the property
of being Ramsey. Therefore we have that for any infinite A ⊆ ω, any φ(x) and any tuple a,
A∗ ⊩ φ(a) iff N/U |= φ(a/U) for every Ramsey ultrafilter U such that A ∈ U.

The result above raises an interesting question regarding the relationship between various
notions of genericity on G. The weakest notion is that of G-genericity, which is relative
to the language of the possibility structure G. Being G-generic is a stronger condition,
which is equivalent to being non-principal for an ultrafilter on ω. However, as remarked
in Lemma 6.2.17, the two notions would coincide if we were to add a predicate in L for
every subset of N. One could therefore wonder whether we could strengthen the notion
of G-genericity in order to make it equivalent to the Ramsey property. Some results in
infinitary combinatorics suggest that this might however be quite a difficult issue. Since G is
equivalent to P(ω)∗+, we can indeed quote some results in the literature on forcing over the
latter. Since this poset is not atomic, it does not have any generic filter, but one can restrict
the notion of genericity to an inner model M of ZFC and obtain some interesting results.
It is well known that if M is an inner model of ZFC containing P(ω), then any M-generic
filter over P(ω)∗+ is Ramsey. Moreover, by a result of Todorčević (see [156, Thm. 2.1] for
a proof), under the assumption that there exists infinitely many Woodin cardinals and a
measurable above them (a strong but standard large cardinal assumption in modern set
theory), an ultrafilter U on ω is L(R)-generic over P(ω)∗+ if and only if U is Ramsey. Thus
the strengthening of G-genericity that we would be looking for should be somewhat in the
vicinity of L(R)-genericity, at least under some strong set-theoretic assumptions.

For now, we conclude with a remark on the significance of Lemma 8.5.7. It immediately
follows from it that truth on the semiring of generic numerosities coincides with truth in
every semiring of standard numerosities. This means in particular that, although G satisfies
the statement that the numerosities of any two sets are comparable, it doesn’t decide which
set has greater numerosity than another whenever two distinct constructions of numerosities
would yield different answers. In that sense, G encapsulates a view reminiscent of Galileo’s:
sometimes, size relationships between infinite sets simply cannot be determined. It is worth
pointing out however, that G does give a definite answer in the case of Galileo’s Paradox
itself. Because G satisfies (PW), we have indeed that G |= n(N2) < n(N), where N2 is the set
of all squares. In other words, generic numerosities offer a solution to Galileo’s Paradox that
both upholds the part-whole principle and preserves some aspects of Galileo’s own solution.
Let us now move on to the case of de Finetti’s Lottery.
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8.5.2 Non-Archimedean Possibility Fields

Recall that the starting point of the NAP solution to the issues raised by fair lotteries on
infinite sets is to consider the partially ordered ring F(PFin(Ω),R) of all functions from
PFin(Ω) to R, with the ring operations and ordering defined pointwise. In order to turn this
partially ordered ring into a field, we have two tasks to perform. First, we must find a way to
identify elements of F(PFin(Ω),R) so that every non-zero element becomes invertible. Sec-
ond, we need to extend the partial ordering of F(PFin(Ω),R) to a total order. Classically,
one typically relies on the existence of maximal objects and thus on Zorn’s Lemma to accom-
plish both tasks. It turns out however that we can bypass the reliance on maximal objects
by appealing to possibility structures. We start by presenting a general way of turning a ring
into a possibility structure satisfying the axioms of an ordered field, and a partially ordered
ring into a possibility structure satisfying the axioms of a totally ordered ring. Although we
will ultimately be more interested in combining the two approaches in the case of function
rings, this detour via a more general perspective also allows us to explore the potential of
possibility structures for obtaining semi-constructive analogues of classical, non-constructive
techniques in elementary abstract algebra. For the rest of this chapter, every ring will be
assumed to be commutative, and given an ideal J on a ring R, I will write aJ for the image
of an element a ∈ R under the canonical quotient map from R to R/J .

Definition 8.5.8. Let R be a ring and I an ideal on R. The possibility quotient ring of R
by I, denoted Q(R, I) is given by the possibility structure (I,R,I ), where:

• I is the poset of all proper ideals extending I, ordered by inclusion;

• I interprets the ring operations as in R;

• for any a, b ∈ R and any J ∈ I, (a, b) ∈ I (J,=) if and only if, for any K ⊇ J , there
is K ′ ⊇ K such that aK′ = bK′ .

Lemma 8.5.9. For any ring R and any ideal I on R, Q(R, I) is a possibility structure
satisfying the axioms of an ordered field.

Proof. First, it is straightforward to verify that Q(R, I) is a possibility structure. Indeed,
the definition of I guarantees that atomic formulas are mapped to regular open subsets of
I, and it is routine to verify that the equality conditions hold.

Similarly, since R is a ring and the ring operations on Q(R, I) are defined as in R, one
easily checks that the ring axioms are forced by any viewpoint J ⊇ I.

Finally, let us verify that for any J ∈ I and any a ∈ R, J ⊩ a = 0 ∨ ∃x(xa = 1). Let
K ⊇ J , and consider the ideal K ′ generated by the set K ∪ {a}. We distinguish two cases.
First, K ′ = R. Since K ′ is generated by K ∪ {a}, this means that there are b, r1, ..., rn ∈ R
and a1, ..., an ∈ K such that 1 = ab + a1r1 + · · · + anrn. Since airi ∈ K for every i ≤ n,
this means that aKbK = 1K . In the second case, K ′ is a proper ideal, so K ′ ∈ I, and by
construction K ′ ⊩ a = 0. Hence for any K ⊇ J there is K ′ ⊇ K such that K ′ ⊩ a = 0 or
K ′ ⊩ ∃x(xa = 1). This shows that J ⊩ a = 0 ∨ ∃x(xa = 1).
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The previous lemma establishes that the possibility quotient ring of a ring R by an ideal
I can play a role analogous to the quotient field of R modulo a maximal ideal extending I.
Let us move on to discussing how to turn a partially ordered ring into a possibility structure
satisfying the axioms of a totally ordered ring.

Definition 8.5.10. Let R be a ring. Given sets A,B ⊆ R, let −A, A + B and AB be the
sets {−a | a ∈ A}, {a + b | a ∈ A, b ∈ B} and {ab | a ∈ A, b ∈ B}. Given an ideal I on R,
a set P ⊆ R is an I-cone if P ∩ −P = I, P + P ⊆ P and PP ⊆ P . A cone is simply a
{0}-cone. Given a cone P on R, an ideal I is P -convex if for any a, b ∈ I and any c ∈ R,
c− a, b− c ∈ P implies c ∈ I.

It is well known that any partial order ≤ on a ring R determines a cone P≤ = {a ∈ R |
0 ≤ a}. Conversely, any cone P on R induces a partial order ≤P defined by letting a ≤P b
iff b− a ∈ P for any a, b ∈ R. Clearly, a partial order on a ring R is total iff P≤∪−P≤ = R.
This motivates the following construction.

Lemma 8.5.11. Let R be a partially ordered ring with associated cone P0, and let O(R,P)
be a possibility structure (P,R,I ) such that:

• P is a set of cones on R, ordered by reverse inclusion, such that for every P ∈ P,
P0 ⊆ P and for any a ∈ R there is P ′ ⊇ P such that a ∈ P ′ ∪ −P ′;

• (a, b) ∈ I (P,=) iff a = b, and (a, b) ∈ I (P,≤) iff for every Q ⊇ P there is Q′ ⊇ Q
such that b− a ∈ Q′.

Then O(R,P) satisfies the axioms of a totally ordered ring.

Proof. Once again it is straightforward to verify that O(R,P) is a possibility structure and
that it satisfies all the axioms of a partially ordered ring. As an example, let us check that
P ⊩ ∀x∀y∀z(x ≤ y → x+ z ≤ y + z). It is enough to show that for any a, b, c ∈ R and any
P ∈ P, P ⊩ a ≤ b implies P ⊩ a + c ≤ b + c. So fix a, b, c and P , and assume P ⊩ a ≤ b.
By definition, this means that b − a ∈ P ′ for any P ′ ⊇ P . Since b − a = (b + c) − (a + c),
we also have that (b + c) − (a + c) ∈ P ′ for any P ′ ⊇ P . But this implies at once that
P ⊩ a + c ≤ b + c. Finally, let us check that O(R,P) |= ∀x∀y(x ≤ y ∨ y ≤ x). Since
O(R,P) satisfies the ring axioms, it is enough to show that O(R,P) |= ∀x(x ≤ 0 ∨ 0 ≤ x).
So fix P ∈ P, Q ⊇ P and a ∈ R. By assumption, there is Q′ ⊇ Q such that a ∈ Q ∪ −Q.
Clearly, this means that for any Q∗ ⊇ Q′, a ∈ Q∗ or −a ∈ Q∗, from which it follows that
either Q′ ⊩ 0 ≤ a or Q′ ⊩ a ≤ 0. Hence for any Q ⊇ P there is Q′ ⊇ Q such that Q′ ⊩ a ≤ 0
or Q′ ⊩ 0 ≤ a, which shows that P ⊩ a ≤ 0 ∨ 0 ≤ a. This completes the proof.

As a corollary, we obtain the following characterization of partially ordered rings that
can be turned into a possibility structure satisfying the axioms of a totally ordered ring.

Corollary 8.5.12. Let R be a partially ordered ring with positive cone P0. Then there is a
possibility structure S with domain R, satisfying the axioms of a totally ordered ring, and
such that S |= 0 ≤ a for any a ∈ P0 if and only if P0 satisfies the following condition:
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(∗) For any a1, ..., an ∈ R, there are ϵ1, ..., ϵn ∈ {1,−1} such that the semiring generated
by the set P0 ∪ {ϵiai | i ≤ n} is a cone.

Proof. For the left-to-right direction, suppose we have such a possibility structure S, and
let p be a viewpoint of S. Since S satisfies that R is totally ordered, we have that p ⊩ 0 ≤
ai ∨ ai ≤ 0 for every i ≤ n. This implies that, by taking successive refinements of p, we can
find a viewpoint q ≤ p such that q ⊩ 0 ≤ ai or q ⊩ ai ≤ 0 for every i ≤ n. Let ϵi = 1 if
q ⊩ 0 ≤ ai and ϵi = −1 otherwise, and let Pq = {a ∈ R | q ⊩ 0 ≤ a}. Then since the axioms
of a partially ordering ring are valid on S and S |= 0 ≤ a for every a ∈ P0, one easily verifies
that Pq is a cone containing the semiring generated by the set P0 ∪ {ϵiai | i ≤ n}, which
implies that the latter is also a cone. Conversely, let P be the set of all cones extending
P0 and satisfying condition (∗), ordered by reverse inclusion. It is a standard result about
partially ordered rings [97, Chapt. 7] that this set has the property that for any P ∈ P and
any a ∈ R, there is P ′ ⊇ P ∈ P such that a ∈ P ′ ∪ −P ′. But then, by Lemma 8.5.11, the
corresponding possibility structure O(R,P) satisfies the axioms of a totally ordered ring.

This result can be seen as a semi-constructive analogue of a standard result about ordered
rings, according to which a partial order on a ring R with cone P can be extended to a to-
tal order on R if and only if P has property (*) above (see for example [97, Chap. 7, Thm. 1]).

Let us now move on to the issue of turning a partially ordered ring into a possibility
structure satisfying the axioms of an ordered field. In general, one would need to combine
the techniques of Lemmas 8.5.9 and 8.5.11 and consider a poset composed of pairs (P, J)
such that P is a J-cone and J is a P -convex ideal and satisfying some properties similar to
the ones imposed on the poset P in Lemma 8.5.9. In the case of rings of functions from a
set into a totally ordered field, however, the situation turns out to be simpler, as every ideal
induces a canonical cone. We start from the following definition and observation.

Definition 8.5.13. Let I be a set, R a field and F(I,R) the ring of all functions from I to
R. For any α ∈ F(I,R), the 0-set of α is the set α0 = {i ∈ I | α(i) = 0}.

Lemma 8.5.14. Let I be a set, R a field and F(I,R) the ring of all functions from I to
R. For any filter F on I, let JF = {a ∈ F(I,R) | a0 ∈ F} and for any ideal J on F(I,R),
let FJ = {A ⊆ I | ∃a ∈ J : a0 ⊆ A}. The maps F 7→ FJ and J 7→ JF establish an order
isomorphism between the proper filters on I and the proper ideals on F(I,R), with both sets
ordered by reverse inclusion.

Proof. Let us first verify that JF is an ideal for every filter F and that FJ is a filter for every
ideal J . Given a, b ∈ F(I,R), note that (a · b)0 ⊇ a0 and that (a+ b)0 ⊇ a0 ∩ b0. From this
it follows that φ(F ) is an ideal whenever F is a filter. To see that JF is proper whenever F
is proper, it suffices to notice that 10 = ∅.

Conversely, suppose that J is an ideal. Clearly, FJ is upward closed, so we only need
to check that A ∈ B ∈ FJ whenever A,B ∈ FJ . Suppose there are a, b ∈ J such that



CHAPTER 8. POSSIBILITY SEMANTICS AND THE EUCLIDEAN INFINITE 297

a0 ⊆ A and b0 ⊆ B. Let k : I → R be defined as k(i) = −1 if a(i) = −b(i) and k(i) = 1
otherwise. Since J is an ideal, we have that ka + b ∈ J . But for any i ∈ I, (ka + b)(i) = 0
implies that ka(i) = −b(i), which by choice of k implies that a(i) = −a(i) = b(i) = 0. Hence
(ka+ b)0 ⊆ a0 ∩ b0, which shows that a0 ∩ b0 ∈ FJ . Finally, to show that FJ is proper when-
ever F is proper, suppose ∅ ∈ FJ . Then there is a ∈ J such that a0 = ∅. Define b : I → R
by letting b(i) = 1

a(i)
for every i ∈ I, and note that this is well-defined since R is a field and

a(i) ̸= 0 for every i ∈ I. But then ab ∈ I and clearly ab = 1, which shows that J is not proper.

Thus F 7→ JF and J 7→ FJ are well-defined maps between the poset of all filters on I and
the poset of all ideals of F(I,R), both ordered by reverse inclusion. Clearly, both maps are
order-preserving, so we only need to verify that they are inverses of one another. Fix a filter
F . Clearly, F ⊆ FJF . To show the converse, suppose A ∈ FJF . Then there is a ∈ JF such
that a0 ⊆ A. But a ∈ JF implies that a0 ∈ F , and hence A ∈ F since F is upward-closed.
Similarly, fix an ideal J . Again, it is clear that J ⊆ JFJ

, so suppose a ∈ JFJ
. This means

that there is b ∈ J such that b0 ⊆ a0. Define k : I → R such that k(i) = a(i)
b(i)

whenever

b(i) ̸= 0, and k(i) = a(i) otherwise. Then it follows that a(i) = b(i)k(i) for every i ∈ I, and
thus a = bk. Since J is an ideal, this implies that a ∈ J , which completes the proof.

We may now see how Lemma 8.5.14 yields a natural choice for the canonical cone asso-
ciated to an ideal on a ring of functions from a set into an ordered field.

Lemma 8.5.15. Let I be a set and R be an ordered field. For any ideal J on F(I,R), let
PJ = {a ∈ F(I,R) | ||0 ≤ a||I ∈ FJ}. Then PJ is a J-cone, and J is PJ-convex.

Proof. Fix a, b ∈ F(I,R). Note that ||0 ≤ a||I ∩||0 ≤ b||I ⊆ ||0 ≤ a+b||I ∩||0 ≤ ab||I , which
shows that PJ + PJ ⊆ PJ and PJPJ ⊆ PJ for any ideal J . Moreover, since a ∈ J implies
||a = 0||I ∈ FJ and ||a = 0||J = || − a = 0||J , we have that J ⊆ PJ ∩−PJ . For the converse,
note that ||0 ≤ a||I ∩ ||0 ≤ −a||I ⊆ ||a = 0||I , which means that ||a = 0||I ∈ FJ and thus
that a ∈ JFJ

= J . Hence PJ is a J-cone. Finally, to see that J is PJ -convex, note that
||0 ≤ b− a||I = ||a ≤ b||I , and that ||0 = a||I ∩ ||a ≤ c||I ∩ ||c ≤ b||I ∩ ||b− 0||I ⊆ ||c = 0||I .
Hence a − c, b − c ∈ PJ and a, b ∈ J together imply that c ∈ J , which shows that J is
PJ -convex.

We have now gathered all the ingredient for the definition of the semi-constructive ana-
logue of the ranges of NAP functions.

Definition 8.5.16. Let I be a set, R an ordered field, F(I,R) the partially ordered ring of
all functions, and J0 an ideal on F(I,R). The generic ordered field of F(I,R) induced by
J0 is the possibility structure H(J,R) = (J,RI ,I ), where:

• J is the set of all ideals on F(I,R) extending J0, ordered by reverse inclusion;

• function symbols are interpreted pointwise, and for any a, b ∈ RI and J ∈ J:

• (a, b) ∈ I (J,=) iff a− b ∈ J , and
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• (a, b) ∈ I (J,≤) iff b− a ∈ PJ .

Theorem 8.5.17. For any set I, ordered field R and ideal J0 on F(I,R), the corresponding
generic ordered field H(J,R) satisfies the axioms of the ordered field.

Proof. Let us start with the following two claims.

• Claim 1: For any a, b ∈ RI and J ∈ J, J ⊩ a = b iff for all K ⊇ J there is J ′ ⊇ K
such that K ′ ⊩ a = b iff aJ = bJ .

• Claim 2: For any a, b ∈ RI and J ∈ J, J ⊩ a ≤ b iff for all K ⊇ J there is J ′ ⊇ K
such that K ′ ⊩ a ≤ b iff aJ ≤PJ

bJ .

For the proof of the first claim, it is enough to show that if a− b /∈ J , then there is K ⊇ J
such that for all K ′ ⊇ K, a − b /∈ K ′. Suppose a − b /∈ J . Then ||0 = a − b||I /∈ FJ , so let
G be the filter generated by the set FJ ∪ {||0 ̸= a − b||I}. Clearly, G is a proper filter, so
JG ∈ J. Moreover, for any K ′ ⊇ K, FK′ is a proper filter extending G, so ||0 = a− b|| /∈ FK′

and hence a− b /∈ K ′. The proof of the second claim is entirely similar. Note that this also
establishes that H is a possibility structure. Indeed, the refinability condition immediately
follows from the two claims, and the two equality conditions are also straightforward. Simi-
larly, it follows from an argument similar to the one given here, using the fact that PJ is a
J-cone and that J is PJ -convex, that the axioms of a partially ordered ring are satisfied at
every J ∈ J.

Moreover, the {≤}-free reduct of H(J,R) is simply the possibility quotient ring Q(R, J0),
which by Lemma 8.5.9 implies that it satisfies the axioms of a field. Finally, an argument
similar to the one in the proof of Lemma 8.5.11 shows that H(J,R) also satisfies that ≤ is
a total order. First, let us establish that for any J ∈ J and any a ∈ RI , there is K ⊇ J
such that a ∈ PK ∪ −PK . To show this, suppose a /∈ PJ . Then ||0 ≤ a||I /∈ FJ , so the
filter G generated by FJ ∪ {||0 ≰ a||I} is proper. Since R is totally ordered, we have that
||0 ≰ a||I ⊆ ||a ≤ 0||I ⊆ ||0 ≤ −a||I , so a ∈ −PJG . This shows that for any J ∈ J and any
a ∈ RI , there is K ⊇ J such that a ∈ PK∪−PK . But then this implies that J ⊩ 0 ≤ a∨a ≤ 0
for any J ∈ J and a ∈ RI , which concludes the proof that H(J,R) satisfies the axioms of
an ordered field.

As a consequence, we many now define a semi-constructive alternative to NAP functions.

Definition 8.5.18. Let Ω be a set, J0 be the ideal

{α ∈ F(PFin(Ω),R) | ∃A ∈ PFin(Ω)∀B ⊇ A : α(B) = 0}

and J the poset of all ideals on F(PFin(Ω),R) extending J0. The generic NAP function
modelling a fair lottery on Ω is the map π : P(Ω) → H(J,R) defined by π(U) = χU for
every U ∈ P(Ω).
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Let us verify that generic NAP-functions have all the desirable properties of NAP func-
tions.

Theorem 8.5.19. For any set Ω, the generic NAP function modelling a fair lottery on Ω
has the following properties:

1. H(J,R) |= 0 ≤ π(U) ≤ 1 for any U ∈ P(Ω), and H(J,R) |= π(Ω) = 1.

2. π is finitely additive, i.e., H(J,R) |= π(U ∪ V ) = π(U) + π(V ) whenever U ∩ V = ∅.

3. H(J,R) |= π({x}) = π({y}) for any x, y ∈ Ω.

4. H(J,R) |= π(U) ̸= 0 iff U ̸= ∅ for any U ⊆ Ω.

Moreover, under ACP(|Ω|), π also has the following property:

5. For any first-order formula φ(x1, ..., xn) and any n-tuple of sets U1, ..., Un ⊆ Ω,
H(J,R) |= φ(π(U1), ..., π(Un)) iff φ(PJ(U1), ..., PJ(Un)) is true for every maximal fine
ideal J on F(PFin(Ω),R) and any fair NAP function PJ on Ω induced by J .

Proof. For items 1, 2 and 3, it is enough to show that each statement is forced at J0. For
item 1, note that for any U ⊆ Ω and A ∈ PFin(Ω), 0 ≤ χU(A) ≤ 1, so ||0 ≤ π(U)||PFin(Ω) =
||π(U) ≤ 1||PFin(Ω) = Ω, hence J0 ⊩ 0 ≤ π(U) and J0 ⊩ π(U) ≤ 1. Similarly, since
χΩ(A) = 1 for every A ∈ PFin(Ω), we have that π(A) − 1 = 0 ∈ J0, hence J0 ⊩ π(Ω) = 1.
Similarly, note that, if U ∩ V = ∅, then χU∪V (A) = χU(A) + χV (A) for every A ∈ PFin(Ω),
so π(U∪V )−(π(U)+π(V ) = 0 ∈ J0), and hence J0 ⊩ π(U∪V ) = π(U)+π(V ), which proves
item 2. For item 3, let x, y ∈ Ω. Note that for any A ⊇ {x, y}, χ{x}(A) = χ{y}(A) = 1

|A| , from

which it follows that (χ{x}−χ{y})(A) = 0 for anyA ⊇ {x, y}. Hence π({x})−π({y}) = 0 ∈ J0,
which implies that J0 ⊩ π({x}) = π({y}).

For item 4, it is clear that π(∅) = 0 and hence that H(J,R) |= π(∅) = 0. Moreover, let
U be a non-empty subset of Ω. For any A ∈ PFin(Ω) such that A ∩ U ̸= ∅, χU(A) > 0.
This means that PFin(Ω) \ (π(U))0 ∈ J0, and thus J ̸⊩ π(U) = 0 for any J ∈ J. Hence
H(J,R) |= π(U) ̸= 0.

Finally, assume ACP(|Ω|). By Lemma 8.5.14, J is order-isomorphic to the poset E =
(E ,⊇) of all filters extending FJ0 . Notice that since E is a dense family, we may consider
(E,RPFin(Ω),I ), the E-generic power of R. Moreover, the E-generic ultrafilters coincide with
the maximal points in E, i.e., with the ultrafilters on PFin(Ω) extending FJ0 . Since AC|P(Ω)|
holds, this means that every F ∈ E belongs to some E-generic ultrafilter and thus that
(E,RPFin(Ω),I ) satisfies the conditions of the Genericity Lemma. Finally, the map F 7→ JF
is a dense map, and J ∈ JR(a)KJ iff FJ ∈ JR(a)KE for any J ∈ J, atomic formula φ(x) and
tuple a ∈ RPFin(Ω). By the Density and Genericity Lemmas, it follows that J ⊩ φ(a) for any
first-order formula φ(x) iff F(PFin(Ω),R)/U |= φ(aU) for every ultrafilter extending FJ0 .
Since every such ultrafilter is of the form FJ for a maximal fine ideal J, F(PFin(Ω),R)/J
is isomorphic to RPFin(Ω)/FJ for every maximal fine ideal J and π(U)FJ

= PJ(U) for any
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U ⊆ Ω, it follows at once that H(J,R) |= φ(π(U1), ..., π(Un)) iff φ(PJ(U1), ..., PJ(Un)) is
true for every maximal fine ideal J on F(PFin(Ω),R) and any fair NAP function PJ on Ω
induced by J . This completes the proof.

The last item of Theorem 8.5.19 explains the sense in which generic NAP-functions
are indeed generic: given any sample space Ω, the standard NAP functions for Ω can all
be obtained by forcing over the poset J of all ideals extending the smallest fine ideal on
F(PFin(Ω),R). Moreover, generic NAP-functions possess exactly those first-order properties
that are shared by every NAP-function. It is also worth mentioning that one could have
proved directly that generic ordered fields of function rings F(I,R) satisfy the axioms of
ordered fields by using the fact they are isomorphic as possibility structures to E-generic
powers of R for E the poset of all proper filters on P(PFin(Ω)) extending the filter F0 =
{U ⊆ PFin(Ω) | ∃A ∈ PFin(Ω)∀B ⊇ A : B ∈ U}, before appealing to the Truth and
Genericity Lemma. But this argument requires some amount of the Axiom of Choice, while
the proof of Theorem 8.5.17 can be carried out entirely in ZF .

8.6 Upshot

In this final section, I return to the objections against numerosities and NAP functions dis-
cussed in Section 8.4. I will argue that the generic possibility structures introduced in the
previous section allow one to solve the issues pointed out in Section 8.4 in a convincing
fashion. I will first discuss the invariance problem, before addressing the strength vs. ar-
bitrariness dilemma. Finally, I will also argue that the semiconstructive features of generic
structures allow them to escape the scope of the complexity argument raised by Easwaran
in [78].

8.6.1 The Invariance Problem

Recall that, in Section 8.4, I introduced two criteria which, according to Parker [205], any
theory of size should respect, namely the Absolute Invariance and Relative Invariance Cri-
teria. I also argued at length against the Absolute Invariance Criterion, but in favor of
the Relative Invariance Criterion. Both numerosities and NAP functions fail to satisfy the
Relative Invariance Criterion. As we shall now see, the situation is different for generic
numerosities and generic NAP functions. We start with the following lemma.

Lemma 8.6.1. Let Ω be an infinite set. For any U, V ⊆ Ω, H(J,R) |= π(U) ≤ π(V ) iff
there is a finite set C ⊆ V \ U such that |U \ V | ≤ |C|.

Proof. Suppose that U, V ⊆ Ω are such that H(J,R) |= π(U) ≤ π(V ). Since the smallest
fine ideal J0 is the root of the poset J, this is equivalent to J0 ⊩ π(U) ≤ π(V ), which
by definition is equivalent to ||π(U) ≤ π(V )||PFin(Ω) ∈ FJ0 . Hence we have to show that
∃A ∈ PFin(Ω)∀B ⊇ A : B ∈ ||π(U) ≤ π(V )||PFin(Ω) iff there is a finite set C ⊆ V \ U such
that |U \ V | ≤ |C|. For the left-to-right direction, suppose that C is a finite set such that



CHAPTER 8. POSSIBILITY SEMANTICS AND THE EUCLIDEAN INFINITE 301

C ⊆ V \U and |U\V | ≤ |C|. Now for any B ⊇ C finite, we have that U\V ∩(B∩(U∩V )) = ∅,
and B ∩U ⊆ U \ V ∪B ∩ (U ∩ V ). Moreover, we have that C ∩ (B ∩ (U ∩ V )) = ∅ and that
C ∪ (B ∩ (U ∩ V )) ⊆ B ∩ V . Hence we have the following inequalities:

|B ∩ U | ≤ |U \ V | + |B ∩ (U ∩ V )|
≤ |C| + |B ∩ (U ∩ V )|
≤ |B ∩ V |.

But then it follows that χU(B) ≤ χV (B) for all B ⊇ C finite and thus that ||π(U) ≤
π(V )||PFin(Ω) ∈ FJ0 .

For the converse direction, assume that there is A ∈ PFin(Ω) such that for all B ⊇ A
finite, χU(B) ≤ χV (B). Note that this means that |B∩U | ≤ |B∩V | for all B ⊇ A finite. Let
C = A∩ V \U . I claim that |U \ V | ≤ |C|. Assume towards a contradiction that this is not
the case, and let D ⊆ U \ V be a finite set such that |D| > |C|. Let B = D ∪ A. Note that
D∩ (A∩ (U ∩V )) = ∅, and that D∪ (A∩ (U ∩V )) ⊆ B∩U . Similarly, C∩ (A∩ (U ∩V )) = ∅,
and B ∩ V ⊆ C ∪ (A ∩ (U ∩ V ). Hence we have the following inequalities:

|B ∩ V | ≤ |C| + |A ∩ (U ∩ V )|
< |D| + |A ∩ (U ∩ V )|
≤ |B ∩ U |,

which implies that χU(B) > χV (B), contradicting our assumption on A. Hence C is the
required set.

Lemma 8.6.1 gives us a complete characterization of which order relationships hold be-
tween probabilities of events according to the generic NAP function. An immediate conse-
quence of this is the following.

Corollary 8.6.2. Let Ω be an infinite set and U, V ⊆ Ω. For any permutation α : Ω → Ω,
H(J,R) |= π(U) ≤ π(V ) iff H(J,R) |= π(α∗(U)) ≤ π(α∗(V )).

Proof. Since the inverse of a permutation is a permutation, it is enough to show that
H(J,R) |= π(U) ≤ π(V ) implies that H(J,R) |= π(α∗(U)) ≤ π(α∗(V )). So suppose
H(J,R) |= π(U) ≤ π(V ). By Lemma 8.6.1, there is a finite set C ⊆ V \ U such that
|U \ V | ≤ |C|. But then α∗(C) ⊆ α∗(V ) \ α∗(U), and since α∗(U \ V ) = α∗(U) \ α∗(V ), we
also have that |α∗(U) \ α∗(V )| = |α∗(U \ V )| ≤ |α∗(C)|. But then by Lemma 8.6.1 again it
follows that H(J,R) |= π(α∗(U)) ≤ π(α∗(V )).

As a consequence, the generic NAP function for Ω satisfies the Relative Invariance Cri-
terion. This is a major difference with standard NAP functions, and, if Parker and I are
correct that the Relative Invariance Criterion should be satisfied by any theory of size or
probability, it is a significant advantage of the generic NAP function over standard NAP
functions. Of course, the key difference here is the fact that order relationships in the range
of the generic NAP function are entirely determined by order-theoretic facts about P(Ω),
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and are therefore preserved by permutations of Ω. By eliminating the need for a maximal
ultrafilter in order to define our NAP function π, we also eliminated some of the properties
of π that are not invariant under permutations of the sample space. We should note however
that the Absolute Invariance Criterion is not satisfied by π, since π satisfies Regularity.
But, as I argued in Section 8.4, this is too strong a criterion to impose anyway.

Generic NAP functions therefore pass the invariance test. Perhaps surprisingly, the same
cannot be said of generic numerosities in the way I have defined them so far. A simple
example will make that point clear. Let 2N be the set of all natural numbers that are powers
of 2 and recall that N2 is the set of all squares. It is easy to verify that for any n + 1 ∈ N,
σ2N(n+ 1) = ⌊log2(n)⌋ and σN2(n+ 1) = ⌊

√
n⌋, and thus that ||n(2N) < n(N2)||ω is a cofinite

set. But this implies that G |= n(2N) < n(N2). Since one can easily define a permutation α
of N such that α∗(2

N) = N2 and α∗(N2) = 2N, this shows that the generic numerosities do
not satisfy the Relative Invariance Criterion. There is, however, an easy way to fix the issue,
which I think reveals that the standard numerosities actually aim at capturing two distinct
intuitions about size relationships between infinite collections. I will now elaborate on this
point.

8.6.2 Part-Whole Principle and Density Intuition

Consider the following adjustment to the possibility structure of numerosities G, inspired
from the construction of the generic NAP function. Instead of taking the generic power of N
determined by the set G of all infinite sets of natural numbers or, equivalently, the set of all
principal filters on ω, we could take the generic power of N determined by the set of all filters
on PFin(N) extending the filter G0 = {X ⊆ PFin(N) | ∃A ∈ PFin(N)∀B ⊇ A : B ∈ X},
and define the numerosity of a set U as the map τU : PFin(N) → N given by τU(A) = |A∩U |
for any finite set A. In other words, instead of approximating the numerosity of an infinite set
U by considering the sequence of approximations obtained by truncating U by increasingly
large initial segments of the natural numbers, we would approximate the numerosity of U
by considering its size when intersected with any finite set. It is easy to see the parallel
with the construction of NAP functions, in which the probability of a set U is determined
by conditionalizing on every finite subset of the sample space Ω.4 Let G(PFin(N)) be the
possibility structure thus obtained. For reasons that I will explain below, I will call this
structure the semiring of Euclidean numerosities. We have the following theorem.

Theorem 8.6.3. Let m : P(N) → NPFin(N) be the map U 7→ τU . The Euclidean numerosities
have the following properties:

1. G has the same first-order theory as N. Moreover, the map ι : N → NPFin(N) is such
that N |= φ(n) iff G |= φ(ι(n)) for any L formula φ and tuple of natural numbers n.

4In fact, this can be seen as the converse of Benci, Horsten and Wenmackers’s choice to model a fair
lottery on N using as Λ the set of all initial segments of N instead of PFin(N). In the case of de Finetti’s
Lottery, they choose to align NAP theory on Benci and di Nasso’s original construction of numerosities,
while I am describing a structure of numerosities that is aligned on the general setup of NAP functions.
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2. The map m satisfies (PW), in the sense that G |= m(U) < m(V ) whenever U ⊊ V ;

3. For any finite A ⊆ N, G |= m(A) = ι(|A|);

4. Whenever U ∩ V = ∅, m(U ∪ V ) = m(U) ⊕m(V ) and m(U) ⊗m(V ) = m(U × V );

5. For any permutation α : N → N and any U, V ⊆ N, G(PFin(N)) |= m(U) ≤ m(V ) iff
G(PFin(N)) |= m(α∗(U)) ≤ m(α∗(V )).

Items 1-4 follow from the fact that G(PFin(N)) is a generic power, and thus we can
apply the Truth Lemma and the Genericity Lemma.5 Item 5, by contrast, is established by
observing that G(PFin(N)) |= m(U) ≤ m(V ) iff there exists a finite C ⊆ V \ U such that
|C| > |U \V |, which is proved exactly like Lemma 8.6.1. Importantly, this means that, going
back the example above, we do not have that G(PFin(N)) |= m(2N) < m(N2). It is easy to
see why this is so. If it were the case that G(PFin(N)) |= m(2N) < m(N2), this would be
because there is a finite set A such that, whenever B ⊇ A, |B ∩ 2N| < |B ∩N2|. But since A
is finite and 2N \N2 is infinite, we could keep adding elements of 2N \N2 to A until we have
more elements of 2N than elements of N2. But this is only possible because we are including
arbitrary finite subsets of ω in our approximation of the numerosity of sets. By contrast,
when we define the numerosity of a set U via its approximating sequence σU : N → N, we
are only taking into consideration initial segments of the natural numbers.

It seems to me that these two ways of constructing numerosities indicate that there are
actually two non-Cantorian conceptions of the size of infinite sets of natural numbers here
that need to be disentangled. The first one is based entirely on the part-whole principle and,
as such, is relatively invariant under permutations. I would argue that this is the conception
that properly deserves to be called Euclidean and that it is faithfully modelled by the semiring
of Euclidean numerosities. According to the Euclidean conception, size assignments should
respect the part-whole principle. This is enough to determine size relationships between any
two finite sets and between any two sets U and V for which the comparison between U \ V
and V \ U can be reduced to a comparison between finite sets, or between one finite set
and one infinite set. This is precisely captured in the Euclidean numerosities by the fact
that G(PFin(N)) |= m(U) ≤ m(V ) iff there is a finite C ⊆ V \ U such that |U \ V | ≤ |C|.
As shown by Theorem 8.6.3, the resulting structure has the rich algebraic properties of a
semiring and is linearly ordered, provided of course that it is understood as a possibility
structure rather than a Tarskian one.

The second conception of the size of infinite sets of natural numbers, by contrast, is based
on what I will call the Density Intuition. According to the Density Intuition, the size of an

5It is worth mentioning that, compared to Corollary 8.5.5, there is no such property like item 5 holding
for the Euclidean numerosities. There are two reasons for this. The first one is that, since we are not working
with functions from N to N, we would need to have a different notion of non-decreasing function to have an
analogue of item 5. The second, more important reason, is that we are working here with all fine filters on
PFin(N), rather than with infinite subsets ordered by almost inclusion. There is no principled reason to
do this other than simplicity, so one could work with the latter instead of the former, and try to prove an
analogue of item 5 for the corresponding possibility structure.
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infinite set U should be a reflection of “how often” elements of U appear in the sequence of
all natural numbers. A classical way of capturing this intuition is to use the standard notion
of natural or asymptotic density, where the asymptotic density of a set U ⊆ N is defined
as A(U) = limn→∞

|U∩{0,...,n−1}|
n

. As is well known, not every set of natural numbers has an
asymptotic density, and asymptotic density does not preserve the part-whole principle, since
every finite set and even some infinite sets such as the set of prime numbers have density
0. But it also has some intuitive properties, such as the density of nN being 1

n
for every

natural number n. Importantly, it is also not permutation invariant: many permutations of
the order of the natural numbers will induce a variation in the asymptotic density of many
sets. This is not surprising, and in fact, one could even argue that this is a welcome feature
from the viewpoint of the Density Intuition. Indeed, if the size of a set of natural numbers
is determined by the distribution of its elements in the sequence of natural numbers, then
a major disturbance of this sequence, such as the one induced by permutations that swap
infinitely many natural numbers, will entail a change in the density of many infinite sets.

Standard numerosity functions, like those constructed by Benci and di Nasso, seem to me
to adhere to both the Density Intuition and the Part-Whole Principle. From this perspective,
it is natural to consider that the numerosity of a set U should be approximated not by
considering the intersection of U with every finite set, as this would only guarantee that
numerosities respect (PW), but by considering instead the intersection of U with every
initial segment of N, since those are the finite subsets of N that also contain information
about the distribution of the elements of U in the sequence of natural numbers. That the
proponents of numerosities often suggest to add conditions on Ramsey ultrafilters so that
n(N) becomes a multiple of n(nN) for any natural number n is only more evidence that they
are trying to preserve the Density Intuition on top of (PW). Because the semiring G of
generic numerosities is a generic power of the standard numerosities, it has the properties
that every Tarskian semiring of numerosities has. As such, it is also meant to preserve both
(PW) and the Density Intuition, and this explains why it does not satisfy the Relative
Invariance Criterion. It is worth mentioning that the argument that I gave for the Relative
Invariance Criterion in Section 8.4 can be rebuked on the basis of the Density Intuition. For
a proponent of the Density Intuition, there is more to the size relationships between sets
of natural numbers than what can be inferred from the inclusion order on P(N). Indeed,
the distribution of the elements of a set U along the sequence of natural numbers is not a
feature of U that is captured by the relation of subset inclusion. Accordingly, the fact that
a permutation α on N can be lifted to an order-isomorphism on P(N) is not enough to
conclude that α∗ should preserve size relationships between sets of natural numbers since, as
mentioned before, α itself could disturb quite considerably the sequence of natural numbers.
This suggests that numerosities that obey the Density Intuition should satisfy a weaker form
of the Relative Invariance Criterion, according to which relative size relationships between
sets should be invariant under permutations that also preserve the order on the underlying
set. Because the identity is the only order-preserving permutation on the natural numbers,
this weaker criterion is trivially satisfied both by standard numerosity functions and by
generic numerosities. But let me quickly show how the generic approach can make a difference
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over standard numerosities in a slightly more general setting.

Suppose that we are interested in assigning sizes to sets of integers, rather than sets
of natural numbers. If we want to respect both the Density Intuition and the Part-Whole
Principle, it seems natural to consider that we should approximate the numerosity of a set
U ⊆ Z by intersecting U with finite intervals of Z and considering the cardinality of the set
U ∩ (n,m) for any n < m ∈ Z. This means that we should be working with functions from
Z × Z into N and mapping every U to the function υU given by υU(n,m) = |U ∩ (n,m)|.
Suppose now that, following the standard approach to numerosities, we take an ultrapower
of N modulo a non-principal ultrafilter on P(Z × Z) and obtain a numerosity function n.
The resulting structure, as observed by Parker [205, p. 18], will not satisfy even the weaker
version of the Relative Invariance Criterion. Indeed, one can show that regardless or what
size relationships n assigns to 2N and N \ 2N, the order-preserving permutation n 7→ n − 1
will not preserve those size relationships. By contrast, suppose we take E to be the generic
power of N determined by the poset of all filters on P(Z × Z) extending the filter of all
cofinite subsets. By the Truth Lemma, we have that for any U, V ⊆ Z, E |= n(U) ≤ n(V )
iff the set of pairs of integers (n,m) such that |U ∩ (n,m)| ≤ |V ∩ (n,m)| is cofinite. Now
let α : Z → Z be any order-preserving permutation. Since α is order-preserving, we have for
any X ⊆ Z and any n,m ∈ Z that |X ∩ (n,m)| = |α∗(X) ∩ (α(n), α(m))|. It follows that
the set of integers n,m such that |α∗(U) ∩ (n,m)| ≤ |α∗(V ) ∩ (n,m)| is also cofinite and
hence that E |= n(α∗(U)) ≤ n(α∗(V )). Thus, unlike the standard numerosities approach via
ultraproducts, the generic approach satisfies the version of the Relative Invariance Criterion
which, as I have argued, is appropriate for a theory of size that wants to preserve both the
Part-Whole Principle and the Density Intuition.

Finally, let me conclude on this topic by returning to Parker’s arguments against Eu-
clidean theories of size. Parker [205] shows that any Euclidean theory of size satisfying two
conditions that he calls Totality and Discreteness must violate the Relative Invariance Crite-
rion. However, these conditions are satisfied both by the Euclidean numerosities G(PFin(N))
and the generic power E defined above, even though both also satisfy a version of the Relative
Invariance Criterion. This is not in contradiction with Parker’s result, but there is a subtelty
worth highlithing here. Parker’s result applies to Tarskian structures, while we are working
with possibility structures. The possibility structures we define will satisfy the statement
that the numerosities of any two sets are comparable. But, in general, they will not settle
which set is bigger than the other, which is what Parker needs for his proof to go through.
This shows that the resources afforded to us by considering possibility structures instead of
Tarskian structures allow us to escape some established impossibility results such as Parker’s.
Of course there is a price to pay in abandoning the simplicity of Tarskian semantics, but
the incompatibility of the Relative Invariance Criterion with a Tarskian understanding of
disjunctions in the statement of the linearity property is arguably a convincing reason to do
so.
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8.6.3 Strength and Canonicity

The second main objection to numerosity and NAP functions that was discussed in Sec-
tion 8.4 was that these functions had several arbitrary features, due in part to the need
to rely on non-constructive maximal objects to define them. Here, the fact that all the
possibility structures that I have presented so far can be defined constructively seems like
a good indication that generic numerosity and NAP functions do not face the same issue.
In both cases, because we approximate a maximal object such as a Ramsey ultrafilter or a
maximal fine ideal by the poset of viewpoints, we avoid the arbitrariness coming from the
choice of a specific maximal object. This is reflected by the fact that satisfaction on the
generic structure coincides with satisfaction in every corresponding Tarskian structure, a di-
rect consequence of the Genericity Lemma. In other words, the size relationships determined
by the generic numerosity function are precisely those size relationships that hold according
to every standard numerosity function, and the same holds for generic NAP functions and
standard NAP functions regarding assessments about the relative likelihood of events in an
infinite lottery. In the latter case, I would also argue that generic NAP functions offer a more
faithful representation of genuinely fair lotteries on infinite sets than their Tarskian counter-
parts. Indeed, as I argued in Section 8.4 already, the choice of a particular maximal fine ideal
on F(PFin(Ω),R), or, equivalently, of an ultrafilter on PFin(Ω), arguably entails choosing
some subsets of P(Ω) over some others. As we have seen, the proponents of NAP functions
agree that the choice of such an ultrafilter introduces an element of arbitrariness but argue
that the ultrafilter should be thought of as an extra parameter and that, accordingly, the
arbitrariness induced by the choice of an ultrafilter is no worse than the arbitrariness of the
choice of a σ-algebra of events in classical probability theory. But the approach to infinite
fair lotteries via generic NAP functions requires neither fixing a σ-algebra of events nor
choosing a particular ultrafilter. Consequently, there is no extra parameter that we need to
fix when modelling a fair lottery on an infinite set. The situation can instead be modelled
by a generic NAP function that is only determined by the infinite set Ω.

Of course, the price to pay for this is that the codomain H(J,R) of a generic NAP
function is a possibility ordered field, rather than a Tarskian ordered field. As such, it is a
field and it is linearly ordered, but not in the usual sense. The ordinary computations that
one performs with fields can still be carried out on H(J,R), but one must exert some caution
in doing so, as we have to reason internally, i.e., always relative to a specific viewpoint. But
there are reasons to argue that this is in fact a welcome feature of generic NAP functions
(and the same could be said about generic numerosities), because it solves in an original and
satisfactory way the dilemma between strength and arbitrariness. Recall that Easwaran’s
suggestion of working with a qualitative (i.e., non-numerical) ordering of events that would
extend both the “strictly less than in probability” and the “strictly including in” relations
on the powerset of an sample space Ω faced the issue that the order thus proposed was
not enough to justify the preferences that any rational agents should have regarding certain
bets on an infinite lottery. It is easy to see that we do not suffer from such issues when we
consider the generic NAP function for Ω. Consider again the case of a lottery on the natural
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numbers and a choice being offered by a bookmaker between betting that the winning ticket
will be even or that it will be in the set U = 2N \ {0} ∪ {1, 3}. Using Lemma 8.6.1, we can
easily see that H(J,R) |= π(2N) < π(U). Moreover, since we are working with a structure
on which addition and subtraction are defined, we can establish that a fair price to switch a
bet on a set X for a bet on a set Y is precisely π(Y )− π(X). Recall that the other example
we discussed was between paying some price ϵ to switch from a bet on 2N to a bet on U , and
paying a price of 3ϵ to switch from a bet on 2N to a bet on V = 2N ∪ {1}. Using the Truth
Lemma for generic powers, it is easy to see that H(J,R) |= π(V )−π(2N) = 2(π(U)−π(2N))
and thus to conclude that a rational agent should prefer to switch her bet on 2N for a bet
on U at a price ϵ over switching for a bet on V at a price of 3ϵ. Arguably, the ranges of
generic NAP functions therefore have enough structure to allow for more decision-theoretic
arguments than the mere qualitative approach advocated by Easwaran.

At the same time, the fact that they are possibility structures means that we can es-
cape the threat of arbitrariness. We have seen already, in the context of numerosities, that
the fact that Euclidean and generic numerosities were totally ordered only in the sense of
possibility semantics allowed us to escape Parker’s incompatibility results between linearity,
preservation of the Part-Whole Principle and Relative Invariance. A similar point could be
made regarding generic NAP functions. Although possibility fields satisfy linearity in the
sense that a ≤ b ∨ b ≤ a is always satisfied for any two elements a, b, they do not in general
decide which disjunct holds. This allows us to model a fair lottery on an infinite set in such
a way that the probability of any two events is always comparable, even though which event
is more likely than another might not be determined. In other words, this opens up the
possibility that there might be some questions regarding an infinite fair lottery that do not
have a determinate answer, even when such a lottery is faithfully and exhaustively repre-
sented. Whether the winning ticket being odd is equally as likely as it being even is such an
example. What is however, determinately true about such a situation, is that probabilities
are always linearly ordered, and that any event has a probability of happening.

To put the point differently, one could argue that the concepts of a Euclidean notion of
size for sets of natural numbers, or of a fair lottery on an infinite set Ω, entirely determine
a possibility structure, but not a specific Tarskian structure. In the former case, it is part
of the concept of a Euclidean theory of size that any set has a size, that sizes are linearly
ordered, and that all sets have size strictly greater than their proper subsets. One could
even go further and argue that sizes come with a natural algebraic structure that satisfies
the axioms of a linearly ordered semiring. But none of this commits us to the view that
the Euclidean notion of size entails that there must be as many evens as odds, strictly more
squares than powers of 2, or twice as many multiples of 4 as there are multiples of 2, although
all of these arguably follow from the Density Intuition. Again, it is consistent to hold that
our concept of a Euclidean theory of size entails that any two sets must have comparable
sizes but not, in general, what the exact size relationship is, just like the concept of a bear
cub entails that the cub is either male or female, but does not entail one of the two in par-
ticular. Consequently, a mathematical representation of Euclidean sizes that is both faithful
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and exhaustive will satisfy some disjunctions without satisfying any of the disjuncts; and
this is precisely where the resources of possibility semantics become relevant. A similar point
can be made about fair lotteries on infinite sets. A full and faithful representation of such a
situation must involve a function whose domain is an ordered field, because it is part of our
concept of probability that probabilities should have enough algebraic structure to enable
the kind of reasoning that involves adding, multiplying and ordering them in a similar way
as we do with real numbers. At the same time, every event in a probability space must be
assigned a probability, but these two facts alone are not enough to conclude that the specific
numerical or order-theoretic relationships between the probabilities of any two events must
always be determined. Here again, possibility structures allow us to escape the dilemma
between strength and arbitrariness. In order to work with a structure that has the resources
of an ordered field, we do not need to impose some extra arbitrary structure on a fair lottery
in the form of a non-principal ultrafilter. We can instead work with a possibility structure
rather than a Tarskian one.

As I have argued, the fact that the semiring of generic numerosities and the ordered
field of generic NAP functions are possibility structures allows us to construct numerosity
and probability functions that enjoy some robust mathematical properties without having
features that cannot be motivated by the concepts of a Euclidean theory of size or of a fair
lottery on an infinite set respectively. There is however, an alternative that the proponent
of Tarskian numerosities and NAP functions could consider, namely to argue that their
“real” solution involves quantifying over all the structures they define. Benci, Horsten
and Wenmackers seem to adopt such a move when pushing back against Easwaran’s claim
that hyperreal-valued probability functions such as NAP functions introduce some arbitrary
structure:

One might think that ignoring relevant existing structure (a sin of omission) is
not as grave as adding structure (a sin of misinformation). However, it has to be
borne in mind that one can always consider the entire family of NAP functions
modelling a given situation, rather than an–arbitrary–representative of it (see
also Wenmackers and Horsten [2013]). Such a family is the set of all NAP func-
tions that meet a common specification, such as ‘a fair lottery on R’, which fixed
the sample space and the weight function, and possibly additional constraints on
the directed set. As a whole, the family shows us how much the probabilities of
a given event, and the order of probabilities of multiple events, can vary (depen-
dent on the choice of ultrafilter).

To put it differently, there may be multiple, equally good ways to model the same
situation, corresponding to different choices of the ultrafilter. What matters is
what is true (or false) on all ways of making these arbitrary choices–what is
supertrue (or superfalse)–as well as the spread of possible assignments. We need
not project these arbitrary choices onto what is being modelled. [20, p. 544]
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Parker also discusses a similar option in the context of numerosities:

Another possible objection is that the Euclidean theories on offer don’t determine
sizes arbitrarily; they leave sizes indeterminate where well motivated principles
do not decide them, and this is just what they should do. Indeed, the [theory of
numerosities] and others do not determine the sizes of all sets, or even all sets of
whole numbers. However, those theories are about Euclidean assignments that
are total over some broad class of sets. [205, p.10]

The idea here is that the various Tarskian structures that one considers, such as numeros-
ity and NAP functions, should not be taken to be the actual proposal of the advocate of
numerosities and NAP theory respectively. Rather, one should supervaluate over all accept-
able numerosity and probability assignments, and this is the theory whose merits should be
judged. I will call this view the supervaluational strategy. It seems to me that this view is
getting really close to the generic approach that I have advocated for so far but that there
are nonetheless significant differences that tilt the scale in favor of possibility structures.

First, let me start by noting an obvious connection between generic structures and the
supervaluational approach. In the case of numerosities as well as NAP functions, satisfac-
tion on the generic structure coincides with satisfaction in every corresponding Tarskian
structure. Consequently, as theories, i.e., sets of first-order sentences, the generic approach
agrees entirely with the supervaluational strategy. But there are, however, at least three
significant differences worth mentioning. The first one is that supervaluations admit of only
three possible semantic values for sentences: (super)truth, (super)falsity, and “neither” or
“indeterminate” truth-value. By contrast, possibility structures are Boolean-valued: they
admit a lattice of semantic values that is as rich as the Boolean algebra of regular open
subsets of the underlying poset of viewpoints. One could, of course, do the same thing for
supervaluations, and associate to every first-order sentence the set of all Tarskian structures
that satisfy it as its “semantic value”. But supervaluations in themselves lack the machinery
to exploit this more fine-grained notion of semantic value. By contrast, the Boolean algebra
of semantic values is naturally built into the possibility structure and represented by the
regular open subsets of the poset of viewpoints. As such, we can always move between the
“local” and “global” viewpoints on a possibility structure, i.e., between satisfaction at a
specific viewpoint and satisfaction at every viewpoint.

A second difference between the generic approach and the supervaluational strategy is
that the first one offers a bona fide structure, while the second one only offers a theory. Faced
with a question like “What is the probability that a randomly picked ticket in a lottery on
the natural numbers is even”, the advocate of the generic NAP function can give a specific
answer, namely, π(2N). She may point out that not every question regarding such a value
can be answered with a definite yes or no, but for any number of such statements, she will
in principle always be able to tell whether they are consistent, whether they exhaust the
space of possibilities, and which ones entail which others. By contrast, the advocate of
the supervaluational strategy cannot answer the question above by pointing to a specific
mathematical object. She might either reply that the answer depends on which ultrafilter
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one uses to model such an infinite lottery or that she can give a range of possibilities like
1
2
± ϵ for some infinitesimal ϵ (and, there again, she cannot point to what specifically such

an infinitesimal is, as those according to her are equivalence classes modulo an ultrafilter
that needs to be specified), or that, although she cannot say what the probability that the
number is even is, she can, in principle, assess for any given first-order statement about
that probability whether it is true, false or indeterminate. It seems to me that the advocate
of the supervaluational strategy here is simply not offering enough. In the approach via
possibility structures, one works with well-defined mathematical objects. Of course, one
must be careful to manipulate them according to the specific rules of possibility semantics,
but one can manipulate them nonetheless. In the supervaluational approach, one is left with
a cluster of objects, none of which, according to the theory itself, accurately represents the
situation one intends to model, and a rudimentary way of talking about the properties that
all such objects share.

Finally, a third difference between the generic approach and the supervaluational strat-
egy is that the supervaluational strategy relies on the existence of non-constructive entities
such as the ultrafilters needed to define semirings of Tarskian numerosities and the max-
imal fine ideals needed to obtains the codomains of NAP functions, while the generic is
much more parsimonious in its use of the Axiom of Choice. As we have seen before, the
non-constructive character of Tarskian numerosity and NAP functions plays a role in their
exhibiting arbitrary features, and the point of the supervaluational approach is precisely to
“wash out” all such arbitrary features by quantifying over all the relevant functions. How-
ever, the nonconstructive nature of NAP functions creates another problem for them, in
the form of the complexity argument put forward by Easwaran in [78]. I will conclude this
section by rehashing Easwaran’s argument, and argue that, regardless of its merits, the fact
that possibility structures allow us to escape its grip is another virtue of the generic approach
over the supervaluational strategy.

8.6.4 Easwaran’s Complexity Argument

Eswaran’s argument is intended as an objection against any probability theory that appeals
to hyperreal-valued probability functions. By a hyperreal structure, Easwaran means a non-
Archimedean ordered field into which the reals embed. Since the ranges of NAP functions
have these properties, NAP theory falls within the scope of the argument, even though
Easwaran himself doesn’t mention NAP explicitly in [78]. The goal of the argument is to
establish that the actual credences of physical agents cannot be faithfully represented by
hyperreal-valued probability functions, because such functions are too complex and must
therefore introduce more mathematical structure than the actual credence function of phys-
ical agents can possibly have. Here is how Easwaran presents the argument:

The premises and conclusion of the argument are as follows:

1. Credences supervene on the physical, in the sense that there is a function
that takes as input a complete mathematical description of the physical
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world, and a specification of an agent and a proposition, and returns as out-
put the number representing the credence of the agent in that proposition.

2. The function relating credences to the physical is not so complex that its
existence is independent of Zermelo-Fraenkel set theory (ZF).

3. All physical quantities can be entirely parameterized using the standard real
numbers.

4. The existence of a function with standard real number inputs and hyperreal
outputs is independent of ZF .

5. Therefore, credences in ordinary propositions (ones expressible without men-
tion of hyperreals or closely related notions) do not have hyperreal values.
[78, p. 29]

Easwaran admits that premises 1 and 3 may be controversial but argues that they are at
least plausible. Accordingly, rejecting either premise cannot be done on the sole basis of
a commitment to the thesis that credence functions should be regular, but would rather
require “doing serious physics, or philosophy of mind”(p. 30). He also points out (footnote
31, pp. 31-32) that, even if premise 3 were false and some physical quantities do in fact need
to be parametrized using hyperreal structures, the existence of regular credence functions
representing some probabilistic scenarios about such quantities would still require the exis-
tence of finer mathematical structures, i.e., “hyper-hyperreals”, which might mean that a
variant of his argument could still go through.6 Premise 2, on the other hand, is meant to be
understood as a weak version of the “physical Church-Turing thesis”, according to which any
physical process could be in principle simulated by a Turing machine. Easwaran’s premise
2 is much weaker, since it only amounts to the thesis that any physical process could be
in principle simulated by a mathematical object whose existence can be proved in ZF , i.e.,
without using the Axiom of Choice.

Regardless of how controversial one might think the first three premises of Easwaran’s
argument are, I think that the overall argument makes the fairly convincing point that, when
it comes to credences, the complexity of the credence function of a rational agent should not
exceed the complexity of the probabilistic scenarios that they consider. The argument aims
to show that it is impossible for actual physical agents to have hyperreal-valued credences,
because hyperreal-valued functions are too complex to be the sort of processes that can
happen in nature. Importantly, Easwaran makes a distinction between the added complexity
of hyperreal-valued structures and the idealization that is common in Bayesianism as well
as in many scientific theories:

6There are reasons to doubt, however, that this would actually be the case. As Easwaran notices, the
existence of a hyperreal structure is enough to derive the existence of a non-principal ultrafilter over ZF ,
which in turn is enough to construct nontrivial ultrapowers of any first-order structure. In other words, there
could still be a “mismatch” in this situation between the complexity of the mathematical structures arising
in nature and the complexity of regular crendence functions about those structures, but ZF would already
be strong enough to derive the existence of the latter from that of the former.
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Although Bayesianism concerns itself with idealized rational agents, and not
the imperfect physical beings we encounter in our daily life, I claim that the
essentially nonphysical nature of agents with hyperreal credences makes them
irrelevant for the epistemology of physical agents. The other idealizations, of
logical omniscience and the like, are not physically impossible, and we can make
sense of a way in which actual imperfect agents might become more and more like
these idealized agents. These idealizations are like the ones from physics involving
frictionless surfaces, and infinitely deep water for waves to travel on. But where
these idealizations involve the removal of some limitation, the hyperreals involve
the addition of nonphysical structure. [78, pp. 28-29]

I think that Easwaran’s distinction makes sense in this context, particularly for someone
who adheres to the supervaluational strategy mentioned above. For the supervaluationally-
minded NAP theorist, NAP functions do not represent the credences of an ideal rational
agent. The credences of an ideal rational agent, instead, should correspond to what is true
according to all NAP functions of a certain kind. Thus, the supervaluationally-minded NAP
theorist cannot reply to Easwaran’s argument that the complexity of NAP functions is just
a consequence of the fact that we are only considering ideal rational agents. Rather, she
would probably concede to Easwaran that NAP functions are a flawed representation of the
credences of rational agents and that the additional structure imposed on their codomains
does not track a genuine feature of the credences of neither actual nor ideal physical agents.

By contrast, the generic approach allows one to resist Easwaran’s complexity argument by
rejecting premise 4. As such, unlike any reply that would reject one of the first three premises,
it is a purely mathematical reply to Easwaran’s challenge. Of course, Easwaran’s premise
4 is correct if by a “hyperreal-valued function”, one means a function whose codomain is
a Tarskian hyperreal field. As noted in the previous chapter, the existence of a Tarskian
non-Archimedean field into which the reals embed is enough to derive the existence of a
nonprincipal ultrafilter on ω. But this construction breaks down if one is instead working
with a possibility field. In fact, one can define the codomain of a generic NAP function for
a sample set Ω entirely constructively, and similarly for the function itself.

There is, however, one subtlety on this issue that deserves to be discussed in more detail.
As mentioned at the end of Section 8.5, given a sample space Ω, some of the properties
of the possibility field H(PFin(Ω),R) can only be proved to hold under some amount of
choice. In particular, proving that R elementarily embeds into H(PFin(Ω),R) requires
AC|Ω| to hold. But there is an essential difference here between this feature of generic NAP
functions and the nonconstructiveness of standard NAP functions. In the case of standard
NAP functions, defining them requires constructing first their codomain, the existence of
which requires one to appeal to the Axiom of Choice. In the case of generic NAP functions,
their codomains can be proved to exist without any appeal to the Axiom of Choice. As
established by Theorem 8.5.17, one does not need any amount of choice to show that the
generic ordered field induced by an ideal on a ring of functions does indeed satisfy the axioms
of an on ordered field. In other words, the existence of the possibility field can be secured
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constructively, and it is only some properties of that structure that require some amount
of choice to be proved. But this means that generic NAP functions do not fall prey to
Easwaran’s complexity argument any more than real-valued probability functions. Indeed,
it is well known that the reals can be a very pathological structure for measure theory in the
absence of the Axiom of Choice. For example, if ACℵ0 fails, R could be a countable union of
countable sets. For this reason, classical analysis and measure theory typically assume some
amount of choice, usually in the vicinity of the Axiom of Dependent Choices. But Easwaran
certainly would not take his argument to establish that the credences of rational agents
cannot be real-valued, because the existence of many real-valued functions can be proved
constructively, even though probability theory typically assumes that their codomain, i.e.,
the reals, has some properties that can only proved using some amount of choice. For this
reason, the fact that the codomains of generic NAP functions are better behaved under some
amount of choice does not mean that generic NAP functions are too complex to adequately
represent the credences of actual physical agents.

One can therefore conclude that the generic approach to NAP functions allows for a
much more convincing rebuke of Easwaran’s argument that the supervaluational strategy.
Indeed, the proponent of the generic approach can fully agree with Easwaran that credence
functions whose existence requires the Axiom of Choice are a fundamentally flawed way of
representing the credences of actual physical agents, without giving up the claim that the
credence function of a rational agent is (or should be) regular. Interestingly, one could argue
that the generic approach also fares better on this issue than the non-regular approach to
de Finetti’s lottery. Indeed, recall that de Finetti argued that the credences of a rational
agent regarding a lottery on the natural number should determine a real-valued function that
assigns probability 0 to every finite set of natural numbers. However, Lauwers [170] showed
that no such finitely additive probability measure defined on P(N) can be constructively
proved to exist. Hence, Easwaran’s argument, if correct, would establish that any proba-
bility function defined on the whole of P(N) and assigning probability 0 to every finite set
of natural numbers is too complex to represent the rational credences of physical agents.
Consequently, a proponent of real-valued probability functions would be faced with an un-
easy dilemma regarding the credences of a rational agent about de Finetti’s lottery, for they
must either argue that such an agent would either not assign any probability of occurring
to many events, or assign strictly positive probability of being the winning ticket to some
numbers, and strictly lower probability to some others. But the latter option does not seem
viable, since the lottery is assumed to be fair, while the first option entails that not even an
ideal rational agent could assign a probability of containing the winning ticket to every set
of natural numbers. Here again, the constructive features of possibility structures seem to
be a significant advantage of the generic approach over its non-constructive competitors.

8.7 Conclusion

Let me conclude this chapter by summarizing its main contributions. Both in the case of
the debate between Cantorian and Euclidean notions of size of infinite sets and the debate
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between non-Archimedean probability theory and real-valued probability theory, I have ar-
gued that the generic approach to numerosities and NAP functions respectively allowed us to
evade the invariance problem and the dilemma between strength and arbitrariness. Because
their domains are possibility structures, generic numerosity and NAP functions have just
enough properties to be fruitful mathematical implementations of the pre-theoretic intuition
that the whole should be greater than any of its proper parts without exhibiting arbitrary or
non-robust features. As such, I would argue that this shows that one can develop meaningful
alternatives to the Cantorian notion of size and classical probability theory, provided that
one is willing to work with possibility structures. At least in the case of probabilities defined
on infinite sample spaces, possibility structures seem to be a more powerful and flexible tool
than supervaluations over Tarskian structures. This suggests that one could also investi-
gate applications of possibility semantics as a way to model imprecise probabilities in other
contexts.

Moreover, the possibility structures introduced here play a signficant role in distinguishing
several non-Cantorian conceptions of the infinite. As argued in the previous section, Benci
and di Nasso’s numerosities are best understood as a hybrid between two distinct intuitions,
the properly Euclidean idea that the whole should always be strictly greater than its proper
parts on the one hand and the Density Intuition that the size of sets of natural numbers
somehow reflects the distribution of their elements in the sequence of natural numbers. A
convenient way of disentangling the two conceptions is to consider the invariance constraints
on size assignment that one can justify on the basis of each conception. Tarskian numerosities
fail to satisfy these invariant constraints, but generic and Euclidean numerosities do, and,
as such, can be seen as genuinely distinct options for an alternative notion of size of infinite
sets. Although I have not explored this point in detail in this chapter, it seems to me that
the strictly Euclidean approach is also a better candidate for such an alternative to the
Cantorian notion. One obvious issue with the Density Intuition is that it only applies to
ordered sets, while the strictly Euclidean approach isn’t as limited in its scope. Moreover,
it seems that more work would be needed to clarify exactly what properties of numerosity
functions could be justified on the basis of the Density Intuition. By contrast, it seems to
me that, at least in the case of countable sets, Lemma 8.6.1 offers a clear characterization
of the order relationship between sets that is induced by the Euclidean conception and that
this arguably makes it closer to being on a par with the Cantorian one. I will conclude this
chapter by elaborating slightly on this point. As mentioned before, a key difference between
the Bijection Principle and the Part-Whole Principle is that the former can be used to derive
necessary and sufficient conditions for size relationships between sets: For any two sets A
and B, |A| ≤ |B| iff there is an injection from A to B. As is well known, the statement that
the order thus defined is linear is equivalent to the Axiom of Choice. I think one could draw
a similar picture for the Euclidean infinite and the numerosity of countable sets. Indeed, in
light of Lemma 8.6.1, one can define an order on the subsets of a countable set by letting
A ≺ B iff there exists a finite C ⊆ B \A such that |A \B| ≤ |C|. In this case, the linearity
of the order thus defined does not depend on the Axiom of Choice but rather on interpreting
the underlying structure as a possibility structure rather than a Tarskian one. Whether
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this idea could be developed further into a full-fledged Euclidean conception of the infinite
beyond the realm of the countable will be left for future work.
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Chapter 9

Bolzano’s Mathematical Infinite

9.1 Introduction

Bernard Bolzano (1781-1848) was a Bohemian priest with eclectic interests ranging from
logic and mathematics to political and moral philosophy. One of his more famous writings is
a booklet his pupil Př́ıhonský published under the title Paradoxien des Unendlichen (from
now on PU for short), Paradoxes of the Infinite. Likely contributing to its fame, this booklet
was read and referred to by both Cantor and Dedekind. Perhaps because of this association,
the booklet is also routinely interpreted as a text anticipating several ideas of Cantor’s
transfinite set theory (cf. [26, 27, 238, 226]), especially in sections §§29-33, in which Bolzano
sketches a “calculation of the infinite”. As a consequence, appraisal of the PU is almost
exclusively conducted in terms of how much Bolzano’s work on the infinite agrees with later
developments in set theory. In particular, many shortcomings of Bolzano’s calculation of the
infinite are attributed to his adherence to the Part-Whole Principle:

PW For any sets A,B, if A ⊊ B, then size(A) < size(B).

As we discussed extensively in the previous chapter, the privileged status of the Bijection
Principle has started to be scrutinized in recent years thanks to a renewed interest in poten-
tial alternatives to Cantor’s theory of the mathematical infinite. In particular, Mancosu [184]
shows that there is a long historical tradition of thinkers and mathematicians who favored
PW over the bijection principle. Together with the recent development of mathematical
tools that allow for precise formalizations of such alternatives, this suggests that a reap-
praisal of alternative theories that until recently had been dismissed as essentially misguided
or inconsistent might be a valuable endeavor.

Our main goal is to offer such a reappraisal of Bolzano’s mature theory of the mathe-
matical infinite. In particular, we propose an interpretation of Bolzano’s calculation of the
infinite in §§29-33 of the PU which stresses its conceptual and mathematical independence
from set theory proper, and argue that Bolzano is more interested in developing a theory of
infinite sums rather than a way of measuring the sizes of infinite collections. This leads us
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to reassess the role that part-whole reasoning plays in Bolzano’s computations and to pro-
vide formal reconstructions of his position that underscore its coherence and originality, and
offer overall a more charitable appreciation of Bolzano’s ideas on the infinite. In particular,
we show that Bolzanian sums in our interpretation form a non-commutative ordered ring,
a well-behaved algebraic structure that nonetheless vastly differs from Cantorian cardinal-
ities. In order to keep the conceptual difficulties of our endeavor separate from technical
complexities, we will start with a first approximation of such a reconstruction via standar
model-theoretic techniques. This formalization of Bolzano’s theory via Tarskian ultrapowers
will be essentially enough to make the main points we intend to make. However, we will also
highlight several issues with this first approach, and offer a second one using generic powers.

We proceed as follows. In Section 9.2 we discuss several sources of what we call the
received view of the PU, and introduce enough background to set the stage for our novel
interpretation. In Section 9.3 we focus on Bolzano’s calculation of the infinite and argue that
his work is best understood as a theory of infinite sums. This leads in Sections 9.4 and 9.5
to the first formal reconstruction of Bolzano’s computations with infinite quantities, which
aims to establish both the consistency and the originality of his position. In Section 9.6, we
recap the main points of our formalization and discuss its implications for the interpretation
of the PU. Finally, in Section 9.7, we address investigate further some of the issues that arise
with the first formalization via Tarskian structures, and we show how generic powers permit
to address those issues and to offer an alternative formalization of Bolzano’s calculation of
the infinite that is arguably more faithful to his writings.

9.2 The Received View on the PU

Bolzano’s PU is a short yet ambitious booklet in which the author aims to show that, when
properly defined and handled, the concept of the infinite is not intrinsically contradictory,
and many paradoxes having to do with the infinite in mathematics (but also in physics and
metaphysics) can actually be solved. In the course of addressing the paradoxes of the infinite
in mathematics, Bolzano develops what looks like a theory of transfinite quantities (§§28-29,
32-33), which is what commentators tend to focus on when appraising the contents of the
PU.

One such commentator is, as is known [238, 226, 91], Georg Cantor. Cantor [53] intro-
duces Bolzano as a proponent of actual infinity, and specifically actually infinite numbers in
mathematics, in contrast to Leibniz’s arguments against infinite numbers:

Still, the actual infinite such as we confront for example in the well-defined point
sets or in the constitution of bodies out of point-like atoms [. . . ] has found
its most authoritative defender in Bernard Bolzano, one of the most perceptive
philosophers and mathematicians of our century, who has developed his views
on the topic in the beautiful and rich script Paradoxes of the Infinite, Leipzig
1851. The aim is to prove how the contradictions of the infinite sought for by
the sceptics and peripatetics of all times do not exist at all, as soon as one makes
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the not always quite easy effort of taking into account the concepts of the infinite
according to their true content. ([53] in [0, p. 179])1

And still:

Bolzano is perhaps the only one who confers a certain status to actually infinite
numbers, or at least they are often mentioned [by him]; nevertheless I completely
and wholly disagree with the way in which he handles them, not being able to
formulate a proper definition thereof, and I consider for instance §§29-33 of that
book as untenable and wrong. For a genuine definition of actually infinite num-
bers, the author is lacking both the general concept of power, and the accurate
concept of number. It is true that the seeds of both notions appear in a few
places in the form of special cases, but it seems to me he does not work his way
through to full clarity and distinction, and this explains several contradictions
and even a few mistakes of this worthwhile script. (ibid., p. 180)2

Cantor’s comments in many ways set the tone of how the PU are mainly perceived even
today, namely as a rich and interesting essay that nevertheless displays some serious short-
comings. Cantor diagnoses Bolzano’s mistakes as being fundamentally due to an imprecise
characterization of power and number. Without entering a discussion on Cantorian powers,
it is useful for us to notice how Cantor is readily reinterpreting Bolzano’s text in the light
of his own research. The concept and terminology of powers was Cantor’s own, which he
introduced starting from 1878 in his papers. What Cantor means is that Bolzano did not
have the right notion of size for infinite sets, the right notion being Cantor’s own powers,
and this shortcoming causes Bolzano to go astray in §§29-33. Another aspect of Cantor’s
comments on the PU which we want to stress is that Cantor straightforwardly presents
Bolzano’s “calculation of the infinite” (Rechnung des Unendlichen, §28) as a version of his
own transfinite arithmetic, albeit imprecise and imperfect.

1In this and all other cases for which a published English translation is not cited, the translations are the
authors’. Original German:
Doch den entschiedensten Verteidiger hat das Eigentlich-unendliche, wie es uns beispielsweise in den
wohldefinierten Punktmengen oder in der Konstitution der Körper aus punktuellen Atomen [. . . ] entge-
gentritt, in einem höchst scharfsinnigen Philosophen und Mathematiker unseres Jahrhunderts, in Bernard
Bolzano gefunden, der seine betreffenden Ansichten namentlich in der schönen und gehaltreichen Schrift:
,,Paradoxien des Unendlichen, Leipzig 1851” entwickelt hat, deren Zweck es ist, nachzuweisen, wie die von
Skeptikern und Peripatetikern aller Zeiten im Unendlichen gesuchten Widersprüche gar nicht vorhanden
sind, sobald man sich nur die freilich nicht immer ganz leichte Mühe nimmt, die Unendlichkeitsbegriffe allen
Ernstes ihrem wahren Inhalte nach in sich aufzunehmen.

2Bolzano ist vielleicht der einzige, bei dem die eigentlich-unendlichen Zahlen zu einem gewissen Rechte
kommen, wenigstens ist von ihnen vielfach die Rede; doch stimme ich gerade in der Art, wie er mit ihnen
umgeht, ohne eine rechte Definition von ihnen aufstellen zu können, ganz und gar nicht mit ihm überein
und sehe beispielsweise die §§29-33 jenes Buches als haltlos und irrig an. Es fehlt dem Autor zur wirklichen
Begriffsfassung bestimmt-unendlicher Zahlen sowohl der allgemeine Mächtigkeitsbegriff, wie auch der präzise
Anzahlbegriff. Beide treten zwar an einzelnen Stellen ihrem Keime nach in Form von Spezialitäten bei ihm
auf, er arbeitet sich aber dabei zu der vollen Klarheit und Bestimmtheit, wie mir scheint, nicht durch, und
daraus erklären sich viele Inkonsequenzen und selbst manche Irrtümer dieser wertvollen Schrift.
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All commentaries on the PU we were able to find seem to follow suit from Cantor in
that they evaluate and interpret the PU, and §§29-33 in particular, against the backdrop
of the development of set theory. Thus Bolzano’s PU are about infinite sets according to
editors and translators of Bolzano’s text (e.g., Hans Hahn in [47], Donald Steele in [0]), as
well as scholars such as Berg [27, 26], Šebest́ık [238, 237], Lapointe [167], Ferreirós [91] and
Rusnock [226]. We now examine the most informative of these interpretations in some detail.

Among Bolzano scholars, Jan Berg is perhaps the one that embraces a set theoretic
reading of Bolzano with the most conviction. Berg [26, p. 176] writes:

In PU [. . . ] Bolzano repudiates the notion of equivalence as sufficient condition
for the identity of powers of infinite sets. [. . . ] As a result, a number of statements
follow which do not correspond to Cantor’s view on this subject. E.g., if “N0”
denotes the number of natural numbers (PU 45) [§29; Berg refers to the page of
the 1851 edition], then in the series: N0, N0

2, N0
3, . . . each N0

m is said to “exceed
infinitely” the preceding term N0

m−1 (PU 46) [§29]. But Bolzano’s comparison
of the powers of infinite sets is impossible to understand, since nowhere does he
offer any clear sufficient condition for the equinumerousness of infinite sets.

Berg makes the same points as Cantor, namely that Bolzano’s writings in PU are about
the powers of infinite sets, and that his reasoning is impossible to follow as he does not
offer sufficient conditions for the equality of size of sets. However Berg [see, for instance, his
26, p. 177] remains convinced that a letter3 written by Bolzano in the last year of his life
witnesses a change of heart regarding how infinite sets should be compared, moving from his
rejection of one-to-one correspondence to an acceptance of it as a sufficient criterion for size
equality.

On the heels of this interpretation, Berg [27, pp. 42-43] sketches what he takes to be
Bolzano’s theory of the infinite. In a nutshell, Berg believes that any two infinite sets of
natural numbers are of the same size according to Bolzano just in case “the members are
related to each other by finitely many rational operations (addition, multiplication and their
inverses)” [27]. Even though Berg does not use this terminology, his interpretation seems
to suggest that N is equinumerous with an infinite subset S ⊆ N whenever the bijection
f : S → N is primitive recursive. This is an interesting suggestion, but it would imply that,
for example, N−{1} and N are equinumerous, while this seems to contradict Bolzano’s rea-
soning in PU §29 (see Section 9.3 below). Moreover, Berg’s interpretation of the letter is far
from uncontroversial (see [226, pp. 194-195], [238, pp. 469-470], to be discussed below, and
[184, 182]), so his interpretation of this aspect of Bolzano’s work is not a foregone conclusion.
We will not engage with it any more than what we have already done as the controversy has
less to do with PU and more to do with what views about the infinite Bolzano held at the

3This letter, dated 9 March 1848 and intended for Bolzano’s former pupil Robert Zimmermann, has been
published in [51, pp. 187-189]. Berg is the editor for the volume and his editorial notes to the letter are a
reiteration of his interpretation of Bolzano having changed his mind regarding part-whole and one-to-one
correspondence for infinite collections.
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very moment of his death.

A more nuanced view is offered by Šebest́ık [238, pp. 435-473]. When presenting the
contribution of Bolzano’s PU, Šebest́ık summarizes it thus:

For the first time, the actual infinite, whose properties cease to be contradictory to
simply become paradoxical, is admitted in mathematics as a well-defined concept,
having a referent and only attaching to those objects capable of enumeration or
measurement, that is, to sets and quantities.4 [238, p. 435]

Šebest́ık also interprets the PU as about sets and their being infinite. Even though at
p. 445 he more faithfully writes that “the infinite is first and foremost a property of pluralities
[our emphasis]”,5 on p. 462 he then reverts to set talk at a crucial point, namely when giving
his interpretation of PU §33:

[Referring to §33] It is the first and last time within the Paradoxes of the Infinite
that Bolzano deduces from the reflexivity of the set of natural numbers to the
equality of number between a set and one of its proper subsets.6

According to Šebest́ık’s interpretation then, and unlike Berg’s, it is not quite the case that
Bolzano changed his mind regarding what criterion to use to compare the size of infinite sets
after the PU and just before his death. Rather, Bolzano’s views in the PU itself are already
inconsistent, because at various points in the text Bolzano either implicitly or explicitly
endorses the following views:

1. The part-whole principle, that is, the whole is greater than any of its proper parts.

2. All infinite sets can be put in one-to-one correspondence with any of their infinite
subsets.

3. Every set has a definite size.

4. If two sets are in one-to-one correspondence then they have the same plurality.

It is quite telling that for 1, 3, and 4 Šebest́ık [238, pp. 463-464] feels the need to add set
theoretic glosses, so that 1 becomes “card(A) < card(B) iff A is equivalent to a proper part
of B” (‘card(A) < card(B) si et seulement si A est équivalent à une partie propre de B’),
3 is Every set has a “unique cardinal number” (‘nombre cardinal unique’) and 4 If two sets

4Original French: Pour la première fois, l’infini actuel dont les propriétés cessent d’être cotradictoires pour
devenir simplement paradoxales, est admis en mathématiques à titre de concept défini, ayant une référence
et attaché aux seuls objets susceptibles de dénombrement ou de mesure, c’est-à-dire aux ensembles et aux
grandeurs.

5Original: “L’infini est d’abord et avant tout une propriété des multitudes”.
6C’est pour la première et dernière fois que, dans les Paradoxes de l’Infini, Bolzano conclut de la réflexivité

de l’ensemble des nombres naturels à l’égalité numérique entre un ensemble et l’un de ses sous-ensembles
propres.
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are in one-to-one correspondence then they have “the same cardinal number” (‘ont le même
nombre cardinal’).

Thus formulated, 1-4 do indeed yield a contradiction. Consider any two infinite sets A
and B such that A is a proper part of B. By 3, they each have a unique cardinality, and by
1 card(A) < card(B). But also, since A and B can be put into one-to-one correspondence
(by 2), they have the same cardinality, by 4, so card(A) = card(B), contradicting our earlier
deduction that card(A) < card(B). We will give our argument as per why Šebest́ık’s con-
tradiction does not go through in Section 9.3, where we highlight that a crucial ingredient
in this family of counterexamples to Bolzano’s claim to internal consistency in the PU is
largely due to the set theoretic interpretation of 4.

The last interpretation we want to consider in detail is Rusnock’s (2000). Rusnock [226,
p. 193] writes that in §§21-22 Bolzano “apparently based this opinion [of the insufficiency of
one-to-one correspondence for equality of size] on considerations involving parts and wholes,
assuming perhaps that the multiplicity of the whole must be greater than those of its parts.
(Rusnock translates with “multiplicity” what we, following [227], translate as “plurality”,
namely Vielheit.) Rusnock [226, ibid.] then continues:

But this seems to be a mistake, even in Bolzano’s own terms. For his sets
(Mengen) are by definition invariant under rearrangements of their members,
and thus the appeal to the “mode of determination” seems to be illegitimate in
this context.

Rusnock then produces an example to show why Bolzano is mistaken by his own lights
when embracing “considerations of parts and whole”. Consider the straight line abc, where
a is to the left of b and b is to the left of c; call A the set of points between a and b, B the
set of points between a and c. Then it is possible to map each point of A to a point of B via
a translation map that is also a one-to-one correspondence. Since a translation map only
“rearranges” points from one region of space to another, then B is just a rearrangement of
A. Thus, A and B should be the same “set”, since Bolzano’s definition of “set” (Menge)
entails that something considered as a “set” is invariant under rearrangement of parts. Yet,
because A is a proper part of B, A should be strictly smaller than B, in virtue of what from
now on we call “the part-whole principle”: The whole is greater than any of its proper parts.
This principle then is inconsistent with Bolzano’s own definition of multitude.

It is not warranted however that an example such as Rusnock’s really counts as a rear-
rangement of parts on Bolzano’s terms, essentially because it relies on a metaphorical use of
the term “rearrangement” in a geometric context. This metaphorical use in turn suggests
conceiving of geometric figures (points and lines) as objects that move through the two-
dimensional (Euclidean) space. Yet Bolzano famously rejected metaphorical talk of motion
in mathematical contexts [49, Introduction], and lacking that, we are not sure there is a
way of rephrasing Rusnock’s example so that it really counts as a rearrangement of parts on
Bolzano’s terms.
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On the basis of our overview, we can now distil the received view about the PU into two
theses:

(Sets) In §§29-33, Bolzano is concerned with determining size relationships between infinite
sets.

(Set-PW) Bolzano’s computations in §§29-33 are, at least partially, motivated by the part-
whole principle for sets.

As we have seen above, the combination of these two theses motivates a reading of
Bolzano’s calculation of the infinite as a pre-Cantorian transfinite arithmetic that is either
mistaken or downright inconsistent because of its adherence to the part-whole principle.
As it will soon become apparent, we believe however that both theses incorrectly describe
§§29-33 of the PU. Our main claim is that the standard view’s identification of Bolzanian
collections with the modern notion of set, and of all instances of part-whole reasoning in the
PU to PW, is too quick. Discussing the standard interpretation of Bolzano’s calculation
of the infinite therefore requires a clarification of the status of collections in the PU, and
an assessment of the role that part-whole reasoning plays in Bolzano’s arguments. We will
take those two issues in turn. First, we briefly recap the various notions of collections that
Bolzano introduces at the beginning of the PU, and explain the role they play in his definition
of the infinite. Second, we review sections §§20-24 of the PU, in which Bolzano is usually
interpreted as rejecting the bijection principle in favor of something like PW. We believe
this will provide the reader with the necessary background for our in-depth discussion of
§§29-33 in Section 9.3.

9.2.1 Bolzano’s Collections, Multitudes, and Sums

Bolzano’s first goal in the PU is to arrive at a rigorous definition of the infinite. To that end,
he relies on his logical system first developed in his Wissenschaftslehre (Theory of Science,
[52] for short). In particular, Bolzano devotes the first section of the PU to defining several
distinct notions of collection. Without going into too much detail, we summarize here the
most important definitions.

Collection The concept of collection (Inbegriff ) applies to any and all objects which are
made of parts, i.e. that are not simple. In that sense, [collection] is the most general
concept as it applies to any composite object. Collections, as opposed to units (Ein-
heiten, sometimes also translated as unity/unities), can be decomposed into simpler
parts. Anything that is made of at least two parts is a collection. (see [46] §3)

Multitude The concept of multitude (Menge) is best illustrated with Bolzano’s own exam-
ple of a drinking glass ([46] §6). Consider the glass as intact, and then as shattered into
pieces. What changes between these two states of the glass is the arrangement (Anord-
nung) of the pieces, although the amount of glass is the same before and after. When
we consider the glass as that which remains unchanged before and after the breakage,
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we are considering it as a multitude. “A collection which we put under a concept so
that the arrangement of its parts is unimportant (in which therefore nothing essential
changes for us if we merely change this arrangement) I call a multitude.” ([46] §4)7

Plurality When the parts of a multitude all fall under the same concept A and are therefore
considered as units of kind A (i.e. simple objects of kind A), that multitude is called
a plurality (Vielheit) of kind A. (ibid.)

Sum A sum (Summe) is a collection such that (a) its parts can also be collections, and (b)
the parts of its parts can be considered as parts of the whole sum, without the sum
itself having changed ([46] §5). Consider the glass example again. Suppose we break
our glass G and it shatters in exactly three pieces, a, b and c. Then suppose a breaks
also into two pieces a1 and a2. Then our glass G, considered as a sum, is still the same:
G = a+ b+ c = a1 + a2 + b+ c.

Quantity Bolzano defines a quantity (Größe) as an object that can be considered of a kind
A such that any two objects M,N of kind A satisfy a certain law of trichotomy (not
Bolzano’s expression): either they are equal to one another (M = N) or “one of them
presents itself as a sum which includes a part equal to the other one” ([46] §6), that
is to say, M = N + ν or N = M + µ. The remaining parts µ, ν themselves also
need to satisfy the condition that, for any other X of kind A, either X = µ (X = ν,
respectively) or one of them can be presented as a sum of which the other is just a
part.

To avoid any confusion, it should be noted that the concepts of multitudes, pluralities,
sums and quantities are specifications of the concept of collections, and the same object
can be conceptualized as more than one kind of collection at once. Quantities are a great
example. From their definition, it is clear that anything that is a quantity is also a plurality,
because a quantity is a multitude (of a certain kind, say A) whose parts are also objects
of kind A. At the same time, the way Bolzano expresses the trichotomy law holding of
relationships between quantities suggests that a quantity is also a sum, namely, an object
such that the parts of its immediate parts are also parts of the object itself, and nothing
about the object changes if we consider it as made of the parts of its parts, instead of just
of its own immediate parts.

Moreover, the existence of various notions of collections in Bolzano’s framework is at odds
with the thesis (Sets) of the received view, according to which Bolzano tries to develop an
arithmetic of infinite sets. Indeed, it is far from clear that any of the notions described above
can be straightforwardly mapped onto the modern notion of a set. Following Incurvati [141,
p. 11], we consider the concept of set as used in (philosophy of) mathematics contexts to be
sufficiently individuated by the three criteria:

(Unity) A set is a single entity over and above its elements.

7Translations of Bolzano’s PU are always from [227].
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(Decomposition) A set can be decomposed in a unique way into its elements.

(Extensionality) Sets are identical if and only if they have exactly the same elements.

Bolzano’s own definitions do not imply that his multitudes, or pluralities, or sums satisfy
all three criteria at once. Since multitudes, pluralities and sums are the infinite collections
Bolzano concerns himself with, the identification of his infinite collections with Cantorian
infinite sets is unwarranted and far from obvious. For more on Bolzano’s multitudes and
sets, see Simons [240].

Nevertheless, (Sets) might gain some traction from the fact that Bolzano’s definition of
the infinite only applies to collections, or, more precisely, to pluralities:

[. . . ] I shall call a plurality which is greater than every finite one, i.e., a plurality
which has the property that every finite multitude represents only a part of it,
an infinite plurality. ([46] §9)

However, the choice of defining an infinite plurality as opposed to simply infinity is
justified in §10, where Bolzano argues that in the use made by mathematicians, “the infinite”
is always an infinite plurality:

Therefore it [is] only a question of whether through a mere definition of what is
called an infinite plurality we are in a position to determine what is [the nature
of] the infinite in general. This would be the case if it should prove that, strictly
speaking, there is nothing other than pluralities to which the concept of infinity
may be applied in its true meaning, i.e., if it should prove that infinity is really
only a property of a plurality or that everything which we have defined as infinite
is only called so because, and in so far as, we discover a property in it which can be
regarded as an infinite plurality. Now it seems to me that is really the case. The
mathematician obviously never uses this word in any other sense. For generally
it is nearly always quantities with whose determination he is occupied and for
which he makes use of the assumption of one of those of the same kind for the
unit, and then of the concept of a number. ([46] §10)

Bolzano’s target when defining infinity solely as the attribute of certain collections are the
imprecise definitions of infinity given by some philosophers (Hegel and his followers are cited
explicitly here) who consider the mathematical infinity Bolzano talks about to be the “bad”
kind ([46] §11), while the one true infinity is God’s absolute infinity. The strategy to push
against this qualitative infinite of the philosophers is to show that, even in the case of God,
who is the unity par excellence, when we assign infinity to Him as one of His attributes,
what we are really saying is that some other attribute of His has an infinite multitude as a
component.

What I do not concede is merely that the philosopher may know an object on
which he is justified in conferring the predicate of being infinite without first
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having identified in some respect an infinite magnitude [Größe] or plurality in
this object. If I can prove that even in God as that being which we consider as
the most perfect unity, viewpoints can be identified from which we see in him
an infinite plurality, and that it is only from these viewpoints that we attribute
infinity to him, then it will hardly be necessary to demonstrate further that
similar considerations underlie all other cases where the concept of infinity is
well justified. Now I say we call God infinite because we concede to him powers
of more than one kind that have an infinite magnitude. Thus we must attribute
to him a power of knowledge that is true omniscience, that therefore comprehends
an infinite multitude of truths because all truths in general etc. ([46] §11)

With that, Bolzano considers himself to have exhaustively argued for his definition of
mathematical infinity as being inextricable from the concepts of plurality and quantity and
inapplicable to the one-ness of any unity, even God. Thus, we conclude that Bolzano’s
insistence on defining only an infinite plurality does not lend particular credence to (Sets)
after all. Bolzano’s definition unequivocally makes of infinity a quantifying attribute which,
as such, can only apply to pluralities and quantities. But his insistence on discussing only
infinite pluralities should be understood as in contrast with the Hegelian infinite as an
attribute of a single infinite being. Talking about infinite collections, for Bolzano, is a way of
clearly setting apart the quantitative infinite he is interested in from the qualitative infinite
of the hegelians.

9.2.2 Bolzano’s Commitment to Part-Whole in the PU

As the discussion of the received view on the PU made clear, one point of contention in
interpreting Bolzano’s work on the infinite is whether (and to what extent) the principles that
guide his computations with infinite quantities mirror those later used by Cantor. While part-
whole considerations play an important role in Bolzano’s [52] (in particular, §102 therein; cf.
[182, pp. 130-131], [184, pp. 624-625]), the discussion in Berg and Šebest́ık’s interpretations
has brought to light the issue of whether, on the whole, Bolzano’s treatment of infinite
quantities in the PU obeys the part-whole principle or not. Setting aside the issue of whether
an adoption of one-to-one correspondence is implicit in Bolzano’s §33 (something we will
come back to in Section 9.3), here we review §§20-24, which are usually taken to be Bolzano’s
discussion of one-to-one correspondence as an insufficient criterion for size equality of infinite
collections on the grounds of part-whole considerations.

Let us note first that some form of part-whole reasoning seems to be present in the
very notion of “being greater/smaller than” employed in the PU, as this passage from §19
witnesses:

Even with the examples of the infinite considered so far it could not escape our
notice that not all infinite multitudes are to be regarded as equal to one another
in respect of their plurality, but that some of them are greater (or smaller) than
others, i.e., another multitude is contained as a part in one multitude (or on the
contrary one multitude occurs in another as a mere part). ([46] §19)
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Here, Bolzano glosses the claim that some multitudes are greater than others as some
containing others as a part. A similar use of the part-whole principle is to be found in §20,
when Bolzano compares the size of the collection of quantities smaller than 5 and the size of
the collection of those smaller than 12:

If we take two arbitrary (abstract) quantities, e.g. 5 and 12, then it is clear
that the multitude of quantities which there are between zero and 5 (or which
are smaller than 5) is infinite, likewise also the multitude of quantities which are
smaller than 12 is infinite. And equally certainly the latter multitude is greater
since the former is indisputably only a part of it. ([46] §20)

This suggests that Bolzano’s writings commit him to upholding the part-whole principle
even when it comes to the comparison of infinite quantities, because the principle is part
and parcel of the definition of the order relation among quantities.

Having thus established Bolzano’s commitment to part-whole, let us also show his explicit
rejection of what nowadays we call one-to-one correspondence as a sufficient criterion for
equality of size for infinite collections:

I claim that two multitudes, that are both infinite, can stand in such a relationship
to each other that, on the one hand, it is possible to combine each thing belonging
to one multitude, with a thing of the other multitude, into a pair, with the result
that no single thing in both multitudes remains without connection to a pair,
and no single thing appears in two or more pairs, and also, on the other hand it
is possible that one of these multitudes contains the other in itself as a mere part,
so that the pluralities which they represent if we consider the members of them
all as equal, i.e., as units, have the most varied relationships to one another. ([46]
§20)

In the quote above, Bolzano remarks that it is possible for two infinite multitudes to both
be in a one-to-one correspondence with each other and be related as a part to its whole. This
state of affairs can have the appearance of a paradox, because in the finite case checking
whether two multitudes can be put into one-to-one correspondence suffices to determine
whether they have the same number of terms, whereas the part-whole relation implies that
one multitude must be greater than the other. Bolzano insists that the part-whole relation
is what determines the greater-than relation, too:

Therefore merely for the reason that two multitudes A and B stand in such a
relation to one another that to every part a occurring in one of them A, we can
seek out according to a certain rule, a part b occurring in B, with the result that
all the pairs (a + b) which we form in this way contain everything which occurs
in A or B and contains each thing only once—merely from this circumstance we
can—as we see—in no way conclude that these two multitudes are equal to one
another if they are infinite with respect to the plurality of their parts (i.e., if
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we disregard all differences between them). But rather they are able, in spite
of that relationship between them that is the same for both of them, to have a
relationship of inequality in their plurality, so that one of them can be presented
as a whole, of which the other is a part. ([46] §21)

This consideration is illustrated in the preceding §20 by way of two examples, or, two
versions of the same example, which considers the two intervals (0, 5) and (0, 12) on the real
line and concludes that, since (0, 5) is only a part of (0, 12), (0, 12) contains more quantities
(or more points) than (0, 5).

The reason why one has to drop the apparently successful one-to-one correspondence
criterion when considering infinite quantities is that what makes one-to-one correspondence
work in the finite case is precisely that one has to do with finite collections; hence at some
point the process of pairing off each element from the collection with a natural number
stops, whereas in the infinite case there is no last element, so the pairing-off never ends.
Hence the need for a different criterion for size comparison (PU §22). Bolzano gives a brief
explanation of how one-to-one correspondence does not suffice to reach conclusions regarding
comparisons of infinite sums in §24:

[From the proposition of §20] follows as the next consequence of it that we may
not immediately put equal to one another, two sums of quantities which are equal
to one another pair-wise (i.e., every one from one with every one from the other),
if their multitude is infinite, unless we have convinced ourselves that the infinite
plurality of these quantities in both sums is the same. That the summands
determine their sums, and that therefore equal summands also give equal sums,
is indeed completely indisputable, and holds not only if the multitude of these
summands is finite but also if it is infinite. But because there are different infinite
multitudes, in the latter case it must also be proved that the infinite multitude of
these summands in the one sum is exactly the same as in the other. But by our
proposition it is in no way sufficient, to be able to conclude this, if in some way
one can discover for every term occurring in one sum, another equal to it in the
other sum. Instead this can only be concluded with certainty if both multitudes
have the same basis for their determination. ([46] §24)

Bolzano considers here the case of a one-to-one correspondence between the terms of two
infinite sums S1 and S2 that would map each term in S1 to an equal term in S2. Since the
existence of a one-to-one correspondence is not enough to guarantee that S1 and S2 have
the same number of terms, one cannot conclude that S1 and S2 are equal, unless the two
sums also have the same “basis for their determination”. This phrase does not have, to our
knowledge, a standard interpretation in Bolzanian scholarship. Šebest́ık [238, p. 460] does
attempt an explanation of what the “determining elements” (bestimmende Stücke) of an
object can be, according to Bolzano. However, we are not convinced that the explanation
offered there extends to a notion of determination for mathematical entities. For now, we
simply draw the reader’s attention to the fact that Bolzano concludes his discussion of the
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one-to-one correspondence criterion with a methodological point about infinite sums which
plays a crucial role in §32 and §33 (see Section 9.3.2 and Section 9.3.3 below).

To sum up, in this section we have presented what we take to be the received view on
Bolzano’s calculation of the infinite, and shown that it relies on the two theses (Sets) and
(Set-PW). We have argued that the existence of various notions of collections in Bolzano’s
framework puts some pressure on (Sets), as it does not seem obvious that any of Bolzano’s
notions closely matches our modern notion of set. Regarding (Set-PW) we have shown
how Bolzano appeals in §§20-24 to part-whole reasoning in the context of determining size
relationships between certain infinite collections. However, we also noted that, by §24,
Bolzano has pivoted from discussing sufficient criteria for the equality of size of two infinite
collections to discussing sufficient criteria for the equality of two infinite sums. As we will
argue in the next section, this is a crucial shift in perspective that is missed by the standard
interpretation of Bolzano’s calculation of the infinite. We now turn to a close analysis of the
text and to our arguments in favour of a different reading of [46] §§29-33.

9.3 Bolzano’s Calculation of the Infinite

As discussed in the previous section, by §24 Bolzano has established the following facts about
infinite multitudes and pluralities:

1. Some infinite multitudes are greater than others “with respect to their plurality” (§19).

2. Two infinite multitudes can both be related as part and whole and be in a one-to-one
correspondence (§20).

3. One-to-one correspondence is not sufficient to determine equality of infinite multitudes
(§§21-22).

4. In the case of comparing two infinite sums, if one wants to conclude that they are
equal, one needs to make sure both that there are as many summands in one as there
are in the other and that each term from one sum is equal to the corresponding one in
the other sum (§24).

These are the “basic rules” (Grundregeln, [46] §28) which govern a proper handling of the
infinite in mathematics. Bolzano is aware however that his readers might still be skeptical
towards the possibility of computing with the infinite, so he explains what he means by
“calculation of the infinite” in the following passage:

Even the concept of a calculation of the infinite has, I admit, the appearance
of being self-contradictory. To want to calculate something means to attempt a
determination of something through numbers. But how can one determine the
infinite through numbers—that infinite which according to our own definition
must always be something which we can consider as a multitude consisting of
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infinitely many parts, i.e., as a multitude which is greater than every number,
which therefore cannot possibly be determined by the statement of a mere num-
ber? But this doubtfulness disappears if we take into account that a calculation
of the infinite done correctly does not aim at a calculation of that which is de-
terminable through no number, namely not a calculation of the infinite plurality
in itself, but only a determination of the relationship of one infinity to another.
This is a matter which is feasible, in certain cases at any rate, as we shall show
by several examples. ([46] §28)

Bolzano’s calculation of the infinite is minimal. He does not purport to have extended
the concept of number so as to introduce infinite numbers (pace Cantor—see Section 9.2
above),8 but he aims to study the relationship—that is, the ratios as well as the “greater
than” relation—between two infinities whenever this can be done in a sound way, that is, in
accordance with the principles he has argued for in the preceding portion of the PU. Armed
with such principles, Bolzano can show his reader how to properly handle some apparently
paradoxical results in mathematics, starting from the general theory of quantity.

9.3.1 Computing with Infinite Sums

The first computations with infinite quantities are found in earnest in §29; as we will see,
these quantities are always introduced and treated as sums.

Bolzano introduces the symbol
0

N through a symbolic equation—that is, an equation
which establishes that the reference of two signs is the same (cf. definition in Grössenlehre,

[45, pp. 131-132]) —to stand for the Menge of all natural numbers. He then introduces
n

N

to stand for the Menge of all natural numbers strictly greater than n ∈ N.
1

S, on the other

hand (which is first introduced as
0

S), is the symbol for the sum of all natural numbers.
In Bolzano’s words:

[. . . ] if we denote the series of natural numbers by

1, 2, 3, 4, ..., n, n+ 1, . . . in inf.

then the expression

1 + 2 + 3 + 4 + · · · + n+ (n+ 1) + . . . in inf.

will be the sum of these natural numbers, and the following expression

10 + 20 + 30 + 40 + · · · + n0 + (n+ 1)0 + . . . in inf.

8As Mancosu [182, p. 163] notes, this refusal to admit infinite numbers was not unique to Bolzano’s
position but was shared also by Dedekind [70] and perhaps Schröder [232].
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in which the single summands, 10, 20, 30, . . . all represent mere units, represents

just the number [Menge] of all natural numbers. If we designate this by
0

N and
therefore form the merely symbolic equation

10 + 20 + 30 + 40 + · · · + n0 + (n+ 1)0 + . . . in inf. =
0

N (1)

and in the same way we designate the number [Menge] of natural numbers from

(n+ 1) by
n

N , and therefore form the equation

(n+ 1)0 + (n+ 2)0 + (n+ 3)0 + . . . in inf. =
n

N (2)

Then we obtain by subtraction the certain and quite unobjectionable equation

10 + 20 + 30 + . . .+ n0 = n =
0

N −
n

N (3)

This passage mentions several notions that will be central to the remainder of our analysis
of Bolzano’s PU, hence we will briefly go over them now.

First is the notion of “series” (Reihe), which Bolzano defines ([46] §7) as a collection of
“terms” (Glieder) a, b, c, d, . . . such that for each term c there is exactly another term d such
that, by using the same rule for any pair c, d we can obtain (determine, bestimmen) c by
applying said rule to d, or the inverse rule to c to obtain d instead. The natural numbers,
that is, the “whole numbers” (ganze Zahlen) are defined as a series of objects of a certain
kind A where the first term is a unit of kind A and the subsequent terms are sums obtained
by adding one unit to their immediate predecessor.

The second concept we want to introduce is that of Gliedermenge (alternatively expressed
by Bolzano as Gliedermenge, Menge von Gliedern or Menge der Glieder). As one can infer
from [46] §9, Bolzano considers any number series to have a Gliedermenge. Because a Glie-
dermenge is said to be sometimes greater, sometimes smaller, it seems reasonable to assume
that this Gliedermenge is, if not a quantity properly said, at least something that can be
quantified, i.e., treated as a quantity. In the passage we quote from §29, Bolzano introduces
first the series of all natural numbers, then their sum and the Menge of such a sum. Given
what was just said about series and Gliedermenge thereof, this occurrence of the word Menge
should be read as a shorthand for Gliedermenge or one of its synonyms.

This occurrence of Menge is therefore at odds with any interpretation of Bolzano’s defi-
nition of “multitude”(Menge) that sees it as (almost) synonymous with “set” in the modern
sense. If the concept of multitude is virtually identical with that of set, then the multitude of
1 +2 + 3+ 4 + . . . in inf. should be just 1, 2, 3, 4, . . . in inf. and not 1 +1 +1 + 1+ . . . in inf.
For the sake of preserving coherence in Bolzano’s work in [46] §§29-33 it is therefore sensible
to insist that “Gliedermenge” is a quantitative concept. As a consequence, since we believe
that translating Menge here as “set”, like Steele [0], or “multitude”, as we would have to
if we were to translate Menge rigidly, obfuscates this quantitative aspect of the concept of
“Gliedermenge”, we prefer to respect Russ’s (2004) choice and translate Menge as “number”
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when it seems to be short for Menge der Glieder or similar. As long as it is clear that we do
not think Bolzano is introducing here genuine infinite numbers (in the sense of the German
Zahlen), we will translate Menge as “number” in these contexts.

0

N thus denotes the number (Menge) of all natural numbers, and for any natural number

n,
n

N represents the size of the collection of all natural numbers strictly greater than n. This
is all written as follows:

10 + 20 + 30 + 40 + · · · + n0 + (n+ 1)0 =
0

N (4)

(n+ 1)0 + (n+ 2)0 + · · · =
n

N (5)

The 0th power works in the standard way here, meaning n0 = 1 for any natural number n.
So for instance the size of the set of all natural numbers up to n is 10+20+30+40+· · ·+n0 =
1 + 1 + 1 · · · + 1 = n.

Having defined
0

N and
n

N , Bolzano proceeds to show how they can be added or multiplied
with one another thanks to distributivity. One then obtains a hierarchy of infinite quantities
of ever-increasing order :

10.
0

N + 20.
0

N + 30.
0

N + . . . in inf. = (
0

N)2

10.(
0

N)2 + 20.(
0

N)2 + 30.(
0

N)2 + . . . in inf. = (
0

N)3

etc.

The notion of quantities being of different orders of infinity does not start with Bolzano
and already existed in the context of infinitesimal calculus.9 However, we will argue in
Section 9.5 that Bolzano’s computation of the product of infinite quantities is in fact very
original and hence very significant for a comparison with Cantor’s theory of the infinite
(which we carry out in Section 9.6).

Having looked carefully at Bolzano’s first computations with infinite sums, we now pro-
ceed to our next piece of evidence for interpreting Bolzano as primarily interested in infinite
sums, namely, §32 of the PU.

9.3.2 Grandi’s Series

In [46] §32, Bolzano criticizes a report by a certain M.R.S. in Gergonne’s Annales [176] which
purports to prove that the infinite sum

a− a+ a− a+ a . . . (1)

9See for example the debate between Leibniz and Nieuwentijt on the existence of such higher-order
infinitesimal, as presented in [185, pp. 160-164].
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has value a
2
.

The series Bolzano focuses on is sometimes called Grandi’s series after the Italian 18th
century monk who first tried to compute a value for this infinite sum. Kline [157] reports
that this series was an object of great interest for mathematicians throughout the 19th cen-
tury, that “caused endless dispute”[157, pp. 307-308]. It is not necessary for our summary
of Bolzano’s views to rehash the whole debate surrounding Grandi’s series (and other diver-
gent series) in great detail, though it is perhaps worth mentioning that Grandi’s opinion,
that the value of this series should be a

2
, was shared also by Leibniz [157, p. 307]. Kline

also reports that Leibniz’s argument—which differed from Grandi’s—was accepted by the
Bernoulli brothers. This acceptance notwithstanding, by the time Bolzano is active there is
still no clear consensus on how to treat what we would now consider divergent series. For
Bolzano and his contemporaries, the question of how to assign a value to infinite sums such
as Grandi’s series was still a live question, one which would later lead some mathematicians
(e.g., the Italian Cesàro) to define different sorts of summation.

It is therefore not surprising that one should come across a piece of writing such as
M.R.S.’s. M.R.S. purports to prove that the value of Grandi’s series is a

2
via an algebraic

reasoning, as opposed to Leibniz’s more “probabilistic” (per Kline) approach—and presum-
ably, as opposed to Grandi’s geometric approach, too. Here we quote M.R.S.’s own exposition
of his proof:

The summation of the terms of a geometric progression decreasing into the infinite
can be easily deduced from the above; in fact, if one has

x = a+ aq + aq2 + aq3 + aq4 + . . . ,

one can then write

x = a+ q(a+ aq + aq2 + aq3 + . . . ),

then x = a + qx or (1 − q)x = a, hence x = a
1−q . As per the remarks in (5), the

equation

x = a− a+ a− a+ a− a+ . . .

could not help in the approximation of x, as it successively gives the approximate
values a, 0, a, 0, a, 0, . . . among which the differences are constant; but, without
resorting to Leibniz’s subtle reasoning, one can immediately see that this equation
comes to

x = a− x,

hence x = 1
2
a.10 [176, pp. 363-364]

10Original French: La sommation des termes d’une prógression géométrique décroissante à l’infini se déduit
bien simplement de ce qui précède; si en effet on a

x = a+ aq + aq2 + aq3 + aq4 + . . . ,
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As the text shows, M.R.S.’s treatment of Grandi’s series has the virtue of treating it uniformly
with other (converging) geometric series. Bolzano however is not impressed with M.R.S.’s
algebraic manipulations and sees two mistakes in them. Bolzano spells out M.R.S.’s argument
as follows. First, he sets

x = a− a+ a− a+ a− . . . in inf. (1)

Then, one can rewrite (1) as

a− (a− a+ a− a+ . . . in inf.) (2)

This yields x = a − x and therefore x = a
2
. Bolzano points out that while x is defined as

a− a+ a− a+ a− . . . in inf., the expression in (2) is not identical with it, because it does
not have the same Gliedermenge as a−a+a−a+a− . . . in inf. in (1). The first a is missing
so that the correct substitution ought to be the tautological x = a+ (x− a).

Even though Bolzano does not pause to point this out to the reader, M.R.S. is making
exactly one of those mistakes Bolzano was cautioning against in §24: he has assumed equality
of two quantities arising from summing up two series without checking that the two series
have the same Gliedermenge. Note that here again Bolzano seems to be using Menge in
a way that is closer to the meaning of “number” than to that of “set”, and Russ’s (2004)
translation accordingly translates the term as “number”. While again one should not take
the translation literally, we agree with the attempt to capture a more quantitative use of
Menge in this kind of context.

The second criticism Bolzano levels at M.R.S.’s argument is that it presupposes that
a − a + a − a + a . . . refers to an actual quantity, whereas Bolzano argues that it does
not. The argument Bolzano gives for this position is an example of Bolzano putting to
(mathematical) use his logico-philosophical apparatus: Grandi’s infinite sum is a spurious
one because it does not display the sum property ([46] §31)

(A+B) + C = A+ (B + C) = (A+ C) +B.

If one tries to rewrite Grandi’s sum according to Bolzano’s equations, the left-hand side
becomes (a− a) + (a− a) + . . . in inf., which according to Bolzano equals 0, whereas if one
rearranges the parentheses as a+(−a+a)+(−a+a)+(−a+a)+ . . . in inf., one obtains a as
a result. Thus indeed Grandi’s expression does not satisfy Bolzano’s definition of sum. Tapp
[48, p. 193] notes here that Bolzano’s criterion is quite similar to Riemann’s result [3, p. 197]
which states that every infinite series is absolutely convergent if and only if it is preserved
under permutation (an absolutely convergent series is one in which the series of the absolute
values of its terms also converges). It is unfortunate though that Bolzano’s criterion taken

literally is too strong, as it seems to be also implying that
0

N does not designate an actual

on pourra d’abord écrire
x = a+ q(a+ aq + aq2 + aq3 + . . . ),

puis x = a+ qx ou (1− q)x = a d’où x = a
1−q .
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quantity (see Section 9.4 below).

We take this section of the PU as helping our case that Bolzano’s work in §§29-33 should
not be read as an imperfect set theory. Indeed, §32 is an example of Bolzano’s principles
for the computations of the infinite at work: a result published by a fellow mathematician
about the computation of infinite sums is rejected on the basis of a violation of one of these
principles. However most other commentators do not devote particular attention to §32.
One notable exception is Steele, who thus summarizes §32: “Some errors in the pretended
summation of Σ(−1)na, which is a symbol not expressing any true quantity at all” [0, p. 66].
Even more intriguingly, he mentions Grandi’s series and the whole controversy surrounding
it when introducing the historical context of the PU [0, pp. 3-4]. Yet it is as if this does not
leave a trace when giving an overall appraisal of the contributions of the PU, or of Bolzano’s
contributions to mathematics and its philosophy. Bolzano is still presented as someone who
almost anticipated Cantorian set theory, except he did not.

9.3.3 The Sum of all Squares

In the previous section, we argued that some passages of the PU offer textual evidence
for the claim that Bolzano’s work on the sizes of infinite collections should be understood
as about sizes of infinite sums, that is, infinite series in modern terminology, rather than
as about sizes of infinite countable sets. We now make a theoretical case as per why this
interpretation is also the most charitable one.

Just following the discussion of §32, Bolzano writes that

[. . . ] if we wish to avoid getting onto the wrong track in our calculations with
the infinite then we may never allow ourselves to declare two infinitely large
quantities, which originated from the summation of the terms of two infinite
series, as equal, or one to be greater or smaller than the other, because every
term in the one is either equal to one in the other series, or greater or smaller
than it. ([46] §33)

So, for two infinite sums α and β, it is not the case that, say, α > β if for every term of
α there is one in β that is strictly smaller.

He then continues:

We may just as little declare such a sum as the greater just because it includes all
the terms of the other and in addition many, even infinitely many, terms (which
are all positive), which are absent in the other.

As an example of this principle in action, Bolzano asks us to consider the two series

1 + 4 + 9 + 16 + . . . in inf. =
2

S

and

1 + 2 + 3 + 4 + 5 + . . . in inf. =
1

S.
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According to Bolzano, “no one can deny that every term of the series of all squares”—that

is,
2

S—“because it is also a natural number, also appears in the series of first powers of the

natural numbers and likewise in the latter series
1

S, together with all the terms of
2

S there

appear many (even infinitely many) terms which are missing from
2

S because they are not

square numbers.” [46, §33] So, the series
1

S and
2

S are such that the terms of the latter all
appear in the former, and the former also includes infinitely many terms that the second
series does not include. The next step in Bolzano’s argument is to claim the following:

Nevertheless
2

S, the sum of all square numbers, is not smaller but is indisputably

greater than
1

S, the sum of the first powers of all numbers. [46, §33]

Bolzano argues for this point by claiming two things: first, that “in spite of all appearance
to the contrary, the multitude of terms [Gliedermenge] in both series (not considered as sums,
and therefore not divisible into arbitrary multitudes of parts) is certainly the same.” Second,

that with the exclusion of the first term, all terms of
2

S are greater than the corresponding

term in
1

S. Since then the two series have the same amount of terms, but the terms of
2

S

are greater than all but one of the terms in
1

S, Bolzano concludes that
2

S is greater than
1

S, because it is possible to termwise subtract
1

S from
2

S and one would still have a positive
remainder as a result:

But if the multitude of terms [Menge der Glieder ] in
1

S and
2

S is the same, then

it is clear that
2

S must be much greater than
1

S, since, with the exception of

the first term, each of the remaining terms in
2

S is definitely greater than the

corresponding one in
1

S. So in fact
2

S may be considered as a quantity which

contains the whole of
1

S as a part of it and even has a second part which in itself

is again an infinite series with an equal number of terms as
1

S, [. . . ] [46, §33]

As we can see, in §33 Bolzano repeats twice the idea that
1

S and
2

S have the same
Gliedermenge (translated by Russ as “multitude of terms”). He is committed then to the
claim

(Terms) The Gliedermenge in series
1

S and
2

S is the same.

This is often [see, e.g., 26, 27, 238] interpreted as a sign that Bolzano was using here

one-to-one correspondence to compare the size of the sets corresponding to
1

S and
2

S, namely
N, the set of all natural numbers, and N(2), the set of all squares, respectively. But if this is
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the case, then Bolzano is essentially violating part-whole as applied to sets, the way Šebest́ık
suggests (cf. Section 9.2).

§29 and §33 taken together raise the question of how, if at all, Bolzano envisioned to
generalize his notion of Gliedermenge from the collection of all natural numbers to any
infinite subcollection thereof—or what would be a “Bolzanian enough” way of doing this.

Let us take a step back and reconsider what Bolzano does in §29. Recall that
0

N =
10 + 20 + 30 + 40 + . . . in inf., where each n0 is one unit, as Bolzano reminds us. Assuming

that
0

N is what Bolzano intended to be the size of N just in the same way as cardinals are
considered to capture set size in modern set theory, the question is how to extend Bolzano’s
notion of size of N to infinite (proper) subsets of N. Given the importance that the example
of squares has in Bolzano scholarship (see our Section 9.2), let us try to answer the question
for N(2), specifically.

Per §29, the procedure to obtain the Menge (of terms, von Gliedern) of a series α :=
α1, α2, α3 . . . is to first consider it as a sum

α1 + α2 + α3 + . . . in inf.,

and then raise each term to the power of 0. The number of terms in α is then identified

with the value of the infinite sum
α

N = α0
1 + α0

2 + α0
3 + . . . in inf. This means that if we list

all square numbers as sq := 1, 4, 9, 16, 25, 36, . . . , the number of terms (hence the number of
square numbers) should be identified with

sq

N = 10 + 40 + 90 + 160 + 250 + 360 + . . . in inf.

Now notice that if we apply the same procedure to the series of terms of
2

S, we obtain exactly

the same. Since
2

S as a sum is
2

S itself, i.e.,

1 + 4 + 9 + 16 + 25 + 36 + . . . in inf.,

raising each term to the power of 0 yields

10 + 40 + 90 + 160 + 250 + 360 + . . . in inf. =
sq

N.

Thus the number of square numbers is the same as the number of terms in
2

S. But since

Bolzano endorses (Terms), the number of terms in
2

S is equal to the number of terms in
1

S, which is itself computed as 10 + 20 + 30 + . . . in inf. =
0

N . From this it immediately

follows that
sq

N and
0

N have the same Gliedermenge. Moreover, since any term in each sum
is regarded as a unit, both sums also have equal terms. Now by Bolzano’s remark (PU

§24) that “equal summands also give equal sums”, we must therefore conclude that
sq

N =
0

N .
But if the first one is the number of squares and the second one is the number of natural
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numbers, then under the standard (set theoretic) interpretation those two sets have the same
size, which directly contradicts the part-whole principle. So it seems that we have reached
a contradiction similar to the one highlighted by Šebest́ık [238, pp. 463-464].

The first reaction would be of course to bite the bullet and accept that perhaps Bolzano
did not realize that §29 and §33 would lead to a contradiction, and what is more, to a
violation of part-whole. This seems to be the line that a set theoretic interpretation forces

upon the reader. For, if
0

N , being the Gliedermenge of
1

S, is somehow also the size of N, and

the Gliedermenge of
2

S is also the size of N(2), then of course Bolzano’s remark in §33 that
1

S

and
2

S have the same Gliedermenge cannot be reconciled with part-whole as applied to sets
(PW).

A second option would be to reject the generalization of the procedure of §29 to arrive

at
0

N and argue that there is no analogue to
0

N for
2

S. One could defend this position by
pointing out that, in §28, Bolzano only commits to be able to sometimes compute with the
infinite—not always. In particular, he does not commit to be able to determine the size
of every subset of N. We believe however that this answer is not entirely satisfactory. For
one, this solution might feel ad hoc, because even though Bolzano may have not intended
for the procedure of §29 to be applied indiscriminately to any set composed only of natural
numbers, there is nothing intrinsic to the procedure itself that bars such a generalization
from being carried out. Moreover, while §29 does not explicitly mention a general procedure
for determining the Gliedermenge of an infinite sum, determining when two sums have the
same Gliedermenge is necessary to determine whether one is greater than another, as Bolzano
himself notes (see §§24 and 32). Since Gliedermengen are Mengen, multitudes, it is natural
to ask whether part-whole reasoning applies to, or is even compatible with, the procedure
of determining when the Gliedermengen of two sums are equal. In a way, then, this second
option does not solve the theoretical problem raised by Bolzano’s work so much as skirt
around it via a “monster-barring” move.

There is a third option though, which hinges upon a closer reading of §29. Indeed, when

computing quantities of the form
n

N , which for him corresponds to the number of natural
numbers greater than n, Bolzano does seem to apply the procedure sketched above, namely
writing down the sum (n+ 1) + (n+ 2) + (n+ 3) + . . . in inf., and then raising each term to
the 0th power, thus obtaining the sum (n+1)0 +(n+2)0 +(n+3)0 + . . . in inf.. However, if,

as evidenced again in §33, the difference of two infinite sums is computed termwise,
0

N −
n

N
should be computed as:

(10 − (n+ 1)0) + (20 − (n+ 2)0) + . . . in inf.

But each term in this sum is the difference of a unit and a unit, so it equals 0. Hence Bolzano

should conclude
0

N −
n

N = 0. Instead, Bolzano writes that

0

N −
n

N = 10 + 20 + . . .+ n0,
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which strongly suggests that Bolzano thinks that
0

N −
n

N is equal to the infinite sum

(10) + (20) + . . .+ (n0) + ((n+ 1)0 − (n+ 1)0) + ((n+ 2)0 − (n+ 2)0) + . . . in inf.

But this in turn suggests that a more accurate way of representing
n

N is in fact as

+ + ...+︸ ︷︷ ︸
n times

+(n+ 1)0 + (n+ 2)0 + . . . in inf.

In other words,
n

N is not obtained by listing all the numbers above n in an infinite sum and
raising each of them to the power of 0, but is instead obtained by erasing the first n terms

from the sum corresponding to
0

N . This procedure clearly changes the number of terms in

the resulting sum. In order to compare
n

N to
0

N , we must therefore make sure first that the

two sums have the same Gliedermenge, which implies adding n terms to
n

N which act, quite
literally, as the “ghosts of departed quantities”.

This reading of Bolzano’s text now gives a way out of the problem of the sum of all
squares presented above. Let us consider again the example of N(2). If we want to compute

its size as a subset of N, the way to obtain said size is first to compute that of N, namely,
0

N .

We then remove from
0

N the elements whose base is not an element of N(2), thus obtaining

SQ

N = 10 + + + + 40 + + + + + 90 + + + + + + + 160 + . . . in inf.

The difference between
sq

N and
SQ

N is that, in the former, 40 is the second term of the sum,

while it is the fourth term in
SQ

N—and so on. The idea would be then that such an erasure
procedure does change the number of elements from one set to the other, because N(2) con-
sidered as a subset of N has a different size from when considered as the set underlying the

sum
2

S. Note that this distinction between
sq

N and
SQ

N is not available to a proponent of the re-

ceived view: if
sq

N and
SQ

N are sets, i.e. entirely determined by their elements, then as the two
sums clearly have the same terms, they should also be equal to one another. By contrast,
the difference between the two sums is easy to express in our interpretation of Bolzano’s

computations (see next section), because
sq

N would correspond to a countable sequence with

graph {⟨1, 10⟩, ⟨2, 40⟩, ⟨3, 90⟩, . . . } whereas
SQ

N has graph {⟨1, 10⟩, ⟨2, 0⟩, ⟨3, 0⟩, ⟨4, 40⟩, . . . }. In-
cidentally, Tapp [48, p. 191] suggests a similar idea for the interpretation of §29, raising the
question whether such an interpretation can actually lead to a fully-fledged coherent reading
of the PU. Our next two sections address that question.
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9.4 An Ultrapower Construction Modelling Bolzano’s

Arithmetic of the Infinite

Our goal in this section is to offer a model of Bolzano’s computations with infinite sums.
More precisely, we interpret Bolzano’s talk of infinite sums and operations between them as
statements about a certain model and show that all of Bolzano’s positive results as summa-
rized in the previous section also hold in our model. Additionally, we argue that our model
accurately represents Bolzano’s reasoning, in that several of the proofs we provide closely
match Bolzano’s own arguments in the PU.

Our main idea is to associate to each infinite sum a corresponding infinite quantity. Our
proposal here is closely related to the theory of numerosities ([18]; [more recently 22, Ch. 17]),
in which the numerosity of a set of natural numbers is defined as an element in an ultrapower
of N. However, since our focus is on assigning infinite quantities to certain infinite sums of
integers, and not on assigning numerosities to sets of natural numbers, our proposal will
be slightly different. Part of our model is in fact closer to the construction presented by
Trlifajová [255, pp. 20-24], which we will discuss in Section 9.4.4. In order to do that, we
first need to outline our own proposal.

9.4.1 The Basic Framework

We start by representing Bolzano’s infinite sums of integers as countable sequences of inte-
gers. Formally, we write ω+ for the set of positive natural numbers and Z for the set of all
integers, and we consider functions from ω+ → Z. To any infinite sum a1+a2+a3+. . . in inf.,
we associate the function f : i 7→ ai, i.e., the function that maps each positive natural num-
ber i to the ith summand of the infinite sum. As is customary, we will often identify a
function f : ω+ → Z with the countable sequence of integers (f(1), f(2), f(3), . . . ). In the
case of a Bolzanian sum α which has a different Gliedermenge because it has been obtained
from another sum by erasing certain terms, we treat the erased terms as 0 and obtain the

function associated to α accordingly. For example, since the sequence associated to
0

N is

(1, 1, 1, . . . ), the sequence associated to
2

N is (0, 0, 1, 1, . . . ).

We consider the structure Z := (Z,+,−, 0, 1, <) of integers with their usual ordering and
addition operation, and take an ultrapower ZU of this structure by a non-principal ultrafilter
on ω+ (i.e., a non-empty collection U of infinite subsets of ω+ closed under supersets and
finite intersections and such that for any A ⊆ ω+, precisely one of A, ω+ \A belongs to U ).
Ultrapowers are standard constructions in mathematical logic, and a detailed presentation
of their theory is beyond the scope of this paper. Instead, we refer the reader to Bell and
Slomson [11, Chs. 5, 6] for a standard introduction to ultrapowers and ultraproducts, and
simply list some crucial facts below:

Lemma 9.4.1.
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1. Elements in the ultrapower ZU are equivalence classes of functions from ω+ to Z.
For any f : ω+ → Z, we write its corresponding equivalence class as f ∗. For any
f, g : ω+ → Z, g∗ = f ∗ if and only if f and g are equal for U-many elements in ω+,
i.e., {i ∈ ω+ : f(i) = g(i)} ∈ U.

2. There is a canonical elementary embedding of Z into ZU, obtained by mapping any
integer z to the equivalence class of the constant function ez : ω+ → Z sending any
i ∈ ω+ to z. It is customary to identify z with e∗z and to view Z as an elementary
substructure of ZU.

3. Addition and subtraction are defined in ZU. Given f, g : ω+ → Z, f ∗ + g∗ is the
equivalence class of the function h : ω+ → Z such that h(i) = f(i) + g(i) for any
i ∈ ω+. Similarly, f ∗ − g∗ is the equivalence class of the function h : ω+ → Z such
that h(i) = f(i) − g(i) for any i ∈ ω+.

4. Elements in ZU are linearly ordered. More precisely, given any f, g : ω+ → Z, we have
that ZU |= f < g if and only if {i ∈ ω+ : Z |= f(i) < g(i)} ∈ U.

5. Given any first-order formula φ(x1, . . . , xn) and any functions f1, . . . , fn : ω+ → Z, we
write ||φ(f ∗

1 , . . . , f
∗
n)|| for the set {i ∈ ω+ : Z |= φ(f1(i), . . . , fn(i))}.  Loś’s Theorem

states that for any φ(x1, . . . , xn) and any functions f1, . . . , fn,

ZU |= φ(f ∗
1 , . . . , f

∗
n) iff ||φ(f ∗

1 , . . . , f
∗
n)|| ∈ U.

6. As a direct consequence of  Loś’s Theorem, Z and ZU are elementarily equivalent.

An intuitive motivation for our use of an ultrapower of Z can be provided along the
following lines. As we have argued, we take Bolzanian infinite quantities to be infinite sums.
Given an infinite sum α, we may decompose α into a sequence of partial sums {αn}n∈ω+ ,
where, for any positive integer n, αn is the sum of the first n terms in α. Any such sum
can be seen as providing some partial information about α, and if α were a finite sum with
n terms, then αn would be α itself. However, since α is infinite, there is no last term of
α and no partial sum that would give us total information about α. In order to overcome
this difficulty, we must try to organize the partial information given by each partial sum of
the first n terms of α into a coherent whole. This is precisely the role that a non-principal
ultrafilter U on ω+ will play for us. One may think of U as a collection of properties of positive
integers that describe a natural number “at infinity”, distinct from all finite numbers, and
providing a vantage point from which all the partial sums of α form a coherent picture.
We therefore encourage the reader who may not be familiar with ultrapowers to keep the
following two principles in mind:

• Properties of an infinite sum α are those that are shared by “most” partial sums of
the form αn;

• What “most” partial sums means is determined by U. Given a set of positive integers
A, the set {αn : n ∈ A} contains “most” partial sums of α if and only if A ∈ U.
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Given a function f : ω+ → Z, we define the approximating sequence of f to be the
function σ(f) : ω+ → Z defined by σ(f)(i) =

∑i
j=1 f(j) for any i ∈ ω+. In the case of

a function f representing a Bolzanian sum α, the approximating sequence of f is simply
the sequence of partial sums (α1, α2, . . . ) mentioned above. Our proposal consists in iden-
tifying the (possibly infinite) quantity designated by a Bolzanian sum f with σ(f)∗, i.e.,
with the equivalence class of its approximating sequence. To simplify notation, we will write
f for the element σ(f)∗ in ZU, but we will sometimes abuse notation and write f(i) for σ(f)(i).

We are now able to represent all infinite sums and infinite quantities discussed by Bolzano,
except products of infinite quantities, which we will discuss in Section 9.5. As outlined above,
the procedure consists in turning a Bolzanian infinite sum into a countable sequence of in-
tegers, to which (the equivalence class of) an approximating sequence is then associated.
Additions and order relations between infinite sums are then determined by the ultrapower.
As an example, the infinite sum 10 + 20 + 30 + . . . in inf. is represented by the sequence
0

N := (1, 1, 1, . . . ), since, according to Bolzano, each summand of this sum is a unit. Con-

sequently, the approximating sequence of
0

N is the sequence σ(
0

N) = (1, 2, 3, . . . ), which

corresponds to the identity function on ω+, and
0

N is the equivalence class of the sequence
(1, 2, 3, . . . ). Similarly, infinite sums of the form (n + 1)0 + (n + 2)0 + . . . in inf., which

Bolzano writes as
n

N , are sums that according to him have n fewer terms than
0

N . We

therefore propose to model
n

N as a countable sequence in which the first n summands are

0, i.e., by the sequence (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 1, . . . ). The corresponding approximating sequence σ(
n

N)

is (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 2, . . . ). Equivalently, for any i ∈ ω+, σ(
n

N)(i) = i−̇n, where i−̇n = 0 if i ≤ n

and i− n otherwise.

A similar approach can be applied to represent the sums
1

S and
n

S, as well as Grandi’s
series of the form Ga = a − a + a − a + . . . in inf. For clarity’s sake, we have collected the

representation of
0

N,
n

N,
1

S,
n

S, and Ga in the table below:

Bolzanian Infinite Sum Sequence Representation approximating sequence Corresponding Function Infinite Quantity

10 + 20 + . . . in inf.
0

N = (1, 1, 1, 1, . . . ) σ(
0

N) = (1, 2, 3, 4, . . . ) σ(
0

N)(i) = i
0

N = σ(
0

N)∗

(n+ 1)0 + (n+ 2)0 + . . . in inf.
n

N = (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 1, . . . ) σ(
n

N) = (0, . . . , 0︸ ︷︷ ︸
n times

, 1, 2, 3, . . . ) σ(
n

N)(i) = i−̇n
n

N = σ(
n

N)∗

1 + 2 + 3 + . . . in inf.
1

S = (1, 2, 3, 4, . . . ) σ(
1

S) = (1, 3, 6, 10, . . . ) σ(
1

S)(i) =
∑i

j=1 j
1

S = σ(
1

S)∗

1n + 2n + 3n . . . in inf.
n

S = (1n, 2n, 3n, 4n, . . . ) σ(
n

S) = (1n, (1n + 2n), . . . ) σ(
n

S)(i) =
∑i

j=1 j
n

n

S = σ(
n

S)∗

a− a+ a− a+ . . . in inf. Ga = (a,−a, a,−a, . . . ) σ(Ga) = (a, 0, a, 0, . . . ) σ(Ga)(i) =

{
a if i is even

0 if i is odd
Ga = σ(Ga)

∗

Table 9.1: Representation of Bolzanian sums in ZU
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9.4.2 Modelling Bolzano’s Results about Infinite Sums

We now establish some results that echo Bolzano’s own computations. We will first give
proofs in our framework, then argue that those proofs are very close in spirit to Bolzano’s

arguments. We start with results about infinite sums of the form
n

N and
n

S:

Lemma 9.4.2.

1. For any natural numbers i, n, ZU |= i <
n

N.

2. For any natural number n, ZU |=
0

N−
n

N = n.

3. For any natural number i, ZU |= i
0

N <
1

S.

4. For any natural numbers i, n, ZU |= i
n

S <
n+1

S .

The first result asserts that all sums of the form
n

N are infinite, in the sense that they
are greater than any finite number. The second shows that our model preserves Bolzano’s
part-whole intuition that certain infinite sums might have fewer terms than some others
and that, as a consequence, two infinite quantities might differ by a finite quantity. Finally,
the last two correspond to Bolzano’s claim that some infinite quantities might be infinitely
greater than some others. Note that we write nα as a shorthand for the sum of α with itself
n times, which is defined in the ultrapower.

The proofs for all four items are all similar and can be thought of as “arguments by
cofiniteness”. In all cases, we show that ZU satisfies a formula φ by showing that ||φ|| is a
cofinite subset of ω+ and must therefore belong to U (since U is non-principal, it contains
no finite set, so it must contain all cofinite sets).

Proof.

1. Recall that, in ZU, the natural number i corresponds to (the equivalence class of)

the function ei : m 7→ i. Moreover, for any natural number n,
n

N(i) = i−̇n. Thus

||i <
n

N|| = {j ∈ ω+ : i < j−̇n} = {j ∈ ω+ : i + n < j}. Hence ||i <
n

N|| is a cofinite

subset of ω+ and belongs to U, from which it follows that ZU |= i <
n

N.

2. Again, in ZU, n is (the equivalence class of) the function en : m 7→ n. Moreover,
0

N−
n

N
is (the equivalence class of) the function f : ω+ → Z such that

f(i) =
0

N(i) −
n

N(i) = i− (i−̇n)

for any i ∈ ω+. Hence ||
0

N−
n

N = n|| = {i ∈ ω+ : i− (i−̇n) = n} = {i ∈ ω+ : i ≥ n}.

Hence ||
n

N =
0

N− n|| is a cofinite subset of ω+, and ZU |=
n

N =
0

N− n.
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3. Since i
0

N =
0

N + . . .+
0

N︸ ︷︷ ︸
i times

, we have that i
0

N(j) = i × j for any j ∈ ω+. On the other

hand,
1

S(j) =
∑j

k=1 k which, by Gauss’s summation theorem, is equal to j(j+1)
2

. Hence

||i
0

N <
1

S|| = {j ∈ ω+ : i× j <

j∑
k=1

k} = {j ∈ ω+ : i× j <
j(j + 1)

2
}

= {j ∈ ω+ : i <
j + 1

2
}.

Hence ||i
0

N <
1

S|| is cofinite, and ZU |= i
0

N <
1

S.

4. The argument is a simple generalization of the one above. Fix some natural numbers i

and n. Then for any k ∈ ω+, i
n

S(k) = i
∑k

j=1 j
n, and

n+1

S (k) =
∑k

j=1 j
n+1. This means

that (
n+1

S − i
n

S)(k) =
n+1

S (k) − i
n

S(k) =
∑k

j=1(j
n+1 − ijn) for any k ∈ ω+. Now since

(jn+1−ijn) is positive for any j > i and in fact assumes arbitrarily large positive values,

it follows that (
n+1

S − i
n

S)(k) is positive for any large enough k. Thus ||
n+1

S −
n

S > 0|| is
a cofinite subset of ω+. Now since Z |= ∀x∀y(x − y > 0 → y < x), by  Loś’s Theorem

we have that ZU |=
n+1

S − i
n

S > 0 → i
n

S <
n+1

S . Hence ZU |= i
n

S <
n+1

S for any natural
numbers i and n.11

Let us now compare the proofs above with Bolzano’s arguments in sections 29 and 33 of
PU. Bolzano does not explicitly argue for results (1) and (3): in §29, he seems to take for

granted that sums of the form
0

N and
n

N designate infinite quantities, and he simply writes

that
1

S is “far greater than
0

N”. However, the same section contains the following argument
for (2):

If we designate [the number of all natural numbers] by
0

N and therefore form the
merely symbolic equation

10 + 20 + 30 + . . .+ n0 + (n+ 1)0 + . . . in inf. =
0

N (1)

11A more direct proof of this result can also be given using more advanced resources from number theory.
It is a standard number-theoretic fact (using for example Faulhaber’s formula) that for any natural numbers

k, n,
∑k

j=1 j
n is a polynomial of degree n+ 1 in k, with leading term 1

n+1k
n+1. Thus i

n

S(k) is a polynomial

in k of degree n + 1 with leading term i
n+1k

n+1, while
n+1

S (k) is a polynomial in k of degree n + 2 with

leading term 1
n+2k

n+2. This means that i
n

S(k) <
n+1

S (k) for k sufficiently large, and thus ||i
n

S <
n+1

S || is a

cofinite subset of ω+.
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and in the same way we designate the number of natural numbers from (n + 1)
n

N , and therefore form the equation

(n+ 1)0 + (n+ 2)0 + (n+ 3)0 + . . . in inf. =
n

N, (2)

then we obtain by subtraction the certain and quite unobjectionable equation

10 + 20 + 30 + . . .+ n0 = n =
0

N −
n

N (3)

from which we therefore see how two infinite quantities
0

N and
n

N sometimes have
a completely definite finite difference.

As mentioned in Section 9.3, we read Bolzano as arguing that subtracting
n

N from
0

N

amounts to subtracting from each term i0 after the nth summand in
0

N the corresponding

term i0 in
n

N . The only terms left in
0

N −
n

N after this procedure are the first n sum-

mands in
0

N , from which it follows that
0

N −
n

N = n. In our setting,
0

N is represented by

(the equivalence class of) the sequence (1, 2, 3, . . . ), while
n

N is represented by the sequence

(0, . . . , 0︸ ︷︷ ︸
n times

, 1, 2, 3 . . . ), and
0

N−
n

N is the sequence obtained by subtracting
0

N from
n

N compo-

nentwise, i.e., the sequence (1, 2, 3 . . . , n, n, n, . . . ), which over U is equivalent to n. Similarly

to Bolzano’s argument, the difference between the two infinite sums
0

N and
n

N is determined
by the difference between matching summands (i.e., the difference is computed component-
wise) and is precisely n.

Finally, Bolzano does not explicitly argue for (4) in its full generality. In a very revealing
passage in §33, however, he gives a detailed argument for the n = 1 instance of (4) when

arguing that
2

S is infinitely greater than
1

S:

But if the multitude of terms [Menge der Glieder ] in
1

S and
2

S is the same, then

it is clear that
2

S must be much greater than
1

S, since, with the exception of

the first term, each of the remaining terms in
2

S is definitely greater than the

corresponding one in
1

S. So in fact
2

S may be considered as a quantity which

contains the whole of
1

S as a part of it and even has a second part which in

itself is again an infinite series with an equal number of terms [Gliederzahl ] as
1

S,
namely:

0, 2, 6, 12, 20, 30, 42, 56, . . . , n(n− 1), . . . in inf.,
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in which, with the exception of the first two terms, all succeeding terms are

greater than the corresponding terms in
1

S, so that the sum of the whole series is

again indisputably greater than
1

S. If we therefore subtract from this remainder

the series
1

S for the second time, then we obtain as the second remainder a series
of the same number of terms [Gliedermenge]

−1, 0, 3, 8, 15, 24, 35, 48, . . . , n(n− 2), . . . in inf.

in which, with the exception of the first three terms all the following terms are

greater than the corresponding ones in
1

S, so that also this third remainder is

without contradiction greater than
1

S. Now since these arguments can be contin-

ued without end it is clear that the sum
2

S is infinitely greater than the sum
1

S,
while in general we have

2

S−m
1

S = (1−m)+(22−2m)+(32−3m)+(42−4m)+. . .+(m2−m2)+. . .+n(n−m)+. . . in inf.

In this series only a finite multitude of terms [Menge von Gliedern], namely the
first m−1 are negative and the mth is 0, but all succeeding ones are positive and
increase indefinitely.

Let us note two features of Bolzano’s argument that are shared by our interpretation.
First, when determining whether one infinite sum is greater than another one, Bolzano
considers which terms in the first sum are greater than the corresponding terms in the second
one: this is reminiscent of the way relations between (equivalence classes of) functions are

determined in an ultrapower. Moreover, Bolzano’s reason to claim that
2

S is greater than
1

S, 2
1

S, 3
1

S, and so on, is that in all such cases, all but finitely many terms in
2

S are strictly

greater than the corresponding terms in any finite multiple of
1

S. This seems very similar to
the “argument by cofiniteness” that we presented above: even though the first terms of the

sum m
1

S might be greater than the first terms of the sum
2

S, the terms in the second sum
become greater than the corresponding terms in the first one from some point onwards. In

our setting, we prove that ZU |=
2

S > m
1

S by showing that
2

S(i) −m
1

S(i) > 0 for cofinitely
many natural numbers i. To establish this, it is enough to observe, like Bolzano, that i2−mi
is positive for any i > m, as this implies that the sum

∑i
j=1(j

2 − mj) must be positive
for i large enough. It is worth mentioning that, unlike in Bolzano’s argument, our “tipping

point”, i.e., the value i at which
2

S(i) becomes strictly greater than m
1

S(i) is not m + 1.

This is because
2

S and
1

S are the approximating sequences of the sequences (1, 2, 3, . . . ) and
(1, 4, 9, . . . ) respectively, while Bolzano is reasoning with the sequences of terms themselves.
We therefore conclude that the general proof given for 4 closely matches Bolzano’s own
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reasoning. In particular, our use of an ultrapower construction enables us to lift the following
criterion for the inequality of two integers:

∀m,n(m < n↔ n−m > 0) (9.1)

to a criterion for the inequality of two infinite sums:

∀α,β(α < β ↔ {i ∈ ω+ : (β −α)(i) > 0} ∈ U). (9.2)

In other words, in our formalism, in order to determine whether an infinite sum α is
greater than another infinite sum β, it is enough to compute their difference β − α, which
is defined termwise, and then determine whether the sum of the first i terms of β − α is
positive for U-many i. Our claim is that this reasoning is very close to the one displayed by

Bolzano in §33. Moreover, let us note that when he argues that
2

S is greater than m
1

S for any

m, because all but finitely many terms in the infinite sum
2

S−m
1

S are positive, Bolzano can
be seen as implicitly displaying a form of part-whole reasoning about sums, rather than sets:

m
1

S is smaller than
2

S because it is contained “as a part”. This is established by showing

that the difference
2

S −m
1

S is positive, and this latter fact is established in turn by noticing

that all but finitely many terms in
2

S − m
1

S are positive. Thus Bolzano can be read here
as providing a criterion for when the quantity designated by a sum α is a proper part of
the quantity designated by another sum β. We will come back to this point in Section 9.6,
and we will discuss its implication for the role that part-whole reasoning plays in Bolzano’s
computations with the infinitely large.

9.4.3 Grandi’s Series

Finally, let us address some of Bolzano’s remarks on Grandi’s series. As noted above, Bolzano
disagrees with the claim (attributed to M.R.S.) that the infinite sum

x = a− a+ a− a+ . . . in inf.

designates the quantity a
2
. In particular, Bolzano claims that the mistake in M.R.S.’s proof

is to treat the sum obtained by discarding the first term of x as −x. In our setting, x
designates the quantity Ga, i.e., the equivalence class of the sequence (a, 0, a, 0, . . . ). On the

other hand, following the strategy adopted for “truncated” infinite sums like
n

N, it seems
that the infinite sum obtained by discarding the first term in x should be interpreted as the

countable sequence (0,−a, a,−a, a, . . . ). If we write this sequence as
1

Ga, we then have that
1

Ga is the equivalence class of the sequence (0,−a, 0,−a, . . . ). But then, it follows that

ZU |= Ga −
1

Ga = a.
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Indeed, for any i ∈ ω+, Ga(i) = a if i is even and 0 if i is odd, while
1

Ga(i) = 0 if i is even

and −a if i is odd. Thus Ga(i) −
1

Ga(i) = a for any i. Hence our interpretation agrees with
Bolzano’s diagnostic of the fallacy in M.R.S.’s proof:

The series in the brackets obviously does not have the same multitude of terms
[Gliedermenge] as the one put = x at first, rather it is lacking the first a. There-
fore its value, supposing it could actually be stated, would have to be denoted
by x− a. But this would have given the identical equation

x = a+ x− a.

Moreover, recall that Bolzano raises a second, deeper argument against M.R.S.’s conclu-
sion: the infinite sum x cannot designate an “actual quantity”, since different ways of parsing
this infinite sum yield different conclusions regarding which quantity it allegedly designates.
According to Bolzano, the infinite sum

a− a+ a− a+ . . . in inf.

represents the same quantity as the sums

(a− a) + (a− a) + (a− a) + . . . in inf.

and
a+ (−a+ a) + (−a+ a) + (−a+ a) + . . . in inf.

But the first expression simplifies as

0 + 0 + 0 + . . . in inf.,

while the second one simplifies as

a+ 0 + 0 + 0 + . . . in inf..

Therefore, if it were a real quantity, x should be equal to both 0 and a, which is a contra-
diction.

What does this argument become in our interpretation? At first sight, it seems that
we cannot make sense of Bolzano’s claim that Grandi’s series does not represent any actual
quantity, since we attributed to this series the element Ga in ZU. However, it is straightfor-
ward to verify that, depending on which subsets of ω+ are in U, Ga is computed differently
in the ultrapower. Indeed, since Ga is the (equivalence class of) the sequence (a, 0, a, 0, . . . ),
we have that ||Ga = a|| = {2i − 1 : i ∈ ω+}, while ||Ga = 0|| = {2i : i ∈ ω+}. Now since
U is an ultrafilter, exactly one of ||Ga = a|| or ||Ga = 0|| belongs to U. This implies that
ZU |= Ga = a∨Ga = 0 regardless of our choice of ultrafilter, but the choice of U determines
whether ZU |= Ga = a or ZU |= Ga = 0. Thus we seem to recover at last part of Bolzano’s
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intuition that the quantity designated by the sum a−a+a−a+ . . . in inf. is indeterminate,
as it can be computed to be equal to 0 or to a.

Bolzano also argues that the sum a − a + a − a + . . . in inf. should represent the same
quantity as the sum

−a+ (a− a) + (a− a) + . . . in inf.,

which simplifies to
−a+ 0 + 0 + . . . in inf.,

and should therefore designate the quantity −a. His argument is that one may first compute
Grandi’s series as

(a− a) + (a− a) + . . . in inf.

Using commutativity of addition an infinite number of times, swap each pair of terms in
order to obtain the series

(−a+ a) + (−a+ a) + . . . in inf.,

which, by associativity is then equivalent to

−a+ (a− a) + (a− a) + . . . in inf.

In our setting, the infinite sum −a+a−a+a− . . . in inf. is represented by its approximating
sequence (−a, 0,−a, 0, . . . ). As a consequence, the infinite sums a − a + a − a + . . . in inf.
and −a + a − a + a − . . . in inf. will be identified in ZU precisely if {2i : i ∈ ω+} ∈ U. In
fact, as shown above, in such a case both series will be identified with 0.

In light of the remarks above, it might be tempting to conclude that Bolzano’s criterion
for an infinite sum to represent an actual quantity, namely that the order in which the
terms are summed do not change the result of the summation, could be interpreted in our
framework as some kind of absoluteness of the corresponding sequences under the choice
of a non-principal ultrafilter U. However, it is straightforward to observe that Bolzano’s
own criterion is too strong for his purposes. Indeed, let us consider again the infinite sum
0

N = 10 + 20 + 30 + . . . in inf. If we interpret, as we have done so far, n0 as equal to 1 for any
natural number n, then this infinite sum may actually be written as 1 + 1 + 1 + . . . in inf.,
which is a special case of a geometric series of the form

∑∞
n=0 ar

n where a = r = 1. Similarly

to Bolzano’s argument for Grandi’s series, we may now rewrite
0

N as

(1 + 1) + (1 + 1) + (1 + 1) + . . . in inf. = 2 + 2 + 2 . . . in inf.

= 2(1 + 1 + 1 . . . in inf.)

= 2
0

N,

from which we would be forced to conclude that
0

N −
0

N =
0

N , implying that
0

N = 0. Thus
0

N
does not designate any infinite quantity after all, since it is equal to 0. This means that the
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order in which the terms in
0

N are summed determine which quantity the sum designates,
which, by Bolzano’s own criterion, is impossible. Of course, a Bolzanian could reply to
that argument that there is a fallacy in deriving this equality, because the sum between
parenthesis on the second line above does not have the same Gliedermenge as the original
1+1+1+ . . . in inf. Note that this response implies that changing the order in which terms
are summed together, although it does not change the quantity designated by the sum,
does change its Gliedermenge. Moreover, this answer is not entirely satisfactory. Indeed,
if we assume that the right-hand side of the first equation above does not have the same

Gliedermenge as
0

N , we may therefore represent the two sums (1 + 1) + (1 + 1) + (1 + 1) +
. . . in inf. and 1 + (1 + 1) + (1 + 1) + . . . in inf. by the sequences A1 := (0, 2, 0, 2, 0, 2, . . . )
and A2 := (1, 0, 2, 0, 2, 0, . . . ) respectively. Since both sums correspond to different ways

of writing
0

N , we should expect that A1 = A2 =
0

N. However, one quickly notices that
σ(A1)(i) < σ(A2)(i) whenever i is odd, and σ(A2)(i) < σ(A1)(i) whenever i is even. But this
immediately implies that ZU |= A1 ̸= A2. In other words, if we interpret the two infinite
sums (1 + 1) + (1 + 1) + (1 + 1) + . . . in inf. and 1 + (1 + 1) + (1 + 1) + . . . in inf. by A1

and A2, then in order to satisfy Bolzano’s requirement that infinite associativity holds, we
would need both the set of even numbers and the set of odd numbers to be in U, which is
not possible. Note however that this has little to do with our formalization: Bolzano himself
seems committed to the following equalities:

(1 + 1) + (1 + 1) + (1 + 1) + . . . in inf. =
0

N = 1 + (1 + 1) + (1 + 1) + . . . in inf.

2 + 2 + 2 + . . . in inf. = 1 + 2 + 2 + . . . in inf.,

but there does not seem to be any reasonable way of establishing directly the latter equality.
However, let us conclude this section by noting that a weaker requirement could be imposed
on infinite sums which designate actual quantities, namely that any finite permutation of
the terms or of the order in which such terms are summed does not change the value of the
sum. However, it is straightforward to verify that all sums in our formalization satisfy this
criterion: any two infinite sums that differ from one another only by a finite permutation
of their terms or by finitely many rearrangements of the order in which those terms are
summed are represented by approximating sequences which agree on a cofinite set and are
therefore identified in ZU. Thus this alternative criterion is too weak to rule out Grandi’s
series. In short, while Bolzano’s first argument against M.R.S can easily be translated in
our framework, his second argument seems to prove either too much, or too little, for his
purposes.

9.4.4 Comparisons with Related Work

Our central proposal is to model Bolzano’s computations inside an ultrapower of the integers,
and to identify the quantities designated by Bolzanian infinite sums with equivalence classes
of functions from the positive integers to the integers. This idea is very close to a proposal
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made by Trlifajová [255], although there are a few important differences that we must remark
on. First, Trlifajová seems to be primarily interested in connecting Bolzano’s ideas with some
modern approaches to non-standard analysis, while we are more interested in a close reading
of Bolzano’s arguments and in establishing the consistency of our interpretation. Second,
Trlifajová works mainly with equivalence classes of functions from ω to the real numbers. By
contrast, we work with countable sequences of integers. Indeed, we believe that determining
whether Bolzano’s notion of a real number corresponds to our modern notion is a difficult
problem. Bolzano, of course, made some significant contributions to the foundations of
analysis. In particular, he developed a theory of measurable numbers [50, Part VII] which
is often seen as an attempt to define the real numbers [see e.g. 224, 243, 228]. Trying to
model Bolzano’s computations with real numbers would require us to provide a detailed
discussion of Bolzano’s theory of measurable numbers. Since we are primarily interested in
challenging the received view according to which Bolzano’s computations should be read as
a flawed attempt to develop an arithmetic of the transfinite, we believe that addressing this
issue would take us too far astray. Just as Bolzano’s measurable numbers are beyond the
scope of our goals for this paper, so are Bolzano’s arguments in PU involving infinitely small
quantities or infinitesimal calculus. Third, let us note that, in Trlifajová’s framework, two
sequences are identified if they agree on a cofinite set of natural numbers. Formally, this
means that she works with a reduced power of R rather than an ultrapower. While we do see
the appeal of using only the Fréchet filter on the natural numbers instead of a non-principal
ultrafilter, we have several reasons to believe that our framework is more suitable to our
purposes.

For one, only a weaker version of  Loś’s theorem holds for reduced powers [see 129, p. 445],
which means that the resulting structure will not be as well-behaved as the ultrapower
construction we are using. While this does not create significant technical issues at this
stage, we will argue in the next section that the most accurate way of modelling Bolzano’s
views on the product of infinite sums is to conceive of it as an interated infinite summation.
This means that one will have to work with either iterated ultrapowers, or iterated reduced
powers, the general theory of which is much less developed.

Moreover, we believe that the use of a non-principal ultrafilter rather than the Fréchet
filter can also be justified on interpretive grounds. Indeed, it is straightforward to verify that
the reduced power ZF , in which two sequences α and β are identified only if ||α = β|| is cofi-
nite, does not satisfy trichotomy. For example, for the sequence α = (1, 0, 1, 0, . . . ), we have
that none of ||α = 0||, ||α < 0|| or ||0 < α|| is a cofinite set, and thus ZF |= ¬(α < 0)∧¬(α >
0)∧¬(α = 0). One might argue that this is a desirable feature of a formal reconstruction of
Bolzano’s ideas about the infinite, since, in §28, Bolzano writes that “a determination of the
relationship of one infinity to one another [. . . ] is feasible, in certain cases at any rate . . . ”.
Nonetheless, we think that Bolzano should not be read in this passage as claiming that tri-
chotomy may not hold in the case of infinite quantities. Indeed, as mentioned in Section 9.2.1,
it is part of Bolzano’s very definition of a quantity that it must obey the law of trichotomy.
All things considered, then, we believe that a formalisation that preserves trichotomy–such
as ours, using ultrapowers–is more faithful to the text than a formalization that preempts
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the very possibility of trichotomy for infinite quantities, such as one using the Fréchet filter.12

A second related work is the recently proposed theory of numerosities [18], which we
have discussed extensively in the previous chapter. Numerosities share some features with
our interpretation of Bolzano’s computations, in particular regarding the way sums of infinite
quantities are defined. However, a central motivation for the numerosity framework is to
develop a theory of the size of sets of natural numbers that is consistent with what we called
the set-theoretic part-whole principle PW. As we will argue in Section 9.6, we take Bolzano’s
arithmetic of the infinite to be compatible with the set-theoretic part-whole principle but
not motivated by it, as we do not believe that Bolzano is primarily concerned with counting
sets of natural numbers but rather with developing a theory of infinite sums.

9.5 Higher-order Infinities

9.5.1 The Product of two Infinite Quantities

So far, we have shown how to interpret Bolzano’s computations regarding infinite sums of

the form
n

N and
n

S, as well as Grandi’s series. We have, however, refrained from giving an
interpretation of Bolzano’s computations involving products of two infinite quantities. Al-
though our treatment of Bolzano’s computations so far closely matches Trlifajová’s and is
consistent with numerosities, our account of Bolzanian products of infinite quantities will be
quite different. Indeed, it seems at first sight that there is a natural way to define the product
of two quantities in ZU. Similarly to the way addition is defined, we could define the product
componentwise. Formally, for any f, g : ω+ → Z, letting f · g : ω+ → Z be the function
mapping any i ∈ ω+ to f(i) × g(i), we may define f ∗ · g∗ as (f · g)∗. This is the definition
adopted by Benci and Di Nasso [18] and Trlifajová [255], and it is straightforward to check
that, under this definition, the structure (ZU,+, ·, 0, 1, <) is an ordered commutative ring.
However, we believe that this definition of the product does not satisfactorily account for
Bolzano’s ideas as exposed in PU. We will first lay out our textual evidence for this claim
and then explain how our interpretation works.

Bolzano gives explicit computations of the product of two infinite quantities in only one
passage towards the end of §29:

The purely symbolic equation [(1)]13 underlying all this will surely allow the

12The perceptive reader will have remarked that the dialectic between ultrapowers and reduced powers
arising here is quite familiar. We have encountered similar issues in Chapter 7 when discussing the more
adequate way of constructing the hyperreals, and in Chapter 8 when discussing both numerosities and NAP
functions. In both cases, we have argued that generic powers offered a way out of the dilemmas presented
there. Perhaps unsurprisingly, generic powers will also offer us a way out of the debate here, as we will show
in Section 9.7 below.

13The German version of the text reads (4) here, but the context clearly suggests that this is a mistake.



CHAPTER 9. BOLZANO’S MATHEMATICAL INFINITE 353

derivation, through successive multiplication of both sides by
0

N , of the following
equations:

10.
0

N + 20.
0

N + 30.
0

N + . . . in inf. = (
0

N)2

10.
0

N
2

+ 20.
0

N
2

+ 30.
0

N
2

+ . . . in inf. = (
0

N)3 etc.

from which we are convinced that there [are] also infinite quantities of so-called
higher orders, of which one exceeds the other infinitely many times. But it also
certainly follows from this [that] there are infinite quantities which have every
arbitrary rational, as well as irrational, ratio α : β to one another, because, as

long as
0

N denotes some infinite quantity which always remains the same, α.
0

N

and β.
0

N are likewise a pair of infinite quantities which are in the ratio α : β.

Bolzano defines the product of the quantity
0

N with itself, noted (
0

N)2, as the result of

summing
0

N with itself
0

N many times. The equation

10.
0

N + 20.
0

N + 30.
0

N + . . . in inf. = (
0

N)2

is obtained from the equation

10 + 20 + 30 + . . . n0 + (n+ 1)0 + . . . in inf. =
0

N

by multiplying by
0

N on both sides. This seems to suggest that Bolzano assumes some
form of distributivity of multiplication over infinite summation, which allows him to equate

(10 + 20 + 30 + . . . in inf.).
0

N with 10.
0

N + 20.
0

N + 30.
0

N . . . in inf. on the left-hand side of the

equality symbol. Understood as such, (
0

N)2 is an infinite sum in which all terms are infinite

quantities. Quantities of the form (
0

N)n are the only example in Bolzano’s text of quantities
defined explicitly as infinite sums of infinite quantities. It is also worth mentioning that,
even though Bolzano discusses other examples of infinite quantities being infinitely smaller
or larger than one another, this is the only case in §§29-33 where some infinite quantities are
explicitly referred to as being “of higher order” than some others.14

14The authors thank an anonymous referee for noting that an alternative interpretation of §29 is also

plausible. When introducing (
0

N)2 and (
0

N)3, Bolzano writes that this “convinc[es us] that there are also
infinite quantities of so-called higher orders, of which one exceeds the other infinitely many times.” This
can be read as meaning that whenever an infinite quantity A exceeds an infinite quantity B infinitely many



9.5. HIGHER-ORDER INFINITIES 354

If we were to interpret (
0

N)2 in a similar fashion as Trlifajová and Benci and Di Nasso, we

would have to define the quantity (
0

N)2 in such a way that (
0

N)2(i) =
0

N(i) ·
0

N(i) = i2 for all
i ∈ ω+. However, due to the well-known fact that the sum of the first n odd numbers is always

equal to n2, the infinite sum
Odds

S := 1+3+5+7 . . . in inf. is also represented by (the equiva-

lence class of) the sequence (1, 4, 9, 16, ...). It would therefore follow that ZU |=
Odds

S = (
0

N)2.

We should conclude that the two infinite sums 1+3+5+. . . in inf. and
0

N+
0

N+
0

N+. . . in inf.
actually designate the same quantity. But this seems a clear violation of Bolzano’s treatment

of order relationships between infinite sums. Indeed, we saw above that, in showing that
2

S

was infinitely greater than
1

S, Bolzano reached his conclusion by showing that the difference

between matching summands in
2

S and in any finite multiple of
1

S is always positive for all

but finitely many summands. In this case too, since
Odds

S and (
0

N)2 have the same number of
terms, we could also argue along Bolzanian lines that, for any natural number i, the differ-

ence (
0

N)2 − i
Odds

S is given by the sum (
0

N − i) + (
0

N − 3i) + (
0

N − 5i) + . . . in inf., in which
all summands are positive (and in fact infinite). As we have argued in Section 9.4.2, one
can extract from Bolzano’s writings a sufficient criterion for one sum α to be strictly greater
than another sum β, namely when all but finitely many terms in the sum α−β are positive.
We will come back to this issue at greater length in Section 9.6. For now, let us note that,

if our interpretation is correct, we must conclude in the present case that (
0

N)2 is greater

than any finite multiple of
Odds

S , and thus that (
0

N)2 ̸=
Odds

S . The componentwise definition
of the product of two quantities is therefore incompatible with Bolzano’s own criterion for
comparing infinite sums.

Moreover, another passage from §29 seems to explicitly contradict the “componentwise”
interpretation of the product of two infinite quantities. Indeed, when introducing the sum

of all natural numbers
1

S, Bolzano writes:

On the other hand if we designate the quantity which represents the sum of all

times, then A is an infinite of higher order with respect to B. In other words, the definition of infinities of
higher order is infinities that exceed smaller infinities by an infinitely large factor. This understanding of
“higher order” is problematic, however, for at least two reasons. First, if “of higher order” simply meant

“infinitely larger or smaller”, then the introduction of
1

S in §29 should have sufficed to establish the existence

of infinite quantities of higher-order, since Bolzano has already noted by that point that
1

S is “far greater

than”
0

N . Second, in the definition of “infinite” (§10), Bolzano presents the concept of infinitely smaller
and infinitely greater quantities of higher order as quantities derived from, but not identical with, infinitely
small and infinitely large quantities. The referee’s interpretation, by contrast, would collapse the notion of
infinities of higher order into that of infinities simpliciter, per Bolzano’s definition.
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natural numbers by [
1

S], or assert the merely symbolic equation

1 + 2 + 3 + . . .+ n+ (n+ 1) + . . . in inf. = [
1

S] (4)

then we will certainly realize that [
1

S] must be far greater than
0

N . But it is not so
easy to determine precisely the difference between these two infinite quantities or
even their (geometrical) ratio to one another. For if, as some people have done,
we wanted to form the equation

[
1

S] =

0

N · (
0

N + 1)

2

then we could hardly justify it on any other ground than that for every finite
multitude of terms [Menge von Gliedern] the equation

1 + 2 + 3 + . . .+ n =
n.(n+ 1)

2

holds, from which it appears to follow that for the complete infinite multitude of

numbers n just becomes
0

N . However it is in fact not so, because with an infinite

series it is absurd to speak of a last term which has the value
0

N .

Bolzano’s point here seems to be that one cannot infer from the validity of Gauss’s
summation theorem for finite numbers that an “infinitary” version of the summation theorem
also holds for infinite quantities. His rejection of the infinite summation theorem can be given
two readings, one stronger, and one weaker. On the stronger reading, Bolzano is arguing
that the infinite summation theorem is false, because the only way of justifying it, namely,
through an inference from the finite to the infinite, leads to a false consequence. On the
weaker reading, by contrast, Bolzano is not asserting the falsity of the infinite summation
theorem, but he is merely refraining from asserting its truth, because what is ostensibly the
only argument to prove its truth is a defective argument.

Under the first reading, which we tend to find more natural, the componentwise defi-
nition of the product à la Trlifajová [255] and Benci and Di Nasso [18] is simply inconsis-
tent with Bolzano’s own views, as the infinite summation theorem is true in the structure
(ZU,+, ·, 0, 1, <):

Lemma 9.5.1. Let
0

N · (
0

N+1) be such that
0

N · (
0

N+1)(i) =
0

N(i) · (
0

N+1)(i) for any i ∈ ω+.

Then ZU |=
0

N · (
0

N + 1) = 2
1

S.

Proof. By definition, ||
0

N · (
0

N + 1) = 2
1

S|| = {i ∈ ω+ : (
0

N · (
0

N + 1))(i) = 2
1

S(i)}. Now for

any i ∈ ω+, 2
1

S(i) = 2× i(i+1)
2

= i(i+ 1) by Gauss’s summation theorem. On the other hand,

(
0

N · (
0

N + 1))(i) =
0

N(i) · (
0

N + 1)(i) = i × (i + 1). Thus ||
0

N · (
0

N + 1) = 2
1

S|| = ω+, and
therefore is contained in U.
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Since we are interested in establishing at least the consistency of Bolzano’s calculation of
the infinite, the stronger reading of this passage of the infinite summation theorem compels
us to provide an alternative definition of the product of two Bolzanian quantities.

Moreover, we find that this conclusion also follows from the second, weaker reading
mentioned above. Indeed, even if Bolzano is merely punting here on the truth of the infinite
summation theorem, we find it quite revealing that he would object to the infinite summation
theorem being a direct consequence of Gauss’s summation theorem. Indeed, this passing
from the finite to the infinite is very similar to the various “arguments by cofiniteness”
that Bolzano appeals to in §§29 and 32, and which we discussed at length in the previous
section. As we have noticed above, the formal setting of ultrapowers, in which operations can
be defined componentwise, allows for a straightforward reconstruction of such arguments by
cofiniteness, with the help of  Loś’s theorem. In fact, the proof of Lemma 9.5.1 above proceeds
precisely in the same way as the inference rejected by Bolzano: since the summation theorem

holds for any i ∈ ω+, it transfers to the infinite quantities
1

S and
0

N. Bolzano therefore seems
to have two distinct attitudes with regard to these inferences from the finite to the infinite:
while he uses arguments by cofiniteness when establishing results about sums and differences
of infinite sums, he explicitly rejects this style of reasoning when discussing ratios of infinite
sums, i.e., results about products of infinite sums. If we were to model such products
componentwise, we would be allowing in our formal setting precisely the type of inference
that Bolzano objects to. This seems cause enough to us to propose an alternative definition
of the products of two Bolzanian sums.

9.5.2 Second-Order Infinities via an Iterated Ultrapower

As shown above, the componentwise interpretation of the product adopted both by Trlifa-
jová and Benci and Di Nasso has unfortunate consequences for our project. If we want to
model Bolzanian computations with the infinite as accurately as possible, we must therefore
propose an alternative interpretation. Our solution springs from the observation above that

the product (
0

N)2 is written by Bolzano as an infinite sum in which the summands themselves
are infinite quantities. Since we decided to model infinite sums of integers as functions from
an index set ω+ into the integers, we should therefore model infinite sums of possibly infinite
quantities as functions from ω+ into a structure that contains those infinite quantities, i.e.,
into ZU.

Formally, this means that we should now work in an ultrapower of ZU, i.e., in an iterated
ultrapower. Letting (ZU)2 denote this ultrapower, we have a straightforward embedding
ι : ZU → (ZU)2, induced by the map sending any f : ω+ → Z to the map i 7→ f(i),
where f(i) is the constant function returning f(i) for any j ∈ ω+. Given an infinite sum
of (possibly infinite) quantities in ZU, say α1 + α2 + α3 + . . . in inf., we proceed as before
by identifying this sum with the countable sequence α := (α1, α2, α3, . . . ), and determin-
ing its quantity α as the equivalence class in the iterated ultrapower (ZU)2 of the sequence
(α1, α1 + α2, α1 + α2 + α3, . . . ), where the partial sums of the first n terms in α are com-
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puted inside ZU. In the case of (
0

N)2, this means that we identify the infinite sum with

the sequence (
0

N)2 := (
0

N,
0

N,
0

N, . . . ). The corresponding approximating sequence is then

(
0

N, 2
0

N, 3
0

N, . . . ), which means that (
0

N)2 is the equivalence class of the function assigning to

each i ∈ ω+ the quantity i
0

N. Similarly, we could form the infinite sum
1

S+
1

S+
1

S+. . . in inf.,

which corresponds to summing the quantity
1

S
0

N -many times to itself. This sum is inter-

preted as the series
0

N.
1

S := (
1

S,
1

S,
1

S, . . . ), with approximating sequence (
1

S, 2
1

S, 3
1

S, . . . ), so
0

N.
1

S is the equivalence class of the function assigning i
1

S to each i ∈ ω+.

Going one step further, we could also wonder how the product
1

S.
0

N , i.e., summing
1

S-

many times the quantity
0

N , should be interpreted. Just as we computed (
0

N)2 by taking
0

N

as a unit in our summation instead of 1, it seems that, in computing
1

S.
0

N , we should take
0

N as a unit in the summation 1 + 2 + 3 + . . . in inf. which yields
1

S. This suggests that

summing
0

N
1

S-many times with itself yields the infinite sum

0

N + 2
0

N + 3
0

N + . . . in inf.

According to our interpretation, this sum is represented by the sequence

1

S.
0

N := (
0

N, 2
0

N, 3
0

N, . . . ),

whose approximating sequence is (
0

N, 3
0

N, 6
0

N, . . . ). Hence
1

S.
0

N is the equivalence class of the

function that assigns
1

S(i)
0

N = i(i+1)
2

0

N to any i < ω. More generally, given any two infinite
quantities α and β in ZU, we may define the product α.β ∈ (ZU)2 as the equivalence class
of the function mapping any i < ω+ to α(i) × β, where α(i) × β = β + β + . . .+ β︸ ︷︷ ︸

α(i) times

. The

relevant definitions are summarized in the table below:

Bolzanian Infinite Sum Sequence Representation approximating sequence Corresponding Function Infinite Quantity
0

N +
0

N +
0

N + . . . in inf. (
0

N)2 = (
0

N,
0

N,
0

N, . . . ) σ(
0

N)2) = (
0

N, 2
0

N, 3
0

N, . . . ) σ((
0

N)2)(i) = i
0

N (
0

N)2 = σ((
0

N)2)∗

1

S +
1

S +
1

S + . . . in inf.
0

N.
1

S = (
1

S,
1

S,
1

S . . . ) σ(
0

N.
1

S) = (
1

S, 2
1

S, 3
1

S . . . ) σ(
0

N.
1

S)(i) = i
1

S
0

N.
1

S = σ(
0

N.
1

S)∗

1
0

N + 2
0

N + 3
0

N + . . . in inf.
1

S.
0

N = (1
0

N, 2
0

N, 3
0

N, 4
0

N, . . . ) σ(
1

S.
0

N) = (1
0

N, 3
0

N, 6
0

N, 10
0

N, . . . ) σ(
1

S.
0

N)(i) =
∑i

j=1 j
0

N
1

S.
0

N = σ(
1

S.
0

N)∗

α(1)β + α(2)β + . . . in inf. α.β = (α(1)β, α(2)β, . . . ) σ(α.β) = (σ(α)(1)β, σ(α)(2)β, . . . ) σ(α.β)(i) = σ(α)(i)β α.β = σ(α.β)∗

Table 9.2: Representation of Bolzanian products in (ZU)2

This definition of the product of two infinite quantities has three important consequences.

First, as evidenced already by the examples of
0

N.
1

S and
1

S.
0

N above, the product operation
will in general not be commutative. Although this might seem as a highly non-Bolzanian
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feature of our setup, we remark that this does not directly contradict any of Bolzano’s com-
putations in PU. Moreover, contrary to the associativity and commutativity of addition,
which he sees as rooted in the concept of sum and therefore a feature of the general the-
ory of quantity, associativity and commutativity of multiplication of integers are introduced
as theorems in Part III of his Reine Zahlenlehre, §§19-20, [50, pp. 62-63], instead of be-
ing part of the definition of a product. Moreover, we think that the non-commutativity of
the product of two infinite quantities is itself motivated by Bolzanian considerations. In-

deed, if one agrees that the correct interpretation for
0

N.
1

S and
1

S.
0

N are the infinite sums
1

S+
1

S+
1

S+. . . in inf. and
0

N+2
0

N+3
0

N+. . . in inf. respectively, then the Bolzanian strategy
for comparing two infinite sums, namely computing their difference term by term, yields that
0

N.
1

S−
1

S.
0

N = (
1

S−
0

N) + (
1

S−2
0

N) + (
1

S−3
0

N) + . . . in inf. is itself an infinite sum of positive

quantities. It is therefore positive, which means that
0

N.
1

S should be stricly greater than
1

S.
0

N .

Second, it is easy to verify that, under this definition of the product, the summation

theorem does not hold in the infinite case. Indeed, in our interpretation,
0

N.(
0

N + 1) is the

function mapping any i ∈ ω+ to
0

N(i).(
0

N+ 1). Now since
0

N+ 1 is (the equivalence class of)

the function mapping any j ∈ ω+ to j + 1, it follows that
0

N(i).(
0

N + 1) = i× (
0

N + 1) maps

any j ∈ ω+ to i(j+1). On the other hand, in (ZU)2, 2
1

S maps any i ∈ ω+ to 2
1

S(i) = i(i+ 1).

Hence ||2
1

S =
0

N.(
0

N + 1)|| = {i ∈ ω+ : ZU |= i(i+ 1) = i× (
0

N + 1)}. Now for any i, j ∈ ω+,

i(i+ 1)(j) = i(i + 1), while (i × (
0

N + 1))(j) = i(j + 1), hence ZU |= i(i+ 1) < i × (
0

N + 1)

for all i < ω+. Therefore (ZU)2 |= 2
1

S ̸=
0

N.(
0

N + 1).

Finally, we argue that this definition of the product gives a better interpretation of

Bolzano’s remark that quantities like (
0

N)2 are infinities of a “higher order”. Indeed, our
construction introduces a clear stratification between integers, infinite quantities of the first
order (i.e., elements introduced in the first ultrapower ZU), and infinite quantities of the
second order (i.e., elements introduced in the second ultrapower (ZU)2). In fact, in our
interpretation, genuine second-order infinite positive quantities are always larger than any
first-order infinite quantity:

Lemma 9.5.2. Suppose α,β,γ ∈ ZU are such that ZU |= α > m ∧ β > m for any integer
m. Then (ZU)2 |= α.β > γ.

Proof. We claim that ||α.β > γ|| ∈ U. This amounts to showing that, for U-many j ∈ ω+,
||α(j) × β > γ(j)|| ∈ U. Now suppose α(j) > 0 (which is true for U-many j ∈ ω+). Then

k ∈ ||α(j) × β > γ(j)|| if and only if β(k) > γ(j)
α(j)

, which is true for U-many k since, letting

m be the smallest integer greater than γ(j)
α(j)

, we have that ZU |= β > m.
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However, an obvious drawback of modelling second order infinite quantities by iterating
the ultrapower construction is that we must repeat this procedure again in order to account
for third-order infinite quantities, and so on. In fact, provided we want to make sense

of quantities of the form (
0

N)n for any natural number n, we must iterate our ultrapower
construction countably many times. This requires us to construct models of the form (ZU)n

for any n, with embeddings from each (ZU)n into (ZU)n+1:

Z ι0
// ZU ι1

// (ZU)2 ι2
// (ZU)3 ι3

// . . .

Limits of iterated ultrapowers are a standard tool in mathematical logic. The direct limit
B of this chain of ultrapowers contains quantities of arbitrarily large orders of infinity, and
allows for a rigorous definition of the product α.β of two infinite quantities α and β. In
fact, we obtain a particularly well-behaved structure:

Theorem 9.5.3. The structure B = (B,+,−, 0, 1, <, .) is a non-commutative ordered ring.

We refer the interested reader to Section 9.8 for a proof of this theorem as well as details
about the structure B. For now, let us simply conclude that this formal result establishes that
our interpretation of Bolzanian sums yields a rich and original structure which nonetheless
shares many properties with the integers.

9.6 Reassessing the PU

In the preceding sections we have touched on the following three issues:

1. Whether Bolzano’s work truly was about (something like) the sets of set theory, or
not. We argued that Bolzano’s work in [46] §§29-33 is best understood as being an
attempt at giving solid foundations to the handling of infinite series (which correspond
to Bolzano’s infinite sums).

2. Whether part-whole reasoning plays an important role or not in Bolzano’s computa-
tions. We argue that a form of part-whole reasoning about infinite sums, not about
infinite sets, plays a central role in Bolzano’s argument, even though Bolzano’s argu-
ment does not contradict set-theoretic part-whole (PW in the Introduction).

3. Whether Bolzano’s relation to what we may call the “first generation” of set theorists
(specifically Cantor) needs to be reassessed. We think it does.

In this section, we discuss in detail where we stand on each point in turn, making use of
the formalization from Section 9.4 and Section 9.5 whenever necessary.
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9.6.1 A Theory of Infinite Sums

We have argued that Bolzano’s primary interest in [46] §§29-33 is in infinite sums of integers,
rather than sets and their sizes. To be more specific, we wanted to illustrate that by inter-
preting these sections as trying (and largely failing) to anticipate Cantorian inventions, one
would fundamentally misrepresent Bolzano’s work. Instead of there being one notion that,
like Cantor’s cardinals (or powers) captures the quantitative aspect of a collection, Bolzano
has rather two quantity notions associated to each of his infinite sums: the Gliedermenge of
the corresponding series of summands, and the sum itself (which for us would be the value,
or the result of performing the infinite addition—Bolzano’s notion of sum does not allow for
a distinction between a sum and its value).

These infinite sums (or the underlying series) can undergo certain transformations, which
may induce a change in the Gliedermenge, a change in the value of the sum, or both. We
saw in Bolzano’s work three examples of such operations:

1. raising all the terms in a sum to the same power;

2. “erasing” some of the terms in a sum;

3. permuting terms in a sum or computing summands in a different order.

§§29 and 33 suggest that raising all natural numbers at once to the same power does not

change the Gliedermenge of an infinite sum, but it does change its value. Indeed,
0

N and
2

S are obtained from the infinite sum 1 + 2 + 3 + . . . in inf. (i.e.,
1

S) by raising all terms
in this sum to the 0th and 2nd power, respectively. Bolzano explicitly states in §33 that
this operation does not change the Gliedermenge of the corresponding sum, which is why

he is able to determine that
0

N <
1

S <
2

S. On the other hand, the second operation, which
consists in erasing some of the terms in an infinite sum, does change the Gliedermenge of
the infinite sum in such a way that also induces a change in the overall value of the sum.

Bolzano’s clearest examples of this are quantities of the form
n

N , which vary from
0

N only
in that the first n terms of the sum are removed. Nonetheless, as we have seen above,
this reasoning also appears in §32, where it plays a crucial role in Bolzano’s rejection of
M.R.S’s identification of the infinite sum a − a + a − a + . . . in inf. with the sum within
brackets in a− (a− a+ a− a+ . . . in inf.). Finally, regarding the third operation, Bolzano
seems to adhere to the idea that because the laws of commutativity and associativity should
always hold for addition, this operation should not change the value of the sum if the sum
designates any value at all. As we have shown above, Bolzano uses this criterion to argue
that Grandi’s series does not designate any actual quantity, but seems unaware of the fact
that his argument also creates difficulties for infinite sums like 1 + 1 + 1 + 1 + . . . in inf. We
have also argued that those issues should commit Bolzano to the thesis that changing the
order in which terms are summed in an infinite sum also changes its Gliedermenge, although
he does not explicitly make this point.
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In our formalization of Bolzano’s computations, we treat all infinite sums as countable
sequences of integers, to which we associate a countable sequence of partial sums. For

infinite sums which have the same Gliedermenge as
0

N , this can be done in a straightforward
way by identifying an infinite sum with its sequence of partial sums, and our ultrapower
construction allows us to assign different values to such sums. For infinite sums which have

a different Gliedermenge, like
n

N or
1

Ga, we only need to make some natural choices in the
way we represent them to retrieve Bolzano’s results. We therefore believe to have established
that Bolzano’s computations in PU form a consistent theory of divergent infinite sums,
which paint a picture of the arithmetic of the infinite largely different from our modern, set-
theoretic, conception. In particular, interpreting Bolzano as developing a theory of infinite
sums allows us to reassess the role that part-whole considerations play in his theory.

9.6.2 Part-whole Reasoning in Bolzano’s Computations

As we have mentioned above, we do not think, pace Berg and Šebest́ık, that Bolzano’s
computations in [46] §§29-33 are incompatible with his use of part-whole reasoning in §§17-24.
In fact, we argue that part-whole reasoning plays a central role in Bolzano’s determination
of the relationship between infinite quantities. However, since, as we have argued, Bolzano
is developing in §§29-33 a theory of infinite sums and not a theory of infinite (set-like)
collections, we must exert caution in determining how we should understand the principle
that “the whole is always greater than its proper parts”. The more common interpretation
of this principle [see, e.g., 184] is set-theoretic:

PW For any sets A,B, if A ⊊ B, then size(A) < size(B).

This formulation of the part-whole principle is, by and large, the one satisfied for labelled
sets of natural numbers by numerosities as defined by Benci and Di Nasso [18]. In particular,
in the numerosity structure ⟨N ,≤⟩ constructed by Benci and di Nasso, the following holds:

Num For any (labelled) set of natural numbers A and any numerosity ξ, ξ < num(A) if
and only if there is a (labelled) set B ⊊ A such that num(B) = ξ.

However, a more general version of the part-whole principle, which avoids set-theoretic
parlance entirely, is given by Bolzano in his Größenlehre. This is to be found in the definition
of “greater than”, which we transcribe here together with the immediately following remark,
which shows that Bolzano is aware of the difficulty his definition of “less/ greater than”
creates for determining relationships between quantities which may be infinitely large or
infinitely small, but adopts it nonetheless:

§27 Def. If the quantity N lets itself be considered as a whole, which includes
in itself the quantity M or one that is equivalent to it as part, then we say that
N is greater than M , and M is smaller than N and we write it as N > M or
M < N . Should this much be established, that M is not greater or not smaller
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than N ; then we write in the first case M ̸> N and in the second case M ̸< N .
§28 Remark. What I here pick as definition, that each whole must be greater
than its part, and the part smaller than the whole (as long as they are both
quantities) some, namely already Gregory of St. Vincent and in more recent
times also Schultz (in his Foundations of the pure Mathesis), do not want to
concede, because of quantities which are infinitely large or infinitely small. If
M is infinitely large, but m is finite, or M is finite, but m infinitely small, then
people say that the whole (M + m) composed from the parts m and M isn’t to
be truly called greater than the part M . [. . . ]15 [45, p. 237]

The quote above clearly indicates both that Bolzano sees himself as employing some
version of the part-whole principle as the criterion for size comparison between quantities,
and that two quantities A and B are related as whole and part, respectively, if and only if
there is a positive (non-negative, non-zero) quantity C such that A = B+C. Then Bolzano’s
definition of less-than (<) can be formulated as follows:

PW2 For any two quantities A,B, A < B if and only if there is some positive quantity C
such that A+ C = B.

This latter principle can indeed be seen as preserving the part-whole intuition: if A is
a proper part of B, then the part C of B obtained by removing A from B is non-null, and
clearly its sum with A yields back B. In particular, if the operation of taking the sum of
two quantities has an inverse (removing a part from a whole), then PW2 can be rephrased
as follows:

PW3 For any two quantities A,B, A < B if and only if B − A is positive.

Our claim is that Bolzano is endorsing PW3 when determining order relations between
infinite sums. Note that for PW3 to apply to infinite sums, one needs first to define two
things:

a) the difference α− β of two infinite sums α and β;

b) when an infinite sum α is positive.

15§.27 Erkl. Wenn sich die Größe N als ein Ganzes ansehen läßt, welches die Größe M oder eine ihr
gleichkommende als ein Theil in sich schließt; so sagen wir, N sey größer als M , M aber kleiner als N und
schreiben dieß N > M oder M < N . Wenn um so viel bestimmt werden soll, daß M nicht größer oder nicht,
kleiner als N sey; so schreiben wir im ersten Falle M ̸> N oder im zweyten M ̸< N .
§28 Anm. Was ich hier als Erklärung annehme, daß jedes Ganze größer als sein Theil, und der Theil
kleiner als das Ganze seyn müsse, (so fern beyde Größen sind), haben Einige, nahmentlich schon Gregor
v. St.Vincenz und in neuerer Zeit auch wieder Schultz (in seinen Anfangsgr. d. rei. Mathesis) in Hinsicht
solcher Größen, die unendlich groß oder klein sind, nicht zugestehen wollen. Wenn M unendlich groß, m
aber endlich ist, oder wenn M endlich, m aber unendlich klein ist; so behauptet man daß aus den Theilen
M und m zusammengesetzte Ganze (M +m) sey nicht wirklich größer als der Theil M zu nennen. [. . . ]
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As we have argued above, Bolzano solves those two issues in his calculation of the infinite
as follows:

a) For two infinite sums α and β having the same Gliedermenge, their difference α− β is
computed termwise: α− β is the infinite sum in which the ith term is αi − βi, i.e., the
difference of the ith terms of α and β respectively;

b) An infinite sum α is positive if all but finitely many of its terms are positive.

Bolzano is thus able to derive from PW3 a sufficient criterion for order relationships
between infinite sums:

PW4 For any two infinite sums α, β, α < β if all but finitely many terms in β − α are
positive.

It is worth noting once again that this criterion is exactly the version of PW3 at play

in Bolzano’s proof that
2

S is infinitely greater than
1

S in §33. Moreover, Bolzano explains his
reasoning in terms of part-whole relationships between sums:

So in fact
2

S may be considered as a quantity which contains the whole of
1

S as
a part of it and even has a second part which in itself is again an infinite series

with an equal number of terms as
1

S, namely:

0, 2, 6, 12, 20, 30, 42, 56, . . . , n(n− 1), . . . in inf.,

in which, with the exception of the first two terms, all succeeding terms are

greater than the corresponding terms in
1

S, so that the sum of the whole series is

again indisputably greater than
1

S. [46, §33]

We therefore conclude that the part-whole principle plays an important role in Bolzano’s
computations, but also that, in his calculation of the infinite, Bolzano’s text should not be
interpreted as displaying some instances of part-whole reasoning about sets and their proper
subsets. Rather, in deriving those results, part-whole reasoning is applied to infinite sums in
the precise sense of PW4.16 In our formalization of Bolzano’s computations, we have shown

16This does not mean that PW4 is the correct interpretation of Bolzano’s part-whole reasoning throughout
the PU . As we have noted in Section 9.2, Bolzano is clearly committed to a form of part-whole reasoning
about collections in §§19 − 24. We also thank an anonymous referee for pointing out that in the following
passage from §29, Bolzano seems to endorse a form of set-theoretic part-whole principle about continuous
magnitudes:

the whole multitude (plurality) of quantities which lie between two given quantities, e.g. 7
and 8, although it is equal to an infinite [multitude] and therefore cannot be determined by
any number however great, depends solely on the magnitude of the distance of those two
boundary quantities from one another, i.e. on the quantity 8 − 7, and therefore must be an
equal [multitude] whenever this distance is equal.

This suggests that a more fine-grained analysis might be required in order to fully assess the role that
part-whole reasoning plays in the PU as a whole.
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that computations with infinite sums based on PW4 could be carried out in a consistent
fashion. In fact, as a simple consequence of the fact that our structure B is elementarily
equivalent to the integers, we have that B |= ∀α, β(α < β ↔ β − α > 0). Moreover, we
have also argued that Bolzano’s criterion could also be applied in a productive way to deter-
mine order relations between infinities of higher order. As a consequence, we showed how a
Bolzanian product of infinite quantities could be interpreted as a non-commutative monoidal
operation, i.e., a well-behaved operation which is nonetheless considerably different from the
product of Cantorian cardinalities or even the product of numerosities.

Finally, let us note that, although we have argued that the correct way to interpret
Bolzano’s part-whole reasoning does not commit him to the set-theoretic part-whole principle
(PW), we nonetheless believe that PW is compatible with Bolzano’s arguments. In fact, we
are now in a position to fully describe a way out for Bolzano from the apparent contradiction
of §33 (cf. Section 9.3) that we believe is satisfactory even from a modern standpoint. Indeed,
following the position sketched in Section 9.3, we may argue that the number (Menge) of

natural squares is not equal to the Gliedermenge of the infinite sum
2

S but that it must be

computed, in relation with
0

N , as the value of the sum
SQ

N = 10 + + + 40 + . . . in inf. The
approximating sequence of this sum is (1, 1, 1, 2, 2, . . . ), and it is therefore straightforward to

verify that, in our model, B |=
0

N−
SQ

N > 0. In other words, this interpretation avoids making
Bolzano’s computations inconsistent with his adherence to the principle that the whole is
always greater than its proper parts. The price to pay is to argue that the existence of a
one-to-one correspondence between natural numbers and squares does not imply that the

two sets have the same size, even though, in the specific case of
1

S and
2

S, it is instrumental
in establishing that the two sums have the same Gliedermenge. In fact, this strategy can
be generalized to any set of natural numbers. Indeed, if A ⊆ ω+, let χA : ω+ → {0, 1} be
the characteristic function of A, i.e., for any n ∈ ω+, χA(n) = 1 if n ∈ A and χA(n) = 0 if
n /∈ A. We may then consider the infinite sum τA =

∑∞
i=1 χA(i) and identify the number of

elements in A with τA. It is then straightforward to verify the following fact:

PW5 For any two A,B ⊆ ω+, if A ⊊ B, then B |= τA < τB.

Indeed, if A ⊊ B, let n be the smallest number in B \A, and observe that, for any j ≥ n,
τA(j) =

∑j
i=1 χA(j) <

∑j
i=1 χB(j) = τB(j). Thus ||τA < τB|| is cofinite, so B |= τA < τB.

In fact, this “Bolzanian” way of assigning quantities to sets of natural numbers completely
coincides with how a set of natural numbers is assigned a numerosity when the structure is
constructed out of an ultrapower of the natural numbers, as in Benci and Di Nasso [18].

We stop short of arguing that this was Bolzano’s position, as we do not believe that there
is enough evidence in the text of PU to make this claim; nor are we convinced that Bolzano
had a notion of sets of natural numbers and of their sizes that would allow him to conceive
of the problem in those terms. Our point, however, is that Bolzano’s computations with
infinite sums, and his attempts to develop a general theory of a calculation of the infinite, do
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not, as our formalization makes clear, commit him to a rejection of the part-whole principle
for sets of natural numbers.

9.6.3 Bolzano and Early Set Theory

Even though our interpretation sees Bolzano as not necessarily concerned with sets and their
cardinalities, this should not be seen as a claim that Bolzano’s work is completely separate
from, and irrelevant for, the historical development of set theory. We believe that ours is just
a more cautious evaluation of the interactions between the PU and the early development
of set theory as seen mainly in Cantor’s work.

What follows is not an exhaustive comparison between Bolzano’s §§29-33 and Cantorian
set theory but a selective comparison on just a couple of points: the status of infinite
quantities in Bolzano’s and Cantor’s work and the arithmetic of the infinite, respectively.

Insofar as the actual infinite in mathematics is concerned, Bolzano and Cantor are both
advocates for its existence. In addition to defending the existence of the actual infinite,
Bolzano provides specific examples of infinite multitudes of mathematical objects such as the
multitude of all natural numbers, which is an infinitely large quantity [46, §16]. Infinitely
large quantities exist, and they are fully legitimate objects for mathematics, meaning their
relationships to one another can be computed. Although Bolzano asserts this in [46] §28,
he also makes it clear that he is not claiming to be able to express the infinite quantities

themselves through numbers. The symbols
0

N,
n

N,
1

S,
2

S are just shorthand for the infinite
sum expressions Bolzano concludes with “. . . in inf.”—they are not separate entities, like
cardinals (and ordinals) with respect to sets.17

Indeed, in modern set theory, ordinals are defined as canonical representatives of order
types of well-ordered sets, while cardinals are canonical representatives of equivalence classes
of equipollent sets (i.e., sets that can be bijected with one another). Thus, while cardinals
are sets and each cardinal is the cardinal of itself, in general a set and its cardinal are
two distinct entities. Whether or not Cantor himself held precisely such a view at some
point during his lifetime is a complex issue that depends on how one understands the role
that Cantor assigns to abstraction in his original construction of the transfinite numbers.
Cantor defines the cardinal number or power of a set M to be the result of a “double act of
abstraction” performed on M : first, to abstract from the nature of each individual element
of M , and second, to abstract from the order of the elements relative to one another. A
detailed discussion of the correct interpretation of Cantor’s abstraction is beyond the scope
of this paper, and we therefore refer the interested reader to Hallett [117, pp. 119-128] and
Mancosu [182, pp. 52-59].

17Florio and Leach-Krouse [95] have recently proposed a non-objectual interpretation of ordinals. Provided
an analogous treatment can be extended to cardinals, the objectuality of cardinals as a conceptual difference
between contemporary set theory and Bolzano’s approach to infinite collections might appear less significant
than what it seems to be right now. However, it would still be the case that a Cantorian definition by
abstraction for cardinals certainly lends itself to a straightforward objectual interpretation, and thus our
point regarding the difference in conception between Cantor and Bolzano would still hold true.
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For our purposes, it suffices to stress that the definition of cardinal Cantor gives is such
that any set, in principle, can be abstracted from twice and hence give rise to its own car-
dinal. Thus for instance the cardinal ℵ0 can be obtained from the set of natural numbers N
by abstracting first from the nature of each single natural number and then from the order
of N as a whole. But one fundamental consequence of Cantor’s double abstraction definition
is that any set has a cardinal.18 For Bolzano instead not all infinite strings of integers can
give rise to a sum, as the case of Grandi’s series witnesses, and determining which such
expressions do correspond to a sum is one of the problems he tries to solve.

A second point of comparison between Cantor’s and Bolzano’s treatments of the infinite is
the computations they perform with infinite quantities. They both strive to give a meaningful
account of arithmetical operations (addition and multiplication, but also subtraction and
division, or “ratios” in Bolzano’s case) between transfinite cardinals and infinite sums. What
this means and how they achieve it is however very different for each of them.

Cardinal multiplication is defined as taking the cardinal of the product of two sets A,B,
and addition is defined as the cardinality of the disjoint union of two sets (according to
Hallett [117, p. 82] this was already Cantor’s own definition). In the presence of the axiom
of choice, it is an elementary fact of cardinal arithmetic that for any two infinite cardinals
κ, λ, κ · λ = κ + λ = max{κ, λ}. This was already proved in the early 20th century by
Hessenberg and Jourdain, who were able to generalize Cantor’s result that ℵ2

0 = ℵ0 to
ℵα · ℵβ = ℵmax{α,β} (cf. [117, pp. 79, 82]). They were also able to show that for addition the
same holds, namely ℵα + ℵβ = ℵmax{α,β}. This collapse of addition and multiplication into
taking the greatest of the addends in the addition case, or factors in the multiplication case,
is very far from Bolzano’s approach to computing with the infinite.

One important similarity between Cantor and Bolzano is that, for both of them, an

actually infinite quantity, like
0

N for Bolzano or ω for Cantor, can be obtained by iterating
a finite operation (adding units for Bolzano, taking successor ordinals for Cantor) on finite
quantities. But they seem to conceive of this process of infinitary addition in different terms,
as evidenced by the role subtraction plays in their respective systems. Cantor does not define
subtraction of infinite cardinals, while, as we have seen, for Bolzano the ability to compute
the difference between two infinite sums is an essential tool in determining order relationships
between infinite quantities. Moreover, no two infinite cardinals can have a finite difference,
in the sense that for any two infinite cardinals κ, λ, if κ < λ and there is a cardinal µ such
that κ + µ = λ, then µ must be infinite (in fact µ = λ). Here again Bolzano’s infinities
behave vastly differently, since one of his most basic results is that two infinite sums such as
0

N and
n

N have a strictly finite difference, namely n.

Similarly, in §29 we see Bolzano generate new infinities, infinities of higher order, as he

18Note however that if one reads Cantor as associating to any set not only its equipollence class but
also a canonical well-ordered representative for it, this is actually equivalent to the Well-Ordering Principle
according to which any set can be well-ordered. Therefore, if one were to reject the Well-Ordering Principle,
not all sets would have a Cantorian cardinal.
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claims, simply by multiplying
0

N by itself, so that
0

N < (
0

N)2 < (
0

N)3. This is in stark contrast
with Cantor’s result that ℵn0 = ℵ0, mentioned above. Moreover, we have argued that a
faithful interpretation of Bolzano’s criterion for inequality between infinite sums implies that
the Bolzanian product of two infinite sums should be non-commutative. In fact, according
to us, Bolzanian products are significantly different from products of cardinals. Bolzano
does not conceive of multiplying quantities as akin to taking Cartesian products of sets. He
rather seems to be extending the definition of multiplication of natural numbers that he
had in his Reine Zahlenlehre [50, p. 57], without introducing infinite numbers. Just like the
product of two finite numbers m×n is defined as n+ . . .+ n︸ ︷︷ ︸

m times

, i.e., as obtained from the sum

m = 1 + . . .+ 1︸ ︷︷ ︸
m times

by replacing each unit by n, the product of two infinite quantities α.β may

be obtained by writing the corresponding infinite sum for α and replacing each unit by β,

as in the case of (
0

N)2. Perhaps surprisingly, this latter feature of Bolzano’s computation
may in fact be seen as the most modern one, especially under our interpretation of the
Bolzanian product. Indeed, by allowing not only his finitary operations, but also his infinitary
operations (like infinite summation) to range over both finite and infinite quantities, Bolzano,
just as Cantor, is able to generate a hierarchy of infinities of ever increasing order.

9.7 Coda: Bolzanian Quantities via Possibility Struc-

tures

In this final section, I will offer an alternative reconstruction of Bolzano’s Calculation of
the Infinite that takes into account the objections raised in the previous section. The main
motivation for doing so will be given in the next subsection. I will argue that the formal-
ization offered in Section 9.4 suffers from two main issues: first, the choice of representing
Bolzanian sums as countable sequences of integers committed us to the idea that Bolzano
shared what I will call the Rate Intuition regarding infinite sums. Second, our representation
via ultrapowers limits our ability to account for Bolzano’s views regarding permutations of
infinite sums. The solution I present in this section will have two main features. First, we
will not be representing basic Bolzanian sums as countable sequences, but rather as functions
from the set of all finite subsets of ω+ into the integers. Second, instead of using ultrafilters,
we will be considering a poset of filters. I will first define a possibility structure for infinite
quantities of the first-order, before adapting the construction of iterated ultrapowers to the
setting of possibility semantics.

9.7.1 The Rate Intuition and the Permutation Problem

Recall that, in Section 9.6, we outlined a strategy for assigning sizes to sets of natural num-
bers along Bolzanian lines, and we remarked that this approach would come really close to
numerosities as defined in [18]. As I have argued in the previous chapter, there are however
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reasons to object to the implementation of (PW) via Tarskian structures, having to do
without their lack of invariance under permutations that do not preserve the order of the
natural number sequence. I think a similar issue comes up in the case of infinite sums and
that there is enough evidence in Bolzano’s writings to suggest that his notion of infinite sums
should exhibit more symmetry properties than what ultrapowers modulo a free ultrafilter on
ω+ can offer.

Let us start by making precise the notion of invariance at stake. For simplicity, I will only
consider infinite sums “of the first-order”, i.e., sums in which every term is a finite number.
Recall that, to every Bolzanian sum α1 + α2 + . . . in inf., we may associate a function
α : ω+ → Z given by α(i) = αi. Given a permutation π of ω+, it is natural to consider the
Bolzanian sum απ−1(1) + απ−1(2) + . . . in inf., in which the terms in α are “shuffled around”
according to the permutation π. I will write π(α) for the sequence associated with that sum.
Just like in the previous chapter, we may consider imposing the following two invariance
requirements on Bolzanian sums:

Relative Invariance For any Bolzanian sums α, β, if α ≤ β and π is a permutation, then
π(α) ≤ π(β).

Absolute Invariance For any Bolzanian sum α and any permutation π, α = π(α).

Just like in the case of numeorsities and NAP functions, I will argue that we should adopt
Relative Invariance as a constraint in our formal reconstruction of Bolzano’s Calculation of
the Infinite, but that the situation is more complex with Absolute Invariance. Let me start
by mentioning that Bolzano himself seems to make a difference between absolute and rela-
tive determinations of the quantities designated by infinite sums in §28, which immediately
precedes the beginning of the Calculation of the Infinite:

[A] calculation of the infinite done correctly does not aim at a calculation of that
which is determinable through no number, namely not a calculation of the infinite
plurality in itself, but only a determination of the relationship of one infinity to
another. This is a matter which is feasible, in certain cases at any rate, as we
shall show by several examples.

In other words, Bolzano makes a distinction between computing the value of an infinite
quantity and determining the order relationship between two infinite quantities. He argues
that only the latter is possible, since achieving the former would require one to assign a
(necessarily finite) number to an infinite quantity, which is impossible. But this, to me,
seems like evidence that Bolzano would accept Relative Invariance as a constraint on
Bolzanian sums. For if one can determine unequivocally the relationship between the infinite
quantities designated by two Bolzanian sums, shouldn’t such a determination be invariant
under changing the order in which the terms are summed? Here again, we find in an already
quoted passage of §32 reasons to believe that Bolzano would hold such a view:
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In particular a series, if we want to consider it only as a quantity, namely only
as the sum of its terms must, by virtue of the concept of a sum (which belongs
to multitudes, i.e. to those totalities for which no attention is paid to the order
of their parts) have such a nature that it undergoes no change in value when we
make a change in the order of its terms. With quantities especially it must be
that:

(A+B) + C = A+ (B + C) = (A+ C) +B.

Putting things together, this suggests that changing the order of terms in two Bolzanian sums
should not change the order relationships between the quantities they designate. However,
it is easy to see that the formal reconstruction of Bolzano’s Calculation of the Infinite via
the structure ZU described in Section 9.4 does not satisfy Relative Invariance. One could
provide many examples depending on the choice of the ultrafilter U needed to construct ZU.
However, the following is a more interesting example, because it applies regardless of the
choice of U. Consider the following permutation of ω+:

π−1(i) =


2n if i = 3n

4n+ 1 if i = 3n+ 1

4n+ 3 if i = 3n+ 2

It is easy to see that π(
1

S) is the sequence corresponding to the Bolzanian sum:

1 + 3 + 2 + 5 + 7 + 4 + 9 + 11 + . . . in inf.

Once we compute the difference
1

S− π(
1

S) termwise, this yields the following sum:

1

S− π(
1

S) = (1 − 1) + (2 − 3) + (3 − 2) + (4 − 5) + (5 − 7) + (6 − 4) + (7 − 9) + . . . in inf.

= 0 − 1 + 1 − 1 − 2 + 2 − 2 + . . . in inf.

It is easy to see that, for cofinitely many i ∈ ω+, the sum of the first i terms of
1

S−π(
1

S) is negative. According to the formalization introduced in Section 9.4, it follows that

ZU |= ¬(
1

S ≥ π(
1

S)). However, letting π−1 be the inverse permutation of π, we clearly have

that ZU |= π−1(
1

S) ≥
1

S. Since π−1(π(
1

S)) =
1

S, it follows that ZU |= π−1(
1

S) ≥ π−1(π(
1

S)).
This shows that ZU does not satisfy Relative Invariance.

It is worth reflecting on an interesting feature of the example just given, which I think
gives an intuitive explanation of the formal result just obtained. When computing the

Bolzanian sum
1

S−π(
1

S), we can see that positive and negative terms appear infinitely many
times. By contrast, when we compute the partial sums of the first i terms for i ∈ ω+, we
see that the result is negative for cofinitely many i. But this is only the case because we
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consider initial segments of the infinite sum
1

S−π(
1

S). Indeed, if we were to consider instead

partial sums of the form
∑

i≤n(
1

S(3i) − π(
1

S)(3i)) for some n ∈ ω+, we would have that∑
i≤n

(
1

S(3i) − π(
1

S)(3i)) =
∑
i≤n

(3i− π−1(3i)) =
n(n+ 1)

2
.

In other words, the formalization of Bolzanian sums in ZU seems to follow the intuition
that the order of the terms in a Bolzanian sum must be kept fixed when computing partial
approximations of the value of the sum. Intuitively, although there are infinitely many

positive terms in
1

S− π(
1

S), those positive terms appear “less frequently” than the negative

ones, and, consequently, the sequence of partial approximations of the infinite sum
1

S −
π(

1

S) “converges” to an infinitely large negative quantity. One can now see the connection
between this aspect of the formal reconstruction presented in Section 9.4 and the Density
Intuition discussed in the previous chapter. Just like, according to the Density Intuition,
the distribution of the elements of a set U along the standard progression of the natural
numbers determines the size of the set U , the distribution of positive and negative terms
in an infinite sum ultimately determines the sign of the sum. One could also make the

same point differently by considering the “rate” at which the two sums
1

S and π(
1

S) seem to
increase indefinitely. When one compares initial segments of the two sums:

1

S = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + . . . in inf.

π(
1

S) = 1 + 3 + 2 + 5 + 7 + 4 + 9 + 11 + . . . in inf.,

it is easy to notice that larger numbers seem come “earlier” twice more often in π(
1

S) than

in
1

S, whence the intuition that π(
1

S) seems to “grow” at a faster rate than
1

S.
It seems to me that, although there might be a coherent story to be given in favor of

what I will call the “Rate Intuition” about infinite sums, it is largely absent from Bolzano’s
writings, and, in fact, arguably inconsistent with his own views. We have seen several times
before that, according to Bolzano, it is part of the very concept of a “sum” that the quan-
tity corresponding to a sum is not determined by the order in which its terms are summed.
Moreover, I think that rejecting the Rate Intuition can also be helpful in offering a novel
insight into a notoriously difficult passage in Bolzano’s writings. Let me now briefly expand
on this point.

In a famous passage of his Theory of Science [52, §102], Bolzano gives a example of a
sequence of concepts in which the extension of each concept is infinitely greater than the
extension of the following one:

Let us abbreviate the concept of any arbitrary integer by the letter n. Then the
numbers n,n2,n4,n8,n16,n32,... express concepts each of which includes infinitely
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many objects (namely, infinitely many numbers). Furthermore, it is clear that
any object that stands under one of the concepts following n, e.g., n16, also stands
under the predecessor of that concept, n8. It is also clear that very many objects
that stand under the preceding (n8) do not stand under the following (n16). Thus
of the concepts n, n2, n4, n8, n16, n32,..., each is subordinated to its predecessor.
It is, furthermore, undeniable that the width of any of these concepts is infinitely
larger than the width of the concept immediately following it. (And this holds
even more for concepts that follow later in the sequence.) For, if we assume that
the largest of all numbers to which we want to extend our computation is N , then
the largest number that can be represented by the concept n16 is N and thus the
number of objects that it includes equals or is smaller than N

1
16 and likewise

the number of objects that stand under the concept n8 equals or is smaller than
N

1
8 . Hence the relation between the width of the concept n8 and that of the

concept n16 is N
1
16 : N

1
8 = N

1
16 : 1. Since N

1
16 can become larger than any given

quantity, if N is large enough, and since we can take N as large as we please,
and since we can come closer and closer to the true relation between the widths
of the concepts n8 and n16, the larger we take N , it follows that the width of
the concept n8 surpasses infinitely many times that of the concept n16. Since the
sequence n, n2, n4, n8, n16, n32,... can be continued indefinitely, this sequence
itself gives us an example of an infinite sequence of concepts each of which is of
infinitely greater width than the following.

Much later in his life, however, Bolzano seems to have taken issue with this argument,
as evidenced by this passage from a letter to his pupil Zimmermann [51, pp.187–188]19:

Wissenschaftslehre vol. I, p. 473. The matter is not only obscurely presented, but
also, as I just began to recognize, quite wrong. If one designates by n the concept
of every arbitrary whole number, or to say it better, if by n every arbitrary whole
number would be represented, then with this it is already decided which (infinite)
set of objects this sign represents. This will not change the least, if we by means
of addition of an exponent like n2, n4, n8, n16, ... require that each of these
numbers now must be raised to the second, now to the fourth, ... power. The
set of these objects which is represented by n is still exactly the same as before,
although the objects themselves, which are represented by n2 are not the same as
those represented by n. The wrong result was due to an unwarranted inference
from a finite set of numbers, namely those not exceeding the number N , to all of
them.”

As mentioned before, several commentators (including [26]) have taken this passage as
evidence that Bolzano ultimately abandoned the part-whole principle for infinite collections.
I do not wish to weigh in on the subtleties of this complex debate here (see [13] and [12,
Chap. 3] for a thorough discussion of the issue), and I will only limit myself to pointing out

19I am reproducing here the translation given in [13].
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a similarity between this passage in the letter to Zimmermann and a passage from §29 of
the PU quoted above in which Bolzano discusses an infinitary version of Gauss’s summation
theorem:

[I]f, as some people have done, we wanted to form the equation

[
1

S] =

0

N · (
0

N + 1)

2

then we could hardly justify it on any other ground than that for every finite
multitude of terms [Menge von Gliedern] the equation

1 + 2 + 3 + . . .+ n =
n.(n+ 1)

2

holds, from which it appears to follow that for the complete infinite multitude of

numbers n just becomes
0

N . However it is in fact not so, because with an infinite

series it is absurd to speak of a last term which has the value
0

N .

In both passages, Bolzano seems to be objecting to a form of argument that one might call
“passing from the finite to the infinite”. In the first case, one argues that the ratio between
the size of the collection of all numbers of the form n8 and the collection of those of the form
n16 is best approximated by the sequence of ratios between initial segments of the two sets.

In the second case, one argues that the ratio between
1

S and
0

N can be determined exactly
by considering initial segments of the two sums and applying Gauss’s summation theorem.
My hypothesis here is that Bolzano came to believe that this type of argument was too
quick. Although some information about order relationships between infinite collections can
sometimes be gained by considering finite approximations of those, drawing such conclusions
based on the sole consideration of initial segments could lead to error. To use some more
Bolzanian terminology, the mistake lies in using a sequence (Reihen) representation of an
infinite quantity (like the collection of all natural numbers or their sum) to argue that it has
a given property on the basis that every quantity represented by an initial segment of that
sequence has that same property. Indeed, this would be forgetting the distinction between
sums and sequences, and, although this might not be an issue for finite objects, one has to
exert more caution when dealing with infinite ones. At the same time, this does not have
to mean that Bolzano gives up on any form of argument that is motivated by part-whole
considerations or that he adopts the Cantorian Bijection Principle. As I will show below, one
can offer a formal reconstruction of Bolzano’s computations in the Calculation of the Infinite
that aligns with his arguments in the text of the PU but does not validate the Rate Intuition.
The two key moves of this formalization are, first, to consider all partial approximations of
an infinite sum in the determination of the quantity it designates instead of considering only
initial segments of the sum and, second, to use generic powers instead of ultrapowers.
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Before getting into the details of this alternative formalization, let me briefly discuss
the second invariance condition mentioned above, namely, Absolute Invariance. Here, we
quickly run into some difficult issues having to do with Bolzano’s views on Grandi’s series.
Consider for example the following permutation τ :

τ(i) =


2 if i = 1

i− 2 if i = 2n+1, n ≥ 1

i+ 2 if i = 2n, n ≥ 1

The Bolzanian sum τ(
1

S) is then the following sum:

3 + 1 + 5 + 2 + 7 + 4 + . . . in inf.

It is then straightforward to verify the following:

τ(
1

S) −
1

S = 2 − 1 + 2 − 2 + 2 − 2 + . . . in inf.

= G2 − 1.

Now if we were to accept Absolute Invariance, it would follow that τ(
1

S) −
1

S = 0 and
thus that G2 = 1. But this is precisely the value assigned by M.R.S’s method to Grandi’s
series when a = 2! Hence Bolzano’s views on divergent series like Grandi’s seem to directly
clash with Absolute Invariance.

It seems to me that one could possibly solve the issue by appealing to Bolzano’s notion of
Gliedermenge here. Recall that, in the passage from PU §24 quoted above, Bolzano argued
that the existence of a bijection between two infinite sums mapping equal terms to equal
terms was not enough to conclude that they had the same value, because such a bijection did
not guarantee that the two sums had the same number of terms. I think that a promising
strategy for explaining what goes wrong in the example above is to argue on Bolzano’s

behalf that the permutation τ defined above may not preserve the Gliedermenge of
1

S. At
the same time, some permutations must preserve the Gliedermenge of their sums, otherwise
Bolzano’s claim that sums should be invariant under the order in which their terms are
summed would be meaningless. One is therefore quickly faced with the issue of determining
which permutations preserve the Gliedermenge of infinite sums, and which don’t. It is not
clear that one can give a completely satisfactory answer to this question, but there is at least
one important remark that one can make.

Recall that, given a element x of a set S and a permutation π of S, the orbit of x under
S is the smallest subset O(x) of S containing x and closed under the map π, meaning that
π(y) ∈ O(x) whenever y ∈ O(x). Let us say that a permutation on ω+ is of finite order
whenever O(i) is finite for every i ∈ ω+. One easily verifies that the permutation π defined
above is of finite order, just like the permutation swapping the signs in every term of Ga

that Bolzano uses in §32. By contrast, the permutation τ defined above has a single infinite
orbit. The suggestion, therefore, is that permutations with infinite orbits do not preserve
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the Gliedermenge of infinite sums, and that for this reason Absolute Invariance does not
apply to them. Intuitively, this seems in line with Bolzano’s rejection of M.R.S’s computa-
tions for Grandi’s series. Indeed, Bolzano argues that the error in the reasoning leading to
the conclusion that Ga = a

2
is that M.R.S identifies two sums that do not have the same

Gliedermenge. Similarly, one could argue that applying Absolute Invariance in the case of
the permutation τ leads one to identify two infinite sums with a different Gliedermenge, and
that it is therefore essentially the same mistake that leads to the conclusion that G2 = 1.
It is also worth mentioning a connection here with the previous chapter, where we discussed
the fact that permutations with infinite orbits immediately established the inconsistency
between the Absolute Invariance Criterion and (PW ). It is therefore not surprising to find
a similar incompatibility arising again here, and that we would be forced to conclude that
Absolute Invariance does not apply in the case of permutations with infinite orbits. What
about permutations of finite order? Here again, the situation is quite subtle. As we shall
see below, we might not be able to guarantee that Absolute Invariance is always satisfied
when π is a permutation of finite order, but we can ensure that it is never refuted. Here
again, the flexibility of generic powers, and in particular the fact that not every statement
must be satisfied or refuted in a possibility structure, will allow us to offer quite a nuanced
picture of the issue.

9.7.2 A Generic Power Construction for Infinite Sums

Recall that the main idea of the formal reconstruction of Bolzano’s Calculation of the Infi-
nite in Section 9.4 was to associate to each Bolzanian sum a countable sequence of partial
approximations of the value of that sum. I will follow a similar strategy here, except that I
will represent a Bolzanian sum of the form a1 + a2 + . . . in inf. by a function mapping each
finite subset A of ω+ to

∑
i∈A ai. The intuition here is that our formal representation of an

infinite sum will take into account all possible partial approximations of its value, instead
of considering only the partial sums obtained by taking the sum of all the values in some
initial segment. As we shall see below, this is what will allow us to obtain a structure in
which Bolzanian sums behave better under permutation of their terms. Let us start with
the following definitions.

Definition 9.7.1. We let Λ1 be the set of all finite subsets of ω+, ordered by inclusion.
A function α : Λ1 → Z is Bolzanian if for any A ∈ Λ1, α(A) =

∑
i∈A α({i}). We denote

the subset of ZΛ1 of all Bolzanian functions by B1. Finally, we let B1 be the generic power
(B, ZZΛ1 ,I ) of Z in the language L ′ = {0, 1,+,−, <} determined by the poset B of all
fine filters on Λ1 ordered by reverse inclusion.

Clearly, any Bolzanian function is determined by its value on singletons. Thus, when
defining an element in α ∈ B1 as in the next definition, it will be enough to specify what
α({i}) is for every i ∈ ω+. We will often abuse notation and write α(i) instead of α({i}).
Moreover, one easily notices that B1 is closed under addition and subtraction.

Definition 9.7.2. We introduce the following Bolzanian functions for any n ∈ ω and a ∈ Z:
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•
n

N, given by
n

N(i) = 1 if i > n, and
n

N(i) = 0 otherwise.

•
n

S, given by
n

S(i) = in for all i ∈ ω+.

• Ga, given by Ga(i) = a if i is odd and Ga(i) = −a if i is even.

By the Truth Lemma, B1 is elementarily equivalent to Z, and thus satisfies the axioms
of a totally ordered discrete Abelian group. For any a ∈ ZΛ1 and i ∈ ω+, we may therefore
write ia for the sum of a with itself i times as computed in B. Moreover, there is a canonical
embedding i 7→ i of Z into B1, given by constant functions. Note that for any non-negative
i ∈ Z, there is ai ∈ B1 such that B1 |= i = ai, given by ai(j) = 1 if j ≤ i, and ai(j) = 0
otherwise. Thus we may view all integers as Bolzanian functions. In what follows, we
will use the representation of integers as constant functions and as Bolzanian functions
interchangeably, depending on convenience. Let us now prove an analogue of Lemma 9.4.2:

Lemma 9.7.3.

1. For any natural numbers i, n, B1 |= i <
n

N.

2. For any natural number n, B1 |=
0

N−
n

N = n.

3. For any natural number i, B1 |= i
0

N <
1

S.

4. For any natural numbers i, n, B1 |= i
n

S <
n+1

S .

5. For any a, b ∈ Z, there is G ∈ B such that G ⊩ Ga = ab.

Proof. By the Truth Lemma, it is enough to show for each of items 1-5 that ||φ||Λ1 ∈ F for
every fine filter on Λ1, where φ is the formula corresponding to each item. This in turn is
equivalent to showing that there is B ∈ Λ1 such that for all A ⊇ B, A ∈ ||φ||Λ1 . We show
this in turn.

1. Note first that for any A ∈ Λ1, A ∈ ||i <
n

N||Λ1 iff |A ∩ {m ∈ ω+ | n < m}| > i.

Hence for any A ⊇ {1, ..., n + i + 1}, we have that i(A) = i and
n

N(A) > i. Therefore

||i <
n

N||Λ1 is in every fine filter on Λ1.

2. Suppose A ⊇ {1, ..., n}. Then we have that
0

N(A) =
n

N(A) + n, hence A ∈ ||
0

N−
n

N =

n||Λ1 . This shows that ||
0

N−
n

N = n||Λ1 is in every fine filter on Λ1.

3. For any nonempty A ∈ Λ1, let w(A) =
∑

i∈A i

|A| . Note first that whenever w(A) > i, then

i|A| <
∑

i∈A i, and thus A ∈ ||i
0

N <
1

S||Λ1 . Moreover, whenever B ⊇ A, we have that
w(A) ≤ w(B). Hence it is enough to find A such that w(A) > i. Set A = {1, ..., 2i}.
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By Gauss’s summation theorem, we have that w(A) = (2i)(2i+1)
2(2i)

= 2(i+1)
2

> i. This

shows that ||i
0

N <
1

S||Λ1 is in every fine filter on Λ1.

4. For any nonempty A ∈ Λ1, let wn(A) =
∑

i∈A i
n∑

i∈A i
n+1 . Again, we have that A ∈ ||i

n

S <
n+1

S ||Λ1 whenever wn(A) > i. Clearly, lim|A|→∞wn(A) = +∞, so there must be B ∈ Λ1

such that wn(A) > i for all A ⊇ B. This shows that ||i
n

S <
n+1

S ||Λ1 is in every fine filter
on Λ1.

5. Finally, fix a ∈ Z, and denote the sets of odd and even numbers in ω+ by 2ω++1 and
2ω+ respectively. For any A ∈ Λ1, let ga(A) = |A∩ 2ω++1| − |A∩ 2ω+|. Note that for
any A ∈ Λ1 and any b ∈ Z, we have that A ∈ ||Ga = ab||Λ1 iff ga(A) = b and moreover
that there is B ⊇ A such that ga(B) = b (since both 2ω++1 and 2ω+ are infinite).
Now for any b ∈ Z, let G be a fine filter containing the set {B ∈ Λ1 | ga(B) = b}.
By the second observation above, there is such a filter in B. By the first observation
above together with the Truth Lemma, we have that G ⊩ Ga = ab. This completes
the proof.

At this point, it is worth emphasizing a difference between the formalization of Bolzano’s
computations in possibility semantics and the previous formalization via an ultrapower. In
the case of Grandi’s series, one can show that the quantity assigned to Ga in the ultrapower
ZU must be either 0 or a. By contrast, Lemma 9.7.3.5 shows that the quantity assigned to
Ga in B1 is much more undetermined, in the sense that B1 ̸|= Ga ̸= ab for any b ∈ Z. In
particular, this means that B1 ̸|=

∨
b∈S Ga = b for any finite set S of integers. Note however

that, by the proof of item 5 above, for any A ∈ Λ1, there is b ∈ Z such that A ∈ ||Ga = ab||Λ1 .
Hence ||∃xGa = ax||Λ1 = Λ1, which means that B1 |= ∃xGa = ax. Hence we still preserve
Bolzano’s view that M.R.S’s result for Grandi’s series is incorrect.

Intuitively, the previous observation suggests that we made some progress towards ob-
taining some invariance under permutations for Bolzanian sums. Indeed, in the case of Ga,
it is easy to see that the intuitive motivation for thinking that Ga must be equal to either
0 or a collapses once one rearranges the terms in Ga according to a permutation of finite
order (like Bolzano does when showing that Ga = −a). For example, we might be inclined
to think that Ga = 2a if we were to rearrange the terms of the series as follows:

a+ a+ a− a+ a+ a+ a− a+ . . . in inf.,

which can clearly be done with a permutation of finite order. As we shall see, the assign-
ment of quantities in B1 to Bolzanian sums does are indeed more stable under permutations
of the terms of a sum than the assignment of quantities in an ultrapower. However, we first
need to gain a deeper understanding of the conditions under which the order relationships
between two Bolzanian functions is determined in B.
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Definition 9.7.4. Let N∞ be the set containing N and the formal symbol ∞. We define
the relation ≼ on N∞ by a ≼ b iff a ∈ N and either b = ∞ or b ∈ N and a ≤ b. We let a ≈ b
iff a ≼ b and b ≼ a, and a ≺ b iff a ≼ b and a ̸≈ b. For any a ∈ Z 1, let a+ ∈ N∞ be the
smallest natural number that is an upper bound of the set {a(A) | A ∈ Λ1}, if it exists, and
∞ otherwise. Similarly, let a− be the smallest natural number that is an upper bound of
the set max({−a(A) | A ∈ Λ1}, it is exists, and ∞ otherwise.

The following lemma gives a precise characterization of when a given Bolzanian function
α is forced to be positive, negative or equal to 0 in B.

Lemma 9.7.5. For any α ∈ B1, B1 |= α ≤ 0 iff α+ ≼ α− B1 |= α ≥ 0 iff α+ ≽ α−, and
B1 |= α = 0 iff α+ ≈ α− iff there is a finite set B such that α(B) = 0 and α(i) = 0 for all
i ∈ ω+ \B.

Proof. Note first that B1 |= α ≤ 0 iff ||α ≤ 0||Λ1 ∈ F0 iff there is B ∈ Λ1 such that for all
C ⊇ B, α(C) ≤ 0. Similarly, B1 |= α = 0 iff there is B ∈ Λ1 such that α(C) = 0 for all
C ⊇ B. Now I claim the following:

• α+ ≼ α− iff there is B ∈ Λ1 such that α(C) ≤ 0 for all C ⊇ B;

• α+ ≈ α− iff there is B ∈ Λ1 such that α(C) = 0 for all C ⊇ B iff there is a finite set
B such that α(B) = 0 and α(i) = 0 for all i ∈ ω+ \B.

For the proof of the first claim, suppose first that α+ ̸≼ α−. Then either α+ = ∞ or both
α−, α+ ∈ N and α− < α+. Let B ∈ Λ1. I claim that there is C ⊇ B such that α(C) > 0.
Without loss of generality, we may assume that α(i) ≤ 0 for every i ∈ B. By definition,
−α(B) ≤ α−. By assumption, there is C ∈ Λ1 such that α(C) > α−, and clearly we may
assume that α(i) > 0 for all i ∈ C, which implies that B ∩ C = ∅. But then it follows that
α(B ∪C) = α(B) + α(C) > α(B) − α(B) = 0. This shows the right-to-left implication. For
the converse, suppose that α+ ≼ α−. This means that α+ ∈ N, so fix B ∈ Λ1 such that
α(B) = α+, and note that we may assume that α(i) > 0 for all i ∈ B. By assumption, there is
C ∈ Λ1 such that −α(C) ≥ α(B), and, again, we may assume that α(i) < 0 for all i ∈ C, and
thus that B∩C = ∅. Let A = B∪C, and note that α(A) = α(B)+α(C) ≤ α(C)−α(C) = 0.
Moreover, for any D ⊇ A, we have that α(D) ≤ α(A), for otherwise α(D\C) > α(B), which
is impossible since α(B) = α+. This completes the proof of the first claim.

For the proof of the second claim, suppose first that α+ ≈ α−. Note that this means that
α+, α− ∈ N and α+ = α−. So we may fix sets B,C ∈ Λ1 such that α(B) = α+, α(C) = −α−,
α(i) > 0 for all i ∈ B and α(i) < 0 for all i ∈ C. Note that for α(B ∪ C) = α+ − α− = 0.
Moreover, for any A ⊇ B ∪ C, we have that α(A) ≤ α(B ∪ C) ≤ α(A), for we would have
−α(A \ B) > α− or α(A \ C) > α+ if the first or second inequality respectively were false.
This shows the left-to-right direction of the first equivalence. For the converse, suppose that
there is B ∈ Λ1 such that α(C) = 0 for all C ⊇ B. Let B1 = {i ∈ B | α(i) > 0} and
B2 = {i ∈ B | α(i) < 0}. I claim that α+ = α(B1) and that α− = α(B2). Note that this will
imply that α+ = α− and that both are natural numbers, hence that α+ ≈ α−. For the proof
of the claim, it is enough to observe that, for any i /∈ B, α(i) = 0, for otherwise we would
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have that α(B ∪ {i}) ̸= 0. But this clearly implies that α+ = α(B1) and that α− = α(B).
This completes the proof of the first equivalence. Finally, note that the left-to-right direction
of the second equivalence was precisely established by the argument just given, and that the
right-to-left equivalence is immediate.

From the two claims above, it immediately follows that B1 |= α ≤ 0 iff α+ ≼ α− and
that B1 |= α = 0 iff α+ ≈ α−. Finally, the last equivalence follows from the following chain
of equivalences:

B1 |= α ≥ 0 ⇔ B1 |= −α ≤ 0

⇔ (−α)+ ≼ (−α)−

⇔ α− ≼ α+,

where the last equivalence follows from the observation that (−α)+ = α− and that (−α)− =
α+.

We are now in a position to establish that the assignment of Bolzanian functions in B1 to
Bolzanian sums satisfies some invariance conditions under some permutations of the set of
the terms. Note first that, if we rearrange the terms of a Bolzanian sum a1 + a2 + . . . in inf.
according to a permutation π of ω+, we should expect to obtain the Bolzanian sum aπ−1(1) +
aπ−1(2) = . . . in inf.. This motivates the following definition.

Definition 9.7.6. Let π be a permutation of ω+. For any α ∈ B1, let π∗(α)(A) = α(π−1[A]).

It is clear that π∗(α) ∈ B1 for any α ∈ B1. Let us now prove our invariance result for B:

Lemma 9.7.7. Let π be a permutation of ω+.

1. For any α, β ∈ B1, B1 |= α ≤ β iff B1 |= π∗(α) ≤ π∗(β).

2. If π is a finite permutation, then B1 |= α = π∗(α) for any α ∈ B1.

3. If π is of finite order, then for any α ∈ B1, there is F ∈ B such that F ⊩ α = π∗(α).

Proof. Fix a permutation π.

1. Notice first that, since any permutation has an inverse π−1, it is enough to show that
B1 |= α ≤ β implies B1 |= π∗(α) ≤ π∗(β) for all α, β ∈ B1. Moreover, for any α, β ∈ B1,
we have that B1 |= α ≤ β iff B1 |= β − α ≤ 0. Since π∗(β − α) = π∗(β) − π∗(α), this
means that it is enough to show that B1 |= α ≤ 0 implies B1 |= π∗(α) ≤ 0 for any
α ∈ B1. Now suppose that B1 |= α ≤ 0. By Lemma 9.7.5, this means that α+ ≼ α−.
Note that α+ = (π∗(α))+ and that α− = (π∗(α))−, since π∗(α)(B) = α(π−1[B]) for
any B ∈ Λ1. Hence (π∗(α))+ ≼ (π∗(α))−, which by Lemma 9.7.5 again implies that
B1 |= π∗(α) ≤ 0.

2. If π is a finite permutation, then the set A = {i | π(i) ̸= i} is finite and thus belongs
to Λ1. Clearly, for any B ⊇ A we have that π−1[B] = B, hence B ∈ ||α = π∗(α)||Λ1 .
But this shows that B1 |= α = π∗(α).
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3. Suppose that π has no infinite orbit. For any i ∈ ω+, let O(i) be the orbit of i, and for
any B ∈ Λ1, let O(B) =

⋃
{O(i) | i ∈ B}. Note that O(B) is finite for any B ∈ Λ1.

Moreover, for any B ∈ Λ1, we have that O(O(B)∪B) = O(B)∪B. This shows that for
any B ∈ Λ1, there is C ⊇ B such that O(C) = C. Now let F be the fine filter generated
by the set U = {B ∈ Λ1 | B = O(B)}. As just shown, F ∈ B, since for all B ∈ Λ1

there is C ⊇ B such that C ∈ U . Notice however that, if B ∈ U , then π−1[U ] = U .
This implies that π∗(α(B)) = α(π−1[B]) = α(B). Hence ||α = π∗(α)||Λ1 ∈ F , which
implies that F ⊩ α = π∗(α).

Lemma 9.7.7 shows that our new formalization of Bolzano’s computations satisfies what
we identified in Section 9.7.1 as reasonable conditions to impose regarding the stability of
Bolzanian sums under permutations. Indeed, the first part of the lemma shows that rel-
ative order relationships between the quantities associated to any two Bolzanian sums are
preserved under any permutation of the terms of both sums. Meanwhile, the last part of
the lemma shows that any Bolzanian function can always be forced to be invariant under
a permutation of finite order, or, equivalently, that B1 ̸|= α ̸= π∗(α) for any Bolzanian
sum α and permutation π of finite order. We therefore have three degrees of absolute in-
variance of Bolzanian sums under permutation of their terms, depending on the complexity
of a given permutation π. If π is a finite permutation, then any Bolzanian sum α is un-
equivocally invariant under π. If π is an infinite permutation of finite order, then α and its
permutation are still conceivably equal, i.e., their equality is not refuted in B1. Finally, if
π is an infinite permutation of infinite order, the equality of α and π∗(α) may be refuted in B.

Let us conclude by returning to the issue of formalizing the product of two Bolzanian
sums. It is worth mentioning that not all of the reasons mentioned in Section 9.5 for rejecting
the pointwise definition for the product operation on Bolzanian sums still apply to the
formalization via the generic power B1. Indeed, recall that Gauss’s summation theorem for

finite numbers immediately implied that ZU |=
0

N · (
0

N + 1) = 2
1

S, a result that Bolzano

explicitly rejects, where
0

N · (
0

N + 1) is defined as the pointwise product, i.e., such that
0

N · (
0

N+ 1)(n) = n× (n+ 1) for any n. But it is easy to see that, if we now view
0

N · (
0

N+ 1)

as the Bolzanian function determined by
0

N · (
0

N + 1)(A) =
∑

i∈A i × (i + 1), we have that

B1 ̸|=
0

N ·(
0

N+1) = 2
1

S. Indeed, by Lemma 9.7.5, we have that B1 |=
0

N ·(
0

N+1)−2
1

S iff there

is a finite set B such that
0

N·(
0

N+1)(B) = 2
1

S(B) and
0

N·(
0

N+1)(i) = 2
1

S(i) for all i /∈ B. But
0

N·(
0

N+1)(i) = 2
1

S(i) iff i×(i+1) = 2i iff i = 1. Hence the pointwise definition of the product
of two Bolzanian sums is compatible with the refutation of the infinite summation theorem,
provided that one models Bolzanian sums as sequences of partial sums indexed by Λ1 rather
than by ω+. Note that this result is very much in line with the diagnosis of the issues with
the ultrapower model that we gave in Section 9.7.1. Under the pointwise interpretation of
the product, the infinite summation theorem is a consequence of the Rate Intuition. But if,
as I have argued, Bolzano is committed to the rejection of the Rate Intuition, it is therefore
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no surprise that he would also object to the infinite summation theorem and that adoption
a permutation-invariant formalization of Bolzanian sums would also allow us to refute the
infinite summation theorem.

At the same time, some of the other reasons for rejecting the pointwise definition of the
product of two Bolzanian sums still stand. Indeed, according to the strong reading of what

Bolzano means by products being infinite quantities of higher order, we would still want (
0

N)2

to be greater than the sum of all odd numbers
Odds

S . Under the pointwise definition of the

product, we can however find some F ∈ B such that F ⊩ (
0

N)2 =
Odds

S . Indeed, it is easy to
see that all the consequences of the Rate Intuition are forced by the fine filter F containing
the set {{1, ..., n} | n ∈ ω+}. Moreover, given our understanding of the product as an iterated

infinite sum, we still have that
0

N.
1

S−
1

S.
0

N = (
1

S−
0

N) + (
1

S− 2
0

N) + (
1

S− 3
0

N) + . . . in inf..

Hence we would want that B1 |=
0

N.
1

S >
1

S.
0

N. But B clearly makes the pointwise product
operation commutative. In other words, although moving away from the Rate Intuition
allows the pointwise definition of the product to not outright contradict Bolzano’s claims, the
interpretation of Bolzanian products as iterated Bolzanian sums still require us to introduce
a difference construction for products of Bolzanian functions. In order to do so, we will
essentially need to adapt the iterated ultrapower technique to possibility structures.

9.7.3 Iterated Generic Powers

Let us start by introducing the following notation and definitions.

Notation 9.7.8. We introduce the following notation.

• For any i ≤ ω, Λi is the poset of all sequences of elements of Λ1 of length i, with the
order defined pointwise. Elements in Λi for some i ≤ ω will usually be denoted A,B,
etc...

• For any set i ∈ ω+, we will denote the set of all fine filters over Λ1 by Filt(Λi).

• Given a set U ⊆ Λm+n for m,n ∈ ω+ and A ∈ Λn, let U |A = {B ∈ Λm | AB ∈ U}.

• Given some A ∈ Λβ and α ≤ β ≤ ω, we let A|βα be the initial subsequence of A of
length α.

Definition 9.7.9. Let α ≤ β ≤ ω.

• Let πβα : P(Λβ) → P(Λα) and λαβ : P(Λα) → P( β) be the direct image and inverse

image lifts respectively of the map A 7→ A|βα. More concretely, for any U ⊆ Λβ,
πβα(U) = {A|βα | A ∈ U} and for any V ⊆ Λα λ

α
β(V ) = {A ∈ Λβ | A|βα ∈ V }. Moreover,

for any n ∈ ω+, let κn be the closure operator on P(Λω) given by the composition
λnω ◦ πωn .
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• A set U ⊆ Λω is n-stable if κn(U) = U , and stable if it is n-stable for some n ∈ ω+.

Definition 9.7.10. An iterating family is a family {F i | F ∈ Filt(Λ1), i ∈ ω+} with the
following properties:

1. For any i ∈ ω+ and F ∈ Filt(Λ1), F
i ∈ Filt(Λi);

2. For any i ∈ ω+ and F,G ∈ Fil(Λ1), F ⊆ G implies F i ⊆ Gi.

3. For any i ∈ ω+, Bi = ({F i | F ∈ Filt(Λ1)} is a rich family;

4. For any F ∈ Filt(Λ1), any i < j ∈ ω+ and any U ∈ Λi, U ∈ F i iff λij(U) ∈ F j;

5. For any F ∈ Filt(Λ1), any i, j ∈ ω+ and any U ∈ Λi+j, if {A ∈ Λi | U |A ∈ F j} ∈ F i,
then U ∈ F i+j.

Given an iterating family {F i | F ∈ Filt(Λ1), i ∈ ω+} and any F ∈ Filt(Λ1), we let
F ω =

⋃
i∈ω+(λiω)−1[F i], i.e., U ∈ F ω iff there is i ∈ ω+ and V ∈ F i such that U = λiω(V ).

The existence of an iterating family will be established in Section 9.9. For now, we will
simply fix such a family {F i|F ∈ Filt(Λ1), i ∈ ω+}, and therefore also the set {F ω | F ∈
Filt(Λ1)}. In fact, such a family can be constructed quite canonically, but the simplest way
to describe it and to show that it has the required properties seems to require one to use a
forcing argument. Now let us investigate further the properties of sets of the form F ω.

Lemma 9.7.11. 1. The set S of all stable subsets of Λω is a Boolean subalgebra of
P(Λω);

2. For any filter F ∈ Filt(Λ1), F ω is a filter on S.

3. For any filter F ∈ Filt(Λ1) and any U ∈ S, if U /∈ F ω, then there is G ⊇ F such that
Λω \ U ∈ Gω.

Proof. Fix a filter F .

1. Let us now show that S is a Boolean subalgebra of P(Λω). Note first that if i ≤ j,
then it is easy to see that κj(U) ⊆ κi(U) for any U ⊆ Λω. Hence in particular any
i-stable set is also j-stable, since κj(U) ⊆ κi(U) ⊆ U . Now suppose that U is i-stable.
I claim that U ′ = Λω \ U is also i-stable. To see this, it is enough to show that
A ∈ κi(U

′) implies A ∈ U ′. So suppose A ∈ κi(U
′). Then there is B ∈ U ′ such that

A|i = B|i. But then if A ∈ U we also have that B ∈ U , since U is i-stable. But
this contradicts the assumption that B ∈ U ′. Hence A ∈ U ′. Moreover, suppose that
U, V ∈ S. Note that we may assume that both U and V are i-stable for some i ∈ ω+

by the remark above. Now I claim that U ∩V is i-stable. For this it is enough to show
that κi(U ∩ V ) ⊆ U ∩ V . So suppose A ∈ κi(U ∩ V ). Then there is B ∈ U ∩ V such
that A|i = B|i. But then A ∈ κi(U) = U , and A ∈ κi(V ) = V , hence A ∈ U ∩ V .
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2. Let us show that F ω is a filter on S. Suppose first that U ⊆ V and that U ∈ F ω. Then
there are i, j ∈ ω such that U is i-stable, πωi ∈ F i and V is j-stable. Let us distinguish
two cases. First, if j ≤ i, then V is i-stable. Moreover, πωi (U) ⊆ πωi (V ) since U ⊆ V ,
so πωi (V ) ∈ F i, which shows that V ∈ F ω. Now consider the case i < j, and suppose
that j = i + k. Note that in this case we also have that U is j-stable. I claim that
πωj (U) ∈ F j. Since πωj (V ) ⊇ πωj (U), this will be enough to show that V ∈ F ω. For the

proof of the claim, note that, by item 1, πωj (U) ∈ F j iff {A ∈ Λi | πωj (U)|A ∈ F k} ∈ F i.

Observe that, since U is i-stable, whenever A ∈ πωi (U), we have that πωj (U)|A = Λk.

Hence πωj (U)|A ∈ F k whenever A ∈ πωi (U), which implies that πωj (U) ∈ F j since
πωi (U) ∈ F i. This completes the proof that V ∈ F ω.

Finally, suppose that U, V ∈ F ω. An argument similar to the one above shows that
there is i ∈ ω+ such that both U and V are i-stable and both πωi (U) and πωi (V ) ∈ F i.
Since F i is a filter, it follows that πωi (U) ∩ πωi (V ) ∈ F i. Moreover, since U and V are
i-stable, we have that πωi (U) ∩ πωi (V ) = πωi (U ∩ V ). Moreover, as U ∩ V is i-stable,
this implies that U ∩ V ∈ F ω. This completes the proof.

3. Let F ∈ Filt(Λ1), U ∈ S, i ∈ ω+ and V ∈ P(Λi) such that U = λiω(V ). If U /∈ F ω,
this means that V /∈ F i. Since Bn is a rich family, there is G ∈ Filt(l1) such that
V ′ = Λi \ V ∈ Gi. But then Λω \ U = λiω(V ′) ∈ Gω.

Definition 9.7.12. A function a : Λω → Z has support α if for any A,B ∈ Λω, A|α = B|α
implies f(A) = f(B). The support of a function a : Λω → Z, denoted sup(a), is the least
α ≤ ω such that a has support α. Given a finite sequence a = a1, ..., an of functions from Λω

into Z with finite support, we write sup(a) for the natural number max(sup(a1), ..., sup(an)).

Definition 9.7.13. The possibility ring of Bolzanian quantities is the possibility structure
B in the language L = L ′ ∪ {.}, where L ′ is the language {0, 1,+,−, <}, determined by
the triple (B,ZΛω ,I ), where:

• B = {Filt(Λ1),⊇};

• ZΛω is the set of all functions from Λω into Z with finite support;

• I (0)(A) = 0 and I (1)(A) = 1 for all A ∈ Λω, and the operations + and − are
interpreted pointwise;

• For any A and a, b ∈ ZΛω , a.b(A) = a(A)× b(A′) where A′ is the sequence obtained by
removing A|sup(a) from A;

• For any F ∈ F and a, b ∈ ZΛω , (a, b) ∈ I (F,=) (resp.I (F,<)) if {A ∈ Λω | Z |=
a(A) = b(A)} ∈ F ω (resp. {A ∈ Λω | Z |= a(A) < b(A)} ∈ F ω).

Definition 9.7.14. For any L -formula φ(x1...xn) any a1, ..., an ∈ ZΛω and any A ∈ Λω, let
φA(a) be the first-order formula in the language of arithmetic obtained by replacing every
occurrence of a term of the form x1 +xj, xi−xj and xi.xj with I (ai+aj)(A), I (ai−aj)(A)
and I (ai.aj)(A) respectively. Moreover, let ||φ(a)||Λω = {A ∈ Λω | Z |= φA(a)}.
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Definition 9.7.15. For any L -formula φ(x, y) and any tuple a ∈ Λω of the same length as
x, we define the support of φ(a, y), denoted s(φ(a, y)), recursively as follows:

• For terms:

– s(x) = s(0) = s(1) = 0 for any variable x;

– s(a) = sup(a) for any a ∈ ZΛω ;

– s(t+ t′) = s(t− t′) = max(s(t), s(t′));

– s(t.t′) = s(t) + s(t′).

• For formulas:

– s(t = t′) = s(t < t′) = max(s(t), s(t′)) for any terms t, t′;

– s(φ ∧ ψ) = max(s(φ), s(ψ));

– s(¬φ) = s(∃xφ) = s(φ).

Note that s(φ(a, y)) is always finite, since every a ∈ ZΛω has finite support.

Lemma 9.7.16. For any L -formula φ(x) and any tuple a ∈ ZΛω , ||φ(a)||Λω is s(φ(a))-
stable. Moreover, if φ(x) is a formula in the language L ′ and a, then ||φ(a)||Λω is sup(a)-
stable.

Proof. A simple induction on the complexity of formulas (with an equally straightforward
induction on the complexity of terms needed for the base case) establishes that for any
A,B ∈ Λω, if A|s(φ(a)) = B|s(φ(a)), then A ∈ ||φ(a)||Λω iff B ∈ ||φ(a)||Λω . But from this
it follows at once that ||φ(a)||Λω is s(φ(a))-stable. Similarly, an simple induction on the
complexity of formulas in the language L ′ establishes that s(φ(a, y)) = sup(a) for any tuple
a ∈ ZΛω and any φ(a, y) ∈ L \ {.}. Hence for any such formula φ(x) and any a ∈ ZΛω ,
||φ(a)||Λω is sup(a)-stable.

Lemma 9.7.17. The structure B = (B,ZΛω ,I ) is a possibility structure.

Proof. Note that we have that for any F ∈ B and any a, b ∈ ZΛω , F ⊩ a = b (resp.
F ⊩ a < b) iff ||a = b||Λω ∈ F ω (resp. ||a < b||Λω ∈ F ω). But then Persistence is obvious,
Refinability follows from Lemma 9.7.11.3, and Equality-as-Equivalence and Equality-
as-Congruence directly follow from Lemma 9.7.11.2, except for the case of the function
symbol ., which we discuss in more detail. Suppose that we have a, a′, b, b′ ∈ ZΛω and F ∈ B
such that F ⊩ a = a′ and F ⊩ b = b′. We need to show that F ⊩ a.b = a′.b′. Let i =
sup(a, a′) and j = sup(b, b′), and note that, without loss of generality, s(a.b = a′.b′) = i+ j.
Now for any A ∈ Λi and B ∈ Λj, if A ∈ πωi (||a = a′||Λω) and B ∈ πωj (||b = b′||Λω), then

AB ∈ πωi+j(||a.b = a′.b′||Λω). Let U = {AB | A ∈ πωi (||a = a′||Λω) and B ∈ πωj (||b = b||Λω)}.
By the previous reasoning, we have that πωi+j(||a.b = a′.b′||Λω) ⊇ U . I claim that U ∈ F i+1,
which, if true, completes the proof that F ⊩ a.b = a′.b′. For the proof of the claim,
notice first that for any A ∈ Λi, U |A = πωj (||b = b′||Λω) if A ∈ πωi (||a = a′||Λω), and is
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empty otherwise. Moreover, since F ⊩ b = b′, we have that πωj (||b = b′||Λω) ∈ F j. Hence

{A | U |A ∈ F j} = πωi (||a = a′||Λω) ∈ F i, since F ⊩ a = a′. By property 5 of iterating
families, it follows that U ∈ F i+j, which completes the proof.

In fact, much more can be said about B. In what follows, we will show that the reduct
of B to the language L ′ is in some precise sense isomorphic to a colimit of generic powers,
and thus can arguably be described as an “iterated generic power”.

Definition 9.7.18. For any i ∈ ω+, let ZBi be the generic power of Z in the language L ′

determined by the poset Bi = (Bi,⊇). For any i ≤ j ∈ ω+, let ϵij be the pair (πij, αij),

where πij : Bj → Bi is the map F j 7→ F i and αij : ZΛ
i → ZΛ

j is such that αij(a)(A) = a(A|ji )
for any a ∈ ZΛi and A ∈ Λj.

Lemma 9.7.19. The family ({ZBi}i∈ω+ , {ϵij}i≤j) is an elementary directed system over ω.

Proof. Let us first show that ({Bi}i∈ω+ , {πij}i≤j) is a tight inverse system. Clearly, every
bounded chain in ω is finite and the maps {πij}i≤j commute, so we only need to check that
πij is a b-morphism whenever i ≤ j. Since πij is surjective, it is enough to show that it
is monotone, i.e., that F j ⊇ Gj implies F i ⊇ Gi. Assume that F i ⊉ Gi. Then there is
A ⊆ Λi such that A ∈ Gi \ F i. But then, by property 4 of iterating families, we have that
λij(A) ∈ Gj \ F j, and hence F j ⊉ Gj.

Moreover, it is clear that the maps {αij}i≤j commute. So we only need to verify that
(πij, αij) is an elementary embedding whenever i ≤ j. Fix a L ′-formula φ(x) and a tuple
a ∈ Λi. Then I claim that, for any F ∈ Filt(Λ1), we have the following chain of equivalences:

πij(F
j) ⊩ φ(a) ⇔ F i ⊩ φ(a)

⇔ ||φ(a)||Λi
∈ F i

⇔ λij(||φ(a)||Λi
) ∈ F j

⇔ ||φ(αij(a))||Λj
∈ F j

⇔ F j ⊩ φ(αij(a)).

The first equivalence holds by definition of πij, while the second and fifth equivalences hold
by the Truth Lemma for generic powers, and the third equivalence hold by property 4 of
iterating families. Therefore we only need to check that for any A ∈ Λj, A ∈ λij(||φ(a)||Λi

)

iff A ∈ ||φ(αij(a))||Λj
. But this in turn is easily established by the following chain of

equivalences:

A ∈ λij(||φ(a)||Λi
) ⇔ Z |= φ(a(A|ji ))
⇔ Z |= φ(αij(a)(A))

⇔ A ∈ ||φ(αij(a))||Λj
,

where the second equivalence holds by the definition of αij. This completes the proof.
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Theorem 9.7.20. Let
−→
Bω = (

⊗
ωBi,

⊕
ω Zi,J ) be the colimit of the elementary directed

system ({ZBi}i∈ω+ , {ϵij}i≤j). Then there is a pair (σ, β) such that:

1. (σ, β) :
−→
Bω → B is an elementary embedding;

2. σ : B →
⊗

ωBi is an order-isomorphism;

3. β :
⊕

ω Zi → ZΛω is surjective and “internally injective”, meaning that for any a, b ∈⊕
ω Zi, β(a) = β(b) iff

−→
Bω |= a = b.

Proof. Note first that, by the universal mapping property of colimits, it is enough to define
elementary possibility embeddings ηi = (σi, βi) for any i ∈ ω+ in order to obtain an elemen-

tary possibility embedding η = (σ, β) :
−→
Bω → B. For any i ∈ ω+, define σi : B → Bi by

σi(F ) = F i, and βi : ZΛi → ZΛω by βi(a)(A) = a(A|ωi ). By property 2 of iterating families,
each σi is monotone and thus a weakly dense map, since it is also clearly surjective. Moreover,
for any i ∈ ω+ and a, b ∈ ZZΛ

i , we clearly have that Ii(+, (a, b)) = I (+, (βi(a), βi(b))) and
Ii(−, (a, b)) = I (−, (βi(a), βi(b))), since those operations are interpreted pointwise. More-
over, for any F ∈ B, any L ′-formula φ(x) and any a ∈ Λi, we have that

σi(F ) ⊩ a = b⇔ F i ⊩ φ(a)

⇔ ||φ(a)||Λi
∈ F i

⇔ ||φ(βi(a))||Λω ∈ F ω

⇔ F ⊩ φ(βi(a)),

where the third equivalence follows from the fact that ||φ(βi(a)||Λω = λiω(||φ(a)||Λi
). Hence

each ηi is an elementary possibility embedding. By the Second Colimit Lemma, it follows

that η = (σ, β) :
−→
Bω → B, defined by σ(F )(i) = F i for any F ∈ B and β(a) = βi(a) for

any a ∈ Di is also an elementary possibility embedding. Moreover, for any x ∈
⊗

ωBi,
there is F ∈ B such that x(i) = F i for all i ∈ ω+, and hence σ is surjective. Since F ⊇ G
implies F i ⊇ Gi for all i ∈ ω+ by property 2 of iterating families, this means that σ is an
order-isomorphism. Finally, for any a ∈ ZΛi , b ∈ ZΛj for some i ≤ j ∈ ω+, we have that

β(a) = β(b) iff λij(a) = b iff
−→
Bω |= a = b.

Corollary 9.7.21. The L ′-reduct of B satisfies the axioms of a totally ordered Abelian
group. Moreover, for any a ∈ ZΛω , any L ′-formula φ(x), and any F ∈ B, F ⊩ φ(a) iff
πωsup(a)(||φ(a)||Λω) ∈ F sup(a).

Proof. By the Truth Lemma, every possibility structure Bi is elementarily equivalence to
Z, and hence satisfies the axioms of a totally ordered Abelian group. By the First Colimit

Lemma, every Bi elementarily embeds into
−→
Bω, which itself elementarily embeds into B.

Hence the L ′-reduct B also satisfies the axioms of a totally ordered Abelian group. Moreover,
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fix a la′-formula φ(x) and a tuple a = a1, ...ak ∈ ZΛω . Then there are b1, ..., bk ∈ ZΛsup(a) such
that β(bn) = an for all n ∈ {1, ..., k}. But then we have the following chain of equivalences:

F ⊩ φ(a) ⇔ σ(F ) ⊩ φ(b1, ..., bk)

⇔ σ(F )(sup(a)) ⊩ φ(b1, ..., bk)

⇔ ||φ(b1, ..., bk)||Λsup(a)
∈ F sup(a)

⇔ πωsup(a)(||φ(a||Λω) ∈ F sup(a),

where the first equivalence holds because (σ, β) is elementary, the second one holds be-

cause the possibility embedding (πsup(a), αsup(a)) : Bsup(a) →
−→
Bω is elementary, the third

one follows from the Truth Lemma for Bsup(a), and the last one follows from the fact that
πωsup(a)(||φ(a||Λω) = ||φ(b1, ..., bk)||Λsup(a)

.

We are now in a position to prove our main theorem about the possibility structure of
Bolzanian quantities.

Theorem 9.7.22. The structure B = (B,ZΛω ,I ) satisfies the axioms of a (non-commutative)
totally ordered ring.

Proof. In light of Corollary 9.7.21, we only need to prove that the operation . is an associative
operation with unit 1 that distributes over addition and satisfies the order axiom. Fix
a, b, c ∈ ZΛω with support i, j, k respectively, and let a′ = a|ωi , b′ = b|ωj , and c′ = c|ωk .

• Associativity: Fix A, B and C in Λi, Λj and Λk respectively. Then we compute:

a′.(b′.c′)(ABC) = a′(A) × (b′.c′(BC))

= a′(A) × (b′(B) × c′(C))

= (a′(A) × b′(B)) × c′(C) (by associativity of × in Z)

= (a′.b′(AB)) × c′(C)

= (a′.b′).c′(ABC).

But this implies that B |= a.(b.c) = (a.b).c.

• Multiplicative identity: Note that any integer z is represented in B by a function
z ∈ ZΛω with range {z} which is constant and therefore has support 0. Thus for any
A ∈ Λi, a

′.z(A) = a′(A) × z and z.a′(A) = z × a′(A). Thus a′.z = z.a′ = a′ + ...+ a′︸ ︷︷ ︸
z times

.

Hence B |= a.z = z.a = a+ ...+ a︸ ︷︷ ︸
z times

, and in particular B |= 1.a = a.1 = a.
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• Left-distributivity: Without loss of generality, assume that j = k, which implies
that sup(b+ c) = j. Fix A ∈ Λi and B ∈ Λj. Then:

a′.(b′ + c′)(AB) = a′(A) × (b′ + c′(B))

= a′(A) × (b′(B) + c′(B))

= (a′(A) × b′(B)) + (a′(A) × c′(B)) (by left-distributivity in Z)

= (a′.b′(AB)) + (a′.b′(AB))

= (a′.b′) + (a′.c′)(AB).

This implies that B |= a.(b+ c) = (a.b) + (a.c)

• Right-distributivity: Again, without loss of generality, assume that i = j = sup(a+
b), and let A ∈ Λi and C ∈ Λk. Then:

(a′ + b′).c′(AC) = (a′ + b′(A)) × c′(C)

= (a′(A) + b′(A)) × c′(C)

= (a′(A) × c′(C)) + (b′(A) × c′(C)) (by right-distributivity in Z)

= (a′.c′(AC)) + (b′.c′(AC))

= (a′.c′) + (b′.c′)(AC).

This implies that B |= (a+ b).c = (a.c) + (b.c).

• Order axiom: Fix F ∈ B, and suppose that F ⊩ 0 < a and F ⊩ 0 < b. By
Corollary 9.7.21, this means that ||0 < a′||Λi

∈ F i and ||0 < b′||Λj
∈ F j. Note that

for any A ∈ Λi and B ∈ Λj, A ∈ ||0 < a′||Λi
and B ∈ ||0 < b′||Λj

together imply

that AB ∈ ||0 < a′.b′||Λi+j
. Thus ||0 < a′.b′||Λi

⊇ U = {AB ∈ Λi+j | A ∈ ||0 <

a′||Λi
and B ∈ ||0 < b′||Λj

}. Moreover, by assumption, we have that {A ∈ Λi | U |A ∈
F j} ∈ F i, which implies that U ∈ F i+j by property 5 of iterating families. Hence
||0 < a′.b′||Λi+j

∈ F i+j, which by Corollary 9.7.21 again implies that F ⊩ 0 < a.b. This
completes the proof.

Let us conclude by investigating some properties of the product in our setting. First of

all, we can verify that it is not commutative by checking that B |=
0

N.
1

S >
1

S.
0

N. To see

this, note first that
0

N.
1

S(ABC) = |A| ×
∑

j∈B j and that
1

S.
0

N(ABC) =
∑

i∈A i × |B| for

any ABC ∈ Λω. I claim that U = {AB ∈ Λ2 | |A| ×
∑

j∈B j >
∑

i∈A i × |B|} ∈ F 2 for

any F ∈ B. By Corollary 9.7.21, this will suffice to show that B |=
0

N.
1

S >
1

S.
0

N. For the

proof of the claim, fix some F ∈ B and recall first the notation w(A) =
∑

i∈A i

|A| introduced in

the proof of Lemma 9.7.3.3 for any nonempty A ⊆ Λ1. Note that whenever w(B) > w(A),
we have that AB ∈ U . Moreover, for any non-empty A ∈ Λ1, letting B = {1, ..., 2w(A)},

by Gauss’s summation theorem we have that w(B) = 2w(A)(2w(A)+1)
4w(A)

= 2w(A)+1
2

> w(A), and
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moreover w(C) ≥ w(B) for any C ⊇ B. Hence C ∈ U |A for any C ⊇ B, which shows
that U |A ∈ F , since F is fine. Hence U |A ∈ F for any nonempty A ∈ Λ1, from which
we conclude that U ∈ F 2 by property 5 of iterating families. This completes the proof of

the claim. Therefore B |=
0

N.
1

S >
1

S.
0

N. Again, this is in line with our interpretation of
products as iterated Bolzanian sums, since, under this interpretation, the Bolzanian sum
0

N.
1

S −
1

S.
0

N = (
1

S −
0

N) + (
1

S − 2
0

N) + (
1

S − 3
0

N) + . . . in inf. is an infinite sum of positive
quantities.

Finally, we may also verify that the products of infinitely large quantities yield quantities
of “higher order” in a strong sense, as evidence by the following lemma.

Lemma 9.7.23. Let F ∈ B and a, b ∈ ZΛω such that sup(a) = i, sup(b) = j, F ⊩ a > 0
and there is k < j such that F ⊩ b > c for all c such that sup(c) ≤ k. Then F ⊩ a.b > c for
every c such that sup(c) ≤ i+ k.

Proof. Fix F , a, b and k as in the statement of the lemma, and let c ∈ ZΛω be such that
sup(c) = i+ l ≤ i+ k. Let a′ ∈ ZZΛi , b′ ∈ ZΛj and c′ ∈ ZΛl such that βi(a

′) = a, βj(b
′) = b

and βl(c
′) = c. Moreover, we will write a′.b′ for some d ∈ ZZΛi+j such that βi+j(d) = a.b.

By Corollary 9.7.21, it is enough to show that F i+j ⊩ a′.b′ > ϵl(i+j)(c
′). Let U ⊆ Λi+j be the

set
{ABC | A ∈ Λ1, B ∈ Λl, C ∈ Λj−l and a′(A) × b′(BC) > ϵl,(i+j)(c

′)(ABC)}.

Note first that we may rewrite U as {ABC | a′(A) × b′(BC) > c′(AB)}. Moreover, letting

V = {ABC | a′(A) > 0 and b′(BC) >
c′(AB)

a′(A)
},

we have that V ⊆ U . Now fix A ∈ Λ1 such that A > 0, and let d ∈ ZΛl be given by

d(B) = c′(AB)

a′(A)
for any B ∈ Λj. By assumption, we have that F ⊩ b > ϵl(d), and thus that

{BC ∈ Λj | b′(BC) > c′(AB)

a′(A)
} ∈ F j. Since {A ∈ Λ1 | a′(A) > 0} ∈ F i by assumption, it

follows that {A | V |A ∈ F j} ∈ F i, and thus that V ∈ F i+j. We may therefore conclude that
U ∈ F i+j, and hence that F i+j ⊩ a′.b′ > ϵl(i+j)(c

′). This completes the proof.

As a special consequence of Lemma 9.7.23, we immediately get that B |= (
0

N)2 >
Odds

S and

that B |=
0

N.(
0

N + 1) >
1

S. Thus we are able to recover the strong sense in which products
of infinite quantities yield quantities of higher order even in our formal reconstruction using
possibility semantics.

Conclusion

Our goal was to provide a faithful interpretation of the PU and especially of Bolzano’s
calculation of the infinite as presented in §§29-33. We argued that Bolzano’s computations
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should not be judged as failed attempts at anticipating Cantor’s transfinite arithmetic, and
that Bolzano’s primary interest was not in measuring the sizes of infinite collections of natural
numbers, but in developing an arithmetic of infinite sums of integers. As a consequence, one
should not read Bolzano as failing to anticipate Cantor’s work because of his commitment to
a set-theoretic version of the part-whole principle but rather as developing from part-whole
considerations an original and productive way of reasoning about infinite sums. Moreover,
far from shutting Bolzano out of future historiographies of set theory, this new interpretation
clarifies where Bolzano’s approach to the infinite stands within that history. The intentions
and methods of Bolzano when computing with the infinitely large are radically different from
Cantor’s, yet, as we have shown, amenable to a consistent mathematical interpretation. In
particular, we have seen that several of Bolzano’s ideas about the infinite resonate quite
harmoniously with the novel perspective on mathematical objects afforded by possibility
semantics. Let us therefore hope that the present work may mark only the beginning of
deeper scholarly engagement with Bolzano’s mathematical infinite.

9.8 Appendix A

In this appendix, we describe in more detail the ring of Bolzanian quantities B mentioned in
Section 9.5.2. In particular, we show how to construct B as a direct limit of iterated ultra-
powers, define rigorously the product of two infinite quantities, and prove Theorem 9.5.3.

Let us first note that a standard presentation of our construction would require us to
take a direct limit of the structures:

Z ι0
// ZU ι1

// (ZU)2 ι2
// (ZU)3 ι3

// . . .

where for any natural number n, (ZU)n+1 is the ultrapower of (ZU)n by U, and each ιn+1 :
(ZU)n+1 → (ZU)n+2 maps (any equivalence class of) a function f : ω+ → ZnU to the function

mapping any i to f(i). The inconvenience of this approach is that it requires us to introduce
elements of increasing complexity in our structure, i.e., functions from ω+ into the integers,
functions from ω+ into functions from ω+ into the integers, and so on. However, we may
present our construction differently, by drawing on the well known fact that for any sets
A,B and C, there is a canonical bijection φ between functions from A into CB and functions
from A × B into C: given any f : A → CB, the function φ(f) : A × B is such that
φ(f)(a, b) = f(a)(b) for any a ∈ A and b ∈ B. Instead of working with functions of
higher and higher complexity, we may therefore simply work with functions of finite arity,
or, equivalently functions from finite sequences of elements in ω+ into Z. However, since we
still need to identify functions using an ultrafilter U, we also need to generalize our definition
of when two n-ary functions are equivalent according to U. This requires the following
definition.

Definition 9.8.1. Let U be a non-principal ultrafilter on ω+. For any natural number n,
we define Un by induction as follows:
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• U0 = {(ω+)0}

• Un+1 is a collection of subsets of (ω+)n+1 such that for any X ⊆ (ω+)n+1, X ∈ Un+1 if
and only if {i ∈ ω+ : X|i ∈ Un} ∈ U, where for any i ∈ ω+, X|i is the set of n-tuples j
in (ω+)n such that the n+ 1-tuples ij ∈ X.

Note that (ω+)0 is the set of all 0-ary sequences of elements of ω+, i.e., contains only
the empty sequence. It is also straightforward to see that, given the previous definition,
U1 = U. The following lemma will be useful later on, and is established by a straightforward
induction on the natural numbers.

Lemma 9.8.2.

• For any natural number n, Un is an ultrafilter on (ω+)n which is non-principal if n > 0.

• Let m,n be two natural numbers and X ⊆ (ω+)m+n. Then X ∈ Un+m if and only if

{i ∈ (ω+)m : {j ∈ (ω+)n : ij ∈ X} ∈ Un} ∈ Um.

We can then define the following structures:

Definition 9.8.3. Let n be a natural number. We let ZUn := (ZUn ,+,−, 0, 1) be the
ultrapower of Z by Un. More precisely, elements in ZUn are equivalence classes of functions
from (ω+)n to Z, where for any two functions f, g : ω+ → Z:

• f ∗ = g∗ iff {i ∈ ω+ : f(i) = g(i)} ∈ Un;

• (f + g)∗ = f ∗ + g∗, (f − g)∗ = f ∗ − g∗;

• f ∗ < g∗ iff {i ∈ ω+ : f(i) < g(i)} ∈ Un.

In particular, it is straightforward to verify that ZU0 is isomorphic to Z.

Since Un is an ultrafilter on (ω+)n for any natural number n, the previous definition is
a generalization of the original construction of ZU. Moreover, we have natural embeddings
λn : ZUn → ZUn+1 . In fact, those embeddings are always elementary:

Lemma 9.8.4. For any f : (ω+)n → Z, let λn(f) : (ω+)n+1 → Z be such that for any
n-tuple i and any j ∈ ω+, λn(f)(ij) = f(i). Then the function λn : ZUn → ZUn+1 defined by
λn(f ∗) = λn(f)∗ is an elementary embedding.

The proof of this lemma is a simple application of the Tarski-Vaught test of elementary
substructures. For any natural numbers m ≤ n, we let λm,n be the composition of the
embeddings λn−1◦λn+2◦ ...◦λm+1◦λm. We can then define the structure (B,+,−, 0, 1, <)
as the direct limit of the system

ZU0
λ0

// ZU1
λ1

// ZU2
λ2

// . . .
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We will refer to elements in B as quantities. By definition of the direct limit of a directed
system, quantities are equivalence classes of elements in some ZUn , where for any m ≤ n
and any two equivalence classes f ∗ ∈ ZUn , g∗ ∈ ZUm , f ∗ and g∗ are identified if and only if
ZUn |= λm,n(f ∗) = g∗. For any quantity α, we let the order of α be the smallest natural
number n such that there is some f ∗ ∈ α such that f ∗ ∈ ZUn . Clearly, any α ∈ B has a finite
order n, and moreover, if α has order n witnessed by some f ∗, then for any natural number
m, any g∗ ∈ ZUn+m , and any tuples i and j of length n and m respectively, f(i) = g(ij). We
may therefore abuse notation and view α as a function from m-tuples of elements in ω+ into
Z for any m ≥ n.

Let α and β be two quantities of order m and n respectively, represented by the functions
fα and fβ of arity m and n respectively. We define the product α.β as (the equivalence class
of) the function fα.β : (ω+)m+n → Z such that for any tuples i and j of length m and n
respectively, fα.β(ij) = fα(i)× fβ(j), i.e., fβ(j) + . . .+ fβ(j)︸ ︷︷ ︸

fα(i) times

. It is straightforward to verify

that this operation is well-defined. Indeed, suppose gα ∈ α and gβ ∈ β are functions of
arity m and n respectively. Clearly for any m-tuple i and any n-tuple j, if fα(i) = gα(i) and
fβ(j) = gβ(j), then gα.β(ij) = fα.β(ij). Moreover, since fα and gα are Um equivalent, and
fβ and gβ are Un equivalent, it follows that for Um-many i there are Un-many j such that
fα.β(ij) = gα.β(ij). Equivalently,

{i ∈ (ω+)m : {j ∈ (ω+)n : fα.β(ij) = gα.β(ij)} ∈ Un} ∈ Um,

which by Lemma 9.8.2 implies that {ij ∈ (ω+)m+n : fα.β(ij) = gα.β(ij)} ∈ Um+n, and
therefore f ∗

α.β = g∗α.β.

The next lemma establishes that the product of two quantities of order m and n is of
order m+ n. The proof is a simple application of  Loś’s theorem.

Lemma 9.8.5. Let α and β be two quantities of order m and n respectively, and let γ be a
quantity of order l < m+ n. Then B |= α.β ̸= γ.

Finally, we can now prove Theorem 9.5.3 and establish that Bolzanian sums and products
form a non-commutative ordered ring.

Theorem 9.8.6. The structure B = (B,+,−, 0, 1, <, .) is a non-commutative ordered ring.

Proof. Note first that by construction, we have an elementary embedding from Z into the
reduct (B,+,−, 0, 1, <), which immediately implies that B is an ordered additive group. We
therefore only need to verify the following properties:

• Associativity: Let α, β and γ be three quantities of order l,m and n respectively.
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Then for any tuples i, j and k of arity l,m and n respectively, we have that:

α.(β.γ)(ijk) = α(i) × (β.γ(jk))

= α(i) × (β(j) × γ(k))

= (α(i) × β(j)) × γ(k) (by associativity of × in Z)

= (α.β(ij)) × γ(k)

= (α.β).γ(ijk).

• Multiplicative identity: Note that any integer z is represented in B by a quantity z
of order 0, which corresponds to the set of all constant functions from finite sequences
of elements in ω+ into Z with range {z}. For any quantity α of order l, we therefore
have that α.z and z.α are quantities of order n such that for any l-tuple i, α.z(i) =
α(i) × z and z.α(i) = z × α(i). Thus α.z = z.α = α + ...+ α︸ ︷︷ ︸

z times

. Hence in particular

1.α = α.1 = α.

• Left-distributivity: Let α,β,γ be as above. Without loss of generality, assume that
the order m of β is greater than or equal to the order n of γ, which implies that β+γ
is also of order m. Fix an l-tuple i and an n-tuple j. Note that even though γ is of
lower order, we may still write γ(j). Then:

α.(β + γ)(ij) = α(i)× (β + γ(j))

= α(i)× (β(j) + γ(j))

= (α(i)× β(j)) + (α(i)× γ(j)) (by left-distributivity of × over + in Z)
= (α.β(ij)) + (α.β(ij))

= (α.β) + (α.γ)(ij).

• Right-distributivity: Let α,β,γ as above, and assume the order l of α is greater
than or equal to the order m of β. Let i be an l-tuple and k a n-tuple. Then:

(α+ β).γ(ik) = (α+ β(i))× γ(k)

= (α(i) + β(i))× γ(k)

= (α(i)× γ(k)) + (β(i)× γ(k)) (by right-distributivity of × over + in Z)
= (α.γ(ik)) + (β.γ(ik))

= (α.γ) + (β.γ)(ik).

• Order axiom: Suppose α and β are two quantities of order l and m respectively and
are such that B |= 0 < α and B |= 0 < β. We claim that B |= 0 < α.β. Indeed, since
B |= 0 < α, we have that {i ∈ (ω+)l : 0 < α(i)} ∈ Ul, while it follows from B |= 0 < β
that {j ∈ (ω+)m : 0 < β(j)} ∈ Um. Now clearly for any l-tuple i such that 0 < α(i),
if j is an m-tuple such that 0 < β(j), then 0 < α(i) × β(j), i.e., 0 < α.β(ij). Thus

{i ∈ (ω+)l : {j ∈ (ω+)m : 0 < α.β(ij)} ∈ Um} ∈ Ul,
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which by Lemma 9.8.2 implies that {ij ∈ (ω+)l+m : 0 < α.β(ij)} ∈ Ul+m, and hence
B |= 0 < α.β.

Let us conclude this appendix with a few remarks regarding the Bolzanian ring of infinite
quantities B. First, our formalization only allows us to represent infinite quantities of a finite
order, i.e., infinite sums of the form α(1) + α(2) + α(3) + · · · for which there is an n < ω+

such that for all m ≥ n, the order of α(m) is less than or equal to the order of α(n). For
example, the following infinite sum is not represented by any element in B:

0

N + (
0

N)2 + (
0

N)3 + . . . in inf.

Of course, if we wanted to include this sum in our model, we would have to take an
ultrapower of B by U and construct another countable sequence of ultrapowers. In fact, if we
wanted to close our domain of infinite quantities under taking infinite sums, we would need
to keep iterating the ultrapower until the first ordinal with uncountable cofinality, i.e., until
ω1. Our structure B, however, is more than enough to account for Bolzano’s examples, and
we certainly do not want to claim that the consistency of Bolzano’s system requires anything
like uncountable ordinals.

Second, it is quite straightforward to observe that the situation described in Lemma 9.5.2
generalizes to the full structure B. Indeed, for any n, the product of any nth order quantity
with at least a first-order infinite quantity is always greater than or smaller than any quantity
of strictly lower order. Thus, in accordance with Bolzano’s original claims, multiplying
infinite quantities together yields new quantities that are infinitely larger or infinitely smaller
than the previous ones in a very strong sense.

9.9 Appendix B

In this appendix, we show how to construct an iterating family as in Definition 9.7.10. We
start from the following definition.

Definition 9.9.1. Given sets S and T , an element s ∈ S and a set U ⊆ S × T , we let
U |s = {t ∈ T | (s, t) ∈ U}. Moreover, let F and G be filters on sets S and T respectively.
Then the iterate of G by F is the set F × G ⊆ P(S × T ) such that for any U ⊆ S × T ,
U ∈ F × G iff {s ∈ S | U |s ∈ F} ∈ F . Finally, we define inductively the iterating sequence
{Fi | i ∈ ω+} by letting F1 = F and Fi+1 = Fi × F for any i ∈ ω+.

In what follows, we will be particularly interested in iterating fine filters on Λ1.

Lemma 9.9.2. Let F be a fine filter on Λ1 and {Fi | i ∈ ω+} the iterating sequence deter-
mined by F .

• For any i, j ∈ ω+, Fi+j = {U ⊆ Λi+j | {A ⊆ Λi | U |A ∈ Fj} ∈ Fi};
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• For any i ∈ ω+, Fi is a fine filter on Λi;

Proof. Fix a fine filter F .

• We prove this by induction on i. The base case for i = 0 is immediate. Assuming that
the claim holds for i, suppose U ⊆ Λi+1+j and that the set X of sequences BA ∈ Λi+1

such that U |BA is in Fj is in Fi + 1. By definition, this means that for F -many
B ∈ Λ1, the set X|B ∈ Fi. Now let B be such that U |B ∈ Fi, and set VB = U |B.
Then by assumption we have that the set VB|A = U |BA ∈ Fj for Fi-many A ∈ Λi,
so by induction hypothesis it follows that VB ∈ Fi+j. Hence for F -many B the set
VB = U |B ∈ Fi+j, so U ∈ Fi+j+1 = Fi+1+j. This shows the right-to-left inclusion.

For the left-to-right inclusion, suppose U ∈ Fi+1+j = Fi+j+1. By definition, we have
that for F -many B ∈ Λ1, U |B ∈ Fi+j. By induction hypothesis, this means that for
Fi-many A ∈ Fi, the set U |BA ∈ Fj. But then we have that for F -many B, the set
X|B = {A ∈ Λi | U |BA ∈ Fj} is in Fi, hence the set X = {BA ∈ Λi+1 | U |BA ∈
Fj} ∈ Fi+1. This completes the proof.

• We prove this by induction on i. Assume that Fi is a fine filter. If U ∈ Fi+1, then by
definition U |A ∈ Fi for F -many A ∈ Λ1. But clearly if U ⊆ V then U |A ⊆ V |A for
any A ∈ Λ1, so V |A ∈ Fi for F -many A since Fi is a filter. Hence V ∈ Fi+1. Similarly,
note that (U ∩ V )|A = U |A∩ V |A, so if U, V ∈ Fi+1, then (U ∩ V )|A ∈ Fi for F -many
A ∈ Λ1, hence U ∩ V ∈ Fi+1. Finally, let us show that Fi+1 is fine. Let A ∈ Λi+1. We
need to show that A∗ = {B ∈ Λi+1 | A ≤ B} ∈ Fi+1, where the ordering on li+1 is
the pointwise inclusion ordering. Let A = A1A2...Ai+1, and write A′ for the sequence
A2...Ai+1. Note that if B ∈ Λ1 is such that A1 ⊆ B, then A∗|B = {B | A ≤ B}, hence
A∗|B ∈ Fi since Fi is fine. But since {B | A ⊆ B} ∈ F because F is fine, it follows
that A∗ ∈ Fi+1.

Let us now construct an iterating family {F i | i ∈ ω+, F ∈ Filt(Λ1)}. Recall first that we
may view Filt(Λ1) as a forcing notion P, and consider the forcing relation ⊩ defined between
conditions in P, i.e., fine filters on Λ1, and formulas in the forcing language LP. For our
purposes, the ground model M of our forcing is not really relevant, as long as M contains P
and the Forcing Theorem holds, in the sense that we have the following:

Forcing Theorem For any LP-formula φ(ȧ1, ..., ȧn) and any F ∈ P, F ⊩ φ(ȧ1, ..., ȧn) iff
for any generic filter G over P, F ∈ G implies M [G] |= φ(ȧ1G, ..., ȧnG).

For example, M could be the whole set-theoretic universe V , or the inner model L(R).
Now clearly, any generic filter G over P determines a fine ultrafilter U on Λ1 in M [G].
Similarly, for any i ∈ ω+, we may compute in M [G] the i-th iterate Ui of U. Let us fix names

U̇ and {U̇i}i∈ω+ such that, for any F ∈ P, F ⊩ “U̇ is a fine ultrafilter on |Λ1” and F ⊩ “U̇i is
the i-th iterate of U̇” for any i ∈ ω+.
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Definition 9.9.3. For any i ∈ ω+ and any F ∈ Filt(Λ1), let

F i = {U ⊆ Λi | F ⊩ qU ∈ U̇i}.

Lemma 9.9.4. The family {F i | F ∈ Filt(Λ1), i ∈ ω+} is an iterating family.

Proof. We check the five properties of iterating families in turn. Throughout the proof, we
routinely appeal to the forcing theorem, and the fact that the forcing relation is absolute
between M and M [G]. Note also that P is ω-closed, meaning that P(Λi)

M [G] = P(Λi)
M for

any i ∈ ω+.

1. Fix F and i. Clearly, F i ⊆ P(Λi), but we must check that it is indeed a fine filter.
Clearly Λi ∈ F i, and moreover for any U, V ⊆ Λi we have:

U, V ∈ F i ⇔ F ⊩ qU ∈ U̇i and F ⊩ qV ∈ U̇i

⇔ F ⊩ qU ∈ U̇i ∧ qV ∈ U̇i

⇔ F ⊩ U ∩ V ∈ U̇i

⇔ U ∩ V ∈ F i,

which is enough to conclude that F is a filter. Moreover, for any set U of the form
{B ∈ Λi | A ⊆ B} for some A ∈ Λi, we have that F ⊩ qU ∈ U̇i, since F ⊩ “U̇i is a fine
filter”. Hence U ∈ F i, which means that F i is fine.

2. Fix i ∈ ω+, and assume that F ⊆ G and that U ∈ F i. Then F ⊩ qU ∈ U̇i, hence also
G ⊩ qU ∈ U̇i. But this means that U ∈ Gi, and therefore F i ⊆ Gi.

3. Fix i ∈ ω+, and suppose that U /∈ F i for some U ⊆ Λi and F ∈ Filt(Λ1). Then

F ̸⊩ qU ∈ U̇i, which means that there is G ⊇ F such that G ⊩ qU /∈ U̇i. Since we also

have that G ⊩ U̇i “is an ultrafilter on qΛi”, this means that ⊩ Λi \ U ∈ U̇i. Hence there
is Gi ⊇ F i such that Λi \ U ∈ Gi, which shows that Bi is a rich family.

4. Fix F and i and let j = i + k for some k. Note that for any U ⊆ Λi and any A ∈ Λi

λij(U)|A = Λk if A ∈ U , and ∅ otherwise. Now by Lemma 9.9.2, we have for any

U ⊆ Λj that F ⊩ qU ∈ U̇i ↔ {A ∈ qΛi | }U |A ∈ U̇k} ∈ U̇i. By the observation above,

we also have that F ⊩ ∀A ∈ qΛi(
λij(U)|A ∈ U̇k ↔ A ∈ qU) for any U ⊆ Λi. Hence

F ⊩ {A ∈ qΛi | qU |A ∈ U̇k} = qU , and therefore we have that F ⊩ λij(U) ∈ U̇j ↔ qU ∈ U̇i.
But then, for any U ⊆ Λi, we have the following chain of equivalences:

U ∈ F i ⇔ F ⊩ qU ∈ U̇i

⇔ F ⊩ λij(U) ∈ U̇j

⇔ λij(U) ∈ F j.
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5. Finally, fix F ∈ Filt(Λ1). I claim first that for any i ∈ ω+, F ⊩ |F i ⊆ U̇i. To see this,
suppose G is M -generic over P, and recall that the forcing notion P is absolute between
M and M [G], and that P(Λi)

M [G] = P(Λi)
M . Working in M [G], we know that for any

U ∈ F i, we have that F ⊩ qU ∈ U̇i. Since F ∈ G, it follows from the Forcing Theorem
(in M [G]) that qUG ∈ U̇iG. Hence F i ⊆ U̇iG. By the Forcing Theorem again, this time

in M , it follows that F ⊩ |F i ⊆ U̇i.

Now fix i, j ∈ ω+ and U ⊆ Λi+j such that {A ∈ Λi | U |A ∈ F j} ∈ F i. By the claim

above, this means that F ⊩ {A ∈ qΛi | qU |A ∈ U̇j} ⊇ {A ∈ qΛi | qU |A ∈ |F j} ∈ |F i ⊆ U̇i.

Hence F ⊩ qU ∈ ˙Ui+j, and therefore U ∈ F i+j.

Let us conclude by observing that, although F 1 = F for any F ∈ Filt(Λ1), it is not
true in general that F i = Fi for every i ∈ ω+. In fact, this already fails for i = 2 and F
the smallest fine filter on Λ1, as the following example, essentially due to Gabe Goldberg,
shows. Fix a bijection ν between Λ1 and the set of prime natural numbers. For any B ∈ Λ1,
let AB = {C ∈ Λ1 | |C| = ν(B)i for some i ∈ N}, and let U = {(B1, B2) | B2 ∈ AB1}.
Finally, let A′ = Λ1 \A. Let us first see that A′ /∈ F2. To show this, it is enough to show that
{B | A′|B ∈ F} /∈ F . Now for any B ∈ Λ1, A

′|B is the set of all finite subsets of ω+ such that
their cardinality is not a multiple of ν(B). Clearly, for any C ∈ Λ1 there is D ⊇ C such that
|D| = ν(B)i for some positive integer i, so A′|B /∈ F for all B ∈ Λ1. But this implies that

A′ /∈ F2. However, we have that F ⊩ qA′ ∈ U̇2. Indeed, fix a generic filter G such that F ∈ G
and let U = U̇G. Suppose towards a contradiction that A′ /∈ U2. Since U2 is an ultrafilter,
this means that A ∈ U2. But then it follows that {B ∈ Λ1 | A|B ∈ U} ∈ U. Note however
that for any B,B′ ∈ Λ1, AB ∩ AB′ ̸= ∅ implies B = B′. Hence {B ∈ Λ1 | A|B} = {B} for
some B ∈ Λ1. But this is impossible, since Λ1 \ B ∈ F and F ⊆ U. Hence A′ ∈ U. Since G

was chosen arbitrarily, it follows that F ⊩ qA′ ∈ U̇2, which completes the proof that F 2 ⊈ F2.
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Conclusion

Throughout this dissertation, we hope to have demonstrated that possibility semantics can
be both a mathematically viable and philosophically rich formal framework. We conclude
by highlighting how the main results obtained here relate to the two “slogans” mentioned in
the Introduction, and by suggesting avenues for future research.

Recall first our first slogan, relating nonconstructive and choice-free dualities:

Non-constructive Dualities =
Constructive Dualities

Upper Vietoris Hyperspaces
.

By now, we hope to have convinced the reader of the robustness of this approach, in
particular thanks to the results in Chapters 3 and 4. Indeed, in the case of both de Vries
algebras and distributive lattices, we provided choice-free dualities than can be thought of
as combining a non-constructive duality with an Upper Vietoris hyperspace construction
(Theorem 3.4.5, Corollaries 3.8.8 and 3.8.11). Moreover, we have seen that Upper Vietoris
functors and their algebraic counterparts played a central role in developing a general du-
ality for lattices (Theorems 4.4.11 and 4.5.11). In the context of lattices however, there
is no non-constructive duality that the choice-free ones we developed approximate. In a
sense, we may therefore view the algebraic duals of Vietoris functors used to embed lattices
into distributive lattices are creating “fictional” non-constructive dual spaces, whose “Upper
Vietoris hyperspaces” are the constructive duals we define. At any rate, this shows that
the techniques used here can be applied beyond the distributive realm to consider much
wider categories of lattices. We hope that this helps in the development of a rich theory of
non-distributive logics which, as we have argued in Chapter 5, seem like a promising way of
tackling difficult problems in philosophical logic.

Our second slogan from in the Introduction related Tarskian semantics and possibility
semantics for first-order logic as follows:

Ultrapowers = Generic Powers× Forcing.

Our mains results about generic powers, and in particular the Truth and Genericity
Lemma, show that generic powers share many of the key properties with Tarskian ultra-
powers, and that the latter can often be retried from the former via forcing. Moreover, we
hope to have convinced the reader that generic powers are interesting structures in their own
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right and that they can have meaningful applications in formal philosophy. In Chapter 7,
Chapters 8 and 9, we have argued that they can be fruitfully used to tackle foundational,
conceptual and historical problems respectively. Their semiconstructive nature makes them
canonical structures that are tamer than the Tarskian counterparts they approximate, and
they are also arguably more natural formal models for philosophical concepts that may be
inherently underdetermined. Although we focused on issues surrounding the mathematical
infinite in this dissertation, the latter observation suggests that there may be more areas
of formal philosophy in which possibility structures in general could prove a more adequate
formal framework than classical, Tarskian first-order structures.

Finally, we conclude with an observation that calls for further work. Throughout this
dissertation, we have seen that the same set of basic ideas could be used to eliminate the
reliance on the Boolean Prime Ideal in many proofs. In particular, we have seen instances of
this phenomenon in lattice theory (Chapter 3), (nonstandard) analysis (Chapter 7), and basic
abstract algebra (Chapters 8 and 9). In all such cases, there is a rather modest price to pay,
which amounts to working either with mathematical objects with more structure, or with a
semantics for logical connectives that is more involved than the standard one. This raises
the question of whether there could be some general semantic way of eliminating choice-
principles from mathematical theories with minimal disturbance to mathematical practice,
and of what philosophical significance, if any, such a result could have.
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[232] Ernst Schröder. Lehrbuch der Arithmetik und Algebra. Leipzig: Teubner, 1873.

[233] Dana Scott. “A proof of the independence of the continuum hypothesis”. In: Mathe-
matical systems theory 1.2 (1967), pp. 89–111.

[234] Dana Scott. “Boolean Models and Non-Standard Analysis”. In: Applications of Model
Theory to Algebra, Analysis and Probability. Ed. by W.A.J Luxemburg. Holt, Rinehart
and Winston, 1969.

http://www.jstor.org/stable/20014691
http://eudml.org/doc/268511
http://eudml.org/doc/214696


BIBLIOGRAPHY 413

[235] Dana Scott. “Extending the topological interpretation to intuitionistic analysis”. In:
Compositio Mathematica 20 (1968), pp. 194–210.

[236] Dana Scott. “Extending the topological interpretation to intuitionistic analysis, II”.
In: Studies in Logic and the Foundations of Mathematics. Vol. 60. Elsevier, 1970,
pp. 235–255.
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