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Abstract
Duality and Infinity
by
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Professor Paolo Mancosu, Co-Chair

Many results in logic and mathematics rely on techniques that allow for concrete, often
visual, representations of abstract concepts. A primary example of this phenomenon in logic
is the distinction between syntax and semantics, itself an example of the more general duality
in mathematics between algebra and geometry. Such representations, however, often rely on
the existence of certain maximal objects having particular properties such as points, possible
worlds or Tarskian first-order structures.

This dissertation explores an alternative to such representations known as possibility
semantics. Its core idea is to replace maximal objects with ordered systems of partial ap-
proximations. Although it originates in the semantics of modal logic and the representation
of abstract ordered structures, I argue that it has far-reaching mathematical, foundational
and philosophical significance, especially in the context of semiconstructive mathematics, a
foundational framework that does not assume any fragment of the Axiom of Choice beyond
the Axiom of Dependent Choices.

The dissertation is divided in two main parts. The first part explores various applications
of the mathematical framework underlying possibility semantics to lattice theory and non-
classical propositional logics. A major theme is the development of constructive dualities
for various categories of lattices, which are related to standard non-contructive dualities via
Vietoris constructions.

The second part of the dissertation explores the alternative foundational setting of semi-
constructive mathematics, focusing on three applications of possibility semantics for classical
first-order logic to the philosophy of the mathematical infinite. In particular, we introduce
generic powers, a semi-constructive analogue of ultrapowers in classical model theory, and
we explore the merits of these structures from a foundational, conceptual and historical
viewpoint.
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Introduction

The main topic of this dissertation is possibility semantics. Possibility semantics has (at
least) two distinct points of origin in logic, a fact that will be reflected in the very struc-
ture of this dissertation. The phrase was first coined by Humberstone [140] in the context
of the semantics of modal logic. Humberstone’s idea was to propose an alternative to the
now-standard Kripke semantics for modal logic that would take possibilities rather than
worlds as basic. The key difference between the two is that possibilities can be partial, and
therefore pairwise compatible, while worlds are maximal and pairwise incompatible objects.
Consequently, some possibilities may be more informative than others, and possibilities can
therefore be ordered in terms of how complete a description of a world they provide. Hum-
berstone provides a semantics for modal propositional logic that follows this basic intuition.
In particular, a conjunction is satisfied by a possibility p if and only if both conjuncts are
satisfied at p, but a disjunction may be satisfied at a possibility p without any of its disjuncts
being satisfied at p. Indeed, a possibility p could settle a disjunction as true because no pos-
sible extension of p could refute both disjuncts at the same time. But this does not mean
that such a p should decide which disjunct is true. We take this feature to be the common
denominator to all the conceptual frameworks that we will liken to possibility semantics
here. Since Humberstone’s work, the idea of defining a concrete semantics for a (possibly
non-classical) propositional logic in which points may satisfy a disjunction without satisfying
one of the two disjuncts has found applications in many domains. In classical modal logic, it
was used to great effect in the study of modal incompleteness [137, 134, 266]. Various possi-
bility semantics were also developed for intuitionistic logic [37, 36, 188], (modal) orthologic
[109, 138], and fundamental logic, a weaker logic that generalizes both intuitionistic logic
and orthologic [131].

For first-order classical logic, an early work in this tradition is a manuscript by van
Benthem [23]. But it would be somewhat misleading to think that possibility semantics
for classical logic originated only around that time, or as a special case of Humberstone’s
ideas. Indeed, the basic idea of possibility semantics, namely to evaluate formulas in a first-
order language at points in a partially ordered set, already essentially appeared in Cohen’s
method of forcing in set theory [59]. In forcing semantics, conditions in a forcing notion can
be thought of as approximations of a generic extension of a model of set theory to which
they belong. Of course, because it is only a partial approximation, a condition may force
a disjunction to hold in a generic extension without forcing any specific disjunct to hold.



Accordingly, the second point of origin of possibility semantics is just the definition of the
forcing relation in set theory. Given the influence that forcing has had in many areas of math-
ematical logic, this means however that possibility semantics has strong ties with a venerable
tradition of non-Tarskian approaches to the semantics of first-order logic, including, perhaps
most importantly for this dissertation, Boolean-valued models [233, 10] and sheaf semantics
[181, 195]. This dual nature of possibility semantics will be reflected in the structure of
dissertation, which is composed of two main parts, one focusing on non-classical proposi-
tional logics, and the second one focusing on possibility semantics for first-order classical
logic. Those two parts also differ in their contributions. The first part is mostly a math-
ematical investigation of various frameworks related to possibility semantics in the context
of duality theory, while the second part focuses of applications of first-order possibility se-
mantics to several philosophical problems about the mathematical infinite broadly construed.

The second theme of this dissertation is semiconstructive mathematics. As I will use it
here, it refers to a foundational setting that sits between constructive and classical mathe-
matics, namely the kind of mathematics that can be carried out in ZF + DC, where ZF
stands for Zermelo-Frankel set theory, and DC stands for the Axiom of Dependent Choices,
a weak fragment of the axiom of choice.! This foundational framework, sometimes also called
quasi-constructive mathematics [230], is often taken to be a natural setting for most of ordi-
nary mathematics, and in particular it may be thought of as a “paradise” for analysis, as it
neither assumes nor rejects some of the more puzzling consequences of the Axiom of Choice.
Under some mild set-theoretic assumptions, ZF + DC'is consistent with the statement that
every set of reals is Lebesgue measurable [242], and under some stronger large cardinal as-
sumptions, it is consistent with the Axiom of Determinacy [263]. A key fact here is that
the Boolean Prime Ideal Theorem, a strong fragment of the Axiom of Choice usually proved
as an immediate application of Zorn’s Lemma, cannot be proved in the semiconstructive
setting.

In this dissertation, we will study interactions between possibility semantics and semi-
constructive mathematics of the following two kinds. First, in the context of non-classical
propositional logics, the development and study of semantics for many logics is grounded
in a branch of category theory called duality theory (see [102] for a recent overview of the
field). Duality theory studies a certain kind of strong correspondences between ordered alge-
braic structures, which abstract away from syntax in logic, and concrete geometric structures,
which typically provide semantics for various logical systems. Most dualities, including Stone
duality between compact zero-dimensional Hausdorff spaces and Boolean algebras, rely on
the Boolean Prime Ideal theorem in an essential way, and therefore do not hold in a semicon-
structive setting. However, the discrete “forcing duality” between complete Boolean algebras
and posets, which is at heart of the basic machinery of forcing and possibility semantics,
can be lifted to a full duality for Boolean algebras within the resources of semiconstruc-

!Note that the phrase “semi-constructive” or “semi-intuitionistic” [88, 217] may also designate a different
framework, in which the background logic is somewhere between intuitionistic and classical logic. By contrast,
we will use the law of excluded middle throughout this dissertation.
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tive mathematics, as was shown by Bezhanishvili and Holliday in [41]. Much of the work
in Part I of this dissertation is devoted to generalizations of this fact beyond the Boolean
case. In particular, we identify a pattern in which non-constructive topological dualities
can be replaced by semiconstructive ones in which the points of nonconstructive topological
spaces are “semipoints”, i.e. points in another topological space that approximates them.
Moreover, these approximations can always be analysed as a particular kind of topological
construction known as Upper Vietoris hyperspaces. Accordingly, our motivating slogan will
be that a shadow of non-constructive dualities can be found in the semiconstructive setting
by “factoring” through Vietoris hyperspaces:

) . Constructive Dualities
Non-constructive Dualities =

Upper Vietoris Hyperspaces’

The second point of contact between possibility semantics and semiconstructive math-
ematics that we will investigate is in the use of the former as a semantics for first-order
classical logic. Indeed, many concepts in standard, Tarskian model theory rely on the Axiom
of Choice, and, specifically, on the Boolean Prime Ideal Theorem. By contrast, possibility
structures offer a semantics for first-order logic that is not as entangled with non-constructive
assumptions. For example, the proof of the Completeness Theorem for first-order logic re-
quires, for uncountable languages, the Boolean Prime Ideal Theorem, while one can give a
choice-free proof for possibility structures [135]. In other words, the added complexity of
possibility semantics compared to Tarskian semantics is reflected in the lower complexity of
the metatheory it requires, as captured by the following “equation”:

ZFC + Tarskian Semantics = ZF + Possibility Semantics.

In Part II of this dissertation, we will focus on a particular kind of model-theoretic
constructions whose existence relies on the Boolean Prime Ideal, namely, ultrapowers. The
key insight that will we pursue is that ultrapowers can be replaced in the semiconstructive
setting with generic powers, possibility structures that essentially capture all only those
features shared by all ultrapowers of a model modulo an ultrafilter on a given index set. The
choice of terminology, of course, suggests that there is a strong connection with forcing. In
fact, we will show that, in many cases, classical ultrapowers are merely “one forcing away”
from generic powers, an idea summarized by the following slogan:

Ultrapowers = Generic Powers x Forcing.

Moreover, I will argue that generic powers have technical and conceptual advantages over
Tarskian ultrapowers that make them particularly interesting structures to study in connec-
tion with several philosophical problems about infinity.

I will now give a more detailed overview of the dissertation and of its main results. As
mentioned, the dissertation is divided into two parts, one in which the emphasis is largely
on mathematical results about structures related to possibility semantics for propositional



logics, and one in which the emphasis is on the application of possibility structures to several
philosophical problems.

Part T focuses on possibility semantics for propositional non-classical logics and its rela-
tionship to duality theory. Chapter 1 covers some background on lattices and duality theory.
In particular, Table 1.1 gives a systematic overview of most of the dualities relevant for our
purposes, highlighting which ones are new.

Chapter 2 introduces a discrete duality between the category cLat of complete lattices
and a category of bi-preordered sets called b-frames. The duality is established in Sec-
tion 2.2, and restricted in various ways to subcategories of cLat in Sections 2.3 and 2.4.
Two applications to the theory of Heyting algebras conclude the chapter. First, we obtain
a decomposition theorem for complete Heyting algebras that generalizes a classical result
about complete Boolean algebras (Section 2.5). Second, a possibility semantics for proposi-
tional intuitionistic logic is defined on bi-ordered sets, and used to prove the incompleteness
of a certain intermediate logic with respect to the class of complete bi-Heyting algebras, thus
improving on one of the only known results in the field (Section 2.6).

In Chapter 3, we enter the realm of topological dualities and investigate extensions of the
choice-free version of Stone duality to two generalizations of Boolean algebras. Our approach
is semi-pointfree, meaning that we will interested in the representation of algebraic objects
via ordered topological spaces in which the points can intuitively be thought of as rough
approximations of maximally precise points. Section 3.3 presents a choice-free duality for
de Vries algebras, which are complete Boolean algebras endowed with a proximity relation.
In Section 3.4, the link between de Vries’s original duality and its choice-free version is
established via Upper Vietoris constructions, and two applications of the choice-free duality
are given. The rest of the chapter focuses on establishing two choice-free dualities for the
category of distributive lattices. The first one, established in Section 3.6, is a bitopological
duality, while the second one, established in Section 3.7, considers a category of ordered
topological space that can be thought of as choice-free versions of Priestley spaces. In both
cases, the two dualities can be connected to their non-constructive counterparts via an Upper
Vietoris construction, as shown in Section 3.8.

In Chapter 4, we extend the techniques from the previous chapters beyond the distribu-
tive setting, and present a duality for the category of all lattices. We first use Vietoris
constructions and their algebraic duals to present a small extension of Priestley duality
(Section 4.3), which is then itself used to obtain our main result, namely a duality between
the category of lattices and a category of Priestley spaces endowed with a relation, which
we call F'I-spaces (Section 4.4). In Section 4.5, we refine this duality to a duality between
a category of lattices augmented with a weak complement operation and a category FIN of
FI-spaces endowed with an additional relation. Finally, Section 4.6 connects our work in
this chapter to the b-frames of Chapter 2, the choice-free dualities for distributive lattices of
Chapter 3, and the possibility semantics for Fundamental Logic presented in [131].

Chapter 5 concludes the first part of the dissertation with an application of possibility
semantics to a famous problem in the philosophy of time that goes back to Aristotle. After
introducing the problem (Section 5.2), I present a new solution, orthofuturism, which is based
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on a non-distributive logic OF. A possibility semantics for OF is presented in Section 5.5,
and the philosophical merits of orthofuturism in contrast with its competitors are explored
in Sections 5.4 and 5.6.

Part II of the dissertation focuses on possibility semantics for classical first-order logic,
and applications of it to several problems in the philosophy of the infinite. Chapter 6 in-
troduces the basics of possibility semantics for first-order logic, and contains several results
about embeddings between possibility structures. Generic powers, which are the key tech-
nical notion for this part of the dissertation, are introduced in Section 6.2. This section also
contains the proofs for the three fundamental results about generic powers that are used
throughout Part II: the Structure Lemma, the Truth Lemma and the Genericity Lemma.

In Chapter 7, we explore an application of possibility semantics to the foundations of
nonstandard analysis. In Section 7.2, generic powers are used to provide a semiconstructive
analogue TR of the non-constructive hyperreal fields obtained as ultrapowers modulo a non-
principal ultrafilter on w, and versions of several basic results of classical NSA are proved
in this setting. Sections 7.3 to 7.5 focus on a detailed comparison between the approach via
generic powers and other alternative approaches to nonstandard analysis. In particular, I
argue that TR is a natural convergence point between reduced powers, sheaves and Boolean-
valued models. Finally, I discuss in Section 7.6 several philosophical objections that have
been raised against the use of nonstandard methods in analysis because of their alleged
lack of purity and canonicity, and I argue that the semiconstructive approach allows us to
convincingly answer these objections.

In Chapter 8, we turn to the philosophy of mathematics, and to recent debates surround-
ing the possibility of a “Euclidean” notion of the infinite. Our discussion focuses on two
distinct but related topics. First, the theory of numerosities [18, 19, 16], which is intended
as an alternative to the Cantorian theory of size for infinite collections and, second, N AP
functions, an application of this theory to some problems in probability theory. After pre-
senting both theories in Section 8.3, I argue that numerosities and NAP functions fail to
meet some of the challenges that have been raised against them in the literature (Section 8.4).
This prompts me to develop in Section 8.5 an alternative approach to both numerosities and
N AP functions via generic powers and possibility semantics which, as I argue in Section 8.6,
has some significant advantages over the standard proposals.

Finally, Chapter 9 explores a related theme, but this time in the historical context of
Bernard Bolzano’s philosophy. Bolzano famously sketched a “calculation of the infinite” in
his Paradoxes of the Infinite [46] which has mostly been read as a failed attempt at a the-
ory of transfinite sets based on the preservation of part-whole intuitions rather than on the
Cantorian notion of cardinality. After introducing the relevant passages in Bolzano’s text
and the way they have usually been received in the existing literature (Sections 9.2 and 9.3),
an alternative interpretation of Bolzano’s “calculation of the infinite” as a theory of infinite
sums is developed, and the coherence and fruitfulness of his views are established via a for-
mal reconstruction of his theory that uses standard model-theoretic techniques (Sections 9.4
and 9.5). Finally, I introduce in Section 9.7 an alternative formal reconstruction that uses



generic powers rather than ultrapowers, and I argue that this approach sheds some new light
on some interpretive issues regarding Bolzano’s views on the infinite.

Let me conclude this introduction by mentioning the sources for the material included in
the dissertation. Some of the content included in each chapter has already been published
elsewhere or has been obtained in collaboration with others. Chapter 2 was published at the
Annals of Pure and Applied Logic under the title “B-frame Duality” [187]. Many ideas for
applications of the general framework developed in there came from fruitful conversations
with Wes Holliday. The first part of Chapter 3 on de Vries algebras was accepted for publi-
cation in Advances in Modal Logic, Vol.14. under the title “Choice-Free de Vries Duality”.
The second part on distributive lattices stems from several conversations with Wes Holli-
day, Nick Bezhanishvili and especially Tomas Jakl, whose insights regarding the connection
between spaces of filter-ideal pairs and free distributive lattices also influenced the way I
wrote Chapter 4. Chapter 5 benefited from fruitful conversations with Wes Holliday and
John MacFarlane, and was largely inspired by their work on epistemic modals and the open
future, respectively. Chapter 7 has been accepted for publication at the Australasian Jour-
nal of Logic under the title “A Semiconstructive Approach to the Hyperreal Line”. Earlier
drafts of the chapter benefited from especially valuable feedback from Wes Holliday, Dana
Scott, Johan van Benthem, Sean Walsh and an anonymous referee. Many ideas in Chapter 8
originated from conversations with Wes Holliday and Paolo Mancosu, as well as from a grad-
uate seminar on Probability Theory that they co-organized in Spring 2021, and from Paolo’s
graduate seminar on Infinity in Spring 2020. Finally, Chapter 9 is adapted from the paper
“Bolzano’s Mathematical Infinite” [14], co-authored with Anna Bellomo and published at
the Review of Symbolic Logic. Earlier drafts of the paper benefited from valuable feedback
from Paolo Mancosu, Luca Incurvati, Wes Holliday, Arianna Betti and Annapaola Ginammi.
I also thank Anna for allowing me to include our joint work in this dissertation. Moreover,
the material in Section 9.7 is new and was not part of our joint paper. Some results in
that section were made possible thanks to conversations with Gabe Goldberg and Robert
Schiitz.
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Possibilities and Duality






Chapter 1

Background on Duality Theory

This chapter introduces some background and motivation for the first part of this disserta-
tion. We will first provide some background on ordered structures such posets, lattices and
Boolean algebras, before offering a systematic overview of the topics in duality theory that
we focus on.

1.1 Background on Lattices

In this section, we will introduce some background results on posets and lattices. As all
the results mentioned here are well-known, we will not provide proofs, but we refer the
interested reader to standard sources in universal algebra and lattice theory [66, 229, 28, 42].
Recall that a partial order on a set X is a binary relation that is reflexive, transitive and
antisymmetric. We first fix the following terminology.

Definition 1.1.1. A map f between posets P = (P,<p) and Q = (Q, <g) is monotone
or order-preserving if p <p p’ implies f(p) <g f(p') for all p,p’ € P. It is antitone or
order-reversing if p <p p’ implies f(p) >o f(p).

Let us now introduce a concept that is ubiquitous in order theory, and originates from
Galois theory.

Definition 1.1.2. Let P = (P,<p) and Q = (Q,<g) be posets. A monotone Galois
connection between P and Q is a pair of order-preserving maps F': P - Qand G: Q — P
satisfying the following condition for any p € P,q € Q:

F(p) <oq&p<pGq)

In such a monotone Galois connection, F'is usually called the left adjoint of G, and G is the
right adjoint of F'. An antitone Galois connection is a pair of order-reversing maps F' and
G such that the following condition holds for any p € P,q € Q:

p <o G(q) & q<p F(p).
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The phrase “Galois connection” is often used ambiguously in the literature, meaning
either a monotone or antitone Galois connection. We will follow this convention, making
sure to specify however whether a Galois connection is order-preserving or order-reversing
when it is not immediately clear from context. Let us now move on to our main structures
of interest, lattices.

Definition 1.1.3. A meet-semilattice (resp. join-semilattice) is a structure (L, A, <) (resp.
(L,V,<)) such that <j is a partial order on L and any two elements a,b € L have a <j-
greatest lower bound a A b (resp. a <p-least upper bound a V b). A lattice is a structure
(L, A, V, <) such that (L, A, <) is a meet-semilattice and (L, V, <) is a join-semilattice. It is
bounded if it has a <j-greatest element 1 and a <;-least element 0, and it is complete if any
subset A of L has a <j-greatest lower bound A A and a <;-least upper bound \/ A.

In what follows, we will always assume that a lattice is bounded, and will therefore always
use the phrase “lattice” to mean “bounded lattice”.

Definition 1.1.4. A meet-semilattice homomorphism (resp. join-semilattice homomor-
phism) is a map f : L — M between two meet-semilattices (resp. two join-semilattices) L
and M such that f(aApb) = f(a) Ay f(D) (vesp. f(aVpb) = f(a)Va f(D)) for any a,b € L.
A lattice homomorphism is a map between lattices which is both a meet-semilattice homo-
morphism and a join-semilattice homomorphism. A meet-semilattice (resp. join-semilattice)
homomorphism f between lattices L and M is meet-complete (resp. join-complete) if for
any A C L such that A;(A) (resp. \/; A) exists in L, so does A\, f[A] = Ay {f(a) | a € A}

(resp. Vy fIA] = Ap{f (@) | @ € A}), and f(AL A) = Ay fIA] (resp. [V A) =V, FIA])

The following is a key result in lattice theory, and it will play a role in some form or
other in many different settings.

Theorem 1.1.5 (Adjoint Functor Theorem for Lattices). Let L and M be lattices, and let
f:L— M. Then:

o If f has a left adjoint g: M — L, then f is meet-complete.
o If f has a right adjoint g : M — L, then f is join-complete

o If L and M are complete lattices, then f has a left-adjoint if and only if it is a meet-
complete, and f has a right-adjoint if and only if it is join-complete.

Galois connections are particularly useful in order theory because they provide a canonical
way of defining closure operators on posets.

Definition 1.1.6. Let P = (P, <p) be a poset. A closure operator on Pisamap k: P — P
with the following three properties for any a,b € P:

e a <pb=k(a) <p k(b) (monotone);

e a <p k(a) (increasing);
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e rr(a) < k(a) (idempotent).

A kernel operator on P is a map A : P — P such that A is a closure operator on the poset
(P,>p) dual to P. In other words, A is monotone, decreasing and idempotent. Given a
closure operator £ on P, the fizpoints of k are the elements a € P such that k(a) = a.

Lemma 1.1.7. Let P = (P, <p) and Q = (Q,<g) be posets, and suppose f: P — Q has a
right adjoint G : @ — P. Then the operation fog: Q — Q is a closure operator on P, and
the operation go f : P — P is a kernel operator.

In the case of a lattice L, the fixpoints of a closure operator on L have even more structure.

Theorem 1.1.8. Let L be a lattice.

e If Kk a closure operator on L, then the fixpoints of k form a lattice with meets computed
as in L and joins given by a Ub = r(aVyb).

o Dually, if X is a kernel operator on L, then the fixpoints of X form a lattice with joins
computed as in L and meets given by a b= X a Ay b).

o [f L is a complete lattice, then the lattice of fizpoints of a closure (resp. kernel) operator
on L also form a complete lattice.

Let us now consider classes of lattices with some additional properties.

Definition 1.1.9. A lattice L is distributive if the operations Ay and V, satisfy the following
properties for any a, b, c € L:

CL/\L (b\/L C) SL (CL/\L b) \/L (a/\L C)
aVry, (b AL C) SL (CL Vi, b) AL (a Vi, C).

Equivalently, for any a,b € L, if there is ¢ € L such that a Ay ¢ <y b and a <p bV ¢, then
a SL b.

Definition 1.1.10. A Heyting algebra is a distributive lattice L such that for any b € L, the
map - Ap b: L — L given by a — a A b has a right adjoint b — - : L — L. Equivalently,
there is a binary operation — on L such that for any a,b,c € L :

aANb<pcea<pb—pec

Definition 1.1.11. A Boolean algebra is a Heyting algebra L such that the map - — 0 :
L — L is self-adjoint. Equivalently, L is a distributive lattice with a unary operation -y on
L satisfying:

CL/\L_|LGIO

Cl\/LﬁLCL: 1.
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Distributive lattices, Heyting algebras and Boolean algebras will play a central role in
the next three chapters. The main notion in Chapter 5 will be that of an ortholattice, which
we will refrain from defining for now. In the case of Heyting algebras, the correct notion of
morphism between them is stronger than that of a mere lattice homomorphism.

Definition 1.1.12. A Heyting homomorphism is a lattice homomorphism f : L — M that
also preserves the operation —. A Boolean homomorphism is a Heyting homomorphism
between Boolean algebras.

We will also often need to consider elements of distributive lattices with the following
key properties.

Definition 1.1.13. Let L be a lattice.

e An element a € L is join-prime (resp. meet-prime) if a < bV ¢ implies a < b or
a <gpc (resp. bApc<paimplies b <, aor ¢ <y a) for any b,c € L.

e It is completely join-prime (resp. completely meet-prime) if for every C C L, a <; \/ C
implies a <y, ¢ for some ¢ € C' (resp. A\ C <, a implies ¢ <, a for some ¢ € C).

e Completely join-prime elements in Boolean algebras are often called atoms, and com-
pletely meet-prime elements are called co-atoms.

Finally, we conclude this section by introducing the two dual notions filters and ideals,
which are central in lattice theory. As is well known, ideals play a major role in abstract
algebra as the kernels of homomorphisms, and filters play a key role both in logic, where
they can be viewed as abstract consistent theories, and in general topology, where they can
be thought of as ways of partially locating points.

Definition 1.1.14. A filter on a lattice L is a non-empty set F' C L with the following two
properties for any a,b € L:

e a € F and a <y b together imply b € F;
e a,be F impliesaAp b€ F.

A filter F' is proper if F' £ L.
Dually, an ideal on a lattice L is a non-empty set I C L with the following two properties
for any a,b € L:

e a €[ and b <j, a together imply b € [;
e a,be [ impliesaVybel.
An ideal I is proper if I # L.

We will also be considering filters and ideals with some specific properties
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Definition 1.1.15. Let L be a lattice.

e A proper filter F' (resp. a proper ideal I) on L is principal if there is a € L such that
F={beL|a<pb}(resp. [ ={be€ L|b<a}). The principal filter (resp. principal
ideal) determined by an element a € L is often denoted by ta (resp. la).

e A proper filter F' (resp. a proper ideal I) on a lattice L is prime if a,b ¢ F implies
aVpb¢ F (resp. a,b ¢ I implies aAp b ¢ I).

e Moreover, if L is a complete lattice, then F' (resp. I) is completely prime if \/; A € F
implies F'N A # () (resp. A\; A € I implies I N A # ) for any A C L.

e A prime filter on a Boolean algebra B is also called an ultrafilter.

It is an easy exercise to verify that in any lattice L, p C L is a prime filter on L if and
only if L\ p is a prime ideal on L. Moreover, it is a standard fact that prime filters (resp.
prime ideals) coincide with maximal filters (resp. maximal ideals) for Boolean algebras. In
the case of distributive lattices, maximal filters (resp. ideals) are always prime, but a prime
filter (resp. ideal) may not always be maximal. Finally, maximal filters (resp. ideals) may
fail to be prime in the case of arbitrary lattices.

The existence of prime filters or ideals on a given lattice L is a well-known problem that
often determines much about the structure of L. In any lattice L, any two elements a, b such
that a £ b can always be separated by the pair (fa, [b). However, the requirement that a
and b be separated by a prime filter whenever a £ b cannot be satisfied in arbitrary lattices,
and actually follows from the following theorem in the case of distributive lattices.

Theorem 1.1.16 (Prime Filter Theorem). Let L be a distributive lattice. For any filter F
and ideal I on L such that F' N1 = 0, there is a prime filter p on L such that F C p and
pNI=10.

The Prime Filter Theorem (PFT form now on) uses the Axiom of Choice in an essential
way. In fact, it is often considered as a fragment of the full Axiom of Choice, rather than
as merely one of its consequences. Of crucial relevance to the semiconstructive setting
mentioned in the Introduction is the fact that PFT is independent from ZF + DC' [89]
(see also Solovay’s model [242] of ZF + DC+ “All sets of reals are Lebesgue measurable”).
Perhaps surprisingly, it is however equivalent to a restricted form of it to Boolean algebras,
known in the literature as the Boolean Prime Ideal Theorem (BPI from now on):

Theorem 1.1.17 (Boolean Prime Ideal Theorem). Let B be a Boolean algebra and a # 0
an element of B. There is an ultrafilter p on B such that a € p.

Both PFT and BPI have played a crucial role in the development of modern duality
theory. Much of the work in the next three chapters is devoted to the development of
alternative dualities that bypass the need to appeal to such non-constructive principles, and
can therefore be carried out in ZF + DC. For now, let us turn to some background on
dualities.
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1.2 Discrete and Topological Dualities

In this section, I will review some basic notions from duality theory, and give an overview
of some of the results that play an important role in the next three chapters. I will assume
some familiarity with the basic terminology of category theory (e.g., categories, functors,
isomorphisms and natural transformations) as well as rudiments of general topology. A
reader unfamiliar with category theory but more versed in the language of set theory may
appeal to the following intuition. A category is a structured class of mathematical objects
of a given kind (such as sets, posets, groups or topological spaces), in which the structure of
the category is determined by a fixed class of maps (called arrows or morphisms) between
the objects it contains. Typically, the maps between the objects of a category are functions
that preserve all or part of the internal structure (or lack thereof) of such objects, e.g.,
functions between sets, monotone maps between posets, groups homomorphisms between
groups, or continuous maps between topological spaces. Functors are structure-preserving
maps between categories, i.e., a functor F' maps objects in a category C to objects in a
category D and maps in C to maps in D, in such a way that F(f) is a map from F(C)
to F(D) whenever f is a map from C to D C., except in a case of contravariant functors,
which “flip” the direction of the arrows from the source category to the target category
(i.e., a contravariant functor F' from C to D sends a map f : C — D in C to a map
F(f): F(D) — F(C) in D. Finally, a natural transformation is a uniform way of passing
from a functor F' : C — D to a functor G : C — D. Formally, a natural transformation
n : F — G if given by a family {nc}c € C of maps in D which satisfy the following
“naturality” square:

F(C) — F(f)— F(D)

nc 1D

l l

G(C) — Flo9) — G(D)

meaning that composition F(f) with np yields the same result as composing nc with G(f) for
any f: C'— D in C. Naturality is often understood as a formal way to capture the informal
notion of “canonicity” in mathematical practice, but an equally valid way to interpret this
requirement (at least within the purview of this dissertation) is to think of it as requiring
that the maps n¢ by “uniformly definable” in some sense. We close this short and informal
primer on category theory with a reminder of the following notions.

Definition 1.2.1. Let C and D be categories.

e An adjunction between C and D is a pair of functors ' : C — D and G : D — C such
that for any objects C' € C and D € D, there are bijections n¢ p : Homp (F(C), D) —
Hom¢(C, G(D)) natural in C' and D.

e Given an adjunction (F,G), F is called the left adjoint of G, and G is called the
right adjoint of F. Moreover, the family of maps npc) rc)(lrc)) : C — GF(C)
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for every object C' € C is called the unit of the adjunction, and the family of maps
na(lD),G(D)(lG(D)> : FG(D) — D for every object D € D is called the counit of the
adjunction.

e A pair of functors (F,G) is a contravariant adjunction if F' and G are contravariant
functors and for any two objects C € C and D € D, there is a bijection
ne.p : Homp (D, F(C)) - Homc(C, G(D)) natural in C' and D.

Adjunctions are one of the most pervasive concepts in category theory. In a precise
sense, an adjunction of functors between two categories generalizes the notion of a Galois
connection of monotone maps between two posets. Just like a Galois connection allows one
to move back and forth between the orders of two distinct posets, an adjunction allows one
to move back and forth between the morphisms in two distinct categories. A close relative
to the concept of an adjunction is that of an equivalence of categories.

Definition 1.2.2. Let C and D be categories. An equivalence of categories is given by a pair
of functors F': C — D and G : D — C and natural isomorphisms {n¢ : C' — GF(C)}cec
and {ep : D — FG(D)}pep. A duality between C and D is an equivalence between C and
D i.e., it is given by a pair of contravariant functors.

Informally, the notion equivalence is often taken to be the most fruitful notion of “same-
ness” between two categories. Indeed, the vast majority of categorical concepts are invariant
under equivalence of categories. This means that in general, establishing the existence of an
equivalence between two categories allows for the study of the objects in one category via the
study of the corresponding objects in the other category. An equivalence of categories also
often paves the way for many fruitful interactions between two mathematical domains, and
they can be seen as “bridge” theorems that offer a way of translating results or problems
in one setting into results or problems in another. In that respect, equivalences between
categories of algebraic and geometric objects are often particularly useful. Dualities, in par-
ticular, exhibit an additional feature that makes them particularly desirable. Indeed, many
categorical concepts come in “dual pairs”, where one kind of construction is obtained from
his dual by reverting all the arrows involved in its definition. Typical examples of such dual
pairs include subalgebras and quotients, products and coproducts, limits and colimits, etc...
Dualities allow us to “translate” constructions in one setting into dual constructions in the
dual setting, which sometimes make them easier to comprehend. Let us now turn to the
specific dualities that will occupy us for the next chapters.

Duality theory focuses on dualities between categories of lattices and categories of ge-
ometric structures such as graphs and topological spaces. The cornerstone of the field is
arguably Stone’s duality between Boolean algebras and Stone spaces [245]. Let us first recall
the following definition.

Definition 1.2.3. A Stone space is a topological space 2 = (X, 7) which is compact,
Hausdorff and 0-dimensional (i.e., it has a basis of clopen sets).

Stone duality is the following theorem.
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Theorem 1.2.4 (Stone 1936). The category of Boolean algebras and Boolean homomor-
phisms between them is dual to the category of Stone spaces and continuous maps between
them.

Let us quickly describe this duality here, as it provides the original template for many of
the techniques that are still in use in duality theory up to this day. Given a Boolean algebra
B, its dual Stone space is the topological space (Spec(B), o), where Spec(B) is the set of
all prime filters on B (equivalently, all ultrafilters on B), and o is the topology generated
by the sets of the form @ = {p € Spec(B) | a € p}. Conversely, given a Stone space
2 = (X, 1), its dual Boolean algebra is the Boolean algebra Clop(Z") of clopen subsets of
X. That £ is homeomorphic to SpecClop(Z") is essentially due to the definition of Stone
spaces. Indeed, it is a basic fact from general topology that any ultrafilter on the subsets of
a topological space 2~ converges to at least one point if 2" is compact, and to at most one
point if 2" is Hausdorff. Moreover, 0-dimensionality implies that two ultrafilters U and V
on 2" converge to the same point if and only if U N Clop(Z") =V N Clop(Z"). Hence the
map € : 2 — SpecClop(Z") given by x +— {U € Clop(Z") | x € U} is a bijection, and it
is easy to see that é_l[lAf | = U for every U € Clop(Z"). The converse direction, however, is
the celebrated Stone Representation Theorem:

Theorem 1.2.5 (Stone Representation Theorem). For any Boolean algebra B, Spec(B) is
a Stone space, and the map ~: B — Clop(Spec(B)) is a Boolean isomorphism.

As is well known, Stone’s theorem requires (BPI) in essentially two places. First, in
establishing that Spec(B) is compact. Second, in making sure that the map a — a is
injective, as one needs to show that if @ £ b for some a,b € B, there is p € Spec(B) such
that a € p and b ¢ p.

Finally, the correspondence between Boolean algebras and Stone spaces is extended to a
correspondence between their respective morphisms by taking inverse images (which explains
why we obtain a duality instead of an equivalence). Indeed, any Boolean homomorphism
f : B — C induces a continuous map Spec(f) : Spec(C) — Spec(B) given by the map
p+ f7lp] = {a € B| f(a) € p}. Conversely, since the preimage of a clopen set under a
continuous map is clopen, and preimages under any function preserve intersections and set-
theoretic complements, the inverse image map Clop(g) : Clop(:Z") — Clop(¥%/) is a Boolean
homomorphism for any continuous map g : % — 2.

Stone duality was one of the earlier results establishing a tight correspondence between
order theory and topology. His duality theorem was soon extended, both on the topological
side (e.g., by de Vries [69], who identified a category of lattices dual to the category of
compact Hausdorff spaces) and on the algebraic side. Stone himself extended his result to a
duality between distributive lattices and spectral spaces [246].

Definition 1.2.6. A spectral space is a compact Ty topological space 2 = (X, 7) such that:

e the compact open sets CO(Z") form a basis for 7 and are closed under intersections;



CHAPTER 1. BACKGROUND ON DUALITY THEORY 17

e 2 is sober, i.e., any completely prime filter on the lattice of open sets of 2~ converges
to a unique point.

A spectral map between spectral spaces is a continuous map f : 2" — % such that f~1[U] €
CO(Z) for every U € CO(%).

Given a distributive lattice L, Stone considers the space Spec(L) of all prime filters over
L, endowed with the same topology as the one he defined on the dual spaces of Boolean
algebras, i.e., the topology generated by sets of the form @ for a € L. Using PFT, one can
show that Spec(L) is compact for any distributive lattice L, and moreover that CO(Spec(L))
is always a distributive lattice into which L embeds via the map a +— a. He thus obtained
the following:

Theorem 1.2.7 (Spectral Duality). The category DL of distributive lattices and lattice
homomorphisms between them is dual to the category Spec of spectral spaces and spectral
maps between them.

Spectral spaces, however, are not as nicely behaved as Stone spaces. This prompted
Priestley to modify Stone’s definition in order to obtain better behaved dual spaces of dis-
tributive lattices [210]. Priestley’s idea was to consider the patch topology of a spectral space
(2, 1), ie., the topology generated by the compact opens in 7 together with their com-
plements. In the case of a spectral space, this yields a Stone space. Priestley duality then
recovers the structure of the original distributive lattice by adding a partial order on the
topological space thus obtained. The Priestley dual of a distributive lattice L is therefore
the ordered topological space (Spec(L), 7', C), where 7’ is generated by the sets of the form
a for any a € L and their complements, and C is the inclusion ordering on the set of prime
filters of L. Using PFT, one can then verify that this space satisfies the following definition.

Definition 1.2.8. A Priestley space is a triple (X, 7, <) such that 2" = (X, 7) is a Stone
space, < is a partial order on X satisfying the Priestley Separation Axiom:

(PSA) For any z,y € X, if # £ y, then there is a clopen upset U C X such that € U and
y¢U.

An order-continuous map between Priestley spaces is a continuous map that is also monotone
with respect to the two partial orderings.

Given a Priestley space (X, 7, <), the clopen upsets of 2" form a distributive lattice
ClopUp(Z"). Moreover, using PFT, one can show that (Spec(L),7’,<) is a Priestley space
for every distributive lattice L, and that the map a — @ is a lattice isomorphism between L
and ClopUp(L). This yields the following.

Theorem 1.2.9 (Priestley Duality). The category DL is dual to the category PS of Priestley
spaces and order-continuous maps between them.

Working with ideas similar to Priestley’s, Esakia [83, 82] developed a duality for Heyting
algebras that is an elegant restriction of Priestley’s.
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Definition 1.2.10. A Priestley space is an Fsakia space if the downset of every clopen set is
clopen. An order-continuous map f : 2" — % between Esakia spaces is an Esakia morphism
if it is a p-morphism, i.e., it satisfies the following condition for any z € 2",y € ¥

o If f(z) <4 y, then there is 2’ € 2" such that x <5 2’ and f(z') =v.

Theorem 1.2.11 (Esakia Duality). The category HA of Heyting algebras and Heyting ho-
momorphisms between them is dual to the category ES of Esakia spaces and FEsakia mor-
phisms between them.

Beyond distributive lattices and Heyting algebras, however, duality theory often loses
some of its steam. Several topological dualities have been proposed for many categories of
lattices, but the corresponding topological spaces are often not as well behaved as Stone
or Priestley spaces. One of the reasons for this is the lack of an analogue of PFT. Many
properties of a topological space 2" can indeed be given characterizations in terms of prime
filters on the powerset of 2" or on its lattice of open sets. In the absence of PFT, it is more
difficult to relate the topological properties of a space with the order-theoretic properties of
some of its subsets.

Arguably, Stone’s key insight, followed by Priestley, Esakia, and many more, was the
realization that topology could help in representing a wider variety of algebraic structures
than discrete geometric structures such as sets and graphs.! In the case of Boolean algebras,
his representation theorem generalized another, conceptually simpler one, often attributed
to Tarski. Let CABA be the category of complete and atomic Boolean algebras, where a
Boolean algebra B is atomic if for every b € B there is an atom a € B such that a <g b.
Then there is a one-to-one correspondence between CABAs and sets, mapping each CABA
B to its set of atoms At(B), and every set S to its powerset Z2(S). This simple observation
turned out to play an important role in the development of discrete dualities between cate-
gories of lattices and categories of relational structures, paving the way for providing some
solid algebraic foundations to what would eventually become the most common semantics for
modal logic [150, 151]. This discrete approach can also be carried out beyond the Boolean
case, to obtain relational semantics for (modal) intuitionistic or positive logic [216, 68, 160],
as well as beyond the setting of distributive lattices to substructural logics [2, 98]. One of the
most general result in this area, inspired from the old tradition of polarities due to Birkhoff,
is Gehrke’s representation of perfect lattices via generalized Kripke frames [101].

A distinctive feature of this approach is that the representation of a given lattice L
is obtained via very specific filters or ideals, which are both principal and satisfy some
maximality constraint such as being completely prime or completely irreducible (a variant of
the notion of primality that is equivalent to it in the distributive case). Consequently, this
type of approach can only represent complete lattices with some very strong properties, just
like Tarski’s representation for complete Boolean algebras via powersets can only represent

!Perhaps apocryphally, he is often credited for the motto that “One should always topologize!”.
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complete and atomic Boolean algebras. There is, however, another way of providing discrete
representations for Boolean algebras, based on working with principal filters rather than
principal filters with maximal properties. This is precisely what we called the Forcing duality
between complete Boolean algebras and separative and complete posets in the Introduction,
and it plays for possibility semantics the role that Tarski’'s CABA duality plays for Kripke-
style semantics in non-classical and modal logics. Moreover, this duality can be topologized
so as to extend it to all Boolean algebras. This is the choice-free duality via UV -spaces of
Holliday and Bezahnishvili [41] (see Section 3.2.3 below). Importantly, this duality relates
to Stone duality via the Vietoris hyperspace construction [258], which we briefly describe
here, as it will play a key role in the following chapters.

For any compact Hausdorff space 2" = (X, 1), let K(Z") be the set of all compact subsets
of Z'. Given an open set U € 7, let OU ={V € K(Z") |V C U} and OU ={V € K(Z) |
V' NU # (}. Vietoris considered the following construction on metric spaces, which was then
extended to all compact Hausdorff spaces.

Definition 1.2.12. Let 2" = (X, 7) be a compact Hausdorff space.

e The Upper Vietoris hyperspace of 2" is the topological space V5(2Z7) = (K(Z"),2),
where 77 is the topology generated by the set {OU | U € 7}.

e The Lower Vietoris hyperspace of 2" is the topological space VoV (Z27) = (K(Z), 7o),
where 7o is the topology generated by the set {QU | U € 7}.

e Finally, the Vietoris hyperspace of 2 is the topological space V(Z') = (K(Z), 15,
where 75 is the join of the topologies 75 and 7, i.e., the topology generated by the
family of sets {OU, QU | U € 7}.

Assuming BPI, one can show that the Vietoris hyperspace of a compact Hausdorff space
is always compact and Hausdorff, and that the Vietoris hyperspace of a Stone is always a
Stone space.? The Vietoris hyperspace construction can also be lifted to a functor on the
category KHaus of compact Hausdorff spaces, which yields a powerful method to reason
about topological semantics for modal logic [257]. Upper Vietoris spaces, on the other hand,
offer a bridge between Stone duality and its choice-free counterpart:

Theorem 1.2.13 ([41], Thm 7.7). A topological space X" is a UV -space if and only if
2 =Mp(CORO(Z)), where CORO(Z) is the choice-free dual Boolean algebra of Z .

In other words, the choice-free dual space of a Boolean algebra can be obtained from its
Stone dual by the upper Vietoris construction.

Much of the work in the next three chapters is devoted to extending the pattern outlined
here beyond the setting of Boolean algebras. We conclude this introduction by offering a
somewhat systematic picture of the dualities that play a role in the rest of our work. As

2This is, in fact, equivalent to BPI, see [146, p. 122].
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transpired from the discussion above, dualities can be classified by at least two of their
features. The first one is the type of properties they require of the filter / ideal objects they
use in their representation of algebraic structures. Discrete dualities typically use principal
filters / ideals, while dualities that rely on some form of the Axiom of Choice use filter / ideals
with some maximal property like primality. The second feature is their level of generality.
Discrete dualities can only be established for categories of complete lattices, while topological
dualities can capture larger categories of lattices. Dualities based on filters can be developed
for categories of lattices that exhibit strong symmetry properties, like Boolean algebras or
distributive lattices, while filter-ideal based dualities can have a broader scope.

In order to help the reader orientate themselves around all these dualities, we conclude
with two visual aides. First, the following diagram of categories of lattices, in which ar-
rows indicate inclusion of categories, and each point contains a hyperlink to a part of the
dissertation where a duality for the corresponding category of lattices is discussed.

Lat

4

cLat
cDL
sLat

cHA

sHA BA

VL

cBA

VLY

CABA

Second, the table below offers a classification of many of the dualities discussed in this
dissertation according to their topological /discrete and constructive or non-constructive na-
ture and their level of generality. Each cell contains a hyperlink to a part of this dissertation
discussing it. Finally, bold-faced notions are new dualities that are introduced in this dis-
sertation.

Finally, Table 1.1 can be seen as also providing a roadmap for the next three chapters.
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Boolean Algebras Heyting Algebras Distributive Lattices Lattices
Principal Prime/Maximal Filters Tarski de Jongh/Troelstra Raney Gehrke Discrete / Choice-free
Principal Filters Forcing Heyting B-Frames Distributive B-Frames B-Frames Discrete / Choice-free
Prime/Maximal Filters Stone Esakia Stone/Priestley Hartung-Urquhart Topological / Choice
Filters UV-Spaces Heyting Bispaces | PUV-spaces / UV P-Spaces | Moshier-Jipsen / Dunn-Hartonas-Allwein / FI-Spaces | Topological / Choice(-free)

Table 1.1: Systematic Overview of Many Dualities

Chapter 2 is devoted to discrete dualities that generalize the Forcing duality to the category
of all complete lattices and to some of its subcategories. Chapter 3 focuses on extending the
choice-free Stone duality beyond Boolean algebras but still within the realm of distributivity.
Finally, Chapter 4 tackles the issue of extending this approach to the most general category
considered here, namely the category of all lattices.
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Chapter 2

A Discrete Duality for Complete
Lattices

2.1 Introduction

Topological dualities have become a standard tool in the representation of lattices and in
the semantics of non-classical logics. Stone famously established a duality between Boolean
algebras and Stone spaces [245] which he later generalized to a duality between distributive
lattices and spectral spaces [246]. Priestley [210] presented an alternative duality between
distributive lattices and Priestley spaces, while Esakia’s work [81, 83] yields dualities for
Heyting and bi-Heyting algebras. In the general case of bounded lattices, several dualities
have been proposed. Urquhart [256] gave a topological representation of bounded lattices
that directly generalizes Stone and Priestley’s theorems and which was later lifted by Hartung
[127] to a duality for bounded lattices and surjective lattice morphisms. Other dualities for
lattices and various lattice expansions have been proposed by Allwein, Dunn and Hartonas
[1, 122, 124, 125], as well as by Jipsen and Moshier [197] and Gehrke and van Gool [105].
Although these topological dualities can be used to give representations of complete lattices,
there is also a long tradition of discrete, purely relational representations of complete lat-
tices. This tradition originates with Tarski’s duality between sets and complete and atomic
Boolean algebras, which was later expanded to Boolean algebras with operators (BAOs) and
used to provide a semantics for modal logic. Tarski’s duality was also generalized to a duality
between posets and superalgebraic locales [68], also known as completely join-prime gener-
ated complete lattices [215, 216]. In set theory, an alternative representation of complete
Boolean algebras as the regular open sets of a poset has also become a cornerstone of forcing
[144, 161] and has recently been used to provide an alternative semantics for modal logic
known as possibility semantics [24, 133, 134, 137, 140]. This latest representation of com-
plete Boolean algebras is also related to a more general representation of complete lattices
obtained by Allwein and MacCaull in [2].

In this chapter, we lift Allwein and MacCaull’s representation theorem to a full dual-
ity. This is achieved by establishing first an idempotent adjunction between the category
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cLat of all complete lattices and a category Bos of bi-preordered sets (bosets for short).
Bi-ordered sets already played a role in Urquhart’s representation theorem, although the
Allwein-MacCaull dual bosets we consider differ from Urquhart’s, and they have also been
discussed in connection with the representation of complete Heyting algebras [36, 37, 188].
As shown in [136], there is also a strong connection between representations of complete
lattices via bi-ordered sets and via polarities [42, 62, 101, 125, 126]. We use our b-frame
duality to provide discrete representations of various classes of complete lattices and use
these alternative characterizations to obtain some results in the theory of complete Heyting
algebras and the semantics of intermediate logics.

The chapter is organized as follows. In Section 2.2, we introduce bosets and the relevant
notion of morphism between them, and we lift the Allwein-MacCaull representation of com-
plete latties to an idempotent adjunction between the category of bosets and the category of
complete lattices. In order to restrict this adjunction to a duality, we generalize the notion of
dense embeddings from forcing posets to the setting of bosets, and we use this to characterize
the fixpoints of the adjunction. This allows us to define the category bF of b-frames, dual
to the category cLat of complete lattices. We conclude the section by comparing b-frame
duality to some existing discrete and topological representations of lattices.

In the following two sections, we develop this framework further by establishing a cor-
respondence between algebraic properties of complete lattices and first-order properties of
b-frames. This allows us to obtain alternative representations of complete distributive lat-
tices, complete Heyting algebras and complete Boolean algebras in Section 2.3, while in
Section 2.4 the duality obtained for complete Heyting algebras is further restricted to obtain
geometric, amalgamation-like characterizations of the duals of spatial and superalgebraic
locales.

The last two sections are devoted to new applications of this framework to the theory
of complete Heyting algebras and the semantics of intermediate logics. In Section 2.5, the
notion of a coproduct of two bosets is defined and used to prove the following decomposition
theorem for complete bi-Heyting algebras:

Theorem 2.5.14. Let L be a complete bi-Heyting algebra. Then L is a complete subdirect
product of L1 X Ly in cLat, where Ly is a completely join-prime generated locale and Lo is
locale with no completely join-prime element.

A related result in the theory of Boolean algebras [106] states that any complete Boolean
algebra is the product of an atomic and an atomless Boolean algebra, although Theo-
rem 2.5.14 is a result about complete bi-Heyting algebras in cLat, rather than in the category
of complete bi-Heyting algebras and complete bi-Heyting morphisms, which is not a full sub-
category of cLat.

Finally, Section 2.6 discusses some applications of this framework to the semantics of
intuitionistic logic. We introduce boset semantics, a semantics as general as locale semantics
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for intuitionistic logic and show how semantics that are equivalent to Kripke and topological
semantics arise as natural restrictions imposed on boset semantics. As a consequence, boset
semantics provides a uniform presentation of most of the semantic hierarchy for intuitionistic
logic introduced in [36]. We conclude with an application to the incompleteness problem for
intermediate logics:

Theorem 2.6.14. The intermediate logic SL, originally proved by Shehtman [239] to be
Kripke-incomplete, is in fact incomplete with respect to the larger class of all complete bi-
Heyting algebras.

A similar result has recently and independently been obtained by Bezhanishvili, Gabelaia
and Jibladze in [35], via Esakia duality and through a fairly intricate argument. By contrast,
our proof is a straightforward adaptation of Shehtman’s original argument, which we take
as evidence that boset semantics can be a fruitful framework for the study of intermediate
logics.

2.2 B-frame Duality

In this section, we introduce the category bF of b-frames and prove that it is dual to
the category of complete lattices cLat. This is done in two steps. First, we introduce a
category Bos of bi-preordered sets and establish an idempotent adjunction between Bos
and cLat. As was already noted by Allwein and McCaul in their representation theorem
for complete lattices obtained in [2], all complete lattices are fixpoints of this adjunction.
This means that we only need to restrict Bos to a full subcategory of fixpoints in order
to obtain a category dual to cLat. We call such fixpoints b-frames and show that they are
completely characterized by certain properties of bi-preordered sets. Finally, in Section 2.2.5,
we connect this adjunction to well-known discrete dualities for complete lattices, showing
in particular how it generalizes Tarski’s duality between CABA and Sets, Raney’s duality
between superalgebraic lattices and posets and the forcing duality between complete Boolean
algebras and separative posets. We also discuss connections with several existing dualities
for lattices, including Urquhart-Hartung duality [127, 256], Allwein-Hartonas duality [122]
and Hartonas-Dunn duality [124, 125, 126].

2.2.1 Bosets and B-morphisms

Our starting point is the notion of a bi-preordered set, which will be called bosets for short.
In other words, a boset is a tuple (X, <;, <s) such that <; and <, are preorders on X.
Bi-ordered sets have been used before in the representation theory of bounded lattices, in
particular by Urquhart [256], Hartung [127] and in various ways by Allwein, MacCaull,
Hartonas and Dunn [1, 2, 125, 126]. We refer the reader to Section 2.2.5 for a comparison
of our approach to this literature. More recently, bi-ordered sets have also been discussed
in connection with the representation of complete Heyting algebras in [36, 37, 188]. This
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connection will be explored further in Section 2.6. For now, we introduce the notion of
morphism between bosets that will be relevant for our purposes:

Definition 2.2.1. Let (X, <, <¥) and (Y, <}, <Y) be two bosets. Amap f: X =Y isa
boset morphism (b-morphism) if the following are true:

1. f is monotone in both orderings, i.e., for any z,y € X, if # <X y, then f(z) <Y f(y)
for i € {1,2};

2. Vo € XVy 25 f(x) 32 25 2 f(2) 2] y;
3. Vo € XVy > f(x)32 >7 w1 f(2) 23 v.

It is straightforward to verify that the composition of two b-morphisms is still a b-
morphism.

Lemma 2.2.2. Let f: (X, <7, <5) = (Y, <], <) and g = (Y, <], <) = (Z,<{,<F) be
two b-morphisms. Then go [ : (X, <, <X) — (Z,<%,<%) is a b-morphism.

Proof. Monotonicity is clear. Suppose x € X and z >% gf(z). Then since g is a b-morphism
there is y >Y f(x) such that g(y) >7 2. But since f is a b-morphism, this implies that there
is 2/ > x such that f(z') >¥ y. Thus gf(2') >Z g(y) > 2. Hence g o f satisfies condition
2. The proof that g o f also satisfies condtion 3 is completely similar. O]

Therefore bosets and b-morphisms form a category Bos. Our main goal is to understand
how this category relates to cLat, the category of complete lattices and complete lattice
morphisms between them. Throughout this chapter, given a poset (P,<) and A C P, we
will write 1A and |A for the sets {p € P|dg€ A:g<pland{pe P|Jqg€ A:p<yq}
respectively.

Example 2.2.3. Any preordered set P = (P, <) may be viewed as a boset in two different
ways: either as a Kripke boset Pr = (P, <,>), i.e., by letting the second ordering be the
converse of the ordering on P, or as forcing boset Pg = (P, >,>), obtained by letting the
two orderings be the converse ordering.! It is straightforward to verify that a b-morphism
between Kripke bosets is precisely a monotone map between the underlying preordered sets,
while a b-morphism between forcing bosets is a monotone map f : (P, <p) — (@, <g) that
is also weakly dense, i.e., f is such that f[]p] is dense (in the sense of the downset topology
induced by the ordering) in | f[p] for every p € P.

Any boset 2" = (X, <Y, <) can be regarded as a bi-topological space, by letting 7, and
To be the upset topologies induced by the orders <; and <, respectively. We write C'; and
Cs for the corresponding closure operators. We can then consider the complete lattices O

IThe reason for flipping the order is simply historical: in the forcing literature, one typically works with
regular open downsets, while Kripke semantics is typically defined in terms of upsets. Since we will be
working with upsets, yet several notions defined below are generalizations of notions about forcing posets,
flipping the order when representing forcing posets as bosets will help avoid any confusion.
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and Oy of open sets in 7y and 7 respectively and define two antitone maps: —; : Oy — Oy
and -9 : O3 — Oy by letting -U = X — C;(U) for any U € O, and ¢ # j € {1,2}. Now
clearly for any U € O; and V' € Og,

UC—\WVifUCX -V,

and
VCwwUifVCX-—-U.

So —1 and — form a Galois connection, which means that the composite map —;—y is a
closure operator on O;. A fixpoint of —;—9 is called regular open. Notice in particular
that if 7y = 75, this definition coincides with the usual notion of a regular open subset of a
topological space. It is useful to observe that a set U C X is regular open if and only if for
any r € X:

xEUiff‘v’nyxElszy:zGU.

As the fixpoints of a closure operator on a complete lattice always form a complete
lattice (Theorem 1.1.8, see also [229, Thm. 5.2]), it follows that the fixpoints RO2(Z2")
form a complete lattice. It is straightforward to verify that for any collection {U;};e; of
sets in RO1(27), Nic; Ui = ey Ui and V., Us = —172(U,e; Us). Regular open sets in
bitopological spaces have been studied before in the context of duality theory for lattices, in
particular in the Pairwise Stone duality for distributive lattices developed in [39] and in using
Priestley and Esakia duality to give a topological characterization of MacNeille completions
of Heyting algebras [119]. The next lemma shows that the inverse image of a b-morphism
maps regular opens to regular opens.

Lemma 2.2.4. Let f: (X, <&, <) — (Y <V, <Y) be a b-morphism. Then for any 1-upset
UCY, fTmma(U)] = = fH[U].

Proof. We claim that C;(f~![U]) = fC;(U)] for any U € Oy, i # j € {1,2}. This is
clearly enough to establish that f~[—;—9(U)] = —1—of 1[U] for any U € O;. For the proof
of the claim, suppose f(y) € U for some y > x. Since f(y) >X f(x), by the b-morphism
conditions, there is some z > x such that f(z) > f(y), for j # i. Since U is j-open,
f(z) € U, so f(z) € Ci(U). This shows that C;(f~[U]) € f~'[C;(U)]. Conversely, if
f(x) <Y y for some y € U, then by the b-morphism conditions again there is some z > x
such that f(z) >; y. Once again, since U is j-open this implies that z € f~1[U], and thus
x € C(f~HU)). O

This allows us to define a contravariant reqular open functor p : Bos — cLat:

e For any boset 2" = (X,<,<3), p(Z) = ROp(Z), ie., the complete lattice of
fixpoints of the —;—y closure operator on the 1-upward closed sets of 2.

e Given a bamorphism f 1 (X, <%, <¥) = (v, <V, <1), p(f) : ROu(Y) = RO(X) is
defined as the restriction to RO15(Y") of the preimage function f~1.
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Since RO12(Z") is a complete lattice for any boset 2", p is well-defined on objects. To
see that it is well defined on morphisms, suppose f : 2 — % is a b-morphism. Then
by Lemma 2.2.4 p(f) is a map from RO15(%) — RO15(Z"). Moreover, let {U;};c; be any
collection of sets in RO12(%). It is routine to check that (,.; f7'{U;] = f7'[Nie; Us), and
by Lemma 2.2.4, we have that

f_l[ﬂlﬁ(U Ui)| = ﬁ1ﬁ2(f_1[U Ui) = ﬁ1ﬁ2(U FHu).

Thus p(f) is a complete lattice morphism from RO15(%) to RO12(2).

2.2.2 From Lattices to Bosets

Having constructed the first half of the adjunction, let us now define a functor going from
complete lattices to bosets. The construction on objects was already introduced in [2],
although Allwein and MacCaull do not extend their representation theorem to a full duality.

Definition 2.2.5. Let L be a complete lattice. The dual Allwein-MacCaull boset of L is the
boset (P, <I, <) such that:

o Pp={(a,b) € L|a<£b};
e (a,b) <F (c,d) iff a >p ¢
o (a,b) <L (c,d)iff b<pd.

Let f: L — M be a complete lattice homomorphism. By the adjoint functor theorem, f
has a left adjoint -/ and a right adjoint -, where for any a € M, o/ = A{c € L| f(c) > a}
and ay = \/{c € L | f(¢) < a}. The following lemma shows how to use the existence of
those adjoints to construct a b-morphism from f.

Lemma 2.2.6. Let f : L — M be a complete lattice homomorphism. The map a(f) :
(Pap, <M, <00y — (P, <k, <L) defined by o(f)(a,b) = (af,bf) is a b-morphism.

Proof.

e Showing that a(f) is well defined amounts to proving that for any a,b € M, a/ < by
implies that a < b. But clearly as -/ and - are left and right adjoint to f respectively,
we have that a < f(af) and f(b;) < b, so by monotonicity of f, a’ < b implies that
a < f(al) < f(bs) <b.

e Monotonicity of a(f) in the two orderings is straightforward.

e Let (a,b) € Py and suppose a(f)(a,b) <% (c,d) for some ¢ £ d € L. We claim that
the pair (f(c),b) is in Pys. To see this, note that if f(c) < b, then ¢ < by. But since
a(f)(a,b) = (af,bs) <L (c,d), we have that ¢ < d, a contradiction. Thus f(c) % b.
Therefore (a,b) <3' (f(c),b) and (c,d) < (f(c)?,by).
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e Let (a,b) € Py and suppose aff)(a,b) <¥ (c,d) for some ¢ £ d € L. We claim that
the pair (a, f(d)) is in Py. To see this, note that if @ < f(d), then o/ < d. But since
a(f)(a,b) = (af,bs) <F (c,d), we have that ¢ < d, a contradiction. Thus a £ f(d).
Therefore (a,b) <} (a, f(d)) and (c,d) <7 (a’, f(d);) = a(f)(a, f(d)). O

The contravariant « : cLat — Bos is defined as follows:

e for any complete lattice L, a(L) = (Pr, <l <L), the dual Allwein-MacCaull boset of
L.

e for any complete lattice morphism f : L — M, a(f) : (Py, <M, <M) — (P, <k <D
is defined as the map (a,b) — (a’,by).

Remark 2.2.7. A careful look at the definition of the functor a reveals that it could easily
be extended to the category of all lattices and morphisms that have both a left and right
adjoint. However, in the absence of the adjoint functor theorem, this condition on morphisms
is fairly cumbersome. We therefore limit ourselves to discussing morphisms between complete
lattices, for which having a left and a right adjoint is equivalent to being a complete lattice
homomorphism.

We are now in a position to provide a representation theorem for all complete lattices. As
mentioned in the introduction, this result was already obtained in [2, Thm. 4.2.9]. However,
Allwein and MacCaull use some notation introduced by Urquhart [256], which differs quite
significantly from ours. A more similar proof to the one we give below can be found in [136],
although Holliday works with downsets while we work with upsets. Moreover, none of the
works mentioned above presents their result from a categorical viewpoint, while we are also
in a position to establish the naturality of the isomorphism between L and the regular opens
of its dual boset, a key step in proving the idempotent adjunction we are after.

Lemma 2.2.8. For any complete lattice L, L is isomorphic to pa(L) naturally in L.

Proof. Let L be a complete lattice with dual boset a(L) = (Pr, <l <L). We claim that
the map ¢ : a = T,(a,0) is a complete lattice isomorphism natural in L between L and
RO12(Pp).

e ¢y is well defined: let (c,d) € Py, such that ¢ € a. Then the pair (¢,a) is in Pp, which
implies that (c,d) ¢ —172(T;(a,0)). Thus —179(14(a,0)) = 1,(a, 0).

e oy is order-preserving and order-reflecting: suppose a <y b. Then (b,0) <F (a,0),
which implies that 1,(a,0) C 1,(b,0). Conversely, if a £ b, then (b,0) ¢ 1 (a,0).

e oy is surjective: Suppose U C Pp, such that =19 (U) = U. We claim that U = ¢(a),
where a = \/{c | ¢(c) C U}. Suppose that (¢,d) € U for some ¢ £ d € U. Then since
U is a l-upset, T,(¢,d) = 1,(¢,0) C U, so ¢ < a. Since ¢y, is order-preserving, this
implies that 1,(c,0) = ¢r(c) C ¢r(a), and therefore U C ¢ (a). For the converse, let
(c,d) >¥ (a,0). We claim that there is b € L such that ¢(b) C U and b £ d. To
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see this, note that, otherwise, d is an upper bound of the set {b € L | ¢.(b) C U},
which implies that a < d. But ¢ < a, and therefore ¢ < d, a contradiction. Thus
(¢,d) < (b,d) for some b such that o (b) C U, and therefore (a,0) € —1—o(U) = U.
This completes the proof that ¢y is a complete lattice isomorphism.

e For naturality in L, suppose we have a complete lattice morphism f : L — M. We
want to show that ¢y (f)(a) = pa(f)(er(a)) for any a € L. Note that ¢y (f)(a) =
1,(f(a),0). Then we compute:

pa(f)(pr(a)) = pa(f)(1:1(a;0))
= {(c.d) € a(M) [ a(f)(c,d) € 1,(a,0)}
={(c,d) € a(M) | (¢!, dy) =7 (a,0)}
={(c,d) € a(M) | ¢! <{ a}
={(c.d) € a(M) | ¢ <1 f(a)} = 11(f(a),0)
This completes the proof. O

This result yields a representation of complete lattices as regular opens of some boset.
For our purposes however, it also allows us to establish that all complete lattices are fixpoints
of a contravariant adjunction. The existence of this adjunction is the main theorem of this
section:

Theorem 2.2.9. The functors « : cLat — Bos and p : Bos — cLat form a contravariant
adjunction.

Proof. Let L be a complete lattice and 2" = (X, <q, <) a boset. We will define a family of
bijections between Homepat (L, p(27)) and Hompes(2 , (L)), natural in both L and 2.

For any f : L — p(Z) and any x € X, let 2/ = A{a € L | z € f(a)} and z; =
V{be L |z of(b)} Let f: Z — a(L) be defined as f(x) = (2, 2;). We claim that
“: Homepat (L, p(Z7)) — Hompes (2", a(L)) is an isomorphism natural in L and 2.

e fis a b-morphism:

— Note first that f is well defined: since [ is a complete lattice morphism, for any
ve€ X,z € f(xf)and x ¢ f(xy). Thus f(x) € Pr.

— For monotonicity, notice that x <; y implies that if z € f(a), then y € f(a)
for any a € L. Therefore 27 > yf, and therefore f(z) <F f(y). Similarly, if
r <5y, then x € —o(f(b)) implies y € —o(f(b), and thus z; < y;. Therefore
fz) <5 f(y).

— Suppose that (c,d) >% f(z) for some x € X, ¢,d € L. We claim that there is
y >9 x such that y € f(c). Otherwise, © € —9(f(c)), and therefore ¢ < zy. But

this implies that ¢ < d, a contradiction. Thus such a y >, x exists. But since
y € f(c), it follows that f(y) >L (¢, d).
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— Suppose now that (c,d) > f(x). We claim that there is y >; x such that
y € —o(f(d)). Otherwise, x € —1=o(f(d)) = f(d), and thus ¢ < 2/ < d, a
contradiction. Now since y € —o(f(d)), we have that d < f,, and thus (c,d) <%

f(y).

e - isinjective: let f1, fo : L — p(ﬁ&” ) such that fi # fo. Without loss of generality, there
is some a € L such that fi(a) € fa(a). Let 2 € fi(a) such that © ¢ fa(a). Then there
is y > x such that y € fi(a) and y 6 —9(fa(a)). This implies that y* < a < y;,. As
y/t £ yy,, this means that ys, # yy,, and therefore fi(y) # fa(y).

e - is surjective: let g : 2~ — «a(L) and consider the map f : L — p(2Z") defined
by f(a) = ¢g~'[1,(a,0)]. We claim that ¢ = f. Indeed, for any * € 2" such that
g(x) = (¢,d) and any a € L, we have that g(x) € f(a) iff ¢ <; a, and g(z) € —2(f(a))
iff a < d. Thus f(z) = (c,d).

Finally, it remains to verify that ~ is natural in both L and 2". This means that for any
M e cLat, % € Bos, g: M — L and h: % — 2, the following diagram commutes:

Homepat (L, p(Z7)) —— Hompes(Z", (L))
jHomcLat (9.p(h)) jHomBos(a(g)vh)
Homepat (M, p(#)) —— Hompes(#, a(M))
ie., p(h)ofog=alg)ofohforany f:L— p(Z). Now let y € % and compute that:

a(9)(F)(h)(y) = alg) (M), (h(y))y))
= (NlaeM|gla) > (h(y)'}, \/{a € M| ga) < (h(y));})

and

p(h)o fogly)=(\fa€M|yeph)(f)9a)} \/{aeM|ye—a(p(h)(f)g(a)})
= (N\laeM|yen[flg@)} \/{aeM|ye-h™[f(g(a))]}).

Thus it is enough to show for any a € M that:

g(a) > (h(y))" < h(y) € f(g(a)) (2.1a)
g(a) < (h(y)); & y € 22h ™" [f(9(a))] (2.1b)
(

Now (2.1a) follows directly from the definition of (h(y))/. For (2.1b) on the other hand, note
that g(a) < (h(y)); iff h(y) € =of(g(a)) iff y € A~ [—2f(g(a))]. Since h is a b-morphism, we
have that h='[—of(g(a))] = =2h'[f(g(a))], which completes the proof. O

For the sake of clarity, we will sometimes refer to this adjunction as a covariant adjunction
between cLat and Bos”. If we think of o and p as covariant functors, it then follows from
the previous theorem that « is left-adjoint to p. It therefore makes sense to talk about
the unit and counit of this adjunction as natural transformations 1 : IdeLas — pa and
€: Idyr — ap.
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Remark 2.2.10. Closer inspection of the proof of Theorem 2.2.9 shows that the counit of
the adjunction is given by the map ey : 2~ — ap(Z"), defined as ey (x) = (U*,V,), where
forany x € 27, U* = =y—o(Tyx) and V, = {z | =3y : y >2 x Ay >1 z}. To see that V, is
regular open, note first that it is clearly a l-upset. Now suppose that y ¢ V,. This means
that there is z € 2" such that z >3 x and z >; y. But then for any w >, z, w >, z, and
therefore y ¢ —1-9(V,). Hence —1—5(V,) C V,, which implies that V, is regular open.

The Allwein-MacCaull representation theorem (Lemma 2.2.8), when coupled with
Theorem 2.2.9, implies the corollary mentioned above.

Corollary 2.2.11. The functors a and p form an idempotent contravariant adjunction.

Indeed, to establish that the adjunction is idempotent, it is enough to show that the
unit of the adjunction is a natural isomorphism. Now for any 2 € Bos, L € cLat,
g € Hompos(2',a(L)), and a € L, g '(a) = g [1,(a,0)] = p(9)(¢r(a)). Thus ¢y, is the
unit of the adjunction between a and p. Moreover, since by Lemma 2.2.6 ¢ is an isomor-
phism natural in L, o(¢y) is an isomorphism natural in «(L).

It is a general categorical fact that the fixpoints of an idempotent adjunction induce an
equivalence of categories. Therefore the following definition is natural.

Definition 2.2.12. A b-frame is a boset 2~ such that €5 : 2~ — ap(Z) is an isomorphism.
Let bF be the full subcategory of Bos of all b-frames.

As an immediate consequence of Corollary 2.2.11, we obtain the following;:
Theorem 2.2.13. The categories cLat and bF are dually equivalent.

This result, however, only amounts to an abstract characterization of the duals of com-
plete lattices. A more useful characterization would identify precisely which properties of a
boset 2" guarantee that €5 is an isomorphism. In the next part of this section, a special
class of b-morphisms, which generalize the notion of a dense embedding in the forcing liter-
ature, is introduced. We then show that for any boset 2, €4 is such a dense embedding.
Finally, in the last part, we will show that imposing some natural conditions on bosets allows
us to strengthen this dense embedding to an isomorphism, thus obtaining a more concrete
characterization of b-frames.

2.2.3 Dense Embeddings

We begin by introducing the following notation which will be used extensively:

Definition 2.2.14. Let 2" := (X, <;,<s) be a boset. For any z,y € X and k,j €
P({1,2})—{0}, we introduce the following notation:

xilpyiff -3z 1y <, zforall s € jand <, z forall t € k.

In particular, we say that x is independent from y whenever xo 1 1y.
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It is straightforward to note that for any poset P = (P, <), if we view P as a Kripke boset
(P,<,>), we have that zy Ly iff y £ x, while if we view P as a forcing boset (P,>,>),
we have that zo 1y iff x 1y, where L is the standard incompatibility relation in the forcing
literature. More generally, following the notation introduced in Remark 2.2.10, we have in
any boset 2 that zo Ly iff x ¢ UY iff y € V.

In Allwein-MacCaull bosets, i.e., bosets of the form «(L) for some complete lattice L,
independence can be seen as a purely graph-theoretic way of capturing the order on L:

Lemma 2.2.15. Let (X, <y,<s) be a(L) for some complete lattice L. Then for any v =
(fasiz) and any y = (fy,iy,), we have that:

1. xQJ_ly Zﬁ fy S Z'z;'
2. xr 12J_2y Zﬁ fz S 7/1 \ Z-y:‘
3. wlyy iff fo N fy <y

Proof. All three items follow immediately from the fact that for any a,b € L, a £ b iff the
pair (a,b) € a(L). O

Let us now focus on a specific class of b-morphisms, which generalize in a natural way
the notion of a dense embedding between forcing posets.?

Definition 2.2.16. Let 2" = (X, <, <) and Z = (Y, <Y, <Y) be two bosets and f :
2 — % a b-morphism. Then:

e fis dense if for any y € % there is x € 2" such that y <Y, f(z).
e [ is an embedding if for any x,y € 2", we have that x1 Loy iff f(z);Laf(y).

The next two lemmas show that dense b-morphisms and embeddings are dual to injective
and surjective lattice morphisms respectively.

Lemma 2.2.17. Let f: 2 = (X, <, <) = @ = (Y, <V, <Y) be a b-morphism. Then:
1. f is dense iff p([f) is injective,
2. f is an embedding iff p(f) is surjective.

Proof.

1. Suppose f is dense, and let U,V € p(#') such that U # V. Without loss of generality,
there is y € UN—,V, and since f is dense, there must be x € 2" such that f(z) >, y.
But then f(x) € U N =3V, which means that x € p(f)(U)—p(f)(V). Hence p(f) is
injective.

Conversely, suppose there is y € % such that for all z € X, f(z) #15 y. Let U =

2For an overview of the basic notions and techniques in forcing, see for example [161].
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—172(Ty) and V = {z | yoLyz}. Clearly, U € V, but we claim that f~[U] C f~![V].
Note that this implies that U NV # U but f~'[U] = fHUNV] = fHUI N f7V]
and thus that p(f) is not injective. For the proof of the claim, suppose towards a
contradiction that there is z € f~'[U]—f"'[V]. Since both f~'[U] and f~'[V] are
regular open, without loss of generality we may assume that x € —o f~1[V]. Moreover,
note that, since z € f~[U], then there is ¢ > y such that f(z) <) ¢. But this
means that there is z >5 x such that f(z) >¥ ¢ > y. Now since x € = f~1[V], this
means that f(z) ¢ V, and hence there is ¢ >1 f(z) such that ¢’ > y. Hence there is
2/ >% 2 such that f(2') >¥ ¢ >¥ y. But since also f(2’) >V f(2) >Y y, we have that
f(2") >Y, y, contradicting our assumption. This completes the proof.

2. Suppose f is an embedding, and let U € p(2"). We claim that f~!f[U] = U. To see
this, assume that z € f~! f[U]. Then f(x) = f(y) for some y € U. Now for any z >; z,
this implies that f(z) >; f(y), and thus = f(y);Laf(2). Hence —y; Loz, which implies
that 2 € Cy(U), and hence z € —;—9(U) = U. Thus f~!f[U] C U, and the converse
direction is obvious. Now let V' = == f[U], and note that we have that

p(f)V) = fH (=12 f[U]) = 7= (fTHU]) = ~1—(U) = UL

Thus p(f) is surjective.

Conversely, assume there are z,y € 2 such that x; Loy but there is z € # such that
f(z) <4 z and f(y) <5 z. Note that this implies that there is y' >, y such that
z <1 f(y'). We claim that for any U € p(%), if f(x) € U, then f(y') € U. Since
y' & —179(Ty ), this will imply that p(f) is not surjective. For the proof of the claim,
it is enough to notice that f(y') >1 z > f(x), since any U € p(#') is a 1-upset. This
completes the proof. O

Lemma 2.2.18. Let f: L — M be a lattice homomorphism. Then:
1. f is injective iff o(f) is dense;
2. f is surjective iff a(f) is an embedding.

Proof.

1. Note that by lemma 1.11, we have that f is injective iff pa(f) is injective. But by the
previous lemma, we have that pa(f) is injective iff a(f) is dense.

2. Similarly, we have that f is surjective iff pa(f) is surjective, which by the previous
lemma is equivalent to «(f) being an embedding. O

Dense embeddings will be of crucial relevance later on, as we will use extensively the fact
that a dense embedding between two bosets induces an isomorphism of the dual complete
lattices. Once again, this can be seen as a generalization of the well-known result that two

posets are forcing equivalent iff there is a dense embedding between them. In particular, if
2 = (X, <, <¥) is a boset, then a dense sub-boset of 2 is a boset # = (Y, <{|Y, <X|Y),
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where Y C X and for any z € X there is y € Y such that z <;5 y. The proof of the
following lemma is immediate when one realizes that if ¢ is a dense sub-boset of 2", then
the inclusion map ¢ : % — 2 is a dense embedding.

Lemma 2.2.19. Let % be a dense sub-boset of Z. Then p(Z") is isomorphic to p(¥).

Moreover, as shown in Lemma 2.2.6, the unit n;, of the adjunction a 4 p is an isomorphism
for any complete lattice L. A similar result holds for the counit €.

Lemma 2.2.20. For any boset 2", the map ey : X~ — ap(Z’) is a dense embedding.

Proof. Suppose we have that xol;y. Then y € V., which implies that UY C V.. Hence
(U*, V)2 L1(UY,V,), which means that ey is an embedding. For density, assume U,V €
p(Z) are such that U ¢ V. Then since both U and V are regular open there is y € 2
such that y € U N —xV. But this implies that UY C U and that V' C V,, and hence
(U, V) <12 (UY, V). m

However, it is easy to verify that dense embeddings are not isomorphisms in the category
of bosets: since b-morphisms are maps sending points to points, any b-morphism with an
inverse must be bijective. In order to characterize b-frames, we must therefore impose
some extra conditions on a boset 2  that guarantee that the dense embedding €4 is an
isomorphism.

2.2.4 Characterizing B-frames

The following definition generalizes the notion of a separative poset in forcing:

Definition 2.2.21. A boset 2" = (X, <1, <) is separative if it satisfies the following three
properties:

o <; N <, is anti-symmetric;
o forany z,y € 27, x <y y & Vz(2o L1z — 20 L1y) (1-separativity);
o forany z,y € 27, x <5y & Vz(ral12 — y2112) (2-separativity).

In particular, it is straightforward to verify that any poset (X, <) is separative iff the
corresponding forcing boset (X, >,>) is separative.
In order to characterize b-frames, we will also need a second property.

Definition 2.2.22. A boset 2 = (X, <1, <) is complete if for any U,V € p(Z") such that
U ¢V, there is z € 2 such that U = U® and V = V.

Unlike separativity, this property requires (monadic) second-order quantification to be
expressed. We will show later on (Lemma 2.3.24) that this requirement is necessary, i.e.,
that there is no possible first-order axiomatization of b-frames.

We can now establish that separativity and completeness entirely characterize b-frames.
Let us start by observing that the regular open sets of a complete separative boset 2™ have
a very concrete characterization: they are precisely the principal 1-upsets of 2.
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Lemma 2.2.23. Let 27 = (X, <1,<3) be a complete separative boset. Then for any non-
empty U C X, U € p(Z) iff U =T,z for some x € X.

Proof. We first claim that for any x € X, =1—9(1,2) = Ty2. To see this, note that it suffices
to show the left-to-right direction since 1,z is l-upward closed. By separativity, if © £; y
for some y € X, then there is z € X such that zo L2 but —z9l1y. Let 2/ >; y such that
2! >9 z. Clearly, 2/ L x, for otherwise we would have —z5 1 x. Hence 2’ € —5(1,x), which
implies that y ¢ —1—9(1,2), which concludes the proof of the claim. Hence for any = € X,
™z € p(Z). Now let U be a non-empty subset in p(27). Then as U ¢ 0, there is some
x € X such that U = U, = —1—9(Tz) = Ty2. Thus any non-empty U € p(Z") is Ty« for
some r € X. O

The next two lemmas establish the characterization of b-frames mentioned above.
Lemma 2.2.24. Fvery b-frame is separative and complete.

Proof. Tt is enough to show that «(L) is separative and complete for any complete lattice
L. Note first that it is clear from the definition of a(L) that <; N <, is antisymmetric. For
1-separativity, suppose (a,b) €1 (c,d) for some a,b,c,d € L. This means that ¢ € a, and
thus (c,a) € a(L). But clearly (¢,a)sL1(a,b) yet —=(c,a)2Li(¢c,d). The converse direction
is trivial. For 2-separativity, suppose (a,b) €2 (c,d). Then b £ d, which means that
(b,d) € a(L). But then (a,b)sL;(b,d), yet —(c,d)2L1(b,d). Hence (L) is separative. For
completeness, recall first that 7y, : L — pa(L) is an isomorphism. For any U € V' € pa(L),
let a =7, (U) and b = n;'(V) be elements of L, and note that we have that (a,b) € a(L).
Since U = nr(a) = 1,(a,0) = 1,(a,b), we have that U = U@? . Moreover, for any (c,d) €
a(L), we have that (a,b)2L(c,d) iff ¢ < b iff (b,0) <; (¢,d) iff (¢,d) € n(b) = V. Thus
V' = Viap), which completes the proof. O

Coupled with Lemma 2.2.20, this lemma generalizes to bosets the standard result that
any poset is forcing equivalent to a separative poset.

Lemma 2.2.25. Fvery complete separative boset is a b-frame.

Proof. Let 2" = (X, <1, <s) be a complete separative boset. We have to show that the map
e =2 — ap(Z’) is an isomorphism, i.e., that it is bijective and reflects both preorders.

e Note first that since <; N <, is antisymmetric, to prove injectivity it is enough to show
that both preorders are reflected by e5. Let z,y € 27, and assume z %; y. Then
My € tyx, which since 2 is separative implies that UY € U” and hence that

e () = (U, V) &1 (U, V) = e (y).
Similarly, if & €5 y, by separativity there is z € 2" such that xy 112z but =y, L;z. But
this implies that z € V, yet z ¢ V,,. Hence ey () %2 €2 (y).
e Finally, surjectivity is an immediate consequence of 2~ being complete, since points in
ap(Z") are precisely pairs (U, V) of elements of p(2") such that U ¢ V. O
Putting the previous two lemmas together, we obtain the last result of this section.

Theorem 2.2.26. A boset is a b-frame iff it is separative and complete.
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2.2.5 B-frame Duality and Lattice Representations

Let us conclude this section by comparing the results obtained above with known results in
the literature. There exist, of course, many adjunctions and dualities between categories of
lattices and concrete categories, which have various advantages and drawbacks. Representa-
tions of lattices as upsets of certain posets typically involve adding some further structure,
either in the form of a topology as in Priestley and Esakia duality, or in the form of a second
relation. Since our b-frame duality is of the latter kind, we first discuss how it relates to some
classical discrete representations in the literature, before comparing it to some well-known
dualities of the former kind.

Discrete Representations

As mentioned in the introduction, the duality exposed here can be seen as a generalization
both of the duality between posets and completely join-prime generated or superalgebraic
locales, which itself generalizes Tarski duality between sets and complete atomic Boolean
algebras, and of the representation of complete Boolean algebras as regular open sets of
separative posets which lies at the heart of some classical results in forcing. Although these
representations are well known, they are not always presented from a categorical perspective.
We therefore briefly present them below in some detail and somewhat more systematically
than what is commonly found in the literature, as this will illuminate the sense in which the
b-frame duality presented here generalizes those results.

Definition 2.2.27. Let cBA and CABA be the full subcategories of cLat whose objects
are complete Boolean algebras and complete and atomic Boolean algebras respectively. Let
sLat be the subcategory of cLat whose objects are superalgebraic complete lattices (i.e.,
completely join-prime generated complete lattices) and whose morphisms are complete lattice
homomorphisms.

Thus we obtain the following diagram of inclusions of categories:

CABA
N

sLat cBA

NS

cLat

On the geometric side of these dualities, we have the category of sets and two categories
of posets:

Definition 2.2.28. Let Set be the category of all sets and functions between them, Pos;
the category of posets and monotone maps between them and Posy the category of posets
and weakly-dense maps between them.
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As mentioned in Example 2.2.3 above, a poset (P, <p) can be viewed as the boset (P, <p
,>p), or as the boset (P, >p, >p). It is straightforward to verify that both constructions lift
to two full embedding functors « : Pos; — Bos and § : Posy; — Bos, from which we obtain
the following commuting diagram:

Set
AR
Pos; Pos,
KN /0
Bos

We now briefly recall the various correspondences that our result aims to generalize:
Theorem 2.2.29 (Tarski). CABA and Set are dual to one another:

o The functor At : CABA — Set maps any complete atomic Boolean algebra to the set
of its atoms and any complete Boolean homomorphism h : B — C' to the restriction of
its left adjoint h* : C'— B to the atoms of B and C.

e The functor & : Set — CABA maps any set S to its powerset 2(S) and any function
f:8 =T to the inverse image map f~': P(T) — P(9).

An early reference for the following result is [216]:
Theorem 2.2.30 (Raney). sLat and Pos; are dual to one another:

e The functor v : sLat — Pos; maps any superalgebraic locale L to the poset of its
completely join-prime elements with the reverse order on L and any complete lattice
homomorphism h : L — M maps to the restriction of its left adjoint h* : M — L to
the completely join-prime elements of M and L.

o The functor T : Pos; — sLat maps any poset (P, <p) to its complete lattice of upsets
Up(P) and any monotone map f : (P,<p) — (Q,<g) to the inverse image map

71 Up(Q) = Up(P).
o This v-1 duality restricts precisely to Tarski duality between CABA and Set.

Let us also note that De Jongh and Troelstra [68] observed that the Raney dual of a com-
plete lattice homomorphism A is a p-morphism if and only if A is also a complete Heyting
morphism, meaning that it also preserves the right-adjoint of the meet operation, which
exists in any superalgebraic lattice. This yields a restriction of Raney duality to De Jongh-
Troesltra duality between the category of superalgebraic locales and Heyting morphisms
between them, and the category of posets and p-morphisms, which can also be shown to be
generalized by our b-frame duality.

Finally, the following definition is needed in order to express the last one of our theorems:
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Definition 2.2.31. A poset (P, <p) is separative if for any =,y € P such that 2 £p y, there
is z € P such that z <p z and for all w € P, if w <p z then w £p y. A poset (P,<p) is
complete if for every non-empty regular open subset U of (P, <p) there is p € P such that

U=lp

Theorem 2.2.32 ([144, Chap. 14]). There is an idempotent contravariant adjunction be-
tween cBA and Poss:

e The functor  : cBA — Poss maps any complete Boolean algebra B to the poset
(B4, <p |By), where By = B\0 and any complete Boolean homomorphism h : B — C
to the restriction of its left-adjoint h* : Cy — By

o The functor o : Poss — cBA maps any poset to its Boolean algebra of regular open
downsets RO(P) and any weakly dense map f : (P, <p) — (Q,<g) to the inverse
image map f~': RO(Q) — RO(P).

o The functors o and [ restrict to a duality between the full subcategories of fixrpoints of
ofB and Po, i.e., between cBA and the full subcategory of Poss of complete separative
posets.

o [f B is a complete atomic Boolean algebra, then At(B) with the discrete order is a dense
subposet of B(B). Conversely, if S is a set, then o(S,Ag) is isomorphic to Z(95).

Combining these results with our adjunction between complete lattices and bosets, we
obtain the following diagram of categories:
Set

0

CABA
Pos; sLat cBA Pos,
cLat

K p< o )
Bos

Note that not all squares in the diagram above commute, not even up to isomorphisms.
For example, if B is a complete and atomic Boolean algebra, then At¢(B) is a discrete poset,
while the order on (B) is the restriction of the order on B. Similarly, for a superalgebraic
lattice L, the second order on k(L) is the converse of the first one, while this is not the case
for a(L). Nonetheless, we have the following result, which gives a precise meaning to the
claim that our a-p adjunction generalizes both the 7-7 duality and the -0 adjunction (the
obvious inclusion functors have been omitted):
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Theorem 2.2.33.

1. There is a natural isomorphism between the functors pk and T and between the functors
pd and o.

2. There are natural transformations n' : ky — « and n* : 58 — «, such that each
component is a dense embedding.

Proof.

1. Let P = (P,<p) be a poset. Then k(P) = (P,<p,Ap). Since the second ordering
on P is discrete, the regular opens of k(IP) are clearly the upsets of (IP), hence pr(IP)
is isomorphic to 7(P). The naturality condition is straightforward. Similarly, if Q =
(@, <g) is a poset, then §(Q) = (Q,>q, >¢). Clearly, the regular opens of §(Q) are
precisely the regular open downsets of Q, hence pd(Q) is isomorphic to o(Q). Again,
the naturality condition is straightforward.

2. Let L be superalgebraic, with < the order on L. Then (L) = (J(L),> |J(L)),
where J(L) is the set of completely join-prime elements of L and xy(L) = (J(L),>
|J(L), Ayry). Now given a completely-join prime element p € J(L), let n} (p) = (p, p°),
where p° = \/{c € L | p £ c}. It is straightforward to check that n} : ky(L) = (L) is

well-defined and is a b-morphism. Moreover, for any (a,b) € a(L), we have that a £ b

and hence, since L is superalgebraic, there is p € J(L) such that p < a but p £ b. But

this at once implies that (a,b) <i5 1! (p), which establishes that n is dense. Finally,
to see that it is an embedding, note that for any p,q € J(L), psL1q iff p £ ¢ iff ¢ < p°,

from which it follows that (p,p?)2L1(q,¢°). Hence each component of n' : ky — a is a

dense embedding. The naturality condition on 7' is left to the reader.

Similarly, let B be a complete Boolean algebra, with < the order on B. Then §(B) =

(B1,< |By) and 63(B) = (By,> |By,> |By). Given b € By, let n%(b) = (b, —b).

Once again it is straightfoward to check that n% : §3(B) — «(B) is well-defined and a

b-morphism. Moreover, for any (a,b) € a(B), we have that a £ b, hence a A —b € B,.

But clearly (a,b) <15 n%(a A —b), which shows that % is dense. Finally, to check that

it is also an embedding, note that, for any a,b € By, acl1biff aAD <0 iff b < —a

iff n%(a)oL1n%(b). Hence each component of n? : §3 — « is a dense embedding. Once

again, the naturality condition is left to the reader.

]

Finally, let us conclude by mentioning once again that the representation of any complete
lattice as the regular opens of some boset was already proved in [2]. However, Allwein and
MacCaull do not offer a treatment of morphisms, nor do they identify the duals of complete
lattices. By contrast, the notion of a dense embedding, which is a generalization of a standard
tool in forcing, plays a central role in our characterization of b-frames and will also prove
itself very useful in establishing correspondences between lattice equations and first-order
properties of bosets.
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Topological Dualities

The discrete dualities presented above only offer representations for complete lattices. As is
well known, extending such dualities to categories of (possibly incomplete) lattices typically
requires one to topologize the dual geometric structures. The celebrated examples are, of
course, Stone’s duality between Boolean algebras and Stone spaces [245], Priestley’s duality
between bounded distributive lattices and Priestley spaces [210] and Esakia’s duality between
Heyting algebras and Esakia spaces [81].

For bounded lattices, several dualities have been developed. Urquhart [256] developed
a topological representation for bounded lattices in which the points in the dual space of
a bounded lattice are pairs of a filter and an ideal which are maximal with respect to one
another. This representation, which appeals to Zorn’s Lemma in an essential way, was later
lifted to a duality by Hartung [127] and generalizes Stone and Priestley’s dualities, in the
sense that the restriction to distributive lattices and Boolean algebras yields Priestley and
Stone spaces. However, the morphisms covered by the Urquhart-Hartung duality are only
the surjective lattice homomorphisms, and the duality is often seen as more cumbersome to
work with than Priestley or Stone’s. As a consequence, a number of alternative dualities
for bounded lattices have been proposed over the years. Gehrke and van Gool [105] have
recently developed a duality closely related to Urquhart-Hartung duality, in which however
the morphisms between lattices considered are not the usual lattice morphisms. Dualities
based on spaces of filters rather than maximal filters have also been offered by Hartonas [122]
and Jipsen and Moshier [197]. These dualities do not immediately generalize Stone duality
for Boolean algebras or Priestley duality for distributive lattices (even though Jipsen and
Moshier’s approach is closely related to Stone’s duality for distributive lattices via spectral
spaces [246]), see also Section 3.2.4 below, but still involve defining only one topology on the
space of proper filters of the dual lattice.

Finally, the existing dualities closest to b-frame duality are filter-ideal based dualities,
such as the duality between bounded lattices and enhanced L-spaces presented by Allwein
and Hartonas in [1] and the duality with L-frames introduced by Hartonas and Dunn in [125]
and subsequently developed more recently by Hartonas in [124, 126]. The Allwein-Hartonas
representation of a bounded lattice L is obtained by considering pairs of a filter and an ideal
on L that do not intersect and using the inclusion orderings on filters and ideals to define
order-closed sets that generate a topology. Morphisms are defined as continuous functions
that preserve both orderings and satisfy a condition similar to that imposed on b-morphisms.
The Hartonas-Dunn duality, by contrast, is inspired from the theory of polarities and has
close ties with the theory of generalized Kripke frames of Gehrke [101]. A bounded lattice
L is mapped to the triple (X, L,Y), where X and Y are the posets of filters and ideals
of L endowed with a Stone-like topology, and L is a relation on X x Y. Such triples are
called L-frames, and a lattice L can then be recovered as the clopen sets of X that are also
fixpoints of the Galois connection between Z(X) and Z(Y) induced by L. Morphisms
between two L-frames (X, 1,Y) and (X', 1/ Y”") are pairs of continuous maps between X
and X’ and between Y and Y’ that commute with the closure operators generated by L and
1’. Since points in our b-frame representation of a complete lattice L are pairs of elements
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of the original lattice, and we work with two orderings, it is natural to see this latest duality
as giving rise to a “topologized” version of our b-frame duality, just like Stone duality topol-
ogizes Tarski duality, or the more recent duality between Boolean algebras and UV-spaces
presented in [41] topologizes the duality between complete Boolean algebras and complete
separative posets. Instead of being a triple composed of two spaces and a relation between
them, the duals of lattices in such a topologized version of b-frame duality would rather be
single bitopological spaces of filter-ideal pairs, and fixpoints of the Galois connection induced
by the relation | would be replaced regular open sets induced by the two topologies. The
details of such a duality and of its exact relationship to the Hartonas-Dunn one are left for
future work, although we will discuss a similar issue in Chapter 4. For a systematic com-
parison of the representation of complete lattices via polarities and bi-ordered sets, we refer
the reader to [136].

2.3 Correspondence Theory

In the previous section, we established an idempotent adjunction between complete lattices
and bosets and showed how to restrict it to a duality between complete lattices and b-
frames. In this section, we will see how this duality restricts further to specific classes
of complete lattices. The goal is to identify properties of b-frames which correspond to
properties of complete lattices, in the precise sense that a b-frame 2  has a property P if
and only if p(Z") is in a certain class K of complete lattices. As it will become apparent
later on, once we find such a characterizing condition on b-frames, we can always extend
our result to a correspondence between bosets and complete lattices. In this section, we
restrict ourselves to equationally definable classes and focus on characterizing the duals
of complete distributive lattices, Heyting algebras and Boolean algebras. Our approach for
Heyting algebras is also straightforwardly adapted in Section 2.5 to provide characterizations
of complete co-Heyting and bi-Heyting algebras. As mentioned in the previous section,
there is a well-established duality theory for such structures, originating with Stone duality
for Boolean algebras [245]. The Stone duals of complete Boolean algebras are extremally
disconnected Stone spaces, in which the closure of every open set is open. Building on this
characterization, Priestley [210] identifies the Priestley duals of complete distributive lattices
as those Priestley spaces in which the smallest closed upset containing S is open for every
open upset S. An equivalent characterization in terms regular opens being clopens also
exists in the bitopological duality for distributive lattices of [39, Thm. 6.25]. Finally, the
topological representations of MacNeille completions of Heyting, co-Heyting and bi-Heyting
algebras via Esakia duality obtained in [119] also yield characterizations of the Esakia duals
of complete Heyting, co-Heyting and bi-Heyting algebras.

In the context of the study of semantics for non-classical logics based on complete lattices,
we see two advantages of the discrete approach we develop here over the standard topological
approach. First, discrete, graph-theoretic semantics allow for simple geometric arguments
that are sometimes harder to adapt in a topological setting. Of course, there is always the
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option to “discretize” a topological representation. For example, one can forget about the
topology on the dual Priestley space of a distributive lattice L and focus instead on the
lattice of upsets of the resulting poset. But the obvious drawback is that this lattice will not
be isomorphic to L, but only to its canonical extension,® which is always a superalgebraic
locale. Furthermore, all characterizations of particular classes of complete lattices mentioned
above require imposing second-order conditions on the dual topological spaces. By contrast,
the dual b-frames of the kind of complete lattices considered in this section and the next
two can be straightforwardly given first-order, geometrically intuitive characterizations in
the language of bosets, even though the corresponding characterization for bosets must be
second-order. To sum up, there is a necessary trade-off between generality and concreteness
when giving representations of lattices, and we believe that the discrete representation of
complete lattices developed here is a suitable equilibrium point for our purposes.

2.3.1 Distributive Lattices

We start by characterizing the duals of distributive lattices. It is well known that the variety
of distributive lattices, unlike the varieties of Heyting and Boolean algebras, is not closed
under MacNeille completions. A similar phenomenon manifests itself here: the characteri-
zation of the dual b-frames of complete distributive lattices is more intricate and uses the
duality in an essential way.

We start by identifying a property of b-frames that are the duals of distributive lattices.

Lemma 2.3.1. Let 2" = (X, <y, <3) be a b-frame such that p(Z") is distributive. Then Z
satisfies the following property:

Vo, y, 2((x 121y A x1al02) = Jw(y1Low Awqls2)). (2.2)

Proof. Let x = (fz,12),y = (fy,1y), 2 = ([, 1,) such that x 1o L1y and z 15 Loz. Then fyAf, <
i, and f, <1, Vi,. We claim that this implies that 7, f fy- Note that if this is true, then
there is w = (i, f,) such that y; Lyw and w; Lyz. For the proof of the claim, assume towards
a contradiction that i, < f,. Then

fx:fz/\(iz\/iw)Sfx/\<fy\/ix)S(fx/\fy)v(fx/\iw)Siw\/(fz/\ix>:ixa

a contradiction. ]

It is also straightforward to see that this property is also sufficient for the dual lattice of
a b-frame to be distributive:

Lemma 2.3.2. Let 2" = (X, <1, <3) be the dual b-frame of some complete lattice L. Then
if Z satisfies (2.2), L is distributive.

3See [77, 103, 104, 150, 151] for some literature on canonical extensions.
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Proof. Recall that a lattice L is distributive iff for any a,b,c € L, aNc < band a < bV c
implies that a < b. So assume towards a contradiction that there are a,b,c € L such that
a £ b, but aAc<banda<bVe Since this implies that 1 £ ¢ £ 0, consider the points
x = (a,b), y = (¢,0) and z = (1,¢). Note that, by assumption, we have that =1, L1y and
x 12-loz, so since (2.2) holds there is some w = (fy,%,) such that y;low and wqLlsz. But
the former implies that ¢ < 7,, and the latter implies that f, < ¢, and therefore f,, < i, a
contradiction. O]

In light of the previous two lemmas, we may define a distributive boset to be a boset 2
satisfying (2.2). Distributive b-frames (i.e., distributive bosets that are also b-frames) and
b-morphisms between them form a category DbF. The following theorem is an immediate
consequence of the two previous lemmas.

Theorem 2.3.3. The duality between cLat and bF restricts to a duality between cDL and
DbF.

We therefore obtain a first-order characterization of the dual b-frames of distributive
lattices. Moreover, using results from the previous section, we can also obtain a second-
order characterization of bosets 2" such that p(.2") is distributive as follows:

Lemma 2.3.4. For any boset 2", p(Z") is distributive iff & densely embeds into a distribu-
tive b-frame.

Proof. For the left to right direction, recall that €5 : 2~ — ap(Z") is a dense embedding.
Moreover, by the previous lemma, ap(2") is distributive if p(.Z") is distributive. For the con-
verse direction, recall that if f : 2" — % is a dense embedding, then p(f) is an isomorphism.
Thus if 2" densely embeds into a distributive b-frame, p(2") must be distributive. O

2.3.2 Heyting Algebras

Let us now move on to the case of Heyting algebras. We will first isolate a property of certain
points in a boset, called Heyting points and show that the existence of enough such points
in a boset 2 guarantees that p(X) is a Heyting algebra. As we will see, for an arbitrary
boset 27, the existence of enough Heyting points in 2" is not necessary for p(Z£") to be
a cHA, but we will show that it is in the case of b-frames. This will give us a complete,
first-order characterization of the dual b-frames of ¢H A’s, which can then be extended to
bosets in a straightforward way. A key notion in this characterization is that of a nucleus
on a complete lattice. Nuclei play an important role in pointfree topology [146, 207], where
they provide an algebraic generalization of the notion of subspace of a topological space.
Nuclei on complete Heyting algebras have also been used to provide alternative semantics
for intuitionistic logic [36, 37]. The connection with nuclear semantics for intuitionistic logic
will be further explored in Section 2.6.

Definition 2.3.5. Let 2" = (X, <y, <s) be a boset. A Heyting point of 2 is a point z*
such that Vy € 2, a7, Ly iff 2% 11y.
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Note that, in this definition, the right-to-left direction is satisfied by any point z in a
boset Z": for any two x,y € 2, if there is no 2-successor of x that is also a 1-successor of
y, then in particular there is no 1-and-2-successor of x that is also a 1 successor of y. The
converse direction, however, does not hold in general. Thus Heyting points are those for
which their independence from any other point is equivalent to a weaker condition.

Definition 2.3.6. A Heyting boset is a boset 2" such that the Heyting points of 2" are
dense, i.e., the following holds:

Vadx™ >19 aVy(a]y, Ly <> x5 11y). (2.3)

Equivalently, Heyting bosets are bosets in which the sub-boset of Heyting points is dense.
In that sense, we may think of Heyting bosets as bosets in which there are “enough” Heyting
points. The importance of Heyting points is established by the next lemma.

Lemma 2.3.7. Let (X, <y, <s) be a Heyting boset. Then —1—y is a nucleus on 0.

Proof. Recall first that a nucleus on a complete lattice L is a closure operator j such that
jlaANb) = j(a) A j(b) for any a,b € L. Since =19 is always a closure operator on &, we
only need to check that for any A, B € 07, =172(X) N —=172(Y) € —1—9(X NY). Suppose
x € 719(X) N —179(Y), and let y >; z. Fix some Heyting point y* >15 y, and note that
y* >1 =, which means that there is z > y* such that z € A. Since - (y*,112), we also have
= (y*12L12), so let w >15 y* such that z <; w, and fix a Heyting point w* >15 w. Since A
is a l-upset, we have that w* € A. Moreover, since z <; y <; y* <; w*, there is 2/ >4 w*
such that 2 € B. Since = (w*5112'), we also have = (w*15112'), so let w' >15 w* such
that w’ >; 2’. Since both A and B are 1-upsets, we have that w’ € AN B. Moreover, since
y <o y* <o w* <y ', it follows that y € Cy(A N B). The entire argument is summarized
by the following diagram, where single lines represent the first ordering, dashed double lines
the second ordering and full double lines the intersection of the two orderings:*

7

e

T
4From now on, we will use this convention to denote the various orderings diagrammatically.




2.3. CORRESPONDENCE THEORY 46

Thus —172(A) N —=179(B) € —172(A N B), which establishes that =19 is a nucleus. [

The fixpoints of a nucleus on a complete Heyting algebra always form a complete Heyting
algebra [76, p. 71]. Thus the previous lemma implies that the regular opens of any Heyting
boset always form a cHA. On the other hand, it is easy to see that the converse fails: a
boset 2" need not be Heyting for p(.Z") to be a cHA.

Example 2.3.8. Suppose P = (P, <p) is a poset such that Up(P) is not a complete Boolean
algebra (for example P = w with the usual order). Note that this implies that there must
be some A € Up(P) such that AU I(P — A) C P, where [ is the interior operator induced
by the upset topology. This in turn means that P = I(AU P—A) ¢ AUI(P — A), so
H({UUV) # I(U)UI(V) in general. Taking complements, this means that the topological
closure C' induced by the upset topology on P is not a nucleus. However, the downsets of
any poset always form a cH A. Thus, if we think of C' as a closure operator on the lattice of
open sets of P when P is endowed with the discrete topology, this gives us an example of a
closure operator k on the lattice of upsets of a poset which is not a nucleus even though the
fixpoints of k form a cHA.5 But it is now easy to turn this into an example of a non-Heyting
boset whose dual lattice is a cHA: letting & = (P, Ap,<p), we have that —;—9 on & is
precisely the closure operator C' above.

Thus for an arbitrary boset 2, the existence of densely many Heyting points is not
necessary for p(2") to be a cHA. On the other hand, the next lemma shows that the dual
b-frame of a ¢cH A is always Heyting.

Lemma 2.3.9. Let A be a cHA and a(A) := (X, <y, <3) its dual b-frame. Then «(A) is a
Heyting b-frame.

Proof. Let © = (f,,i,) € X and consider the point z* = (f,, f. — i,). Clearly, z <5 z*.
Now for any y € X, we have that 2™ o Ly iff fuAf, < fo =i Mt funNfy < iff f, < fo = 1y
iff «* 2J—19- ]

Moreover, by Lemma 2.3.7 and the fact that n, : L — pa(L) is an isomorphism, the
converse also holds:

Lemma 2.3.10. Let L be a complete lattice such that a(L) is Heyting. Then L is a Heyting
algebra.

As an immediate consequence of the previous results, we obtain the following corollary.
Corollary 2.3.11. Let L be a lattice. Then L is a Heyting algebra iff a(L) is Heyting.

Thus we obtain a complete characterization of the dual b-frames of complete Heyting
algebras. Once again, using results established in the previous section, we can now give
necessary and sufficient conditions for when the regular opens of any boset form a complete
Heyting algebra.

SMore involved examples of such posets are also given in [37] and [76].
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Lemma 2.3.12. For any boset 2, p(Z") is a Heyting algebra iff 2~ densely embeds into a
Heyting b-frame.

Proof. From left to right, if p(2") is a Heyting algebra, then €y : 2~ — ap(Z") is a dense
embedding into a Heyting b-frame.

Conversely, if 2" densely embeds into a Heyting b-frame %, then p(2") is isomorphic to
p(?) and thus is a Heyting algebra by Lemma 2.3.7. O

Finally, recall that morphisms of cH A’s are complete lattice homomorphisms which also
preserve the Heyting implication. In order to identify the duals of such morphisms, we need
the following strenghtening of the definition of a b-morphism:

Definition 2.3.13. Let 2" = (X, <5, <) and Z = (Y, <Y, <Y) be two bosets. A Heyl-
ing b-morphism (h-morphism) from 2" and % is a b-morphism satisfying the following
strengthening of condition 3:

3. Ve e Xy >V flx)3z >F 2 f(2) >N 0.

The next lemma shows that if f: 2 — % is an h-morphism of Heyting bosets, then
p(f) preserves Heyting implications.

Lemma 2.3.14. Let f : & — % be a h-morphism. Then for any A, B € RO15(Y), we have
fHL(Y = AuB) = L(f Y — AlU f~[B]).

Proof. Note that the left-to-right inclusion is an immediate consequence of f being 1-
monotone. For the converse, assume that for all y >¥ z, f(y) ¢ A or f(y) € B, and
let y >¥ f(z) be in A. We claim that y € B. To see this, let z >Y 3. By condition 3’ of an
h-morphism, there is 2/ > z such that z >¥, f(2/). Since x < 2/, by assumption we have
that f(2') ¢ A or f(2/) € B. But since y < 2z <}, f(2’) and A is a 1-upset, we have that
f(z') € B. Thus y € -1—9(B) = B. O

It follows that if f : 2" — % is a h-morphism between Heyting bosets, then the dual
p(f): p(#) = p(Z) is a complete HA-homomorphism. Conversely:

Lemma 2.3.15. Let L, M be two complete Heyting algebras, and let f : L — M be a
complete HA-homomorphism. Then o(f) : «(M) — a(L) is a h-morphism.

Proof. Recall that for any (a,b) € a(M),
a(f)(a,0) = (a,by).

Since a(f) is a b-morphism, we only have to check that condition 3’ holds. So assume
(c,d) >¥ a(f)(a,b) for some (a,b) € a(M). We claim that (a A f(c), f(d)) € a(M). To see
this, note that, otherwise, aA f(c¢) < f(d), and hence a < f(¢) — f(d) = f(¢ — d). But then
c < a’/ < ¢ — d, which implies that ¢ < d, a contradiction. Thus (a A f(c), f(d)) € a(M)
and clearly (a,b) <M (a A f(c), f(d)). Moreover, since (a A f(c))! < cand d < (f(d))/, it
follows that (c,d) <k a(f)(a A f(c), f(d)). Thus a(f) is an h-morphism. O
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We may therefore form the category HbF of Heyting b-frames and h-morphisms between
them. The previous results readily imply the following theorem:

Theorem 2.3.16. The duality between cLat and bF restricts to a duality between cHA
and HbF.

2.3.3 Boolean Algebras

Finally, let us consider the case of Boolean algebras. Here we will follow a similar pattern
as in the case of Heyting algebras. We start with the definition of a Boolean point.

Definition 2.3.17. Let 2" = (X, <y, <s) be a boset. A Boolean point of 2" is a point
x* € X such that for any y € X, 27 L2y <> x5 L10y.

Similarly to the definition of a Heyting boset as a boset having “enough” Heyting points,
we may define a Boolean boset as a boset 2 such that the Boolean points of 2™ are dense,
i.e., the following holds:

Vadx* >19 :L’Vy(x* 1J_12y —x* QJ_lgy)). (24)

The existence of a dense set of Boolean points in a boset 2" has some important conse-
quences for the operator —;—s.

Lemma 2.3.18. Let (X,<y,<s) be a Boolean boset. Then —1—9 is the double negation
nucleus on 0.

Proof. We first show that —;—9(A) € —;—71(A) for any A € ). Let y >; = for some
x € —19(A). Then since x <; y*, there is z >, y* such that z € A. This implies that
—y* 9 L1922, and thus also —y* 1 L152. But this implies that y € C1(A). Thus x € =11 (A).
We now show the converse, i.e., that =1—1(A4) € —;—9(A). Let y >; « for some = €
=171 (A). Since x <; y*, there is z >; y* such that z € A. Since this implies that —y*; L22,
it follows that —y* 51152, But this implies that y € Cy(A), and therefore z € —=1—9(A). O

Since the regular open sets of any topological space always form a complete Boolean
algebra, the previous lemma clearly implies:

Lemma 2.3.19. Let L be a lattice such that o(L) = (Pr, <l <L) is Boolean. Then L is a
Boolean algebra.

Moreover, the converse holds as well:

Lemma 2.3.20. Let o(L) := (X, <y, <) be the dual b-frame of a Boolean algebra L. Then
a(L) is Boolean.

Proof. Given z = (f,, i), let 2* = (fu A =iy, —f: Vi,). Note that
(fac /\_'ix) — (_‘fac \/iaz) = feVig = fo = iy 7é 1,

thus «* is well defined. Moreover, for any y = (f,,4,), we have that (f, A —iz) A f, < i, iff
fy < (fo_‘Zx) _)iy iff fyg (_‘fx\/ix)\/iy. ]
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Corollary 2.3.21. A complete lattice L is a Boolean algebra iff its dual b-frame is Boolean.

Note that, once again, this first-order characterization of the b-frames that are dual to
a complete Boolean algebra extends to a characterization of bosets 2~ for which p(Z2") is a
Boolean algebra.

Corollary 2.3.22. For any boset 2", p(Z") is a Boolean algebra iff & densely embeds into
a Boolean b-frame.

Proof. From left to right, if p(:2") is a Boolean algebra, then €5 : 2" — ap(Z) is a dense
embedding into a Boolean b-frame. Conversely, if 2 densely embeds into a Boolean b-frame
% then p(Z") is isomorphic to p(#') and thus is a Boolean algebra by Lemma 2.3.19. [

Finally, since complete lattice homomorphisms between complete Boolean algebras are
complete Boolean homomorphisms, we obtain the following duality:

Theorem 2.3.23. Boolean b-frames and b-morphisms form a category BbF dual to the
category cBA of complete Boolean algebras and complete Boolean homomorphisms.

Before discussing other classes of complete lattices, let us derive a straightforward appli-
cation of this characterization of the dual b-frames of Boolean algebras.

Lemma 2.3.24. The class of b-frames is not first-order definable. In particular, complete-
ness is not first-order definable in the language of bosets.

Proof. Suppose that completeness is equivalent to some set ® of first-order formulas in the
language of bosets (i.e., pure first-order logic with two relation symbols <; and <5). Let a(C)
be the dual b-frame of the Cohen algebra C' i.e., the MacNeille completion of the countable
atomless Boolean algebra [144, Chap. 30]. Since C has size 2%, and points in o(C) are
pairs of elements in C, a(C) also has size continuum. Let M be a countable elementary
substructure of «(C'), which exists by the downward Léwenheim-Skolem theorem. Now
since separativity is a first-order condition and so is completeness by assumption, it follows
that M is a b-frame, hence M is isomorphic to a(L) for some complete lattice L. Moreover,
since the property of having a dense set of Boolean points is also first-order, M is a Boolean
b-frame, and therefore L is a complete Boolean algebra. But M is countable, hence (L)
is also countable. Since there is a surjection 7 : a(L) — L\ {0} defined by (a,0) — a, it
follows that L is countable. But there is no countable complete Boolean algebra. Thus the
property of completeness is not first-order definable. O

2.4 Spatial and Superalgebraic Locales

In this section, we focus on two classes of complete Heyting algebras that are of particular
relevance in the literature on semantics for intuitionistic logic: spatial and superalgebraic
locales. Both classes have been extensively studied in the literature. Spatiality is a key
notion in pointfree topology [146, 207], as spatial locales are precisely those locales that can



2.4. SPATIAL AND SUPERALGEBRAIC LOCALES 20

be represented as the lattice of open sets of a topological space. Superalgebraic or completely
join-prime generated locales on the other hand have long been known to be precisely the
lattices that arise as the collection of downward- or upward-closed sets of a poset [68, 216].
Our goal here is to offer alternative representations of both spatial and superalgebraic locales
by restricting the duality between Heyting b-frames and complete Heyting algebras obtained
in Section 2.3.2. These results are then used in Section 2.6 to provide a unified framework
for Kripke, topological and nuclear semantics for intuitionistic logic. We start by recalling
the following definitions.

Definition 2.4.1. Let L be a cHA.

e [ is spatial iff L is isomorphic to the lattice of open sets Q(Z") for some topological
space 2 = (X, 7).

o L is superalgebraic iff L is isomorphic to the lattice of upward-closed sets Up(Z") of a
poset 2" = (X, <).

Our goal in this section is to characterize b-frames whose dual lattices are spatial and
superalgebraic locales. Our strategy will be the same for both classes of cHA’s: first, we
recall that spatial and superalgebraic locales are characterized by having certain algebraic
“separation properties”: any two distinct elements of a spatial locale can be separated by
a meet-prime element, while any two distinct elements of a superalgebraic locale can be
separated by a completely join-prime element. We then translate these algebraic properties
into graph-theoretic properties of b-frames and prove that those properties do characterize
the duals of spatial and superalgebraic locales. We conclude this section by an immediate
application of these results: a new, purely b-frame-theoretic proof that any spatial Boolean
locale is also superalgebraic.

2.4.1 Spatial Locales

Recall that, given a lattice L, an element ¢ € L is meet-prime if for any a,b € L, a ANb < ¢
iff a <corb<ec Itis completely join-prime if for any A C L, ¢ < \/ A iff ¢ < a for some
a € A. The following is a basic result of pointfree topology.

Lemma 2.4.2 ([207, Prop. 11.5.3]). A locale L is spatial iff for any a £ b € L, there is a
meet-prime element ¢ € L such that a £ ¢ and b < c.

Identifying the points in a b-frame that correspond to meet-prime elements in the dual
lattice is therefore an essential step in characterizing the duals of spatial locales. This is the
role of the following definition:

Definition 2.4.3. Let 2" = (X, <y, <s) be a boset. A spatial point of 2 is a point x € X
such that the following holds:

Viya(r <o it Az <aoya — 32(1 <1 2 Ay <p 2 A2 <5 2)).

6This terminology is used by Picado and Pultr in [207], who first define superalgebraic locales as join-prime
generated locales, before proving the equivalence with the definition given here.
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Spatial points can be understood as having a certain amalgamation property. Indeed,
by simply spelling out the previous definition, we may notice that a point x € 2 is spatial
precisely if any diagram of the form

can be completed as follows:

y4
/AN
Y1 I Yo

1
AT/
N R

T

The next two lemmas highlight the relevance of spatial points in identifying the duals of
spatial locales.

Lemma 2.4.4. Let 2" = (X, <1, <3) be a boset such that every point in Z is spatial. Then
p(Z) is a spatial locale.

Proof. Suppose that every point in 2 is spatial. Note that since =1 and =9 form a Galois
connection, the regular opens p(2") are isomorphic to the regular closed sets of 2", i.e., the
lattice of sets U C X such that U = CyI;(U) or, equivalently, —U = —5—1(=U). We claim
that the regular closed sets of 2" form a topology on X. Clearly for any family {U;};c; of
regular closed sets, we have that Cy1,(U;) € Coly(,.; Us) for any 4 € I, and therefore

v = nw) < enJu).

i€l i€l el

Since Cs1; is a kernel operator on the 2-downsets of 2", this implies that the regular closed
sets of 2" are closed under arbitrary unions. Therefore we only have to check that they are
also closed under finite intersection. Suppose Uj, Uy are regular closed. Clearly U; N Us is
also a 2-downset, and hence Cy Iy (U; NUs) C Uy NUs,. For the converse, suppose x € Uy NUs.
Since both U; and U, are regular closed, this means that there is y; € I;(U;) and yo € I1(Us)
such that © <5 y; and x <5 y,. Since by assumption z is spatial, this means that there is
z >9 x such that z >; vy, yo. But this implies that z € I;(U;) N [ (Us) = 1;(U; NUy). Hence
x € Col1(U; NUy) and Uy N Us is regular closed, which completes the proof that the regular
closed sets form a topology on X. Therefore p(X) is spatial. O

Lemma 2.4.5. Let L be a spatial locale. Then the set of spatial points of a(L) is dense.

Proof. Suppose L is spatial and (a,b) € «(L). Since L is spatial, there is a meet prime ¢ € L
such that a « ¢ and b < ¢. Hence the point (a,c) € a(L), and we have that (a,b) <12 (a,c).
We claim that (a,c) is a spatial point of «(L). To see this, suppose that (a,c) <o (z1,41)
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and (a, ¢) < (x2,ys). Since z; £ y; and ¢ < y;, we have that z; £ ¢ for i € {1,2}. Since ¢ is
meet-prime, this means that x; A x5 f c. But then (z; A 23, ¢) is the required point. O

As a straightforward consequence, we obtain the following characterization of the duals
of spatial locales:

Theorem 2.4.6.
1. A locale L is spatial iff the set of spatial points of a(L) is dense.

2. For any boset Z°, p(Z") is spatial iff 2~ densely embeds into a b-frame % with densely
many spatial points.

Proof.

1. The left-to-right direction follows from the previous lemma. For the converse, if the
spatial points of «(L) are dense, then letting 2~ be the dense subframe of a(L) induced
by its spatial points, we have by Lemma 2.4.4 that p(.2") is spatial and by Lemma 2.2.19
that L is isomorphic to p(Z"), hence also spatial.

2. This follows directly from the first part. m

Let us now move on to superalgebraic locales, for which we apply a similar method.

2.4.2 Splitting Locales

As mentioned above, superalgebraic locales are precisely those locales in which any two
distinct elements can be separated by a completely join-prime one. Our characterization
of the dual b-frames of superalgebraic locales essentially uses this fact, but the following
property will be easier to work with:

Definition 2.4.7. Let L be a lattice. Given a,b € L such that a £ b, a splitting pair for the
pair (a,b) is a pair (¢,d) of elements of L such that ¢ € d, ¢ < a, b < d and for any z € L,
c<zoruxz<d.

A locale L is splitting if for any a £ b € L, there is a splitting pair (¢, d) for the pair
(a,b).

Splittings in lattices have a long history, going back to Whitman [261]. Splitting locales
are a special kind of separated locales, the study of which originates with Raney [216].
While separated locales coincide with supercontinuous locales and are precisely the complete
homomorphic images of frames of downsets of posets (or, equivalently, completely distributive
complete lattices [207, Prop. VIIL.8.5.1]), splitting locales coincide with superalgebraic locales,
as is well-known.

Lemma 2.4.8. A locale L is superalgebraic iff L is splitting.
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Proof. For the left-to-right direction, assume without loss of generality that L = Up(2")
for some poset 2" = (X,<). Given U € V € ', let x € U=V, and let U’ = tz and
V' = X —lz. Then clearly U’ ¢ V', U’ C U and V C V’, and moreover for any Y € Up(Z"),
since either x € Y or x ¢ Y, we must have that U/ CY or Y C V.

For the converse direction, as superalgebraic locales are precisely the completely join-
prime generated locales (see for example [207, Prop. VII.8.3]), it is enough to observe that
for any splitting pair (¢, d) € L, ¢is completely join-prime. But this is a well-known argument
(192, Remark. 4.1]. O

We now define the boset counterpart of splitting pairs.

Definition 2.4.9. Let 2" = (X, <;, <,) be a boset. A splitting point of 2 is a point © € X
such that the following holds:

Vyrye(z <y 1 Az <y yo — 2(y1 <o 2 Aya <4 2)).

Similarly to spatial points, splitting points exhibit a certain amalgmation property. In-
deed, a point z € 2 is splitting precisely if any diagram of the form

can be completed as follows:

The next two lemmas establish the equivalence between separation by splitting pairs in
lattices and density of splitting points in bosets:

Lemma 2.4.10. Let Z = (X, <y, <s) be a boset such that the splitting points of Z  are
dense. Then p(Z") is splitting.

Proof. Let U,V € p(Z") such that U ¢ V. This means that there is x € 2 such that
x € UN V. Let ' >15 x be a splitting point, and notice that 2’ € U N —3V. We claim
that (U*,V,) is a splitting pair for (U,V). By Lemma 2.4.8, this implies that p(2") is
superalgebraic. For the proof of the claim, it is clear that U* C U, V C V. and that
U ¢ Vor. Now let T' be any regular open set. If 2/ € T', then U* C T. Otherwise, if 2’ ¢ T,
there is y; > 2’ such that y; € —»T. But then for any w € T, if -2’5 1w, there must be
some Yy >o x such that y, >; w. Since by assumption 2’ is splitting, there is z € 2" such
that z >5 y; and z > y». But this is a contradiction, since z > yo > w implies that z € T,
while z >, y; implies that z ¢ T since y; € —9T. Hence for any w € T, 2’5 1w, which
means that T C V,,. This completes the proof. O
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Lemma 2.4.11. Let L be superalgebraic. Then the splitting points of a(L) are dense.

Proof. Let (a,b) € a(L). Since L is superalgebraic, by Lemma 2.4.2, there is a splitting
pair (c,d) for the pair (a,b). Note that by the definition of a splitting pair, we have that
(a,b) <y2 (¢,d). We claim that (¢, d) is a splitting point of «(L). Suppose (¢, d) <y (1,41)
and (¢, d) <5 (22,v2). Now 21 < ¢ yet 21 £ y1, which means that ¢ € y;, and hence y; < d
since (¢, d) is a splitting pair. Similarly d < y, yet xo £ yo, which implies that zo £ d,
and therefore that ¢ < xo. Hence (z1,y1) <z (¢,d), and (z2,y2) <1 (¢,d), which shows that

—(1,y1)2-L1(w2, y2) and establishes that (¢, d) is a splitting point. O

As a consequence, we obtain the following characterization of b-frames that are dual to
superalgebraic locales:

Theorem 2.4.12.
1. A locale L is superalgebraic iff the set of splitting points of a(L) is dense.

2. For any boset 2", p(Z") is splitting iff & densely embeds into a b-frame % with
densely many splitting points.

Proof.

1. The left-to-right direction follows from the previous lemma. For the converse, if the
splitting points of «(L) are dense, then by Lemma 2.4.10 pa(L) is superalgebraic. But
since L is isomorphic to pa(L), it is also superalgebraic.

2. This follows readily from the first part. m

As an immediate application of the results of this section, we can now use b-frames to
prove the following well-known fact about Boolean locales (see [207, Section I1.5.4] for a
standard proof):

Corollary 2.4.13. Any spatial Boolean locale is superalgebraic.

Proof. Let B be a spatial Boolean locale. We claim that a(B) is a splitting b-frame. To see
this, let © € «(B). Since B is spatial, a(B) is a spatial b-frame, which means that there is
some spatial point ' >15 x. Since B is also Boolean, there is a Boolean point z* >, 2.
We claim that x* is a splitting point. Indeed, suppose y; > * and yo >5 x*. Since z* is
Boolean and —y; 1 Ljp2*, there is some y; >12 y; such that 2* <5 y;, and note that we may
assume that | is Boolean. Hence we have that 2’ <, y, and 2’ <, ¥/, so since z’ is spatial we
have some z >1 y9, 7. Now since y; is Boolean and —y/ 1 L2z, there must be some 2’ >15 2
such that 2z’ >, ¢}. Thus 2’ > y] >3 y1, and 2’ >; 2z >; yo. Hence z* is a splitting point.
The argument is summarized by the diagram below:
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]

2.5 A Decomposition Theorem for bi-Heyting Alge-
bras

In this section, we apply elements of our b-frame duality to prove a new result regarding
complete bi-Heyting algebras. The motivation for our result is the following theorem about
complete Boolean algebras:”

Lemma 2.5.1. For any complete Boolean algebra B, there are complete Boolean algebras
Ch1 and Cy such that C7 is atomic, Cy is atomless, and B = Cy x Cs.

In our setting, atomic Boolean algebras must be generalized to superalgebraic locales
(notice that Boolean superalgebraic locales are precisely the atomic Boolean algebras). This
is in line with the fact that completely join-prime elements are usually taken to be the relevant
generalization of atoms for cH A’s. Accordingly, we propose as a relevant generalization of
atomless Boolean algebras the following definition:

Definition 2.5.2. A complete lattice is anti-algebraic if it has no completely join-prime
element.

We will use our b-frame duality to show that any complete Heyting algebra is, in the
category of complete lattices, a subdirect product of a superalgebraic locale and an anti-
algebraic locale. As will be made explicit below, this decomposition theorem holds in the
category cLat of complete lattices and complete lattice homomorphisms, but not in the
category of complete bi-Heyting algebras and complete bi-Heyting homomorphisms between
them, which is not a full subcategory of cLat. Of course, the issue does not arise in the
Boolean case, since cBA is a full subcategory of cLat.

"See for example [106], p. 227.
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2.5.1 Coproducts of Bosets

We start by defining the coproduct of two bosets. By duality, this induces a boset repre-
sentation of the product of two complete lattices. This is an adaptation of the standard
correspondence between products and disjoint unions.

Definition 2.5.3. Let 2" = (X, <, <) and Z = (Y, <], <¥) be two bosets. The disjoint
sum of 2" and %, written as 2" U %, is the boset (Z, <7 <%), where Z = X Y, <Z=<
LU <Y, and <Z=<5 0 <Y,

Lemma 2.5.4. For any two bosets 2" and %', X U is the coproduct of & and % in the
category of bosets.

Proof. Note first that we have two obvious inclusion b-morphisms A\; : & — Z U ¥
and Ay 1 ¥ — 2 U¥. Moreover, if .7 is any boset such that there are b-morphisms
T1: X — 7 and 7o : % — 7, then it is routine to check that the map h : 2 U¥% — 7
given by h(z) = 1(2) if z € 27, and h(z) = 12(z2) if 2 € ¥ witnesses the universal property
of the coproduct. O

Lemma 2.5.5. Let 27, % be two bosets. Then p(Z°) x p(¥) = p(Z U X).

Proof. Recall that, as a covariant functor from bF? into cLat, p has a left adjoint a. This
means that p preserves limits. Since 2 L% is the coproduct of 2" and % in bF, it is their
product in bF and thus p(Z U %) = p(Z") X p(¥). O

2.5.2 Characterizing Co- and Bi-Heyting Algebras

Next, we extend the characterization of the dual b-frames of Heyting algebras obtained in
Section 2.3 to co- and bi-Heyting algebras. Recall that a co-Heyting algebra is a distributive
lattice in which the join V has a left adjoint —<, and that a bi-Heyting algebra is a Heyting
algebra that is also a co-Heyting algebra. Bi-Heyting algebras and their representation theory
were extensively studied by Rauszer [218, 219, 220, 221].

Definition 2.5.6. Let 2" = (X, <Y, <) be a boset.
e A point z* € 2 is co-Heyting if for all y € 27, x* 1o Ly iff %1 Loy.
e 7 is a co-Heyting boset if the co-Heyting points of 2" are dense.

e A b-morphism f : 2" — % is a co-Heyting morphism (denoted coh-morphism) if it
satisfies the following strengthening of condition 2:

2 Voe XVy>Y f(a)3z>F of(z) >V, y.
Lemma 2.5.7.

1. If Z is a co-Heyting boset, then =91 is a nucleus on Upy(Z7), and consequently p(Z")
1s a co-Heyting algebra.
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2. If L is a complete co-Heyting algebra, then o(L) is a co-Heyting b-fame.

3. For any boset Z°, p(Z) is a co-Heyting algebra iff " densely embeds into a co-Heyting
b-frame.

Proof.
1 Similar to Lemma 2.3.7.

2 Similar to Lemma 2.3.9. Given a pair (a,b) € a(L), a £ b implies that a—< b # b, and
thus (a—< b,b) € a(L). It is routine to check that this is a co-Heyting point of «(L).

3 Similar to Lemma 2.3.12. O
Lemma 2.5.8. Let f: 2 — % be a b-morphism.
1. If f is a coh-morphism, then p(f) : p(#) — p(Z") is a co-Heyting homomorphism.

2. If h : L — M 1is a co-Heyting homomorphism of co-Heyting algebras then the map
alh) : a(M) — a(L) is a coh-morphism.

Proof.
1. Similar to Lemma 2.3.14.

2. Similar to Lemma 2.3.15. OJ

We therefore obtain a description of the dual of the category of co-Heyting algebras and
co-Heyting homomorphisms:

Theorem 2.5.9. Co-Heyting b-frames and coh-morphisms form a category coHbF dual to
the category cocHA of complete co-Heyting algebras and co-Heyting homomorphisms.

Standard dualities for complete co-Heyting and bi-Heyting algebras can also be obtained
via Esakia duality [32]. In our setting, we also need to identify the dual b-frames of complete
bi-Heyting algebras. Given a boset 2", let us define a bi-Heyting point of 2  as a point
x* € 2 that is both a Heyting and a co-Heyting point. Establishing the existence of
bi-Heyting points in dual b-frames of bi-Heyting algebras requires a technical lemma.

Lemma 2.5.10. Let L be a complete bi-Heyting algebra. Then for any a,b,c,d € L:
1. (a<bhNec<a—=biffc<a—b;
2. a<b<(a—bVdiffa<b<d.

Proof.
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1. Note that:

a—<bAhc<a—b
iff (aNc)A(a—<b) <D
iff ((anc)VO)A((a—<b)Vvd) <D
iff (avVb)A(cVb)A(aVD)<b
iff (anc)vb<b
ife<a—b.

2. This follows from 1 applied to L°, the dual bi-Heyting algebra to L. m

Theorem 2.5.11. Let L be a complete lattice. Then L is a bi-Heyting algebra iff the bi-
Heyting points of a(L) are dense.

Proof. The right-to-left direction follows immediately from Lemmas 2.3.9 and 2.5.8. For the
left-to-right direction, suppose L is a bi-Heyting algebra and (a,b) € a(L). We claim that
(a—< b,a — b) is a bi-Heyting point of a(L). That (a—< b,a — b) € a(L) follows from
the previous lemma, with ¢ = 1. Moreover, for any (c,d) € a(L) we have by the previous
lemma (item 1) that (a—< b,a — b)oli(c,d) iff ¢ < a = biff a—< bAc < a — biff
(a—< b,a — b)12L4(c,d). Hence (a—< b,a — b) is a Heyting point. Similarly, by item 2 in
the previous lemma, we have that (a—< b,a — b); La(c,d) iff a—< b < diffa—< b < a — bVd
iff (a—< b,a — b)12L2(c,d). Hence (a—< b,a — b) is a bi-Heyting point, and it is immediate
that (a,b) <15 (a—< b,a — b). Therefore the bi-Heyting points of (L) are dense. O

2.5.3 Subdirect Product Representation of bi-HAs

We are now in a position to prove our main result about complete bi-Heyting algebras.

Recall first that if {B;}ic; is a family of complete lattices, then a complete lattice A is a
subdirect product of {B;};e; if there is an injective homomorphism e : A — II;c; B; such that
for any ¢ € I, m; o e is surjective.

We start by defining a maximal point of a boset 2" as a maximal point in the 1-and-2
ordering, that is a point x € %2 such that for any y € 2", y >12 x implies that y = z. If
2 is a distributive b-frame, then maximal points in 2" correspond to very specific pairs of
elements of the dual lattice:

Lemma 2.5.12. Let L be a complete distributive lattice and (c,d) € a(L). The following
are equivalent:

1. (¢, d) is maximal;
2. (c,d) is a splitting pair of L;

3. ¢ is completely join prime, d is completely meet-prime, d = \/{f € L | ¢ £ f} and

c=NeeLl|eLd};
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4. for any (a,b) € a(L), if (c¢,d) <1 (a,b), then (a,b) <5 (c¢,d), and if (c,d) <5 (a,b),
then (a,b) <1 (c,d).

Proof.

1 = 2 Suppose that there is some k € L such that ¢ £ k and k £ d. Since L is distributive
and ¢ £ d, either c Ak £ d or ¢ £ kV d. Either way, we have a pair (¢,d’) # (c,d)
such that (c,d) <i2 (¢, d'), contradicting maximality.

2 = 3 The equivalence between 2 and 3 is well known [192]. We include the argument for the
left-to-right direction for the sake of completeness. Let FF C L. If ¢ £ f for all f € F,
then, since (¢, d) is a splitting pair, f < d for all f € F, from which it follows that
\/ F < d and therefore ¢ « \/ F. Similarly, if f « d for all f € F, then ¢ < f for all
[ € F, hence ¢ < A F and therefore A\ F' £ d. Thus ¢ and d are completely join-prime
and completely meet-prime respectively. Finally, note that for any f € L, f < d iff
¢ £ f, from which it follows that \/{f | ¢ £ f} <dand ¢ < A{e|e £ d}. Since ¢ £ d,
we conclude that \/{f | ¢ £ f} =dand c = A{e|e £ d}.

3 = 4 Suppose that (¢,d) <y (a,b). Then ¢ £ b, hence b < d, which implies that (a,b) <o
(¢,d). Similarly, if (¢, d) <5 (a,b), then a £ d, hence ¢ < a, and (a,b) <; (¢, d).

4 = 1 Suppose (¢,d) <12 (a,b). Then since 4 holds we have that (a,b) <i5 (¢,d), so ¢ = a
and b = d. O

The next lemma relates maximal points in separative bosets and anti-algebraic locales:

Lemma 2.5.13. Let 2 be a separative boset with no mazximal point. Then p(Z") is anti-
algebraic.

Proof. We show that there are no splitting pairs in p(2"). Let U € V € p(Z"), and suppose
z € UN—,V. Since x is not a maximal point, there is y >15 2 such that y €1 = or y £» .
We distinguish two cases:

e y %1 x: By separativity T,y = UY € p(2"), and since = ¢ T,y and y € =V, we have
that U € UY and UY € V.

e y %, x: By separativity there is z € 2 such that x5,z and —ysL;z, which implies
that z € V,\ V, so that V, € V. On the other hand, since y € U, we have that U Z V.

Hence (U, V) is not a splitting pair. But this in turn implies that U is not completely
join-prime and therefore that L is anti-algebraic. O]

We can now prove the main theorem of this section. As will become clear below, we are
considering bi-Heyting algebras as complete lattices in the category cLat, meaning that the
morphisms considered here need not preserve the Heyting or co-Heyting implication.

Theorem 2.5.14. Let L be a complete bi-Heyting algebra. Then L is a subdirect product of
Ly x Ly in cLat, where Ly is superalgebraic and Lo is anti-algebraic.
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Proof. Let 2" be the subframe of a(L) induced by the set of all maximal points in a(L),
and let % be the subframe of «(L) induced by the set of all bi-Heyting points y € «(L)
such that for any z >15 y, 2z is not a maximal point. Note that, by duality, it is enough to
show that there are embeddings 14 : 2 — «(L) and v5 : ¥ — a(L) such that the induced
b-morphism v : 2 U%¥ — «(L) is dense, since this will imply that p(v) : L — p(Z") x p(#)
is injective and that p(v1) = p(v) o p(A1) : L — p(Z) and p(va) = p(v) o p(A2) : L — p(¥)
are surjective.

e For any (c,d) € 27, define vi(c,d) = (¢,d). We claim that vy : 2" — «(L) is an
embedding. Monotonicity is clear. If v4(c,d) <; (a,b) for some (a,b) € «(L), then,
since (c,d) is maximal, we have that (a,b) < v;1(c,d), which means that v satisfies
condition 2 of a b-morphism. Similarly, if v4(c,d) <5 (a,b), we have that (a,b) <;
v1(c, d), and thus v is a b-morphism. Finally, to see that it is an embedding, suppose
that =y (c,d)2 L1 (¢, d'). Then there is some (a,b) € a(L) such that (¢, d) <5 (a,b)
and (¢,d') <y (a,b). But this in turn implies that (¢/,d) <; (a,b) <; (e, d), so
(e, d)o Ly ().

e For any (a,b) € %, define v5(a,b) = (a,b). We claim that v, : 2 — «(L) is an
embedding. Once again, monotonicity is clear. To see that vs satisfies conditions 2 and
3 of b-morphism, note first that for any (a,b) € # and any bi-Heyting (a/,0') € a(L),
if (a,b) <15 (d, V'), then (d/,b') € #. Now fix some (a,b) € # and assume that
va(a,b) <y (¢, d) for some (¢,d) € a(L). Since (a,b) is bi-Heyting, we have that
(a,b) <42 (a',V') for some bi-Heyting (a’,0’) >2 (¢,d). But then (a/,V') € %', which
shows that vy satisfies property 2. Similarly, assume that v5(a,b) <5 (¢,d) for some
(c,d) € a(L). Since (a,b) is bi-Heyting, we have some bi-Heyting (a’,V) >12 (a,b)
such that (a’,0') >; (¢,d). But then (d/,b") € %, so v, satisfies property 3 of a b-
morphism. Finally, to see that v, is an embedding, assume —wy(a, b)yLivs(a’,b') for
some (a,b), (a',0') € . Then there is some (¢, d) € a(L) such that (a,b) <5 (¢,d) and
(a',0') <; (¢,d). As (a,b)is bi-Heyting, there is some bi-Heyting point (a*, b*) >15 (a, b)
such that (¢, d) <y (a*,b*). But then (d/,b') <; (a*,b*) and (a*, b*) € &, which implies
that _|(CL, b)QJ_1<(l/, b/)

e Finally, by the universal property of the coproduct, the map v : Z U % — «(L),
defined by v(a,b) = (a,b) for any (a,b) € 2 U %, is a b-morphism. Moreover, we
claim that it is dense. Suppose (a,b) € a(L). There are two possible cases:

— (a,b) <12 (¢,d), for some maximal point (¢,d). Then (¢,d) € Z .

— (a,b) %12 (¢, d) for any maximal point (¢, d). Then since L is a bi-Heyting algebra,
(a,b) <12 (a’,b') for some bi-Heyting point (a’,b’) such that (a’,V') €12 (¢,d) for
any maximal point (¢, d), which implies that (a/,b") € #'.

Hence for any (a,b) € a(L) there is some (¢,d) € Z U % such that (a,b) <15 v(c,d),
and hence v is dense.
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Thus, in cLat, L is a subdirect product of p(2") and p(#/). It remains to be shown that 2"
is superalgebraic and that ¢ is anti-algebraic.

e Since all points in 2~ are maximal, they are also splitting points: if (¢,d) <y (¢1,dy)
and (¢, d) <y (c2,ds), for some (c,d), (c1,d1), (c2,da) € Z, then (c1,d1) <2 (¢,d) and
(ca,da) <4 (¢,d), and thus —(cq,dy)2L1(co, dy). Hence p(27) is superalgebraic.

e Clearly, by construction, ¢ has no maximal points. So it is enough to show that % is
separative in order to establish that p(%) is anti-algebraic. Suppose (a,b) %1 (@', V) for
some (a,b), (a',b') € #. Then since (L) is separative, there is some (a”,0") >; (', V')
such that (a”,0")sL;(a,b). Since (a’,V') is bi-Heyting, there is some (a*,b*) >15 (a/, 1)
such that (a*,b*) >3 (a”,b”). But then (a*,0*) € # and (a*,b*)2L(a,b). This shows
that % is 1-separative. The argument for 2-separativity is completely similar. Thus
% is separative and has no maximal points, from which it follows that p(%) is anti-
algebraic.

This completes the proof of the theorem. O

Let us conclude this section with some remarks on the theorem obtained in this section.
First, the proof of this theorem does not simply rely on the Allwein-MacCaull representation
of complete lattices, but requires the full power of b-frame duality. Moreover, the main idea
of the proof uses the fact that bosets can be “split” in a fairly simple way, because they are
discrete structures.®

Furthermore, it is worth emphasizing that this result only holds in cLat, i.e., the mor-
phisms under consideration here are complete lattice homomorphisms and not Heyting or
bi-Heyting homomorphisms. Indeed, as was pointed out by an anonymous referee, the fol-
lowing is an example of a subdirectly irreducible complete bi-Heyting algebra that is neither
superalgebraic nor anti-algebraic:

Example 2.5.15. Consider the chain A =N&[0,1] & T, where N and [0, 1] have the usual
order. Every element in N is completely join-prime, while no element of [0, 1] is completely
join-prime. Moreover, A is a complete bi-Heyting algebra with a second least and a second
greatest element, which means that it is subdirectly irreducible in the category of bi-Heyting
algebras and bi-Heyting homomorphisms. But clearly, A is neither superalgebraic nor anti-
algebraic and thus cannot be written as a subdirect product of a superalgebraic and an
anti-algebraic locales.

However, the standard decomposition result about Boolean algebras follows directly from
Theorem 2.5.14, once one recalls that cBA is a full subcategory of cLat and that join-prime
generated elements in Boolean algebras coincide with co-atoms.

8] thank an anonymous referee for pointing out that one can also follow a similar strategy and prove this
result using the more standard techniques of Priestley and Esakia duality.
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Finally, while the definition of anti-algebraic locales does not seem to appear anywhere
in the literature, it is arguably a straightforward generalization of the notion of a complete
atomless Boolean algebra. Moreover, existentially-closed Heyting algebras (in the sense of
model theory) have recently been axiomatized by Darniere in [64] as those Heyting algebras
A satisfying the two “strong order” axioms of Density and Splitting, as well as a countable set
of formulas expressing the fact that the complete theory of A eliminates quantifiers. Since,
as is well known [56, p. 194], atomless Boolean algebras are precisely the existentially-closed
Boolean algebras, one may wonder whether the anti-algebraic locales we define here satisfy
Darniere’s axioms. For now, we leave this as an open problem and move on to discussing
applications of bosets to the semantics of intuitionistic logic.

2.6 Semantics for IPC

In this final section, we outline some applications of the results obtained above to the se-
mantics of intuitionistic propositional logic. As shown in [36], the algebraic approach to a
semantics & for I PC associates S to the class Hs of Heyting algebras represented by the
models of §. Given two semantics S and §’, S is more general than S’ (denoted &' < §)
whenever every Heyting algebra in Hg is isomorphic to a Heyting algebra in ‘Hs. Under
this ordering, it can be shown that Kripke semantics is strictly less general than topological
semantics, which is itself strictly less general than nuclear semantics such as Dragalin [76]
and Fairtlough-Mendler [85] semantics. Indeed, the Heyting algebras that arise as the upset
of a Kripke frame are precisely superalgebraic locales and those arising as open sets of a
topological space are spatial locales. In nuclear semantics, a nucleus is defined on the upset
of a poset (P, <), for example by endowing this poset with a function D : P — Z(Z(P))
satisfying certain conditions (as is done in Dragalin semantics), or by adding a second or-
dering < on P such that C< (as is the case in FM semantics). Formulas of I PC' are then
evaluated as upsets of (P, <) that are also fixpoints of the nucleus thus defined. Building on
a result of Dragalin [76, pp. 75-76], Bezhanishvili and Holliday [37] proved that any locale
arises as the fixpoints of such a nucleus and that both Dragalin and FM-semantics are as
general a semantics for intuitionistic logic as locale semantics.

This semantic hierarchy is particularly relevant for the study of the incompleteness phe-
nomenon for intermediate logics. Indeed, if &’ < S, then every S’-complete intermediate
logic is also S-complete, but the converse may fail to be true. However, in contrast with
the situation in modal logic [137], little is known about Kripke, topological or locale incom-
pleteness for intermediate logics. One possible explanation for this phenomenon is the fact
that I PC is a much less expressive language than modal propositional logic. Moreover, the
standard representation theorems that underlie each of these semantics do not fit neatly in
a hierarchy that immediately witnesses the increase of generality between them. Dragalin’s
representation of any locale as the fixpoints of a nuclear algebra does not restrict to the
) — pt representation of spatial locales of pointfree topology, which itself does not restrict
to the de Jongh-Troelstra representation of superalgebraic locales.

Our goal in this section is to provide a uniform framework for comparing Kripke, topo-
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logical and nuclear semantics for intuitionistic logic. We first show how Heyting bosets can
be used to provide a semantics for I PC that is as general as nuclear semantics and thus
equivalent to FM and Dragalin semantics. We then show how the characterizations of spa-
tial and superalgebraic locales obtained in Section 2.4 allow us to restrict boset semantics
to semantics that are equivalent to topological and Kripke semantics. Finally, our main
result is a strengthening of one of the only known results regarding Kripke incompleteness
of intermediate logics. Using boset semantics, we show that a logic shown in [239] to be
Kripke incomplete is in fact incomplete with respect to all complete bi-Heyting algebras.
As mentioned in Section 2.1, a similar result has recently been obtained independently by
Bezhanishvili, Gabelaia and Jibladze [35], using Esakia duality.

2.6.1 Boset Semantics

As is standard, we let Var be a countable set of propositional variables and F'ml be the set of
all formulas of I PC over this set of propositional variables and proceed to define valuations
inductively. However, it is useful to define a relation of refutation of a formula at a point, on
top of the usual definition of satisfaction. Refutation systems for propositional and modal
logic have a long history [112], going back to Lukasiewicz [173]. Refutation relations have
also recently been used in the context of generalized Kripke semantics for non-classical logics
[57, 62, 101, 120, 123]. The introduction of such a relation alongside a satisfaction relation is
motivated by the two-sorted nature of these generalized Kripke frames, itself a consequence
of the underlying representation of complete lattices via polarity relations of [125] mentioned
in Section 2.2.5.

Definition 2.6.1. A boset model for IPC is a structure (X, <y, <5, V) in which the under-
lying domain 2" = (X, <;, <) is a Heyting boset and V' is a map from Var to p(Z").

Definition 2.6.2. Let (27,V) be a boset model. We define the relations |- (satisfaction)
and |-~ (refutation) on X x F'ml inductively as follows:

o z - piff x € V(p);
o - piff x € 2V (p);

zlET o A iff 2 IFT @ and x T 4);

rF" oAy it Vy >0 232>y 2IF por zIF 4

It oV iff Vy > 232z >0y 2 IFT por 2 IFT 4

rlF" eV iff x I~ ¢ and x IF~ 4

zlFt o =Y it Vy >y 2y IFT o implies y IFT 1);

2l o =Y it Vy > 232>y :yIFH p and y IF~ 4.
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For any formula ¢, we write the sets {z € X : x IF" ¢} and {x € X : z IF~ ¢} as V()
and V'~ (¢) respectively.

This definition ensures that the semantic value of any formula is always a regular open
set. Indeed, a simple induction on the complexity of formulas establishes the following:

Lemma 2.6.3. For any formula p:
o V() = ma(VT(p), and VI (p) = = (V™ (9));
o 1V () = V¥(p) and m= V7 (9) = V7 (p).
e V™ is a homomorphism from the Lindenbaum-Tarski algebra of IPC' into p(Z").
Next, we define validity in the standard way:

Definition 2.6.4. Let 2" be a Heyting boset. A formula ¢ is valid on a boset model (27, V)
if V(p) = X, and ¢ is valid on 2 if it is valid on (27, V) for any valuation V.

This allows for the following soundness and completeness theorem:

Theorem 2.6.5. IPC' is sound and complete with respect to boset semantics. Moreover,
boset semantics is as general as FM and Dragalin semantics.

Proof. Soundness follows directly from Lemma 2.6.3. For completeness, note first that a
model in any semantics for IPC is characterized by a HA-homomorphism from the free
Heyting algebra on countably many generators (also called the Lindenbaum-Tarski alge-
bra of IPC) into a Heyting algebra. Thus any isomorphism between Heyting algebras also
induces an isomorphism between corresponding models. By Lemma 2.2.8, any complete
Heyting algebra can be represented as the regular opens of some Heyting boset. Since the
Lindenbaum-Tarski algebra of IPC embeds into its MacNeille completion, the completeness
of TPC with respect to boset semantics follows. Moreover, since the regular opens of any
Heyting boset always form a ¢cHA, and any cHA can also be represented as the cHA of
fixpoints of an FM or Dragalin frame (see [36]), it follows that boset semantics is as general
as FM and Dragalin semantics. O

Let us conclude by remarking that the dual b-frame of a locale L is closely related
to the canonical FM-frame introduced in [36, Def. 4.32], since the latter can be obtained
from the former by defining the second ordering as the intersection of the two orderings on
a(L). The regular open sets of an FM-frame (X, <, <) are guaranteed to form a complete
Heyting algebra because of the requirement that < be a subrelation of <. As discussed in
Section 2.3.2, this condition is not necessary for the regular opens of a boset to be a complete
Heyting algebra, unlike the characterization presented in Lemma 2.3.12.
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2.6.2 Spatial and Splitting semantics

Bosets semantics provides a uniform framework for semantics for I/ PC'. Indeed, now that we
have established that boset semantics is as general a semantics based on complete lattices as
possible, we can also use our characterization of spatial and superalgebraic locales to define
more stringent semantics which are easily seen to be equivalent to topological and Kripke
semantics respectively.

Definition 2.6.6. Let (27,V) be a boset model.

o (Z27,V) is a spatial model if for any x € X and any formulas ¢, ¥, z IF= ¢ A9 iff
xIF" porl- 1.

o (Z°,V) is a splitting model if for any 2 € X and any formula ¢, z I ¢ or z IF~ ¢.

Note that every splitting model is also spatial: suppose (27, V) is splitting and let x € 2
and ¢, 1 be two formulas. Then if x ¥~ ¢ and z ¥~ 4, this implies that z IF™ ¢ and x IFT ),
and thus z IFT o A 1.

Next, we show how spatial and splitting models relate to spatial and splitting points in
a boset:

Lemma 2.6.7. Let 2" be a Heyting boset.

1. A point x in 2 is spatial iff for any boset model (2", V') and any formulas ¢ and 1,
clF" o ANY iff e lF @ or I 4.

2. A point x in X is splitting iff for any boset model (Z°,V') and any formula ¢, either
zlFT @ orxlF .

Proof.

1. For the left-to-right direction, assume = ¥~ ¢ and x ¥~ ¢). Then we have y;,y2 >o x
such that y; IFT ¢ and 3o IFT 9. If 2 is spatial, we can complete the diagram with
a point z > x such that z >; y;,72. But this implies that z IF™ ¢ and z IF" ¢, so
x ¥~ oA, Thus x IF~ ¢ A9y implies that  IF~ ¢ or x IF~ 9, and the converse
direction is always true.
For the right-to-left direction, suppose x is not spatial and we have y;,ys >2 x such
that for any z >y y1,y2, 2 #2 x. Let V(p) = U¥* and V(q) = U¥*. Then y; I+ p and
Yo IFT ¢, which means that z ¥~ p and ¥~ ¢. On the other hand, since 2" is Heyting,
we have that V*(p A q) = UM NUY = —=o(Tyy1) N —12(Tiy2) = 12 (T N Tye).
Since 2 € —o(Tyy1 N Tyy2), this implies that = IF~ p A q.

2. For the left-to-right direction, assume z ¥t ¢ and z ¥~ ¢. Then there are y; >; x
and yy >, x such that y; -~ @ and y, IF™ . But then, if z >3 y; and 2z > 3o, we have
that z IFT ¢ and z IF~ ¢, a contradiction. Thus, by contraposition, if = is a splitting
point, we have that z IF™ ¢ or x IF~ .
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Conversely, assume z is not a splitting point and let y; >; x, yo >2 x such that
y12-L1y2. Define V(p) = U¥2. Then clearly y € VT (p) and y; € V™ (p), which in turn
implies that x ¥~ ¢ and = 1 . O

Recall that, as we have shown in Section 2.4, any superalgebraic locale is isomorphic to
a boset in which all points are splitting, and any spatial locale is isomorphic to a boset in
which all points are spatial. Together with the previous result, this implies the following
corollary:

Corollary 2.6.8.

1. An intermediate logic L is Kripke complete iff it is complete with respect to a class of
Heyting bosets € such that for any & € €, any model (2", V') is splitting.

2. An intermediate logic L is topologically complete iff it is complete with respect to a
class of Heyting bosets € such that for any & € €, any model (Z",V') is spatial.

Finally, let us conclude by showing how spatial and splitting models can be respectively
turned into topological and Kripke models on the same set:

Lemma 2.6.9. Let 2" be a Heyting boset and V' a spatial valuation on 2 . Then there is
a topology T on Z  and a topological valuation V* such that for any x € X, x,V ¥~ ¢ iff
x, V*E p.

Proof. Let (Z°,V) be a spatial model, and let 7 be generated by the sets {[¢] | ¢ € Fml},
where for any formula ¢, [p] = {zr € X | z ¥~ ¢}. Note that for any ¢, ¢, we have that

longl={re X ek oAy} ={rec X |zk pand z k" 9} = [p] A,

where the third equality holds because (£, V) is a spatial model. This implies that the sets
of the form [¢] form a basis for 7. Similarly, we have that

vyl ={re X ek oV} ={rec X |zk porazk ¢} =[] U[Y]

Moreover, we claim that [¢ — ] = I.(—[¢] U [¢]). Assume first that = € [¢ — 9]. Then,
x W~ ¢ — 1. Now if z ¥~ ¢, we have that 2 ¥~ ¢ A (¢ — 1), which implies that x ¥~ .
Thus = € —[¢] U [¢)]. Conversely, assume 2 € I (—[¢] U [¢)]). Since sets of the form [¢] form
a basis for 7, this means that = € [x] for some formula y such that [y] € —[¢] U [¢/]. Now
suppose that z -~ ¢ — 1. Since x ¥~ x, there is y >5 x such that y IF* y and y IF~ ¢ — 1.
Thus there is z > y such that z IFT x, z IFT ¢ and z -~ 9. But then z € [x] N ([¢] — [¢]), a
contradiction. Thus x € [p — 1], which establishes that [-] defines a valuation V* on (X, 7).
Clearly, for any z € 2, we have that z,V ¥~ ¢ iff z, V* E ¢ for any formula . n

Lemma 2.6.10. Let (X, <y,<,,V) be a splitting model. Then there is a Kripke valuation
V* on (X, <1) such that for any x € X and any formula ¢, x,V IFT ¢ iff x, V* E .
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Proof. Let (X, <y,<5,V) be a splitting model, and consider the Kripke model (X, <;,V*),
where for any formula ¢, V*(¢) = {x € X | z IF* ¢}. Note that it is enough to show that
V* is a well-defined valuation in order to complete the proof. To see this, note that for any
x € X and any formulas ¢, 1, we have that x € V*(p A ) iff z T p A iff 2 IFT ¢ and
z It iff & € V*() NV*(¢). Similarly, we have that V*(p — ¢) = —[(V*(p)=V*(¥)).
Finally, since (X, <j, <5, V) is splitting, for any x, ¢ and 1, we have that

It oV if a ¥ oV
ifte " porazhF ¢
iff 2 IF" @ orzlFT .

But this implies at once that for any formulas ¢, 1, V*(¢ V ¢) = V*(¢) U V*(¢), which
completes the proof. O

Dragalin [76] showed that the open sets of any topological space are isomorphic to the
fixpoint of some Dragalin frame. Similarly, Kripke [160] showed that the upset of any poset
are isomorphic to the fixpoints of a certain kind of nuclear frame known as a Beth frame (see
[36] for more details on Beth semantics). The previous two lemmas can be seen as relating
nuclear semantics to Kripke and topological semantics in a similar fashion, although there
are two notable differences. First, Dragalin’s and Kripke’s results in the literature go from
less general to more general semantics, while Lemmas 2.6.9 and 2.6.10 go from boset models
to Kripke and topological semantics, so from a more general semantics to less general ones.
Moreover, while the results mentioned above show how to turn Heyting algebras arising
from some semantics into Heyting algebras arising from another one, our results are in some
sense more fine-grained, as they show how to turn valuations into valuations, i.e., how to
turn Heyting homomorphisms from the Lindenbaum-Tarski algebra of I PC' into a complete
Heyting algebra into Heyting homomorphisms that arise as valuations in some alternative
semantics.

2.6.3 Complete Bi-Heyting algebras and the Shehtman Logic

Finally, we conclude this section with a generalization of an important result in the literature
on intermediate logics. Consider the following inference rule schema, which we call Litak’s
Rule, where € is some uniform substitution:

(1) WV @ —ex)) —x
(2) ¥ <> (0 —71)

(0 V1) —elo) Ne(T)
(4) x < (W Ve(r))

X

(3)

Proofs of (variants of) the following theorems can be found in [239] and [172]:
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Theorem 2.6.11. Let L be an intermediate logic in which Litak’s Rule is not admissible.
Then for every class € of Kripke frames adequate for L, there is a frame F € € and a point
in F which refutes the Gabbay-de Jongh bounded branching axiom bby.°

Theorem 2.6.12. There exists an intermediate logic SL such that SL & bby and Litak’s
rule R is not admissible in SL.

As a corollary, the Shehtman logic SL is Kripke-incomplete. We strengthen this result
as follows:

Theorem 2.6.13. The Shehtman logic SL is incomplete with respect to all complete bi-
Heyting algebras.

This is established via the following generalization of Theorem 2.6.11:

Theorem 2.6.14. Let L be an intermediate logic in which Litak’s Rule is not admissible.
Then for every class € of b-frames dual to complete bi-Heyting algebras, if € is adequate for
L, then there is a b-frame 2 € € such that the Gabbay-de Jongh bounded branching axiom
bby is refuted at some point in X .

The proof will take several lemmas. Suppose first that € is a class of b-frames dual to a
bi-Heyting locale, and notice that this implies that for any 2 € X, the bi-Heyting points of
Z are dense. Assume that € is adequate for L. Then since L is valid on any b-frame in €,
the following holds:

Lemma 2.6.15. Let & € € and V be a valuation on Z . The following are true for any
re X andn € w:

1.z, VIET (o V1) implies x,V IFT (o) A€ (T) for alli,j > n;

2. 2,V IET € (x) implies x,V IFT €(x) for any i < n; moreover, z,V I+ € () implies
z, VIFT €(x) for all i < n.

3.z, VIFT €* (o) implies x,V IFT €™(x) for all m € w;

4. x,VIET €(0) and x,V |-~ €"(7) together imply that =,V I~ €"(1)).

5. x,V IE~ €"(x) implies that there exists y, z >1 x such thaty, V IFT €*(0), y, V IF~ €*(7),
2, VIET €(y) and 2,V IF~ e (x).

Proof.
1. By a repeated use of axiom (3).

2. By a repeated use of axiom (1).

9See below for the definition of bbs.
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3. Fix n,m € w, and let k = maz{n,m}. By 1 above, z I ¢"(0) implies x IFT e**1(7).
By axiom (4), this in turn implies that x IF* €*(). But then from 2 above it follows
that x IFT €™ ().

4. Assume y >3 x. Then y IFT €"(0) and y ¥+ €*(7), from which it follows that y ¥+
€"(¢)). Hence = IF~ €"(1)).

5. Assume z IF~ €*(x). Then, by axiom (1), « IF~ €"(¢)), hence, (by axiom (2)) we have
z Ik~ €(o) — €'(7) and x -~ €"(v) — €""!(x)). This means that there is y >; =
such that y IF* €"(0) and y IF~ €"(7), and there is z >; x such that z IFT €"*(¢)) and
2 IF7 e (x). O

Now since Litak’s Rule is not admissible in L, there is some 2" = (X, <;,<y) € € and a
valuation V on 2 such that all the premises of Litak’s rule are true at all points in X and
there is x € X such that x I~ x.

In what follows, for i € {0,1,2}, we write i + 1 and ¢ + 2 for i + 1 and ¢ + 2 mod 3
respectively. Recall that bby is the axiom:

/\ (pi = (Pit1 V Dit2) = (Pix1 V piz2)) = (Do V01V Da).
i€{0,1,2}

Definition 2.6.16. For every n <w, let S, =, V(€™ (¥)) =V (e"(¢)).

It is easy to see that for any n < w, (,,.., V(€™ (¥))US, is a <;-upset (this is because if
x <y yand x € S, for some n < w, then since y € V(e"(¢))) U (X—=V(€"(¢)))), we have that
either y € (), V(€"(¥)) or y € Sy).

Now let pg, p1,p2 be three fresh propositional variables and define a valuation V' as
follows:

e V'(q) = V(q) for any propositional variable ¢ € L;pc such that g # p; for i € {0, 1,2};

[ V/(pz) = _‘1_|2(mn<w V(Gn(w)) U Un<w S3n+i) for ¢ c {O, 1, 2}

We will now need to prove three lemmas that will give the key to the proof. The general
idea is the following: We first prove that any x that refutes y must also refute the disjunction
po V p1 V pa. We then show that any point that refutes one of the antecedent of bb, must
be the root of an analogue of the Beth comb!® in the setting of b-frames. Finally, showing
that the teeth of such a Beth comb must satisfy precisely one of {pg, p1, po} will imply, by
contradiction, that x must also satisfy the antecedent of bb,.

We start with the refutation of the consequent of bbs.

10Recall that the Beth comb is the set {a, }new U {dy, }new endowed with the following structure:

Tt

do—)dl—)dz—)
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Lemma 2.6.17. For allz € X, if x |-~ x, then x |-~ p; fori € {0,1,2}, which implies that
z IF~ Po V (pl \/pg)

Proof. Assume x I~ y, and let y >3 x. We claim that y ¢ V'(p;) for i € {0,1,2}. To see
this, let z > y. Note first that since z IF~ y, we must have that z IF~ €*(¢)) for any n < w
by Lemma 2.6.15.2. But this implies that for all 2 >, y, 2 ¢ (N, V(")) U U, <., S3n+i-
Hence y ¢ V'(p;) for i € {0,1,2}. From this it follows that z I~ p; for i € {0,1,2}, and
hence z I~ po V (p1 V p2). O

Let us now move on to the lemmas that will be used to prove that x must also satisfy
the antecedent of bb,.

Lemma 2.6.18. For any x € X, if x IF~ po V (p1 V pa), then there is n < w such that
x T e"(x).

Proof. Assume xq IF1 €*(x) for all n < w, and g IF~ po V (p1 V p2). Let © >15 29 be a bi-
Heyting point, and note that this implies that x I+ € (x) for all n < w, and 2 IF~ poV(p1Vp2).
This implies that z ¥* €"(¢)) for some n < w, for otherwise z € (N,,_, V(€"(1)), which means
that @ IF* p; for all 7 € {0,1,2} (since (), V(€"(¢)) is a <;-upset). Let j be the smallest
number n such that x ¥ €*(x)). Then there is some 3y >; = such that yo IF~ €(¢), and
since z is bi-Heyting, yo <, y for some bi-Heyting point y >, x. Now since z IFT €/(x),
we also have that y IFT €/ (), so by axiom (4) we have that y IF* ¢/(¢)) V €T!(7). But this
implies that there is zg >9 y such that z I-* ¢/T!(7), and since y is a bi-Heyting point, this
implies that there is some z >; zy such that y <y 2. Thus z IF* €/T1(7), and hence, since j
is the smallest number n such that zo #* €"(1)), we have that z € (",_, V(€"(¢)) U S;, and
therefore z IFT p; for i = j mod 3. But this contradicts the fact that x IF~ pg V (p1 V po),
since © <j9 y <y3 2. Therefore for any x € X, if 2 IF~ pg V (p1 V pa), then there is n < w
such that = K €*(x). O

The previous lemma used the fact that the bi-Heyting points of 2" are dense. It is
straightfoward to verify that this is the only place where this fact is used in the proof of
Theorem 2.6.14.

Lemma 2.6.19. For all v € X, if there is n € w such that x IF* A\,_ € (¢) A e"(0) and
x k= €*(7), then x T p; and x I~ piyy V piya fori € {0,1,2} such that n =i mod 3.

Proof. Assume z IF" A, _ €/(¢) A€"(0) and x IF~ €"(7). Note that this implies that = € S,
and therefore x I-1 p; for i = n mod 3. Moreover, let y >3 x. Then we have that y ™ €"(v),
and therefore y ¢ N, ., V(€™ (¥))US}, for any k # n. Hence y ¥* p; for any j # i € {0,1,2}.
Hence z I~ p; for j # i € {0,1,2}. O

We have now gathered all the ingredients for the proof of Theorem 2.6.14:

Proof. Recall that there is x € X such that z IF~ y. We will prove that axiom bby is refuted
at z, i.e., we prove that x IF* (p; = (Pisv1 V piv2)) = (Piv1 V pige) for all ¢ € {0,1,2} and
that x I~ po V (p1 V p2). To see this, note first that the latter follows immediately from
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Lemma 2.6.17. Moreover, assume that for some i € {0,1,2}, z ¥ (p; = (piy1 V piz2)) —
(Pi+1Vpir2). This means that there is y > x such that y IF" p; = (pir1Vpire) and y IF~ piyqV
pir2. Note that this implies that y IF~ pg V (pi+1 V piz2). Now by Lemma 2.6.18, this means
that y ¥t () for some n € w and hence that there is z >; y such that z IF~ €"(x). Let n
be the smallest number such that z I-~ €"(x). This means that z IF* A, _ (€/(¢) V &7 (7)).
Now since z I ¢/(7) — ¢"(7) for any j < n, this implies that z IF* A._ (€ (¢) V €*(7)),
ie., z -t A, € () Ve'(r). This means that there is 2’ >5 2 such that 2" -+ A, € (¢)
or z' I+ €*(r). But the latter is impossible, since z IF~ €"(x). Hence 2" IF* A;_ € (1)
But then, by repeated use of Lemma 2.6.15.5, there must be 2" >; 2/ >; z >; y such
that 2" I-* A,_, €(¥) A €m0 and 2" I~ €™(7) for m > n such that m = i mod 3. By
Lemma 2.6.19, this implies that z” I p; and 2" IF~ p; 1 V piyo, contradicting the fact that
yIF" p; = (pig1 V piv2). Hence z IFT (p; = (piy1 V pis2)) = (piv1 V pire) for all i € {0, 1,2},
which completes the proof that = refutes bbs. O]

A similar example of an intermediate logic that is incomplete with respect to complete
bi-Heyting algebras has recently and independently been obtained by G. Bezhanishvili, D.
Gabelaia and M. Jibladze in [35]. It is worth mentioning that the proof presented here is but
a minor variation on Litak’s proof for Kripke incompleteness, while the proof in [35] requires
a significantly different argument. This fact can be seen as an additional reason to believe
that boset semantics might offer a generalization of Kripke semantics that still retains many
of its attractive features. We should also note that it seems unlikely that the same proof
could be generalized any further. Indeed, from an algebraic perspective, the proof appears
to be exploiting in a key way the fact that complete bi-Heyting algebras satisfy the Meet
Infinite Distributive Law (i.e., arbitrary meets distribute over finite joins). Since complete
bi-Heyting algebras are the largest class of cHA’s satisfying this law, this can be seen as
evidence that we have pushed Shehtman’s method to its limits and that new ideas might be
needed in order to construct, if at all possible, topologically incomplete logics.

Conclusion

We conclude by outlining some areas for further research.

First of all, we have only presented preliminary results regarding a correspondence theory
between lattice equations and b-frame properties. While we have been able to isolate first-
order conditions on b-frames that are equivalent to various properties of complete lattices,
we are still lacking a systematic procedure for translating lattice equations into b-frame
conditions, akin to Sahlqvist correspondence in modal logic.

Moreover, although we focused in our applications on certain classes of complete Heyting
algebras, the adjunction we presented holds for all complete lattices. This means in partic-
ular that one could use bosets in the study of some categories of enriched lattices, including
for example ortholattices, residuated lattices, or lattices expanded with various modal oper-
ators. In that respect, the connection with polarity-based semantics for non-classical logics
developed in [57, 62, 101, 120, 123] should be explored further.
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Finally, the dualities developed here are all discrete dualities between complete lattices
and relational structures. This means that we decided to trade off the ability to deal with
incomplete lattices for a greater simplicity of the geometric structures we work with. A
natural next step would therefore be to topologize the duality presented here and to connect
such a generalization both to the Dunn-Hartonas duality for bounded lattices [124, 125] and
to the choice-free duality recently developed in [41]. We will now enter the realm of choice-
free topological dualities, and our journey there will eventually take us back to this issue in
Chapter 4. But first, let us remain within the safer walls of distributivity.
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Chapter 3

Constructive Dualities beyond the
Boolean Case

3.1 Introduction

Stone’s [245] representation of Boolean algebras as clopen sets of compact, Hausdorff and
zero-dimensional topological spaces has had a profound influence on the study of interac-
tions between logic, algebra and topology. The realization that some properties of topological
spaces could be retrieved by considering the algebraic properties of their lattices of open sets
led to the development of pointfree topology [146, 147, 207], in which open sets are taken
as basic elements of a frame rather than defined as sets of points. Stone’s representation
theorem, and therefore Stone duality, relies on the Boolean Prime Ideal Theorem (BPI), a
fragment of the Axiom of Choice. By contrast, the pointfree approach has a more construc-
tive flavor: even in the absence of the Axiom of Choice, the open set functor {2 mapping a
topological space to its lattice of open sets has an adjoint functor pt, mapping a frame to its
set of “points” endowed with a natural Stone-like topology. But the restriction of this ad-
junction to Stone spaces and compact zero-dimensional frames is only a duality under (BPT).
In [41], a choice-free duality between Boolean algebras and a category of UV -spaces has been
developed. It is based on the simple but powerful idea that the appeal to (BPI) could be
eliminated by working with a partially-ordered set of filters rather than a set of ultrafilters
and by viewing these filters as partial approximations of a classical point. This approach
has strong ties to both possibility semantics in modal logic [135, 134, 137] and the Vietoris
functor on Stone spaces [258] and provides a semi-pointfree approach, i.e., both spatial and
choice-free, to the representation of algebraic objects in semi-constructive mathematics, i.e.,
mathematics carried out in ZF + DC [186, 230].

In [69], de Vries generalized Stone duality to a duality between de Vries algebras (complete
Boolean algebras equipped with a subordination relation) and compact Hausdorff spaces.
Just like Stone, de Vries used (BPI) in his representation of complete compingent algebras
as the regular open sets of a compact Hausdorff space. On the pointfree side, Isbell [142]
showed that the Q-pt adjunction restricts to a duality between compact Hausdorff spaces and
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compact regular frames, also under the assumption of (BPI). This leaves open the question of
whether a choice-free duality between these algebraic categories and a category of topological
spaces can be defined. Similarly, we discussed in Chapter 1 extensions of Stone duality to
distributive lattices via spectral and Priestley spaces. Since both generalizations rely on ideas
very similar to Stone’s original result, one may again wonder whether the main techniques
of the UV -duality transfer to the wider setting of distributive lattices.

In this chapter, we show that choice-free dualities for de Vries algebras and distributive
lattices can indeed be achieved by generalizing the approach of [41]. For de Vries algebras,
we work with a poset of filters rather than with a set of maximal filters, and we define
our dual spaces both in terms of their topological properties and in terms of order-theoretic
aspects of the induced specialization order. We also show how the spaces we define naturally
relate to the Vietoris functor on compact Hausdorff spaces and compact regular frames. For
distributive lattices, we work with a special kind of pairs of filters and ideals. We present
two choice-free dualities for distributive lattices, one inspired from Priestley duality, and one
inspired from a variant of Priestley’s result that uses a category of bitopological spaces called
pairwise Stone spaces. In both cases, we are able to connect our choice-free duality to the
standard dualities for DL via Upper Vietoris constructions. We take this as evidence of the
naturality and fruitfulness of this semi-pointfree approach, in which the basic “points” of
our spaces coincide with the closed sets of the standard, non-constructive duality.

The chapter is organized as follows. After reviewing some background on de Vries al-
gebras, compact regular frames, and several categories of topological spaces (Section Sec-
tion 3.2), we start with de Vries algebras. In Section 3.3, we provide a choice-free duality
for de Vries algebras via a category of ordered topological spaces which we call dV-spaces.
In Section Section 3.4, we connect our duality to pointfree topology and provide an alter-
native characterization of dV-spaces via the Vietoris functor on compact regular frames,
before listing two straightforward applications of this duality. We then move on to obtaining
choice-free dualities for distributive lattices. In Section 3.5, we present a representation the-
orem for distributive lattices by bitopologizing a set of “relatively maximal” filter-ideal pairs.
Those spaces are then axiomatized as pairwise UV -spaces, which allows the choice-free rep-
resentation of distributive lattices to be lifted to a full choice-free duality in Section 3.6. In
Section 3.7, we take a slightly different approach and derive a choice-free version of Priestley
duality via a certain kind of ordered topological spaces which we call UV P spaces. Fi-
nally, pairwise UV -spaces and UV Priestley spaces are related in Section 3.8 to the Vietoris
functor on pairwise Stone and Priestley spaces respectively, establishing once again that Vi-
etoris constructions provide a canonical way of bridging the gap between constructive and
non-constructive dualities.

3.2 Background

In this section, we briefly recall the de Vries and Isbell dualities for compact Hausdorff spaces
as well as the choice-free Stone duality between Boolean algebras and UV -spaces presented
in [41]. Because they will also play a role later on, we also recall a variation of Priestley
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duality via pairwise Stone spaces [39] and Moshier and Jipsen’s duality for lattices via HM S
spaces [197]. We start by fixing some notation that we will use throughout the chapter. Let
L be a complete lattice and (X, 7) be a topological space.

1.

When no confusion arises, we write < to designate the order on L. We designate the
meet and join operations on L by A and V respectively, and, whenever L is pseudo-
complemented, we use — for the pseudo-complement operation.

. We will designate (a subset of) the set of all maximal filters on L by X, and (a subset

of) the set of all filters on L by Sy.

By a Stone-like topology on a set Y of filters of L, we mean the topology generated
by the sets of the foom a = {F € Y | a € F}, and we will often designate such a
topology by o. We will also sometimes use the notation @ to denote sets of the form
{F €Y |a¢ F}. Moreover, when we are considering pairs (F,I) of a filter F' and an
ideal I on L rather than just filters, we will use the notation a™ and a~ for the sets
{(F,I)|a€ F} and {(F,I) | a € I} respectively.

For any U C X, we write —U for X \ U, U for the closure of U and U+ for —U. We
write CO(Z") for the set of compact open subsets of X and RO(Z") for the Boolean
algebra of regular open subsets of X, i.e., subsets U such that U++ = U.

The specialization preorder on (X, 7) is represented by the symbol < when no confusion
arises, and it is defined as x < y iff x € U implies y € U for every U € 7.

The upset topology on X is the topology generated by the set of all upward closed
subsets in the specialization preorder. Given U C X, we let [U be the interior of U
in the upset topology, JU the closure of U, and =U the set —[U. We write RO(Z")
for the Boolean algebra of order-regular open subsets of X, i.e., subsets U such that

WU = U, and CORO(Z") for CO(Z) NRO(Z").

. An ordered topological space is a tuple (X, 7, <) such that (X, 7) is a topological space

and (X, <) is a partial order. We write Up(Z") and Dn(Z") for the collections of
upsets and downsets of (X, x).

. Given an ordered topological space (X, 7, <), an open filter is a subset U C X such

that U is open in (X, 7) and a filter on the poset (X, %).

Finally, given an ordered topological space 2~ = (X,7,<), we let OF(Z") be the
collection of open filters on 2, COF(Z") = CO(Z") N OF(Z"), and COROF(Z") =
CORO(Z)NOF(Z).

3.2.1 De Vries Algebras

De Vries algebras were introduced in [69] as an algebraic dual to compact Hausdorff spaces.
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Definition 3.2.1. A compingent algebra is a pair (B, <) such that B is a Boolean algebra
with induced order <, and < is a relation on B x B satisfying the following set of axioms:

(A1) 1<1;

(A2) a < bimplies a < b;

(A3) a <b<c<dimplies a < d;

(A4) a < band a < ¢ together imply a < b A ¢;

(A5) a < bimplies b < —q;

(A6) a < cimplies that there is b € B such that a < b < ¢;

(A7) a # 0 implies that there is b # 0 € B such that b < a.

A de Vries algebra is a compingent algebra V' = (B, <) such that B is a complete Boolean
algebra. It is zero-dimensional if for any a < b € V there is ¢ € V such that a < ¢ < ¢ <b.

Compingent algebras constitute a specific kind of contact algebras, Boolean algebras
equipped with a binary relation of subordination satisfying (A1)-(A5). One motivation for
contact algebras is to develop a region-based theory of space [73, 166], according to which
regions of space form a Boolean algebra and a region «a is subordinated to a region b precisely

if b completely surrounds a. For more on contact and subordination algebras, we refer the
reader to [38, 40, 72, 86].

Definition 3.2.2. Let V = (B, <) be a de Vries algebra. For any filter F' on B, let
tF={a€ F|3be F:b=<a}. A concordant filter on V is a filter F such that 1F = F.
An end is a maximal concordant filter.

The dual space of a de Vries algebra V' is obtained by taking the set Xy of all ends
of V and endowing it with the Stone-like topology o generated by all sets of the form
{p € Xv | a € p} for some p € V. Conversely, the dual de Vries algebra of a compact
Hausdorff space (X, 7) is the complete Boolean algebra RO(Z") of regular open sets, with
the subordination relation T given by U C V iff U C V.

Theorem 3.2.3 ([69], Thm. 1.4.3-5). For any de Vries algebra V = (B, <), (Xy,0) is
compact Hausdorff, and (B, <) is isomorphic to (RO(Xy ), C). Conversely, for any compact
Hausdorff space (X, 7), (RO(Z),C) is a de Vries algebra, and (X, T) is homeomorphic to
(Xro(2),0),0)-

We now introduce the relevant notion of morphism between de Vries algebras.

Definition 3.2.4. Let V] = (By, <) and V4 = (Bs, <2) be de Vries algebras. A de Vries
morphism from V; to V5 is a function h : By — B, satisfying the following set of conditions:
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(V1) h(0) = 0;
(V2) h(a Ab) = h(a) A h(b);

(V3) a <1 b implies ~A(~a) <2 h(b);
(V4) h(a) = V{h(b) | b <1 a}.

Given two de Vries morphisms h : Vi — V5 and k : V5 — V3, their composition kxh : V; — V3
is defined as the map a — \/{kh(b) : b <1 a}.

One easily verifies that de Vries morphisms preserve both the order < and the subor-
dination relation <. Given a de Vries morphism h : V; — V5, the map h* : Xy, — Xy,
given by h*(p) = $h~![p] for any end p on V, is a continuous function. Conversely, for
any continuous function f : (X, 71) — (X2, 7), the map f. : RO(Z") — RO(%) given by
f.(U) = (f7LU])** for any regular open set U is a de Vries morphism. This allowed de
Vries to obtain the following:

Theorem 3.2.5. The category deV of de Vries algebras and de Vries morphisms between
them is dually equivalent to the category KHaus of compact Hausdorff spaces and continuous
maps between them.

3.2.2 Compact Regular Frames

Recall that a frame is a complete lattice L that satisfies the join-infinite distributive law, i.e.,
is such that a A\/ B =\/{aAb| b€ B} for any a € L and B C L. Frames are the central
object of study of pointfree topology, for which [146, 147, 207| are standard introductions.
A frame L is compact if 1, = \/ B for some B C L implies that 1, = \/ B’ for some finite
B’ C B. A morphism between frames is a map preserving finite meets and arbitrary joins.

Definition 3.2.6. Let L be a frame and a,b € L. Then a is said to be rather below b [207,
Def. V.5.2], denoted a < b, if bV —a = 1. A compact regular frame is a compact frame L
such that for any a € L, a = \/{b€ L | b < a}.

Given any topological space (X, T), one can define its frame of open sets Q(Z7). Con-
versely, given a frame L, one can define a Stone-like topology on the set of completely prime
filters pt(L). These constructions give rise to adjoint functors 2 and pt between the cate-
gories Frm of frames and frame morphisms and Top of topological spaces and continuous
functions. Assuming (BPI), Isbell [142] showed that this adjunction restricts to a duality in
the specific case of compact regular frames:

Theorem 3.2.7. The category KRFrm of compact reqular frames is dually equivalent to
KHaus.
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As an immediate consequence of Theorems Theorem 3.2.5 and Theorem 3.2.7, the cat-
egories deV and KRFrm are equivalent. This equivalence has also been given a direct
description in [31], which has the advantage of being choice-free. Given a frame L, an ele-
ment a € L is reqular if =—a = a. The Booleanization of L [7], denoted B(L), is the subframe
of all the regular elements of L. It is straightforward to verify that if L is a compact regular
frame, B(L) equipped with the rather below relation < is a de Vries algebra. In order to go
from de Vries algebras to frames, we need the following definition:

Definition 3.2.8. Let V = (B, <) be a de Vries algebra. An ideal on B is round if for any
a € I, there is b € I such that a < b.

It is immediate to see that a proper ideal I on a de Vries algebra V' is round if and only
if its dual filter I° = {—a | a € I} is concordant. Given a de Vries algebra V, its set of round
ideals ordered by inclusion forms a compact regular frame R(V'). The equivalence between
KRFrm and deV is then given by the following result:

Theorem 3.2.9. Any compact reqular frame L is isomorphic to R(B(L)). Conversely, any
de Vries algebra V' is isomorphic to B(R(V')), and the maps B and R lift to an equivalence
between KRFrm and deV .

3.2.3 UV-spaces

Let us now introduce the choice-free version of Stone duality presented in [41], and mentioned
already in Chapter 1.

Definition 3.2.10. A topological space (X,7) is a UV -space if it satisfies the following
conditions:

1. (X, ) is compact and Tp;
2. CORO(Z) is closed under N and —| and forms a basis for ;
3. Any filter on CORO(Z") is CORO(z) = {U € CORO(Z") | x € U} for some = € X.

Given a Boolean algebra B, one considers the set Sp of all filters on B, equipped with
the usual Stone-like topology o. It can then be showed without appealing to (BPI) that
UV -spaces are the duals of Boolean algebras:

Theorem 3.2.11 ([41], Thm. 5.4). For any Boolean algebra B, (Sg, o) is a UV -space, and
B is isomorphic to CORO(Sp). Conversely, for any UV -space (X,7), CORO(Z") is a
Boolean algebra, and (X, 7) is homeomorphic to (Scoro(2), 7).

Definition 3.2.12. Given two UV-spaces (X, ) and (Y, 72) with induced specialization
orders <; and <s, a UV-map from (X, 1) to (Y, 7) is a spectral map f : X — Y that is
also a p-morphism with respect to <; and <y, i.e., forany z € X, y € Y, if f(x) <5 y, then
there is 2’ >; x such that y = f(2/).
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Any UV-map f : (X,71) = (Y, 72) gives rise to a Boolean algebra homomorphism f; :
CORO(Z) — CORO(Z) given by f.(U) = f~U] for any U € RO(#%). Conversely, for
any Boolean homomorphism h : By — Bs, the map h* : (Sp,,02) — (Sp,,01) given by
h*(F) = h™'[F] for any filter F' on By is a UV-map. This yields the following result, which,
unlike Stone duality, does not rely on the Axiom of Choice:

Theorem 3.2.13. The category BA of Boolean algebras and Boolean homomorphisms be-
tween them is dually equivalent to the category UV of UV -spaces and UV -maps between
them.

3.2.4 Pairwise Stone Spaces and HMS Spaces

We conclude this section by introducing two dualities that will be the inspiration for the two
choice-free dualities for distributive lattices presented in Sections 3.6 and 3.7. We start with
pairwise Stone spaces, introduced in [39].

Definition 3.2.14. A bitopological space 2" = (X, 11,72) is a pairwise Stone space if it
satisfies the following conditions:

e 72 is pairwise compact, i.e., any cover of X by sets in 71 U 73 has a finite subcover;

o X2 is pairwise Hausdorff, i.e., for any x # y € X, there are disjoints sets U; € 7; and
V; € 1; for some i # j € {1,2} such that x € U; and y € V;

o 2 is pairwise 0-dimensional, i.e., the open sets in 7; that are also closed in 7; form a
basis for 7; for all i # j € {1,2}.

A function between pairwise Stone spaces is bicontinuous if it is continuous in both
topologies.

Bezhanishvili et al. show in [39] that pairwise Stone spaces coincide with Priestley spaces
and spectral spaces in the following way. Recall that Priestley spaces are obtained from
spectral spaces by taking the patch topology on a spectral space (X, 7), i.e., by taking the
topology generated by the compact open sets in 7 and their complements. Similarly, one can
turn a spectral space (X, 7) into a pairwise Stone space (X, 71, 72) by defining 7 = 7 and 7,
as the topology generated by the complements of the compact open sets in 71. Equivalently,
the dual pairwise Stone space of a distributive lattice L is obtained by endowing Spec(L)
with the topology 71 generated by the sets {a | @ € L} and the topology 7~ generated by
the sets {a | a ¢ L}. Conversely, given a pairwise Stone space 2 = (X, 7y, 72), its dual
distributive lattice is obtained by the lattice CloOp(Z7) of sets that are both open in 7
and closed in 7. One can then establish the following.

Theorem 3.2.15 (Pairwise Stone Duality). For any distributive lattice L, the map
1 L — ClyOpi(Spec(L)) is an isormophism. Dually, for any pairwise Stone space (X, 11, Ts),
the map € : Z — Spec(ClaOp (X)) is a bicontinuous homeomorphism. Moreover, ClyOp;
and Spec establish a dual equivalence between DL and the category PStone of pairwise Stone
spaces and bicontinuous maps between them.
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Finally, we briefly mention a topological duality for meet-semilattices developed by Jipsen
and Moshier in [197].

Definition 3.2.16 (Jipsen-Moshier [197]). A HMS space is a sober space (X, 7) such that
COF(Z) forms a basis for 7.

Moshier and Jipsen show that for any meet-semilattice L, the set Sy of proper filters
of L endowed with the Stone-like topology generated by the sets of the form @ is an HMS-
space. Moreover, any HMS space 2" = (X, 7) can be viewed as an ordered topological space
(X, 7, <), where the order < is the specialization preorder induced by 7. The original meet-
semilattice structure of L can be retrieved by looking at the lattice COF(Sy) of compact
open filter of S;,. When L is a lattice, however, more work is needed to recover also the joins
of L in COF(Z").

Moshier and Jipsen define a closure operator fsat by mapping every U C X to the
intersection of all F-saturated sets that contain U, where a subset of X is F-saturated if it
is an intersection of open filters in (X, 7, <). They show that when L is a lattice, the fsat
operation on its dual HMS-space (S, o) maps open sets to open sets. The joins in L can
the be retrieved in COF(SL) by taking the fsat-closure of the union of two sets. Finally,
Moshier and Jipsen show that the property that fsat maps open sets to open sets completely
characterize the dual HMS-spaces of lattices, which they call BL-spaces. Putting things
together, they obtain the following duality:

Theorem 3.2.17 ([197], Thm. 5.2 & 5.4). The category of meet-semilattices and meet-
preserving homomorphisms between them is dual to the category of HMS spaces and F'-
continuous maps between them, where a map f between HMS' spaces is F'-continuous if the
preimage of any compact open filter under f is a compact open filter. Moreover, this duality
restricts to a duality between Lat and the category of BL-spaces and F-stable functions,
where a function between BL-spaces if F-stable if f~[fsat(U)] = fsat(f~[U]) for any open
set U.

3.3 Choice-free Duality for de Vries Algebras

The goal of this section is to prove a choice-free analogue of de Vries duality. First, we
provide a choice-free representation of any de Vries algebra as the regular open sets of some
topological space (Section Section 3.3.1). In Section Section 3.3.2, we then characterize the
choice-free duals of de Vries algebras, which we call dV-spaces. Section Section 3.3.3 deals
with morphisms and ends with our main result, a choice-free dual equivalence between the
category of de Vries algebras and the category of dV-spaces.

3.3.1 A Choice-free Representation for de Vries Algebras

In this section, we complete the first step of the duality by obtaining a choice-free repre-
sentation of any de Vries algebra as the regular open sets of some topological space. Our
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approach combines the techniques of Sections Section 3.2.1 and Section 3.2.3 in a natural
way.

Definition 3.3.1. Let V = (B, <) be a de Vries algebra. The dual filter space of V' is the
topological space (Sy, o), where:

e Sy is the set of all concordant filters on V;
e 0 is the Stone-like topology generated by {a = {F € Sy |a € F} |a € V}.

The following two lemmas will help us investigate the structure of the space of concordant
filters on a de Vries algebra.

Lemma 3.3.2. Let V = (B, <) be a de Vries algebra. Then:
1. Foranya# 0, F ={ceV |a < c} is a concordant filter.

2. If F' and G are concordant filters and ¢ ANd # 0 for any ¢ € F,d € G, then the set
H={cNd|ceF,de G} is a concordant filter.

Proof. For part (i), by (A3), F' is upward-closed, and by (A4), it is downward directed. To
verify that 1F = F, note that if a < ¢, then by (A6) there is ¢ such that a < ¢ < ¢, so
cetF.

For part (ii), let H = {cAd | ¢ € F,d € G}. 1 claim that H is a concordant filter. It
is routine to verify that H is a proper filter. To see that 1H = H, take ¢ € F and d € G.
Since F' and G are concordant there are ¢ < cin F and d < d in G. Thus ¢ Ad' € H and
d Nd < cANdby (A4), which means that ¢ Ad € $H. This shows that H C $H, and the
converse is immediate from (A2). O

Lemma 3.3.3. Let V = (B, <) be a de Vries algebra, a € V and F a concordant filter on
V. If a ¢ F, then there is a concordant filter G O F such that for any concordant filter
HDOG,a¢ H.

Proof. Suppose a ¢ F, and consider the set G = {¢c Ad | ¢ € F,—a < d}. 1T claim that
G is a concordant filter. If ¢ A d = 0 for some ¢ € F and d such that —a < d, then
¢ < =d < —=—a = a, which contradicts the assumption that a ¢ F. Thus by Lemma
Lemma 3.3.2 G is a concordant filter.

Now suppose H is a concordant filter such that H O G. If a € H, then there is d € H
such that d < a. But this implies that —a < —d, so =d € G C H, a contradiction. O

Given a de Vries algebra V' with dual space (Sy, o), we now show that the map a + @ is
a Boolean embedding of V' into RO(Sy):

Lemma 3.3.4. Let V = (B, <) be a de Vries algebra with dual filter space (Sv,c). Then
for any a,b e V:

1. aNb=aAb;
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2. The set {a | a € V'} is a basis for o, and the specialization order on (Sy, o) coincides
with the inclusion order;

3. aChiffa<b;

L - =

IS)

4.
5 14

—a=att,

Q)

Proof. Part (i) is a consequence of the fact that the elements of Sy are filters, and part (ii)
immediately follows from part (i). For part (iii), the right-to-left direction is immediate,
and for the converse, since B is a Boolean algebra it is enough to show that for any a # 0,
there is some concordant filter F' such that a € F. To see this, note that, by (A7), if a # 0
there is b # 0 such that b < a. Then F' = {c € V | b < ¢} is a concordant filter by Lemma
Lemma 3.3.2, and a € F.

For part (iv), since the set {a | a € V} is a basis for o by (ii), we have that for any
F € Sy, F € a iff for any basic open g, Feb implies a nb # (). By (i) and (iii), this means
that F € aiff bAa#0 forall b€ Fiff ~a ¢ F iff F ¢ <a. Hence a* = =a.

Finally, for part (v), @ = a‘* follows directly from (iv). To show that [la = @, note
that the right-to-left inclusion is immediate since a is upward-closed. Since the specialization
order on (Sy, o) coincides with the inclusion ordering, establishing the converse amounts to
showing that for any F' € Sy, if a ¢ F, then there is G O F such that for all H D G, a ¢ H.
But this is precisely Lemma Lemma 3.3.3. [

Corollary 3.3.5. Let V = (B, <) be a de Vries algebra with dual filter space (Sy,o). Then
B is isomorphic to RO(Sy ).

Proof. Lemma Lemma 3.3.4 implies that the map a — @ is an injective Boolean homomor-
phism of B into RO(Sy). Therefore it only remains to show that every regular open subset
of Sy is of the form a for some a € V. Let U = |J,., @ be a regular open set. Recall that

\/ A € B since B is a complete Boolean algebra. I claim that U = \71\4 Since U is regular
open, this will readily imply that U = \/ A. For the proof of the claim, recall that for any

FeSy, Fe\Aiff -\/A ¢ F. Similarly, F € U iff for any b € F there is a € A such
that b £ —a. But the latter condition is equivalent to b £ A{—a | a € A}, which is in turn

equivalent to ~\/ A ¢ F. Hence F € U iff F € \71\4 for any F' € Sy, which means that
U= \7;1 This completes the proof that B is isomorphic to RO(Sy). O

We now turn to representing the subordination relation on a de Vries algebra. For any
topological space (X, 7) and any U,V C X, let U < V iff U C |V.

Lemma 3.3.6. Let V = (B, <) be a de Vries algebra with dual filter space (Sv, o). For any
a,beV,a=<biffa <b.
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Proof. For the first direction, suppose that a < b. Then if F' is a concordant filter such that
—a ¢ F, by Lemma Lemma 3.3.2 G = {cAd | c € F,a < d} is a concordant filter extending
F and containing b. Now for any concordant filter F, F' € a iff ~a ¢ F. This shows that
@ C b. Conversely, assume that a 4 b. I claim that there is a concordant filter ' such that
—a ¢ F and b ¢ G for any concordant filter G O F. Let F = {¢Ad|a < ¢,mb < d}. By
Lemma Lemma 3.3.2, F' is a concordant filter if ¢ A d # 0 for any a < ¢, =b < d. But if
cNd=0,then a < ¢ < —d < —--b=>b,s0a =< bby (A3), contradicting our assumption.
Hence F' is a concordant filter. Now if —a € F' there must be some e € F' such that e < —a.
But this means that a < —e and therefore —me € F'| a contradiction. Similarly for any
concordant G 2 F, if b € G there must be some e € G such that e < b. But then —b < —e
so me € F C G, a contradiction. Therefore F € a \ |b. O]

Putting Corollary Corollary 3.3.5 and Lemma Lemma 3.3.6 together yields the desired
representation theorem.

Theorem 3.3.7. Let V = (B, <) be a de Vries algebra with dual filter space (Sy,o). Then
V' is isomorphic to (RO(Sy), <).

3.3.2 De Vries Spaces

In this section, we characterize the choice-free duals of de Vries algebras. In other words, we
give an axiomatization of topological spaces of the form (Sy, o) for some de Vries algebra
V. In order to do so, we first need to introduce the following separation axioms:

Definition 3.3.8.

1. A topological space (X, 7) is order-regular if for any closed set B and any = ¢ [B,
there are disjoint open sets U, V such that x € U and [B C V.

2. A topological space (X, 7) is order-normal if for any closed set A and any regular closed
set B such that A is disjoint from [ B, there are disjoint open sets U and V' such that
AC|U and [BCV.

Order-regularity and order-normality are straightforward variations of the usual regu-
larity and normality separation axioms in general topology. Separation axioms for ordered
topological spaces have been studied in the past [190, 198, 209], but here we are concerned
with a very specific kind of ordered topological spaces, in which the order is determined by
the topology. In the case of compact T spaces, these separation properties are essentially
equivalent to Hausdorffness:

Lemma 3.3.9. Let (X, 1) be a compact Ty-space. The following are equivalent:
1. (X, 1) is Hausdorff;

2. (X, 7) is order-regular;
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3. (X, 1) is order-normal and order-regular.

Proof. Recall that if (X, 1) is T}, then the specialization preorder on X is just the identity
relation. Thus a T3 order-regular space is regular Hausdorff, which implies that it is also
Hausdorff. As compact Hausdorff spaces are also regular, this shows that (i) and (ii) are
equivalent. Moreover, (iii) clearly implies (ii), and compact Hausdorff spaces are also normal,
which for T} spaces implies order-normality, showing that (i) implies (iii). O

As we will now see, for spaces in which the regular opens are also order-regular open,
order-normality suffices to establish that they form a de Vries algebras when equipped with
the relation < defined above.

Lemma 3.3.10. Let (X, 1) be an order-normal space such that RO(2") C RO(Z"). For
any U,V € RO(Z"), let U <V iff U C V. Then (RO(Z"), <) is a de Vries algebra.

Proof. Since RO(Z") is a complete Boolean algebra, we only need to verify axioms (A1)-(A7):
(A1) X < X. Immediate.

(A2) U < V implies U C V. Suppose U C |[V. Taking complements, this yields
-V C E Because every closed set is a downset, |A C A for any A C X, so
1=V C UL. Complementing again, we conclude that U = U++ C [[V = V.

(A3) U; C U, K V; C V; implies U; <K V. We have the following chain on inclusions:
U CU, ClLV; C Ve

(A4) U <« V4 and U < V; together imply U < V3 N V,. Suppose both U C [V}
and U C |V5. Then since U,V;,V, € RO(Z), we have that —[(U+) C V; and
—(UL) C Vi, hence [—(UL) C L(Vi N Va). Now since Ut € RO(Z), we have that
1—(U+) = —(U*+) = U, and therefore U C [(V1 N V3).

(A5) U < V implies VX <« U+, Suppose U C |V. Then |-V C [(U'). Taking
complements, we have —|(U1) C TJV = V since V. € RO(Z). Now since V €
RO(Z), =V = VL. Therefore, taking complements again, we have that V1 C LU,
hence V+ < U+,

(A6) U < V implies that there is W such that U < W < V. Suppose U C |V,
and consider the set X \ [V = |—=V. As U and |-V are disjoint and —V  is regular
closed, by order-normality we get some disjoint open sets Wi, W5 such that U C [W;
and [—V C W,. Note that this implies that win 1=V = (), and therefore W, C V.
Letting W = W+, we have that U C [W; C [W, and W =W, C |V.

(A7) If U # 0 then there is V # 0 such that V < U. Suppose U # () and let x € U.
Consider X \ JU = ]—-U. Note that |z is disjoint from [—U and is closed, since
Jr = ﬂng,UET —U. By order-normality, we have disjoint open sets V; and V5 such
that Jz C [V} and ]—U C V,. Note that this implies that Vi # () and that Vi C JU.
Now letting V = Vi, it follows that V # () and V =V, C [U.
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Thus (RO(Z), <) is a de Vries algebra. O
We are now in a position to define the choice-free duals of de Vries algebras:

Definition 3.3.11. A de Vries space (dV-space for short) is a topological space (X,7)
satisfying the following conditions:

1. (X, 7) is Ty, compact and order-normal;
2. RO(Z) is a basis for 7 and RO(Z") C RO(Z);

3. For every x € X, RO(z) = {U € RO(Z") | x € U} is a concordant filter on RO(.Z"),
and for every filter F' on RO(Z"), there is x € X such that 1 = RO(z).

Lemma 3.3.12. Let V = (B, <) be a de Vries algebra. Then (Sy,o) is an order-regular
dV -space.

Proof. Condition (ii) follows from Lemma Lemma 3.3.4, and condition (iii) is immediate
from Theorem Theorem 3.3.7, so we only have to check that (Sy, o) is Ty, compact, order-
normal and order-regular. It is routine to verify that (Sy,o) is Ty. For compactness, note
that {1} = {1} € Sy, so if Sy C [J,c4 @ for some A C V, it follows that 1 € A and thus
Sy has a finite subcover.

For order-regularity, let B = (,., —@ be a closed set and F' ¢ ]B. Then F € |-B =
U,ea 4@, which means that there is a € A and ¢ < a such that =c ¢ F. By (A6) there

1ssomec EVsuchthatc—<c < a. NOWFG—ﬂC—CCi,C and ——c/ = C |a, so
1B C Z¢. Thus ¢ and = are the required open sets.

Finally, for order-normality, fix a closed set U = (1,4, —a and a regular closed set B such
that (),.4 —a € | —B. Because B is regular closed it is of the form —b for some b € V. Now
consider the concordant filter F' = {¢ € V | =b < ¢}. If there is G O F such that G € b,
then there must be ¢ € G such that ¢ < b. But then —c € F' C G, and G is not a proper
filter, a contradiction. Thus F' ¢ |b, which means that F' € |J,.,a. Hence there is some
a € A and some ¢ € V' such that —b < ¢ < a, which in turn implies that —a < —c < b. This
1mphes that —a = =a C |=¢, and —¢ = S C Lb and therefore we have two disjoint open
sets, ¢ and ¢, such that (., —a € |=¢ and [— bgc O

Theorem 3.3.13. Let (X, 7) be adV -space. Then (X, ) is homeomorphic to (Sro(2),<): 7).

Proof. Let f : X — Sro(2)«) be given by f(x) = RO(x). Then f is well-defined and
surjective by condition (iii), and it is injective because X is Tp. Moreover, for any U €
RO(2), we have that z € U iff U € RO(z) iff U € f(z) iff f(z) € U. By Theorem
Theorem 3.3.7 and since RO(.Z") is a basis for X, this is enough to conclude that f is open
and continuous and therefore a homeomorphism. O

Note that, as a corollary to Lemma Lemma 3.3.12 and Theorem Theorem 3.3.13, we
obtain that any dV-space is order-regular.

Let us conclude this section by characterizing UV -spaces as a special kind of dV-spaces.
In order to do so, it is convenient to introduce first the following notion.
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Definition 3.3.14. Let (X,7) be a topological space. An open subset of (X, 7) is well
rounded if for any closed set B such that B C |[U, there are disjoint open sets V and W
such that B C [V and —W C |U.

Well-rounded subsets of a dV-space will play an important role later on when connecting
our results with some standard notions of pointfree topology. For now, let us note that
a topological space in which every open is well-rounded is also order-regular and order-
normal. Indeed, order-normality amounts to the requirement that every regular open set be
well-rounded, and order-regularity follows from the fact that |z is closed in every topological
space. While not every open subset of a dV-space is well rounded, this is true for a special
class of those, namely UV -spaces.

Lemma 3.3.15. A topological space (X, 7) is a UV -space if and only if it is a dV -space
such that (RO(Z"), <) is zero-dimensional.

Proof. For the left-to-right direction, suppose (X, 7) is a UV-space. We may therefore view
it as (S, o) for some Boolean algebra B. This can be used to show that every open set
(X, 7) is well-rounded. Indeed, let U = (,.4 —@ and V' = () . —C for some A, C, subsets
of B such that (,c, —@ € L U.cc ¢. Without loss of generality, we may assume that C' is a

proper ideal: if F' € ¢0A’ for some ¢ = ¢; V... V¢, with ¢, ...,¢, € C, then there must be
some i < n such that —¢; ¢ F, and therefore F' € |¢;. So let F' = {=c | ¢ € C} be the dual
filter of C. Clearly F' ¢ ||, ¢ s0 ANF # (. This means that there is some a € A such
that ~a € C. Thus U C —a C |5a, and Sa = [ 5a C |—V. This shows that (X, 7) satisfies
condition (i).

By [41, Prop. 4.3.1], RO(Z") € RO(Z"), so condition (ii) follows from condition (ii)
of UV-spaces. Finally, condition (iii) follows from condition (iii) on UV-spaces once we
show there is a one-to-one correspondence between concordant filters on RO(Z") and proper
filters on B, given by F — {a € B | a € F}. Recall first the observation that for any
compact open set U in a UV-space, U = |U [41, Prop. 4.1]. This means that @ < @ for any
W € CORO(Z"). Now assume U < V for some U,V € RO(Z"). By [41, Fact 8.2], we may
write U = (J,cq@ and V' = |J . € for some ideals A,C' C B. It is straightforward to see
that (J,c4 @ € | U.cc € implies that there is ¢ € C such that a < ¢ for all @ € A, and thus
that U C |¢ for some ¢ € C. Since ¢ € CORO(Z"), we also have that ¢ C lé C |V, hence
U <« ¢ < ¢ < V. This shows that RO(Z") is zero-dimensional. Moreover, if F' and G are
distinct concordant filters on RO(Z"), without loss of generality there is V € F'\ G. But
then there is some U € F such that U < V', hence U < ¢ < V for some ¢ € B. This shows
that the map F' +— {c € B | ¢ € F} is injective. For surjectivity, note that given any proper
filter Gon B, G' ={U € RO(Z") | 3c € G : ¢ < U} will be a preimage of G. This completes
the proof that X is a dV-space such that RO(X, <) is a zero-dimensional de Vries algebra.

Conversely, suppose that (X, 7) is a dV-space such that (RO(2"), <) is zero-dimensional.
Let B={U € RO(Z") | U < U}. Clearly, B is a Boolean algebra, so we may consider its
dual UV-space UV (B). Since points in X are in one-to-one correspondence with concordant
filters on RO(Z"), by the same argument as above, there is a one-to-one correspondence
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between X and UV (B), given by z — {U € B | z € U}. As this map is easily seen to be a
homeomorphism, it follows that (X, 7) is a UV-space. O

3.3.3 Morphisms

Having established the object part of our duality, the last step to obtain our duality result is
to isolate the adequate notion of morphism between dV-spaces. It turns out to be a natural
generalization of UV -maps:

Definition 3.3.16. Let (X, 71) and (Y, 73) be dV-spaces, and let <; and <, be the spe-
cialization orders induced by 71 and 7y respectively. A de Vries map (dV-map for short)
f X — Y is a continuous function that is also weakly dense, i.e., is such that for any
x € X, if f(x) <5y for some y € Y, then there is 2’ >; x such that y <, f(2').

Let AV be the category of dV-spaces and dV-maps between them. It is straightforward
to verify that if f : (X, 1) — (Y, 72) is weakly dense, then for any upward-closed V' C Y,
Lf7HV] = f7Y4V]. This implies in particular that the preimage of any order-regular open
set under a weakly dense map is order-regular open. This fact plays a role in the proof of
the following lemma:

Lemma 3.3.17. Let f : (X, 1) — (Y, 72) be a dV-map between dV -spaces. Then ®(f) :
(RO(#), <) — (RO(Z), <), given by &(f)(U) = (f U for any U € RO@), is a
de Vries morphism.

Proof. We check the four conditions on de Vries morphisms in turn:

(V1) ®(f)(0) = 0. Immediate.

(V2) (H(UNV)=®(f)(U)N®(f)(V). Simply compute that:
e(HUIN@(f) V] = U) (v

(HOIn v

o(f)UNV).

(V3) U <, V implies (®(f)(U1))L <1 ®(f)(V). Suppose U C V. This means that
f7YU) C fHLV] = Lf7[V], since f is weakly dense. Complementing, this gives us

—LVIC U C o(f)(T),
which, using the fact that f~![V] is order-regular open, yields
—HR(NUH)) C VIS e(F)(V).
Taking order-closure and complements again, this yields
—He(f)(V)) S @(f)UF) = (R(NH(UH)),

and therefore

(@(f)TU)* € He(f) (V).
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(V4) &(f)(V) = (U{®(U) | U <2 V})*+. The right-to-left direction is immediate.
For the converse, suppose that f(z) € V, and let 2/ >; x. Then f(2') € V, which
implies that there is some U <3 V such that f(z') € JU. This means that f(z') <oy
for some y € U. Since f is weakly-dense, there is z >; 2’ such that f(z) >5 y, and
therefore z € ®(f)(U). This shows that f~[V] C (U{®U) | U <5 V})**, which
clearly implies that ®(f)(V) C (U{®(U) | U <, V})*1+.

Therefore ®(f) is a de Vries morphism. O

It follows that we may define a contravariant functor ® : dVS — deV by letting
¢(X,7) = (RO(Z),<) for any dV-space (X,7) and mapping any f : (X,7) — (Y, 7)
to ®(f) as in Lemma Lemma 3.3.17. It is straightforward to verify that ® preserves compo-
sition and identity arrows. Going from de Vries algebras to dV-spaces requires the following
result:

Lemma 3.3.18. Let h : Vi — V, be a de Vries morphism. Then the function A(h) :
(Svy, 02) = (Svy, 01), given by A(h)(F) = $h™[F)] for any F € Sy,, is a dV -map.

Proof. Let us first show that A(h) is continuous. For any a € V; we compute:

A(h)~[a] = {F € Sy, | A(h)(F) € @}
={F €Sy, |acth'[F]}
={F eS8y, |Jc<a:h(c) € F}

Ui
c<a
Now we check that A(h) is weakly dense. Let F' € Sy, and G € Sy, be such that 1h~1[F] C G.
I claim that
H={a€Vy|a>-h(-c)Ad for some c € G,d € F}

is a concordant filter. To see that this is a proper subset of V5, note that if h(—c) € F for
some ¢ € (, then there is ¢ < ¢ € GG, which implies that —¢ < —¢ and thus that —¢ € G,
a contradiction. To see that H is a filter, it is enough to verify that for any ci,co € G,
—h(—c1) A—h(—cg) € H. Since G is concordant, there is ¢ € G such that ¢ < ¢; A ¢2, which
implies that

_|h(_|C) < —|h(—|(cl A 02)) < ﬁh(_\Cl) VAN _'h(_|02),

and therefore —h(—c;) A —h(—cy) € H. A similar argument shows that $H = H, which
completes the proof of the claim.

By construction of H, ' C H. Moreover, if ¢ € G, then there are c¢;,co € G such
that co < ¢; < ¢. Then —h(—cy) < h(cy), which shows that ¢ € A(h)[H], and therefore
G C A(h)[H]. This completes the proof that A(h) is a dV-map. O

We can therefore construct a functor A : deV — dVS by mapping any de Vries algebra
V to A(V) = (Sy, o) and any de Vries morphism h to A(h) as in Lemma Lemma 3.3.18.
Again, it is straightforward to verify that A preserves composition and identity arrows. We
conclude with the main result of this chapter:
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Theorem 3.3.19. The functors ® and A establish a dual equivalence between the categories
deV and dVS.

Proof. In light of Theorems Theorem 3.3.7 and Theorem 3.3.13, we only need to verify that:

—_

1. for any de Vries morphism A : V; — Va, ®A(h)(a) = h(a) for any a € Vi;
2. for any dV-map f: (X, 1) = (Y, 72), A®(f)(RO(z)) = RO(f(z)) for any = € X.
For (i), it is enough to compute that:
®A(h)(@) = ((A(h)~'[a)
= (J{n0) | b < ap)*

= \/{h(t) [ b < a)
= h(a).

For (ii), we first compute that:

AD(f)(RO(x)) = 1(2(f))'[RO(x)]
= HU | 2(f)(U) € RO(x)}
= HU [ (f7H U € RO(x)}.

Now if V' € RO(f(z)), then there is U <« V such that U € RO(f(z)), and therefore z €
f7YHU] C (F7HU])*, and hence V € A®(RO(z)). For the converse direction, suppose that
x € (fHU])** and that U < V for some U,V € RO(%). I claim that for any y >, f(2),
y € U. Since U C |V, this implies that f(z) € 1/V, and therefore that v € RO(f(z)).
For the proof of the claim, note first that = € (f~'[U])** implies that there is some regular
open set Z € RO(x) such that for any 2’ € Z and any open set W, 2/ € Z N W implies
that W N f1U] # 0. Now fix some y € Y such that f(z) <, y. Since f is weakly dense,
there is 2’ >; 2 such that y <, f(2/). The claim is proved if f(2') € U. Assume towards
a contradiction that this is not the case. Then 2’ € f~![U"], which is open since f is
continuous. But x <; 2’ implies that 2/ € Z, so f~HUL]N U] # 0, a contradiction. This
completes the proof. O

3.4 An Upper Vietoris Perspective and Some Applica-
tions

Let us conclude this part on de Vries algebras with an exploration of some of the consequences
of our choice-free duality. We will first connect it with the pointfree approach to compact
Hausdorff spaces via compact regular frames and to the Vietoris functor on KHaus, before
discussing two simple applications of our “semi-pointfree” duality.
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3.4.1 Pointfree and Hyperspace Approaches

In this section, we relate dV'-spaces to compact regular frames. Because both the equivalence
between de Vries algebras and compact regular frames on the one hand, and the duality
between de Vries algebras and dV-spaces on the other hand, do not rely on the Axiom of
Choice, we already know that there is a choice-free duality between compact regular frames
and dV-spaces. In order to describe this duality more precisely, we first need the following
lemma:

Lemma 3.4.1. For any de Vries algebra V = (B, <), there is an order isomorphism between
the poset WORO(A(V)) of well-rounded ORQO subsets of A(V') and the round ideals on V.

Proof. Let (V') be the frame of all round ideals of V' and wORO(A(V)) the poset of all
well-rounded ORO subsets of A(V) ordered by inclusion. Define a : R(V) — wORO(A(V))

as I — Uy, band 8 : wORO(A(V)) = R(V) as U — {b € B| b C |U}. I claim that a and
[ are order preserving and inverses of one another.

First, let us verify that a([) is a well-rounded ORQO set for any round ideal I. Clearly,
for any round ideal I, a([I) is open. To see that it is order-regular open, suppose F' ¢ a([)
for some concordant filter F', and consider the set G = {c A —d | ¢ € F,d € I}. I claim
that G € A(V). Since I is round, I° = {~d | d € I} is a concordant filter, so by Lemma
Lemma 3.3.2 we only need to verify that ¢ A =d # 0 for any ¢ € F,d € I. But this follows
immediately from the assumption that £’ ¢ a([). Thus G € A(V), and clearly we have that
FCGand G ¢ la(l). Thus F' ¢ [la(I), which shows that a(/) € RO(A(V)). Finally, let
us check that a(I) is well-rounded. Suppose W C la([) is a closed set of the form (), , —@
for some A C B. Note that I° is a concordant filter and clearly I° ¢ |a(I), so AN I° # .
This means that —a € I for some a € A. But then =a and @ are the required open sets.
This completes the proof that a(l) € wORO(A(V)).

Conversely, let us show that for any wORO set U, S(U) is a round ideal. Clearly,

B(U) is downward closed. Now suppose we have a,b € V such that a, b C |U. Then
aub=aVvb C lU. Since U is well-rounded, there must be disjoint open sets Wy, W5 such
that a U b C W, and =W, C JU. By Theorem Theorem 3.3.7, Wi+ = ¢ for some ¢ € V,
and it is straightforward to verify that m C |c¢ and ¢ C JU. This shows that a Vb < ¢
and that ¢ € B(U), establishing that S(U) is a round ideal.

It is immediate to see that both maps are order preserving, so we only need to show
that they are inverses of one another. Let I be a round ideal. If b € I, then b < a for
some a € I. But then b C la C la(I), so b € pa(l). Conversely, assume b ¢ I, and let
F={cAN—-d|b=<cdel} IfcN-d<=bforsomed € I and ¢ such that b < ¢, then
bA—-d < cA—-d< —b, hence bA—d < bAN-dA—-b<0. But this implies that b < d and
thus that b € I, contradicting our assumption. Thus ﬂb_gé F'. By Lemma Lemma 3.3.2, this

shows that F is a concordant filter and moreover F € b by Lemma Lemma 3.3.4 (iv). But

clearly F' ¢ la(I) = Uz, ld. By contraposition, it follows that if b C la(I), then b € 1.
This shows that Sa(l) = I for any round ideal I.
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Similarly, if ' € U for U € wORO(A(V)), then since U is open there must be some
a € F such that @ C U. Since F' is concordant, there is b < a for some b € F. But then

F eband b C la € lU,so F € ap(U). Conversely, suppose F' € a(U). Then there is
a € F such that a C JU. Since a = —=a and for any concordant G 2 F, —a ¢ G, it follows
that F' € [{U = U. This shows that a3(U) = U, which completes the proof. ]

As a consequence, the well-rounded ORQO subsets of any dV -space form a compact regular
frame, and we can lift this correspondence to a functor wORQO : deV — KRFrm. To go
from compact regular frames to dV-spaces, it is enough to recall that the round ideals
on a de Vries algebra V' are precisely the duals of concordant filters on V. Thus given a
compact regular frame L, we may simply define the topological space =Z(L) = (L™, ), where
L= =L\ 1, and ¢ is the topology generated by sets of the form a = {b | —a < b} for any
a € L. Indeed, since L is isomorphic to 2R(B(L)), we may think of any b € L as a round
ideal I, on the de Vries algebra (B(L), <) such that for any b € L and ¢ € B(L), ¢ < b iff
—¢ € I,. But since B(L) = {—a | a € L}, we therefore have for any a € L:

a={be L™ |-a=<b}
={be L™ | a€ L}
={be L™ |-ac (L)}
={be L | (L,)° € =a}.

This shows that the correspondence b — (I,)° is a homeomorphism between =(L) and
A(B(L)). Tt follows that = lifts to a contravariant functor from KRFrm to dVS and that
we have the following theorem:

Theorem 3.4.2. For any compact reqular frame L, L is isomorphic to wWORO(Z(L)). Con-
versely, any dV -space (X, T) is homeomorphic to Z(wORO(Z")). Moreover, wORO and =
establish a duality between KRFrm and dAVS.

We may think of Theorem Theorem 3.4.2 as establishing a choice-free analogue of Isbell
duality. In the presence of (BPI), any compact regular frame is spatial, meaning that any
compact regular frame L is isomorphic to Q(pt(L)), or equivalently that any compact regular
frame is the lattice of open sets of some compact Hausdorff space. In our choice-free case,
we do not represent L as the open sets of a topological space (since doing so would imply
Isbell duality), but only as the well-rounded order-regular open sets of a dV-space. We might
however be interested in better understanding the relationship between the Isbell dual of a
compact regular frame and its de Vries dual. The answer turns out to involve the upper
Vietoris functor on compact regular frames.

Recall that the Vietoris hyperspace of a compact Hausdorff space (X, 7) is obtained by
taking as points the closed subsets of X. That a Vietoris-like construction would play a role
in our duality is far from surprising. De Vries had already remarked [69, Theorem 1.3.12] that
there was a dual order-isomorphism between the closed sets of a compact Hausdorff space
and the concordant filters on its de Vries algebra of regular open sets. Moreover, assuming
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(BPI), the dual UV-space of a Boolean algebra B is homeomorphic to the upper Vietoris
hyperspace of the dual Stone space of B [41, Theorem 7.7]. The upper Vietoris construction
can also be defined on compact regular locales [41, 146, 149]:

Definition 3.4.3. Let L be a compact regular locale. The upper Vietoris space of L is
the topological space UV (L) = (L™, 15), where 75 is the topology generated by the sets
Oa={be L |aVvb=1.} for any a € L.

Lemma 3.4.4. For any locale L, Z(L) is homeomorphic to UV (L).

Proof. Since Z(L) and UV (L) have the same domain, it is enough to show that the two
topologies coincide. For any a € L:

a=4{be L™ |—-a=<b}
={be L | —aVb=1.}

= |:|—|ﬂa,
which shows that § C 75. Conversely, I claim that for any a € L,

Da:UB:{cEL\EIb<a:—|b<c}.

b<a

To see this, notice first that if =b < ¢ for some b < a, then ¢V —=b = 1;, and =—b < a, which
implies that a V ¢ = 1;. This shows the right-to-left inclusion. For the converse, suppose
that a V¢ = 1. Since L is regular, a = \/{b € L | b < a}, and hence 1, =\/{bVc|b<a}.
Since L is also compact, this means that there are by, ..., b, such that by V... Vb, < a and
cVbV..Vb, =1p. Letting b = =—(b; V ... V b,), it follows that b < a and that =b < c.
This shows that Oa = J,_, b, and therefore that 7, C 4. O

As an immediate corollary of the previous lemma, we obtain the following characterization
of dV-spaces, which can be seen as a generalization of Theorem 7.7 in [41]:

Theorem 3.4.5. A topological space is a dV -space if and only if it is homeomorphic to the
upper Vietoris space of a compact reqular locale.

Finally, let us note that connections between de Vries duality and the Vietoris functor on
compact Hausdorff spaces have already been studied in [33, 34]. In particular, the authors
define modal de Vries algebras and prove that they are the duals of coalgebras of the Vietoris
functor. For lack of space, we leave as an open problem the relationship between modal de
Vries algebras and dV -spaces.

3.4.2 Two Applications

We conclude by briefly mentioning two straightforward applications of the duality presented
here. The first one is a choice-free version of Tychonoff’s Theorem for compact Hausdorff
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spaces and the second one deals with the topological semantics of the strong implication
calculus defined in [41].

The following is a well-known result in pointfree topology [146, 148, 207]:
Lemma 3.4.6. The category KRFrm is closed under coproducts.

By the duality obtained in the previous section, this means that the category of dV -spaces
is closed under products. This means that a version of Tychonoft’s Theorem for dV-spaces
(the product in dVS of a family of dV-spaces is compact) holds in a choice-free setting.
Moreover, this also motivates the following definition.

Definition 3.4.7. Let {(X;, 7;)}ies be a family of compact Hausdorff spaces. The choice
free product of this family is the dV-space Z(EP,.; Q(X;)).

iel
As an immediate consequence of the results in the previous section, we get the following
choice-free Tychonoff Theorem for compact Hausdorff spaces:

Theorem 3.4.8. For any family of compact Hausdorff spaces {(X;, 7i) }icr, their choice-free
product is compact. Moreover, under (BPI), it is homeomorphic to the upper-Vietoris space

of Hie[(Xi? Ti).

It is worth contrasting this result to one that can be obtained using Isbell duality. Since
the category of compact regular frames is closed under coproducts, it can be proved without
appealing to the Axiom of Choice that the coproduct of the frames of opens of any family
{(Xi, 1) }ier of compact Hausdorff spaces is a compact frame. Under (BPI), this frame is
precisely the frame of opens of the product of {(X;, 7;)}ier in the category of topological
spaces. In the absence of (BPI) however, it may fail to be spatial. We may therefore see
Theorem Theorem 3.4.8 as a semi-pointfree version of Tychonoft’s Theorem, that is choice-
free yet remains spatial.

Let us now move on to the second application. De Vries duality has been used in [38]
to prove that the Symmetric Strong Implication Calculus S?IC is sound and complete with
respect to the class of compact Hausdorff spaces. This calculus is obtained by adding a
binary relation ~~ to the language of classical propositional calculus, to be interpreted as a
strong implication connective. Given a contact algebra (B, <), one can interpret the strong
implication connective by letting a ~» b = 15 if a < b and a ~» b = 0 otherwise. This gives
rise to a binary normal and additive operator A(a,b) := —(a ~» —b), meaning that one may
think of the pair (B, ~~) as a BAO. For details on the axiomatization of S?IC, we refer to [38].
In order to provide a choice-free topological semantics for S?IC, we introduce the following
notion:

Definition 3.4.9. A de Vries topological model is a triple (X, 7,V) such that (X, 7) is a
dV-space, and V is a valuation such that for any formulas ¢, 1 of S?IC:

e If o is propositional letter p, then V() € RO(Z);
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o V(mp) =V(p)t and V(e A) = V(p) NV ();

e V(p~1)=Xif V(p) ClV(¢) and V(¢ ~> ¢) = 0 otherwise.

A formula ¢ is valid on a dV-space (X, 1) iff V(p) = X for any de Vries topological model
(X, 7, V).

As a consequence of Theorem Theorem 3.3.19, we have the following result, which does
not assume the Axiom of Choice:

Theorem 3.4.10. The system S?IC is sound and complete with respect to the class of all
dV -spaces.

Proof. By Theorem 5.10 and Remark 5.11 in [38], de Vries algebras provide a sound and
complete algebraic semantics for S?2IC, and this result can be obtained choice-free. Combining
this result with Theorem Theorem 3.3.19, it follows that dV -spaces also provide a choice-free
sound and complete semantics for S?IC. O]

Since dV -spaces constitute a choice-free, filter-based representation of de Vries algebras,
we may think of our choice-free de Vries duality as providing a possibility semantics for the
logic of region-based theories of space, just as the choice-free Stone duality through UV-
spaces serves as a foundation for possibility semantics for classical and modal propositional
logic [135, 134, 137].

3.5 Choice-Free Representations of Distributive Lat-
tices

Let us now move on to another generalization of Bezhanishvili and Holliday’s choice-free
duality for Boolean algebras, this time to the category of distributive lattices. We will
first provide a choice-free duality via bitopological spaces which we will call pairwise UV-
spaces. Then, taking inspiration from the way in which Priestley spaces can be obtained
from pairwise Stone spaces by taking the join of the two topologies, we will turn pairwise
UV -spaces into ordered topological spaces of a certain kind, which we call UV -Priestley
spaces.

3.5.1 Distributive bispaces

Throughout this section, we will be considering bitopological spaces of the form (X, 7, 7).
We start with the following notation:

Notation 3.5.1. Given a bi-topological space 2" = (X,7,,7_), let <, and <_ be the
specialization preorders for 7, and 7_ respectively, and 7, and 7m_ be the corresponding
upset topologies. We define:

e —_: 7, — m_such that ~_U=—-]_U;
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e —, :7m_ — my such that -, U =—-| U.

e ~_:7, — 7_ be defined as ~_ U = —C_(U)

e ~,:7_ — 74 be defined as ~, V = —-C (V)

The interest of these definitions lies in the following lemma.

Lemma 3.5.2. The maps —_ and — form a Galois connection, i.e. foranyU € w,,V € w_,
VC- U iff UC =, V. Similarly, ~_ and ~ form a Galois connection between T, and
T_.

Proof. This is essentially the same proof as in Section 2.2.1, and it is therefore omitted. [

As a consequence of this lemma, we have that the fixpoints RO(Z")" and RO(Z")~ of
the maps —,—_ and —_— respectively are both complete lattices, and that =% and =~ are
order anti-isomorphisms.

Notation 3.5.3. Given a bi-topological space 2" = (X, 7,,7_), let 0, and o_ denote the
compact opens in 7, and 7_ respectively. We write CORO(Z")" and CORO(Z")~ for the
sets o, N RO(Z" )" and o_ N RO(Z")™ respectively.

Let us now introduce the following definitions.

Definition 3.5.4. A bi-topological space 2 = (X,7.,7_) is pairwise distributive if the
following two conditions hold:

1) For any Ul, U, € T+, U N C_(U2> - C_(Ul N UQ)
ii) For any Vi,V € 7, ViNC (Vo) C Cp(ViNVs)

It is straightforward to verify that any topological space (X, 7) viewed as a bitopological
space (X, 7, 7) is pairwise distributive. In fact, this definition generalizes an elementary fact
from general topology. In the bitopological setting however, the definition is non-trivial,
which motivates the introduction of the following notion.

Definition 3.5.5. A distributive bispace is a bi-topological space 2" = (X, 7, 7_) such that:
1. 04 and o_ are closed under finite intersections;
2. the maps —, and —_ restrict to maps between o, and o_;
3. (X, 7y, m_) is pairwise distributive.

Theorem 3.5.6. Let 2" = (X, 7,,7_) be a distributive bispace. Then the families of subsets
of X CORO(Z)" and CORO(Z")~ are distributive lattices.
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Proof. 1 claim that condition 3 implies that the maps =, —_ and =_—, are nuclei on 7, and
7_ respectively. This will imply that RO(Z")" and RO(Z")~ are cHA, hence distributive
lattices. Conditions 1 and 2 then ensure that CORO(Z")" and CORO(Z")~ are sublattices.
For the proof of the claim, it suffices to show that for any U;,Us € 7wy, == (Uy) N
—,=_(Uy) € == (U NUs). By condition 3, we have that U; N C,_(Uy) C Cr_(U; N Usy),
so by taking complements and closure in 7, we have that

Cr, (UL N Uy) C C, (—U U= (Uy)).

T -
Since U; € m, and closure distributes over unions, by taking complements this yields
UyN—3—-_Us C == (U NU).
Substituting -, —_U; for Uy, and then swapping U; and U yields
Ui N =Us € —pm (U N U) € oy o (U N D),

and we're done since —,—_ is idempotent.
The proof that —_—, is a nucleus on 7_ is completely dual. O]

We are now in a position to introduce our first choice-free representation theorem for
distributive lattices.

3.5.2 A Representation Theorem for Distributive Lattices

We start with the following definition, which was independently put forward in the context of
distributive lattices in [188, 143] (see also [30] for a more recent work in which an equivalent
notion seems to have independently appeared again).

Definition 3.5.7. Let L be a distributive lattice. A pseudo-prime pair on L is a pair (F, 1)
such that F' € F(L), I € Z(L) satisfying the following properties:

o I'N I =;
e a € Fand a Ab € I implies b € I (RMP);
e aVbe Fandbe I implies a € F (LJP).

Intuitively, pseudo-prime pairs can be thought of as pairs of a filter and an ideal that are
“relatively prime” to one another. Indeed, it is easy to see that the pair (p, L\ p) is pseudo-
prime whenever p is a prime filter on a distributive lattice L. However, pseudo-prime pairs
are much more constructive objects than prime filters, as the following lemma establishes.

Lemma 3.5.8. Let L be a DL. For any pair (F,I) such that F NI = (), there is a pseudo-
prime pair (F',I") such that F C F' and I C I'.

Proof. Let (F,I) be such that FNI = (), and define F' = {c¢ | a < bVc for somea € F,b € I}
and I’ ={d | aANnd <bforsomea€ Fbel}.
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e Clearly F” is upward closed and I’ is downward closed. To verify that F’ is a filter,
note that if a; < ¢; V by and as < ¢y V by, then

ai Nag < (c1 V(b1 Vb)) A(caV (b Vb)) < (c1 Aca)V (b Vby),
thus ¢; A cg € F'. Similarly, if a; A d; < by and ag A dy < by, then

(ay Nag) A (dy Vds) < ((ay Aag) ANdy) V ((a1 Aag) Ady) < by V by,
which implies that I’ is an ideal.

e Morever, if there is ¢ € F' N I’, then we must have a,as € F and by,by € I such
that a3 < by V ¢ and ay A ¢ < by, which implies that a3 A as < (b1 V be) V ¢ and
(ay N ag) Ac < bV by But since L is distributive this implies that a; A ay < by V by,
contradicting F'N I = 0.

e To check that (F’,I') has the RMP, suppose ¢ A x € I’ for some ¢ € F. This means
that we have ay,as € F, by, by € I such that a; < cV by and as A (cAx) < by. But this
implies that (a; Aas) Az < cV (by Vbs) and ((a; Aag) Ax) Ac < by Vby. Since L is
distributive, this implies that (a3 A ag) Az < by V by, and thus z € I'.

e Similarly, for the LJP, suppose d V x € F’ for some d € I'. Then we have aq,ay €
F, by,by € I such that a; < (dV z)V b and as A d < by. Now this implies that
(ay Nag) Nd < (by Vby) V x, and that (a; Aag) < dV ((by V be) V z), which since L is
distributive implies that a; A as < (by V be) V x, and hence that = € F. O

The previous lemma can be thought of as a choice-free version of the Prime Filter Theo-
rem. It will be of crucial relevance when proving our representation theorem for distributive
lattices. Let us now turn to the definition of the dual bispace of a distributive lattice.

Definition 3.5.9. Let L be a DL. The dual distributive bispace of L is the bispace B(L) =
(X, 7y, 7_) where:

e X is the set of all pseudo-prime pairs on L;

e 7, is generated by the basis {a' | a € L}, where a* = {(F,I) | a € F'};
e 7 is generated by the basis {a~ | a € L}, where a= = {(F,I) | a € I}.
The following is immediate.

Lemma 3.5.10. Let L be a DL with dual bispace (X, 7.,7_). For any (F,I),(F',I') € X,
we have that (F, 1) <, (F',I") iff F C F', and (F,I) <_ (F',I") iff I C I'.

As a consequence, we know that the specialization preorders induced by the topologies
74 and 7_ coincide with the inclusion orderings on filters and ideals respectively. This gives
us an elegant way of relating the operations =, /=_ and ~, / ~_ defined above.
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Lemma 3.5.11. Let a,b € L. Then:

1. ——at =~_a" =a";

)

2. —ya” =~y a =ay

3. = (atUbh)=~_(a"Ub")=(aVb)~;
4. (@™ Ub7 )=~y (amUb7)=(aNnD)T.
Proof.

1. (F,I) e~_ a* iff there is b € L such that at Nb~ = () and b € I iff there is b € L such
that « <band be Iiff a € I iff (F,I) € a~. Moreover since F'N [ = () we have that
a” C —|_at =—_a". For the converse, if a ¢ I, then 'V a NI = () since (F,I) has
the RMP, and therefore (F,I) € |_a™.

2. Similar to 1 above. We need that every pair (F,I) has the LJP to prove that —a™ C

lia.
3. By 1), we have the following:

—_(a* UbY) = —(C_a* UC_bY)

=—_a"N-_b"

=a Nb
=~_anN~_>b"
=~" (atUb")
. But clearly a=Nb~ = (a VD)™,
4. Similar to 3. [l

We have now gathered all the necessary components of our representation theorem.

Theorem 3.5.12. Let L be a DL and B(L) = (X, 74, 7_) its dual bispace. Then B(L) is a
distributive bispace, and L is isomorphic to CORO(Z)*.

Proof. Note first that sets in o, and o_ respectively are sets of the form af U...Ua] and
a; U...Ua, for some ay,...,a, € L. Now given elements a4, ..., a, and by, ..., b,, in L, we have
that (F,I) € af U...Ua Nby U...Ub/ iff there is i < n and j < m such that a; Ab; € F
ift (F,1) € Uicpjem(@i A b)), and similarly (F, 1) € a; U...Ua, Nby U...U b, iff there is
i <nand j <msuch that a; Vb; € I'iff (F]) € U, j<,n(@i Vb;)”. Thus o, and o_ are
closed under finite intersections. Moreover, the previous lemma guarantees that —_U € o_
and =,V € o, forany U € 0., V € 0_, and that -7 : L — CORO(Z")" is a surjective
homomorphism. For injectivity, it suffices to notice that if a £ b, then there is (F,I) € X
such that a € F' and b € I, and therefore a™ £ b*.
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Therefore it only remains to be checked that (X, 7, 7_) is pairwise distributive. I only show
that for any Uy, Uy € 7+, Uy N C,_(Uz) C C,_(U; NUs). Suppose (F, 1) € Uy N Cr_(Us).
This means that (F,I) € U, and there is (F',I') € Uy such that I C I'. I claim that
FVv F' NI =1{. To see this, suppose a A b € I for some a € F,b € F'. Then since (F,I)
has the RMP, b € I C I, and therefore F' NI’ # (), a contradiction. Now this implies that
there is (F*,I*) € X such that F'v F" C F* and I C I*. Since both U; and U, are upsets,
we have that (F'*, I*) € Uy N Us, and therefore (F, 1) € C,_(U; N Uy). O

3.5.3 Morphisms

We conclude this section with a treatment of morphisms between distributive bispaces. The
following is inspired from the definition of a UV-map, which has both a topological require-
ment and an order theoretic one.

Definition 3.5.13. Let 2" = (X, 74, 7_) and 2" = (X', 7, 7" ) be two distributive bispaces.
A bi-distributive map is a bicontinuous function f : 2" — 2" such that:

1. For any U € CORO(Z")*, f~H(U) € CORO(Z)":
2. For any V € CORO(Z")~, f~1(U) € CORO(Z)~;
3. Forany U € ', f7'Cp (U) = Cr_fH(U);
4. Forany V €', f1Cw (V) = Cr, f7H(V).

The following remark establishes a connection between bi-distributive maps and the b-
morphisms from Section 2.2.1.

Remark 3.5.14.

e A map f satisfies condition 3 if it is monotone with respect to <_ and <’ and has the
following property: for any z € X, 2’ € X', if f(z) <" ', then there is y >_ z such
that f(y) >/ .

e Similarly, f satisfies condition 4 if it is monotone with respect to <, and </, and has
the following property: for any x € X,2" € X', if f(x) </, 2/, then there is y >, «
such that f(y) >" 2/

Finally, the next two lemmas suggest that bidistributive maps are the correct notion of
morphism between distributive bispaces for our purposes.

Lemma 3.5.15. Let f : 2 — 2" be a bi-distributive map. Then f~! restricts to lattice ho-
momorphisms from CORO(Z”)" to CORO(Z)" and from CORO(Z")~ to CORO(Z")~.
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Proof. We only prove that f~! restricts to a lattice homomorphism from CORO(Z”)" to
CORO(Z)™T, as the other case is similar. Note first that conditions 3 and 4 imply that for
any U € 7', we have that

f71<_'+_'7U> = fﬁl[_cﬂ_ - Crr’_ (U)] = _Cmr - Cw—fil(U> = —|+—|,f71(U).

Together with condition 1, this implies that f~! is well-defined. Checking that f~! preserves
intersections and unions is routine, and moreover the previous equality implies that for any
UV e CORO(Z")T,

[ (UUV)] = 2= fHUUV) = 2= (fTHU) U V).
This completes the proof. O

Lemma 3.5.16. Let h : L — M a lattice homomorphism between two DL L and M. Then
B(h) : B(M) — B(L), defined as B(h)(F,I) = (h=*(F),h (1)) is a bi-distributive map.

Proof. 1t is routine to check that B(h) is well-defined. We verify conditions 1 and 3 of a
bi-distributive map (conditions 2 and 4 are checked similarly).

1. For any a € L and (F,I) a pair on M, we have that B(h)(F,I) € a* iff a € h™'(F) iff
fla) e Fiff (F,1I) € f(a)".

3. B(h) is clearly monotone with respect to the ideal inclusion ordering. Moreover, if
(F,I)is a pair on M and (G, J) is a pair on L such that (h='(F),h (1)) <_ (G, J),
then consider the pair (h[G], I), where h[G] = 1{h(c) | ¢ € G}. Clearly, h[G] NI = (),
for otherwise there is ¢ € G such that h(c) € I, hence c € h™'(H) C J, a contradiction.
So there is a pseudo-prime (F’,I’) such that h[G] C F’ and I C I’, which implies that
G C h™'(F’). Thus, B(h) satisfies property 3 by Remark 3.5.14. O

3.6 Choice-Free Pairwise Stone Duality

In this section, we axiomatize the dual bispaces of distributive lattices, which we call pairwise
UV -spaces (PUV -spaces for short), and we prove a choice-free duality between pairwise UV -
spaces and distributive lattices which we then restrict to a duality between Heyting algebras
and a subcategory of pairwise UV -spaces which we call Heyting UV -spaces.

3.6.1 Pairwise UV -spaces

We first recall the following definition.

Definition 3.6.1. A bispace 2" = (X, 7y, 1) is pairwise Ty if for any x # y € X, there is
U € 7. U7t_ such that U contains precisely one of z,y.
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Just like the definition of a UV -space appeals to the notion of a filter on the CORO sub-
sets of a topological space, we will need the following version of this notion in a bitopological
context.

Definition 3.6.2. Let 2" = (X, 7,,7_) be a distributive bispace. We write CORO(Z")
for the set CORO(Z )t UCORO(Z)~. A filter on CORO(Z") is a filter S on the poset
CORO(Z) ordered by inclusion, i.e.:

e S C CORO(Z) is non-empty;
e for any U,V € S and W € CORO(Z"), UNV C W implies W € S.
The following links the previous definition with pseudo-prime pairs.

Lemma 3.6.3. Let 2 be a distributive bispace. There is a bijection between proper filters
on CORO(Z) and pseudo-prime pairs on CORO(X ™).

Proof. Given a proper filter S on CORO(Z"), let Fs = CORO(Z )" N F and Is = {U €
CORO(Z)T | -_U € F}. It is routine to check that Fg is a filter and Ig is an ideal. For
the right-meet property, suppose U € Fs and UNV € Ig. Then U,—~_(UNV) € S, and
since UNC_V C C_(UNYV), we have that UN—=_(UNV) C =_V, and therefore =_V € S,
which implies that V' € Ig. The LJP is proved similarly.

Conversely, if (F, ) is a pseudo-prime pair on CORO(Z"), let
SFJ = {W S CORO(%) | UNn—-_VCWwW

for some U € F, V € I}. Then clearly FU{-_V | V € I} C Sg;. Suppose now that there
are Wy, Wy € Sp such that W3 NWy C W. Then we have Uy NU; € F and V3 UV, € 1 such
that Uy NU; N—_ (V1 UVa) CW,s0 W € Spy. Thus Sg; is a filter on CORO(Z").
Moreover, I claim that Sp; C FU{-_V | V € I}. To see this, suppose U N —_V C W for
some U € F, VeI, and W € CORO(Z"). We have two cases:

o if W € CORO(Z)~, we have that W = —_Z for some Z € CORO(Z")*. Thus
UNC_Z C C_V, which by taking complements yields =_V C —U U —-_Z. Taking
closure in 7, and complements, we obtain that

UNZ=UN-4-_-ZC—-~ V=W
Thus U N Z € I, and since (F, I) has the RMP, it follows that Z € I.
o if W e CORO(Z )", then U C W UC_V, which implies that
—(WuV)==-_Wn-_VC-_U.

Taking closure in 7 and complements yields that U C —,—_ (W UV). But this means
that =, —~_ (W UV) € F, and since (F,I) has the LJP, it follows that W € F.
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]

We are now in a position to define pairwise UV-spaces. This definition can be seen as
a straightforward translation of the definition of a UV-space to the bitopological setting,
just like the definition of a pairwise Stone space adapts the definition of a Stone space to
bitopological spaces.

Definition 3.6.4. A pairwise UV -space is a pairwise Ty bispace 2~ = (X, 74, 7_) such that:
1. 2 is a distributive bispace;
2. CORO(Z")* is a basis for 7, for x € {4, —};

3. for any z,y € X, £, y implies that there is U € CORO(Z")* such that € U and
y ¢ U, for xe {+, -}

4. Any filter on CORO(Z") is CORO(z) for some z € X.
We can now show that this definition axiomatizes the dual bispaces of distributive lattices.

Theorem 3.6.5. Let 2" = (X, 7,,7_) be a pairwise UV -space. Then 2 is isomorphic to
B(CORO(Z)™).

Proof. Consider the map 6 : 2" — B(CORO(Z")") given by 6(x) = (Fcoro(z), Icoro(=))-
Injectivity follows from condition 2 of pairwise UV -spaces and the fact that 2" is pairwise
Ty. Surjectivity is given by condition 3. So we only have to check that § and 6~! are
bi-distributive maps. We verify conditions 1 and 3.

1. We have isomorphisms -t between CORO(Z")*T and CORO(B(CORO(Z)*))", and
-~ between CORO(Z")~ and CORO(B(CORO(Z)*))~. But then for any U €
CORO(Z )T, x € 2, we have that

9($) ceUT s Uc FCOR(’)(@’) sSaxel

3. By condition 2, we have that for any z,y € 2°, v <_ y iff Icorow) € Icorow),
hence both 6 and 6~! are monotone with respect to <_. But this also implies that
0(x) <_ (Fcorow): Icorow)) iff © <_ y, and thus by Remark 3.5.14 3.2 both 6 and
01 satisfy property 3.

]
We conclude with our main theorem for this section.

Theorem 3.6.6. The category DL s dual to the category of pairwise UV -spaces and bi-
distributive maps.
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Proof. In light of Theorems 3.5.12 and 3.6.5, we only have to check the naturality condition
for -* and #. Suppose we have the following diagram:

L—"+ CORO(B(

o

M—>COR(9(
Then for any a € L, we have that
(F, 1) € (ha)t ©ach (F) < Bh)(FI)€a” < (F1)eB(h) ' (a").
Thus ho -+ =B(h)" .

Similarly, suppose that we have the following diagram:

2~ B(CORO(Z ™))
\f llﬂ%(f_l)
2 — > B(COROZ ™))
Then for any z € 27,
B(f~)(0(x)) = B(f_l(FCORO(a:)a Icoro@))
= (U | f71(U) € CORO(2)},{V | =-f~'(V) € CORO(x)})
={U| flx) eULAV | f(z) € 2-V})
= ( y) = 0(f(x)).

This completes the proof. O

Feoro(t()) Icoro(f(=

3.6.2 Heyting algebras

As a direct application of Theorem 3.6.6, we may restrict the duality obtained above to
a choice-free duality for Heyting algebras. We start with the following definition, which
identifies the dual bispaces of Heyting algebras.

Definition 3.6.7. A Heyting UV -space is a pairwise UV -space Z satisfying the following
condition:

_ For any U € CORO(Z)*, V € CORO(Z)~, - (UNV) € CORO(Z)*.

Lemma 3.6.8. Let L be a distributive lattice. Then L is a Heyting algebra iff B(L) is
Heyting.

Proof.
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e Suppose first that L is a Heyting algebra. Then if U € CORO(B(L))" and V €
CORO(B(L))~, we have that U = a* and V = b~ for some a,b € L. T claim that
Cr.(a™Nb7) = Cy(a — b)~. This will imply that =4y (¢* Nb~) = ~4=_(a = b)7,
and thus that B(L) is a Heyting UV -space. For the proof of the claim, note that since
any pair (F,I) has the RMP, a € F and b € [ implies that « — b € I, and thus
Cr (atNb™) C Cr, (a — b)~. Conversely, note that if a — b ¢ F, then FVanlb=0
(since otherwise there is ¢ € F such that ¢ A a < b, and thus ¢ < a — b). Hence
there is a pseudo-prime pair (F’,I’) such that F'V a C F’ and b € I’, which means
that (F,1) € Cr, (a™ Nb7). Since Cy(a — b)~ = —(a — b)™, this shows that C(a —
b)- CCi(a™Nb).

e Conversely, I show that if B(L) is a Heyting UV-space, then CORO(B(L))*, and
therefore also L, is a Heyting algebra. I claim that for any U, V,W € CORO(B(L)),
we have that UNW CV iff W C - (UN—-_V):

— For the left-to-right direction, note that if U "W C V', then
UncC, WCC, (UnW)CC,V,
and hence U N —_V C —_W. Taking closure in 7, and complements yields
W==--WC- (Un-_V).

— For the right-to-left direction, note that =V C —U U (U N —=_V) implies, by
taking closure in 7, that

Crom VCCr (~UUUN-_V))=-UUC,, (UN-_V),

T+ —
and hence, by taking complements,
UnNnwcun-,(UnN=-_V)C -~ V=V
O

In order to obtain our choice-free bitopological duality for Heyting algebras, we must also
restrict bi-distributive maps to the duals of Heyting morphisms.

Definition 3.6.9. A bi-distributive map f : 2" — 2" is Heyting if for any U € ©/,, V € 7,
fHC (UNV)) = Cr (fTHU) N fHV)).

The following connects Heyting bi-distributive maps and Heyting b-morphisms from Sec-
tion 2.3.2

Remark 3.6.10. Similarly to remark 3.2 above, any map that is monotone with respect to
<t and <, and is such that for any v € X, 2" € X', if f(x) </ 2/, then there is y >, x such
that f(y) >, 2’ and f(y) >_ 2’ is Heyting.
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Let us now verify that Heyting bi-distributive maps correspond exactly to homomor-
phisms of Heyting algebras.

Lemma 3.6.11. Let f : & — % be a Heyting bi-distributive map between two Heyting UV -
spaces X and % . Then f~': CORO(#Z )" — CORO(Z )" is a Heyting homomorphism.

Proof. Tt is enough to prove that for any U,V € CORO(#)*,
fHEUN=2V)) = = (F7HU) N = fHV).

But clearly f being Heyting and bi-distributive implies that

—_
—

fHCr (UN—V)) = = fTHCr (UN=2V)) = 2 (f7

This completes the proof. O

Lemma 3.6.12. Let h : L — M be a Heyting homomorphism between two Heyting algebras
L and M. Then B(h) : B(M) — B(L) is a Heyting bi-distributive map.

Proof. By remark 5.4, it is enough to verify that for any (F,I) € B(M), (G, J) € B(L) for
which we have that (h=*(F), f~1(I)) <, (G, J), we can find (F",I') >, (F,I) € B(M) such
that (G, J) <, (R"Y(F"),h"1(I')) and (G, J) <_ (h"Y(F'),h"}(I")). T claim that F'V h[G] N
h[J] = (). Suppose towards a contradiction that there is d € F'V h[G] N h[J]. Then there is
a € F,c € G and b € J such that a A h(c) < d < h(b). Thus a < h(c) — h(b) = h(c — b),
and since h™}(F) C G, we have that ¢ A ¢ — b € G, contradicting the fact that G N J = 0.
Hence there is a pseudo-prime pair (F’, ") such that F'V h[G] C F" and h[J] C I'. But then
(F',I') is the required pair in B(M). O

As a consequence, we have the following restriction of Theorem 3.6.6:

Theorem 3.6.13. The category of Heyting UV -spaces and Heyting bi-distributive maps is
dual to the category of Heyting algebras and Heyting homomorphisms.

3.7 Choice-Free Priestley Duality

After showing how to translate the pairwise Stone space duality to a choice-free version via
pairwise UV -spaces, let us now make a similar attempt in the case of Priestley duality. As
we shall see below, one can define choice-free analogues of Priestley spaces by combining the
two topologies in a pairwise UV -space, but working out the details of this approach requires
some significant work. As in the previous section, we start from a choice-free representation
theorem for distributive lattices via ordered topological spaces, before identifying conditions
on such spaces that characterize the duals of distributive lattices.
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3.7.1 A choice-free representation of DL via ordered topological
spaces

In this section, we show how to obtain a representation of any distributive lattice as a
collection of subsets of an ordered topological space. This can be thought of as a choice-free
analogue to Priestley’s representation of distributive lattices as clopens of ordered Stone
spaces.

Fix a distributive lattice L, and let X be the set of all pseudo-prime pairs on L. We will
occasionally write L? for the dual lattice of L, and X? for the set of all pseudo-prime pairs of
L°. Let 7 be the topology generated by sets of the form a* or a~ for some a € L, and < the
specialization preorder on (X, 7). We will once again use the notation JU to designate the
closure operator in the topology induced by this specialization preorder, and =U to designate
the set —JU. As a word of caution, we will soon add an order < to this topological space.
We will then reserve the words “upset” and “downset” to the upward and downward closed
sets in the order <, but keep the notation JU for the closure in the topology generated by
the specialization preorder, hoping that no confusion will arise. We first make the following
observations.

Lemma 3.7.1.
L (FI)<(F.I')if FTF and I C I';
For any a,b€ L, ~a* =a~ and b~ =b*;

Any open subset of X is of the form UjeJ a;' Nb; for some {a;,b; | j € J} C L;

For any a,be L, at Nb~ is COROF.

5. Any COF subset of X is of the form at Nb~ for some a,b € L.
Proof.

1. Note first that a basic open in 7 is a finite intersection of sets of the form a™* or b~ for
some a,b € L. Solet U = (;c;a; N[y by for some finite sets J and K. Then a
point (F,1)isin U iff a; € F for all j € J and b, € [ for all k € K iff Aa; € F and
Vo, eliff (F,1)e (Aa;)"N(\ by)". Hence any basic open is of the form a* Nb~ for
some a,b € L. Now since < is the specialization order on 7, for any two points (F, I)
and (F',I'), (F,I) < (F',I') iff for any basic open U, (F,I) € U implies (F',I') € U
iff for any a,b € L, (F,I) € a™ Nb~ implies (F',I') €a™Nb” it FC Fand I C I'.

2. Recall that for any (F,I) € X and a,b € L, (F'Va,I)and (F,IVb) extend to pseudo-
prime pairs iff a ¢ I and b ¢ F respectively. Thus for any (F,I) € X and a,b € L,
(F,I) € latiffag I'iff (F,I)¢ a ,and (F,I)e b~ iff b¢ Fiff (F,I) ¢ b". Thus

—at =X \lat =X\ (X\a)=a"

and

b =X\ b =X\ (X \bh) =0bt.
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3. Any open set U is a union of basic open sets. Since basic opens in 7 are of the form

atNb~, U =, a; Nb; for some set J.
4. Clearly a™ Nb~ is open, and moreover since ——a’ = a™ and ——b~ = b~, we have that

—=(atNb7) =—=(at)N—==(b") =a™ Nb~. We check that a* Nb~ is compact. Note
that this is trivial if a < b, so suppose a £ b and a™Nb~ C U, ¢f Nd}. Let (F, ) be
the pseudo-prime pair extending (ta,|b). Since (F,I) € a* Nb~, there is j € J such
that (F,I) € ¢f Nd; . Note however that for any pseudo-prime pair (F',I') € a™ Nb~,
F CF and I C I hence ¢; € F' and d; € I'. Hence a™ Nb~ C c;r N d;, which
establishes that a* N b~ is compact. Moreover, the pair (F, ) is the <-least element
in at Nb~, thus a™ N b~ is a filter.

5. Let U be a COROF subset of X. By 3., U = Ujej a;“ Nb;, and since U is compact, we
can take J to be finite. We claim that, since U is a filter, there is j € J such that for
all k € J, af Nby € af Nb;. We may assume without loss of generality that a; £ b;
for all j € J. For any j € J, let (F}, ;) be the pseudo-prime pair extending (Ta;, 1b;).
Since U is a filter, there is (F,I) € U such that (F,I) < (Fj,1;) for all j € J. This
means that ' C (;c; Fj and I C (), 1;, and since (F,I) € U, there is j € J such
that a; € F' and b; € I. But this implies that for any & € J, a; € Fj, and b; € I. Since
(F}, I1) is the pseudo-prime pair extending (Tay, |b;), this means that ax < a;V by and
ar A\ bj < by. But the former implies that a: Nnob, C a;r, and the latter implies that
af Nb;, C b; . Therefore aifNb;, C a;r Nb; for any k € J, and U = aj Nob;. m

Note that this lemma implies that COF sets are also regular opens. In order to charac-
terize sets of the form a™ for some a € L as COF sets of a certain type, we need to add a
partial order to (X, 7). Let < be defined on X so that (F,I) C (F',I')iff F C F'and I' C I.
The following technical definition and lemma will be needed below.

Definition 3.7.2. Let (a,b) be a pair of elements of L. A right-complement for (a,b) is
an element & € L such that k Ab < 0 and a < bV k, and a left-complement for (a,b) is
an element j € L such that 1 < aVjand a Aj < b A pair (a,b) of elements of L is
right-complement free (resp. left-complement free) if the pair (a,b) has no right-complement
(resp. left-complement).

Lemma 3.7.3. Let a,b € L.

1. If (a,b) is a right-complement free pair in L, then there are pseudo-prime pairs (F,T)
and (F',I") € X such that (F,I) € at Nb~, (F,I) < (F',I'), and b ¢ I'.

2. If (a,b) is a left-complement free pair in L, then there are pseudo-prime pairs (F, )
and (F',I') € X such that (F,I) € at™Nb~, (F',I') X (F,I), and a & F".

Proof.
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1. Note first that a € b, for otherwise 0 would be a pseud-complement for (a,b). This
means that the pair (fa,|b) extends to a pseudo-prime pair (F,I) such that for any
c,deL,ce Fifa<bVcandde I iff aNd<b. Now consider the pair (F'V b,]0).
We claim that VN ]0 = (. Indeed, if c € FVbN]0, then ¢ = k A b for some k such
that a < bV k, and k A b < 0. But then & is a pseudo complement for the pair (a,b),
contradicting our assumption. Thus let (F’,I’) be the pseudo-prime pair extending
(F'V b,0). This means that for any ¢,d € L, c € F' iff k A b < ¢ for some k such that
a<bVk,anddeI'iff k AbAd <0 for some k such that a < bV k. Now we make
the following two claims:

o (1) x (F',I'): clearly FF C F’. To see that I’ C I, suppose d is such that
kAbAd<O0 for some k such that a < bV k. Then

aA(dAD) < (BVE)A(AAL) < (BAAAD)V (KADAD) < dAb<D,

hence a Ad < b, and d € I.

ebgI'ifbe I’ then kAbAb=kAb<O for some k such that a < bV k. But
then k is a pseudo-complement for the pair (a,b).

2. Suppose (a,b) is left-complement free, and work in the dual lattice L°. Then the pair
(b, a) is right-complement free, so there is (F, I), (F', I') € X° such that (F,I) € b™Na~,
a¢ ') FCF and I' C I. But then, (I, F) and (I', F’) are the required pseudo-prime
pairs in X, since (I, F') < (I, F) and (I,F) € at Nb. O

In Priestley duality, the original distributive lattice L in the Priestley space Spec(L) can
only be retrieved by adding the inclusion order on prime filters and taking the clopen upsets.
We shall see a similar phenomenon occurring here.

Lemma 3.7.4. Let L be a distributive lattice.

1. For any a,b € L, at is an upset, and b~ 1is a downset;

2. Any COF upset is of the form a™ for some a € L, and any COF downset is of the form
b~ for some b € L.

Proof.

1. Let a,b € L and suppose that (F,I) < (F’',I'). Then a € F implies a € F’, and b € I
implies b € I, since F* C F’" and I’ C I. Hence a™ is an upset and b~ is a downset.

2. Let U be a COF set. By the previous lemma, U = a* Nb~ for some a,b € L. Note that
if (a,b) is a right-complement free pair, then by Lemma 3.7.3 U cannot be an upset.
Similarly, if (a,b) is a left-complement free pair, then U cannot be a downset. Thus if
U is an upset there is £ € L such that bA k < 0 and a < bV k. But this implies at
once that at Nbd~ C £+ and £ C b, and hence that at Nb™ =a™ Nkt = (a A k).
Similarly, if U is a downset, there is 7 € L such that 1 < aV j and a A j < b. This
implies that a™ Ab~ C j~ and j~ C a*, hence that a™ Nb~ =b"Nj = (bVj)~. O
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We may now prove our choice-free representation theorem for distributive lattices via
ordered topological spaces.

Theorem 3.7.5. Let L be a distributive lattice and 2~ = (X, 7,<) as above. Then L is
isomorphic to the lattice (COFUP(Z7),N, V), where for any two COFUP sets U,V, UV V =
——(UUV).

Proof. By Lemma 3.7.4, any COF upset U is a* for some a € L. Thus the map -+ :
L — COFUP(Z") is surjective, and clearly preserves meets. Moreover, for any a,b € L,
—=(atUbT) = a(ma™N=b") = =(a”Nb") = =(aVb)™ = (aVb)T. Thus -t is a lattice
homomorphism. Finally, if a € b, then there is (F,I) € X extending the pair (ta,}b), thus
-7 is injective. Hence L is isomorphic to COFUP(Z"). O

Note that, in (X, 7, <), the order < can be seen to be compatible with the regular open
complement — in the sense that, for any COF upset U, =U is a COF downset, and for any
COF downset D, =D is a COF upset. In fact, this can be seen as a combination of two
distinct properties. The first one is topological in nature, since we impose that -U be COF
whenever U is a COF upset or downset. The second requirement is order-theoretic, and
amounts to the requirement that JU is an upset whenever U is a COF upset, and a downset
whenever U is a COF downset. The following strengthening of this latter condition has a
nice characterization in terms of compatibility conditions for < and x:

Lemma 3.7.6. Let (X, <,<) be a bi-preordered set.

1. The following are equivalent:

a) For any upset U, LU is an upset;

b) X satisfies the following Diamond principle (D): for any x,y,z € X such that
xr <y and r X z, there is w € X such that y < w and z < w:
w
I‘ﬂ Y\\\

’ N
S

Z, Yy
N

2. The following are equivalent:

a) For any downset D, | D is a downset;

b) X satisfies the following Exchange principle (E): For any x,y,z € X such that
r=xy <z there is q € X such that x < q < z:
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Proof.

1. To see that a) implies b), just apply a) to the upset generated by z. For the converse,
assume U is an upset and x € JU. Then x <y for some y € U. Now since (D) holds,
for any z = x, there is w > z such that w > y. But then w € U since U is an upset,
hence z € JU. Thus JU is an upset.

2. To see that a) implies b), apply a) to the downset generated by z. For the converse,
assume D is a downset and x < y for some y € | D. Then y < z for some z € D. Since
(E) holds, there is some ¢ such that z < ¢ %= z. Since D is a downset this implies that
q € D, hence x € |D. O

In fact, we can show that these stronger order-theoretic conditions also hold on the order
topological space 2~ above.

Lemma 3.7.7. Let U, D be subsets of X.

1. If U is an upset, then LU is an upset.

2. If D is a downset, then |D is a downset.
Proof.

1. We verify that (X, <, <) satisfies the Diamond principle (D) above. Suppose we have
z,y,z € X with e <yand z < 2. Let v = (F,, I,), y = (Fy, 1) and z = (F,,1,). We
claim that F,V F,N1I, = . To see this, notice that if aAc € I, for some a € F,,c € I,
then a € I,. But since I, C I, C I, this implies that F,,NI, # 0, a contradiction. Now
let w = (F, I,) be the pseudo-prime pair extending (F, V F;, I,). Clearly, I, C I,
F, C F, and F, C F,,. Hence z < w, and, to verify that y < w, we only need to check
that I,, C I,. So let d € I,,. This means that a AcAd € I, for some a € F, ¢ € F..
Thus a Ad € I, C I, from which it follows that d € I,,.

2. We verify that (X, <, %) satisfies the Exchange principle (E) above. Suppose we have
zr,y,z € X withe gy <z andlet v = (F,, I,), y = (Fy, I,) and z = (F}, I,). Observe
that 2° = (I, F,), v* = (I, F,) and 2° = (F}, I,) are pseudo-prime pairs on the dual
lattice of L, i.e. a%,9°,2° € X°. Moreover, since z < y, we have that 1° < 2°, and
since y < z, we have that y° < 2°. Thus by the previous result there is w = (F,, I,,)
such that 2° < w and z < w. But then, letting ¢ = (I, F,,), we have that ¢ € X,
r<gq,and q X 2. O

3.7.2 UV P spaces

In this section, we identify the ordered topological spaces that are isomorphic to the spaces
constructed in the previous section. We start by connecting the construction above with the
Jipsen-Moshier duality for lattices. Given a DL L, let D(L) be the ordered topological space
(X, 7,=<) constructed in the previous section.
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Lemma 3.7.8. For any DL L, D(L) is an HMS space.

Proof. Recall that any open U can be written as (J,.; aj Nb; . Since aj Nb; is COF for any
a,b € L, it follows that KOF(Z) is a basis for 7. Therefore we only have to check that D(L)
is sober, i.e., that every completely prime filter on 7 is O(F, I) for some (F, 1) € X. So let
Z be a completely prime filter, and let F ={a € L|at € F}and I ={be L |b” € I}
The sets I and I are easily seen to be a filter and an ideal on L respectively, and since .%#
is non-trivial, £ NI = (). Now for any a,b € L, a* N(aAb)” Cb~ and (aVb)TNb~ Ca™,
from which it follows that (F, ) is a pseudo-prime pair, and hence (F,I) € X. Finally, let
U= Ujejajﬂb; be an open set in X. Then (F,I) € U iff a; € F and b; € I for some j € J
iffa;“ﬂbj_EﬁforsomejéJifoEff. ]

Corollary 3.7.9. For any DL L, D(L) is a spectral space.
Proof. This follows from Theorem 2.5 in [197]. O

Thus our choice-free ordered topological duals of distributive lattices will be spectral
spaces with some additional properties. Let us also note the following.

Lemma 3.7.10. Let h: L — M be a lattice homomorphism between two DL. Then the map
h, : D(M) — D(L) defined by (F,I) — (h~Y[F],h~1[I]) is a spectral map. Moreover, for any
upset U and downset D € D(L), h;'[JU] = Lh; U] and h'[{D] = [h; [ D].

Proof. Recall that any compact open subset U of D(L) is of the from |J, , a Nb; for a;,b; €
L. Clearly, h'[U] = U, hi'a; INh by ], so it is enough to show that h;'[a*] = h(a)* and
h'[b7] = h(b)~ for any a,b € L. But this was already established in Lemma 3.5.16. Hence
h, is a spectral map. Since this implies that h, is open, it is also monotone with respect to
the specialization ordering <, so for any subset S of D(L), then |h;'[S] C h;'[{S]. Now
suppose U is an upset in D(L), and z = (F,I) € h;'[{S]. This means that there is some
(F',I') € U such that (h=}[F|,h![I]) < (F',I'). By a standard argument, F'\V h[F']NT = (),
so there is (F*,I*) € D(M) which extends the pair (F'V h[F’],I) to a pseudo prime pair.
Clearly, (F,I) < (F*, I*), and we claim that (F',I') < (h™'[F*],h7'[I*]). Since U is an
upset, this will show that (F,I) € |h;![U]. Clearly, if ¢ € F’, then f(c) € F*, hence
F' C h™'[F*]. Moreover, let d € h™'[I*]. This means that h(d) € I*, i.e., there is a € F
and ¢ € F’ such that a A h(c) A h(d) € I. Since h is a homomorphism, this implies that
a AN h(cAd) € I, and since (F,I) has the RMP, h(c Ad) € I. But then cAd € h7'[I] C I,
and since ¢ € F” and (F”,I') has the RMP it follows that d € I'. Thus (F',I') g (F*, I*).
Thus h'[JU] = |ht[U]. The corresponding statement for downsets is proved in a similar
way. O

Definition 3.7.11. The functor D : DL — oTop maps any DL L to the ordered topological

space D(L), and any lattice homomorphism h : L — M to the monotone continuous map
D(h) := hy : D(M) — D(L).

We can now introduce the main definition of this section:
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Definition 3.7.12. A UV P-space is a triple (X, 7, %) such that:
1. (X, 1) is a Ty-space with specialization order <, and < is a partial order on X;
2. A subset S of X is COF if and only if S = U N =V for some COF upsets U and V;
3. COF(Z) is a basis for (X, 7);
4. COFUP(Z") is a sublattice of RO(Z);

5. For any subset S of X, if S is an upset (resp. downset), then |.S is an upset (resp.
downset);

6. Any filter on COF(Z") is COF(z) for some point = € X;

7. For any x,y € X, if © £ y, then there is an upset U € COF(Z") such that z € U and
y¢U,orxz¢-Uandye -U.

The following is immediate from this definition:
Lemma 3.7.13. Let (X, 7, <) be an UV P space. Then COFUP(Z") is a distributive lattice.

Proof. By axiom 4, COFUP(Z") is a sublattice of RO(Z"). Since RO(Z") is a Boolean
algebra, it follows that COFUP(.2") is distributive. O

Let us now define the relevant notion of morphisms between UV P spaces:

Definition 3.7.14. Let (X, 7, <) and (Y, 7’,<’) be UV P spaces. A UV P map is a function
f X — Y such that:

1. f is F-continuous, i.e., f~![S] is COF for any COF subset S of Y
2. f is monotone: if x < 2/, then f(z) <" f(2');
3. If S is an upset or a downset in Y, then |f~1[S] = f~1[].S].

Lemma 3.7.15. Let f: (X, 7,<) — (Y,7/,<) be a UVP map. Then f~': COFUP(%) —
COFUP(Z") is a lattice-homomorphism.

Proof. Since f is F-continuous and monotone, it maps COF upsets to COF upsets. Moreover,
f~1 clearly preserves meets. To see that it preserves joins, suppose U,V are COF upsets in
Y. Note that this implies that =U and =V are downsets, thus that =(UUV) = -UN =V is
also a downset. Hence:

fUUV) = ~f AU UV)] = =f T UUV]===(fH U] U fHV]).
This completes the proof. O

Let us now connect the dual ordered topological space of a distributive lattice defined in
the previous section and UV P spaces.
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Lemma 3.7.16. For any distributive lattice L, D(L) is a UV P space.
Proof. We check that all conditions in Definition 3.7.12 are satisfied by (X, 7, <):

1. This condition is clear from the definition of 7 and <;

2. Recall that, by Lemma 3.7.1, if S is a COF subset of X, then U = a™ Nb~ for some
a,b e L. But a™,b" are COF upsets and b~ = —bt.

3. By Lemma 3.7.4, sets of the form a™ Nb~ form a basis for 7 and are COF.

4. By Lemma 3.7.4, any COF upset is regular open and of the form a™ for some a € L.
Given a,b € L, at Nb" = (a A b)T is the greatest lower bound of the set {a*,b"} in
COF, and =—(at UbT) = (a vV b)* is its least upper bound. Thus COFUP(Z") is a
sublattice of RO(Z").

5. This was proved in Lemma 3.7.7.

6. Let K be a filter on COF(Z"), and let KT ={a € L|at € K} and K- ={be L |
b~ € K}. We claim that (KT, K~) is a pseudo-prime pair in X, and moreover that
for any a,b € L, (KT, K~)€a™Nb iff atNb- € K,ie. COF(K*,K~)= K. Note
first that, since K is a filter, K is clearly a filter on L and K~ is clearly an ideal, and
moreover KT N K~ = (). To see that (K*, K~) has the RMP, assume (a Ab)~ € K for
some a,b € L such that a™ € L. Since all pairs in X have the RMP, at N (aAb)~ C b7,
thus b~ € K and b € K~. Similarly, suppose that (a Vb)* € K and b~ € K. Since
all pairs in X have the LJP, (a Vb)" Nb~ C a™, thus a € K, which establishes that
(K, K') also has the LJP. Hence (K, K’) € X. Finally, note that for any a,b € L,
(KT, K" )ea™nb  iff at € Kand b~ € K iffa™Nb~ € K. Thus K = COF(K*, K).

7. Suppose x # y for some z,y € X. Let x = (F}, [,) and y = (F},, I,). Then either there
isa € F, \ F,, or there is b € I, \ I,. In the first case, z € a* but y ¢ a™, and ™ is a
COF upset, while, in the second case, z ¢ b~ but y € b~, and b~ = —b™. n

Moreover, we have the following result for lattice homomorphisms.

Lemma 3.7.17. Let h : L — M be a lattice homomorphism between two DL L and M.
Then D(h) is a UV P map.

Proof. The proof of Lemma 3.7.10 reveals that D(h) is an F-continous map that satisfies
condition 3, and it is clearly monotone with respect to <. O

Thus the functor D maps DL into the category of UV P spaces and UV P maps between
them. We now show that this functor is an equivalence.

Theorem 3.7.18. Let & = (X,7,<) be a UVP space. Then Z is isomorphic to
D(COFUP(Z)).
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Proof. For any x € X, let COFUP(2)* = {U € COFUP(Z") | z € U} and COFUP(z)~ =
{V € COFUP(Z") | x € =V}, and let 0 : 2~ — D(COFUP(Z")) be defined such that
6(x) = (COFUP(x)*, COFUP(z)~). We first claim the following:

1.

Thus

3.

6 is well-defined. It is routine to check that COFUP(z)* and COFUP(z)~ are a filter
and an ideal on COFUP(Z") with empty intersection. To see that #(x) has the RMP,
suppose we have COF upsets U, V such that U € COFUP(z)* and UNV € COFUP(z)~.
Then x € UN (U NV). Since the regular opens of 2" form a Boolean algebra, we
have that UN=(U NV) C =V, hence x € =V and V € COFUP(z)~. Similarly, if
x € ~~(UUV)N =V, then since ==(U U V)N =V C U, it follows that x € U. Thus
if =—=(UUV) € COFUP(z)" and V € COFUP(z)~, we have that U € COFUP(z)™,
which shows that theta(z) also has the LHP. Hence 6(x) is a pseudo-prime pair on
COFUP(Z"), so 0 is well-defined.

0 is surjective. Let (F,I) be a pseudo-prime pair on COFUP(Z"), and consider K =
{Se€COF(Z):3U € F,V € [([UN=V C S)}. Clearly, K is a filter on COF(Z"), so
K = COF(x) for some x € X. Now for any COF upset U, U € COFUP(z)" iff x € U
iff U € CORO(z) iff Vi N =V, C U for some V} € F and V; € I. Now if Vi, V, and U
are regular opens such that V; N=V, C U, it follows that V; C =—(V,UU), hence since
(F,I) has the LJP V} € F and V, € I implies that U € F. Thus COFUP(z)" C F,
and the converse direction is obvious. One proves similarly that COFUP(z)~ = I, and

therefore (F, 1) = 0(x).

0 preserves and reflects <. Note that this also implies that 6 is injective, since < is
a partial order. Suppose x < y. Then every upset containing x also contains y, and
every downset containing y also contains x. Thus 6(z) < 6(y). Conversely, suppose
x £ y. Then there is a COF upset U such that either z € U and y ¢ U, or y € =U
and x ¢ —U. In the first case, COFUP(z)* ¢ COFUP(y)*, and in the second case
COFUP(y)~ € COFUP(z)~. Either way, 6(z) £ 0(y).

6 has an inverse #~!. Now we claim that both # and §~! are UV P morphisms:

. Any COF set in D(COFUP(2")) is of the form UT NV~ for COF upsets U,V in 2 .

Since 1 {UT NV~ = 0[UT] N O[V~], and the COF sets of 2" are closed under finite
intersections, it is enough to check that =[U*] and §~1[V~] is COF to conclude that
6 is F-continuous. Now 6(z) € U* iff U € COFUP(x)* iff x € U, and 0(z) € V~
iff V€ COFUP(x)™ iff x € =V. Thus 6§ '[{U*] = U and 67 '[V"] = =V, hence 0 is

spectral.

Similarly, any COF set in 2" is of the form U N =V for COF upsets U and V. Now for
any (F,1) e D(Z"), 01 (F,I) e Uiff U € Fiff (F,1) € U*, and 07(F,I) € =V iff
Veliff (F,I)eV~,s00[U]=U" and [=V] = V. Hence §~! is F-continuous.

Since 6 preserves and reflects <, both § and 6=! are monotone.
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4. Finally, since both # and #~! are F-continuous, they are also continuous, hence mono-
tone with respect to <. But then it follows at once that for any subset S of 2,
10[S] = 6[1.5], and for any subset T' of D(COFUP(2")), 0! [T] = 6~ [|T). O

We conclude with the main theorem of this section, which establishes a choice free duality
between DL and UV P spaces.

Theorem 3.7.19. The category UVP of UV P spaces and UV P maps s dual to the category
DL of distributive lattices and monotone maps.

Proof. By Theorems 3.7.5 and 3.7.18, the maps * and € are natural transformations from
1py, to COFUP o D and from 1lyve to D o COFUP. Naturality follows from Theorem 3.6.6
and the observation that B =1 and CORO = COFUP on morphisms. O]

3.8 Relation to Upper Vietoris Constructions

In this final section, we connect our two choice-free dualities with their non-constructive
counterparts via Vietoris constructions. As mentioned before, assuming the Boolean Prime
Ideal theorem is enough to show that the dual UV-space of a Boolean algebra is homeo-
morphic to the Vietoris hyperspace of its dual Stone space endowed with the Upper-Vietoris
topology instead of the full Vietoris topology. We show that a similar result holds in the
case of the dual pairwise UV-space of a distributive lattice under the assumption of the
(equivalent) Prime Filter Theorem. Recall first that the dual pairwise Stone space of L is
the bi-topological space (X, 7, 72), where X is the collection of all prime filters on L, and 7
and 7, are the topologies generated by the sets {a | a € L} and {b | b € L} respectively. We
let 9; and d, be the closed sets in 7 and 7, respectively, and 5, = 7 N dy and Py = 75 N d;.

Theorem 3.8.1 ([39]). Given a DL L and its dual pairwise Stone space (X, 1, 7o) there is
an order isomorphism between (Filt(L),2) and (92, <) on the one hand, and (Idl(L),C)
and (11, C) on the other hand.

The Vietoris construction was developed for pairwise Stone spaces by Lauridsen in [169].

Definition 3.8.2. Let (X, 71, 72) be a pairwise Stone space, and let K(2") = {G1 NGy #
0| Gy € 61,Gy € 82}. The Vietoris hyperspace of X is the set K(Z2') endowed with the
topologies generated by the subbases {OU, OU }yep, and {OU, OU }yep,, where

QU ={z e K(Z)|xznU # 0},

and
oU={zre K(Z)|xCU}.

Moreover, we let BK(.Z") be the bi-topological space obtained by endowing K (.2") with the
upper Vietoris topologies m; and 7y generated by {OU }yep, and {OU }yep, respectively.
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Lauridsen [169] shows how the previous definition constitutes the object part of an endo-
functor on the category on pairwise Stone spaces, which corresponds to the Vietoris functor
on the category of Priestley spaces. We show that for any DL L with dual pairwise Stone
space (X, 7y, 72), (K(Z),m,ms) is bi-homeomorphic to B(L). This result should not be sur-
prising: points in K (%) are determined by a closed set in §; and a closed set in d5. Since,
by the duality in [39], the complement of the former corresponds to an ideal on L and the
latter corresponds to a filter, each point in K(.Z") determines a pair of a filter and an ideal.
We will show that this pair is actually pseudo-prime, and that conversely any pseudo-prime
pair determines a point in K (2"). From now on, fix a DL L with dual pairwise Stone space
(X, 71, 7) and dual pairwise UV-space (Y, 7., 7). Recall that:

e basic opens in 7, are of the form a = {p € X | a € p};

basic opens in 7, are of the form b= {p € X | b ¢ p};
e basic opens in 7 are of the form o™ = {(F,I) € Y | a € F};
e basic opens in 7_ are of the form b~ ={(F,I) € Y | be I}.

Definition 3.8.3. Let 3 : Y — K(Z") be defined such that for any (F,I) € Y, (%) =
Moer @M Mper b-

Since a is closed in 75 and b is closed in 71, B is well-defined. Moreover, it is easy to see
that that for any pair (F, 1), B(F,I)={pe X |F Cpand INp=0}.
Conversely, we map K (2") into Y as follows:

Definition 3.8.4. Let 2 € K(2). Define F, = {a € L |z Ca}and I, = {b € L | znb = 0},
and let a: K(Z') — Y be defined as a(x) = (Fy, I,,).

Lemma 3.8.5. The map « is well-defined, i.e., for any v € X, (Fy, I,,) is a pseudo-prime
pair.

Proof. It is routine to verify that F, is a filter and I, is an ideal, and that F, NI, = ()
if v # (). Suppose aAb €I, and a € F, for some a,b € L. This means that z C a and
zNaAb = (). Since a A aNb = a/\b this implies that xﬂb = (), hence b b € I,.. Similarly, suppose
that a Vb € F, and b € I,. Then z C aVband zNb = . Since a\/b—an this implies
that  C a, and thus a € F,. Therefore for any x € K(Z"), (Fy, I;) is a pseudo-prime pair
on L, and « is well-defined. n

Lemma 3.8.6.
1. Forany (F\I) e X, af(F,I) = (F,I).
2. For any x € K(Z), fa(x) =

Proof.
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1. Note first that aB(F,I) = (Farn), Lar1)). Now:
Fesrny={acL|BF,I)Ca}={acL|VpeX(FCpAlINp=0—acp)}
and:
Lo ={beL|BF,1Nb=0}={beL|Vpe X(FCpAINp=0—béep)}

This immediately implies that if ' C Fpppy and I C Fppp. Now suppose a ¢ F.
Since (F, ) is pseudo prime, FNaV I = (), so by the Prime Filter Theorem there
is p € X such that F C pand pnaV I = 0. Hence a ¢ Fyp,. This shows that
F = Fy(p,r). Similarly, if b ¢ I, then F v bN 1 =0, from which it follows that there is
p € X such that F'Vb Cpand pNI =0, and hence that b ¢ Igz). This establishes
that I = Ig(r,r), which completes the proof.

2. Let x € K(Z), and note first that Sa(z) ={p € X | F, Cpand pNI, = 0}. Now if
p € x, then for any a € L such that x C a, a € p, and for any b € L such that zNb = 0,
b ¢ p. But this implies that F, C p and I, Np = (), thus = C Ba(z). Conversely, note
that, since € K(Z), there are G,J C L such that x = (),.oa N ﬂbejg. Now for

any a,b € L, if a € G, then z C @, and if b € J, then z N'b = ), from which it follows
that a € F, and b € I, hence H C F, and J C I,. Hence:

Nan(bc(an()bCa

acFy bel, acqG beJ

which concludes the proof that fa(z) = x. O

Thus o = 371, We now show that 3 and « are bi-continuous maps.
Lemma 3.8.7. The maps B :B(L) — BK(Z") and o : BK(Z") — B(L) are bi-continuous.

Proof. We claim that for any a,b € L:

~ .

1. a[0a] = a™ and o[O0b] = b7
2. Bla*] = 0 and Blb~] = 0O — b.
For 1, note that:

a[0d] = {a(z) € B(L) | x C @)
={(F, 1) € B(L) | » Ca}
— ((F,])€B(L) |ac F}

—_= a+’
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and :

a[0b] € B(L) = {a(z) | z C b}
= {(F., I.) € B(L) | = nb = 0}
={(F,I)eB(L) | be I}
b

For 2, we have that:

Bla™l={B(F. 1) € K(Z)|a € F}
={(Nan(be K(Z)|ac F}

acF bel
={ze K(Z)|xCa}
= Oa,

and:
BT ={B(F 1) e K(Z)|be I}
={(Nan(be K(Z)|be I}

a€F bel
={z e K(Z)|znb=0}
— ob.

Thus both o and 8 maps basic open sets to basic open sets in both topologies, and are
therefore bi-continuous. O

Corollary 3.8.8. The spaces BK(Z") and B(L) are homeomorphic.

Proof. Immediate from the previous lemma and the fact that o and 3 are inverses to one
another. O]

Therefore pairwise UV -space are precisely the upper Vietoris pairwise Stone spaces. One
might wonder whether a similar result can be achieved for UV P spaces. Unsurprisingly,
this is also the case. In fact, we show that for any DL L, D(L) is order-homeomorphic to
UV (Pries(L)), i.e., to the upper Vietoris hyperspace of the dual Priestley space of L.

Definition 3.8.9. Let L be a DL and Pries(L) = (X, 7, <) its dual Priestley space. Let
C(Z") be the collection of non-empty convex closed subsets of X, and V(Pries(L)) =
(C(Z),7V,C), where 7V is the Vietoris topology generated by the subbasis

{OU, OU veciopupzy U {0U, OU Yvecioppn(2)

and C is the Egli-Milner lift of <, i.e., forany U,V € C(2"), U CV iff U C [V and V C 1U.
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It is straightforward to check that any closed convex set S is equal to U NV for some
closed upset U and some closed downset V. Since closed upsets in X correspond to filters
on L and open upsets correspond to ideals on L, we have that C(2") = K(Z), and thus
we may view « and ( as inverse maps between D(L) and C'(2Z"). Now let UV (Pries(L)) =
(C(Z),nV,C), where 7 is the upper Vietoris topology generated by sets of the form OU
for U € CpUp(Z") U CpDn(Z).

Lemma 3.8.10. The maps o : UV (Pries(L)) — D(L) and § : D(L) — UV (Pries(L)) are
continuous and monotone.

Proof.

e Recall that clopen upsets and clopen downsets in Pries(L) are of the form a and b
for a,b € L, hence subbasic opens in UV (Pries(L)) are of the form 0Oa or O — b.
Similarly, subbasic opens in D(L) are of the form a™ or b~ for some a,b € L. Thus
by Lemma 3.8.7 a and [ map subbasic opens to subbasic opens, and are therefore
continuous since they are inverses of each other. Hence we only have to check that
they are both monotone.

o Let UV € C(Z) such that U C V. We claim that a(U) = Fy, Iy < a(V) = Fy, Iy,
ie., Fy C Fy and Iy C Iy. Suppose that a € Fyy. Then U C a, and, since a is an
upset, V' C tU C @, from which it follows that a € Fy. Similarly, suppose that b € Iy .
Then VNb=10, ie,V Cb, and since b is a downset, we have that U C [V C b, and
thus b € I;;. Therefore a(U) < a(V'), which shows that « is monotone.

e Suppose (F,I) < (G, J). We claim that 5(F,I) C 5(G,J). Note that (F,I) < (G, J)
implies that FF C G and J C I. Now assume p € 3(F,I), ie., F Cpand pNI = 0.
We claim that p vV F'NJ = (). Indeed, if ¢ A a € J for some ¢ € p,a € J, since (G, J)
has the RMP we have that ¢ € J. But this is a contradiction, as J C I and I Np = (.
Thus let ¢ be a prime filter such that p VG C g and JNg = (. Then p C ¢ and
q € B(G, J), and hence 5(F,I) C |5(G,J). Similarly, assume g € B(G, J), i.e., G Cq
and JN¢q = 0. Let ¢° be the dual prime ideal of g, i.e., ¢° = {d € L | d & ¢}. We claim
that F,¢° vV I = . Indeed, suppose that d Vb € F for some d € ¢°,b € I. Then since
(F,I) has the LJP, d € F'. But this is a contradiction, as F' C ¢ and ¢ N ¢’ = (. Thus
let p be a prime filter such that F C p and pN¢® VI = (). Clearly, p € B(F,I) and
p C ¢, and therefore 5(G,J) C 18(F,I). Hence S(F,I) C B(G, J), which establishes
that [ is order-preserving. O

Corollary 3.8.11. Any UV P space is order homeomorphic to the upper Vietoris space of a
Priestley space.

We conclude with a brief summary of our results in this chapter. As we have seen, the
methods used in [41] to obtain a choice-free duality for Boolean algebras can be extended in a
relatively straightforward way to de Vries algebras, distributive lattices and Heyting algebras.
In all three cases, the reliance on the Prime Filter Theorem can be avoided by considering
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either filters or filter-ideal pairs, and introducing more structure into the geometric duals of
the algebraic structures under consideration. Moreover, there is a very tight link between
choice-free and non-constructive representations, which can always be made explicit via
Upper Vietoris constructions. As we shall see in the next chapter, Vietoris functors and
their algebraic duals will play an important although slightly different role in generalizing
the dualities presented here to a duality for the category of all lattices.
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Chapter 4

A Duality for Lattices and
Fundamental Logic

4.1 Introduction

In the previous chapter, we have seen how mild generalizations of Bezhanishvili and Hol-
liday’s choice-free version of Stone duality via UV-spaces can be obtained by following a
strategy that is essentially similar to the one adopted in Boolean case. Instead of construct-
ing directly the dual space of a given lattice by taking as points a set of filters with some
maximality requirements, one approximates such points via a poset of filters. Topologically,
this corresponds to a certain kind of Vietoris hyperspace construction, in which points are
approximated by closed subsets. The original lattice L can then be recovered as the fixpoints
of some closure operator on its dual space. Importantly, this does not yield a representation
of L as a subalgebra of a field of sets, because joins are not computed as set-theoretic unions.
While this can be seen as a drawback compared to standard representations via the Prime
Filter Theorem in the distributive case, this also opens up the possibility of extending these
techniques beyond the distributive setting in a straightforward way.

In this chapter, we will present a duality for the category of lattices that is based on
similar ideas. The motivation for this is threefold. First, we already developed a discrete
duality for complete lattices in Chapter 2, but left open the issue of topologizing this duality
in order to represent all lattices. Our first goal is to obtain such a duality. In other words,
just like the UV duality topologizes the forcing duality, the duality we present here topol-
ogizes b-frame duality. Second, the dual spaces of lattices that we obtain are very familiar
structures, and in many ways our duality is very similar to established dualities for lattices
that have been mentioned in the first chapter, such as the filter-ideal based dualities of All-
wein and Hartonas [1] and of Hartonas and Dunn [125, 124, 126, 121]. The novelty of our
approach is that we derive filter-ideal spaces from an embedding of the category of lattices
into the category of distributive lattices, and use then a variation of Priestley duality. In
other words, one could think of our work here as deriving the Hartonas-Dunn duality from
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Priestley duality. This raises the issue of whether this duality could be obtained without
the Axiom of Choice, which we will briefly discuss. Finally, the third motivation for the
duality we introduce here is that it is closely related to the semantics for Fundamental Logic
in terms of compatibility relations presented in [131, 132]. Accordingly, it may be seen as
a way of lifting Holliday’s correspondence between compatibility frames and lattices to a
full duality, obtaining in the process a topological characterization of the duals of lattices.
Because the lattices associated with Fundamental Logic are equipped with a unary opera-
tion — called a weak pseudo-complement, we will also have to extend our basic duality for
lattices to one for weakly pseudo-complemented lattices. As we will see, the ideas that play
a key role in the duality for lattices will be equally relevant in establishing a duality for
weakly pseudo-complemented lattices. Although we will not have the space to do here, this
suggests a promising way of proving versions of some cornerstone results in the semantics
of non-classical logics, such as Goldblatt-Thomason-style theorems [110], in the setting of
compatibility frames for Fundamental Logic. Indeed, duality-theoretic approaches, particu-
larly those that are close to Stone and Priestley duality are often powerful tools in obtaining
elegant proofs of Goldblatt-Thomason theorems [162, 114, 61].

The rest of the chapter is organized as follows. In Section 4.2, we review the main
ingredients of our approach, which are a certain of free constructions on lattices and Vietoris
hyperspaces on Priestley spaces. In Section 4.3, we use these functors to lift Priestley duality
to dualities between two categories of maps between distributive lattices that preserve either
the meet or join operation, and two categories on relations between Priestley spaces. These
dualities are then use in Section 4.4 to obtain a duality between lattices and F'I-spaces that
is similar the Hartonas-Dunn duality. Finally, a variation of this duality for weakly-pseudo
complemented lattices is proved in Section 4.5, while Section 4.6 concludes with some remarks
relating our work in this chapter to b-frames and the relational semantics for Fundamental
Logic.

4.2 Preliminaries

In this section, we introduce the basic duality-theoretic ingredients that we will use in the
rest of this chapter. Most of the material presented here is already known, in some form
or other, in the literature, but we give a fairly detailed and systematic presentation here
that is tailored to our purposes. Recall that our main goal in this chapter is to use Priestley
duality to obtain a duality for the category of all lattices, as well as a method for representing
monotone maps between lattices. The first component of our solution will be the definition
of two free functors into the category of distributive lattices. We will then define Priestley
duals of such free constructions via Vietoris hyperspaces. Because it will simplify several
computations later on, we will also introduce a Priestley dual to the “dualizing” endofunctor
on the category of lattices.
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4.2.1 Free 0 and & Constructions

We start by introducing the following categories:

Definition 4.2.1. Let MLat™ be the category of bounded meet-semilattices (i.e., meet-
semilattices with a largest element 1) and top-preserving monotone maps between them. We
define the following restrictions of this category:

e MLat is the subcategory of bounded meet-semilattices and meet-preserving maps be-
tween them (where a meet-preserving map also preserves the top element 1);

e DL, is the subcategory of bounded distributive lattices and meet-preserving maps
between them.

Dually, let JLat™ be the category of bounded join-semilattices (i.e., join-semilattices with a
smallest element 0) and bottom-preserving monotone maps between them. We also define
the following restrictions of this category:

e JLat is the subcategory of bounded join-semilattices and join-preserving maps between
them (where a join-preserving map also preserves the bottom element 0);

e DL, is the subcategory of bounded distributive lattices and join-preserving maps be-
tween them.

It is easy to see from the previous definition that the category Lat* of lattices and
monotone maps between them is precisely the intersection of MLat* and JLat", the category
Lat of lattices and lattice homomorphisms is precisely the intersection of MLat and JLat,
and finally that DL is the intersection of DL, and DL,,.

Definition 4.2.2. The functors M : MLat* — DL, and M, : JLat® — DL, are defined
as follows:

e For any bounded meet-semilattice L, M(L) is the free distributive lattice given by the
set of generators {Oa | @ € L} and the relations {Ja A 0b = O(a A b),01 = 1,00 =
0|a,be L}.

e For any bounded join-semilattice L, M (L) is the free distributive lattice given by the
set of generators {<a | a € L} and the relations {OCa VvV Ob = O(a V), 01 = 1,00 =
0]a,be L}

e For any bounded meet-semilattices L and M and any monotone map f : L — M,
Mg (f) : Mp(L) — Mg(M) is defined by letting Mg (f)(V,c; Oai) = V,e; Of (@) for
any {a; | i€ I} C L.

e For any bounded join-semilattices L and M and any monotone map f : L — M,
Mo (f) : Mo(L) — Mo (M) is defined by letting Mo(f)(/\jej Saj) = /\jeJ O f(ay) for
any {a; | j€ J} C L.
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Note that M and M are well-defined on morphisms because every element in M (L)
and M (L) can be written as a join of generators and as a meet of generators respectively. It
is also straightforward to verify that My and M, restrict to functors from MLat and JLat
respectively to DL. Moreover, M5 and M, have the following properties:

Lemma 4.2.3. Let L be a meet-semilattice and M a join-semilattice.

1. There is a meet-semilattice embedding of L into Mg (L) given by a — Oa, and a join-
semilattice embedding of M into M (M) given by a — <a.

2. For any meet-semilattice N and monotone map f : L — N, Mg(f) is the unique join-
semilattice homomorphism g : Mg(L) — Mg(N) such that g(da) = Of(a) for any
ac€ L.

3. Dually, for any join-semilattice N and monotone map f : M — N, Mo(f) is the unique
meet-semilattice homomorphism g : Mo (M) — Mo (N) such that g(Ca) = < f(a) for
any a € L.

4. For any distributive lattice N and any meet-semilattice homomorphism f : L — N,

there is a unique lattice homomorphism f : Mg(L) — N such that f(Oa) = f(a) for
any a € M.

5. Dually, for any distributive lattice N and any join-semilattice homomorphism f : M —
N, there is a unique lattice homomorphism f : Mo (M) — N such that f(Ca) = f(a)

for any a € M.

Proof. Part 1 is immediate. For part 2, it is enough to observe that, if g; Mg(L) — Mg(M)
is a join-semilattice map, then g(\/,.; Oa;) = V,c; 9(0a;) for any {a; | i € I} C L, so that
g(Oa) = Of(a) for all a € L implies that g = Mg(f). Part 3 is proved completely similarly.

For part 4, let f : L — N be a meet-semilattice homomorphism, and define } : Mg(L) —
N by letting f(\,;c; Oa;) = V,c; Of(a;). Clearly, f is join-preserving. To see that it also
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preserves meets, note that:

FO\ oa) A FO\ Tb) =\ fla) A F(by)
iel jeJ iel jeJ
=\ (fla) A f(b))
iel,jed
= \/ f(al A bj>

iel,jeJ

~

FOC\ olaing))

i€l jed

where the second equality holds because N is distributive and the third one because f is
meet-preserving. Uniqueness is proved by the same argument as in part 2, and part 5 is a
completely dual argument to part 4. O]

The following observation makes more precise the sense in which My and M, are dual
to one another. Let 6 be the functor mapping a poset to its order-dual, and any order-
preserving or order-reversing map to itself. Note that ¢ restricts to functors on MLat",
JLat*, MLat, JLat, DL,, DL, Lat and DL and establishes an isomorphism of categories
between MLat* and JLat*, MLat and JLat and between DL, and DL,,.

Lemma 4.2.4. For any meet-semilattice L, My (L) ~ Mod(L), and for any join-semilattice
M, éMo (M) ~ Mgd(M).

5

/\
MLat* JLat”

\_/

0
0

/\
DL, DL,

\_/

0

Mg Mo

Proof. Since 0 establishes isomorphisms between MLat* and JLat* and between DL, and
DL,, it is clearly enough to show that dMg(L) ~ Myd(L) for any meet-semilattice L.
In what follows, if L is a meet-semilattice (resp. join-semilattice) with meet (resp. join)
operation A (resp. V), we let U (resp. 1) denote the join (resp. meet) operation on its
order dual, and if @ € L, we write a for the corresponding element in the order dual. Now
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fix a meet-semilattice L. For any {a; | i € I}, let (1(V,;c;0as) = N;e; Cai. Clearly (g
is surjective. Now for any {a; | ¢ € I},{b; | j € J} C L, one has the following chain of
equivalences:

LV 0a:) < ¢\ oby) & A\ ©a; <\ Ob;
el JjeJ el jeJ
eVieJdiel: Ca; < Ob;
eVjeJIiel: b <a
&SVjeJhel :Ob <O

< \/ oy <\ o

J€J el
& \/ oa; < \/ ob;,
iel jeJ

where the third and fourth equivalences hold because M(L) and M, (L) are free construc-
tions. This establishes that (;, is an order-isomorphism. O]

The relationships between all the functors introduced so far are summed up in the com-
mutative diagram below, where unlabelled arrows are the obvious inclusion maps and we
use the same notation for a functor and its restriction to a subcategory.

DL, <« 5 > DL,

/\ /\

DL — 65— DL

JLat* ¢ 5 5 l\/ILat*

\/ \/

J Lat 5 MLat

Lat — 05— Lat

4.2.2 Two Vietoris Endofunctors

Let us now introduce some well-known Vietoris constructions on Priestley spaces. For some
of the results mentioned in this section, we refer the reader to [257, 30].

Definition 4.2.5. The Upper Vietoris functor is the functor V5 : PS — PS defined as
follows:
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e For any Priestley space (27,7,<), V5(2") is the Priestley space given by the set
TC(Z) of all non-empty closed upsets of 2", ordered by reverse inclusion and endowed
with the topology generated by sets of the form OU = {C € 1K(Z") | C C U} for
some U € ClopUp(Z") and their complements.

e For any Priestley map f: 2" — %, Vo(f) : Vo (Z7) — V4(#) maps any C € V4(2")
to 1f[CT.

Dually, the Lower Vietoris functor is the functor Vi : PS — PS defined as follows:

e For any Priestley space (27,7,<), Vo(Z7) is the Priestley space given by the set
WK(Z) of all non-empty closed downsets of 27, ordered by inclusion and endowed
with the topology generated by the sets OU = {C € |[K(Z") | CNU # 0} for some
U € ClopUp(Z") and their complements.

e For any Priestley map f: 2" — %, Vo(f) : Vo (Z) = Vo (%) maps any C' € Vo (Z2)
to Lf[CT.

Of course, one would need to verify that the two functors introduced in Definition 4.2.5 are
indeed endofunctors on PS, and in particular that V5(2") and Vo (2") are indeed Priestley
spaces for any Priestley space 2. Instead of checking this directly, however, it is enough
to show that V5 and V are the “topological counterparts” of the restrictions to DL of M
and V¢ respectively. In order to do this, we start with the following definition, which will
play a significant role throughout this chapter.

Definition 4.2.6. Let L be lattice. The Filter space of L is the ordered topological space
F(L) = (Filt(L), 77, <), where Filt(L) is the set of all proper filters on L and 7r is the
topology generated by sets of the form a = {F € F(L) | a € F} for every a € L, as
well as their complements. Dually, the Ideal space of L is the ordered topological space
Z(L) = (Idl(L),77,2), where Idl(L) is the set of all proper ideals on L and 77 is the

topology generated by set of the form @ = {I € Z(L) | a ¢ I} and their complements.
The following is well known:

Lemma 4.2.7. Let L be a distributive lattice. The following are order-preserving homeo-
morphisms natural in L:

1. The map nt : SpecMg(L) — F(L) given by nE(p) = {a € L | Oa € p};
2. The map ¢ : F(L) — VaSpec(L) given by e5(F) = \,er a5
3. The map n% : SpecMo (L) — Z(L) given by n5(p) = {a € L | Ca ¢ p};

4. The map €5 : T(L) — VoSpec(L) given by €5(I) = (,e; -
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Proof. 1t is routine to verify that all maps defined are order-isomorphisms. To check that
they are also homeomorphisms, it is enough to observe that each of them and their inverses
map basic open sets to basic open sets. We check that this is the case for n% and €%, and
leave the other cases to the reader.

For nk, it is enough to sho/wt\hat né[@] = a for every a € L, since basic opens upsets in

SpecM (L) are of the form \/, ., a = (J,c4 @ for some finite A C L. But we easily compute:

ng(p) €@ < a €nbp
<~ 0Oacp
& p e 0a,

which shows that 7% [a] = Oa, and thus that a = n%[0al.
Similarly, for €%, it is enough to show that €5[@] = ¢a. But we have:

cs(I)eoaebna#0
bel
sad¢l
&1 ea,

where the right to left direction in the second equivalence follows from the Prime Filter
Theorem. This means that €& ' [©a] = &, and thus that e5[d] = Oa. O

As an immediate consequence of Lemma 4.2.7, we have that the maps 0% : SpecMg(L) —
VaSpec(L) and 0% : SpecMe (L) — VoSpec(L) are order-homeomorphisms and thus that
VuSpec(L) and Vo Spec(L) are Priestley spaces.

F(L) Z(L)

AN 7\,

L L
ng €g ns €5

7 N\ 7 N\

SpecMp (L) oL Vo Spec(L) SpecMo (L) 0% Vo Spec(L)

Moreover, we have the following:

Lemma 4.2.8. Let f : M — L be a homormorphism betweeen distributive lattices. Then
the following diagrams commute:

SpecMp (L) —— SpecMn(f) — SpecMp (M) SpecM (L) —— SpecMo(f) — SpecMlo (M)
0L egf a‘g 0‘%
| | l !

VgSpec(L) VoSpee(f) — Vo Spec(M)

VoSpee(f) — Vg Spec(L) Vo Spec(L)
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Proof. We only prove the claim for the diagram on the left. The other case is similar.
Let p € SpecMg(L). First, we compute that for any b € M, 0Ob € SpecMg(f)(p) iff
aOf(b) € p, hence 0 o SpecMg(f) = ﬂmf(b)epg. Moreover, Since 6L(p) = MNaaep @ We have
that Vo Spec(f) o 05 = Mq | 30" € Noae, @ : f7'[P] = ¢} Hence it suffices to show that for
any q € VoSpec(M), q € ﬂDf(b)epg if and only if there is p’ € [,¢, @ such that ¢ 2 'l
For the right-to-left inclusion, note that O f(b) € p implies that Of(b) € p’ and thus that
b e f7lp] C q. For the converse, suppose that q € ﬂuf(b)epg. Let F' = {a | Oa € p} and
I ={f(b)|b¢ q}. Clearly, F is a filter and [ is an ideal. Moreover, if there is c € FN 1,
then Of(c) € p and ¢ ¢ ¢, contradicting our assumption on ¢. By the Prime Filter Theorem,
there is p’ € Spec(M) such that F C p’ and p’N I = (). This shows the left-to-right inclusion,
which completes the proof. ]

As a consequence, V5 and V¢ are well-defined endofunctors on PS, and the fami-
lies {05} repr, and {05} cpr are natural isomorphisms between the functors SpecMy and
VaSpec and SpecM and Vo Spec respectively. By Priestley duality, we also have natural
isomorphisms {x? } 2cps between the functors ClopUpVy and MyClopUp on one hand,
and {kZ } 2cps between the functors ClopUpVe and M ClopUp on the other hand. Al-
though we leave the details to the reader, one can compute that for any Priestley space
Z and any set {U; | i € I} of clopen upsets in 2, k2 (N\,c;0U;) = N;e; OUi, and
“g (Vie[ OU;) = Uie[ OU;.

Finally, we will use below the observation that the functors V5 and V,, are also dual to
one another in the same sense that Mg and M are also dual. Let us conclude this section
by spelling this out in more detail.

el

4.2.3 Dualization

Definition 4.2.9. For any Priestley space 2" = (X, 7, <), let 7(Z") be the Priestley space
(X, 7,>). For any order-continuous map f : 2" — % between Priestely spaces, let v(f) :
Y(Z) = v(#) be simply f. This induces a functor v : PS — PS.

It is straightforward to verify that v is well defined. In particular, if x # y for some
z,y € y(Z), then y £ x in 2, so by the Priestley Separation Axiom in .2 there is a clopen
upset U such that y € U and « ¢ U. But then —U is a clopen upset in v(Z") such that
x € —U and y ¢ —U. This shows that v(Z2") satisfies the Priestley Separation Axiom as
well.

Lemma 4.2.10. There are natural isomorphisms {ap}repr and {Ba}aeps respectively
between the functors yoSpec and Specod and between the functors ClopUpo~y and doClopUp.

Proof. For any distributive lattice L, let ay, : ySpec(L) — Specd(L) be the map p +— L\ p
for any p € Spec(L). Note that this is well-defined since the complement of a prime filter on
L is a prime ideal on L, and thus a prime filter on §(L). Clearly, «, is bijective, monotone
and order-reflecting, and o '[a] = @ for any a € L, which is enough to establish that it is in
fact a homeomorphism of Priestley spaces.



4.2. PRELIMINARIES 130

Similarly, for any Priestley space 2" = (X, 7, <), let B9 : ClopUpy(Z") — dClopUp(Z")
be the map U +— —U. Note that this is well defined, since clopen upsets in (.2") are precisely
the clopen downsets in 2", hence their complements are the clopen upsets of Z". Clearly,
Ba is bijective and order reversing as a map into (ClopUpZ’), C), hence it is an order
isomorphism between ClopUpvy(Z") and 0ClopUp(Z"). Finally, the naturality conditions
for {ar}repr and {52 } 2cps are easy to check and left to the reader. O

Corollary 4.2.11. For any Priestley space 2, YVg(2Z) = Voy(Z), and Vgy(Z') =
YWVo(Z) naturally in 2.

Proof. Since + is a self-inverse endofunctor, it is enough to define an order-homeomorphism
from YV5(Z7) to Voy(Z7). By Priestley duality, we may assume that 2" is Spec(L) for
some distributive lattice L. But then we define the order-homeomorphism &, as shown in
the following diagram:

SpecdM(L) == Spec(¢r) == SpecMo (L)

f I

QMG (L) gi(L)

H I
vSpecMg(L) Vo Spec (L)
0 |

Y05~ Vo (asr) ™)
| U
yYVaSpec(L) 3 VeorySpec(L)

Note that the first and penultimate arrows are order-homeomorphisms by Lemma 4.2.8,
the second and last are order-homeomorphisms by Lemma 4.2.10, and the middle one is an
order-homeomorphism by Lemma 4.2.4. Again, naturality is left to the reader. O]

We conclude this section with a diagram summarizing the various relationships between
the endofunctors on DL introduced so far. All triangles in the diagram below commute up
to isomorphism.
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PS PS
\‘\\7////*
ClopUp Spec
Spec \ / ClopUp
DL pL &

\ T
Y/ Mg Mo Vo
J 5 \

DL = DL

ClopUp / \ Spec
/ Spec ClopUp \
Y

PS PS

4.3 Lifting Priestley Duality

In this section, we lift Priestley duality to dualities between the arrow categories of DL, and
DL, and categories of relations between Priestley spaces. The key idea is inspired from the
standard way of lifting Stone Duality to a duality between modal Boolean algebras and Stone
spaces with relations. The same approach has also already been extended to distributive
lattices and Priestley spaces, in order to obtain a duality-theoretic treatment of positive
modal logic. There are, however, two main difference between this approach and the one
developed here. First, the modal algebras considered in positive modal logic are distributive
lattices expanded with both a meet-preserving and a join-preserving operation. By contrast,
our approach in this section treats the two separately. Second, in positive modal logic, O and
<& are operators from a distributive lattice into itself. As a consequence, the corresponding
relations on Priestley spaces are relations on a single Priestley space. By contrast, we will
be interested in join-preserving and meet-preserving maps from one distributive lattice into
another. Consequently, the relations we will be working with are relations from a Priestley
space to another. We start by clarifying the relationship between such closed relations on
Priestley spaces and Vietoris hyperspaces.

4.3.1 Closed Relations on Priestley Spaces

We start with the following definitions.

Definition 4.3.1. Let 2" = (X,7x,<x) and & = (Y,7y,<y) be Priestley spaces. A
relation R C X x Y is a lower closed relation if it has the following properties:

1. For any z € X, R(x) = {y € Y | xRy} is closed;

2. For any U € ClopUp(%), RU]={z € X | R(x) NU # 0} is a clopen upset;
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3. >y oRo >x C R. In other words, for any z,2’ € X and y,v € Y, x >x 2/, 2’ Ry and
y >y y' together imply xRy’, as shown in the diagram below.

x ----- R---% Yy
Z|X >TY
| |
¥ —R—y

Dually, a relation R C X x Y is an upper closed relation if it has the following properties:
1. For any z € X, R(x) ={y € Y | xRy} is closed;
2. For any U € ClopDn(¥%), R7'[U] ={z € X | R(z) N U # 0} is a clopen downset;

3. <y oRo <x C R. In other words, for any z,2’ € X and y,y/ € Y, x <x 2/, 2’ Ry and
y >y y' together imply xRy’, as shown in the diagram below.

T ----- R--—%1y
S|X STY
- |
¥ ——R——y

The following establishes a correspondence between closed relations and morphisms into
Vietoris hyperspaces. It is a straightforward generalization of the coalgebraic approach to
Kripke semantics for classical modal logic.

Lemma 4.3.2. For any Priestley spaces Z = (X, 7x,<x) and % = (Y, 1y, <y), there is a
one-to-one correspondence between the set RH( 2, %) of lower closed relations on X XY and
the set of morphisms in PS from 2" to Vo (%'). Dually, there is a one-to-one correspondence
between the set R1(Z, %) of upper closed relations on X x Y and the set of morphisms in
PS from 2" to V4 (%).

Proof. Given an order-continuous morphism f : 2 — Vo (%), let Ry € X x Y be defined
by letting xRy iff y € f(x). It is routine to check that R is a lower closed relation (note
in particular that property 2 holds because R™'[U] = OU € ClopUp(Vo (%)) for any U €
ClopUp(#'). Conversely, given a lower closed relation R on X x Y, let fr: 2 — V(%)
be the map = — R(z). Then it is easy to check that properties 1 and 3 of lower closed
relations imply that fr is well defined and monotone, and that property 2 implies that it is
continuous, since f5'[OU] = R™}U] for any U € ClopUp(#). Finally, we clearly have that
the maps f — Ry and R~ fr are inverses of one another.

Hence we have a bijection v between Hompg(2, Vo (%)) and RH( 2", %), where the
latter is the set of all lower closed relations on X x Y. Let us now see that we also have a
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bijection between Hompg (X, V(%)) and R'(2",%). Notice first that R € R*(2", %) iff
R e R'(v(Z),v(#)). Moreover, since 7 is self-inverse, we also have that application of v
yields a bijection between Hompg (2", V(%)) and Hompg(7(2),7Vo(#)). Finally, recall
that we have an order-homeomorphism & : YV5(2) — Vey (%), which induces by post-
composition with £ a bijection from Hompg(7(2),7V5(%)) to Homps(7(Z), Voy(#)).
Putting things together, this yields the following chain of bijections:

Homps (’Y(%>7 VO’V(@))

= ~_
= ~

Homps(7(2), 7V (%)) R (Z),v(#))

I H

o

Homps (2, Vo (Z)) z RI(

which yields a bijection p between Hompg (2", V5(#)) and R'(2,%).

Clearly, the maps p and v defined in the previous lemma are natural in 2" and %/,
although we leave the proof of this to the reader. Let us conclude with the following defini-
tions.

Definition 4.3.3. Let PSR be the category whose objects are lower closed relations be-
tween Priestley spaces and where a morphism f from R: 27 — 25 to S : % — % is a pair
of maps (f1, fo) such that f; : Z; — %; for i = 1,2 and the following diagram commutes:

2 v(R) > Vo (Z23)
| |

fi Vo (f2)
| l

Y, (S) > Vo (%)

Equivalently, for all x € 27 and y € %, fi(x)Sy iff there is 2’ € 25 such that xRz’ and
Y <a fol2').

Dually, PSR, is the category whose objects are upper closed relations between Priestley
spaces and where a morphism f from R: 2] — 25 to S : % — % is a pair of maps (f1, f2)
such that f; : Z; — %; for i = 1,2 and the following diagram commutes:
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24 u(R) > Vo (22)
| |

fl VD(fQ)
| |

) u(S) > V(%)

Equivalently, for all x € 27 and y € %, fi1(x)Sy iff there is 2’ € 25 such that xRz’ and
Yy >, fo2').

4.3.2 Flat and Sharp Functors

We are now in a position to establish a dual equivalence between join-preserving (resp.
meet-preserving) maps between distributive lattices and lower (res. upper) closed relations
between Priestley spaces. We first introduce the following definitions:

Definition 4.3.4. Let DL| (resp. DL;) be the category whose objects are join-preserving
maps (resp. meet-preserving maps) between distributive lattices and where a morphism f
from g : L1 — Ly to h : My — M, is a pair (fi, f2) such that f; : L; — M; is a lattice
morphism for i = 1,2, and the following diagram commutes in DLy, (resp. in DL,):

Ll g > L2
| |
1 f2
| |
M1 h > M2

Let us now define a functor S° : DL, — PSR, as follows. Recall first that any join-
preserving map f : L — M between two distributive lattices lifts uniquely to a lattice homo-
morphism f : Mo (L) — M with a property that f(<Ca) = f(a) for all a € L. By Priestley

~

duality, this yields an order-continuous map Spec(f) : Spec(M) — SpecMo(L). Moreover,
post-composing with the map 0% yields a map 0% o Spec(f) : Spec(M) — VoSpec(L). Fi-

~

nally, we define S°(f) as the relation v~1(6% o Spec(f)) on Spec(M) x Spec(L). It is worth

~

describing directly the relation S°(f). For any p € Spec(M) and q € Spec(L):
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pS’(flg = q €050 Spec(£)(p)

& q € 05(f[p])

~

@qeﬂé

Cag f =[]

@qefw

fla)¢p
S qC Ml

Let us now define S” on morphisms. Notice first that the pair (fi, f2) is a morphism in
DL, if and only if the following diagram commutes:

M(}(Ll) g—> L2
Mo (f1) le
MQ(Ml) _E—> M2
Indeed, for any \,.; ¢a; € Vo(Ly),

290\ o)) = fal A gla)) = A\ falglar)

i€l el el
and
(Mo(fl /\ /\<>f1 az = /\h(fl<al))
el el iel

Moreover, in the following diagram:

Spec(Ly) — 5Pec(9) — SpecMo (L) —— 05 — Vo Spec(Ly)

T T T
Spec(f2) SpecMo (f1) Vo Spec(f1)

Spec(My) — Specl9) — SpecMo (M) — 03" — Ve Spec(M;)

the left square commutes by Priestley duality, and the right square commutes by Lemma 4.2.8.
Therefore the pair (Spec(fz), Spec(fi)) is a morphism from S°(g) to S°(h), so may set
S"(f1, f2) = (Spec(f2), Spec(f1)).

Let us now define a functor C* : PSR, — DL, that is dual to S”. Given a relation
R € RH(Z,%), let C°(R) : ClopUp(%) — ClopUp(Z") be defined as C*(R)(U) = R~[U]
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for any U € ClopUp(#). Note that C”(R) is well defined by property 2 of closed relations.
Moreover, we have that R7![()] = 0, and for any z € X and U,V € ClopUp(%),

r € RUUV] & R(x)N(UUV) # 0 < R(z)NU # 0 or R(z)NV # 0 <z € RUJUR™ V).

Hence C°(R) is an object in DL;. Suppose that (fi,fs) is a morphism from R €
RYZ, 2) to S € RH#,%). Then we have the following commutative diagram:

A v(R) > Vo (23)
| |

A Vo (f2)
| |

Y, u(S) > Vo (%)

Consequently, we have the following diagram:

Mo ClopUp(%5) kg2 — ClopUpV o (%) — ClopUp(v(S)) — ClopUp(#)
Mo ClopUp(f2) ClopUpVo(f2) ClopUp(f1)

Mo ClopUp(Z3) — k1t — ClopUpV o (Z3) — ClopUp(v(R)) — ClopUp(Z7)

where the left square commutes by the duality of M, and V., and the right square
commutes by Priestley duality. Moreover, we easily check that ClopUp(v(S)) o k22 (OU) =
C*(S)(U) for every U € ClopUp(%), and that ClopUp(v(R)) o kZ*(OV) = C*(R)(V) for
every V € ClopUp(%3), which means that ClopUp(v(S)) o2 = C*(S) and ClopUp(v(R))o

~

k2% = C"(R). Hence the following square commutes:

Mo ClopUp(%) — () — ClopUp(#)

Mo ClopUp( f2) ClopUp(f1)

! !

Mo ClopUp(23) — @B — ClopUp(27)

By the observation above, this square commutes if and only if the following square also
commutes:

ClopUp(%) — () — ClopUp(#1)

ClopUp(f2) ClopUp(f1)

| |

ClopUp(Z2) — (B — ClopUp(21)
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from which we conclude that (ClopUp(f1),ClopUp(f) is a morphism from C*(S) to
C’(R) in DL, and we may therefore set C°(f1, fa) = (ClopUp(f1), ClopUp(f2)).

It remains to show that S” and C” establish a dual equivalence of categories. But this,
in fact, almost immediately follows from Priestley duality and the definitions of S* and C”.
Indeed, recall that the dual equivalence witnessed by Spec and CloUp is established via
the families of natural isomorphisms {*;, : L — ClopUpSpec(L)}repr and {€4 : 2 —
SpecClopUp(Z )} oreps. Although we leave the details to the reader, we can easily verify
that the following diagrams also commute for any f € DL and R € PSR :

L L —— ClopUpSpec(L) z Ear > SpecClopUp(Z)

| | | |

f CchS*(f) v(R) v(S"CP(R))

l ! l !

M v — ClopUpSpec(M) Vo(?) — ea — Vo SpecClopUp(%)

which is essentially enough to establish our dual equivalence.

Finally, we may use this result to also obtain a dual equivalence between DL and PSR,
in a straightforward way. Indeed, using our dualizing functors ¢ and -, we may simply use
the functors S* : DLy — PSR4 and C* : PSRy — DL; by letting S* := v o S* 0§ and
Ct:=§0C"o~. It will be useful later on to have a more direct definition of S* and C* on
objects. We leave it to the reader to check that this definition is essentially the same as the
one above.! Given a meet-preserving map f : L — M, S*(f) is the upper closed relation on
Spec(M) x Spec(L) given by:

~

pS*(f)q < q € 05 o Spec(f)(p)
s qebh(f (o)

S q € ﬂ a
~—1
Oacf [p]

Sq € ﬂ&

fa)ep
& f'pl Cq

Conversely, given an upper closed relation R on 2" x %, the meet-preserving map C*(R) :
ClopUp(%') — ClopUp(Z") is given by:

ITo be precise, the direct and indirect definitions yield the same functors up to isomorphism, which is
witnessed by the natural isomorphisms {ar }repr and {Sa } 2 cps defined above.
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CHR)(U) = —C"(R)(-U)
= —R'[-U]
={re Z | R(x)Nn-U =0}
—{re 2 |R(x) CU}.

Putting things together, we have the following theorem.

Theorem 4.3.5. The functors S° and C establish a dual equivalence between DL, and
PSR,. Dually, the functors S* and C* establish a dual equivalence between DLy and PSRy.

The diagram below summarizes the various relationships between the new functors in-
troduced in this section and those introduced before.

5
PSR, T Psm,
PS
S? cP Spec ClopUp St ct

DL¢ DLT

— 5 S

Note that, in this diagram, the various functors commute up to isomorphism. Moreover,
the inclusion maps from DL to DL; and DL; are obtained by mapping a distributive lattice
L to the identity on L viewed as a join-preserving or meet-preserving morphism respectively.
Similarly, the inclusion maps from PS to PSR, and PSR, are obtained by mapping a
Priestley space 2 to the relations >4 and <, on 2, viewed as lower and upper closed
relations respectively.

Let us conclude this section with a straightforward characterization of the duals of lattice
morphisms in PSR and PSR.

Definition 4.3.6. A lower closed relation R between Priestley spaces 2 and % is lower
functional if R(x) is a principal downset for every = € Z". Dually, an upper closed relation
S between 2" and ¥ is upper functional if R(z) is a principal upset for every = € 2.

Lemma 4.3.7. For any join-preserving map f : L — M, f is a lattice homomorphism if
and only if S°(R) is lower functional. Dually, for any meet-preserving map g : L — M, g
is a lattice homormophism if and only if S¥(R) is upper functional. Finally, for any lattice
homomorphism h : L — M and any p € Spec(M), S*(R)(p) N S*(R)(p) = {Spec(f)(p)}.
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Proof. We show that a join-preserving map f : L — M is a lattice homomorphism if and
only if S°(R) is lower functional. The case for meet-preserving maps is completely dual and
therefore left to the reader. Suppose f is a lattice homomorphism and let p € Spec(M). Then
f7[p] is a prime filter, and therefore f~[p] € Spec(L). But then we have for any ¢ € Spec(L)
that pS°q iff f~'[p] C ¢, so S°(p) = Lf~'[p]. This shows that S°(f) is lower functional.
Conversely, suppose that S°(f) is lower functional, and fix U,V € ClopUpSpec(L). 1 claim
that C°S°(f)(U) N C°S*(f)(V) € C°S*(f)(U N'V). This will show that C°S°(f) is meet-
preserving and thus a lattice homomorphism, which by duality implies that f is also a
lattice homomorphism. For the proof of the claim, suppose p € C°S*(S)(U) N C°S*(S) (V).
This means that there are qi,q; € S°(p) such that ¢ € U and ¢o € V. Since S°(p) is a
principal downset, there is ¢ € S°(p) such that q;,q; € ¢. Since U and V are both upsets,
this means that ¢ € U N'V. Therefore p € C'S*(S)(U N V). This completes the proof of the
claim.

Finally, if h : L — M is a lattice-homomorphism and p € Spec(M), then S°(f)(p) =
{q € Spec(L) | ¢ € [7'[p]} = LSpec(f)(p) and S*(f)(p) = {q € Spec(L) | f~'[p] C ¢} =
TSpec(f)(p). Hence S”(f)(p) N S*(f)(p) = {Spec(f)(p)}- O

Intuitively, this lemma shows that, unsurprisingly, some of the information about the
lattice structure of a distributive lattice L is lost by the embedding into DL, or DL;.
However, the full structure of L can always be recovered by combining information from
DL, and DL;. In the next section, we essentially adopt this strategy in the case of an
arbitrary lattice. We define embeddings of the category of lattices into DL; and DLy, use
our new dualities to partially represent an arbitrary lattice as two closed relation between
Priestley spaces, before recovering the full lattice by combining those two representations
together.

4.4 The Category of FI-Spaces

In this section, we will establish a duality between Lat and a category of relations on
Priestley spaces. We proceed as follows. First, we represent every lattice as the fixpoint of
some Galois connection between two free distributive lattice. We then use our two dualities
for DL and DL; to translate this representation of an arbitrary lattice to the setting of
relations on Priestley spaces. Finally, we axiomatize the dual category of Lat that arises
from this representation.

4.4.1 A Fixpoint Representation for Arbitrary Lattices

We start with the following definitions.

Definition 4.4.1. Let L be a lattice. We define the maps A; : Mg(L) — Meg(L) and
pr : Mo (L) — Mg(L) as follows:

i )\L(ViEI Dai) =< VieI Qs
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i pL(/\jeJ <>bj) =0 /\je] b]"
Whenever the lattice L is clear from context, we will omit the subscript L in Ay and pp,
to avoid notational clutter.

Lemma 4.4.2. Let L be a lattice. The maps A\, and py, form a Galois connection

Proof. Fix a lattice L, and two subsets {a; | ¢ € I} and {b; | j € J} of L. We have the
following chain of equivalences:

A\ oa) < )\ ob; = o\ a < )\ O,

iel jeJ iel jeJ
O\ a;<ob;, allje g
i€l
& \a<b, alljeJ
el

<:>ai§b]-, alliel,jeJ
ea; < N\bj, alli €1
jeJ
S 0w <0 N\b, alliel
jedJ
< \ou<oAb
iel jeJ
= \/ Oa; < p(/\ <>bj),
iel jeJ
where the third and sixth equivalences hold because M (L) and M5 (L) are free constructions
on L respectively. O

Since lower adjoints in a Galois connection between lattices preserve joins and upper
adjoints preserve meets, it follows that A, and p; are objects in DL and DL respectively.
Moreover, we have the following;:

Lemma 4.4.3. For any join-preserving map f : L — M, the pair (Mg(f),Mo(f)) : A —
A s a morphism in DL|. Dually, for any meet-preserving map g : L — M, the pair
(Mo (f),Mu(f)) : pr. = par is a morphism in DL;.

Proof. We prove the first case, since the second one is completely dual. Fix a join-preserving
map f: L — M. We must show that the following diagram commutes:

M (L) A » Mo (L)

Mg (f) Mo (f)

l l

Mg (M) Am > MQ(M)
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Fix \/,c; Oa; € Mg(L). We compute:

Mo(f) o AL(\/I Oa;) = Mo (f)(© \/Iaz->
o <>f<\/1ai>ze
= AME(\/I 0f(a:))
=\ :MDU)(\/ Da;),

el

where the third equality holds because f is join-preserving. This shows that the pair
(Mg(f),Mo(f)) is a morphism from Az to Ay in DL;. ]

We therefore have embeddings A and R of Lat into DL; and DL respectively. Finally,
we conclude by the following easy observation:

Lemma 4.4.4. Let L be a lattice. The maps a — Oa and a — <a are isomorphisms between
L and the fizpoints of the maps pr o A : Mp(L) — Mp(L) and Ap o pr, : Mo (L) — Mo (L)
respectively.

Proof. Fix a lattice L. Because \ and p form a Galois connection, the fixpoints of pA :
Mg(L) — Mg(L) form a lattice with meets given by Ay, and joins given by alUb = pA(a VD).
Clearly, the map a — Oa is bijective and preserves meets. Moreover, for any a,b € L, we
have that Oa U 0Ob = pA(Oa V 0b) = p(<C(a Vv b) = O(a V b), which shows that a — Oa is a
lattice isomorphism. Dually, the fixpoints of Ap : Mo (L) — Mo (L) form a lattice with joins
given by V and meets given by aMb = Ap(a A b). Once again, it is easy to see that the map
a — <a is an isomorphism, by an argument similar to the one above. O]

This shows that we are always able to easily retrieve the original lattice L as fixpoints of
either Ml (L) or M (L), provided that we use both free constructions. Moreover, the same
is true for lattice morphisms, as shown by the following lemma.

Lemma 4.4.5. For any two lattices L, M and any join-preserving map f : Mg(L) —
Mg(M), there is a join-preserving map g : L — M such that f = Mg(g) if and only if
fopLAL = puAn o f. Dually, for any meet-preserving map f : Mo (L) — Mo (M), there is
a meet-preserving map g : L — M such that f = M(g) if and only if foAppr = Aypmo f.

Proof. Again, we only prove the first case. Suppose first that f = My(g) for some g : L — M.

Then we compute for any /.., Oa;:
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pr Mg (9)(\/] Da;) = pMAM(\/I Og(a:))
o 0 \/Ig(;i)
e
= Mué)(‘ﬂ !ai)

= Mo(g)pr e (\/ Oa).

el

Conversely, suppose that f o prAp, = pyAy o f. Note first that this implies that, for
any a € L, f(Oa) = fprAL(Da)) = pyAr f(Oa). Hence f(Oa) is a fixpoint of pp Ay and is
therefore of the form 0Ob for some b € M. Let g : L — M be such that Og(a) = f(Oa) for
any a € L. I claim that g is join-preserving. Note that, by Lemma 4.2.3.4, this implies that
f =Mg(g). For the proof of the claim, let a,b € L. Because My(L) is a free construction,
it is enough to show that Og(a Vv b) = 0O(g(a) V ¢g(b)) to establish that g(a Vv b) = g(a) V g(b).
Now we compute:

Og(aVb) = fO(aVb)
= fprAL(Ta VvV Ob)
= py A f(Oa VvV OD)
= puAu(f(Ba) v f(0OD))
= puAm(Og(a) vV Og(b))
= 0(g(a) V g(b)),

which completes the proof. n

We have now gathered all the ingredients necessary for our topological representation of
arbitrary lattices, to which we now turn.

4.4.2 A Topological Representation of the Category of Lattices

As mentioned in the previous section, our two dualities between DL, and PSR and be-
tween DL; and PSR respectively both only preserve “one half” of the structure of lattices.
Fortunately, we can combine them in a straightforward and elegant way in order to retrieve a
full topological representation of arbitrary lattices. The basic idea is the following. We may
first represent an arbitrary lattice L by the pair Az, pr, where Az is an object in DL and py,
is an object in DL;. By the results in Section 4.3, this yields a pair (S°(\r), S*(pz)), where
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the first term is a lower closed relation on SpecMe (L) x SpecMy(L) and the second one is
an upper relation on SpecMpy(L) x SpecM(L). Using the representation of SpecMp(L) as
F(L) and the representation of SpecM (L) as Z(L), this means that we obtain two relations
on Z(L) x F(L) and F(L) x Z(L) respectively. As we will see, those relations are in fact
converse to one another so we may focus on only one of them, say the one on Z x F(L). Using
the fact that Priestley spaces have binary products, we will lift this relation to an upper-
closed endo-relation on F(L) x v(Z(L)). Thus we will send any lattice L to the Priestley
space F(L) x v(Z(L)) endowed with a relation A}, which, as we will see below, is given by
(F,1)A\%(G,J) iff GNI = (. Finally, we will use the relation A% to recover L as the fixpoints
of a closure operator on ClopUp(F(L) x v(Z(L))) that mimicks the pyA; representation
above. Let us now get into the details of this representation. We start with the following
observation.

Lemma 4.4.6. Let L, M be distributive lattices and let f : L — M and g : M — L
be join-preserving and meet-preserving respectively. Then g is the right adjoint of f iff
S¥(g) = S°(f)7L, id.e., iff for any p € Spec(L) and q € Spec(M) pS*(g)q if and only if
95" (f)p.

Proof. Fix f : L —- M and g : M — L. Assume first that ¢ is the right adjoint of f.
Since f and g form a Galois connection, f is join-preserving and ¢ is meet preserving. Now
recall that for any p € Spec(L) and ¢ € Spec(M), ¢S°(f)p iff p € f~'[q], and pS(g)q iff
g7 '[p] € q. For any a € L, we have that a < gf(a), I claim that p C f~![q] iff g7'[p] C g,
which implies that S*(g) = S°(f)~'. For the proof of the claim, assume first that p C f~![g]
and let g(a) € p. Then f(g(a)) € g, and since f(g(a)) < a, it follows that a € q. Conversely,
suppose that ¢g~![p] C ¢ and let a € p. Since a < g(f(a)) we have that g(f(a)) € p, hence
f(a) € ¢, and therefore a € f~'[g]. This completes the proof of the claim.

Conversely, assume that S*(g) = S°(f). I claim that C*S*(g) is right adjoint to C*S°(f),
which by duality is enough to establish that g is the right adjoint of f. For the proof of the
claim, note that we have the following chain of equivalences for any U € ClopUpSpec(L)
and any C € ClopUpSpec(M):

U C C'SHg)(V) & Vp € U(SH(g)(p) C V)
& Vp e UVq € Spec(M)(pS*(g)g = q € V)
& Vp e UV¥q € Spec(M)(¢S"(f)p = g€ V)
& Vg € Spec(M)3p e UqS’(flp—qe V)
& (S (N)MUIcV
& C°S'(fU)CV,

which completes the proof. O]

The previous lemma shows that we may decide to work only with one of the two relations
S"(A\1), S¥(pr), since they are the converse of one another. Now recall that we have two
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natural order-homeomorphisms n% : SpecMg(L) — F(L) and nk : SpecMo(L) — Z(L).
This means that we can lift the relations S*(A\z) and S*(\r) to two relations \* C Z(L)x F (L)
and p* C F(L) x Z(L) respectively by setting IA\*F' iff no_l(I)Sb()\L)né_l(F) and Fp*I iff
nE=H(F)SY (AL)nk (). For ease of notation, let us write pg for n& ™' (F) and q; for nk~ ' (I).
We may compute that for any F' € F(L) and I € Z(L):

INF & qISb()\L)pF
& pr C A gl
& \/ Oa; € pp implies A, (\/ Da;) € ¢, all \/ Oa; € Mo(L)

i€l iel iel
& \/ Oa; € pr implies <>\/a2- € qr, all \/ Oa; € Mg(L)
iel iel il
< a€ Fimpliesa¢ I, allae L
s Fnl=0.

Note also that, by Lemma 4.4.6, p* = \* ! ie., Fp* I iff FN T = 0.

Now let F'I(L) be the direct product in DL of F(L) and y(Z(L)). Using the projections
m : FI(L) — F(L) and my : FI(L) — ~v(Z(L)), we can lift \* and p* to relations on
Y(FI(L)) x FI(L) and FI(L) x v(FI(L)) respectively. More explicitly, we let (F, I)\*(G, J)
iff GNT =0, and (F,1)p*(G,J) iff FNJ=0. It is straightforward to verify that A\ and p*
are a lower closed and an upper closed relation on y(FI(L)) x FI(L) and FI(L) xv(FI(L))
respectively, and that moreover the two following diagrams are morphisms from p* to p €
PSR, and from A\* to A respectively:

FI(L) F s y(FI(L)) WFI(L)) x—— FI(L)
! ! ) !
l l | l
F(L) p* » Z(L) Z(L) At > F(L)
| | | |
1 1 1 1
SpecMg (L) p—— SpecMo (L) SpecMo (L) —— x—— SpecMg(L)

Dually, this yields the following diagram of distributive lattices, where ol is the map
Vier Oa; = U@ x Z(L) and o5 is the map A, b; = F(L) x ();c, ;. Note that the first
square commutes in DL} and the second one commutes in DL;.
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ClopUp(FI(L)) — c*(x5) — ClopUpy(FI(L)) — ct(p) — ClopUp(FI(L))

! ! I
| | |
Mg (L) A > Mo (L) P > Mg (L)

Moreover, for any U € ClopUp(F(L)),V € ClopUp(Z(L))\{Z(L)} and (F,I) € FI(L),
we have that:
(F,1) e C" YU x =V) e XMF,IHNU x -V #0
SIGNeUx -V INnJ=10,

which means that C°(\*)(U x —V) = F(L) x W for some W € ClopUp(Z(L)).

Since any clopen upset in FI(L) is a union of sets of the form U x —V for some
U € ClopUp(F(L)),V € ClopUp(Z(L)) and C°(\?) is join-preserving, this implies at once
that ran(C°(A\%)) C ran(ClopUp(ck)), and hence that the fixpoints of C¥#(p?)C”(\?) are iso-
morphic to the fixpoints of pA. By Lemma 4.4.4, this means that we can represent the
original lattice as the fixpoints of C¥(p?)C”(\) via the map vy, : a — @ x Z(L).

Moreover, for any lattice morphism f : M — L, the pair (Mg(f), Mo(f)) induces a
unique map f¥: FI(L) — FI(M), as shown in the following diagram:

~vSpecMo (L) FI(M) SpecMp (L)

| — S |

ySpecMo (f) Spec(adh) Spec(aM) SpecMp(f)

L ~

vSpecMe (M) SpecM (M)

Moreover, we clearly have that ClopUp(f?) o C*(p%,)C°(Ns,) = CH(p%)C"(AL) o ClopUp(f%),
as evidenced by the following diagram (the detailed argument is left to the reader):

Mo (M) Mo (f) Mo (L)
Y RN
/ : PM\\ //pL : \
ClopUpy(FI(M)) . Mp (M) —Ms(f) — Mg(L) ClopUpy(FI(L))
N o) 7 N ooty e

CHphy) \ 7 ot / CHpl)
~ - ™~ s

ClopUp(FI(M)) —————————— ClopUp(yt) ——— ClopUp(FI(L))
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But this implies that vy o f = ClopUp(f*) o vys.

Putting things together, this means that we obtain a functor S* : Lat — PSR, mapping
any lattice L to the lower closed relation A} C y(FI(L)) x FI(L), and any lattice homomor-
phism f : M — L to the pair (f%, f*), and a natural transformation {v;}rcpat : 1ras — C%S%.
Let us now turn to the issue of identifying a category corresponding to the range of that
functor.

4.4.3 Axiomatizing F'I Spaces

We start with the following definition.

Definition 4.4.7. A FI-space is a pair (2, R_) such that:
1. 2 = (X,7,<) is a Priestley space;

2. R_ C X x X is a lower closed relation on v(2") x 2, and its converse R, is an upper
closed relation on 2" x y(Z).

3. The set RT(Z) UR (Z) is a basis for 7, where:

o RY(Z) ={U € ClopUp(Z) | U = C*(R,)C*(R-)(U)};
o R (Z) ={V € ClopUp(X) | =V = C"(R_)C*(R)(=V) };

4. For any non-empty W € ClopUp(Z") of the form ;.; Ui N U;c; V; for some finite
{Ulier SRHUZ), {V}jes SR, C(R)(W) = C*(R-)(Uye; Ui)-

The following establishes that F'I-spaces correspond to the dual of lattices under the
representation given above.

Theorem 4.4.8. A pair (Z°,R_) is a FI-space if and only if it is order-homeomorphic to
(FI(L),\}) for some lattice L.

Proof. For the right-to-left direction, it is straightforward to verify that the pair (FI(L), A\})
is a F'I-space for every lattice L. Indeed, every W € ClopUp(FI(L)) is a union of sets

of the form |J,.; a; x —ﬂjejbvj for some finite {a;} e, {bj}{jesy € L, and the fixpoints
of CH(p%)C?(A\L) and C*(p%)C(\%) are precisely sets of the form @ x Z(L) and F(L) x b
respectively. Moreover, one has that

—

O Jax —(b6) =\ a

iel jeJ iel

=) (Ja)

icl

for any finite {ai}{iEI}a {bj}{jeJ} c L.
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Conversely, fix a F'[-space (2", R_). Notice first that, since R_ is a lower closed relation
on Y(Z) x Z and R, is an upper closed relation 2" x v(Z"), by Lemma 4.4.6 the maps
C°(R_) and C*(R,) form a Galois connection on ClopUp(Z’). Moreover, RT(2) and
R~ (X)) are precisely the lattice of C*(R,)C’(R_)-closed subsets of 2" and the dual of
the lattice of C”(R_)C*(R.)-closed subsets of ClopUpy(Z) respectively. Let wy @ 27 —
FI(RT(Z)) be the map = +— (F,,1I,), where F, ={U € R*(Z) |z € U} and [, ={V €
R (Z) | © € V}. Iclaim that wy is the required order-homeomorphism. By duality,
it is enough to check that ClopUp(wy-) is an isomorphism and that the following diagram
commutes:

ClopUp(FI(R(2))) — €0 ) — ClopUpy(FI(R*(2))

ClopUp(w o) ClopUpy(war)
ClopUp(Z") ————c"(r-) ———— ClopUpy(Z)

Notice that any set in ClopUp(FI(RT(Z"))) is a union of sets of the form
Uier U, x —Njes —‘7]- for some finite {U;}ier € RT(Z7) and {V;}jes € R (Z). More-
over, ClopUp(wa)(U;e; U; x —Njes —‘7]) = Uies Ui N U,es Vis from which it follows that
ClopUp(wy) is an order embedding which is also surjective by property 3 of FI-spaces.
Finally, for any (J,, U, x — Ny —‘7j € ClopUp(FI(R*(Z"))), we have that:

ClopUp(wy) © C* (M) (L U x — () -V3) = ClopUp(wa)(| 7;)

el jed iel

= (R Jw)

i€l

= (RO JuinJWw)

iel jeJ

— C*(R_) o ClopUp(ws ) (| Ti x — () =V)),

iel jed
where the third equality holds by property 4 of F'I-spaces. O
Let us now define the correct notion of morphism for our category.

Definition 4.4.9. Let (2, R_) and (%#,S_) be FI-spaces. A FI-morphism is an order-
continuous map f : 2" — % with the following properties for any r € X and y € Y:

1. for all 2’ € X, xR_2’ implies f(x)S_f(2');
2. if f(x)S_y, then there is 2’ € X such that xR_2" and y <4 f(2');

3. if yS_ f(z), then there is 2’ € X such that 2’R_x and y <4 f(2').
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Lemma 4.4.10. Let (Z°,R_) and (#,S_) be FI-spaces with dual lattices L and M respec-
tively. Then a map f : Z — ¥ is a FI-morphism if and only if there is a unique g : M — L
such that f = ¢°.

Proof. Let us first show that g% : FI(L) — FI(M) is a FI-morphism whenever g : M — L
is a lattice morphism. We know already that ¢° is order-continuous. Moreover, an easy
computation reveals that ¢*(F,I) = (¢ '[F], g '[I]) for any (F,I) € FI(L). Hence we must
check the following for any (F, 1) € FI(L), (G,J) € FI(M):

L (F,T)Xy(F', I') implies (¢7'[F], g~ [I) Xy (97" [F, g~ [1]);

2. (g_l[F]u, g 1PN, (G, J) implies that there is (F”, I') € FI(L) such that we have both
(B, DAL(F", I') and (G, J) <pron (97 [F"], 97 [I'));

3. (G, )X, (g7 [F], g~ [1]) implies that there is (F’, I) € FI(L) such that we have both
(F', I)N(F. 1) and (G, J) <praan) (97 [F'], 97" 1))

The first item amounts to proving that £’ N I = ) implies that g~ '[F'] N g~'[I] = 0, which
is clear. For the second item, assuming that G N g~'[I] = 0, we must find (F’,I’) such
that "N I =0, G C g '[F'] and J C g '[I']. Let F’ = 1¢g|G] and I' = |g[J]. Clearly,
G C g7 '[F']and J C g !I']. Moreover, if g(a) < bforsomea € G,b € I, thena € GNg~ (1],
contradicting our assumption. Hence (F”,I") is the required pair. Finally, the third item is
proved by the same argument as item 2.

Conversely, let us now assume that f : (FI(L),\}) — (FI(M),\},) is a FI-morphism.
It follows from conditions 1 and 2 that the pair (y(f), f) is a morphism between the lower
closed relations )\hla and )\5\4, and the pair (f,v(f)) is a morphism between the upper closed

relations phL and p;,. By duality, this means that we have the following diagram:

ClopUp(FI(M)) — (i) — ClopUpy(FI(M)) — ct(si) — ClopUp(FI(L)) —c*(xi,) — ClopUpy(FI(M))

ClopUp(f) ClopUpy(f) ClopUp(f) ClopUpy(f)

l ! l l

ClopUp(FI(L)) — c*0i) — ClopUpy(FI(L)) — c#(sh) — ClopUp(FI(L)) — c*(xy) — ClopUpy(FI(L))

which shows that ClopUp(f) o C*(p},)C°(Ny) = C*()C°(X}) o ClopUp(f) and that
ClopUpy(£) 0 C° (i) C¥(piy) = C° (N, )CH(p}) © ClopUp(f).

Moreover, let f* : SpecMg(L) — SpecMg(M) map every pr € SpecM(L) to pl, where
(F",J) = f(F,}{0}), and let f~ : SpecMo (L) — SpecMo (M) map every q; € SpecMo (L)
to ¢;, where (G,I') = f(1{1},I). It is straightforward to verify that both f* and f~ are
order-continuous and that the following diagram commutes:
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vSpecMo (L) FI(M) SpecMg(L)

() Spec(ah?) Spec(af?) i
ySpecMo (M) SpecMg (M)
By Lemma 4.4.5, this means that there is a (necessarily unique) g : M — L such that
fT = SpecMy(g) and f~ = SpecMs(g), and hence that f = g¢°. This completes the
proof. O

Putting things together, this means that we are able to define a functor C® mapping every
FI-space 2" to RT(Z") and every FI-morphism f: 2 — % to the unique g : R (%) —
RHY(Z) such that f = gf. Moreover, this functor finally yields our topological duality for
lattices.

Theorem 4.4.11. Let F1 be the category of F'I-spaces and F'I-morphisms. There is a dual
equivalence between Lat and FI, given by the functors S° : Lat — FI and C* : FI — Lat.

Proof. By construction of the functors C*% and S%, the maps vy : L — C%S%(L) for every
lattice L and wy : 2~ — S°CH(Z") for every Fl-space 2 are isomorphisms. Naturality also
straightforwardly follows from the definitions of C* and S?, and is left to the reader. O

4.5 Application to Fundamental Logic

In this section, we apply our duality for lattices to the category of weakly-pseudo comple-
mented lattices, which provide the algebraic semantics for the Fundamental Logic [131]. As
we shall see, the duality we obtain yields spaces that are very close to the relational frames
considered by Holliday.

4.5.1 Positive and Negative Projections of F'/-Spaces

We start by the following observation about F'I-spaces. Since any F'I-space is the dual space
of a lattice L and thus of the form FI(L), we can view 2 as the product of two Priestley
spaces, namely F(L) and v(Z(L)). Intuitively, this means that 2" can be “split” into two
Priestley spaces corresponding to Mg(L) ~ Mg(R*(L)) and §(Me (L)) ~ Mg(6(L)) =~
Mg (R~ (L)). respectively. This motivates the following definition:

Definition 4.5.1. Let 2" be a F'I-space. The positive projection of 2" is the topological
space 2T = (XT,77, <t) where:
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e 71 is the topology on 2  generated by R*, and <' is the induced specialization
preorder;

e X1 is the quotient of X obtained by turning <* into a partial order <7 ;

e 77 is the quotient topology on X induced by the patch topology of 77.
Dually, the negative projection of 2 is the topological space 2~ = (X, 77, <) where:
e 7 is the topology on 2 generated by R~, and <~ is the induced specialization
preorder;

e X is the quotient of X obtained by turning <~ into a partial order <7;

e 7_ is the quotient topology on X~ induced by the patch topology of 7.

Finally, given a F'[-morphism f: 2" — % let f*: 2" — %" and [~ : 2~ — % be the
unique order-continuous maps such that the following diagram commutes:

T

Z
IR
ﬂ'}_{ f
2T 8 Z -
| N |
£t Ty T -
Ve N
w+ Y-
where 75 and 7, are the natural quotient maps from 2" to 2" and 2~ respectively, and

similarly for 7}, and 7.

Although we will not do so here, it is straightforward to prove that, for any F'I-space 2,
ClopUp(Z ) 2 Mg(RT(Z")) and ClopUp(Z ~) =~ Mg(R~(Z)), and for any F I-morphism
X =%, ft=MyChf) and f~ = MC%y(f)). In other words, -* and -~ are functors
from FI to PS such that the following two diagrams commute up to isomorphism:

Lat — " FI Lat — " FI
| e | e
Mg + Mpod —
L s | | |
— Spec — /Spec\\
DL PS DL PS
¥~ ClopUp — ¥~ ClopUp —

Using this correspondence, we may now lift our duality between Lat and FI to a duality
between monotone maps between lattices and relations on F'I-spaces. We will apply essen-
tially the same strategy as the one we used to lift Priestley duality to a duality between DL
and PSR,,.
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4.5.2 Monotone Maps between Lattices

Let f : L — M be an order-preserving map between lattices L and M. Then Mg(f) :
Mg(L) — Mg(M) is a join-preserving between distributive lattices, i.e., an object in DL;.
By Theorem 4.3.5 and Lemma 4.3.7, this means that we may associate to it a lower closed
relation S°(f) : Spec(Mg(M)) — Spec(Mg(L). Since, as we saw in the previous section,
Spec(Mg(L) and Spec(Mg(M)) are order-homeomorphic to FI(L)" and FI(M)™ respec-
tively, this means that we may view S°(f) as a relation on FI(L)* x FI(M)" instead. This
motivates the following definition.

Definition 4.5.2. Let 2 and % be FlI-spaces A lower closed relation R C 2" x % is
mt-projective if there is a lower closed relation Rt C 2" x % such that the following
diagram commutes:

Z R—— %
| |
7'('+ 7T+
@ (278
1 1
Xt Rt — W+

in the sense that, for any z € 2",y € # zRy iff 7} (z)R*7}-.

It is easy to see that if R is a lower closed relation on 2 x %, then the lower closed
relation R™ witnessing that R is m-projective, if it exists, is necessarily unique. Let us now
see how 7T -projective relations on F'I-spaces relate to monotone maps on lattices.

Lemma 4.5.3. Let f : M — L be a monotone map between lattices. Then the relation
It (f) € FI(L) x FI(M) given by (F,DITT(f)(G,J) iff G C f7'[F] is a 7w -projective

lower closed relation.

Proof. Tt is routine to verify that the relation IT*(f) is lower closed. Moreover, I claim that for
. —1 -1

any (F,1) € FI(L), (G, J) € FI(M), (F, )IT*(f)(G, J) iff n& " (xf (F, 1)) Sn ™ (w5,(G, 7).

If true, this means that there is a lower closed relation IIT(f)™ on F(L) x F(M), as shown

in the following diagram:

() —— FI1(M)

| |
7";1(1:) 7rl'J‘:lT(M)

I I

F(L) It (f)yt ——— F(M)
| |
k! =
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and thus that II*(f) is 7 -projective. For the proof of the claim, fix (F,I) € FI(L) and
(G,J) € FI(M), and let pp = né_l(F) and pe = 77%_1(@). By the definition of the
functor S”, we have that prS”(Mg(f))pe iff pe € Ma(f) " [pr], ie., V,c; Oa; € pe implies
M5 (f)(V,e; Oai) = V,e; Of(a;) € pp. But this is easily seen to be equivalent to the condi-
tion that G C f~![F] by the definition of the maps F + pr and G + pg. This completes
the proof. n

Hence any monotone map f : L — M induces a m"-projective relation IIT(f) from
FI(L) — FI(M). Let us now go in the converse direction.

Lemma 4.5.4. Let 2, % be FI-spaces. Any w"-projective relation R : 2~ — % induces a
monotone map X (R) : RH(¥Y) — RT(Z).

Proof. Fix a wt-projective relation R C 2 x % . This means that we have a lower closed
relation Rt : 27 — #*. Recall that we also have two order-homeomorphisms o}- :
X = SpecMp(RY (X)) and 0, : T — SpecMy((RR*(#)). Thus we have the following

commuting diagram of lower closed relations:

X R > A
| |
7'('+ 7T+
@ (22
! !
Xt Rt y AT
| |
X 128
! !

SpecMg(R*(Z)) RE > SpecMlg(RT(%))

By the duality between lower closed relations and join-preserving morphisms between
distributive lattices, this induces the following commuting diagram in Lat (treating ClopUp
and Spec as inverses of one another for simplicity):

SHR) —— RT

RH(#)
|

|
i i

Mg (R (%)) ¢’ (rRE) — Mg(RT(Z))
| |
ClopUp(a;) ClopUp(a;{)
1 l
Yyt — R ——— T

where Y (R) is the map given by U + C°(R*)(U) for any U € R* and is the unique map
f:RY(#) — RY(Z) such that Of (U) = C°(RY) for all U € RT(#). O
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Finally, let us quickly introduce the correct notion of morphisms between 7 -projective
lower closed relations:

Definition 4.5.5. Let R : 27 — % and S : 25 — % be w'-projective lower closed
relations. A 7wt-projective morphism is a pair of order-continuous maps (fi, f2) such that
(fi, f3) is a morphism from R* to ST in PSR,.

We can now lift our duality between lattices and F'I-spaces to a duality between monotone
maps between lattices and 7 -projective relations on FI-spaces.

Theorem 4.5.6. Let Lat; be the category whose objects are monotone maps between lattices
and morphisms from f1 : Ly — Lo to fo: My — My are pairs (g1, 92) such that g; : Ly — M;
fori=1,2 and go o f1 = fy o gi. Let Fl+ be the category of mF-projective relations and
't -projective morphisms between them. Then the maps f — IIT(f) and R — XT(R) lift
to functors II'™ : Lat; — FIg+ and X : FIg+ — Lat; which establish a dual equivalence
between the two categories.

Proof. By Lemmas 4.5.3 and 4.5.4, we know already that the maps II™ and ¥ map monotone
maps to m-projective relations and 7 -projective relations to monotone maps. Moreover, it
is straightforward to verify that the following diagrams commute for any f : L — M € Lat;y,
and RC 2 x % € Fl+:

L f > M A R s A

’U|L U!v[ WLL’ WLJ

| | l |
RY(FI(L)) —stut()—»> RY(FI(M)) FI(RT(Z)) —utst(n» FI(RY(¥))

For any morphism (g1, ¢s) € Lat;, we let II* (g1, g2) be the pair (S*Mq(g1), S"Mq(g2)).
Note that this is well-defined since (M(g1), M(g2)) is a morphism in DL, hence II* (g1, ¢2)
is a morphism in PSR,. Conversely, for any 7" -projective morphism (f1, fa) from R; C
21 X Z3 10 Ry C % X %, we let 7(f1, f2) = (hi, he), where h; for i = 1,2 is the unique
monotone map such that the following diagram commutes:

RT(Z5) hi » RY(%)
| |

I I
MoR*(Z) — ClopUp(s;) — MaRT (%))

The rest of the proof is straightforward and left to the reader. O
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We conclude by observing that the IIT /X" duality presented in this section essentially
lifts the duality between DL and PSR from Section 4.3, in the sense that the following
diagram of functors commutes up to isomorphisms:

It
LTt[ {\EJF—/ FI|H+

Mg +

| b |

— YT
DL, — PSR,

Using the functors M and -~ and the duality between DL; and PSR, instead, we could
just as well obtain a duality witnessed by functors II™ and ¥, defined so that the following
diagram:

—
PSF\\ - o //PS}‘T
SP \4 / St

T— DL, +—s——> DL,

T T

—+ Mg Mo -

__— Lat; «—s—— Lat; «__

commutes up to isomorphism, where f : FI — FI maps any FI-space (2", \%) to (2, p%)
(i.e., F merely swaps the projections 2+ and 2" 7), and FIp- is the image of F I+ under
F.

4.5.3 Duality for Weakly Pseudo-complemented Lattices

We are now finally ready to reach the second goal of this chapter. Using our new duality
between monotone maps and 7 -projective relations, we will now be able to derive a duality
for weakly pseudo-complemented lattices. Note that one of the main advantages of our
framework is that, in principle, it allows us to obtain a duality for any category of lattices
augmented by unary monotone or antitone operations. Thus there could be many more
applications of this general than the one we will focus on here. We start by with the
following definition.

Definition 4.5.7. A weak involution on a lattice L is a map —: L — L such that a <; —b
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iff b <p —a for all a,b € L. A weakly pseudo-complemented lattice is a pair (L, —) such that
= is a weak involution on L satisfying the additional condition that a A —a = 0 for all a € L.

Equivalently, a weak involution on a lattice L is a self-adjoint map from L to L. In
particular, it is antitone, and turns joins into meets. This means that we may think of a
weak involution = : L — L as a monotone map from L to §(L) with a right adjoint going from
d(L) to L. Moreover, there is a clear one-to-one correspondence between pairs (L, =) where
- is a weak involution on L, and monotone maps — : L — &(L) that have a right adjoint.
Hence our strategy for obtaining a duality for weakly-pseudo complemented lattices will be
the following. Using our ITT /¥ duality, we will first identify the duals of weak involutions
and represent those via relations on F'I-spaces. Then we will identify a condition on such
FI-spaces that corresponds to the weak involution being a weak pseudo-complement. Let
us start with the following characterization of weak involutions.

Lemma 4.5.8. Let f : L — §(L) be a monotone map. Then f is a weak involution if and
only if TIT(f), viewed as a relation on FI(L) x FI(L), has the following properties:

1. For any U € RT(FI(L)), C°(IT*(f))(U) € R~(FI(L));

2. I (o(f)) =1 (f)~";
3. For any V € R—(FI(L)), C}II-(5(f))")(V) € R*(FI(L)).

Proof. Suppose first that f is a weak involution. Viewing f as a monotone map from
L — 6(L), we have that II*(f) is a wt-projective lower closed relation on
FI(6(L))x FI(L). Note that FI(§(L)) = F(6(L))xy(Z(L)) = ~v(Z(L))xF(L) = F (FI(L)).
Hence we may think of FI(L°) as FI(L), but with its projections swapped. In other words,
(FI(L%),\%5) = (FI(L),p}), and we have that R*(FI(L?)) = R~(FI(L)). By duality,
we have that STIIT(f)(vr(a)) = vsr)(f(a)) € RT(FI(L®)). But this implies at once that
C (I (f)(U) € R-(FI(L)).

Now let us consider §(f) : L° — L. Using the X~ /II- duality mentioned at the
end of the previous section, it follows from a straightforward diagram chasing argument
that C*(IT=(6(f))"1)(V) € RT(FI(L)) for any V € R~ (FI(L)). Moreover, I claim that
II-(6(f)) = T*(f). Again, a simple diagram chasing argument shows that for any
(F,I),(G,J) € FI(L), (F,DIT"(f)(G,J) iff f~'[F] € J. Since we have that
(G, HIIT(f)(F,I) iff F C f~![J], we only have to show that F' C f~![J] iff f~'[F] C J
to establish properties 2 and 3. But this is a standard fact for weak involutions. For the left
to right direction, suppose that f~'[F] C J, and let a € F. Since f is a weak involution,
a < f(f(a)), hence f(f(a)) € F. By assumption, this implies that f(a) € J. Conversely,
assume that F' C f~![J], and let f(a) € F. By assumption f(f(a)) € J. Since f is a weak
involution, we have that a < f(f(a)), hence a € J.

Conversely, let us now assume that I17(f) has all the properties listed in the statement of
the lemma. From properties 1 and 3, we have maps STIIT(f) : RT(FI(L)) — R (FI(L))
and X117 (6(f)) : R (FI(L)) — RT(FI(L)). By duality, we have that XTII*(f)(v.(a)) =
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vs)(f(a)) and similarly X7II7(5(f))(vsry(@) = f(a), so we only need to verify that
YHIIT(f) is left-adjoint to ST (4(f)). Usmg property 2, we compute for any U € RT(FI(L)),
VeR (FI(L)):

SHIN(f)(U) SV & CIH(f)(U) €V

SV : 3G, J) eV (F,DIT ()G, J]) = (FI)eV
& Y(F.1),(G,J): (G, J) € U&(G, NIT*(f) (F, 1)) = (F,1) €V
S V() (G, J): ((G,J]) € UG, HIT(3(f))"(F.1)) = (F.I) €V
SW(G, ) € U T (6() (G, T) S V
& UC I (3(f)(V)
S U CETIT(6(f)(V).
This completes the proof. O

Using the lemma above, we can therefore represent every weak involution — on a lattice L
as a relation on F'I(L). Moreover, it is straightforward to check that, for any weak involution
—: L — Landany a € L, C*(p")(=C*(IT*(=))(vi(a))) = vr(—a). Indeed, by the XF/TI*
duality, we know that C”(IT*(=)) (v (a)) = F(L)x=a. Moreover, —(F(L)x=a) = F(L)xa,
and C*(p?)(F(L) x =a) = =a x Z(L), as shown in Section 4.4. Thus we may conclude that

CHp)(=C"(IT* (=) (ve (@) = CH(p*)(F(L) x a) = =a x Z(L) = vr(-a)

for any a € L. Described explicitly, this defines a function -+ : RY(FI(L)) — RT(FI(L))
given by

~n+(U) = {(F 1) [ V(G NL(EDY(F, I') - (G )T () (F, I) = (F, 1) ¢ U}

Let us now identify a condition on II" corresponding to the weak pseudo-complement prop-
erty.

Lemma 4.5.9. For any weak involution — : L — L, = is a weak pseudo complement if and
only if II* (=) o p* is reflexive.

Proof. Suppose first that a A —a = 0 for any a € L, and let (F,I) € FI(L). We must find
(G, J) such that (F,I)p*(G, J) and (G, J)IIT(=)(F, I). In other words, we must find (G, J)
such that FNJ =@ and F C =7 '[J]. Let G = {1} and J = {{—~a | a € F}. Note that
J is an ideal, since —a V b < —(a A b) follows from the fact that — is a weak involution.
Moreover, we have that "N J = (), since otherwise there is a € F such that —a € F, which
implies that a A =a = 0 € F' and thus that F'is not proper.

Conversely, suppose now that I+ (=)o p? is reflexive. It is enough to show that =(U)NU =
() for any U € RT(FI(L)). Suppose (F,I) € FI(L). By assumption, we have (G, J) such
that (F, I)p*(G, J) and (G, J)II*(=)(F,I). But then (F,I) € -+ (U) implies (F, 1) ¢ U. O
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Finally, we can define the duals of weakly pseudocomplemented lattices.

Definition 4.5.10. A FIN-space is a triple (2, A, R_) = such that (2", \?) is a FI-space
and R- is a relation on X x X satisfying the following conditions:

1. R_ is a mt-projective lower-closed relation from (2, p*) to (27, \%);
2. R7'is a mr-projective lower-closed relation from (27, A\¥) to (27, p*);
3. The relation R o p? is reflexive.

A FIN-morphism between two FIN-spaces (4, Au%v, R.) and (%, )\EySﬁ) is an
order-continuous map f : 2 — % such that the pair (F(f)", fT) is a morphism from
RY C(Z,p)t x (27, )7 to ST C(Z,p)* x (#,\)" in PSR,.

By the lemmas above together with the duality from Section 4.5.2, we finally obtain the
following;:

Theorem 4.5.11. The category Lat_, of weakly pseudo-complemented lattices and weak
pseudo-complement-preserving lattice homomorphisms between them s dual to the category
FIN of FIN-spaces and 7" -projective morphisms between them.

Proof. Note first that Lat_, is isomorphic to the category of monotone maps — : L — L?
such that §(=) : L — L° is the right-adjoint of -, and a A §(=)(a) = 0 for all a € L, and
morphisms (f,d(f)) : = — 6(—). By Lemmas 4.5.8 and 4.5.9, the 7" projective relations
dual to such monotone maps are in a natural one-to-one correspondence with F'I N-spaces,
and the morphisms between them correspond precisely to FIN-morphisms by the Tt /3F
duality. Hence Lat_, is dual to FIN. O

4.6 Concluding Remarks

We conclude this chapter with some remarks briefly relating F'/ and FIN spaces to other
representations of complete lattices.

4.6.1 FI-Spaces and B-frames

We start by connecting F'I-spaces with the b-frames of Chapter 2. As mentioned in Sec-
tion 4.1, one of our motivations for developing our duality in the first place was to extend
b-frame duality to a topological duality for the category of lattices. Prima facie, it is clear
that the representation of arbitrary lattices via F'I-spaces shares some resemblance with
the representation of complete lattices via b-frames. In both cases, the points in the dual
space of a lattice L are pairs in which the first and second components capture, informally
speaking, “positive” and “negative” information respectively. Moreover, in both cases, the
original lattice is recovered as a (sub)algebra of fixpoints of some closure operator on the
powerset of the dual space. However, the way such a closure operator is defined is, at least
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superficially, different in both cases. In the case of b-frames, the closure operator is given
by the composition of the closure operation in the upset topology induced by the second
ordering and the interior operation in the upset topology induced by the first ordering. In
the case of FI-spaces, one uses a relation \! and its converse p?, and the operations C” and
C*. However, there is a standard way of passing from FI-spaces to bosets, which essentially
coincides with the correspondence between bi-ordered structures and compatibility relations
introduced in [136]. Given a boset (X, <y, <s), we may let T the complement of the relation
ol i.e, for any z,y € X, Ty iff there is z € X such that z <, x and z <; y. Conversely,
given a Fl-space 2" = (X, 7,<, ), recall that the “projections” 2+ and 2"~ are induced
by orderings <* and <~ on 2". If we assume that 2~ = (FI(L)\) for some lattice L, it
is easy to check that <t and <~ corresponding to the filter and ideal orderings on F'I(L)
respectively. However, the compatibility relation induced by <; and <, is the universal
relation on F(L) x y(Z(L)), since for any F' € F(L),I € Z(L), the pair (F,I) is in FI(L).
However, we may consider the following subspace of FI(L).

Lemma 4.6.1. Let L be a lattice and FI(L)g the subspace of FI(L) induced by the set
{(F,I) € FI(L) | (F,)X*(F,I)}. Then the compatibility relation on FI(L)g induced by the
restrictions of the orders <*, <~ to FI(L)g coincides with iy, = N|FI(L)*. Moreover, for
any U C FI(L)g, one has that CH(p%)CP(NL)(U) C [+C'_(U), where I, and C_ are the
interior and closure operations on FI(L)gr induced by < and <~ respectively, and that the
converse holds if U is a <'-upset.

Proof. Let us first show that )\iz is the compatibility relation induced by <* and <~. Fix
(F,1),(G,J) € FI(L)g. Then we have:
(F,T(G,J) < AF,I')e FI(L)g : (F,I) <™ (F',IN&(G,J) <t (F', I
s dF e F(L),I'eZ(L): F'nIl'=0&G C F'&I C I
SGENI=10
& (F.I)XR(G, )
Moreover, fix U C FI(L)g. First we compute that:
and that

CHpR) C° (AW = {(E. 1) | V(G DN (EDI(E L) ply(F. 1) = (7, 1') € U}

Let us first show the left-to-right inclusion. Suppose that (F,I) € I,.C_(U), and let
(G, J)X.(F,I). Then F N J =0, so the pair (F, J) € FI(L)g. Hence there is (F',I') € U
such that J C I’ and I'NF’ = (). But then (F’ I pH(G, J Hence (F,I) € Cﬁ(pR)Cb()\h )(U).
For the converse, suppose that (F, I) € C*(p%) Cb Rh ), and let (G, J) € FI(L)g such that
F C J. Since GNJ =0, we have that 'NJ = @ hence (G, J)ML(F,I). By assumption,
there is (F’,I') € U such that (F”, I')pR(G J)ie, F'nJ =10. Since U is a <-upset, the
pair (F’,J) € U, and we clearly have that (G,J) <~ (F’,J). Hence (F,I) € I,C_(U). O
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This lemma shows that, when restricting FI(L) to a subset on which the relation A
is reflexive, working with the relation A becomes essentially equivalent to working with
the two orders <™ and <~, and the representation of the original lattice L via the closure
operator induced by A* coincides with the representation via the operation I.C_. Of course,
the resulting subspace is not itself an F'I-space, but it is nonetheless a Priestley space.
Indeed, since FI(L) is defined as the product of F(L) and v(Z(L)), which are themselves
the Priestley duals of My(L) and §(Me (L)), we may think of the Priestley dual of FI(L)
as the coproduct in DL of My(L) and (M (L)) = Mg(L?). Since this is a coproduct
of free constructions, we may equivalently view it as the distributive lattice MB(L) freely
generated by elements of the form {Ta,Ma | a € L} and subject to the relations {Oa A DOb =
OaNb,a/ Wb =M(aVvb),01 = W0 = 1,00 = W1 = 0}. We can then easily establish a one-
to-one correspondence between prime filters on M®(L) and points in (F,I) by mapping any
prime filter p to the pair (F,, I,), where F,, = {a € L | Oa € p} and I, = {a € L | Ba € p}.
By duality reasoning, selecting a subset of FI(L) corresponds to quotienting M®(L) by
adding more relations. In the case of FI(L)g, we can easily compute that the additional
relations should be {Oa AMa = 0 | a € L}. As we shall see, a similar strategy can
be applied to the comparison between F'I-spaces and the choice-free duals of distributive
lattices, as well as to the comparison between F'IN-spaces and Holliday’s compatibility
frames for Fundamental Logic.

4.6.2 [F'I-Spaces and Topological Dualities

In the previous chapter, we presented two choice-free dualities for distributive lattices based
of filter-ideal pairs, and we also briefly described Mosher and Jipsen’s duality between lat-
tices and BL-spaces. Let us now briefly compare all three with the topological duality for
lattices presented in Section 4.4.

Let us start with a comparison with Moshier and Jipsen’s B L-duality. In short, one might
see a rather striking resemblance between B L-spaces and our overall strategy in this section.
Moshier and Jipsen establish first a duality for meet-semilattices via HMS spaces, which are
a specific kind of spectral spaces. They then restrict this duality to BL-spaces by defining
a closure operator fsat, and show that this operator restricts to a closure operator on open
sets if and only if the compact open filters of an HM S space form a lattice. Moreover, the
dual BL-space of a lattice L is constructed as the set of all proper filters on L, endowed with
the Stone topology generated by sets of the form a for any a € L. Equivalently, the dual
BL-space of a lattice is the dual spectral space of My(L). Accordingly, we may summarize
the similarities and distinctions between the BL-duality and our F'I-spaces as follows. Both
dualities essentially rely on an embedding of Lat into DL, and on an existing topological
duality for distributive lattices. But the Moshier-Jipsen duality passes through Stone du-
ality for distributive lattices and through the free construction M exclusively, while our
construction of F'I-spaces relies on Priestley duality and on the two free constructions M
and M. As a consequence of the latter, Jipsen and Moshier arguably have more work to
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do to recover the join-structure of a lattice L inside its dual B L-space. Intuitively speaking,
working with their notion of F-saturated sets (which are intersections of open filters) allows
them to represent the ideals of L. By contrast, our construction through filter-ideal pairs
allows us to work directly with ideals, thus giving an arguably more concrete flavor to our
topological representation of lattices.

Let us also quickly address the difference between using spectral spaces and Priestley
spaces. In the case of distributive lattices, Priestley spaces are often seen as more convenient
structures to work with than spectral spaces, as their topological behavior closely resembles
that of Stone spaces. In our case however, it is straightforward to verify that we did not use
any specific features about Priestley spaces beyond the fact that they are dual to distributive
lattices. In fact, our main reason for using Priestley spaces over spectral spaces was one
of convenience. As mentioned in Section 4.2.3, the functor ~, which is the topological
counterpart of the dualizing functor § on lattices, has a very simple definition for Priestley
spaces, since v(Z") is simply the space 2" with its order reversed. But this follows in an
essential way from the fact that the topology on a Priestley space is the patch topology of
the topology on the corresponding spectral space. If we wanted to define « on spectral spaces
instead, we would essentially need to take the de Groot dual of the spectral space 2, i.e.
the topology generated by the intersections of compact open sets. Given the importance of
and many constructions above, this would certainly make some arguments more cumbersome
than they already are. There is, however, a very good reason to do so, having to do with
the essentially choice-free nature of our F'I-duality. Prima facie, because our duality passes
through Priestley duality, it cannot be carried out in a semi-constructive setting. However,
it is worth remarking that the actual use we make of the resources of Priestley duality is
very limited. This is because all instances of the duality we use are about free constructions
of the form My or M, and their Priestley duals, which are spaces of filters or ideals. In
such free constructions, prime filters are in one-to-one correspondence with filters in another
algebraic structure, a fact we used repeatedly. But this means in particular that any such
free construction satisfies the following weak form of the Prime Filter Theorem.

Lemma 4.6.2 (Weak PFT). Let M = Mg(L) for some lattice L, and let a,b € M be such
that a £ b. Then there is a prime filter p on M such that a € p and b ¢ p.

Proof. Let us write a as \/;.; Oa; and b as \/,.; Ob; for some finite {a; | a € I},{b; | j €
J} C L. Then a £ b implies that there is ¢ € I such that a; € b; for all j € J. But then,
letting p = néfl(Ta), we have that a € p and b ¢ p. O

Consequently, the injectivity of the map ™ : Mg(L) — ClopUpSpec(Mg(L)) can be proved
without appealing to PF'T for any lattice L. However, we run into some issues when trying
to prove without PFT that Spec(Mg(L)) is compact. Indeed, proving that any open cover
in the patch topology contains a finite subcover requires either using PFT or appealing to
Alexander’s Subbasis Lemma, which is itself equivalent to PF'T. Importantly, this issue only
arises because we declare as open both sets of the form a and sets of the form a. If we were to
consider only the spectral topology generated by the sets @, then proving that Spec(Mg(L))
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is spectral could be achieved within ZF'. Indeed, the specialization preorder on Spec(L) in-
duced by the spectral topology coincides with the inclusion order on the set of prime filters,
and therefore has a least element pg, namely nk “'({1.}. But then any cover of Spec(Mg(L))
must contain an open set U such that py € U, which implies that Spec(Mg(L)) C U. We
can therefore conclude from this discussion that our F'/-duality is essentially choice-free, in
the sense that a merely notational variant of it that uses spectral spaces instead of Priestley
spaces holds in a semi-constructive setting.?.

Finally, let us briefly address the relationship between F'[-spaces and the choice free
duals of distributive lattices introduced in Chapter 3. Here, there are two observations
worth making. First, if L is a distributive lattice, it will not follow that FI(L) is UV P-
space, nor that (FI(L),7%,77) is a pairwise UV -space. Intuitively, the main reason for this
is that the specialization order on F'I(L) is the inclusion order on both filters and ideals,
while the representation for distributive lattices in the previous chapter was based on the
inclusion ordering on filters and the reverse inclusion on ideals. Admittedly, this mismatch
between the two constructions is somewhat of a mystery (at least to me). On the one hand,
the fact that both pairwise UV -spaces and UV P-spaces arise as upper Vietoris hyperspaces
on pairwise Stone spaces and Priestley spaces respectively suggests that the reverse ordering
on ideals is the natural choice in this setting. However, setting the dual F'I-space of a lattice
L to be the Priestley space F(L) x Z(L) introduces some obstacles to the functoriality of
S%. More precisely, given a lattice homomorphism f, we would in general lose the ability to
define S%(f) as the map (F,I) — (f~[F], f~'[I]), as we would then not be able to prove
that it is an F'I-morphism. The issue could be avoided by mapping f to the pair of maps
(F, 1)~ (f7F],{0}), (F,I) — ({1}, f~'[I]), but this approach is clearly less elegant.

Finally, let us conclude with an observation similar to the one we made regarding b-
frames. In the construction of the choice-free duals of distributive lattices, we restricted
ourselves to sets of pseudo-prime pairs. It is a straightforward exercise to verify that we
this restriction corresponds in the setting of F'I-spaces to quotienting the free construction
M®(L) by the additional relations

{0(aVvb)ABb<0Oa, CaANB(aANb) <Hb|abec L}

Constructing this lattice as the coproduct of My(L) and Mg (L) instead, these relations
translate to
{O(aVd) <OaV<ob, OaNOb< Oland) O,

which play a key role in positive modal logic [143, 257].

4.6.3 FIN-Spaces and Compatibility Frames

Compatibility frames provide a semantics for Fundamental Logic that is based on a discrete
representation for weakly pseudo-complemented lattices. As shown in [131], given a relation

2In that sense, the situation is similar to the choice-free version of Goldblatt’s duality for ortholattices
that was developed in [191]
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<don a set X, one can define closure operator Cq on Z(X) by letting
co(U)={x e X |Vy<aIzry:2€ U},

where > is the converse of the relation <. Moreover, one can also define an operation —, on
the lattice £(X) of co-fixpoints of X by letting

~(U)={re X |Vy<ax:y ¢ U}.

Holliday shows that every weakly pseudo-complemented lattice can be represented as a
sublattice of the complete lattice (£(X), ) for some set X and relation < on some X
satisfying some conditions. Let us now quickly compare the representation of weakly pseudo-
complemented lattices via compatibility frames and via F'I N-spaces.

Note first that, given a lattice L, R*(FI(L)) is the intersection of ClopUp(FI(L)) with
the fixpoints of the closure operator C*(p*)C’(\). Moreover, as we computed above, we
have that

CHP) C*(N)(U) = {(E.T) | V(G IN(F.D3(F', I)piy( . 1) : (F',I') € U}

for any U C FI(L). But this means that we may view FI(L) as a compatibility frame
with the relation < being precisely A\". Moreover, as shown in the previous section, a weak
involution on L is represented in FI(L) by the operation —+ on R*, given by:

-n+(U) ={(F,I) | V(G, J))\hL(F, DV(E, T (G, )T (=) (F', ') = (F',I') ¢ U}.

Hence the representation of the weak pseudo-complement in FI(L) differs from its defi-
nition in a compatibility frame. However, just like F'I-spaces and b-frames can be brought
closer by taking subspaces, a similar strategy applies in this case.

Lemma 4.6.3. Let (L,—) be a weak involution with dual FIN-space (FI(L), %, TI*(=).
Let FI(L)®? be a subspace of FI(L) determined by some subset Q, and —{"& and _‘% the
operations on P(Q) induced by =y and -+ respectively. Then:

1IfQC{(FI) |1 C='[F]}, then =% (U) € =, (U) for all U C Q;

2. If Q C{(F,I)| ~"Y[F] C I}, then =2, (U) € =S, (U) for allU C Q.

Proof. We prove both items in turn.

1. Suppose first that I C |~1[F] for all F,T € Q. I claim that (IT*(=)0p)NQ C p"NQ.
Clearly, this will imply that —\% (U) C —|3+ (U) for all U C Q. For the proof of the claim,
suppose that we have (F, 1), (G, J), (F',I') € Q such that (F,I)p*(G, )IT*(=)(F', I').
Then we have that F'NJ = @ and that F’ C —=~![J]. Since = is a weak involution, the
latter is equivalent to =~ ![F”] C J. But by assumption I’ C —=~![F’]. Hence I'NF = {),
which implies that (F, I)p*(F’, I').
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2. Suppose now that = *[F] C I for all (F,I) € Q. Since — is a weak involution, this is
equivalent to ' C =~1[I], and hence to (F,I)p"(F,I) for all (F,I) € Q. But it clearly
follows from the reflexivity of p* on @ that ﬁ%(U ) C —%(U ) for all U C Q. O

Hence the two operations coincide if we restrict FI(L) to the set of pairs (F, I) such that
—~1[F] = I. Note also that this does not imperil the representation of L. Indeed, the map
a — a x Z(L) is still injective, since the pair (Ta,]—a) has the required property. Alge-
braically, restricting F'I(L) to such pairs corresponds once again to quotient the distributive
lattice M®(L) by additional relations. This time, it is also straightforward to see that the
additional relation is {O0f(a) = Ba | a € L}. It is worth mentioning that, if we wanted to
add the extra condition {0a AMa =0 | a € L} in order to recover the equivalence with the
boset representation of L, this would immediately imply that our distributive lattice satisfies
Oa A Of(a) = 0. One can indeed check also geometrically that the conditions that A\* and
IT* (=) be symmetric immediately imply that II* (=) o p? is reflexive, which implies that -+
is a weak pseudo complement by Lemma 4.5.9.

It follows from this last observation that one can combine a boset representation of a
lattice L with a compatibility representation of a weak involution — on L if and only if
- is weak pseudo-complement. In a sense, this provides an independent motivation for
weak pseudo-complements, as they appear to arise as natural algebraic structures that can
have an elegant representation. But one should also take this example as a cautionary
tale. Competing desiderata on the representation of operations on lattices may sometimes
be incompatible unless such operations satisfy some additional properties. At the same
time, our results here seem to indicate a promising way of addressing such issues. Our F'[
duality provides, so to speak, a canonical way of representing lattices and monotone maps
on them. Given such a representation, one can then take subspaces of the dual F'I-space
of a lattice L in order to obtain simpler, more elegant representations. Finally, using the
duality between FI(L) and M®(L), one can control algebraically that such restrictions do
not imperil the representation of the original lattice, by checking that the map a — Oa is
still an embedding. We leave a deeper exploration of the full possibilities afforded by such a
conceptual framework for future work.
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Chapter 5

Orthologic and the Open Future

5.1 Introduction

The intuition that the future is open in ways that the present and the past are not is the
source of famously difficult problems at the intersection of logic, semantics and metaphysics.
On the one hand, if an assertion made today about a sea battle occurring tomorrow is true
today, is it genuinely possible for the sea battle not to happen? If I claim that a sea battle
may or may not happen tomorrow, can I also assert that the sea battle will in fact happen
without contradicting myself? If the future is genuinely open, then it seems that statements
about the future may merely turn out to be true or false, not that they are already true or
false when uttered. On the other hand, it seems that such an intuition about the openness of
the future commits us to the thesis that a statement cannot be true without being inevitably
true and that truth coincides with settled truth. This, however, takes us dangerously close
to classical arguments for logical determinism, which purport to give purely a priori proofs
that the future is entirely determined. Can’t a statement be true without being inevitably
true?

My goal in this chapter is to flesh out a position that vindicates the intuition of an open
future without erasing the distinction between truth and settled truth. The key move of
this position, which I call orthofuturism, is to argue that the correct logic of the open future
is not classical logic, but rather orthologic. As we will see below, this allows one to hold
that statements about the future cannot be true and contingent at the same time, without
having to admit that truth entails settled truth. In this way, the solution I propose resembles
the treatment of epistemic modals recently developed by Holliday and Mandelkern in [138].
In their account based on orthologic, propositions such as “It’s raining and it might not be
raining” are contradictions, yet “It’s raining” does not entail “It must be raining”. Similarly,
the orthologic of the open future that I present here allows one to hold that “There will be a
sea battle tomorrow but there might not be one” is contradictory, even though “There will
be a sea battle tomorrow” does not entail “Inevitably, there will be a sea battle tomorrow”.

The chapter is organized as follows. In Section 5.2, I recall the famous sea battle problem
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and present a slight variant of it that will help me highlight the specificity of orthofuturism.
In Section 5.3, I introduce orthofuturism, first by outlining a strategy for refuting the two
arguments presented in Section 5.2 and then by defining a bimodal orthologic OF that
provides a formal solution to the sea battle problem. In Section 5.4, I compare this new
approach to some well-established solutions based on branching-time semantics and argue
that it avoids some of the problems that these competing alternatives have. In Section 5.5,
I sketch an intuitive conception of the flow of time for the orthofuturist by providing a
concrete, Kripke-like semantics for OF which I call fragment semantics. This semantics
is in the spirit of possibility semantics [135, 140], and its frames are collections of partial
descriptions of moments in time rather than instants that form branching timelines. This
allows me to discuss in Section 5.6 the relationship between orthofuturism and MacFarlane’s
relativist solution to the sea battle problem [178, 179]. Finally, I conclude with some further
directions for orthofuturism. The chapter also includes a technical appendix with some
details regarding ortholattices and fragment semantics.

5.2 The Sea Battle and the Narrow Pass

Consider the following situation, inspired by a famous passage in Aristotle [6, De Interpre-
tatione, Chap. IX]. In the summer of 480 BC, the Athenian general Themistocles prepares
for an encounter with a large Persian fleet off the coast of Artemisium, on the Greek island
of Euboea. Themistocles has convinced the other members of the Greek alliance that this is
where the Greek fleet should attempt to stop the naval forces of King Xerxes. On the evening
of the first day of the battle, after superior tactics delivered the Greeks a significant victory,
Themistocles wonders whether there will be another battle on the next day. Although the
Persian fleet still vastly outnumbers his, an incoming storm together with the losses of the
day may convince the Persian generals to avoid a direct confrontation with the Greek fleet,
and the Greeks themselves could decide to engage the invader’s fleet or to merely try to deter
them from attacking again. Although it seems that whether a sea battle will happen on the
next day is yet to be decided by meteorological and military considerations, the following
argument convinces Themistocles that, in fact, it is already settled one way or the other.

(A1) There will be a sea battle tomorrow or there won’t be a sea battle tomorrow.

(A2) Suppose it is the case that there will be a sea battle tomorrow. Then it is already
settled that there will be a sea battle tomorrow.

(A3) Suppose it is not the case that there will be a sea battle tomorrow. Then it is already
settled that there won’t be a sea battle tomorrow.

(A4) Therefore, if either there will be a sea battle tomorrow or there won’t be one, then it
is already settled that there will be a sea battle tomorrow or it is already settled that
there won’t be a sea battle tomorrow.
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(A5) Therefore, it is already settled that there will be a sea battle tomorrow or it is already
settled that there won’t be a sea battle tomorrow.

This, of course, is a version of the famous sea battle argument. It is commonly assumed
to rely on two premises. According to the first one, often called the Future Excluded Middle,
either a sea battle will happen tomorrow or a sea battle won’t happen tomorrow. According
to the second premise, a true statement is also inevitably true. Variations of the fatalist
argument sometimes establish this second premise by invoking the fixity of the past [201,
Section 2]: whatever happened cannot be changed, and if a statement, even one about the
future, was true in the past, then it is now impossible for that statement not to have been
true. But such a detour through the past is unnecessary if one holds, as is commonly ad-
mitted, that the present is just as fixed as the past: although the future might still be open,
it is too late to change either the past or the present. This asymmetry therefore entails a
collapse of modalities: if something is or was the case, it is now settled that it is or was the
case. Accordingly, I will call the thesis that truth implies settled truth the Modal Collapse
thesis. Statements (A2) and (A3) are then instantiations of the Modal Collapse thesis in
the case of the statements “There will be a sea battle tomorrow” and “There won’t be a sea
battle tomorrow”, respectively. If one accepts the validity of the argument, then one of the
two premises must therefore be rejected. But before discussing this argument in more detail,
let us consider a second, slightly different situation.

While Themistocles wonders about the sea battle to come, a few miles to the west, the
Spartan king Leonidas holds the narrow pass of Thermopylae against the vast terrestrial
forces of King Xerxes. Because the Greeks’ defensive strategy against the Persian invasion
requires both Themistocles’s forces to hold the Persian fleet at Artemisium and Leonidas’s
forces to block the advance of the Persian army at Thermopylae, messages are constantly
exchanged between the two positions. After a gruesome first day of fighting during which his
men, although outnumbered by a factor of more than ten to one, manage to hold the pass,
Leonidas ponders what message to send Themistocles. Will they or won’t they manage to
hold on to the pass on the next day? It certainly seems that this is not yet settled. Perhaps
Leonidas will manage to exhort his men to keep their positions for one more day, or perhaps
(as would famously come to happen on the third day of the battle) the Persians will find a
way to outflank the Greeks. Although he believes that the fate of the next day’s battle is yet
to be decided, Leonidas also wants to give a reply to his ally that is as detailed as possible
and considers the following argument:

(B1) We may hold the pass tomorrow and we may not hold the pass tomorrow.
(B2) Either we will hold the pass tomorrow or we won’t hold the pass tomorrow.

(B3) Suppose we will hold the pass tomorrow. Then we will hold the pass tomorrow and
yet we may not hold it.

(B4) Suppose we won’t hold the pass tomorrow. Then we won’t hold the pass tomorrow
and yet we may hold it.
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(B5) Therefore, we will hold the pass tomorrow and yet we may not hold it, or we won't
hold the pass tomorrow and yet we may hold it.

Swayed by the seemingly flawless logic of the argument, Leonidas concludes that there
are only two messages that he could send to Themistocles: either “We will hold the pass
tomorrow but we may not hold it”, or “We won’t hold the pass tomorrow but we may
hold it”. Although he may not know which message to send, Leonidas also has the distinct
impression that either message would profoundly confuse Themistocles. Because the Greeks’
defensive strategy relies on them stopping both Xerxes’s fleet and his army, Themistocles
will retreat if he knows that the Persians have taken Thermopylae, and he will keep fighting
if he knows that Leonidas’s men are holding firm. But what should he conclude if Leonidas’s
message is “We will hold the pass tomorrow but we may not hold it”? Intuitively, the second
part of Leonidas’s message seems to contradict the first part. If Themistocles receives only
the first part, then he can confidently tell his men to get ready to hold the Persian fleet at
bay for the next day. But if he reads the second part, he will need to decide whether to hope
that the bravery of Leonidas’s men will keep the Persian army from crossing the pass or to
start planning a strategic retreat. Of course, a similar problem would arise if the message
that Leonidas sends is “We won’t hold the pass, but we may hold it”. Both messages sound
contradictory and would deeply puzzle his ally. Faced with such a dilemma, Leonidas might
conclude as follows:

(B6) It is contradictory to say that we will hold the pass tomorrow and yet we may not
hold it, and it is contradictory to say that we won’t hold the pass and yet we may hold
it.

(B7) Therefore, it is contradictory to say that we may hold the pass tomorrow and that we
may not hold it.

Leonidas’s dilemma therefore reaches the same ending as Themistocles’s meditation: de-
spite all appearances, the future is already settled. The argument above shares one premise
with the first one, namely (B2), the thesis that any future event either will or won’t happen.
The other premise, however, is slightly different in Leonidas’s argument. Rather than as-
serting directly that truth implies settled truth, it states that a statement about the future
may not at the same time be true and contingent. In that sense, this premise is reminiscent
of another of Aristotle’s examples, that of a cloak that may be cut up yet won’t be, because
it will wear out instead.! I will call the thesis that the truth of a statement about the future
cannot be consistent with its contingent status the Open Future intuition. In Leonidas’s
argument above, (B6) is the conjunction of two instances of the Open Future intuition.
Of course, classically, the Open Future intuition is equivalent to the Modal Collapse thesis
mentioned in the first argument. If the truth of a statement is inconsistent with it being
contingent, then it implies that that statement is also necessary. But, as I will argue below,

'For a detailed discussion of this passage and of whether Aristotle’s position is consistent with his views
on the sea battle problem, see for example [100, Chap. 7].
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there is room to deny one thesis while accepting the other, provided one is willing to give
up some of the inference rules of classical logic.

In order to analyse further the two arguments presented above, let us introduce a simple
propositional language .Z given by the following grammar:

pu=plL]-pleAnp|Op|Te

where p belongs to a countably infinite set of propositional variables. Intuitively, Oy should
be interpreted as “It is settled that ¢” and T as “Tomorrow, it will be the case that ¢”.
As usual, we will define disjunction as the dual of conjunction, i.e., ¢ V ¢ := =(—¢ A =),
truth as the dual of falsum, i.e., T := =1, and possibility as the dual of necessity, i.e.,
O = 0.

In order to formalize the two arguments above, let us isolate the following principles
that one may impose on our logic, understood as a consequence relation - between a finite
(possibly empty) set of Z-formulas I' and an .Z-formula ¢:

(F) FTeV T—p (the Future Excluded Middle);

(M) Ty tF OTg (the Modal Collapse thesis);

(O) T, OT—pt L (the Open Future intuition);

(C) ¢F x and ¢ F y together imply ¢ V ¢ F x (Reasoning by Cases);

(D) T, F x and I',9 F x together imply I', o V ¢ F x (Reasoning by Cases with Side
Assumptions).

The first three of these principles are theses that we have encountered before in describing
Themistocles’s and Leonidas’s thoughts about the future. The last two are inference patterns
that are classically valid. A fully rigorous formalization of the arguments also requires some
intermediary steps relying on other principles that will not play a major role in what follows
and that I list here:

(L1) T, F ¢ and A F ¢ together imply I, A = 9;
(L2) o AU E @, @AY E Y
(Ls) ooV, oV,

We may now offer the following formal reconstruction of Themistocles’s argument A
(cv1 — a7) and of Leonidas’s argument B (8 — f7):
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(aq) ETpVT-p (F)

(2) TptEOTp (M)

(a3) T-pkoOT—p (M)

() TpEOTpvaT-p (L1), (L3), as
(as) T-pEOTpVvaOT—p (L1), (L3), a3
(c) TpVT-pkEoOTpVvaT—p (C), a4, a5
(avr) FoOTpVvOT-—p (L1), a1,
(1) =TpVT-p (F)

(B2) Tp, OT-phk L (0)

(83) T-p, OTpk L (0)

(Ba) Tp, OTpANOT—phk L (L1), (L2), Bo
(Bs) T—p, OTpANOT—pk L (L1), (L2), B3
(Bs) TpVT-p,OTpAOT-pk L (D), Ba, Bs
(87) STpANOT—pk L (L1), B, Bs

This formalization highlights the apparent symmetry between the two arguments. As I
will now argue, there is however an appealing way of rejecting both arguments that does not
treat them as symmetric versions of one another.

5.3 Orthofuturism

In this section, I introduce a new solution to the sea battle problem that preserves the Open
Future intuition without collapsing modalities. I will first informally describe this position,
which I call orthofuturism, before making my proposal formal by introducing the logic OF.

5.3.1 Open Future without Modal Collapse

The core idea of orthofuturism is that the two arguments above should not be rejected for
the same reason. For the orthofuturist, Themistocles’s argument A is valid, but one of its
premises is false, namely the Modal Collapse thesis, i.e., the thesis that truth coincides with
settled truth. By contrast, she thinks that the premises in Leonidas’s argument B are both
true but that the argument is invalid, because reasoning by cases with side assumptions is
not a valid logical principle when reasoning about the future. In other words, the orthofu-
turist believes that one may not assert at the same time that some proposition about the
future is both true and contingent on pain of contradicting oneself, even though the truth of
such a statement does not imply that it is settled. Although the future is open in the sense
that one may not make true statements about it when what will happen is not yet settled,
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there is no modal collapse, and settled truth is genuinely distinct from plain truth. This
leads her to accept (O) and to reject (M).

In order to consistently do so, the orthofuturist must therefore reject the inference from
Tp, OT—pk L toTphk OTp. Because she accepts the duality between < and 0O, this means
that she must reject the inference from

Tp,~O0-T—-pk L (a)
to TpF OTp. Now if the orthofuturist accepts (F'), then she also accepts
~Tp,~T-phk L (b)

. But if she accepts in general that one can conclude ¢ = =9 from ¢, I L, then accepting
(a) (together with double negation elimination) means that she should also accept

Tpt O-T-p, (a”)

and accepting (b) (again assuming double negation elimination) means that she should also
accept

—=T=ptTp. (b)

But (a’) and (b’), together with some basic modal reasoning, directly entail (M).

A possible option for the orthofuturist would be to simply reject the Future Excluded
Middle. While this option exists in the literature ([174, 254], see also the Piercean view
below), the Future Excluded Middle seems to have a pretty strong intuitive pull. A more
appealing option for the orthofuturist is therefore to deny that, in general, one may infer
@ = from p, F L. In particular, the orthofuturist argues that whenever ¢ := OT g,
then Ty A OT—p F L is true but Ty - O7 ¢ may be false.?

The orthofuturist therefore thinks that the future tense and openness modalities share
some aspects with epistemic modals. As philosophers of language have argued [113, 265],
statements like

(1)* It is raining and it might not be raining.

are contradictory, even though the proposition “It is raining” does not intuitively imply “It
must be raining”. In light of these phenomena, Holliday and Mandelkern have recently de-
veloped [138] an account of epistemic modals that relies on orthologic rather than classical
logic. As I will show below, a similar account can be offered for the interplay of the future
tense and openness modalities in a way that fleshes out the orthofuturist position in detail.

2Note that this move also allows her to keep (F) and double negation elimination, without having to
endorse that =7 p - T —p.
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This is not to say, of course, that we should interpret “it is open that 7p” epistemically; nor
am [ claiming that native speakers of English use the phrases “it is settled that” or “It will be
the case that” in the same way as they use the epistemic modals “must” or “might”. Rather,
the point of the parallel is to argue that, just as one can in a consistent way model the fact
that statements like “It is raining and it might not be raining” are contradictory in natural
language without collapsing epistemic modals, one may also do justice to the Open Future
intuition that statements of the form “We will hold the pass tomorrow and it is open that
we won’t hold the pass tomorrow” are contradictory without endorsing the Modal Collapse
thesis that settled truth coincides with truth.

As explained in detail in [138], orthologic differs from classical logic in that it rejects the
distributive laws:

AWV X)F(PAY)V(pAx)
(V)N (VX)) F eV (YAX).

At the same time, negation behaves almost classically in orthologic, meaning that the
following principles remain valid:

Complementation o A~ L, and F ¢ V —y;
Contraposition ¢ 1 implies = - —;
Reductio ——p - ¢;

De Morgan ¢ A Y - = (=@ V =), o Vb 4 =(—p A =),

Let us now see why the orthofuturist must reject the distributive laws if she wants to
hold (O) as valid without also admitting (M). In fact, the problem arguably runs even
deeper than distributivity. Consider the following weaker form of distributivity, known as
the modular law:

pFYv=(VX)AYF oV (XAY)

If one admits that truth implies possibility, which in the case of the openness modality is
uncontroversial, then the modular law implies that “There will be a sea battle tomorrow
or there won’t be a sea battle tomorrow, and there may be a sea battle tomorrow” ((7p V
T—p) A OTp) entails “There will be a sea battle tomorrow, or there won’t be a sea battle
tomorrow but there may be one” (TpV (T—p A OTp)). But (F) implies that the first
proposition is equivalent to “There may be a sea battle tomorrow”, while (O) implies that
the second proposition is equivalent to “There will be a sea battle tomorrow”. Thus (M)
is an immediate consequence of (F'), (O) and the modular law. As the modular law is a
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consequence of the distributive laws, this gives the orthofuturist a strong reason to adopt
orthologic rather than classical logic.

Moreover, the rejection of the distributive laws also allows the orthofuturist to object to
the use of inference pattern (D) in Leonidas’s argument B. Indeed, the first distributive
law can be easily derived from reasoning by cases with side assumptions:

o,V (@A) V(P AX)
o, X F (P AY) V(0 Ax)

0,V xE (e AY)V(pAX) (D)
AWV X)E(PAY)V (A X).

In fact, the specific instance of (D) that appears at step g above is also directly seen as
invalid for the orthofuturist. Just because two formulas ¢ and 1) are inconsistent with x does
not mean that the disjunction ¢ V 9 is also inconsistent with , unless one already assumes
some form of distributivity. Rejecting the distributive laws of classical logic therefore allows
the orthofuturist to make sense of the Open Future intuition that statements about the
future cannot be contingent and true at the same time, without collapsing settled truth
onto truth. Giving up distributivity allows her to refute both Themistocles’s and Leonidas’s
arguments above at once, but for different reasons. Let me now make my proposal more
formal by defining a logic that captures the orthofuturist’s solution as I have sketched it so
far.

5.3.2 The Logic OF

As is customary in orthologic [109], let us start by defining our logic as a consequence relation
on the set of Z-formulas.

Definition 5.3.1. The logic OF is the smallest relation - on .Z satisfying the following
conditions for any formulas ¢, ¢ and x:

e Order:
Lok
2. ¢ F Y and ¥ - x together imply ¢ F x;
e Connectives:
p N and p A b
v F 1 and ¢ F x together imply ¢ - ¥ A x;
e N—pk L and L F

@ F ¢ implies =) F —;
p = =, and o - @)

A
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e Modalities:

8. ¢k implies Op F OY and Ty = T,
9. -1l FoO-l,and -1 FT—1;
10. Dp ADY FO(p A);
1II. ToATYET(pAY), and =T A =T E =T=(p A);
12. Op F ¢;
13. T—p F =Ty;
14. To A-O-T—-pF L.

A formula ¢ is a theorem of OF if =L = .

The logic OF is closely related to the logic EO of epistemic modals introduced in [138]. If
we recall the abbreviations T := =1, ¢ V¢ := (=9 A=) and Oy := -0, we can verify
in a straightforward way that (O) and (F') are theorems of OF.

Lemma 5.3.2. For any Z-formula ¢, =(T o AT ) and TV T —p are theorems of OF.

Proof. To show that (O) is valid, it is enough to observe that it is equivalent to condition
14, since To A OT = := T A ~O-T . But then by condition 6 we also have that
—(Tp A OT=p) is a theorem of OF.

For (F), note first that T V T—g := =(=T@ A =T —¢) and hence by condition 6 it
is enough to show that =Ty A =T—=p = L. Moreover, since ¢ and ——y are equivalent by
condition 7, it is in fact enough to show that =7 —-—-¢p A =T ¢ F L. By condition 11, we
have that =T ——=p A =T = = 2T —=(—¢ A p). By condition 5, =p A p = L, so by conditions 6
and 8, we have =7 —=(—¢p A ¢) = =T—=_L. But by condition 9 together with conditions 6 and
7 we get that =7—L F L, so by condition 2 we can conclude that =T —=(—=p A ) = L. This
completes the proof that (F') is a theorem of OF. O

It is also straightforward to verify that the inference pattern (C') is valid in OF, i.e., that
for any formulas ¢, and y, ¢ F x and @ = y together imply ¢ V ¢ = x.> To establish
that OF is an adequate logic for the orthofuturist, it therefore only remains to show that
a7 V OT g is not a theorem of OF. Note that this will also imply that the Modal Col-
lapse thesis (M) is not a theorem of OF and that (D) is not a valid inference pattern. An
elegant way of doing so is to provide a sound an complete algebraic semantics for OF based
on ortholattices, before giving an example of a valuation V' on an ortholattice L that makes
(M) invalid. In order to make my proposal as accessible as possible, I will only sketch such
an approach here and postpone most of the technical details to Section 5.8.1.

3For a proof of this, we refer the reader to the remark before Theorem 3.13 in [138].
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Intuitively, one may think of a lattice as an abstract algebra of propositions that can
be assigned to the formulas of a propositional language, ordered by the entailment relation.
The propositions we are interested in must be closed under conjunctions, negations, and the
“Inevitably” and “Tomorrow” modal operators. We therefore need our algebras of propo-
sitions to be partially ordered sets with a binary operation A (usually called “meet”) and
three unary relations — (complementation), O (“box”) and T (“Tomorrow”). Given such
an algebra L, any function assigning a proposition in L to every propositional variable can
then be recursively lifted to a valuation on .Z-formulas in the obvious way. Given two .Z-
formulas ¢ and 1 and such an algebra L with order <, we may then write that 1 is a logical
consequence of ¢ relative to L, denoted ¢ = v, if V() <p V(¢) for every valuation V'
defined on L.* Of course, if we want OF to be sound with respect to this semantics, we must
impose some conditions on the kind of algebras we may use to evaluate .Z-formulas. These
conditions follow naturally from the conditions imposed on the logic OF in Definition 5.3.1
and determine the class C of OF lattices (see Definition 5.8.2 in Section 5.8.1).

For any two Z-formulas ¢ and ¢, let ¢ ¢ ¢ if ¢ = 9 for every OF lattice L. The
proof of the following theorem uses standard techniques from algebraic logic [229] and can
be found in Section 5.8.1.

Theorem 5.3.3. The logic OF is sound and complete with respect to the consequence relation
F=c: for any two L -formulas ¢ and ¥, ¢ F ¢ if and only if ¢ Fc 1.

Figure 5.1 depicts some of the entailment relations that the orthofuturist admits between
propositions regarding a sea battle to come, with a proposition ¢ directly entailing another
proposition ¢ if and only if there is an edge from ¢ to ¥ with ¢ below 1. One can verify that
such a configuration of propositions arises from a valuation on an OF lattice, namely the
valuation v(p) = b on the OF lattice O1¢ shown in Figure 5.6 in Section 5.8.1. Notice in par-
ticular that in this instance O7 p entails 7 p but that the converse does not hold. Nonetheless,
the only proposition that entails both 7p and &7 —p is the contradictory proposition L, as
required by the Open Future intuition. Moreover, the only proposition entailed by both 7p
and T —p is the tautology T, in accordance with the Future Excluded Middle. By contrast,
the proposition expressing that the sea battle is already settled, i.e., O7 pV O7T —p, is strictly
below T. Together with Theorem 5.3.3, this shows that O7 pV OT —p is not a theorem of OF.

In Section 5.5, I will present a more concrete, Kripke-style semantics for OF. For now, let
me just conclude this section with two remarks. First, the lattice-theoretic perspective allows
one to highlight in a particularly sharp way the connection between orthofuturism and the
failure of the modular law mentioned above. Indeed, if L is any algebra of propositions such
that the principles ¢ = ¢, (F') and (O) are valid, but (M) is not, then the configuration
of propositions depicted in fig. 5.2 must appear in L. By a celebrated result in lattice theory
due to Dedekind (see [66, Thm. 4.10] for a proof), the lattice N5 embeds in an arbitrary

4For the reader familiar with Kripke semantics for classical modal logic, an ortholattice is the analogue
of the algebra of propositions given by the powerset of a set of possible worlds of a Kripke frame F', and a
valuation on such an ortholattice corresponds to a model defined on F.
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Figure 5.1: Entailment relations between future-tensed propositions according to the ortho-
futurist.

lattice L if and only if L is not modular, i.e., does not satisfy the lattice-theoretic equation
corresponding to the modular law. This shows that the failure of the modular law, and
thus also of the distributive laws, is not merely a convenient way of blocking the fatalist’s
arguments but a core feature of the orthofuturist’s position.

T

7

ST —a

\Ta
./
\J_

Figure 5.2: The lattice N5

The second remark concerns the strength of the logic OF. T do not claim here that OF
is the strongest logic that fits the orthofuturist’s position. Rather OF should be thought of
as a “basic logic” when reasoning about the open future from an orthofuturist’s perspective.
In particular, one might consider strengthening conditions 13 and 14 respectively to the
following:

13", Tt =T, and =Ty T—e.

14, p ANO—p - L.
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Condition 13’ would make the operator 7 commute with negation, while Condition 14’
is directly lifted from the treatment of epistemic modals in [138]. Notice that the lattice
in Figure 5.6 satisfies both conditions, which shows that we could add them to OF without
collapsing modalities. There might be however, other reasons for the orthofuturist to refrain
from endorsing conditions 13’ and 14’. For one, one might argue that although TpA<OT —p =
L is a plausible way of capturing the Open Future intuition, the intuitive status of the closely
related Tp A—-OTpF L is more debatable (compare for example “There will be a sea battle
tomorrow and it’s open that there won’t be one” with “There will be a sea battle tomorrow,
but it’s not settled that there will be one”). But one can easily derive the second principle
from condition 14’. Similarly, one can show that, over the standard rules of orthologic,
condition 13’ and 14 together entail that ¢ V O—¢ is a theorem for any formula ¢. But
certainly “There will be a sea battle tomorrow or it’s settled that there won’t be one”
(Tp Vv OT—p) does not sound intuitively valid. This suggests that the orthofuturist must
tread carefully when reasoning about the principles governing the interaction between the
openness modality, the tense operator and negation.

5.4 Branching-Time Solutions

In this section, I compare orthofuturism to some classical solutions to the sea battle problem
based on branching-time semantics, and I argue that it is a more appealing position than any
of them. Since Prior’s work on tense logic [211, 212], branching-time semantics has appeared
as a promising way of solving the sea battle problem [63, 201]. Intuitively, the future is open
at a moment ¢ in time because there is more than one way in which the world could evolve
at that time, more than one possible timeline to which ¢ belongs. This basic intuition of
branching-time semantics, however, allows for more than one possible theory. Prior himself
favored what he called the Piercean approach, but he also developed an Ockhamist solution,
although it has been argued that Ockham’s own views are closer to what is usually called the
true futurist or Thin Red Line approach [15, 67, 201]. On the other hand, Thomason’s super-
valuationism [252] offers an alternative solution to the problem that deviates from classical
logic. Finally, a recent proposal based on branching time has been offered by MacFarlane
[178, 179]. However, since his relativist approach is less suitable to a direct comparison with
the orthofuturist solution as I have presented it so far, I will delay such a comparison until
Section 5.6 and focus for now on the Piercean, supervaluationist and true futurist approaches.

The starting point of all branching-time solutions is the definition of satisfaction of a
formula relative not only to a moment in time but also to a timeline, a maximal linearly
ordered set of moments in time. A branching-time model is determined by a partially ordered
set (T, <) that has a tree-like structure (meaning that the past of any moment in time looks
like a line or, formally, y < z and z < z together imply y < z or z < y) and a valuation
function mapping each propositional variable to a set of moments in time. The diagram
in Figure 5.3 depicts an elementary model in which the moment ¢ belongs to two distinct
timelines Cy = {t,to} and Cy = {t, t;}.
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Figure 5.3: A simple branching model

Pierceanism, supervaluationism and true futurism all agree about the following satisfac-
tion conditions of a formula given a valuation V', a moment in time ¢ and a timeline C' such
that t € C:

Vit,C Epstpifft € V(p); V,t,C Epsr L never;

V,t,C Epsr ~¢ iff Vit,C FEpsr ¢;

Vit,C lEpsr o AN iff Vi, C l=psr w and V)1, C [=pst 9;

V,t,C =psr Qp ift Vit,C" =pst ¢ for every timeline C” such that ¢ € C”.

A first difference appears between Pierceanism and the other two theories when one
considers the semantics of the future tense operator 7. If we assume a discrete model for the
sake of interpreting our language .Z, given a moment ¢ and a timeline C' to which ¢ belongs,
there is exactly one moment F'(t,C') that immediately follows ¢ and belongs to C'. According
to the Piercean, “It will be the case that p” means “Inevitably, it will be the case that p”,
and the semantic clause for the 7 operator should therefore be the following:

Vit,C l=p Teiff V,F(t,C"),C" |=p ¢ for every timeline C” such that ¢t € C”.

By contrast, the supervaluationist and the true futurist hold that whether 7 is satisfied at
a moment t with respect to a timeline C' is completely determined by whether p is satisfied
at F(t,C) with respect to C:

‘/vat70 }:ST TSO lﬂ“/aF(ta 0)70 ):ST ®-

Moreover, the Piercean, the true futurist and the supervaluationist differ when it comes
to defining truth at a moment simpliciter, i.e., defining a notion of satisfaction that is not
relative to a timeline. For the Piercean, it is straightforward to verify that satisfaction of
a proposition at a moment in time does not actually depend on a timeline, in the sense
that for any valuation V', any moment ¢ and any two timelines C,C’ such that t € C N (',
Vit,C =p @ iff Vit,C" |=p ¢. The Piercean can therefore define truth at a moment in time
t as truth at ¢ relative to some (or every) timeline C' to which ¢ belongs:

V.t Ep @ iff Vit,C =p ¢ for some timeline C' such that t € C.
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The supervaluationist, on the other hand, holds that truth at a moment ¢ means supertruth
at t, i.e., truth in every timeline passing through ¢:

V.t Es it Vit, C s ¢ for every timeline C' such that t € C.

Finally, the true futurist holds that to any moment in time corresponds an actual future, one
timeline singled out from the other possible ones as the actual one by a “thin red line” [15,
67]. Accordingly, truth at a moment ¢ is defined as truth at ¢ relative to the actual timeline

of t, C(t):
Vit Er o it Vit,O(t) st o

As an example, we may consider again the model presented in Figure 5.3. If we assume
that, for the true futurist, Cy is the actual timeline of ¢, then we can see that the three
approaches each give a different truth value to the formula 7Tp at ¢:

V.t =p —Tp, although V.t f£p T—p;
‘/’t %S Tp and Vat l;és T_‘p, although t ):S Tp \V T—|p’
V,t Er Tp, although V., ¢ =r —OT p.

How does each proposal block the two arguments discussed in Section 5.27 For the
Piercean, truth implies settled truth. In other words, principles (O) and (M) are both
valid. Because the Piercean’s logic is fully classical, contingent propositions about the future
are therefore false: OT—p Ep =T p. If it is still open whether a sea battle may happen
tomorrow, then for the Piercean the statements “There will be a sea battle tomorrow” and
“There will not be a sea battle tomorrow” are both false. As a consequence, the Piercean
blocks both Themistocles’s and Leonidas’s argument by denying (F'), the Future Excluded
Middle: Fp T V T—p, even though every instance of the Excluded Middle, including
TV =T, remains valid.

By contrast, the true futurist makes a clear distinction between truth and settled truth.
For the true futurist, true propositions about the future can also be contingent, and there is
no contradiction is asserting: “We will hold the pass tomorrow, yet we may not hold it.” As
a consequence, neither (O) nor (M) are valid, which allows the true futurist to block both
Themistocles’s and Leonidas’s argument by denying one of its premises, while preserving
classical logic and the validity of (F').

Finally, the supervaluationist accepts both the Future Excluded Middle (F') and that
truth coincides with settled truth, as ¢ g Op. The supervaluationist also accepts the
validity of (O), although one has to be careful here: a formula of the form ¢ A OG- may
never be supertrue or true at a moment simpliciter, but it may be satisfied relative to a
moment in time and a timeline. Although it preserves all the validities of classical logic, the
supervaluationist blocks Themistocles’s and Leonidas’s arguments by rejecting both classical
inference patterns (C) and (D).
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= [ Fs [ [ Fo
(F)FTeV Ty X |V |V |V
(M) TeFOTe VoV x| x
(O) T, oT—pkE L VAR VAR I v
(C) pFx&yvbEx=pViEy v X v
(D) T,pkEx&T o x=ToVE x| vV X v4 X

Table 5.1: Orthofuturism vs. Branching-Time Solutions

As we can see summarized in Table 5.1, the orthofuturist’s position is the only one that
offers a different diagnosis for each one of the arguments from Section 5.2. As a consequence,
the orthofuturist’s position can be seen as a rather nuanced view that agrees in some respect
with each of the three branching-time positions. Against the Piercean and the supervalu-
ationist, the orthofuturist agrees with the true futurist that truth is distinct from settled
truth and that the openness modality should not collapse. For this reason, she rejects the
unrestricted validity of (M). Against the Piercean, she also agrees with the supervalua-
tionist and the true futurist that the Future Excluded Middle is valid, although she might
resist going one step further and holding that the tense operator 7 commutes with negation.
On the other hand, the orthofuturist agrees with the Piercean’s intuition that one may not
assert at the same time that Leonidas’s men will hold the pass and that they may not hold
it. Against the true futurist, she thinks that 7o A OGT =g is contradictory, and, by contrast
with the supervaluationist, she even goes as far as to agree with the Piercean that its nega-
tion =(7T o A OT —p) is a theorem. Finally, she agrees with the supervaluationist that some
classical inference patterns are not valid when reasoning about an open future. But while
the supervaluationist objects to both reasoning by cases (C') and reasoning by cases with
side assumptions (D), the orthofuturist needs only to reject the second inference pattern.
She does not argue that our classical understanding of disjunction is flawed but rather that
the logic of the open future fails to be distributive.

As a consequence, orthofuturism emerges as a strong candidate for addressing the sea
battle problem. Indeed, there are strong reasons to reject the Modal Collapse thesis (M).
First, since the converse principle, namely that settled truth implies truth, seems uncon-
troversial, principle (M) therefore amounts to an identification of truth with settled truth.
Intuitively, however, there seems to be a difference between asserting that a certain event F
will happen and asserting that E will happen inevitably. The case can also be made quite
strikingly if one considers the credences that rational agents may have about the future.
Leonidas and his men, knowing that the Persian army vastly outnumbers their forces, may
very well consider it quite likely that they won’t be able to hold the Thermopylae pass for a
second day but very unlikely that the issue is already settled. In other words, their credence
in “We won’t hold the pass tomorrow” may be high without their credence in “Inevitably,
we won’t hold the pass tomorrow” being at least as high. But if we hold that credences
should respect logical entailment, as is commonly admitted, then it follows that “We won’t
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hold the pass tomorrow” cannot entail “Inevitably, we won’t hold the pass tomorrow” and
that we must reject (M).

A second argument against the Modal Collapse thesis comes from a more careful analysis
of the openness modality. As mentioned in Section 5.2, the notion of necessity involved is
meant to capture the intuition of an asymmetry between the past and the present on one
hand, and the future on the other hand. Consequently, the motivation for (M) given above
was to appeal to the fixity of the past and the present. If ¢ is true now, then it is too late to
change that fact; ¢ is now inevitable, and therefore Oy is also true. But if the modality O is
meant to capture the particular way in which the past and the present are fixed, by contrast
with the future, then the unrestricted validity of (M) is untenable. This is essentially the
point famously made by Ockham [200], when he distinguishes statements that are about the
past and the present de re, like “John is in heaven now”, from those that are truly about the
future, and about the past or the present merely de dicto, such as “John is predestined” or
“God knows today that John will enter heaven tomorrow”. For Ockham, the fallacy in the
fatalist’s argument resides precisely in the unrestricted application of the Modal Collapse
thesis to statements that may not be genuinely about the past or the present. Regardless of
whether one thinks that Ockhamist solutions to the sea battle problem are satisfactory, the
mismatch between the intuitive justification of (M) and its unrestricted application puts
great pressure on the Modal Collapse thesis.

Lastly, one may consider the dual notion of possibility that arises from endorsing (M).
If one assumes contraposition, then an instance of (M) of the form 7Tp F O7p entails
O=Tp F —=Tp, which, assuming that the operator 7 commutes with negations, entails
O=Tp B T—p. But clearly that last inference is unacceptable. From the mere fact that
there may not be a sea battle tomorrow, it does not follow that there won’t in fact be a sea
battle tomorrow. Of course, both the Piercean and the supervaluationist admit that such
an inference would yield too strong a notion of possibility, but their endorsement of (M)
means that they can only do so at a high cost. In order to avoid that the tense operator T
commute with negation, the Piercean must reject the Future Excluded Middle, in spite of
its intuitive validity [55]. The supervaluationist, meanwhile, is forced to reject that contra-
position is a valid inference pattern, on top of rejecting reasoning by cases. By contrast, the
orthofuturist’s rejection of (M) allows her to maintain both the Future Excluded Middle
and contraposition as a valid principle and inference pattern respectively.

At the same time, any branching-time solution that rejects (O) arguably comes short
of genuinely securing the openness of the future. If it is not settled whether there will be
a sea battle tomorrow or not, then introducing an asymmetry between the two possible
outcomes seems illegitimate. If time is genuinely branching at any given moment, then no
branch should receive a special ontological status as the one that will actually happen. The
question whether the true-futurist solution to the sea battle problem is compatible with
indeterminism raises difficult and intricate metaphysical issues [8, 15, 67, 178, 225] that are
largely beyond the scope of this chapter. For now, I will limit myself to pointing out that
rejecting the Open Future intuition yields a notion of possibility that is arguably too weak.
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Suppose Leonidas only tells his ally Themistocles that the Greeks may or may not hold
the pass for a second day. Frustrated with Leonidas’s reply, Themistocles hastily consults
the oracle in Delphi, which gives him the following answer: “Leonidas spoke truthfully, yet,
in fact, his men won’t be able to hold the pass for another day”. If Themistocles believes
that the oracle is never wrong, then should the oracle’s reply not be enough of a reason
for Themistocles to retreat with the Greek fleet? For if he chooses instead to try and keep
the Persian fleet at bay for another day, he certainly may be making the right choice but
knows that he will, in fact, be making the wrong one. In other words, once Themistocles
knows that the Greeks will not stop the Persian army at Thermopylae, Leonidas’s (true!)
statement that it is still possible for his men to do so becomes entirely irrelevant.

Of course, the true-futurist could reply that, although true, a future contingent can never
be known in advance, so that Themistocles could never be in a position to know whether
Leonidas and his men would or wouldn’t hold the pass. Although there is a fact of the matter
regarding the Persian army’s victory or defeat on the second day, there is no determinate
fact of the matter, and so the outcome of the battle to come cannot be known in advance.
But clearly the openness of the future that one has in mind when describing the situation
at Thermopylae is not merely epistemic. What prompts Leonidas to tell his ally that they
may hold the pass and they may not hold it is not a mere ignorance of the full situation, but
rather the conviction that some of the facts that will decide the outcome of the battle have
yet to obtain. So the true-futurist must now account for a notion of determinateness that
doesn’t coincide with knowability, as well as argue that the openness of the future is best
understood as the lack of a determinate fact of the matter rather than the lack of a mere
fact of the matter. In that respect, it seems that the true-futurist is no better position than
the “classical indeterminacy theorist” discussed by Field in [92] in the context of vagueness.

To sum up, accepting the Modal Collapse thesis for the openness modality yields a no-
tion of necessity that is too weak to account for the asymmetry between the past and the
future, while rejecting the Open Future intuition, as I argued, threatens to yield a notion of
possibility that is too weak to play any significant role in our reasoning about the future. Yet
because the two principles are classically equivalent, a classical logician must either accept
both the Modal Collapse thesis and the Open Future intuition, or reject both. But this
is precisely where the orthofuturist has an advantage over all the branching-time solutions
discussed here. Because she does not accept the distributive laws, she is able to hold that
the Modal Collapse thesis (M) is false without giving up the Open Future intuition (O). In
doing so, she can allow for a notion of necessity that is strong enough not to be confused with
mere truth and for a dual notion of possibility that is strong enough to secure a genuinely
open future.

Let me conclude this sections by briefly discussing how the orthofuturist can address two
objections that are often raised against any view that upholds a version of the Modal Collapse
thesis or of the Open Future intuition. The first objection raises the assertion problem: if
a view predicts that a contingent statement about the future can never be assertable, then
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how come we do seem to routinely make such statements? The second objection raises the
credence problem: if it is contradictory to hold that statements about the future can be both
true and contingent at the same time, then how come one can have credence 1 that the
future is open regarding whether a sea battle will happen tomorrow and still have positive
credence that the sea battle will in fact occur?

To answer the first challenge, the orthofuturist can essentially follow the strategy outlined
by MacFarlane in [177, Section 9.9], and simply argue that assertions about an open future
are only correct when made by way of ellipsis. Whenever one makes an assertion about a
future contingent, one is merely expressing an intention (“I will come at noon tomorrow”) or
what one takes to be overwhelmingly likely (“This summer will be hotter than the previous
one”). Under that view, asserting future contingents is technically incorrect, but pragmat-
ically justifiable. But the orthofuturist can in fact go one step further. Because she does
not accept Modal Collapse, there is a sense in which she might view an assertion about
a future contingent valuable even if it cannot be ascribed a classical truth-value. Indeed,
unlike the Piercean, she does not view future contingent statements as false, and, unlike the
supervaluationist, she also does not view them as having an undefined truth-value. Rather,
because she rejects the principle of bivalence, she thinks that statements about the future
may have semantic values that go beyond truth and falsity. This opens up the possibility for
the orthofuturist of developing a theory of assertion in which asserting statements that are
not classically true can be justifiable, provided that they are also not classically false and
have a determined semantic value.

Regarding the credence problem, there are at least two ways that the orthofuturist could
reply. First, recall that although —(7p A OT—p) is a theorem of OF, we do not have that
TpA-OTptor L. In other words, although the orthofuturist thinks the sentence “There
will be a sea battle tomorrow and it’s open that there won’t be one” is contradictory (and
thus should always receive credence 0), this does not prevent her from thinking that the
sentence “There will be a sea battle tomorrow but it’s not settled that there will be one”
is not contradictory. This means that she could answer the credence problem by arguing
that we do sometimes have positive credence in future contingent propositions, provided that
by this we mean propositions that we take to be true but not settled as true, rather than
propositions that we take to be true even though their negation is open. Once again, it is
worth mentioning that this option is only available to the orthofuturist because, unlike the
Piercean or the supervaluationist, she does not take Modal Collapse to be a valid principle.
Finally, the second option for the orthofuturist is to simply adopt the answer offered by
Holliday and Mandelkern regarding a similar problem for credences in propositions involving
epistemic modals. In a nutshell, the idea is that the revision of classical logic advocated for
in the case of epistemic modals calls for a similar revision of classical probability theory. In
particular, one should not assume that having credence 1 in a proposition ¢ entails having
equal credence in ¢ A1) and in 9. It is easy to see how this could be used to address the
credence problem. Whenever T p is a future contingent proposition, one could have credence
1 in OT—p and credence .5 in T p, but still have credence 0 in the proposition 7p A OT —p.?

5See [138, Section 5] for a more comprehensive treatment of this approach.
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5.5 Fragment Semantics

So far, I have presented orthofuturism only from an axiomatic perspective, by laying out
which principles and inference patterns the orthofuturist holds as valid and which ones she
rejects, and I have defined the logic OF as a logic of the open future that captures the ortho-
futurist’s position. In this section, I present a concrete, Kripke-like semantics for this logic.
Unlike the branching-time semantics discussed in the previous section, the basic objects of
this semantics are not fully determined instants organized in a tree-like structure of splitting
timelines, but rather temporal fragments, i.e., partial descriptions of the world at an instant
that may or may not be compatible with one another.® My goal here is not so much to make
a metaphysical claim about what the actual structure of moments in time may be like if or-
thofuturism is correct but rather to provide a fairly intuitive picture of how an orthofuturist
may conceive of the flow of time.

Because OF is not a classical modal logic, standard possible-world semantics is not a
suitable technical framework for our purposes. Instead, I will present a possibility semantics
for OF that shares many aspects with the semantics for epistemic modals developed by
Holliday and Mandelkern in [138]. Unlike in possible-world semantics, the basic objects of
possibility semantics [135, 140] are not maximal objects such as possible worlds but rather
possibilities, which can be thought of as partial descriptions of possible worlds. Models for
OF will consist of a set .S of fragments endowed with a reflexive and symmetric relation A of
compatibility, an accessibility relation R of openness, and a transition function 7 : S — S.
Intuitively, one may think of the compatibility relation A as determining when two fragments
do not rule one another out (which is not to say, as will become apparent below, that the
two fragments could be combined into a single one). The openness relation R holds from a
fragment s to a fragment s’ whenever everything that is settled at s also holds at s, while the
transition function 7 describes what the future looks like from the point of view of a fragment
s. Formally, the compatibility relation on S allows us to model the orthocomplementation
operation of OF, while the openness relation R and the transition function 7 will be used to
handle the necessity operator O and the tense operator T respectively.

In possibility semantics, propositions are not evaluated as sets of possible worlds, but
rather as subsets of the domain S of possibilities of a certain kind. Let us consider first the
following definition.

Definition 5.5.1. Let A be a reflexive and symmetric relation on a set S. A A-fixpoint of
S is a subset A of S such that for any s € S,

se A VsAsTs'As 1 " € A.

The set of A-fixpoints of S is denoted F,(S5).

6The fragment semantics presented here should not be confused with Fine’s fragmentalism about time
and reality [93]. Fine’s fragments are maximally coherent collections of facts, while the fragments considered
are only partial descriptions of a moment in time.
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Because fragments are only partial descriptions, a fragment s may fail to satisfy a proposition
© without outright refuting it. In fact, it seems intuitive to say that s refutes ¢ precisely
when no fragment ¢ compatible with s satisfies . Similarly, s may fail to refute ¢ without
satisfying ¢. But if ¢ is not satisfied at s, then it should at least be possible to refute
it, meaning that there should be a fragment s compatible with ¢ that refutes ¢. But this
amounts to requiring that the set of fragments that satisfy ¢ be a A-fixpoint of S. In what
follows, we will therefore always make sure that the set of fragments satisfying a proposition
is a A-fixpoint.

In order to ensure the soundness of OF with respect to our fragment semantics, we must
impose some conditions on the interaction between the relations A and R the function 7.
Following [138], let us first introduce the following definition.

Definition 5.5.2. Let S be a set, A be a reflexive and symmetric relation on S, R another
relation on S and 7 a function. Then for any s,s € S:

o s refines §', denoted s C &', if V2 € S(zAs — zAS');
e s is compatibly open to s', denoted sAgs', if 3z : sRz N\ zAS';

e s anticipates s', denoted sArs', if Vz € S(zAs" — Fx(sax A 7(x) C 2)).

Intuitively, a possibility s refines another possibility s if s only rules out possibilities
that are also ruled out by s. In other words, s imposes more stringent conditions on what
the actual world is like than s’ does. It is straightforward to see that whenever s C s’ and
A€ FA(S), s € Aimplies that s € A, i.e., every proposition true at s’ is also true at s. The
other two notions have a merely technical interest. We are now in a position to define the
adequate frames for our logic:

Definition 5.5.3. A fragment frame is a tuple S = (S, A, R, 7) such that:

1. A is a reflexive and symmetric relation on S, R is a relation on S and 7 is a function
from S to S;

2. For any s € S and any §'Ags, 3zAsV2'Az : ' ARz’ (Openness propositions are propo-
sitions);

3. For any s € S and any §'A7(s), JzAsV2'Az : ' AT(2") (Future-tensed propositions are
propositions).

4. Vs € S: sRs (Everything that is settled at s is also true at s);

5. Vs € S3z € S : (sAzAVx(zArx — T(x)AT(s))) (It is compatible with s that everything
that is true at 7(s) is also settled);

6. Vs,s' € S :sAs" — 7(s)AT(2) (Two compatible fragments evolve in compatible ways);
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7. For any s € S and any s'As, 3z : sArz A zAT(s") (Two compatible fragments can
compatibly anticipate each other’s future).

Intuitively, conditions 2 and 3 guarantee that the set of fragments satisfying formulas of
the form Oy and T ¢ respectively are A-fixpoints and thus genuine propositions. Conditions
4 and 5 are imposed on the openness relation to ensure that settled truth implies truth,
and that no fragment can both make T ¢ true and make 7 —¢ possible. Finally, condition 6
ensures that a fragment satisfies a formula of the form —7 ¢ if it also satisfies the formula
T =, and condition 7 ensures that the complex operator =7 — preserves conjunctions. Let
us now see how to interpret .Z-formulas in fragment frames:

Definition 5.5.4. A fragment model M is a tuple (S, A, R,7,V) such that (S, A, R,7)
is a fragment frame and V is a propositional valuation such that V(p) € F,(S) for any
propositional variable p. The satisfaction relation on a fragment model (S, A, R,7,V) is
defined inductively for any s € S and any formula ¢:

e M sEpiff s e V(p);

e MsEpAvyiff sy and s =

o M s —piff & £ ¢ for any s'As;

e M,s Dy iff & & ¢ for any s’ such that sRs';
e M,sE=Typiff 7(s) = ¢.

Let F be the class of all fragment frames. We define the relation of logical consequence in
the standard way: for any two formulas ¢, v, 1 is a logical consequence of ¢ with respect to
F, denoted ¢ [=f v, if for any fragment frame S = (S, A, R, 7), any fragment model M based
on § and any s € S, M, s = ¢ implies M, s |= 9. One can show in a straightforward way
that the logic OF is sound and complete with respect to this semantics (see Theorem 5.8.7
in Section 5.8.2 for a proof).

To get a feel for fragment semantics, let us consider in some detail the fragment model M
presented in Figure 5.4, where p stands for “There is a sea battle”. The compatibility relation
A is represented by black lines and the relation R arrows (reflexive lines being omitted for
both), while the function 7 is represented by blue arrows. The model is determined by
the valuation mapping p to the black dot in Figure 5.4, i.e., the valuation V' such that
V(p) = {z1}. Intuitively, the bottom row, which is structurally similar to the Epistemic
Scale of [138], represents all the present possibilities regarding the sea battle to come, while
the top row represents three possible futures: one in which the sea battle is settled as
happening, one in which the sea battle is settled as not happening, and one in which the
issue is still open.” It is straightforward to verify that M is a fragment model. Note in

"Note that the transition function is reflexive on the fragments in the top row. Consequently, the model
describes a high-stakes situation: whether there is a sea battle tomorrow will determine whether the world
will be in a state of eternal war or eternal peace. This choice is in no way forced upon us, but one advantage
is that this makes our toy model finite (unlike the model in Figure 5.5 below).
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particular that {x;} € F,(S), since any s distinct from x; is compatible with some s’ that
is incompatible with z;. Our semantic clauses imply that M, sy = Tp, since 7(s1) = x1. At
the same time, M, s; |= O7 p if and only if M, 7(s) |= p for all s such that s;Rs. But s Rr
and 7(r) = z, so in fact M, s; £ OT p. Intuitively, because the future fragment from the
point of view of s;, which is z1, differs from the future fragment of the accessible fragment r,
which is z, s is a fragment in which a sea battle will happen tomorrow, but not in a settled
way. At the same time, we may also check that M, s; = OT—p. Given the equivalence
between &7 —p and —O—7 —p in our semantics, it is enough to show that there is s’As; such
that M, s = O—~T —p. Clearly, s, is such a point.

OTp Tp OTp AOT—p T-p a7 —p

Figure 5.4: The fragment model M.

Similarly, we may consider the fragment r. It is straightforward to verify that M, z [~ p
and M,z & —p, from which it follows that M,r [~ Tp and M,r = T—p. However, any
fragment s compatible with r is compatible with a fragment s that models either 7p or
T —p, from which it follows that M,r = TpV T—p. In fact, r satisfies the even stronger
condition 70Op V TO—-p. At the same time, because the only fragment satisfying 07 p and
O7 —p are sy and ty respectively, we have that M, r = OTp A OT—p. In other words, from
the point of view 7, the sea battle tomorrow is completely undetermined: it is possible that
it will happen, and, in fact, » does not rule out that it is already true that it will happen.
But it is equally possible that it won’t happen, and r does not rule out that it is already
true that it won’t happen, since rAt;.

Of course, that the possibility of a sea battle not happening tomorrow is compatible with
the fact that a sea battle will in fact happen does not mean that both facts can be realized
by one and the same fragment. In other words, just because s; and r are compatible, this
does not mean that they are compossible, i.e., that there is a fragment that refines both of
them. Indeed, as noted by Holliday and Mandelkern in [138], the logic of a possibility frame
is classical exactly when compatibility implies compossibility, i.e., when any two compatible
possibilities have a common refinement.

Let me conclude this section by briefly comparing fragment semantics with branching-
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time semantics. A first contrast between the two models is the way in which the openness
of the future is secured. While branching-time semantics is built on the idea that a single
moment in time may have several distinct futures, every fragment in a fragment frame has
a unique future fragment, determined by the transition function 7. But unlike instants in
a branching model, fragments are not maximally consistent descriptions of ways the world
could be, but only partial descriptions, able to be extended in various incompatible ways. In
other words, for the orthofuturist, the openness of the future does not follow from the fact
that there could be many mutually incompatible and completely determined futures lying
ahead but rather from the fact that, as of now, the unique future lying ahead of us is not
completely determined. Moreover, this incompleteness is cashed out by the fact that an open
future does not rule out alternative fragments with which it is nonetheless not compossible.
From today’s point of view, the future does not rule out tomorrow’s sea battle, nor does
it rule out the absence of such a sea battle. But obviously no future can be a fragment in
which the sea battle happens, does not happen, and may or may not happen all at once.

A second difference between the two kinds of models is the way in which they account
for the flow of time. A branching-time model provides a purely external perspective on
time: as time passes by, we move from one point to the next on the tree of moments in time
according to one of the possible timelines determined by the model. By contrast, fragment
models adopt an internal perspective. As time passes by, the moment that best describes
the actual world is not entirely determined by the moment that best described it a moment
ago and the transition function 7. If it is still open whether there will be a sea battle tomor-
row, then, from today’s point of view, a sea battle is neither happening nor not happening
tomorrow. But come tomorrow, the fragment in which the sea battle is neither happening
nor not happening will not be an optimal description of the actual world. Rather, it will
be another fragment, compatible with that one, that settles the sea battle as happening or
as not happening. In other words, what the future looks like today is not what it will look
like when it becomes the present. If the future is genuinely open, this seems like a rather
obvious observation, but it is a key feature of the fragment semantics presented here and, as
such, it will play a significant role in the next section.

5.6 Orthofuturism and Relativism

In this section, I turn to discussing the relationship between orthofuturism and MacFar-
lane’s recent relativist solution [178, 179] to the sea battle problem. MacFarlane argues that
there are two competing intuitions regarding statements about the future. According to
the indeterminacy intuition, some statements about the future such as “There will be a sea
battle tomorrow” are neither true nor false, because at the time that they are uttered the
future could still unfold in different ways. On the other hand, according to the determinacy
intuition, once tomorrow has arrived and the sea battle has or has not happened, the state-
ment uttered the day before retrospectively seems to have had a definite truth value. Once
Leonidas’s men have managed to hold off the Persians for one more day, they rejoice and
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agree that, after all, it was true that they would hold the pass. MacFarlane argues that both
intuitions are correct and should therefore be preserved, despite their apparent inconsistency.
His proposal is to relativize the truth of a statement not only to a context of utterance (the
moment at which the statement is uttered), but also to a context of assessment (the mo-
ment from which the truth-value of the statement is assessed). Thus as assessed on the first
evening by Themistocles, the statement “There will be a sea battle tomorrow” is neither true
nor false. But assessed from the second evening, after which his fleet destroyed a small patrol
of isolated Persian ships, Themistocles can now consider that that statement was true after
all. In other words, MacFarlane agrees with the supervaluationist that a statement about
the future cannot be contingent, i.e., true in some timelines and false in some others, and
yet true, as long as its truth-value is assessed at a moment that belongs to such disagreeing
timelines. But since timelines must split eventually, MacFarlane argues that, in the long
run, the true-futurist is right, but only retrospectively: some statements were true when they
were uttered, even though they were only contingently so at that time.

Because MacFarlane’s determinacy intuition involves looking into the past in an essential
way, it is worth discussing first how to add a backwards-looking modality to OF. Just
as temporal logic has both forward looking and backward looking operators, we may add
a “Yesterday” connective ) as a counterpart to our “Tomorrow” connective 7. We can
therefore define the language .3, generated by the following grammar:

pu=plLl-pleAe|De|Te| Ve
where again p belongs to a countably infinite set of propositional variables. What conditions
should we impose on the interplay between the two temporal modalities? A simple and
attractive option is to treat ) as an inverse of 7T, in the sense that for any formula ¢, we
should have that 7T )y is equivalent to ¢ and ¢ is equivalent to YT ¢. A convenient way to
spell out this requirement is to impose the following conditions on our logic:

L1 Yy implies p = T1);
L2 ot T implies Yo F ;
R1 Tyt 1 implies ¢ - Yi;
R2 ¢ F Yo implies T - 0.

One can verify that, over OF, the conjunction of L1 and L2 is equivalent to the conditions
o TYpand YT o F ¢, together with the monotonicity of ), i.e., the condition that ¢ - v
implies Y = Y. Similarly, the conjunction of R1 and R2 is equivalent to the conditions
e YTy and TYp E @, together with the monotonicity of ).

It is worth noting that L1 and L2 are conditions that intuitively follow the flow of time,
while R1 and R2 are conditions that “go against” the flow of time. Intuitively, L1 and L2
assert that the way in which the past affects the present is the same as the way in which the
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present affects the future. A similar intuition applies to the equivalent principles ¢ F T Yy
(“There is a sea battle occurring today; therefore tomorrow it will be the case that there was
a sea battle occurring the day before”) and YT ¢ | ¢ (“Yesterday it was the case that there
would be a sea battle the next day; therefore there is a sea battle today”): in both cases, the
truth of a proposition at a certain time entails the truth of another proposition at a later
time. By contrast, R1 and R2 go in the opposite direction, as they assert that the way
in which the future affects the present is the same as the way in which the present affects
the past and are equivalent to the principles ¢ = YT (“There is a sea battle occurring
today; therefore yesterday it was the case that there would be a sea battle the next day”)
and TYp F ¢ (“Tomorrow it will be the case that there was a sea battle occurring the day
before; therefore there is a sea battle occurring today”). One might therefore be tempted
to introduce two distinct operators ) and W, satisfying conditions L1-L2 and R1-R2
respectively. Although we cannot pursue this option here, this seems like a promising way
of formalizing Plantinga’s distinction between soft and hard facts about the past [67, 208],
i.e., between facts regarding the past that depend in some way on the future and facts that
do not. One could indeed argue for the intuitive validity of the “forward-looking” rules
VTpt ¢ and ¢ F TYp when ) is interpreted as “It was a hard fact yesterday that”,
and for the validity of the “backward-looking” rules TWo F ¢ and ¢ = WT @ when W is
interpreted as “It was a soft fact yesterday that”. For now, let us define the logic OFY as
the smallest relation - on % satisfying conditions 1-11, L1, L2, R1 and R2.

Fragment frames can be modified in a straightforward way to provide a semantics for
OFY.

Definition 5.6.1. A linear fragment frame is a fragment frame (S, A, R, 7) such that 7 is a
bijection and for any s € S and any s'AT7!(s), JzAsV2 Az : ' ATTH(Z).

By requiring the transition function 7 to be a bijection, we can therefore define the past
of any fragment s as 77!(s), i.e., as the unique fragment s’ such that 7(s’) = s. A OFY
model M is defined in the natural way, by letting M, s = Yy iff M, 771(s) = . The proof
of the following theorem is postponed to Section 5.8.3.

Theorem 5.6.2. The logic OFY is sound and complete with respect to linear fragment
frames.

Let us now return to MacFarlane’s relativism. How does the orthofuturist position com-
pare to MacFarlane’s? Fragment semantics can certainly account for the indeterminacy in-
tuition. If we consider again the model M depicted in Figure 5.4, we have that M, z; £ Tp
and M, z; [~ T —p, which one can interpret as the truth-value of the statement 7 p not being
determined at z;. At the same time, if the orthofuturist endorses R1, then ¢ - Y7 ¢ becomes
a theorem of her logic, which seems to establish that she can account for the retrospective
determinacy intuition as well. However, there is a major difference between orthofuturism
and MacFarlane’s relativism. For the relativist, an utterance can be both true and contin-
gent in the right context of assessment, while this is a contradiction for the orthofuturist.
Indeed, if one considers again the branching time model presented in Figure 5.3, then the
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Figure 5.5: The model N

relativist claims that, relative to a context of assessment whose moment is ¢y, 7 p is true as
uttered at ¢, because it is true at t relative to timeline C' for every timeline C' to which g
belongs, which in this case is only the timeline {¢,¢y}. At the same time, OT —p is also true
when uttered at t relative to a context of assessment whose moment is tg, since T —p is
true at t relative to timeline {t,to}, as 7—p is true at ¢ relative to timeline {¢,¢;}. Unlike
the orthofuturist, the relativist therefore rejects the Open Future intuition (O), even though
only in some specific contexts. Nonetheless, this does not mean that the orthofuturist must
outright reject MacFarlane’s point.

Indeed, the orthofuturist may agree with MacFarlane that the determinacy and indeter-
minacy intuitions are not incompatible, while at the same time maintaining that they are
not compossible. This point can made in a particularly clear way by appealing to fragment
semantics and its internal approach to the flow of time mentioned in the previous section.
For example, one may consider the fragment model N partially depicted in Figure 5.5. Once
again, black lines represent the compatibility relation, red ones the openness relation (with
reflexive loops omitted in both cases), and dotted blue lines represent the transition function.
The underlying frame consists of infinitely many copies of the top row in Figure 5.5 above
infinitely many copies of the bottom row. Since every fragment has both a predecessor and
a successor according to the transition function, 7 is a bijection and the past of a fragment
s is precisely the fragment 77!(s). The model N is determined by the valuation mapping p
to the black fragments in Figure 5.5.

Intuitively, r describes the moment at which Themistocles, after having led his fleet
through the first day of the battle, wonders whether there will be another sea battle on the
next day. In r, the sea battle to come is still a contingent event, and it is neither true that
there will be one nor true that there won’t be one, since the accurate description of the
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future at this point is the fragment z, and z satisfies neither p nor —p. On the second day
however, since there is indeed a sea battle occurring between the Persians and the Greeks,
the accurate description of the present is not z anymore, but rather x;. We can check that
N,z; = YTp; indeed 771 (x1) = s; and N, s; = Tp because 7(s;) = z1. Because OFY is
valid in N, it follows that N, x; &£ YOT —p, which we can verify easily by noticing that
N, s1 = OT —p since s1As,. In other words, although, yesterday (i.e., in 7), it was true that
the sea battle could have failed to happen, today (i.e., in x7), it is not the case anymore that
the sea battle could have failed to happen. At the same time, this does not mean that it was
already settled yesterday that today’s sea battle would occur. Indeed, N, s; & OT p, since
N,r £ Tp, and therefore N, x1 = YOTp. Although it is now settled that the sea battle
would occur, it was not settled yesterday that it would. Crucially, what the future looked
like on the eve of the second day (i.e., z), is not what the present looks like on the second
day (i.e., 7).

The internal perspective on the flow of time adopted by fragment semantics therefore
allows the orthofuturist to account for both the determinacy and the indeterminacy intu-
itions, without having to give up the Open Future intuition. In fact, one may argue that
the relativist’s rejection of (O) stems from a superposition of the internal and the external
perspective. Once we look back at the day before the sea battle happened, the way in which
it could have failed to happen (back then, the present looked like there may not be a sea
battle on the next day) is different from the way in which it was true that it would happen
(now that we look into the day before, we can see that the sea battle was going to happen).
In the latter case, we are simply considering internally what the past looks like from today’s
viewpoint, while, in the former case, we need to adopt an external perspective on what the
past looked like when it was the present. At the same time, even from the internal viewpoint,
a shadow of the way things used to be persists: although it is not true anymore that the sea
battle could have failed to happen (i.e., YT —p does not hold), it is still not true that it
was bound to happen (i.e., YOT7 p does not hold either).

To sum up, the relativist thinks that we can solve the sea battle problem from the
external viewpoint on the flow of time, provided that we establish a distinction between
context of utterance and context of assertion. In doing so, the relativist develops a two-
dimensional theory of meaning in order to resolve the antinomy between the determinacy and
the indeterminacy intuitions. In that sense, her solution is essentially (post)-semantic. By
contrast, the orthofuturist concludes from the fact that the determinacy and indeterminacy
intuitions are never true at the same time that there is no need to reject the Open Future
intuition, even retrospectively. But the price that she has to pay is to give up on the
possibility of an external, all-encompassing view on the flow of time, and this is reflected in
the fact that she must abandon classical logic for orthologic. In that sense, her solution to
the sea battle is logical rather than semantic.
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5.7 Conclusion

Orthofuturism offers a novel approach to the sea battle problem that has the advantage of
making sense both of the intuition of a genuinely open future and of the distinction between
truth and settled truth. As I have argued, the orthofuturist holds a nuanced view in the
debate between those who think that there is one true future and those who think that there
are many equally possible futures ahead of us. Indeed, she thinks that there is only one
future but understands its openness as the fact that it is compatible with other ways that
the world may turn out to be. Unlike the proponent of branching-time semantics, however,
she does not think that all those possible futures coexist as splitting timelines. Rather, she
thinks that compatibility does not imply compossibility, and this is ultimately what leads
her to reject the distributive laws of classical logic and to favor orthologic instead.

Although orthologic is not classical logic, it is a well-established and tractable formal
system, and the algebraic and relational semantics presented here provide powerful tools for
investigating the interactions between tense and modality beyond the distributive world. At
the same time, there is still much left to explore. On the axiomatic side, a natural next
step would be to investigate the addition of a conditional connective to the logic OFY. The
interaction of tense with conditionals is a subtle problem [253], and one must be particularly
careful in the case of orthologic, as adding a conditional satisfying the deduction theorem
would collapse the logic to classical logic. Nonetheless, a modular approach based on modali-
ties [138] or on weak implication connectives [131] seems promising. Moreover, I do not claim
that the logic I have introduced is the correct logic of the open future. Rather, I believe
that the work presented here motivates further research on logics between pure orthologic
and classical logic, and on extensions of orthologic with operations such as modalities, tense
operators and conditionals. On the semantic side, further exploration of models for OFY is
needed. In particular, a reconciliation of the internal and external perspectives on the flow
of time could be a useful enhancement of fragment semantics. One would also hope that this
could grow into a conception of the orthofuturist’s metaphysics of time that could truly rival
branching time semantics. On both accounts, I suspect that a two-dimensional approach,
similar to Cariani’s recent investigation on classical possibility semantics for the open future
[54], could be fruitful. Whether this will help us come to a fully satisfactory answer to a
century-old problem, however, is a question that is left for future work.

5.8 Technical Appendix

5.8.1 Appendix A

This appendix contains some technical details regarding the algebraic semantics for OF
mentioned in Section 5.3.2. We start with the following definition:

Definition 5.8.1. A bimodal ortholattice is a structure (L, <,A,V,—,0,1,0,7) satisfying
the following axioms:
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o (L,<,A,V,0,1) is a bounded lattice:

1. < is a partial order on L, i.e., a reflexive, transitive and antisymmetric relation;

2. A and V are functions from L x L to L mapping any pair of elements a, b of L to
their greatest lower bound a Ab and least upper bound aV b in (L, <) respectively;

3. 0 and 1 are the smallest and greatest elements of L respectively.

e — is an orthocomplementation on L, i.e., a function from L to L such that for any
a,be L:
4. a < b implies =b < —a;
5. a = —a;
6. aAN—-a=0and aV —a=1.
e O and 7 are modal operators on L, i.e., functions from L to L such that for any
a,be L:
7. 00l=1and T1=1;
8. O(aAb) =0OaAOb,and T(aAb) =TaATo.
The reader may consult [138, Section 3] for a detailed description of modal ortholat-
tices and their relationship to Boolean algebras with operators, which provide the standard
algebraic semantics for classical modal logic. In order to isolate the adequate bimodal or-

tholattices for OF, we need to impose some additional conditions on the modal operators,
which correspond in a straightforward way to conditions 11-14 in Definition 5.3.1.

Definition 5.8.2. An OF lattice is a bimodal ortholattice (L, <, A,V,=,0,1,0,7) such that
for any a € L:

9. Oa < a;
10. =7 — is also a modal operator on L;
11. Ta N —-0O-T-a < 0;
12. T—a < —=Ta;

Figure 5.6 presents Hasse diagrams for two simple OF lattices. As is customary in Hasse
diagrams, a line from an element x to an element y pictured above x means that x < y and
that there is no distinct element z such that x < z < y. The modal operator O is represented
by red full arrows, and the tense operator 7 is represented by dashed blue arrows.

We may now define rigorously the notion of a valuation on a OF lattice L.

Definition 5.8.3. Let (L, <,A,V,—,0,1,0,7) be an OF lattice. A waluation on L is a
function v mapping Z-formulas to elements of L so that for any two formulas ¢, v:
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e v(Ll)=0;
o v(p A1) =v(p) Nv(¥);
o v(—p) = v (p);

(

v(Te) = Tu(p).

A formula ¢ is valid on L if for any valuation v on L, v(p) = 1. For any two formulas ¢ and
W, 1 is a logical consequence of ¢ on L, denoted ¢ =y, 9, if v(p) < v(¢)) for any valuation v
on L.

Finally, we have the following soundness and completeness theorem.

Theorem 5.8.4. The logic OF is sound and complete with respect to the consequence relation
=c: for any two L -formulas ¢ and ¥, ¢ F ¢ if and only if ¢ Ec 1.

Proof. For soundness, one can check in a straightforward way that the relation =¢ satisfies
conditions 1-11 in Definition 5.3.1. Since by definition F is the smallest relation satisfying
those conditions, it follows that ¢ F 1 implies ¢ ¢ ¥ for any two Z-formulas ¢, 1.

For completeness, assume that ¢ ¥ 1. 1 claim that there is an OF lattice L and a
valuation v on L such that v(yp) £ v(¢). This lattice is the Lindenbaum- Tarski algebra Lof
of the logic OF, defined as follows. We start by defining an equivalence relation on the set
of Z-formulas, letting ¢ ~of ¥ iff ¢ F ¢ and ¥ F . That ~of is an equivalence relation
follows from conditions 1 and 2 in Definition 5.3.1. Given a formula ¢, its ~of equivalence
class is denoted ¢*. We may then take as elements of Lo the set L of all equivalence classes
" for some formula ¢ and define the following relations and operations for any two formulas

©, P
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" <yt ift o -

P AYT = (o AY)

o " = (—p);
"Vt = (" A ),

0= 1% 1=T*

e Dy = (Op)%;
Te" = (Te)

It is a tedious but simple exercise to verify that these operations are well defined and
that Lo = (L, <,A,V,—,0,1,0,7) is an OF lattice. Now if ¢ ¥ 1, then by construction
©* £ ¢*. But since the map x — x* for any formula x is clearly a valuation on Lo, this
implies that there exists an OF lattice L and a valuation v on L such that v(¢) £, v(¢) and
therefore that ¢ £ 1. O

5.8.2 Appendix B

This appendix contains some details regarding the fragment semantics for OF presented in
Section 5.5. Recall first that a complete lattice is a partially ordered set L such that any
subset of L has both a least upper bound and a greatest lower bound. The powerset of any
set W of possible worlds ordered by inclusion is a complete lattice, which is precisely what
allows one to think of propositions in classical modal logic as sets of possible worlds. More
generally, given a reflexive and symmetric relation A on a set S, the map:

A {se S| Vsasds"ns : " € A}

is a closure operator on the complete lattice of subsets of S. This ensures that the A-fixpoints
of S always form a complete lattice. In fact, more is true:

Theorem 5.8.5 ([42],§§32-4). Let A be a reflezive and symmetric relation on a set S, Then
the A-fizpoints of S form a complete ortholattice F5(S), with the meet given by intersection
and the orthocomplementation given by =,A ={s € S| Vs'As: s ¢ A}.

. Let us now prove that F,(S) is a complete OF lattice whenever S is a fragment frame.
Lemma 5.8.6. Let (S, A, R,T) be a fragment frame. Then F,(S) is a complete OF lattice.

Proof. In light of [138, Prop. 4.28], we only need to verify properties 10-12 in Definition 5.8.2.
Forany AC S, welet TA={se S|7(s)€ A} and OrA={se€ S|V €S :sRs — s €
A}. Tt is straightforward to verify that conditions 2 and 3 in Definition 5.5.4 ensure that T
and O map A-fixpoints to A-fixpoints.
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For condition 10, note first that given a map f : F,(S) — F.(S) and a relation @ such
that f(A) = {s € S| Vs € S: sRs — s € A} for any A € F,(S5), one easily verifies
that f is a normal modal operator on F,(S). Since —,7 -, is a composition of maps from
A-fixpoints to A-fixpoints, it also maps A-fixpoints to A-fixpoints. Therefore, is enough to
check that for any A-fixpoint A, =, T-,A ={s € S |Vs € S:sAprs - ¢ € A}. Fix a
A-fixpoint A, and assume first that s € =, 7 -, A. This means that for any zAs, 7(z) ¢ =, A.
Now assume that sArs’. We want to show that ' € A. Since A is a A-fixpoint, it is enough
to show that there is y'Ay with ¢ € A for any yAs’. Fix such a y. By the definition of
the relation Ar, there is z such that sAz and 7(z) C y. By assumption on s, we have that
7(z) ¢ =, A, so there is ¥/ € A such that 7(2)Ay’. But from 7(z) C y it follows that yAy'.
This shows that s’ € A, and thus that =, T-,A C{s € S| Vs € S: sAps’ — s € A}.
For the converse, assume that s ¢ —,7—-,A. This means that there is s’As such that
7(s") € =, A. By condition 7 in Definition 5.5.4, there is z € Z such that sorz and z07(s’).
But this means that z ¢ A, and hence that s ¢ {s € S| Vs' € S: sArs’ — s € A}. This
completes the proof of condition 10.

For condition 11, fix a A-fixpoint A and assume that s € TA. We need to show that
s ¢ =,0r—,T—4A. By condition 5 in Definition 5.5.4, there is zAs such that for any x such
that xAgrz, we have that 7(x)A7(s). I claim that z € Og—,7 -, A, which will show that
s ¢ =,0r—2T—4A. To see this, note that if zRy and xAy, then zAgx, so 7(z)A7(s). Since
s€TA, 7(s) € A, sox ¢ T—,A. This shows that for any y such that zRy, y € =, T, A,
and hence that z € Op—,7T -, A.

Finally, we show that T—-,A < —=,TA for any A € F,(5). To see this, assume that
s € T—,A. This means that 7(s) € =, A. Let s’As. Then by condition 6 in Definition 5.5.4,
7(s")AT(s), so 7(s") ¢ A since 7(s) € =, A. This shows that s’ ¢ T A for any s'As and thus
that s € =, T A. O

This result allows us to prove a soundness and completeness theorem for fragment seman-
tics. The proof is a straightforward adaptation of the soundness and completeness theorem
for the logic EO obtained in [138].

Theorem 5.8.7. The logic OF is sound and complete with respect to OF frames. In other
words, for any two formulas ¢ and 1, ¢ For ¥ iff ¢ s 1.

Proof. For soundness, given a fragment model M based on an OF frame (S, A, R,7), let
[olm = {s € S| M,s |E ¢}. A straightforward induction shows that [p]y € FA(S) for
any formula ¢, and that the map ¢ — [¢|r is a valuation on F,(S). But it follows from
this that the consequence relation |=¢ is a subrelation of =g, i.e., we have that ¢ ¢ ¢
implies ¢ =g ¢ for any £ formulas ¢, . But then soundness follows immediately from the
soundness part of Theorem 5.8.4.

For completeness, recall from the proof of Theorem 5.8.4 that Lof is the Lindenbaum-
Tarski algebra of OF. We consider the frame (F, A, R, 7), where:

e F is the set of all proper filters F' over LoF;
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e for any two filters F,G € F, FAG iff there is no a € F such that —a € G, and FFRG
iff Oa € F implies a € G;

e for any filter ', 7(F) ={a € Lor | Ta € F}.

Next, I claim that (F, A, R, 7) is an OF frame and that the map a—a={F € F |a € F}
is an injective OF embedding of Lof into F,(F). In light of the proof of Theorem 4.34 in
[138], it is enough to check that conditions 5, 6 and 7 in Definition 5.5.3 are satisfied and
that 7a = 7a for any a € LoF.

Let us start by making the following observations for any F,G € F:

1. FCGiff G D F;
2. FARG iff Oa € F implies —a ¢ G;

3. FA7G iff =T —a € F implies a € G.

The first two items are seen from the proof of Theorem 4.34 in [138], so I will only prove
the third item. Assume first that F'/A7-G, and assume that =7 —a € F. Note that if a ¢ G,
then GA7T—a, where T—a is the principal filter generated by —a. Hence it is enough to show
that —a ¢ H for any HAG. So suppose GAH. Since FArG, there is K such that FAK
and 7(K) C H. Now if —a € H, then —a € 7(K), so T-A € K. But this is contradiction,
since =T —a € F and FAK. Conversely, suppose that =7 —a € F implies a € G, and let H
be such that GAH. Let K = M{Ta | a € H}. It is straightforward to see that K is a filter
and that H C 7(K). Moreover, if there is b € F' such that —b € K, then there is a € H such
that Ta < —b. But this means that b < =7 a, hence that =T a € F. By assumption on F
and G, it follows that —a € G, but this contradicts GAH. Hence FFAK, which establishes
that FATG

Let us now show that conditions 5-7 in Definition 5.5.4 hold, starting with condition 5. Fix
some F' € F, and let G = 1{0~T—a | Ta € F}. Note that for any a,b, O—~T~a AO—-T —b =
O(=T—-a A =T-b) = 0-T —=(a A b) by conditions 8 and 10 in the definition of a OF lattice,
so (G is a filter. To see that FAG, suppose there is b € F such that O-7 —a < —b for
some Ta € F. Then b < —0O7 —a, so Ta N -O0-T —a € F, contradicting condition 11 in
Definition 5.8.2. Moreover, suppose GArH, and a € 7(F). Then Ta € F, so O—-T —a € G.
Since GARrH, this means that T—a ¢ H, and hence —a ¢ 7(H). This shows that 7(F)AT(H),
which completes the proof that condition 5 holds.

To show that condition 6 holds, let FFAG € F. Suppose towards a contradiction that
there is a € 7(F) such that —a € 7(G). Then Ta € F and T—a € G. But T—-a = =7Ta,
which contradicts FAG. Hence 7(F)AT(G).

For condition 7, suppose that FAG, and let H = {a | =T—a € F'}. Note that H is a filter
by condition 10 in Definition 5.5.4. Clearly, FArH. Moreover, if —a € 7(G), then T—a € G,
so =T —a ¢ F. But this means that a ¢ H, which shows that HAT(G) and completes the
proof that condition 7 holds.
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Lastly, observe that for any a € Lor and any F € F,
FeTaeTacFsacr(F)er(F)eas FeTa.

To conclude the proof of completeness let ¢ and ¥ be formulas such that ¢ o . Then
©* %ror ¥, which implies that p* € ¢*. Letting M be the model based on (F, A, R, 7) and
determined by the propositional valuation p — p*, it follows that there is F € F such that
M, F |= ¢ but M, F |~ 1. Hence ¢ g 1. O

5.8.3 Appendix C

This appendix discusses semantics for the logic OFY introduced in Section 5.6. We first
adopt an algebraic approach. In order to add a past tense operator to our OF lattices, let
us recall the following standard definition in order theory:

Definition 5.8.8. Let F' be a monotone operation on a partial order (P, <). A left adjoint
of F'is a map G : P — P such that for any x,y € P:

Gr<y<szx<Fy.

Dually, a right adjoint of F'is a map H : P — P satisfying:

Frz<y&ax< Hy.
This motivates the following definition.

Definition 5.8.9. A OFY lattice is a tuple (L,A,V,—,0,1,0,7,)) such that
(L,A\,V,—,0,1,0,7) is an OF lattice and ) is a both a left- and right-adjoint of 7.

Valuations for .Zp formulas on an OF lattice equipped with an additional operator ) are
defined in the obvious way. A moment’s reflection shows that OFY lattices are precisely the
OF lattices in which conditions L1, L2, R1 and R2 are valid. As a consequence, we have
the following theorem, which is proved in a completely similar way as Theorem 5.8.4.

Theorem 5.8.10. The logic OFY is sound and complete with respect to the class of all OFY
lattices.

One also verifies easily that an OF lattice L induces a OFY lattice if and only if the
operator T is invertible, i.e., there is a monotone map g : L — L such that g(7a) =
Tg(a) = a for any a € L. This in turns is equivalent to 7 being a bijection that reflects the
order, i.e., is such that for any a,b € L, Ta < Tb implies a < b. The lattice O, depicted
in Figure 5.6 is such an example. Together with the valuation described in Figure 5.1, this
shows that O7 p vV O7 —p is not a theorem of OFY.

We now move on to fragment semantics for OFY. The following is an analogue of
Lemma 5.8.6.
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Lemma 5.8.11. For any linear fragment frame (S, A, R, T), Fo(S) is a OFY lattice.

Proof. Define the operation ) : Z2(S) — Z(S) by letting YA = {se€ S| 77!(s) € A}. Tt is
easy to verify that the condition on linear fragment frames in Definition 5.6.1 implies that
Y maps A-fixpoints to A-fixpoints. By definition of ), it is then straightforward to see that
VYTA=A=TYA for any A € F,(S) and thus that F,(S5) is a OFY lattice. O

This lemma allows us to give a soundness and completeness proof which closely resembles
the proof of Theorem 5.8.7.

Theorem 5.8.12. The logic OFY is sound and complete with respect to linear fragment
frames.

Proof. Soundness follows directly from Lemma 5.8.11. For completeness, we consider the
frame defined from the Lindenbaum-Tarski algebra Lopy of OFY in the same way as the
frame defined in the proof of Theorem 5.8.7. Since ) has a left adjoint, it preserves meets,
meaning that for any proper filter F' on Lopy, we have that v(F) = {a € Loy | Ya € F} is
a proper filter such that 7(v(F')) = v(7(F)) = F. This shows that 7 is invertible. Moreover,
suppose that v(F)AG, and let H = {=Y-a | a € G}. I claim that H is a filter. To see this,
observe that, since ) has a right adjoint, it preserves all joins. But this implies at once that
—)— preserves all meets, which is enough to show that H is a filter. Now if b € H, then
b = =Y-a for some a € G. But then —a ¢ v(F), which means that =0 = Y—a ¢ F. Hence
HAF. Moreover, suppose that KAH. 1 claim that GAv(H). To see this, assume a € G.
Then =Y—a € H, so Y-a ¢ K. But this means that —a ¢ v(H).

This shows that the condition from Definition 5.6.1 is satisfied and thus that the fragment
frame of filters on Lopy is a B-OF frame. Finally, one easily checks that Ya = Ya for any
a € Lory, which completes the completeness proof. n
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Chapter 6

Possibility Semantics for First-Order
Logic

The second part of this dissertation will focus on a different aspect of the research program
in possibility semantics. While in the first part we were concerned with possibility semantics
for various kinds of non-classical propositional logics, from now on we will be exploring
some applications of possibility semantics for classical first-order logic. Moreover, while the
applications of possibility semantics we explored in the first part were mostly technical, here
we will be mostly concerned with philosophical and foundational applications.

Possibility semantics for first-order languages is arguably less developed than its proposi-
tional counterpart. The seminal work on the topic is a manuscript by van Benthem [23], and
a detailed presentation can be found in [135]. From a mathematical perspective, it shares a
lot with the technique of forcing in set theory, especially the correspondence between forcing
extensions and Boolean-valued models [10], and with a specific kind of sheaf semantics in
topos theory [181]. These connections will be explored in more detail in Sections 7.4 and 7.5
below. From a philosophical perspective, possibility semantics can be seen as a general-
ization of Kripke semantics for first-order modal logic with a constant domain. In Kripke
semantics, models are collections of possible worlds, which can be identified with maximal
sets of consistent formulas. By contrast, the points in a possibility structure are “partial”
worlds, i.e., they correspond to consistent sets of formulas that may contain neither a formula
nor its negation. Points in a possibility structure are naturally ordered by how informative
they are, where a point is more informative than another if it satisfies more formulas. In
that respect, possibility semantics can also be seen as a variation on Kripke semantics for
first-order intuitionistic logic, again with constant domains. The crucial difference however
lies in the semantic clauses for disjunction: in possibility semantics, a disjunction may be
satisfied at a point p without any of the disjuncts being satisfied at p. This is what allows
the law of excluded middle to always be true at a partial world, even when that world is not
maximally determined.

An attractive feature of first-order possibility semantics is the existence of a fully con-
structive completeness theorem for first-order logic, while the usual completeness theorem
for first-order logic with respect to Tarskian semantics is known to require the Axiom of
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Choice (see [11], p. 140). This makes possibility semantics a very natural option for the
development of model-theoretic techniques in a semi-constructive setting. In fact, the com-
mon thread among the next three chapters will be the notion of a generic power. Generic
powers are a special kind of possibility structures which are meant to be an analogue of
ultrapowers in classical model theory. Because non-trivial ultrapowers require the existence
of non-principal ultrafilters, their use is highly non-constructive. In the next three chapters,
we will see how generic powers can be used to avoid this problem in a constructive and semi-
constructive setting. More generally, this will also give us a good opportunity to test the
potential of possibility semantics for reproducing important pieces of classical mathematics
in a semi-constructive setting.

The first chapter will be concerned with the foundations of nonstandard analysis. I will
show that one can provide a rigorous and elegant foundation for nonstandard analysis a la
Robinson in a semi-constructive setting, and I will argue that this approach solves a number
of issues regarding the foundational status of the hyperreal line and whether the methods of
nonstandard analysis can legitimately be applied to ordinary mathematics.

In the second chapter, we will be interested in a recent debate in the philosophy of the
infinite regarding an alternative to the Cantorian notion of size known as the theory of
numerosities, and a related issue in the philosophy of probability theory having to do with
the recent development of Non-Archimedean Probability theory. Both proposals are heavily
influenced by nonstandard analysis, and rely heavily on ultrapowers. I will argue that
an alternative approach to numeorisities and Non-Archimedean Probability theory based
on possibility structures and generic powers is well-equipped to address the most serious
objections that have been raised against both theories, and that possibility structures are
uniquely suited to model the Fuclidean infinite, an alternative to the Cantorian infinite that
preserves Euclid’s common notion that the whole is always strictly greater than any of its
proper parts.

Finally, the last chapter will also be concerned with a non-Cantorian conception of the
infinite, but our focus will be more historical. I will argue that possibility structures can be
a powerful tool in providing a rich and coherent formal reconstruction of ninteenth-century
mathematician Bernard Bolzano’s views on infinite sums and infinitely large quantities.

In the rest of this introductory chapter, I will present the basics of possibility semantics
for classical first-order logic, before introducing generic powers and proving three results
about those that will play a crucial role throught the next three chapters.

6.1 Possibility Structures

In what follows, I will introduce some basics about possibility semantics for first-order logic,
starting from the definition of satisfaction in a possibility structure. Let me mention first
that T will define first-order possibility structures in a slightly different fashion than in [135],
by introducing a minor alteration to the way Holliday defines the interpretation of functions
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symbols. The motivation for this choice is purely technical. As Holliday remarks in [135,
fn. 20], this modification is of no real significance for the constructive completeness theorem
obtained in [135, Theorem 4.3.8].

6.1.1 Forcing Semantics

Definition 6.1.1 (Possibility structure). Let £ be a first-order language. A possibility
structure is a tuple (B, D, #) such that:

e P = (P, <) is a partially ordered set (poset for short) of viewpoints;
e D is a set of guises;

e .7 is a function mapping any p € P and any n-ary relation symbol R (including the
equality symbol =) in .Z to a subset of D™, and any n-ary function symbol f in .Z to
a function from D™ into D, so that for any p,q € P, any n-ary relation R in ., any
n-ary function symbol f and any n-tuple @, the following conditions hold:

Persistence If a € . (p, R) and q < p, then @ € . (q, R);
Refinability If @ ¢ .#(p, R), then there is ¢ < p such that for all » < ¢, @ ¢ (r, R);
Equality-as-equivalence .#(p,=) is an equivalence relation on D x D;

Equality-as-congruence if @ = (ai,...,a,) and b = (by, ..,bn) is an n-tuple such
that (a;,b;) € S (p,=) for all i < n, then (S(f)(@), 7(f)(b)) € F(p,=), and
ae S(p,R)iff be (p, R).

Intuitively, any point in a possibility structure provides us with a “partial viewpoint”
on how the model actually looks. In particular, the “guises” in the domain D are not
objects themselves, but merely distinct ways of presenting objects. Two different guises may
actually correspond to one and the same object from one viewpoint, hence the need for the
relation symbol for equality to be interpreted as an equivalence relation, rather than as strict
equality. As we move from less informative viewpoints to more informative ones, more guises
are identified with one another, and more information is gained regarding the relations that
hold between the objects that the guises designate. The persistence condition encapsulates
the idea that the partial order on the poset does indeed capture the increase of information
between viewpoints: no information is lost when we move from a viewpoint to a stronger
viewpoint.! The refinability condition, by contrast, ensures that our information states,

'For a reader unfamiliar with forcing, it might seem counterintuitive that a “smaller” viewpoint is also a
“stronger” one. But if one take a viewpoint p to stand in for “all the ways compatible with p in which the
model could actually be” and the relation < to indicate containment, then it is straightforward to see that
p < q precisely when “all the ways compatible with p in which the model could actually be” are also “ways
compatible with ¢ in which the model could actually be”, thus meaning that p imposes stronger conditions
than ¢ on what the model could actually be. It is worth mentioning that nothing really hinges upon this
choice of defining “less than” as “stronger than”, rather than “weaker than”, although, as it will become
more apparent later on, doing so underscores the tight connection between possibility semantics, forcing,
and sheaf semantics.
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while partial, are as informative as they could be. More precisely, it is the contrapositive of
the following “sure thing” principle: if no further refinement of our current viewpoint could
make sure that the tuple @ does not stand in relation R, then we might as well conclude
already that the tuple @ does stand in relation R. This refinability condition is what sets
apart possibility semantics from Kripke semantics for first-order intuitionistic logic. It also
appears in the inductive definition of satisfaction of a formula, to which I now turn.

Definition 6.1.2 (Forcing relation). Let 9t = (B, D, .#) be a Z-possibility structure for
a first-order language .. The forcing relation IF is inductively defined for any p € P, any
Z-formula ¢(7) with n free variables, and any n-tuple @ of elements of D as follows:

o If v := R(t1(77), ..., t;(T;)), where t1, ..., t; are Z-terms of arity ny,...,n; summing up
to n and R is a j-ary relation symbol, then

pIF Rty(ar), ... t5(ay)) iff (S () (@), ..., 7 () (@) € 7 (p, R),

where @ = @;...a;, @; is an n;-ary tuple for any ¢ < j, and the interpretation of an
Z-term is inductively defined from the interpretation of function symbols as usual;

o If p:= ), then plF ¢ iff for all ¢ < p, g ¥ ;

o If op:=1 Ax, then pl- g iff plF 4y and p IF y;

o If ¢ : =1V x, then p I ¢ iff for all ¢ < p there is r < ¢ such that r I- ¢ or r IF x;
o If ¢ : =1 — x, then p I ¢ iff for all ¢ < p, ¢ IF ¢ implies ¢ I+ x;

o If v := Va1, then p Ik ¢ iff p - 1(a) for every a € D;

If ¢ := Jz1), then p Ik ¢ iff for all ¢ < p there is r < ¢ such that r IF ¢(a) for some
a€D.

Given a Z-formula ¢ and an n-tuple @, ¢(@) is valid in M (denoted M |= ¢(a)) if p I+ (@)
for all p € P.

The forcing clauses introduced above are of course reminiscent of both Kripke semantics
and the forcing relation in set theory. The refinability condition appears in the clauses
for disjunctions and existentials, which can be straightforwardly derived from the clauses for
negations, conjunctions and universals and De Morgan’s laws. From an algebraic perspective,
they also ensure that every .Z-sentence is given a value in a Boolean algebra of subsets of
the poset P. More precisely, we may introduce the following notation:

Notation 6.1.3. Given an .Z-formula ¢(7) with n free variables and a n-tuple @, the r-value
of p(a) is the set [p(@)] ={p € P|plF p(a)}.
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Then a simple induction on the complexity of formulas shows that [p(a)] is always a
reqular-open subset of P, i.e., that for any p € P:

pele@] e Vg<p3r<q:ree@].

Since the regular open sets of any poset always form a Boolean algebra [41, 106], one may
therefore think of a possibility structure as a generalized Tarskian model in which sentences
are Boolean-valued rather than 2-valued (the relationship with Boolean-valued models will
be discussed in more detail in Section 7.5). In fact, Tarskian structures are precisely those
possibility structures 9t = (3, D, .#) in which ‘B is a single element poset, and the equality
symbol is interpreted as the identity relation. Moreover, first-order logic is still sound with
respect to this larger class of models, but the proof that it is also complete can now be
carried out even in the absence of the Axiom of Choice:

Theorem 6.1.4 ([135], ZF). For any first-order language £, first-order logic is sound and
complete with respect to the class of £ -possibility structures.

6.1.2 Possibility Embeddings

Let us now introduce some basic results about embeddings between possibility structures.
My goal here is not to develop a full-fledged analogue of basic model-theoretic tools for
possibility structures (see [23] for some results in this direction) but merely to prove some
lemmas that will come in handy in the next chapters when exploring the properties of several
possibility structures. I start by recalling the following definition.

Definition 6.1.5. Let P = (P, <y) and Q = (@, <q) be posets. An order-preserving map
P — Q is weakly dense if for any p € P and any g € @ such that ¢ <q 7(p), there is
P <y p € P such that 7(p’) <q ¢. The map 7 is dense if for any g € Q there is p € °B such
that 7(p) <q ¢q.

Weakly dense maps are the correct notion of r-value-preserving maps, since any weakly
dense map 7 : P — Q induces a complete Boolean-homomorphism 7, : RO(Q) — RO()
given by the inverse image function. If 7 is also dense, then 7, will be injective. Possibility
structures differ from Tarskian structures in having an order-theoretic structure on top of
a domain of individuals. Consequently, a natural way to adapt the notion of embedding
between Tarskian structures to the setting of possibility semantics is to consider a pair of
maps where the first map is a weakly dense map between the underlying posets and the
second one is a function between the underlying domains. Perhaps surprisingly, the most
fruitful notion is actually one in which the domains and codomains of the two maps are
“crossed”.

Definition 6.1.6. Let P = (B, D, .#) and Q = (Q, E, _#) be two possibility structures
in the same language .Z. A possibility embedding (p.e. for short) is a pair (m, ) such that
w9 — P is weakly dense, and o : D — FE has the following properties for any g € Q,
a € D, function symbol f € .Z and relation symbol R € .Z":
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¢« QF fla(a) = a(s(f.a));
e 7(q)IF R(a) < ql- R(m)

A p.e. (7, «) is dense if 7 is a dense map and elementary (e.p.e. for short) if 7(q) IF (@) iff
q I ¢(a(a)) for every ¢ € Q, @ € D and Z-formula ¢(T).

Just like in classical model theory, elementary possibility embeddings preserve all the
first-order properties of their domain and can be characterized by a criterion for existential
formulas, as shown by the Density Lemma.

Lemma 6.1.7 (Density Lemma). Let M = (B, D, .¥) and N = (Q, E, _#) be two possibility
structures in the same signature £, and assume that (w,«) : M — N is a p.e. Then:

1. (m,«) is elementary iff it satisfies the following “Tarski-Vaught” criterion:

(a(a
a(b

(TV) ForanyqeQ,ac D and p(T,y) € L, ifqlF
there is p <q m(q) and b € D such that p - ¢(a(a

c) for some c € E, then

b).

2. If (w, «) is dense and elementary, then M = p(a) iff N = p(«
©(T) and any a € D.

( )) for any £ -formula

Proof. Let us start by proving item 1. Suppose first that (7, ) is elementary, and assume
that g IF ¢(a(a),c) for some ¢ € E. Then 7(q) I+ Jyp(a,y). Since (m,«) is elementary, this
means that p IF Jyp(a,y). Hence there is p <y 7(¢q) and b € D such that p IF ¢(a,b). By
elementarity of (7, ) again, it follows that 7(p) IF p(a(a), a(b)).

Conversely, suppose now that (m,a) satisfies (TV). Note first that the statement that
(7, ) is elementary is equivalent to the statement that m.([¢(@)]y) = [¢(a(a))]q for any
formula ¢(7) and any tuple @ € D. We show the latter by induction on the complexity of
the formula ¢ (7). By assumption, we have that 7. ([¢(@)]y) = [¢(a(a))]q for any atomic
formula ¢(T) and any @ € D. Moreover, the Boolean cases of the inductive step immediately
follow from the fact that m, is a complete Boolean homomorphism, which is true since 7 is
weakly dense. Hence we only need to verify the existential step. I claim that we have the
following chain of identities:

m([Bep(@ 2)ly) = m(\/ [o(@ b)]p)

beD

= \/ m([p(@b)y)

beD

=V [¢@f@.a®)ls

beD

= Vlp(a(a),o)la

ceE

= [Bre(ala), )]a.
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The first and last identities hold by the semantic clauses of possibility semantics, while the
second and third hold because 7, is a complete Boolean homomorphism and by induction
hypothesis respectively. Hence we only need to verify the fourth identity. The left-to-right
inclusion is trivial, and the right-to-left inclusion follows in a straightforward way from (TV).
This completes the proof of item 1.

For item 2, suppose that (7, «) is elementary. Since 7 is dense, 7, is an injective Boolean
homomorphism and hence 7,(U) = Q iff U =B for any U € RO(*B). But this means that
we have the following chain of equivalences for any Z-formula ¢(7) and @ € D:

M= p(@) < [e(@)]p =P
& T(lp@]p) = m(P)
& [elafa))]a =2
& N = plafa)).

This completes the proof. O

Q

6.1.3 The Colimit Construction

Let us now briefly see how one can use possibility embeddings to define the colimit of a
directed system of possibility structures. This construction will be particularly useful in
Chapter 9. Recall first that a monotone map f : P — Q between posets is a p-morphism if
whenever f(p) <q ¢, there is p’ <q p such that f(p) = gq.

Definition 6.1.8. Let Z = (I, <)) be a directed poset. A tight inverse system of posets over
I is a family ({B;}ier, {m; }i<,;) with the following properties:

e For any ¢ € |, *3; is a poset;
e For any i <, j, m; : B — B, is a p-morphism;
e 7;; is the identity map for any i € |, and for any ¢ <, 7 <, k, m;; o mj,, = mar;

e Whenever {ig}s<, is an increasing chain of elements of | for some ordinal A and {ps}s<r
is a sequence such that pg € PB;, for any 8 < A and 7, (py) = 7 for any 8 < < A,
then for any ¢ € B, such that pg <., Tiziy (q) for any B < A, there is py <y, ¢ such

that 7, (px) = 7 for any 8 < A.

The first three conditions in the definition of a tight inverse system are not surprising,
although we do need to strengthen the notion of a weakly-dense map to that of a p-morphism
for our purposes here. The last condition simply makes sure that the system of p-morphisms
is well behaved at “limit stages”. Of course, it is trivially satisfied whenever | has no in-
finite bounded chains. Let us now introduce the notion of a directed system of possibility
structures.
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Definition 6.1.9. Fix a language .. Let | be a directed poset. A directed system of
possibility embeddings over | is a tuple ({P;}ier, {€i }i<,;) satisfying the following conditions:

e For any i € |, P; = (i, D;, &) is a ZL-possibility structure;
e For any i,j € | such that i <, j, ¢;; = (m;;, ;) : P; — P; is a possibility embedding;
o ({Bi}iar, {mij}i<,;) is a tight inverse system over I;

e For any ¢ € |, ay; is the identity map, and for any ¢, 7,k € | such that i <, j <, k,
Qi = Qi e} Oéij.

A directed system ({P;}icr, {€:}i<j) is elementary if €;; is elementary for any ¢ <, j.

Given a directed system of possibility embeddings over an index set |, our goal is to
define an analogue of the direct limit or colimit of a directed system of Tarskian structures.
Accordingly, the domain of such a structure will be similar to what one would expect,
namely a disjoint union of all the domains of the possibility structures in the directed system.
However, the dense map components of the possibility embeddings in a directed system form
an inverse system, meaning that their limit should be an inverse limit rather than a colimit.
This motivates the following definition.

Definition 6.1.10. Let | be a directed poset and ({P;}ier, {€ij}i<,;) a directed system over

%
I. The colimit of the directed system ({P;}icr,{€ij}i<;) is the possibility structure P, =
(&Q,Bi, D, Di, ¥ ), where:

o X, is the poset of all functions f from | into the disjoint union of the posets *B; for
1 € | such that:

— f(i) € P, for any ¢ € |, and
— €;(f(j)) = f(¢) whenever ¢ < j,
with the order defined pointwise, i.e., f <g g, g iff f(i) <p, (i) for all i € |;
e P, D; is the disjoint union of the domains D; for i € I,

e For any function symbol f(z1,...,zx) and any a4, ..., a; such that a, € D;, for all n €
{1,...,k}, there is j > i1, ..., 4 such that Z(f, aq,...,ax) = (o, j(a1), ..., ;i (ar));

e For any relation symbol R(xy,...,zg), any aq, ..., ax with a,, € D, for all n € {1,...,k}
and any f € @,%Bi, (a1,...,a;) € F(f, R) iff there is j > iy,...,7; such that
(aij(ar), i j(ar)) € Z5(f(5), R).

For convenience, I will assume in what follows that the domains D; in a directed system
are always disjoint, so that we may identity €, D; with the union J,, D;. Our goal is
to show that the structure defined above is a proper notion of colimit for directed systems
of possibility embeddings. This will be established by the Colimit Lemma below. Before
proving this lemma, we need the following technical observation.
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Lemma 6.1.11 (DCy). Let | be a directed poset and ({P;}i € |, {m; : B; = Pi}i<,) a tight
inverse system over |. Then for any i € I, any f € @,B; and any q <, f(i), there is
9 <@,y f such that g(i) =

Proof. Fix f, i and ¢, and let {ig}g<\ be a cofinal chain of elements of | with ¢ = iy (note that
such a chain can be constructed using DCjj). We define inductively a sequence of elements

{qs}p<» as follows:
® qo=4¢;

p(B )-

e Assuming that ¢z is defined such that gg O p(B), note that 7, ;,,, (p(B-+1)

) =
Since m;, is a p-morphism, there is ¢’ <P, p(B + 1) such that 7, ;.. (¢) =

77;ﬂ+1
So we set ¢gr1 = ¢

e For v < )\ alimit ordinal, we have a sequence {gs}s<, such that 7; ; (¢,) = qs whenever
B <~ <vand gg <y, mi, (p(v) for any 8 <wv. Since ({Pi}i € | {m;; : B; — Biti<,)
is a tight inverse system, we have ¢ € *B;, such that ¢ < p(v) and m;;,(¢') = g for
all B <wv. So we set ¢, = ¢'.

Note that the existence of such a sequence is guaranteed by DC) again. Finally, we defined
9 € @,Bi by letting g(7) = gz whenever i = iz for some 3 < A, and g(i) = m,(g(ig)) for
some i such that ¢ <, iz otherwise. It is routine to check that this is well-defined and that

g§®|mi I O

Lemma 6.1.12 (First Colimit Lemma). Let | be a directed poset and ({P;}ier,{€i;}i<j) @
directed system over |. Then:

%
1. Py is a possibility structure;
2. There is a system of maps {€; := (m;, ;) }ier such that:

i+ @, B: — Bi is a p-morphism for any i € |, and o; : D; — @@, D; is a
function,

%
o whenever i <y j, m; = m; om; and Py = o(a) = a; o ayj(a) for any a € D;, and

%
€ : P; — Py is a possibility embedding;

3. If ({Pi}ier, {€ij }i)j) is elementary, then each €; is elementary, and for any f € @ P,
any formula ©(T) and tuple ai,...,ar, € @, D; with a, € D;, for all n € {1,...,k},
flIFo(a,...,a) iff there is j >y i, ..., 4 such that f(j) IF p(cu,j(a1), ..., i (ak)).

Proof. Fix a directed poset | and a directed system ({P; }ier, {€}i<,;) over .

1. We check all four conditions in turn.
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Persistence Suppose that ¢ < f and f IF R(ay,...a;), with a, € D, for all n €
{1,...,k}. Then there is j € | such that f(j) IF R(w, (a1),...,;;(axr)). Since
g < f, we have that g(j) < (j), and hence ¢(j) I+ R(ozm(al) L o(ar)).
But this implies that g I+ R(al, ey Q).

Refinability Suppose that ¢ < f and f If R(ay,...ax), with a, € D;, for all n €
{1,...,k}. Let j >4y, ...,9. Note that f(j) I R(c,;(a1),...,;;(ar)). By persis-
tence, there is ¢ <q, f(j) such that for all » <y ¢, r I R(ay;(a1),...a;;(ax)).
By Lemma 6.1.11, there is g <g g, f such that g(j) = ¢. Now I claim that for
any h <@, 9, h I R(a1,...,ax). Indeed, let h <g g, g and j' > i1, ..., 0. Let j*
be such that j, j* <, j*. Since h(j) <y, 9(j), we have the following:

h() W Raij(ar), ..., aigglar)) < w5 (R(57)) W R, j(ar), .., cig(ar))
& h(5") IF R(oyj« o ajyi(ar), ..., a5+ o oy j(ag))
< h(j") I R (ar), ..., i+ (ar))
< h(5") W Rlajj o ciyjr(ar), ..., oy © aip g (ax))
& mig-(h(57)) W Ry (ar), ... azgr(ax))

)
& h(j") W R, jr(ar), ..., i (ax)).

This completes the proof of refinability.

Equality-as-equivalence Reflexivity and symmetry are clear, so we only check tran-
sitivity. Suppose f(j) IF a;,j(a1) = aiyi(az) and f(5') Ik qu,(a2) = aiyj(as).
Let j* > j,j'. Then we have that m;;-(f(5*)) = f(J) IF aui(a1) = auyi(az), so
F7) I agge o ai(ar) = agje 0 aijlaz), and myp (f(57)) = [(') I aiy(az) =
Qigjr(as), so f(5) IF ajje o qiyj(az) = ayije o ayyy(az). Hence f(57) IF ayyj+(ar) =
Qi (a2) = uyj+(as), from which it follows that f(5*) IF ay«(a1) = g+ (as).
Hence f IF a; = as.

Equality-as-congruence The proof is similar to the proof of Equality-as-
equivalence above. Fix a k-ary relation symbol R and a k-ary function sym—
bol g. Given tuples ar,...ax and by,..bg, fix j large enough so that f(j) IF
a;,j(a,) = a;,;(b,) for all n € {1, ..., k}. Using directedness again if necessary, it
is then easy to find j’ such that f(j') IF R(a,j(b1), ..., v, (b)) and j* such that
f(j*) I g(ailj/(al), ceey aikj/(ak)) = g(ailj’a)l)a ceey aikj’(bk))'

2. For any 7 € I, let m; : @,B; — *Bi and «; : D; = @, D; be the maps f — f(i)
and a+— a. It is Clear that, whenever 7« <, j, we have that m; = m;; o m; and that
73| E ai(a) = ajoq;j(a) for any a € D, since for any f € @, Bi, f(j) IF aij(a) = a;;(a).
Moreover, each m; is clearly order-preserving, and if ¢ <;¢ 7; f, then by Lemma 6.1.11
there is g < f such that m;(g) = g(i) = ¢, which shows that each 7; is a p-morphism.

Now let us show that for any ¢ € | tuple @ € D; and relation symbol R, m;(f) I R(a)
iff fIF R(a;(@)). The left-to-right direction is obvious. For the right-to-left direction,
suppose that f IF R(a;(@)). Then there is j > i such that f(j) IF R(w;(@). But
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then f(7) = m;(f(j) IF R(@). Finally, let us check that 73>| E h(ai(a)) = a;(F(h,a))
for any @ € D; and any function symbol h. Note that Z(h,a) = Z;(h,a;j(a)) for

some j > i. But then for any f € @, B;, f(J) IF h(asj(a)) = ;j(F(h,a)). Hence
fIF h(a) = S (h,a). This shows that ¢; is a possibility embedding for every i € I.

3. Assume that ({P;}ier, {€;}i< ;) is elementary. Let us first show that for any f € @ %;,
any formula ¢(Z) and tuple ai,...,a;, € @, D; with a, € D;, for all n € {1,...,k},
fIFe(a, ..., a) iff there is j >y iy, ..., i such that f(j) IF p(aj(a1), ..., (ax)). We
prove this by induction on the complexity of ¢. The atomic case is clear.

e Suppose that f IF —p(ay,...,ax), and let j >y iy,...,4. Fix ¢ <y, f(j), and
note that since 7; is a p-morphism, there is g <g y, f such that g(j) = ¢.
By the induction hypothesis, this means that ¢ I ¢(a,j(a1), ..., s 5(ag)), for
otherwise g I ¢(ay,...,ax), contradicting our assumption on f. But then it
follows that f(j) IF —¢(aij(a1), ..., a4 (ag)). Conversely, suppose that f [
@(ay,...ar). Then there is g <g g, f such that g I ¢(ay,...,ar). Now sup-
pose that j > 4y,...,4,. By the induction hypothesis, there is j° € | such
that g(j') IF (e, (1), ..., a5 (ax)). Without loss of generality, assume that
' >1 j. Then g(j) IF ¢(as;(ar),...,q4(ax)). But this implies that f(j) I
—p(ag,ji(ar), . aigj(ax))

e Suppose that f IF p(ay,...,ar) A Y(ay,...,ax). Then f IF ¢(aq,...,a) and f IF
¥(ay, ...,ar). By the induction hypothesis, there are j, 7" € | such that f(j) IF
plaijlar), .. aijlar)) and f(5') b laij(ar), ..., aq5(ar)). Let j* = j,j"
Then f(5*) IF p(,j+(a1), ..., i, 4+ (ag)) and f(5*) IF (v, j+(ar), ..., a4, 4+ (ag)), so
FU) IF ol j+(ar), ..., au, 4+ (ag)) Ap(auj«(ar), ..., i+ (ax)). Conversely, suppose
that there is j € | such that f(j) IF ¢ A (i, j(a1), ..., a4 (ar)). Then f(j) IF
o(agj(ar), ..., a5,(ar)) and f(j) I+ ¥(asi(ar), ..., a4 (ag)), so by the induction
hypothesis f I+ ¢(aq,...,ax) and f Ik t(aq,...,a;). Hence f F ¢(aq,...,axr) A
v(ay, ..., ax).

e Suppose that f I Jzp(ay,...,ax, ). Let j >y iy, ...,0, and let ¢ <g. f(J).
Since 7; is a p-morphism, there is g <g g, f such that g(j) = ¢. Since f I-
Jwp(ay, ..., ax, ), there is ¢ <g g, g and ¢ € Dy for some ¢ € | such that
g Ik p(ai,...,ag, c). By the induction hypothesis, there is j" > iy, ..., i, 7" such
that ¢'(j") IF o(as,j(ar), ..., i (ar), aijr(c)). Now let 7% > 7, 7', and note that
g (57%) IF ¢+ (ar), ..., iy j+ (ag), i« (€)) by elementarity of €;/;-. Moreover, since
€5« is also elementary, by the Tarski-Vaught criterion there is ¢’ <g, ¢'(j) <g, ¢
and b € D; such that ¢ IF ¢(a;;(a1),...,q4,(ax),b). But this means that
FG) I (o j(ar), ... oy (an), ).

For the converse, suppose that we have some j > 141,...,7 such that
f(G) IF 3wy, j(ar), ..., iy j(ar), o), and let g <g g, f. Then there is ¢ <q, g(j)
and ¢ € D; such that ¢ IF ¢(o, (a1), ..., o, j(ax),c). Since m; is a p-morphism,
there is ¢’ <g g, g such that ¢’(j) = ¢. By the induction hypothesis, we have
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that ¢' IF ¢(ay, ..., ax, ¢). But this shows that f IF Jzp(ay, ..., a, ).

We may now prove that each ¢; : P; — 73>| is elementary. By the Density Lemma,
we only need to check the Tarski-Vaught criterion for ¢;. Suppose f IF ¢(«;(a),c) for
some a € D; and ¢ € Dy for some i’ € . By the result above, there j >, 7,4’ such
that f(j) IF ¢(ayj(a), i(c)). Since €; is elementary, by the Tarski-Vaught criterion
there is b € D; and ¢ < 7;;(f(j)) = f(¢) such that ¢ I (@, b). But this means that
€; satisfies the Tarski-Vaught criterion and is therefore elementary. This completes the

proof. ]

Let us conclude this section with a small remark about the Colimit Lemma. In classical
model theory, the embeddings from each model A; into the colimit A, that one obtains by
the standard colimit construction all commute with the embeddings {«;;}i<i; between the
models in the system. By contrast, the embeddings one obtains in the colimit of a directed
system of possibility structures only commute “internally” with the embeddings of the form
@;j, in the sense of item 2 in the Colimit Lemma. Of course, we could modify the definition

of the domain of the colimit 73>| to make the embeddings commute “externally”, by taking
equivalence classes over the disjoint union of the domains rather than taking the disjoint
union itself. The point, however, is that taking equivalence classes is not needed in the case
of possibility structures, since the equality is interpreted as a mere equivalence class. Indeed,
colimits still enjoy the following universal mapping property.

Lemma 6.1.13 (Second Colimit Lemma). Let | be a directed poset and ({P;}icr, {€ij}i<,j)
a directed system over |. Suppose that there is a possibility structure Q and a system {n; =
oi, Bi} such that each n; : P; — Q is a possibility embedding and for any i <, j and any
a € D;, Q Bi(a) =pBjoa;j(a). Then there is a possibility embedding n = (o, 3) : 73>| — Q
such that noe; =n; for alli € . Moreover, if every n; is elementary, then so is n.

Proof. Define n = (0,f) : 73>| — Q by letting 0(q)(i) = 0;(q) for any ¢ € Q and i € |, and
n(a) = n;(a) for any a € D;. Tt is clear that o o m; = 0; and that o a; = ;, and hence
that noe; = n; for any ¢ € I. Moreover, checking that 7 is a (possibly elementary if each
7n; is elementary) possibility embedding is routine, except possibly for the first condition
on possibility embeddings, which we now show. Fix an k-ary function symbol f and a
tuple aq,...,ax with a, € D; for n € {1,...,k}. I claim that Q = f(B(a1),...,B(ar)) =
B(A(f,a,...,ax)). By definition, 7 (f, a1, ..., ar) = Z(f, i, j(a1), ..., s, ;(ag)) for some j >
i1, ..., 0. Hence B(F(f,a1,....,a;)) = Bj(IF(f, ui(ar), ..., 5(ax))). Using the fact that
Q = Bi(a) = Bj o a;j(a) whenever ilj and a € D; and §; is a possibility embedding, we have
that Q = B;(F(f, aiyi(ar), ..., i (ax))) = f(Bi(ar), ..., Bi, (ar)). But from this it follows at
once that Q = f(B(a1), ..., B(ax)) = B(F(f, a1, ..., ax)). This completes the proof. O

6.2 Generic Powers

The rest of this introductory chapter is devoted to a specific kind of possibility structures
which I will call generic powers. These structures will play a crucial role in the next three
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chapters, and their main features will follow from three key results about them, which I will
refer to as the Structure Lemma, the Truth Lemma and the Genericity Lemma. Let me start
with the following definitions.

Definition 6.2.1. Let [ be a set. A rich family is a collection £ of filters on I such that for
any AC T and F € &, if A¢ F, then there is G D F such that I\ A € G.

Definition 6.2.2. The €-generic power of a first-order structure M in a language £ is given
by the tuple M¢ = (&, M!,.#), where:

e € is the poset (£,D), where £ is a rich family.
e M/ is the set of all functions a : I — M

e for any function symbol f € £ and any tuple @ of elements of M, . (f)(a)(i) = a(i)™
for any 7 € [;
e for any relation symbol R € £ (including equality), any F' € £ and any tuple a € M/,

ae #(FR)iff {ieI|Mp R(a(i)} € F.

Intuitively, the E-generic power of M can be thought of as a collection of partial approxi-
mations of what a classical ultrapower of Ml modulo a non-principal ultrafilter U on I might
look like. Elements in such an ultrapower are equivalence classes of functions in M’, where
two functions f and g are considered equivalent if they agree on a U-large set, meaning that
{ie