
UNIVERSITY OF CALIFORNIA,
IRVINE

Dynamic Binary Lifting and Recompilation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Anil Altinay

Dissertation Committee:
Professor Michael Franz, Chair

Professor Alex Nicolau
Professor Isaac D. Scherson

2020

Portions of Chapter 1, 3, 5 and 6 c© 2020 ACM.
Reprinted, with permission, from BinRec: Dynamic Binary Lifting and

Recompilation, Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin
Zhou, Adrian Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, Cristiano Giuffrida,
Herbert Bos and Michael Franz, in ACM European Conference on Computer Systems,

EuroSys 2020.

Portions of Chapter 3 c© 2020 ACM.
Reprinted, with permission, from BinRec: Attack Surface Reduction Through

Dynamic Binary Recovery, Taddeus Kroes, Anil Altinay, Joseph Nash, Yeoul Na, Stijn
Volckaert, Herbert Bos, Michael Franz and Cristiano Giuffrida, in In Proceedings of the
2018 Workshop on Forming an Ecosystem Around Software Transformation, FEAST

2018.

All other materials c© 2020 Anil Altinay

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

VITA vii

ABSTRACT OF THE DISSERTATION viii

1 Introduction 1
1.1 Overview . 1
1.2 Contributions . 5

2 Background 7
2.1 The x86 Instruction Set Architecture . 7
2.2 Stripped Binaries . 8
2.3 Memory Corruption . 8
2.4 Dynamic Linking Structures . 9
2.5 Static vs Dynamic Disassembly . 11

2.5.1 Static Disassembly . 11
2.5.2 Dynamic Disassembly . 14

2.6 Execution Driving Methods . 15
2.6.1 Symbolic Execution . 15
2.6.2 Concolic Execution . 17
2.6.3 Selective Symbolic Execution with S2E 18

3 BinRec 20
3.1 Introduction . 20
3.2 Current Limitations in Binary Lifting . 23

3.2.1 C1 Code vs Data, and Reference Ambiguity 24
3.2.2 C2 Indirect Control Flow . 24
3.2.3 C3 External Entry Points . 25
3.2.4 C4 Ill-formed code . 26
3.2.5 C5 Obfuscation . 26

ii

3.3 Design . 27
3.3.1 Key Considerations for Dynamic Lifting 28
3.3.2 Dynamic Lifting Engine . 29
3.3.3 Canonicalization . 31
3.3.4 Lowering . 36
3.3.5 Control Flow Miss Handling . 37

3.4 Implementation . 39
3.4.1 Parallel Tracing . 39
3.4.2 Library Calls . 40
3.4.3 Optimization . 45

3.5 Evaluation . 46
3.5.1 Comparison with static lifters . 47
3.5.2 Performance . 49
3.5.3 Code Coverage . 50
3.5.4 Lifting Time . 52

3.6 Applications . 54
3.6.1 Control-flow Hijacking Mitigation . 55
3.6.2 Virtualization-deobfuscation . 57
3.6.3 AddressSanitizer . 59
3.6.4 SafeStack . 59
3.6.5 Attack Surface Reduction . 60

4 Discussion and Future Work 63
4.1 Lessons Learned . 63
4.2 Stack Symbolization with Static Analysis . 64
4.3 Future Work . 70

5 Related Work 73
5.1 Low-level binary analysis and rewriting . 73
5.2 Code transformations using dynamic traces 74
5.3 Binary code lifting . 75
5.4 Virtualization-deobfuscation . 75
5.5 Sanitizers . 76
5.6 Control Data Attack Mitigations . 77

6 Conclusion 80

Bibliography 82

Appendix A Stack Unwinding Optimization 90

iii

LIST OF FIGURES

Page

2.1 The first time that the function is called the got entry redirects to the plt
instruction. 10

2.2 The Second time, GOT entry is filled with the address of memcpy. 11
2.3 Symbolic execution of Listing 2.1. argc, a and b are symbolic values, causing

the execution state to fork twice as represented by the different arrow styles.
Edge labels show the constraints recorded in each execution state. 17

3.1 The steps of binary recovery: lifting to compiler IR, transformation on the
IR, and lowering back to machine code. 29

3.2 Address space layout of recovered code. 35
3.3 Execution time improvement from CPU state variable de-aliasing and global

variable promotion. 51
3.4 Coverage with respect to the original binaries. The input set is the ref work-

load of SPEC CPU2006. 52
3.5 Incremental lifting progression of bzip2. 53
3.6 Our deobfuscation approach. (1) We lift the binary using symbolic execu-

tion or high-coverage inputs. (2) We identify the lifted interpreter loop and
instrument it to log the virtual program counter (VPC) at the entry. (3)
The instrumented binary is exercised for all uncovered code paths, yielding a
control-flow graph of VPC nodes. (4) The interpreter loop is copied into each
VPC node. (5) Standard optimizations eliminate non-taken paths in each
VPC node. 56

3.7 Deobfuscation of the fib program. The control flow graph structure of the
deobfuscated binary matches that of the original bytecode, rather than that of
the interpreter, which indicates the control flow obfuscation was successfully
removed by the analysis implemented in BinRec. 58

4.1 Ideal lifting . 64

iv

LIST OF TABLES

Page

3.1 Measured execution time normalized to the original binaries. Rev.ng results
are reported from publication [49]. 49

3.2 Time in seconds to capture LLVM IR from input binaries with BinRec and
McSema toolchains, alongside execution time for S2E without BinRec instru-
mentation. For BinRec and S2E we report the maximum time among the
reference workloads from SPEC CPU2006. 54

3.3 Number of allowed targets for indirect branches/calls in SPEC CPU2006 bina-
ries lifted by BinRec, compared to the number statically found by BinCFI [111]. 55

3.4 The number of LLVM instructions: after lifting, after optimization without
deobfuscation, and after deobfuscation and optimization. The baseline is the
number of LLVM instructions obtained by compiling the unobfuscated pro-
gram with clang. 59

3.5 Attack surface reduction . 62

v

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Professor Michael Franz. My
time at UC Irvine has been a period of great professional and personal development, and I
am extremely grateful for his guidance and encouragement throughout my studies at UCI.
I had the opportunity to collaborate and work with an amazing group of researchers and
friends in Secure Systems and Software Lab.

I would like to thank my past and current postdocs, Dr. Yeoul Na, Professor Stijn Volckaert
(previously postdoc at UCI), Dr. David Gens, Dr. Adrian Dabrowski, Dr. Per Larsen for
their contributions, ideas and advice that have facilitated my research efforts.

I also want to thank lab alumni, Andrei Homescu, Stephen Crane, Brian Belleville, Mohaned
Qunaibit, Julian Lettner and Dixin Zhou for their invaluable support. In addition, I would
like to thank my friends in the lab for being great colleagues. Taemin, Alex, Prabhu, Joseph,
Dokyung, Min, Mitch, Fabian, Chinmay and Paul.

Finally, I would like to give special thanks to my doctoral committee members, Professor
Isaac D. Scherson, Professor Alex Nicolau for their time and consideration.

Portions of this dissertation have been previously published in conference proceedings. I
would like to thank my coauthors on these projects for their contributions on these publica-
tions, Professor Herbert Bos, Professor Cristiano Giuffrida and Taddeus Kroes.

This material is based upon work partially supported by the Defense Advanced Research
ProjectsAgency (DARPA) under contracts FA8750-15-C-0124 and FA8750-15-C-0085, by
the UnitedStates Office of Naval Research (ONR) under contract N00014-17-1-2782, by the
National ScienceFoundation under awards CNS-1619211and CNS-1513837. Any opinions,
findings, and conclusionsor recommendations expressed in this material are those of the
authors and do not necessarily reflectthe views of the Defense Advanced Research Projects
Agency (DARPA) or its Contracting Agents,the Office of Naval Research or its Contracting
Agents, the National Science Foundation, or anyother agency of the U.S. Government.

vi

VITA

Anil Altinay

EDUCATION

Doctor of Philosophy in Computer Science Present
University of California, Irvine Irvine, California

Bachelor of Computer Engineering 2015
Koc University Istanbul, Turkey

RESEARCH EXPERIENCE

Graduate Student Researcher 2015–Present
University of California, Irvine Irvine, California

Intern Summer 2017
Google, Inc. New York

TEACHING EXPERIENCE

Teaching Assistant Fall 2016
ICS 45C: Programming in C/C++ as a Second Language
University of California, Irvine Irvine, California

Teaching Assistant Winter 2017
ICS 31: Introduction to Programming
University of California, Irvine Irvine, California

PUBLICATIONS

BinRec: Dynamic Binary Lifting and Recompilation EuroSys 2020
A. Altinay, J. Nash, T. Kroes, P. Rajasekaran, D. Zhou, A. Dabrowski, D. Gens, Y.
Na, S. Volckaert, C. Giuffrida, H. Bos, and M. Franz
In Proceedings of the Fifteenth European Conference on Computer Systems

BinRec: Attack Surface Reduction Through Dynamic
Binary Recovery

FEAST 2018

T. Kroes, A. Altinay, J. Nash, Y. Na, S. Volckaert, H. Bos, M. Franz, and C. Giuffrida
In Proceedings of the 2018 Workshop on Forming an Ecosystem Around Software Trans-
formation

vii

ABSTRACT OF THE DISSERTATION

Dynamic Binary Lifting and Recompilation

By

Anil Altinay

Doctor of Philosophy in Computer Science

University of California, Irvine, 2020

Professor Michael Franz, Chair

Legacy binaries that do not have source code remain a vital part of our software ecosys-

tem. Lifting and recompilation of legacy binaries allows for a wide range of late program

transformations such as security hardening, deobfuscation, and reoptimization even when

the source code is unavailable. Existing binary lifting approaches are based on static binary

disassembly which has several limitations. Distinguishing code from data statically, for ex-

ample, is undecidable in the general case [56]. Static disassembly must rely on heuristics and

assumptions to disassemble binaries in the absence of dynamic information and high-level

language semantics. Consequently, static disassembly cannot reliably handle indirect jumps,

inline assembly, and obfuscated code. Lifting approaches that rely on static disassembly,

therefore, often produce unsound binaries.

Dynamic disassembly of binaries can circumvent the limitations of static disassembly includ-

ing the ability to handle obfuscated and encrypted binary code. In this dissertation, we

present BinRec, a new approach to heuristic-free binary recompilation which lifts dynamic

traces of binaries to a compiler-level intermediate representation (IR); the lifted IR is low-

ered to a “recovered” binary by taking advantage of the existing compiler toolchain. Our

approach allows applying rich program transformations, such as compiler-based hardening

and optimization passes, on top of the recovered representation. We identify and address

viii

a number of challenges in binary lifting, including unique challenges posed by our dynamic

approach.

In contrast to existing frameworks, our dynamic front end can accurately disassemble and

lift binaries without heuristics, and we can successfully recover all SPEC INT 2006 bench-

marks including C++ applications. We evaluate our approach in four application domains:

i) binary reoptimization, ii) deobfuscation (by recovering partial program semantics from

virtualization-obfuscated code), iii) binary hardening (by applying existing compiler-level

passes such as AddressSanitizer and SafeStack on binary code), and iv) attack surface re-

duction in the recovered binary (by removing unused program paths).

ix

Chapter 1

Introduction

1.1 Overview

Software systems are an amalgamation of several software components working together.

Some of those components either do not have their source code available for recompilation

or the toolchain used for their compilation is not supported anymore and they are referred

to as legacy binaries. The security guarantees of our software ecosystems are only as strong

as its weakest link; protecting legacy binaries from exploits is a notoriously hard problem

for a number of reasons. Primary among them is that we cannot take advantage of the

developments in compiler toolchain to be applied to these binaries.

Memory corruption errors, for example, are a major threat to software security. Exploiting

memory corruption errors can lead to system compromise; particularly the software written

in unsafe languages such as C and C++ are prone to memory corruption errors as they do

not automatically check for memory accesses and any illegal access to memory is consid-

ered undefined behavior. Though alternative memory safe languages are available, C and

C++ are widely used due to efficiency, direct control over hardware resources, developer

1

familiarity, and compatibility with existing software and systems. Memory unsafe languages

leave the responsibility of memory management to developers and programming errors can

lead to memory corruption vulnerabilities. There are several varied root causes of memory

corruption errors such as dereferencing freed pointer or use of uninitialized pointer [96, 99],

etc., besides the above mentioned undefined behavior.

Even when the source code is available for analysis, memory corruption errors may remain

undetected for a long time due to two reasons: 1. The actual memory corruption error may

only surface under specific conditions and reproducing the error consistently becomes harder

as systems become more complex; 2. The actual effects can often come to light far from the

source of the error, and hence, correlating cause and effect may be difficult. These bugs are

typically introduced due to human error, and hence, practically all software systems that

use memory unsafe languages suffer from such bugs [99, 96].

In the past, attackers have found ways of using memory corruption errors to their advantage.

A popular mode of exploit is remote code execution, i.e., the ability to divert the legal

control-flow of the target application and execute arbitrary code. Control-flow exploits can

perform Turing-complete operations [84] by stitching together small instruction sequences

(gadgets) to effect privilege escalation, information leak or denial of service attacks. Over the

years, attackers have improved their attack methods and exploited new classes of memory

corruption errors in their exploitations. As a result, a previously benign memory corruption

error can become exploitable when a new exploitation method is discovered.

One way to avoid memory corruption errors is to rewrite the software using memory safe

languages. In practice, however, this is unrealistic because there are already millions of

lines of existing C/C++ code; further replicating low-level features of C/C++ would be

necessary to produce performant systems software (e.g. operating systems). Identifying

and eliminating memory corruption errors can help reduce the attack surface available for

exploits. We have seen improvements in source analysis and bug finding tools in the form of

2

fuzzers and sanitizers. In spite of the developments in identifying memory corruption errors,

eliminating all errors is not possible for programs written in C and C++ programs and we

must assume the presence of memory corruption errors in software shipped to production.

Exploit mitigations that thwart attacks have been proposed to address this problem. In

the arms race between attacks and defenses [96], the recent decade of security research has

produced fruitful control-flow mitigations such as Data Execution Prevention(DEP) [10],

Address Space Layout Randomization(ASLR) [78], and Control Flow Integrity(CFI) [6].

These mitigations may employ static analysis, dynamic analysis, or a combination and typ-

ically rely on the source code of the software. Adoption of these mitigations is widespread

and the adversaries now look to exploit legacy binaries as they cannot be protected using

source code based modern mitigations. For example, Microsoft equation editor is a legacy

binary that is part of the Microsoft Office suite and distributed widely; while the rest of the

software components with source code are well protected the equation editor contained sev-

eral exploitable memory corruption errors. Microsoft employed binary rewriting to modify

the executable of the equation editor to fix these errors [79].

The existing literature proposed methods through which we can retrofit legacy binaries with

modern mitigations. To modify any binary file, the binary code must first be disassembled

correctly. Binary rewriting techniques modify the disassembled binary code to fix security

errors or add mitigations [111, 69, 98, 100, 80, 27]. This approach modifies binary at ma-

chine code level or low-level representation [104, 103, 44] and retain the original code and

data layout the program to an extent to produce sound patched binaries. This approach is

effective and useful but cannot reuse the developments in compiler toolchain. To address

this, the Binary Lifting approach was proposed; binary lifting approaches raise the machine

instructions to a higher level intermediate representation such as LLVM IR [8, 43, 42]. This

promising approach can not only overcome the limited expressiveness of assembly code but

can go further and reuse the modern developments in compiler toolchain to perform binary

3

hardening and reoptimization.

The existing lifting approaches employ static disassembly to retrieve machine instructions

from binary code which are then translated to LLVM IR. Static disassembly, however, suffers

from a number of fundamental limitations. Distinguishing code from data statically, for

example, is undecidable in the general case [56]. Static disassembly must rely on heuristics

and assumptions to disassemble binaries in the absence of dynamic information and high-level

language semantics. Consequently, static disassembly cannot reliably handle indirect jumps,

inline assembly, and obfuscated code [56, 11]. Some of these challenges can be addressed

through heuristics and by making specific assumptions [8, 104]. However, binaries from

source code are generated using a variety of compilers and differing optimization techniques.

The heuristics based disassembly, therefore, are not generic enough to address the variance

we find in real-world legacy binaries. To compound the problem further, software vendors

and malware authors often intentionally obfuscate or encrypt their binary code which cannot

be handled by static disassemblers without the loss of generality. Existing lifting approaches

that rely on static disassembly, hence, often produce unsound binaries.

In contrast to static approaches, dynamic analysis based solutions analyze concrete execu-

tions of the target program, and thus can seamlessly handle all statically unknown elements

such as mixed code and data, and indirect control-flow targets. However, existing dynamic

analysis approaches have limited usability because they incur relatively high overhead [68],

and the rewritten binary code is tailored to the tool’s environment. This makes the distri-

bution of rewritten binaries not as straightforward as with static analysis based approaches.

Pin [68], DynamoRIO [2] and Valgrind [76] are some of the well-known dynamic binary

analysis platforms.

To produce reliable, sound disassembly, dynamic analysis of binaries is necessary. In this

dissertation, we propose a dynamic lifting approach that produces new recovered binaries

from the observed execution traces of the original input binaries. We propose solutions to

4

overcome some of the hard problems in employing scalable dynamic analysis that can be

used to produce a lifting approach that is compiler agnostic. We present our implementa-

tion prototype BinRec—a framework that employs dynamic analysis to lift binary code to

LLVM IR in order to apply complex transformations, and subsequently lowers it back to

machine code, producing a standalone executable binary which we call the recovered binary.

To the best of our knowledge, our approach is the first binary lifting framework based on

dynamic disassembly, enabling lifting of statically unknown code for the first time. Addi-

tionally, our solution represents the first dynamic binary rewriting approach that persists its

transformations in a standalone output binary.

1.2 Contributions

This dissertation makes the following contributions:

• We present BinRec, the first dynamic binary lifting framework. BinRec uses dy-

namic program analysis, trace merging, and incremental recovery to lift programs

to a compiler-level intermediate representation. Our prototype successfully handles

stripped, real-world release binaries.

• We show that BinRec robustly recovers all SPEC INT 2006 benchmarks without heuris-

tics, the first lifting framework to do so. We also show that these recovered binaries

outperform those that are successfully lifted by state-of-the-art lifting tools.

• We evaluate BinRec in four application domains: i) Binary reoptimization, leverag-

ing alias analysis tailored to the lifted IR resulting in improved performance in non-

optimized binaries. ii) Binary hardening through CFI and compiler-level transfor-

mations such as AddressSanitizer and SafeStack. iii) Binary deobfuscation through

successful recovery of partial program semantics in virtualization-obfuscated binaries.

5

iv) Attack surface reduction in the recovered binary by removing unused program paths

and by reducing the number of ROP gadgets.

• We discuss future directions for improved analysis of lifted code that can produce more

optimal binaries.

6

Chapter 2

Background

2.1 The x86 Instruction Set Architecture

In this thesis, we used x86 executables for our experiments which is perhaps the hardest to

disassemble. We studied x86 binaries for two main reasons: 1. The x86 ISA is very common

in the consumer market such as desktop computers and in binary analysis research partly

because of its popularity. 2. The x86 ISA is very complex and has its own unique challenges

for disassembly.

The x86 ISA is a Complex Instruction Set Computing (CISC) architecture. The majority of

byte values in x86 ISA represent a valid opcode since it has a very dense instruction set. This

makes it harder for disassemblers to distinguish code from data. In addition, instruction size

is variable length, and unaligned memory accesses for all valid word sizes are allowed. These

features of x86 ISA allows programs with complex constructs; instructions can be overlap

which also makes disassembly of x86 instructions difficult.

7

2.2 Stripped Binaries

During compilation, compilers are capable of emitting symbol information about functions

and variables. Software vendors often modify the compiler configuration to strip the symbol

and debug information from the binaries that are shipped to customers to prevent reverse

engineering of binaries. The symbols among other things can describe how functions and

variables are mapped within the binary. For example, a function symbol may have informa-

tion about function names, their start addresses, and sizes. This information is mainly used

by the linker to combine object files.

Symbol information may provide extensive details about the semantics of the program to

assist the debugging process. For ELF binary format which we used in our experiments,

debug information is emitted in DWARF [34], a standardized debug data format. Some

of the previous works rely on such symbol information for disassembly and analysis. Our

approach is generic and can handle stripped binaries. Approaches that assume presence of

symbol information will likely fail to handle real-world stripped binaries.

2.3 Memory Corruption

System software suffers from memory corruption errors due to the use of unsafe languages.

These errors are classified as either spatial or temporal memory safety violations [12, 75, 74].

A spatial memory safety violation is caused by dereferencing a pointer that points outside the

bounds of its referent. Dereferencing uninitialized pointers and out-of-bound array accesses

are examples of spatial errors. A temporal violation is caused by dereferencing a pointer

whose referent has been deallocated. One of the examples of temporal memory errors is

references to temporarily allocated memory with an expired lifetime, such as references to

stack variables of callee after callee returned. Another example is accesses to free’d memory

8

(e.g. use-after-free and double-free bugs). A program is said to be memory safe in the absence

of any spatial and temporal memory errors.

There are many techniques to detect memory safety violations [7, 93], however, they are

still a continuing source of problems in modern software [96, 99]. Moreover, attackers have

improved their exploitation methods and incorporated new classes of bugs in their exploita-

tions. For example, the use of uninitialized memory-previously thought benign- has been

categorized as a major attack vector against the Linux kernel [67, 71].

2.4 Dynamic Linking Structures

Binaries are either statically linked or dynamically linked. Statically linked binaries contain

all the code and dependencies within the binary itself. They do not rely on external libraries.

In contrast, dynamically linked binaries depend on external libraries (shared libraries) for full

functionality. Shared libraries allow multiple processes to use the same code and eliminates

the need to store shared library code in every binary.

In dynamically linked binaries, calls to shared library functions rely on information from

the import table. The import table consists of a list of symbols of library functions created

by the linker. These symbols are mapped to addresses in the corresponding loaded libraries

by the dynamic linker. This import table is called the Global Offset Table (GOT) in ELF

binaries.

When a dynamically linked binary calls a shared library function (memcpy), the call actually

goes to Procedure Linkage Table (PLT). PLT is located at the .plt section within the binary.

The PLT contains code stubs that direct the execution to GOT to find the corresponding

address for shared library function (memcpy).

9

Figure 2.1: The first time that the function is called the got entry redirects to the plt
instruction.

If a shared library function is called the first time, the GOT will have a pointer back to PLT

to invoke a dynamic linker. The dynamic linker will locate the actual address of the shared

library function and write it to the GOT as illustrated 2.1.

In later calls, since the GOT is already filled with the address of the shared library function,

the dynamic linker will not be invoked as we illustrated in 2.2. This is called lazy binding.

Invoking the dynamic linker is computationally expensive and lazy binding delays this cost

to when the function is actually called. Also, this cost will never occur for functions that

are never called.

10

Figure 2.2: The Second time, GOT entry is filled with the address of memcpy.

2.5 Static vs Dynamic Disassembly

In order to lift machine code from a binary to higher-level IR, first, we need to identify

which bytes of the binary are actual code. Then we can generate higher-level IR from the

disassembled code. Broadly speaking, we can disassemble the binary in two ways: static and

dynamic. Both approaches have their own advantages and disadvantages.

2.5.1 Static Disassembly

Static disassembly tries to disassemble all the code in the binary without executing it. Before

we talk about different static disassembly approaches, we will first present some of the

11

challenges.

Overlapping basic blocks Different functions may share the same basic blocks. This

could hinder the analysis for distinguishing functions during disassembly.

Overlapping instructions The x86 instruction-set architecture allows unaligned memory

accesses and instructions size is variable length. This allows jumps to target any offset

within a multi-byte instruction. As a result, the same code bytes can be used for multiple

instructions and may confuse disassemblers.

Data and padding bytes in code Binaries, especially compiled with a high level of

optimizations,, contain padding code such as nop instructions between functions and basic

blocks within a function. The purpose of padding code is to create proper alignment for

functions and basic blocks in memory so that optimal execution will be achieved. Moreover,

some compilers like Visual Studio mix data such as jump tables with code to create better-

optimized binary. However, such data can be interpreted as code by disassemblers and cause

the wrong disassembly.

Indirect control flow transfers Indirect control flow transfers such as indirect branches

and calls are resolved at runtime and resolving their target addresses statically is a very hard

problem. Functions and basic blocks reached only with such instructions can cause incom-

plete disassembly when recursive disassembly is employed since this approach disassembles

the code by following control flow transfers.

Non-contiguous functions Functions do not have to be laid out in a single contiguous

memory range. Especially in higher optimization levels, compilers may emit functions on

12

multiple disjoint memory ranges. In this case, disassemblers which assume that each function

is laid out in a single contiguous memory range may fail.

Uncommon prologues/epilogues Some disassemblers rely on well-known signatures of

function prologue and epilogue. However, function prologue and epilogue becomes hard to

recognize when the binary is compiled at high optimization levels and cause mis-identification

of such functions.

Obfuscated code While compilers may emit complex constructs in high optimization

levels, there are also obfuscation techniques that create more complex constructs on pur-

pose even at the expense of creating a slower binary. There are many different obfuscation

techniques which are often used in malware or in proprietary software to prevent reverse

engineering [31]. Skype is one of the examples of such software.

There are three main approaches to static disassembly: linear, recursive and superset disas-

sembly.

Linear disassembly is one of the simplest approaches. It decodes all bytes consecutively in

the code segments and parses them into a list of instructions. One of the main problems

of this approach is that there may be bytes that are not instructions. Some of the modern

compilers mix data, such as jump tables, with code to have a better-optimized binary. The

disassembler may not be able to distinguish this data from code and generate invalid opcodes

during parsing of this data. Sometimes this data may correspond to valid opcodes and cause

the disassembler to desynchronize with respect to the correct instruction sequence. This

would cause instructions following the data to be disassembled in the wrong way. Such a

scenario is very probable on dense ISAs with variable instruction size such as x86. Eventually,

the disassembler will resynchronize but instructions just after the data may be missed.

13

Recursive disassembly avoids the problems of linear disassembly by following control flow

instructions. It begins to disassemble the binary from known entry points such as the main

function similar to linear disassembly until it reaches control flow instructions. Then it re-

cursively follows control flow instructions to find new code. This way recursive disassembly

prevents interpreting data bytes as code. However, recursive disassembly has its own limita-

tions. The target address of indirect calls and jumps are not known during static analysis.

Therefore, basic blocks and functions that are reachable only with indirect control flow in-

structions are likely to be missed. While some of the well-known disassemblers like IDA

Pro utilize recursive disassembly to address this limitation by employing compiler specific

heuristics, they suffer from the error prone nature of these heuristics.

Superset disassembly has been introduced to generically disassemble a binary without heuris-

tics by keeping a superset of legal instructions [13]. It creates the superset of legal instructions

by disassembling the binary from each offset. While this makes the recovered binary include

some illegal instructions resulting from incorrect disassembly, only valid ones will be reached

at run time. This approach is generic and effective for low-level binary rewriting. This,

however, may not be suitable when we lift a binary to high-level IR code, because IR hav-

ing invalid instructions confuses many compiler analyses including the control-flow analysis

and this may hamper compiler optimization or even lead to an incorrect compilation result.

Relying on static disassembly, therefore, lifting real-world binaries and recompiling them

remain ineffective in practice.

2.5.2 Dynamic Disassembly

In contrast to static disassembly, dynamic disassembly executes the binary under analysis

and discovers instructions by tracing them as they are executed. Executing the binary gives

a lot of extra information that can address the problem of static disassembly. For example,

14

the target of indirect control flow transfer instructions that were not available during static

disassembly becomes clear since we can see which instruction is executed after. Moroever,

the problem of interpreting data as code is not possible since execution would never execute

data as code.

However, dynamic disassembly has its own disadvantages. The main disadvantage is code

coverage [72]. Each execution of the binary exercises some part of the binary and this leads

to partial code coverage. Complete code coverage is a very challenging problem given that

there are an infinite number of possible inputs a program can take and we do not know which

input would execute the code that we have not observed in previous runs.

2.6 Execution Driving Methods

The main challenge of dynamic analysis is that driving the execution through all desired

code paths [72]. Desired code paths, however, depends on the aim of analysis. If the aim of

the analysis is to test the binary, driving the execution through all the possible code paths

may be desirable. However, if the aim is debloating the binary, only those paths that are

needed for specific functionality should be explored.

2.6.1 Symbolic Execution

Symbolic Execution is a popular program analysis technique used in automated software

testing [18] and malware analysis [72] to find program inputs that increase code coverage.

When the program is symbolically executed, each input to the program is represented with

a symbolic value (α, β, ..) instead of a concrete value (”hello”, 5, ..) which the program

would normally get. Symbolic execution allows exploration of multiple control flow paths in

parallel that program would normally take with different concrete inputs.

15

Listing 2.1: Excerpt of eq.c: eq example in C.

1
2 #inc lude <s t d i o . h>
3 int main (int argc , char ∗∗ argv) {
4 i f (argc == 3){
5 char a = argv [1] [0] ;
6 char b = argv [2] [0] ;
7 i f (a == b) {
8 puts (” l e ad ing c h a r a c t e r s are equal ”) ;
9 }

10 }
11 return 0 ;
12 }

Symbolic execution is performed by a symbolic execution engine which maintains a first-

order Boolean formula and a symbolic memory store for each explored control flow path.

First-order Boolean formula represents a list of branch conditions satisfied along the path

and Symbolic memory store maps variables to symbolic expressions or values. The symbolic

memory store is updated after assignments while the Boolean formula is updated after branch

execution. The Boolean formula created along the path can be given to satisfiability modulo

theories (SMT) solver [59] to verify if the path is reachable.

The symbolic execution engine forks the program state when it reaches a branch condition

that involves symbolic values. Each forked state represents a different control flow path with

its own version of the program state.

In order to illustrate symbolic execution we have an example program called eq in Listing 2.1.

eq checks whether the user provided exactly two parameters and compares the first byte of

these two parameters. If they are equal, it writes ”leading characters are equal” to the

stdout.

Figure 2.3 shows how we symbolically execute Listing 2.1 by passing two symbolic arguments

of one byte each, recovering all possible code paths.

16

if (argc == 3)

char a = argv[1][0];
char b = argv[2][0];
if (a == b)

argc == 3

return 0

 argc != 3

puts("leading characters are equal");

 argc == 3
 a == b

 argc == 3
 a != b

Figure 2.3: Symbolic execution of Listing 2.1. argc, a and b are symbolic values, causing
the execution state to fork twice as represented by the different arrow styles. Edge labels
show the constraints recorded in each execution state.

2.6.2 Concolic Execution

As we have shown in the previous section, in theory, symbolic execution can generate all

possible control flow paths that the program could take with concrete inputs. However, this

is infeasible in practice, particularly on real-world programs.

One of the limitations of symbolic execution is that the possible number of control flow paths

to be explored increases exponentially when program size increases linearly. This is called a

state explosion problem. Another limitation is that constraint solver may take a lot of time

when solving complex constraints. Because of these reasons, a symbolic execution engine

17

may terminate before it explores all the control flow paths in the program. Moreover, real-

world programs are not independent of their environment: it is hard for symbolic execution

engines to analyze the whole software stack and evaluate any possible side effects. Some

of the proposed solutions to these problems are path finding heuristics to increase code

coverage and parallel execution of independent states to lower execution time. KLEE [22],

one of the popular symbolic execution engines offers path finding heuristics to reach optimal

code coverage and to direct execution towards certain target code by prioritizing one path

over others.

Concolic execution is another solution proposed to make symbolic execution feasible. Since

symbolic execution is slow compared to concrete execution, a combination of two called con-

colic execution is proposed to make symbolic execution feasible for real world programs. One

of the popular approaches of concolic execution is called dynamic symbolic execution (DSE)

or dynamic test generation [46] in which concrete execution directs symbolic execution. An-

other popular approach is called selective symbolic execution [29] which allows symbolic

execution of some components of the software stack while executing the other components

of the software stack concretely.

2.6.3 Selective Symbolic Execution with S2E

S2E is a framework that allows concolic execution of binary programs with the illusion of

full-system symbolic execution. It is developed on top of QEMU and KLEE. By default,

code runs in DBT mode to have high performance. Once a symbolic memory value is used, a

custom LLVM back-end for the Tiny Code Generator (TCG) of QEMU is invoked to generate

LLVM IR. Then generated LLVM IR is symbolically executed with KLEE. Execution can

seamlessly switch back and forth between the symbolic execution and the concrete execution,

and the system state is suitably converted on every boundary crossing.

18

S2E framework allows exploration of code paths in multiple execution modes for binaries.

Moreover, it allows creation of LLVM IR for executed code. Therefore, it provides a solid

foundation for our dynamic binary lifting and recompilation framework.

19

Chapter 3

BinRec

3.1 Introduction

Binary rewriting [104, 103, 44] has many applications such as post-installation program

hardening [111, 69, 98, 100, 80, 27], (de)obfuscation [107, 35, 106], and reoptimization [39].

However, its effectiveness is limited in practice by the complexity of analysis and transfor-

mation in the absence of source code.

To overcome the limited expressiveness of assembly code, researchers introduced “binary

lifting” which raises machine instructions to higher-level intermediate representations (IR)

such as LLVM bitcode [8, 43, 42]. Binary lifting has the potential to capitalize on powerful

compiler-level analysis and transformations already available in production compilers such as

binary reoptimization. Despite its benefits, binary lifting has not seen widespread adoption

in practice because existing approaches rely on static disassembly, which is fundamentally

unable to accurately model indirect control-flow targets, differentiate between code pointers

and data constants, or identify the boundary between data and instruction bytes [56, 11].

20

While heuristics have been used to successfully circumvent these limitations for certain bi-

naries that adhere to specific assumptions [8, 104], binaries that are the target of analysis

are typically release builds, stripped of symbols and debug information, and sometimes even

intentionally obfuscated by vendors or malware authors. Code patterns found in such bi-

naries easily violate these assumptions, e.g., handwritten assembly, highly optimized code,

code produced by non-standard compilers, obfuscated or packed code, and even position-

independent code, which is commonly used in shared libraries [13].

In contrast to static translation methods, dynamic binary translation (DBT) tools such as

Pin [68], DynamoRIO [2] and Valgrind [76] analyze concrete executions of a target program,

and thus can seamlessly handle all statically unknown components such as mixed code and

data, and indirect control-flow targets. Unfortunately, the usability of existing DBT tools

is limited for two reasons: first, they operate on the level of machine code, limiting the

availability of complex analysis tools. Second, the rewritten code in their output is tailored

to the tool’s runtime environment, and can not be reused for subsequent executions. In other

words, any transformation on the binary has to be done again each time the program runs.

This introduces performance and portability problems for instrumented applications.

We present BinRec—a framework that employs dynamic analysis to lift binary code to LLVM

IR in order to apply complex transformations, and subsequently lowers it back to machine

code, producing a standalone executable binary which we call the recovered binary. To the

best of our knowledge, BinRec is the first binary lifting framework based on dynamic disas-

sembly, enabling lifting of statically unknown code for the first time. Additionally, BinRec

is the first dynamic binary rewriting tool that persists its transformations in a standalone

output binary.

Our main goal is to recover code that is opaque to static analysis. While our use of dynamic

analysis solves this issue, it brings with it the problem of covering code that is not exercised

during lifting: when dynamically lifting a program from a single trace, one only observes one

21

out of many possible code paths. Hence, the recovered binary only supports code paths for

which all control flow edges are present in the code path observed during lifting. A control

flow miss occurs when the recovered binary reacahes a code path that was not covered during

lifting. Much like page faults are handled by a page fault handler in modern operating

systems [36], our technique handles control flow misses by means of customizable handlers

that may disallow the unknown control flow transfer by stopping execution. Alternatively,

the handler may be configured to apply incremental lifting, allowing unknown edges and

retrofitting the binary with the newly found code path. For optimization scenarios, the

handler may even be left empty to allow for aggressive branch pruning, specializing the

binary for a specific input format. Applications of our framework may select a handler that

best suits their needs, for instance depending on whether unknown control flow is assumed

to be malicious or not. The use of dynamic tracing enables us to produce recovered binaries

with precise control-flow integrity (CFI). The allowable targets for any indirect control-flow

are hence limited to the ones observed during (optionally incremental) lifting. We show

that BinRec produces recovered binaries hardened with control flow integrity (CFI) with

slowdowns of 0.98x – 1.29x, depending on the optimization level of the binary.

Crucially, our approach allows us to harness the power of existing IR-level compiler analyses

and transformations on binaries where static lifting fails. Our evaluation on SPEC CPU2006

shows that our approach successfully lifts code patterns in optimized input binaries that

state-of-the-art static lifters such as McSema [43] and Rev.ng [42] cannot. To demonstrate the

immediate benefits of lifting binary code to compiler IR, we show that our method improves

performance of some of our non-optimized input binaries and successfully applies two security

transformations available in LLVM—SafeStack [61] and AddressSanitizer [87]—to our lifted

IR. In contrast to previous binary rewriting approaches, our approach naturally enables these

compiler transformations without any additional engineering effort. We also show that trace-

based lifting enables us to recover partial program semantics of virtualization-obfuscated

binaries, by combining IR-level analysis with readily available compiler optimizations.

22

In summary, our contributions are the following:

• We present BinRec, the first dynamic binary lifting framework. BinRec uses dy-

namic program analysis, trace merging, and incremental recovery to lift programs

to a compiler-level intermediate representation. Our prototype successfully handles

stripped, real-world release binaries.

• We show that our approach robustly recovers all SPEC INT 2006 benchmarks without

heuristics, the first lifting framework to do so. We also show that these recovered

binaries outperform those that are successfully lifted by state-of-the-art lifting tools.

• We evaluate our approach in three application domains: i) Binary reoptimization,

leveraging alias analysis tailored to the lifted IR resulting in improved performance in

non-optimized binaries. ii) Binary hardening through CFI and compiler-level trans-

formations such as AddressSanitizer and SafeStack. iii) Binary deobfuscation through

successful recovery of partial program semantics in virtualization-obfuscated binaries.

3.2 Current Limitations in Binary Lifting

Analyzing binary code – or translating it to an accurate high-level representation that is bet-

ter for analysis, transformation, and recompilation – is a challenging problem. The problem is

compounded in cases where the binary code is encrypted or obfuscated. While many general

problems of (static) disassembly have been well documented in the literature [11, 56], in this

section we reiterate in detail some of the current unsolved challenges in the context of binary

lifting and program transformation through static methods. We describe these challenges

below and motivate our new dynamic approach by explaining why static, heuristic-driven

approaches are inherently insufficient for lifting arbitrary binaries.

23

3.2.1 C1 Code vs Data, and Reference Ambiguity

By default, stock compilers do not attach labels to the data and references they embed into

a program. To distinguish code from data and references from constants, the appropriate

labels must be inferred through program analysis. This problem is undecidable in the general

case [56], so state-of-the-art analysis tools employ heuristics to approximate the correct label

set [104, 111, 103]. A data value, for example, can be considered a code reference if it is

aligned correctly, and if it represents a valid code address in the binary. However, value

collisions occur frequently [103] and alignment is not mandatory on many platforms. A

dynamic tool can accurately assign labels by observing how the CPU interprets the values

it reads from memory.

3.2.2 C2 Indirect Control Flow

Indirect Control Flow transfers (iCFTs) may transfer control to one or more target locations

depending on their execution context. Indirect calls are used to implement calls to function

pointers in C code, which are even more prevalent in C++ code in the form of virtual

functions. Indirect branches often implement switch statements and position-independent

code (PIC). In PIC, all direct branches are replaced with indirect branches that add the

offset at which the binary/library is mapped in memory, to the branch target.

Statically identifying all potential targets of iCFTs is, again, undecidable in the general

case [56]. Static approaches do achieve high accuracy when identifying the potential targets

of iCFT instructions that load their destination address from jump tables [41, 111]. Re-

solving indirect function calls and returns, on the other hand, remains a challenge. Wang et

al. [104] argue handling iCFTs can be supported through their approach, but their prototype

Uroboros does not handle iCFTs. The underlying analyses [41] used in Rev.Ng [42] claim

90-95% jump target recovery depending on architecture.

24

Meanwhile, Qian et al. [82] as well as Zhang and Sekar [111] use a lookup-table that trans-

lates original target addresses to the new addresses at run time, effectively resulting in a

hybrid approach between static and dynamic rewriting. The table contains potential targets

collected based on heuristics.

Dynamic tracing can reliably identify control flow targets as it follows the CPU to any jump

target regardless of how the target address is computed.

3.2.3 C3 External Entry Points

Dynamic linking is prevalent in real world software, and it presents additional hurdles to

binary analysis and rewriting. Analyzing and rewriting external libraries at a binary level

is generally infeasible; this requires static linking for all the library code [42] and incurs

significant overhead [13]. Without visibility of all the code, however, the control and data

flow between program modules is only partially observable to binary analysis through the

interface of external modules.

Such partial visibility can be a problem when a code pointer of the main module is passed as

an argument to an external module and is used to re-enter the main module, e.g., callbacks.

After binary rewriting, this code pointer will become invalid because the code layout changes.

Some existing binary rewriters attempt to support such callbacks by implementing special

case handlers for the interface of known libraries [8, 105]. However, they cannot correctly

handle external callbacks through unknown interfaces. Multiverse instead implements run-

time lookup tables to handle callbacks [13] as a generic but heavyweight solution to support

unknown external entry points.

Dynamic tracing can easily capture such entry points by recording control flow transfers

going in and out of the targeted code space, which enables performant, surgical control and

25

data modification at these points.

3.2.4 C4 Ill-formed code

Manually written assembly code is not only used for optimization, but as an anti-debugging

and anti-disassembly technique as well. While generated code is somewhat predictable,

aggressive compiler optimizations can lead to similar ill-formed instruction constructs [11].

Overlapping instructions are a classic anti-disassembly technique [65] but occasionally appear

in highly-optimized libraries too [11]. Selection control structures (e.g. switch/case) are

lowered as Inline data and jump tables by some compilers. Overlapping basic blocks, multi-

entry functions, and tail calls obscure the detection of function boundaries.

Dynamic tracing bypasses handling of ill-formed code during disassembly by observing the

actual instructions executed by the CPU instead.

3.2.5 C5 Obfuscation

In addition to naturally occurring technical challenges, binary lifting approaches may have

to deal with binaries that have explicitly been modified with the intent to obstruct analysis.

While these obfuscation techniques are well documented [32, 1, 5], they still pose significant

challenges in practice.

For instance, virtualizing obfuscators transform executable code stored in code sections into

bytecode stored in data sections, and embed a virtual machine into the program to interpret

the bytecode [9, 1]. In a program protected by such an obfuscator, the static code sec-

tions reveal little to no information about the behavior of the program. Other problematic

obfuscation techniques include opaque predicates [33], control-flow flattening [32], and alias-

26

ing [102]. All these transformations can be used to artificially inflate the size and complexity

of the program’s control-flow graph to a point where static disassembly becomes intractable.

Dynamic lifting can revert all of these obfuscating transformations to some extent. In the

case of virtualizing obfuscation, a dynamic lifting tool can capture the run-time semantics of

the program in the form of executable code, which can then be transformed into an equivalent

deobfuscated trace [85, 89, 35, 107]. In the other cases, a dynamic tool can remove dead

code and spurious aliases.

3.3 Design

Our design for BinRec overcomes the fundamental limitations identified in Section 3.2. We

achieve this by leveraging dynamic program analysis to recover accurate disassembly of

binaries which is then translated into a transformable, high-level intermediate representation

(IR).

Figure 3.1 shows a high-level overview of our approach, consisting of three logical compo-

nents: an extensible dynamic lifting engine and data collector, a transformation component

that rewrites the IR code in a canonical way, and a back-end that compiles the transformed

IR back to machine code and produces an executable binary. The lifting engine is extensible

to support different execution driving paradigms. After running the canonicalization com-

ponent, the full range of existing LLVM-based transformations can be applied to the client

program.

27

3.3.1 Key Considerations for Dynamic Lifting

While our dynamic approach naturally sidesteps the limitations of static disassembly, it

comes with its own set of challenges that need to be carefully addressed.

Coverage A fundamental challenge for any dynamic analysis is to drive execution through

all desirable code paths [72]. Which code paths are desirable, however, depends on the type

and goal of the analysis. To optimize binaries, for example, it is sufficient to explore the

most frequently executed paths. For security hardening, it might be acceptable to explore

only those paths reachable through trusted inputs and to prune all unexplored paths. For

testing, the execution may need to cover all the code paths in the binary.

The paths BinRec covers depend on the set of inputs that drive execution, as is the case

for any other dynamic analysis. We designed BinRec with configurable execution driving

paradigms to accommodate a wide spectrum of applications (Section 3.3.2). BinRec can also

merge multiple traces into a single transformable IR module, thereby recovering multiple sets

of code paths (Section 3.3.3).

However, even with an ideal execution driver, the desirable control flow paths may not be

fully exercised. This can lead the execution of the recovered binary to flow to code that

was not covered during lifting, an event we refer to as a control flow miss. Lack of coverage

can occur because the control flow of the program depends on implicit program inputs such

as timing information, random numbers, and literal memory addresses. The coverage may

also be incomplete because the concrete or symbolic inputs that achieve full coverage cannot

be feasibly calculated. Our technique therefore handles control flow misses by means of

customizable miss handlers, again, based on the application scenarios: The handler may be

configured to disallow or ignore an unknown control flow transfer, or to incrementally recover

the binary with the newly found code path (Section 3.3.5).

28

LoweringCanonicalizationDynamic Lifting Engine

Input Binary

IR

Machine Code

LLVM IR,
Metadata

Deinstrumentation Transformations
Optimizations

LLVM
Module

LLVM
Compiler

Recovered Binary

Runtime
Dependencies

Merging

Tracer
Tracer

ELF Sticher

Tracer

LLVM IR Trace, Metadata

Parallel
Tracers

Concrete
Inputs

Symbolic
Inputs

Concolic
Inputs

Crash Address (optional incremental lifting)

Figure 3.1: The steps of binary recovery: lifting to compiler IR, transformation on the IR,
and lowering back to machine code.

Scalability To dynamically disassemble or lift binary programs, they must be executed

with concrete or symbolic inputs according to coverage considerations. Generating inputs to

achieve maximum coverage is not only difficult, but may lead to path explosion for complex

programs. To address this, we designed BinRec such that it can record multiple, independent,

traces of the binary (resulting from multiple executions of the binary with different inputs).

Our method can merge the resulting traces at a later stage to increase global coverage. This

design splits the analysis of complex, large binaries into smaller manageable chunks which

can be lifted in a distributed and/or parallel infrastructure (Section 3.4.1).

3.3.2 Dynamic Lifting Engine

Execution Driver BinRec takes a multi-pronged approach, using several complementary

methods, to drive dynamic execution. These methods use different types and sources of

inputs. The first source of input to drive a program for dynamic lifting should be a test

corpus exercising desired features. The more closely this corpus matches the real workload

on the rewritten binary, the better. However, user-specified tests alone are unlikely to fully

29

exercise all the code paths that should be lifted. Besides the obvious sources of explicit input

to a program (command line, stdin), there can be implicit inputs that are much less obvious

to users but still need to be accounted for. These can include address layout, timers, random

number generators, interrupts and network packets. Even if users can specify the explicit

inputs for every conceivable desired behavior of their specialized program, it is highly unlikely

they would be aware of all the implicit inputs. We therefore turn to alternative techniques

to produce specialized programs that are robust enough to function correctly in the presence

of implicit input.

One potential solution to this problem is to drive execution through all or most of the program

paths that depend on implicit input. Towards this solution, we drive some of the implicit

inputs that cannot be triggered merely through explicit inputs. For example, we found an

interesting case in the Perl interpreter where the control-flow depends on the virtual address

space layout (specifically on the alignment of argv strings). We exercise this implicit input

source by controlling the lengths of environment strings in a way that results in different

argv alignments. Similarly, we enable address space randomization (ASLR) during tracing,

to exercise more code paths dependent on the address space layout.

While achieving complete code coverage is not our objective, the users may still require

nearly complete code coverage depending on the application. For this use case, BinRec

supports concolic execution [29] to explore more code paths.

Alternatively, BinRec can take fuzzer-generated, concrete inputs to drive the binary lift-

ing frontend. Concolic execution and fuzzing have complementary strengths and weak-

nesses [47, 109]. Fuzzing scales well to large programs, but has difficulty exploring all

branches of complex conditional statements. Concolic execution is useful to drive execution

through such conditionals. We found concolic execution to become untenable on programs

with cryptography or hashing, such as SHA2. In those programs, the SMT solver becomes

a bottleneck. The input generation interface is flexible and extensible, which allows the

30

dynamic driver to be customized for a particular client application, and so explore program

paths using the best methodology for the target.

Dynamic Data Recording We record dynamic data about the execution of each pro-

gram path specified by the driver. This data is key to overcome the fundamental limitations

of static binary lifting as explained in Section 3.2. We currently record which instructions

were executed, where the function boundaries are, and the observed targets of each branch

instruction. We use this information to accurately disassemble binaries and produce canon-

ical IR, as explained in Section 3.3.3. Our framework is extensible, so other data can be

recorded to fill the needs of downstream transformations. The recorded data is fully accurate

on paths which are exercised by the dynamic lifting engine, but we cannot reason about data

that is not covered by the dynamic traces.

The BinRec front-end decodes and records each instruction executed by the client binary

using the program counter. This procedure is agnostic to the static representation of the

executable code and is therefore not affected by any intentional or unintentional differences

between the static and dynamic (actual) instruction trace. Such differences would arise in

the presence of unaligned, packed, or encrypted code. We therefore address C4 and some

aspects of obfuscation C5 . A tradeoff incurred by this design choice is a potentially slower

lifting front-end. A scheme that dynamically records control flow, but that lifts disassembled

basic blocks statically would occupy another point in the design space, and would sacrifice

compatibility with non-standard binaries for faster lifting.

3.3.3 Canonicalization

Merging Traces Our approach can compose program traces generated over different runs

using different execution driving paradigms. We implemented a technique to merge distinct

31

traces into one specialized program which will behave correctly on all covered paths. In

concrete terms, merging proceeds by lifting N instances of the target program in parallel.

The different execution paths can be driven by fuzzing, concolic execution, or a chosen corpus

of inputs. Then, we create one LLVM IR module from N LLVM IR modules using metadata

we collected during lifting.

Merging depends on the ability to correlate the code and data addresses of one dynamic

trace with another. In the case of position independent code, the addresses change from

trace to trace, but are correlated by the section base addresses. Traces from programs using

fine grained code and/or data layout randomization (at load or run-time) could be merged

using a specific mapping function taking the randomization seed as input. We leave the

implementation of such correlation techniques as future work.

The code of the combined program is the union of all basic blocks observed in the merged

traces. The allowed targets of each control flow statement in the combined program are the

union of the observed targets for each observation of that branch in the merged traces.

It may be observed that this is a path-insensitive procedure. The resulting control-flow graph,

before optimization, resembles the original program’s CFG but lacks the nodes that were

not executed while lifting. One could imagine an alternative, path-sensitive, reassembly

technique, where only control flow paths exactly following one of the recorded traces are

allowed. However, it is likely unprofitable to construct such a recovered program, as in effect

this would be a tree traversal of the original program’s control flow graph, and the resulting

program would have a code size explosion.

Deinstrumentation Our technique uses an emulation-based dynamic lifting engine, which

allows us to lift programs compiled for a different instruction set architecture than the host

system. IR generated from such an emulation-based engine, however, is heavily instrumented

32

to facilitate execution in a virtualized environment. This code cannot be used as a standalone

program, unless we remove the instrumentation code. Our framework contains a deinstru-

mentation component that eliminates dependencies on the run-time environment from lifted

code, and merges all captured code together into a single LLVM module that is suitable for

use in subsequent transformation passes and compilation into a standalone binary.

Whereas a program binary can explicitly use physical CPU registers and memory references,

the lifted IR of a recovered program has an abstract representation of the memory model in

the original binary. To handle this abstraction gap, we represent physical registers, stack and

memory locations as objects in the high-level IR. This enables us to generate programs which

contain two stacks and register sets. The native stack contains data such as register spills

and return addresses, as well as any data we add while transforming the lifted program.

The emulated stack and register set contain the data of the original binary. Generated

code interacts with this emulated environment to reproduce the functionality of the original

program. The emulated state cannot be fully optimized into native state due to the lack of

semantic information about the size and lifetime of stack allocations.

Control-Flow Canonicalization

Indirect Control Flow Resolution Our lifting front-end produces a collection of exe-

cuted basic blocks, and a list of control-flow graph edges. We use this data to emit control-

flow transfers with sound and precise lists of allowed targets. Direct control flow transfers

have a one-to-one correspondence between nodes and edges in the observed control-flow

graph of the client binary, and the recovered binary. We therefore represent them in a

straightforward way in recovered code, using the original semantics.

Even the most precise static analysis allows more control flow targets than necessary due to

analysis imprecision (see challenge C2). In contrast, we simply record the exact dynamic

33

targets of each indirect control flow transfer in a client binary in the lifting engine. To

execute the corresponding control flow in the recovered binary, we determine the address

that original code would jump to, then use that address as a key to look up the recovered

code target. This is represented as a switch table in LLVM IR. We emit the minimal set of

dynamic targets, which can enable further optimization by limiting the lifetime of values.

Static lifting can only receive these benefits to the extent that indirect branch targets can be

statically determined. This has been extensively explored in the program analysis [11] and

CFI literature [19, 24], and previous work has found even the most precise static analysis

overapproximates the set of possible targets.

Library Calls Our approach supports calls to external (i.e., non-recovered) libraries. The

principal step necessary to execute such a library call is to marshall the emulated program

state into concrete state before the call. Marshalling is necessary to match the ABI of linked

libraries. Upon return from the library, the concrete state is reloaded into the emulated

state. The maximum amount of state that may need to be transferred is the full register set,

including the stack pointer. When possible, we can use the function signatures of external

library calls to optimize the state marshalling. With signature information, only caller saved

registers which are actually read or written need to be marshalled from emulated state

to concrete state. Our prototype implementation of BinRec uses signature information to

optimize calls to the C library.

External Callbacks Our approach to solving the external callback challenge C3 is both

sound and performant. Only a dynamic lifting approach can achieve both these properties at

once. In the lifting front-end, our approach detects execution of the binary under analysis,

and records call targets where the caller is outside the analysis region (i.e., callback func-

tions). There is no need to track callback pointers at any other time because we detect when

they are actually invoked. We also record the instruction pointer values when the called-back

34

Recovered Binary

Recovered Code Region

Original Code Region

Library Code Region

qsort(..., void *compare) :

function main_recovered():

(2)

compare(a, b);

return value;

...

qsort(..., &compare);

function compare_recovered():

compare: jmp compare_recovered ...

...

return value;

...
...

(3)

(4)

(1)

(5)

...

call/jmp
return

...
...

Figure 3.2: The address space of a recovered program that calls the qsort library function.
Control flows as follows: (1) Call to library with original function pointer; (2) Callback via
function pointer; (3) Original function was replaced with jump to recovered code; (4)(5)
Returns.

code exits to external library code via a call or ret instruction. We insert entry stubs for

the external code to recovered code transitions, and exit stubs at recovered code to external

code transitions. These stubs also perform the state marshalling mentioned in the previous

paragraph. During the ELF stitching phase (Section 3.3.4), we insert code trampolines at

the original virtual addresses of the called-back functions. Figure 3.2 visualizes the resulting

control flow for a call to qsort which includes a simple callback.

If a static binary lifter attempted to use trampolines to handle callbacks as we have, they

would lack the dynamic information about which functions are actually executed via callback.

Without the dynamic information, the only sound approach would be to mark every function

35

as a potential entry point. Creating many entry points to recovered code is deleterious to

performance, as it increases code size and forces variables to be stored and reloaded.

Data Canonicalization

Accurately lifting data structures from binaries is a hard problem and the focus of orthogonal

research [94]. Some architectures allow interleaving of code and data. This is true for ARM,

but also for x86 where compilers often embed jump tables into code sections. In BinRec,

we take a conservative approach by including data from the client binary as global variables

in the IR, as well as copying any code sections in the binary that may contain data. We

preserve their base mapping addresses in order not to invalidate existing references in the

lifted code. We leave the task of applying existing analysis methods to split up the data into

variables and creating typed references in the lifted code to future research. Thanks to our

lifting engine, such analysis methods can benefit from strong data flow analysis at the level

of compiler IR.

3.3.4 Lowering

After the client program IR has been transformed as desired, we produce a functional re-

covered binary. We use an unmodified LLVM compiler (llc) to generate a temporary ELF

binary from the recovered IR. Then, our lowering toolchain stitches together ELF sections

from the temporary binary and the original binary into one combined binary. We use the

majority of sections from the temporary binary, and data sections from the original. Fi-

nally, we execute binary patching to insert the trampolines to support external callbacks

(Section 3.3.3), and update dynamic linking structures (Section 3.3.4).

36

Dynamic Linking We lift all dynamic data and code references into canonical LLVM

IR, and then lower this IR using LLVM’s code generation infrastructure. This functionality

requires us to redirect references to external functions and data used by the client binary. In

addition to static references, we collect the dynamic addresses of every indirect load, which

enables us to redirect those references to external symbols as well. We then ensure the

dynamic linker operates on only lifted data structures, which is necessary given our atypical

ELF layout. We utilize the ELF dynamic symbols section to determine the address of data

symbols which will be filled by the dynamic linker. Even stripped binaries must retain this

information. This approach could be extended to non-ELF binaries with minimal effort

by implementing the API of the platform-specific dynamic linker. The real world benefit

of dynamic linking support is that BinRec can support any off-the-shelf instrumentation

scheme that acts via inserted calls to an external library. We use this functionality to enable

the AddressSanitizer and SafeStack applications in Section 3.6.

3.3.5 Control Flow Miss Handling

Binaries recovered with our approach may encounter unrecovered paths during testing or

after deployment due to the coverage limitation of dynamic analysis (see Section 3.3.1). Our

approach handles these control flow misses by forcing the recovered binary to invoke a control

flow miss handler whenever it encounters an unrecovered path. Several control flow miss

handlers are available.

The log hander logs the instruction pointer value that is missing from the recovered binary,

and then aborts execution. This mode is useful when divergence between the recovered

binary and the original is more dangerous than program termination.

The fallback handler diverts execution from the recovered code into the original code of

the input binary. This involves marshalling of the emulated CPU state in the recovered

37

code into the physical state of the original binary (see also Section 3.3.3), and then jumping

to the original binary at the intended address. This miss handler is only available when

the original binary and recovered binary target the same architecture. It is ideal for use

cases that require program instrumentation without unexpected termination. Note that in

a mitigation scenario, in which our method is used to augment lifted code with security

instrumentation, this requires a binary-level mitigation for the remaining binary code. The

binary mitigation may be heavyweight and hence inefficient. However, the fallback code is

not expected to be on the hot path since it is not exercised by the lifting workload.

The incremental lifting handler feeds back the logged missing instruction pointers into

the dynamic lifting engine, where we capture a trace covering the new control-flow edge,

and merge it with the existing traces. Using this incremental lifting paradigm, the recov-

ered binary can be continuously updated. Our current incremental lifting prototype lifts

instructions until the next conditional control-flow transfer.

The recovered program can invoke the fallback miss handler, or the log handler. Meanwhile,

the dynamic lifting engine can generate one or more new program traces via the logged

instruction pointers in an asynchronous background process. We incorporate the new and

existing traces to generate a new recovered binary.

An advantage of incremental lifting is it directly lifts new code without the need to reproduce

the (explicit or implicit) input that triggers the miss during lifting. Consider a program

feature that is only exercised due to unconstrained system randomness on the test system.

There is no need to isolate and constrain the source of randomness to replicate it on the

lifting system. Alternatively, there is no need to wait for non-deterministic fuzzing or concolic

execution techniques to drive execution through the new paths.

Finally, when it is known that the tracing stage has already covered all paths that implement

the features of interest, the miss handler can be optimized out completely. This is useful for

38

aggressive optimization scenarios in which the lifting input is known to cover all necessary

code, and eliminating a branch leads to new optimization opportunities.

3.4 Implementation

We implemented a prototype of BinRec, spanning 13,338 SLOC of which 9,709 are C++ code

that implements lifting and canonicalization. The implementation targets single threaded

32-bit x86 binaries on Linux.

Our dynamic lifting engine is built on top of S2E [29], a framework that facilitates symbolic

execution of a single process running in the QEMU virtual machine [14]. Code is translated

to LLVM IR in order to be symbolically executed by the KLEE symbolic executor [23]. S2E

automatically provides multi-architecture support and sandboxing of input binaries, since it

is based on QEMU. This flexibility comes at the cost of a relatively long lifting time, which

we discuss in Section 3.5.4.

3.4.1 Parallel Tracing

To address the scalability challenge (see Section 3.3.1), we architected BinRec with high

parallelism. Dynamic tracing is expensive in time (due to dynamic binary translation) and

disk usage (due to virtual machine images). We implemented a flexible run configuration

scheme that allows operators to describe test cases to saturate a server’s CPU and memory

resources. Multiple traces through the same binary are lifted in parallel, and we can also lift

different binaries in parallel.

The dynamic traces do not all have to be conducted at one time, so a lifted binary can be

produced and used while more paths are being explored for the next version of the lifted

39

binary. A dynamic trace is a stable artifact on disk that can be copied, shared, and reused.

This allows the coverage of a binary to continuously be improved, and traces will not have

to be regenerated.

3.4.2 Library Calls

Recovered IR we get from frontend does not support calling library functions as is. The

first reason is that recovered IR only contains the addresses of called library functions from

the import table and the import table is not in the recovered IR. The second reason is that

registers in the recovered IR are emulated and represented as global variables. However,

library code expects input parameters in physical registers and also returns values in physical

registers.

Listing 3.1: Excerpt of eq2.c: eq2 example in C.

1
2 #include <s t d i o . h>
3 int main (int argc , char ∗∗ argv) {
4 i f (argc == 3){
5 char a = argv [1] [0] ;
6 char b = argv [2] [0] ;
7 i f (a == b) {
8 puts (” l e ad ing c h a r a c t e r s are equal ”) ;
9 }

10 else {
11 p r i n t f (” l e ad ing chars %c and %c are not equal \n” , a , b) ;
12 }
13 return 0 ;
14 }
15 }

To be able to support library functions in recovered code, first, we annotate addresses that

are in PLT as library calls. This information can be collected from frontend during lifting

or simply objdump utility can be used. Then we insert our own helper functions that will

allow transition between recovered code and library code.

40

Listing 3.2: Empty basic block representing puts function call in recovered IR.

1
2 BB 8048310 :
3 s t o r e i 32 134513424 , i 32 ∗ @PC, a l i g n 4
4 r e t void

In order to better understand how we implemented support for calling library functions

from recovered IR, we use the eq2 program shown in Listing 3.1. With this example, we also

illustrate how we support variadic functions. After we lift eq2 with inputs that cover the

whole CFG, the recovered IR has a basic block shown in Listing 3.2 which corresponds to

puts function call in the original program. This basic block only sets the emulated program

counter(PC) to PLT entry of puts function.

Listing 3.2 is where we need to insert our helper function that will call puts function and

also provide seamless transition between recovered code and library code. Although we could

implement our helper function in LLVM IR, we have implemented it in C to make it easier

to understand and implement. Then we compiled it to LLVM IR and linked it with the

recovered code.

41

Listing 3.3: Helper function to support library calls

1
2 void a t t r i b u t e ((a l w a y s i n l i n e)) h e l p e r e x t e r n s t u b () {
3 // re turn address shou ld be on top o f emulated s tack ,
4 // pop i t
5 addr t re taddr = ldl mmu (R ESP , 0) ;
6 R ESP += s izeof (s tackword t) ;
7
8 // PC shou ld conta in the address o f the t a r g e t func t ion ,
9 // c a l l i t

10 u i n t 6 4 t r e t = he lp e r s tub t r ampo l i n e (R EDX, R ECX, R ESP , PC) ;
11
12 // copy re turn v a l u e o f l i b r a r y f u n c t i o n to emulated environment
13 R EAX = r e t & 0 x f f f f f f f f ;
14 R EDX = r e t >> 32 ;
15
16 // jump to the re turn address
17 PC = retaddr ;
18 }

Listings 3.3 and 3.4 show the helper functions that are used in our implementation. We

instrumented the lifted IR to replace the original calls to external library functions with a

call to helper extern stub function.

Function helper extern stub pops the first word from the emulated stack and stores it as

the return address. The first word on the emulated stack is the return address of library

call(puts) for the emulated program and above it are the input parameters(char*). Then it

calls helper stub trampoline.

Function helper stub trampoline sets the hardware stack pointer(esp) to point to emulated

stack so that library function can get correct input parameters from the emulated stack. Then

it makes a call to PLT entry of library function(puts). Once the puts returns to the caller

(helper stub trampoline), the return value of puts will be in eax hardware register since

it is a scalar value. Also, note that helper stub trampoline handles other types of return

values such as float and structures as well. Then helper stub trampoline restores esp to

42

Listing 3.4: Helper function to support library calls

1
2 u i n t 6 4 t a t t r i b u t e ((no in l i n e , f a s t c a l l)) h e l p e r s tub t r ampo l i n e (
3 const r e g t edx , const r e g t ecx , const r e g t esp ,
4 const addr t ta rge tpc) {
5
6 struct { r e g t eax ; r e g t edx ; } r e t ;
7
8 // s e t s t a c k p o i n t e r and c a l l l i b r a r y f u n c t i o n
9 asm (

10 // use ebx to ho ld esp u n t i l the f u n c t i o n r e t u r n s
11 ”movl %%esp , %%ebx\n\ t ”
12 ”movl %0, %%esp\n\ t ”
13 ” c a l l l ∗%1\n\ t ”
14 : : ”g” (esp) , ” r ” (ta rge tpc) , ”c” (ecx) , ”d” (edx)
15 : ”ebx” , ” esp ”
16) ;
17
18 // put f p s t t in r e g i s t e r to avoid doub le memory load
19 const register unsigned int tmp fpst t = f p s t t ;
20
21 // copy re turn v a l u e o f l i b r a r y f u n c t i o n to emulated environment ,
22 // re turn edx / eax by v a l u e so t h a t we don ’ t use p o i n t e r s
23 // to emulated r e g i s t e r s
24 asm (
25 ” f s t p t %2\n\ t ”
26 ”movl %%ebx , %%esp ” // r e s t o r e saved s t a c k p o i n t e r
27 : ”=a” (r e t . eax) , ”=d” (r e t . edx) , ”=m” (f p r e g s [tmp fpst t] . d)
28 : : ” eax” , ”edx” , ” esp ”
29) ;
30
31 fp tag s [tmp fpst t] = 0 ;
32
33 // re turn r e s u l t
34 return ((u i n t 6 4 t) r e t . edx << 32) | r e t . eax ;
35 }

its value before we called puts. As the last step, it returns the return value of puts back to

helper extern stub to be stored in emulated return registers. Then helper extern stub

sets the program counter to return address of puts call in original binary.

43

Recovered IR in Listing 3.5 shows recovered IR after we insert our helper function to call

puts. Similarly, variadic functions such as printf in eq2 is supported the same way as puts

function.

Listing 3.5: Basic block for puts function call after we insert helper function in recovered IR.

1
2 BB 8048310 :
3 s t o r e i 32 134513424 , i 32 ∗ @PC, a l i g n 4
4 %24 = load i32 , i 32 ∗ @R ESP, a l i g n 4
5 %25 = c a l l i 32 @ ldl mmu (i32 %24, i 32 0)
6 %26 = load i32 , i 32 ∗ @R ESP, a l i g n 4
7 %27 = add i32 %26, 4
8 s t o r e i 32 %27, i 32 ∗ @R ESP, a l i g n 4
9 %28 = load i32 , i 32 ∗ @R EDX, a l i g n 4

10 %29 = load i32 , i 32 ∗ @R ECX, a l i g n 4
11 %30 = load i32 , i 32 ∗ @PC, a l i g n 4
12 %31 = c a l l x 8 6 f a s t c a l l c c i 64 @he lper s tub trampo l ine
13 (i 32 in r eg %28, i 32 i n r eg %29, i 32 %27, i 32 %30)
14 %32 = trunc i64 %31 to i32
15 s t o r e i 32 %32, i 32 ∗ @R EAX, a l i g n 4
16 %33 = l s h r i 64 %31, 32
17 %34 = trunc i64 %33 to i32
18 s t o r e i 32 %34, i 32 ∗ @R EDX, a l i g n 4
19 s t o r e i 32 %25, i 32 ∗ @PC, a l i g n 4
20 r e t void

So far we handled all the library functions with the same technique. However, we can

make improvements to non-variadic functions. We can use the known signatures of library

functions to optimize these function calls. Our prototype implementation of BinRec uses

signature information to optimize calls to the C library, for example. Listing 3.6 shows the

recovered IR after we optimize the puts call. However, we can’t apply this optimization to

variadic functions such as printf.

44

Listing 3.6: Basic block for puts function call after optimization.

1
2 BB 8048310 :
3 s t o r e i 32 134513424 , i 32 ∗ @PC, a l i g n 4
4 %64 = load i32 , i 32 ∗ @R ESP, a l i g n 4
5 %65 = gete l ementptr inbounds i8 , i 8 ∗ @memory , i 32 %64
6 %66 = b i t c a s t i 8 ∗ %65 to i32 ∗
7 %67 = load i32 , i 32 ∗ %66
8 %68 = load i32 , i 32 ∗ @R ESP, a l i g n 4
9 %69 = add i32 %68, 4

10 s t o r e i 32 %69, i 32 ∗ @R ESP, a l i g n 4
11 %esp1 = load i32 , i 32 ∗ @R ESP
12 %addr2 = add i32 %esp1 , 0
13 %70 = gete l ementptr inbounds i8 , i 8 ∗ @memory , i 32 %addr2
14 %71 = b i t c a s t i 8 ∗ %70 to i32 ∗
15 %arg3 = load i32 , i 32 ∗ %71
16 %72 = c a l l i 32 @ stub puts (i 32 %arg3) // puts c a l l
17 s t o r e i 32 %72, i 32 ∗ @R EAX, a l i g n 4
18 s t o r e i 32 %67, i 32 ∗ @PC, a l i g n 4
19 %pc6 = load i32 , i 32 ∗ @PC

3.4.3 Optimization

S2E represents all instructions as modifications to a struct which stores the complete state

of the original binary. This hinders existing LLVM passes from precisely analyzing and

optimizing code. To address this issue, we optimize lifted code in several ways. First, our

deinstrumentation described in Section 3.3.3 brings the code into a state where LLVM can

perform existing optimizations including aggressive constant propagation and dead code

elimination. Next, we guide the alias analysis with the fact that pointers to non-overlapping

registers in the emulated register state cannot alias [40]. Third, we aggressively promote

global variables representing the client binary state to equivalent local variables; even inlining

functions that use them if it is favorable. Figure 3.3 shows the performance benefit obtained

by applying our custom alias analysis and global variable promotion.

45

Stack unwinding optimization Client binaries often utilize error handling mechanisms

such as setjmp and longjmp which save and restore the program state. Recovered programs

have two contexts, the physical context of the recovered program, and the emulated context of

the original program. Setjmp and longjmp calls in the original program should be translated

to a save and restore of the emulated context in the recovered program. It would be possible

to copy the emulated state to physical state, the same way we do for library calls, and

thereby use the native setjmp/longjmp handlers. Instead, we implemented our own handlers

to avoid the extra state copy by directly operating on emulated state. For implementation

details see Appendix A.

3.5 Evaluation

In this section, we first compare our prototype against state-of-the-art static lifting ap-

proaches. We then assess the performance of programs lifted with our approach in terms of

run time and code coverage, as well as the lifting speed of our BinRec prototype. We use the

SPEC CPU2006 benchmark suite, which is standard in the binary lifting literature [42, 8, 13],

because it contains CPU-bound benchmarks, providing us with a pessimistic view of run-

time overheads (as opposed to I/O-bound programs whose I/O performance is unaffected by

lifting). We conducted our lifted binary run-time experiments on a system with 8GB RAM

and an Intel i5-3210M running at 2.5GHz, with frequency scaling turned off to ensure stable

performance. Lifting time experiments were conducted on an Intel Xeon E7-4870 @ 2.40GHz

with 188 GB RAM. We used gcc 4.8.4 to compile all programs with optimization levels O0

and O3 (see Table 3.1). Our prototype is based on S2E, which emulates floating-point in-

structions using integer instructions for portability. In this prototype implementation, we

do not aim to optimize floating-point performance, so we limit our evaluation to the CINT

subset of SPEC CPU2006.

46

Listing 3.7: Excerpt of decompress.c: libjpeg example in C.

1 void c a l l b a c k f u n c (j common ptr c i n f o) {
2 p r i n t f (” . ”) ;
3 }
4
5 int main (int argc , char ∗∗ argv) {
6 struct j p eg decompre s s s t ru c t i n f o ; // j p e g i n f o
7 struct j p eg prog r e s s mgr p rog r e s s ;
8 . . .
9 // Af ter some i n i t i a l i z a t i o n code

10 prog r e s s . p rog re s s mon i to r = c a l l b a c k f u n c ;
11 p rog r e s s . p a s s l i m i t = 0x8048860 ;
12 p rog r e s s . pa s s counte r = 0L ;
13
14 i n f o . p rog r e s s = &prog r e s s ;
15 jp eg s t a r t d e compre s s (&i n f o) ;
16
17 char ∗data = (char ∗) mal loc (dataS ize) ;
18 readData (in fo , data) ;
19 . . .
20 }

3.5.1 Comparison with static lifters

Our technique reliably lifts and recompiles a large number of real-world binaries. In ad-

dition to the qualitative benefits of our dynamic technique as discussed in Section 3.3, we

investigated quantitative advantages of our approach. We compared our approach to Mc-

Sema [43] and Rev.ng [42], popular state-of-the-art binary lifting frameworks.1 We limit

our comparative study to active, open source binary lifters which, like BinRec, aim to be

compiler-agnostic.

We found McSema [43] could only recover a limited number of binaries correctly in our

tests. While trying to lift binaries compiled without optimization, we encountered errors

with McSema’s handling of double-precision floating point operations in 32-bit applications,

unsupported xmm instructions (xmm xorpd, xmm andpd) on 64-bit, and segmentation faults

1Code snapshot on July 25th, 2019

47

in the C++ delete operator. In addition, some binaries lifted from compiler-optimized code

caused segmentation faults upon launch or produced incorrect output.

We also identified cases where binaries generated by McSema interpreted data as code point-

ers, illustrating C1 in real-world code. McSema uses IDA Pro for control flow graph recovery

and analysis. Hence, it is limited by IDA’s inability to correctly identify function pointers

in real-world code. This can lead to problems as illustrated by Listing 3.7: a structure type

in libjpeg contains a member field that holds the address of a callback function (line 10),

while another holds an integer that represents a loop bound (line 11) which happens to be

in a similar value range. IDA is closed source, but we suspect it uses heuristics to identify

integers with values in the executable segment as code pointers, which fails in this case.

The recovered binary McSema generates from this program mistakenly changes the integer,

thereby changing program semantics. Similarly, failure to identify code pointers correctly

could cause mishandling of callbacks in this program. Unfortunately, the authors do not

provide any performance numbers for correctly lifted binaries using McSema.

We were unable to recover most of the dynamically linked SPEC INT2006 binaries with

Rev.ng [42]. While we managed to get some of the binaries running by reducing the opti-

mization level to O0 (a classic example of C4 —due to aggressive optimization), this still

yielded mixed results. For instance, the tool was able to produce a lifted version of libquan-

tum but its output differed from the output of the original program. The only test that was

correctly recovered was mcf. Some tests failed completely (even at O0), e.g., gcc, gobmk,

perlbench, and xalancbmk.2 Table 3.1 compares the performance of our technique to Rev.ng

using the most recent published results [49]. The authors note that these were all stat-

ically linked. Although their client binaries’ optimization level is not specified, BinRec’s

performance (0.98x for O0, 1.29x for O3) exceeds Rev.ng’s (2.25x) in either case.

2The error message indicated failed assertions in the IsolateFunctionsImpl class upon replacement of

indirect branch targets, strongly hinting towards an instance of C2 . We contacted the developers but did
not get any detailed feedback in time for the submission.

48

In summary, both state-of-the-art tools we looked at were unable to reproducibly recover even

standard binaries, despite being actively developed and widely used open-source frameworks

for binary lifting. We would like to stress that this does not reflect a lack of sophistication

behind those tools (or the developers), but instead highlights the tremendous difficulty faced

by static lifting approaches. Crucially, we found our dynamic tracing technique to aid the

lifting process significantly: we are able to recover all of the test binaries in question while

the recovered binaries performed favorably by comparison and produced correct output.

Table 3.1: Measured execution time normalized to the original binaries. Rev.ng results are
reported from publication [49].

BinRec McSema Rev.ng
Benchmark O0 O3 O0 O3 reported
400.perlbench 1.25 1.48 – – 3.7
401.bzip2 0.76 1.05 2.84 – 2.2
403.gcc 1.26 1.37 – – 2.1
429.mcf 0.83 1.00 2.31 1.41 1.5
445.gobmk 1.04 1.56 – – 3.3
456.hmmer 0.77 0.74 – – 2.2
458.sjeng 0.77 1.08 3.43 – 2.6
462.libquantum 0.95 1.30 2.07 1.04 1.1
464.h264ref 0.80 1.24 – – 2.7
471.omnetpp 1.92 3.09 – – 2.8
473.astar 0.80 0.94 – – 1.5
483.xalancbmk 1.12 1.66 – – 2.8
geomean 0.98 1.29 – – 2.25

3.5.2 Performance

Table 3.1 presents the performance of binaries lifted with our approach. For every input

program we compiled both optimized (O3) and unoptimized (O0) binaries which produce

correct output in the test cases. Our results show that there is a potential for performance

improvement by using our technique as a post-release optimizer—particularly, if the original

49

was not optimized at the source level. With our approach, six benchmarks – bzip2, mcf,

hmmer, sjeng, h264ref, and astar – run faster than the unoptimized client binaries. In some

cases, our technique can re-optimize release builds to be faster than even the optimized

binaries (e.g., hmmer and astar). Compared to the optimized client binary, the hmmer

”nph3.hmm swiss41” workload finished in 0.62x the time. Interestingly, hmmer is the only

SPEC binary to be faster when re-optimized from an optimized (0.62x) rather than an

unoptimized client binary (0.85x).

There are factors that accelerate and factors that slow down programs recovered by Bin-

Rec. We discussed several of the accelerating factors in Section 3.4.3 and show their benefit

in Figure 3.3. Floating point instructions are emulated in the lifted binaries, which incurs a

performance penalty (e.g., we found this to be one of the main factors for the slowdown of

omnetpp). Further, the IR of recovered programs contains less accurate information about

the size and lifetime of stack allocations compared to source code, which impedes optimiza-

tion. The geometric mean run time factor of recovered binaries compared to unoptimized

and optimized input binaries is 0.98x and 1.29x, respectively.

3.5.3 Code Coverage

Figure 3.4 shows the instruction coverage of lifted binaries as we increase the number of

supported input workloads. The rate of coverage change is substantially different between

binaries, and reflects both the number of unrelated features in the binary and the similarity

of the test cases. bzip2, for instance, exercises nearly the same code path for each input.

In contrast, gobmk and gcc see a steady increase in code coverage for each added input.

The level of instruction coverage should therefore be dependent on the application, lifted

feature set, and use case. Users of our framework may aim to increase coverage or to keep

it low, limiting the attack surface for attackers. In both cases, BinRec’s ability to report

50

0

1

2

3

4

as
ta

r-O
0

bz
ip

2-
O

0
gc

c-
O

0
go

bm
k-

O
0

h2
64

re
f-O

0
hm

m
er

-O
0

lib
qu

an
tu

m
-O

0
m

cf
-O

0
om

ne
tp

p-
O

0
pe

rlb
en

ch
-O

0
sj

en
g-

O
0

xa
la

n-
O

0
as

ta
r-O

3
bz

ip
2-

O
3

gc
c-

O
3

go
bm

k-
O

3
h2

64
re

f-O
3

hm
m

er
-O

3
lib

qu
an

tu
m

-O
3

m
cf

-O
3

om
ne

tp
p-

O
3

pe
rlb

en
ch

-O
3

sj
en

g-
O

3
xa

la
n-

O
3

ge

om
ea

n-
O

0
ge

om
ea

n-
O

3

 before optimization after optimization

Figure 3.3: Execution time improvement from CPU state variable de-aliasing and global
variable promotion.

code coverage provides the user with a practical metric to determine if incremental lifting is

effective; either in maintaining low coverage or in increasing coverage.

Incremental Lifting To show the effectiveness of incremental lifting, we conducted an

experiment with bzip2 as illustrated in Figure 3.5. We first lifted the binary with SPEC

training inputs, which is the origin point of the graph. Then, we ran the lifted binary with

reference inputs and incrementally lifted code to support each new input. The callouts

on Figure 3.5 indicate when each additional input became functional in the recovered bi-

nary. Each triangle represents one cycle through the lifting frontend, and each cycle took

approximately 140 seconds.

51

Number of Unique Inputs

In
st

ru
ct

io
n

Co
ve

ra
ge

00%

20%

40%

60%

80%

1 2 3 4 5 6 7 8 9

Figure 3.4: Coverage with respect to the original binaries. The input set is the ref workload

of SPEC CPU2006.

3.5.4 Lifting Time

BinRec’s ability to robustly lift binaries without relying on heuristics comes at the cost

of lifting time. As a dynamic lifting tool, BinRec’s lifting time depends on the execution

time of its input programs. Table 3.2 shows BinRec’s lifting times for each input binary.

In order to show the worst case lifting time, we used a SPEC reference input—which fully

excercises loop iterations—for lifting. The lifting could be much faster with an optimized

trace input which is designed to reach more paths and minimize loop counts, but such an

optimization would not reflect real world workloads. Since the current prototype of BinRec

uses S2E [29] as its tracing frontend, we also present the time to execute those workloads

without instrumentation in S2E. The lifting time of static lifting toolchains, such as McSema,

52

liberty.jpg
succeeds

chicken.jpg
succeeds

input.source
succeeds

input.program
succeeds

text.html
succeeds

Figure 3.5: Incremental lifting progression of bzip2.

does not depend on the input, and is in general faster than our dynamic approach. We present

the lifting time which we collected with McSema here for comparision.

Binary lifting is a one-time, offline process and thus it does not affect performance of actual

binary execution. If fast lifting times were in fact desired, it could be accomplished using

a faster tracing frontend such as Pin, KVM-enabled QEMU, or native execution with a

hardware control-flow tracing feature (e.g., Intel PT). In that case, however, we may miss

the flexibility of disassembly in S2E, and its ability to explore multiple code paths through

concolic execution.

53

Table 3.2: Time in seconds to capture LLVM IR from input binaries with BinRec and
McSema toolchains, alongside execution time for S2E without BinRec instrumentation.
For BinRec and S2E we report the maximum time among the reference workloads from
SPEC CPU2006.

BinRec S2E McSema
Benchmark O0 O3 O0 O3 O0 O3
400.perlbench 425 619 321 078 62 482 49 221 3 375 3 385
401.bzip2 86 181 69 389 27 614 18 311 117 122
403.gcc 37 276 28 468 6 156 4 929 6 996 7 378
429.mcf 283 413 227 999 209 914 197 910 11 8
445.gobmk 84 214 72 307 15 496 8 721 1 332 1 063
456.hmmer 179 127 144 529 87 911 28 159 204 189
458.sjeng 727 675 548 432 95 936 86 153 294 368
462.libquantum 421 269 176 536 – 49 334 21 16
464.h264ref 86 433 65 202 31 012 15 233 336 586
471.omnetpp – 312 665 – 105 015 258 224
473.astar 211 782 119 436 80 613 66 201 22 18
483.xalancbmk – – – – 74 948 17 103
geomean 178 480 138 379 44 810 35 021 371 320

3.6 Applications

One of the main goals of our approach is to enable complex transformations on real-world

program binaries. Since our approach can lift binaries to a compiler-level IR and supports dy-

namic linking, this enables us to make use of a large ecosystem of off-the-shelf compiler-based

transformations and analysis tools. In addition to compiler transformations, existing, black

box binary utilities such as readelf or LD PRELOAD remain usable on recovered binaries. In

this section, we showcase some applications that demonstrate this ability: deobfuscation,

AddressSanitizer and SafeStack through compiler transformations, and control-flow hijack-

ing mitigation. Developers who are familiar with these transformations do not need any

knowledge of binary analysis to use them within our framework. While we only provide

54

a limited set of example applications in this section, we note that our approach reliably

enables—for the first time—a large number of interesting, feature-rich program analyses and

transformations through extensive compiler-based tooling for binary programs.

Table 3.3: Number of allowed targets for indirect branches/calls in SPEC CPU2006 binaries
lifted by BinRec, compared to the number statically found by BinCFI [111].

O0 O3

BinRec CFI BinCFI BinRec CFI BinCFI

Benchmark Median IQR Max Median IQR Max

400.perlbench 5 7.5 176 2,101 4 7 176 1,916

401.bzip2 3 0 22 151 3 0 22 117

403.gcc 4 3 212 6,593 3 3 212 5,407

429.mcf 3 1 7 68 3 0 7 66

445.gobmk 3 0 492 2,780 3 0 492 2,590

456.hmmer 3 0 8 671 3 0 7 620

458.sjeng 4.5 3 12 223 5.5 3.3 12 215

462.libquantum 3 0 2 177 3 0 5 161

464.h264ref 3 0 10 686 3 0 10 617

471.omnetpp 3 4 168 3,167 3 1.3 168 2,482

473.astar 3 0 3 213 3 0 4 139

483.xalancbmk 3 4 38 35,106 4 3 38 15,950
IQR: inter-quartile range

3.6.1 Control-flow Hijacking Mitigation

Even without additional compiler-based transformations, our approach has an endogenous

ability to mitigate memory-corruption vulnerabilities in the original program. A recovered

program emulates the execution of the original program. Because of the emulation, what

was control flow in the original program becomes data flow in the recovered program. Our

technique does not natively mitigate data-only attacks [57], though they may be mitigated

using additional transformation on the IR.

55

(2)

log(VPC)

(1) (3)

...
... ...

...
... ...

...
... ...

A

B

C

(4) (5)

A

B

C

...
... ...

Figure 3.6: Our deobfuscation approach. (1) We lift the binary using symbolic execution or
high-coverage inputs. (2) We identify the lifted interpreter loop and instrument it to log the
virtual program counter (VPC) at the entry. (3) The instrumented binary is exercised for
all uncovered code paths, yielding a control-flow graph of VPC nodes. (4) The interpreter
loop is copied into each VPC node. (5) Standard optimizations eliminate non-taken paths
in each VPC node.

A control-flow hijacking attack typically subverts control flow by overwriting a code pointer.

This pointer could be used by an indirect jump, indirect call, or return instruction. When

tracing indirect control flow in the original program within BinRec, we observe actual control

flow targets. The recovered program then contains switch statements where cases are jumps

to these observed targets. The value of the instruction pointer (%rip) in the original program

is emulated by the recovered program, and it is used as the index into the switch statement.

The switch statements are lowered into assembly consisting of trees of compare and direct

jump instructions, so no new attack surface is introduced by this dispatch mechanism. This

is functionally equivalent to what is commonly known as context-insensitive control-flow

integrity on forward and backward edges [19].

Consider an original binary with a vulnerable stack buffer overflow using an unsanitized

strcpy call, that can be used to overwrite a return address. In the recovered program, that

buffer is located in a @memory array which emulates the memory of the original program. The

strcpy call will proceed in the same way in the recovered program, allowing the attacker

to overwrite the emulated return address of the vulnerable function. The original return

56

instruction is emulated using a switch statement, loading an attacker-provided value via the

emulated register @RIP. If the target is not one of the traced return sites of the vulnerable

function, the error case of the switch statement will abort execution. Otherwise, execution

will proceed in the style of a control-flow bending attack [24], since the target address

represents a valid execution under context-sensitive (but not path-sensitive) analysis of the

original program. If optimization is applied to the recovered binary and the error case is

deleted from this switch statement, one of the observed return targets of the vulnerable

function will be chosen in a compiler-specified manner. In this case, an attacker aware of

BinRec could still perform control-flow bending. However, any attempt to hijack control flow

via writing code pointers (vtable overwrite, indirect code pointer write via heap overflow,

etc.) is mitigated.

To evaluate the security properties of the resulting solution, we measured the number of

allowed targets across all the recovered edges. Though our approach also protects returns,

we only present forward edges in Table 3.5 for easier comparison with other approaches.

Our results show that our approach can enforce a median number of around 3 indirect

callees on a nontrivial fraction of the target programs. The table also shows these results for

binCFI [111], a static binary-level CFI solution. Because it can not statically predict valid

branch targets with precision, binCFI’s policy must allow transfers to any address-taken

function, increasing the number of allowed branch targets by orders of magnitude when

compared to our approach.

3.6.2 Virtualization-deobfuscation

We used BinRec to lift programs obfuscated by virtualization (cf., Section 3.2.5). Figure 3.6

illustrates our deobfuscation approach. For this use case, we detect the Virtual Program

Counter (VPC) and virtual interpreter loop through known techniques [89]. We instrument

57

the recovered IR to log the value of the VPC at the entry point of the interpreter loop, then

produce a binary. We exercise the instrumented binary to obtain a graph of VPC nodes. We

create a new program from this graph by copying the body of the virtual interperter loop

into the VPC nodes. After applying standard compiler optimizations (most notably constant

propagation and dead code elimination), only one virtual opcode handler remains for each

duplicated interpreter. The result is a program with the semantics and static structure of

the original program; the virtualiztion obfuscation has been removed.

To evaluate our deobfuscation approach, we implemented a virtualizer that supports a set of

bytecode instructions. We then created a source-to-source virtualization-obfuscated version

of two simple programs: eq checks if two arguments match, and fib computes the n-th

Fibonacci number. Table 3.4 shows how deobfuscation affects the size of the recovered code.

We attain a code size close to that of IR recovered from the unobfuscated binary. Fig-

ure 3.7 depicts the fib program, showing its control flow graph obfuscation and subsequent

deobfuscation.

(a) Original (b) Obfuscated (c) Deobfuscated

Figure 3.7: Deobfuscation of the fib program. The control flow graph structure of the
deobfuscated binary matches that of the original bytecode, rather than that of the inter-
preter, which indicates the control flow obfuscation was successfully removed by the analysis
implemented in BinRec.

58

Table 3.4: The number of LLVM instructions: after lifting, after optimization without deob-
fuscation, and after deobfuscation and optimization. The baseline is the number of LLVM
instructions obtained by compiling the unobfuscated program with clang.

Lifted Optimized Deobfuscated Baseline
eq 2,362 152 35 38
fib 3,163 210 63 43

3.6.3 AddressSanitizer

AddressSanitizer (ASan) is a widely deployed bug finding tool that detects spatial and tem-

poral memory errors [87]. It consists of an LLVM instrumentation pass and a run-time

monitor. The ASan instrumentation pass identifies and registers memory allocations, and

inserts checks for memory accesses. For recovered binaries, all memory reads and writes

are identified and instrumented automatically using the unmodified ASan instrumentation

pass. Heap allocations (e.g., malloc or new) are recorded in the BinRec lifting frontend and

rewritten in the recovered IR, making them visible to ASan. We leave the identification of

stack and global allocations for future work as the problem is currently unsolved for bina-

ries. While ASan has been applied to binaries recently [44], we note that this required a

re-implementation of both the analysis and instrumentation passes—a substantial disadvan-

tage in maintainability compared to our approach. Our recovered IR enables the use of ASan

to detect spatial and temporal heap access violations. We used two test programs containing

(1) a heap use-after-free error and (2) an out-of-bounds write and lifted both test programs

in BinRec before applying ASan, successfully discovering these errors.

3.6.4 SafeStack

SafeStack is a compiler-based transformation pass that separates sensitive data, such as re-

turn addresses, and potentially insecure data, such as large application buffers, into separate

stacks [61]. If memory isolation features such as x86 segmentation or Intel Memory Protec-

59

tion Keys are available, they are used to isolate the two stacks. If hardware features are

unavailable, SafeStack leverages ASLR to hide the safe stack, requiring attackers to bypass

ASLR in order to corrupt sensitive data.

By default, our approach generates programs which contain two stacks with SafeStack-like

security properties. The native stack contains sensitive data such as register spills and return

addresses, as well as any new instrumentation and library code frames. The emulated stack,

which contains the stack data of the original binary, resides at an ASLR-randomized location.

We were additionally able to apply SafeStack’s transformations to recovered programs with-

out requiring any modifications to its analysis or transformation passes, since our approach

lifts programs to well-formed LLVM IR. After the SafeStack transformation, recovered pro-

grams therefore contain three stack-like memory regions. The native stack contains library

frames and newly added safe variables. The emulated stack, at an ASLR-randomized offset,

emulates the original binary stack. A third stack in a separate x86 memory segment contains

new, potentially insecure buffers. We do not identify stack variables within the original bi-

nary, which impedes the transformation’s ability to move unsafe buffers from the emulated

stack to the third, segmented stack (see Section 4.2).

3.6.5 Attack Surface Reduction

As a software program evolves over time, developers often introduce additional features

to address various user expectations and to improve compatibility with other software or

hardware. Many of these additional features remain unused by regular users, however,

and security vulnerabilities in them often remain undiscovered for years. In a recent study,

Wagner et al. found that 83% of security vulnerabilities that were assigned a CVE number in

2014 laid in “cold code” [101]. To discover bugs lurking in cold code, one current practice is to

insert sanity checks into a program using dynamic bug detection tools (e.g., sanitizers), and to

60

fuzz the program or run test cases to exercise all parts of the program. As program complexity

grows, these approaches are less suitable for detecting bugs hidden in deep execution paths.

An alternative approach to eliminate latent bugs is to specialize the program for specific

use cases through manual feature pruning [64], compile-time specialization [60], or link-time

code compaction [25]. Assisted by either static or dynamic analysis to determine which

features are unnecessary for the target use case, these techniques can achieve substantial

reductions of the program’s code size, while also removing the features that are the most

likely to contain security vulnerabilities. The downside of these techniques is that they are

heavily tailored to the kernel, exploiting the fact that the kernel has a small set of easily

recognizable interfaces to external code (i.e., user-space programs, peripheral devices, etc.),

and thousands of preprocessor options to enable or disable features at the source code level.

We propose a more generic approach for attack surface reduction that works for binary

commercial off-the-shelf (COTS) programs. Instead of trying to find vulnerabilities in cold

code, or running coarse-grained analyses to identify unnecessary features and remove them

at compile time, we use fine-grained dynamic profiling to determine with greater precision

which parts of a program’s code are actually used. We then lift these parts of the code

into a compiler intermediate representation (IR) format, and use a mainstream compiler to

compile the IR to a new binary executable.

Although progress is being made at quantifying the attack surface of the kernel [60], we are

not aware of any universally accepted attack surface reduction metrics for user-space code.

We therefore chose to measure the attack surface of the recovered programs by calculating

the fraction of original program instructions that are lifted to IR code, and by comparing

the number of ROP gadgets in the recovered code with the number of gadgets in the original

code. Table 3.5 shows our findings. We evaluated only benchmarks that can be correctly

recovered by BinRec; all input binaries are optimized (O3). Each program binary is lifted

using all reference inputs available in the SPEC CPU 2006 benchmark suite. We then

61

Table 3.5: Attack surface reduction

Benchmark % recovered instructions
ROP gadgets

original # recovered (gmean) % reduction

astar 49.09% 1029 804 21.87%
bzip 55.91% 1070 581.67 45.64%
gobmk 19.70% 20564 4583.6 77.71%
h264ref 21.81% 9035 2315.67 74.37%
hmmer 8.17% 5488 1100 79.96%
libquantum 26.92% 1397 179 48.53%
mcf 57.20% 549 433 21.13%
sjeng 25.84% 2269 1013 55.35%

gmean 28.05% 47.56%

measured geometric means of results from different reference inputs. astar, for example, has

two reference inputs BigRakes2048 and rivers, thereby two recovered binaries were generated

and measured for this benchmark. With our approach, only 28% of the original instructions

are lifted to LLVM IR on average. We measured ROP gadget reduction in the recovered

binaries using a ROP gadget finder tool called Ropper [3]. We found that the recovered

binaries contain 48% fewer ROP gadgets than the original binaries.

62

Chapter 4

Discussion and Future Work

While there are many challenges that Binrec’s design is uniquely able to solve through its

novel, dynamic lifting approach, there are certain problems we encountered that remain

unsolved. In this section, we will explain some of these problems in detail and also lay out

how they could be tackled in the future.

4.1 Lessons Learned

Our framework uses S2E as a front end to have flexibility of driving the execution in a

number of ways. However, collecting traces with S2E is very slow compared to other dynamic

analysis frameworks such as Pin because S2E emulates the full system. On top of emulation,

we generate LLVM IR in the frontend as well and transfer it to the host system. This causes

more slowdown and complexity. If symbolic execution is not desired, using a faster front end

for dynamic analysis and generating IR after the analysis is over would probably increase

our development speed.

Recovered binaries have worse runtime when target binaries are optimized. We observed

63

that there are 2 main reasons for the performance overhead. The first reason is that S2E

generates IR in which floating point instructions are emulated. Inlining the float emulation

functions helps to reduce the performance overhead of floating functions but using a front

end that doesn’t emulate the floating point instructions would be better design choice.

The precision of the analysis performed on the lifted IR can be greatly improved if the global

emulated stack is split into individual stack frames and if the variables in the emulated stack

are promoted to represent the original semantic representation of these variables in the

source of the program. This latter process is termed symbolization of stack variables. In

our framework, we worked on symbolization of stack variables with no heuristics by static

analysis of lifted traces. We explain our approach to symbolization of stack variables, its

limitations in section 4.2 and how we can overcome these limitations by employing dynamic

methods in the future.

4.2 Stack Symbolization with Static Analysis

Programs during execution store their function local variables, register spills, return ad-

dresses and functions arguments in an explicit stack memory region. Semantics of source

code are analyzed by the compiler to produce assembly instructions which access the explicit

stack memory region. While source code refers to local variables and function arguments

with their symbol names, assembly instructions access local variables and function arguments

with their addresses on the stack.

Source BinaryIR

Figure 4.1: Ideal lifting

64

Listing 4.1: Example that illustrates simplified lifted IR in pseudo code.

1
2 int main (){
3 int a = sum(1 , 2) ;
4 return a ;
5 }
6
7 int sum(int a , int b){
8 int c = a + b ;
9 return c ;

10 }
11
12
13 // L i f t e d IR pseudo
14
15 int s tack [STACK SIZE] ;
16 R ESP = &stack [STACK SIZE − 1] ;
17
18 int recovered main (){
19 R ESP = R ESP−3; // a l l o c a t e space f o r 2 args and 1 l o c a l v a r i a b l e
20 R ESP [1] = 2 ; // arg2
21 R ESP [0] = 1 ; // arg1
22 int tmp = recovered sum () ;
23 R ESP [2] = tmp ; // redundant s t o r e f o r i l l u s t r a t i o n
24 return tmp ;
25 }
26
27 int recovered sum (){
28 R ESP−−;
29 R ESP [0] = ∗R EBP; // save base p o i n t e r
30 R EBP = R ESP ;
31 R ESP−−; // a l l o c a t e space f o r c
32 int tmp1 = R EBP [0] ;
33 int tmp2 = R EBP [1] ;
34 int tmp3 = tmp1 + tmp2 ;
35 R ESP = tmp3 ; // s t o r e r e s u l t to c
36 R ESP++; // d e a l l o c a t e c
37 R EBP = R ESP [0] ;
38 R ESP++;
39 return tmp3 ;
40 }

65

To be able to fully apply advanced compiler transformations with the purpose of optimization

and hardening, we need to lift the binaries to IR that is similar to when we generate IR from

source as shown in figure 4.1. In its initial form, however, lifted IR resembles disassembly

of binary as shown in listing 4.1. The lifted code is essentially an emulator for the original

program. The explicit stack of the original program is represented as a global array and

we refer to it as emulated stack in lifted IR. This emulated stack grows and shrinks with

accordance to the execution of the program to represent the behavior of the original explicit

stack.

This causes a number of limitations. One of the limitations is that we cannot change the

layout of the stack. Hardening transformations often require change on the layout of the

stack. For example, stack canaries hardening techniques insert a secret value on stack frames

and checks this value before returning to the caller. If the secret value has changed, the

program aborts to stop a potential attack [4].

Another limitation of having an emulated stack in lifted IR is that it hinders dataflow

analysis. When an instruction accesses the emulated stack with an offset computed at

runtime, the compiler cannot infer which offset the instruction accesses. In that case, all the

disjoint dataflows in the original program interfere in the lifted program as they access this

shared global array which represents the emulated stack region.

If the memory locations in the emulated stack are promoted to represent the original semantic

representation of the variables in the source of the program, compiler analysis and transfor-

mations on the lifted IR can be significantly improved. This process is termed symbolization

of stack variables. In our framework, we worked on symbolization of stack variables with no

heuristics by static analysis of lifted traces. We present our approach to symbolization of

stack variables and its limitations.

One of the challenges we faced is the detection of function arguments in static disassembly.

66

Listing 4.2: Example 4.1 after function argument symbolization

1
2 int s tack [STACK SIZE] ;
3 R ESP = &stack [STACK SIZE − 1] ;
4
5 int recovered main (){
6 R ESP = R ESP−1; // a l l o c a t e space f o r 1 l o c a l v a r i a b l e
7 int tmp = recovered sum (1 , 2) ;
8 R ESP [0] = tmp ; // redundant s t o r e f o r i l l u s t r a t i o n
9 return tmp ;

10 }
11
12 int recovered sum (int a , int b){
13 R ESP−−;
14 R ESP [0] = ∗R EBP; // save base p o i n t e r
15 R EBP = R ESP ;
16 R ESP−−; // a l l o c a t e space f o r c
17 int tmp3 = a + b ;
18 R ESP = tmp3 ; // s t o r e r e s u l t to c
19 R ESP++; // d e a l l o c a t e c
20 R EBP = R ESP [0] ;
21 R ESP++;
22 return tmp3 ;
23 }

Listing 4.3: Challenging example for function argument symbolization.

1
2 void func (int a , int b){
3 int∗ aPtr = n u l l p t r ;
4 aPtr = &a ;
5 . . .
6 temp = b ;
7 . . .
8 }
9

10 func :
11 sub l $32 , %esp // a l l o c 36 b y t e
12 l e a 36(%esp) , 24(%esp) // move &a to aPtr
13 . . .
14 movl 24(%esp) , %edx // move aPtr to %edx
15 movl 4(%edx) , %ecx // move b to %ecx

67

The calling convention of the target architecture determines how the arguments are passed

to functions. In our context, it is the ABI of the target architecture to which the original

program was compiled for. For example, function arguments are passed via the stack memory

on x86 32 platform. In listing 4.1 recovered sum accesses input arguments on line 31 and

32. If we can symbolize these arguments, we can remove them from the emulated stack and

pass them with a function call as shown in listing 4.2.

While it is possible to identify the arguments of functions for simple cases using static

analysis, it is not always possible. Listing 4.3 shows an example code where the first argument

a can be discovered with static analysis, while the second argument b cannot. In the assembly

code of the example, address of a is first stored to local variable 24(%esp) on line 12. After

many instructions, it is also stored to temporary register %edx. In the last instruction, b is

stored to temporary register %ecx. However, through static analysis, reliably resolving that

4(%edx) corresponds argument b is a very challenging problem because some intermediate

computations could modify 4(%edx) on line 13.

The second challenge we faced is resolving stack frame size. If we resolve stack frame sizes,

we can divide the emulated stack in listing 4.3 for each function as illustrated in listing 4.4.

This will allow each function to access a disjoint emulated stack memory region instead of a

shared global emulated stack. Successful implementation of such a solution, we believe, will

improve data-flow and alias analysis. In the example shown, splitting the emulated stack

will yield a stack frame size of 4 bytes for recovered main and 8 bytes for recovered sum.

While it is straightforward to recognize stack size of each function in listing 4.3 with static

analysis, it is not always possible. Especially, when stack pointer is decremented by a value

loaded from memory instead of a program constant. Another such example is when external

library functions use the emulated stack instead of the hardware stack. In this case, external

library functions expand the emulated stack. External library functions use the emulated

stack when the API is unknown or the external library function is a variadic function such

68

Listing 4.4: Example 4.2 after dividing the global emulated stack

1
2 int recovered main (){
3 int s tack [1] ;
4 R ESP1 = &stack [1] ;
5 R ESP1 = R ESP1−1; // a l l o c a t e space f o r 1 l o c a l v a r i a b l e
6 int tmp = recovered sum (1 , 2) ;
7 R ESP1 [0] = tmp ; // redundant s t o r e f o r i l l u s t r a t i o n
8 return tmp ;
9 }

10
11 int recovered sum (int a , int b){
12 int s tack [2] ;
13 R ESP2 = &stack [2] ;
14 R ESP2−−;
15 R ESP2 [0] = ∗R EBP; // save base p o i n t e r
16 R EBP = R ESP2 ;
17 R ESP2−−; // a l l o c a t e space f o r c
18 int tmp3 = a + b ;
19 R ESP2 = tmp3 ; // s t o r e r e s u l t to c
20 R ESP2++; // d e a l l o c a t e c
21 R EBP = R ESP [0] ;
22 R ESP2++;
23 return tmp3 ;
24 }

69

as printf (see 3.4.2). One of the ways we believe we could address this issue is by making

the local stack large enough to have sufficient space for stack frames of the external library

functions. However, this would have a negative effect on runtime of the recovered binary;

the stack space that a function would require is runtime dependent and hard to determine.

Listing 4.5: Example 4.4 after symbolizing stack variables

1
2 int recovered main (){
3 tmp = a l l o c a i32 , 4
4 tmp = recovered sum (1 , 2) ;
5 return tmp ;
6 }
7
8 int recovered sum (int a , int b){
9 tmp = a l l o c a i32 , 4

10 tmp = a + b ;
11 return tmp ;
12 }

The next challenge in symbolization is to determine local variables allocated within each stack

frame. For this we must break the function stack frames into individual memory ranges and

assign each region with a symbol. Then we must replace references to individual memory

ranges with that of the newly created symbols from the previous step. In other words, we

would like to transform listing 4.4 to listing 4.5. While it might be possible to divide the stack

frame into memory ranges, it is impossible to update references to these memory ranges with

symbols in static analysis. Even a single indirect reference would break the static analysis

because as its target in memory cannot be determined statically. Therefore, not all the stack

frames can be symbolized into individual variables with static analysis.

4.3 Future Work

70

In the implementation we built as part of this project and that is evaluated here, we keep

the emulated stack as is. This definitely hinders the compiler optimizations and also security

techniques that we can apply. For stack symbolization and self-modifying code, however,

we outline some ideas for future work to potentially tackle those open problems leveraging

traces.

Generating the most optimal recovered binaries and being able to apply any compiler trans-

formation including the hardening techniques would bring the biggest improvement to our

current approach. This is possible only if we can symbolize the emulated stack. We have

shown that there are a number of challenges we have faced when we tried to symbolize the

emulated stack with static analysis. However, we believe that dynamic analysis has a po-

tential to address some of the limitations of static analysis for the purpose of symbolizing

the emulated stack. For example, given that we were able to break a stack frame into an

array A and a variable i, we can tell if an indirect reference accesses A or i by analysing

memory accesses at runtime. If our solution captured a trace, in which the indirect access

observed in that trace was to A[5], we can safely assume that the indirect access will always

reference to A under the assumption that the program has no memory corruption. However,

this wouldn’t hold if any external sources of state are used in the computation of the indirect

access as shown in listing 4.6

Listing 4.6: Indeterministic code example

1
2 int main (){
3 int A[4] ;
4 int i ;
5
6 int rand = get random number () ;
7 int add a = (unsigned long)A;
8 int add i = (unsigned long)& i ;
9 void ∗ a = (void ∗) ((rand%2)∗add a + ((rand+1)%2)∗ add i) ;

10 ∗ a = 17 ; // A or i ?
11 }

71

Another item we have to leave for future work is self-modifying code. Self-modifying code

rewrites the code at some program counter with new code. In our current implementation,

we keep a cache of the executed basic blocks with their start address as a key to prevent IR

generation for the same code. Therefore, the current implementation does not support self-

modifying code. To support it, we would need to add ‘version labels’ to each start address.

When execution reaches an adress that was visited before, we can assign a new version

number if the code is different from the previous versions. As a result, we can identify basic

blocks using both start address and version number. This would take some additional lifting

time and add more complexity while merging traces into one CFG. We don’t think that this

is a limitation of our approach.

72

Chapter 5

Related Work

5.1 Low-level binary analysis and rewriting

Many projects target the problem of low-level binary analysis and rewriting. PEBIL [62],

UQBT [30] and Uroboros [104] all statically rewrite binary programs either at the machine

code level or using a custom low-level IR. Their main aim is to support the insertion of simple

instrumentation, where efficiency is more important than the ability to perform complex code

transformations (such as altering the CFG). angr [92] supports static and dynamic analysis

techniques, including symbolic execution, but does not target code rewriting (unlike BinRec).

Earlier work such as ATOM [45], PLTO [86], Diablo [81], and Vulcan [95] are powerful tools,

but to our knowledge they do not work well without debug symbols. Also, they typically do

not support a generic compiler-level IR.

Bauman et al. [13] disassemble instructions from every offset of code sections, creating a

superset of all possible disassemblies. They statically rewrite binaries without heuristics

by preserving the superset of disassemblies, such that only the legal part of the rewritten

binary will be executed at run time. However, deferring correct disassembly until runtime

73

adversely affects rewritten binary performance. Yardimci and Franz [108] use a mostly

static approach to automatically vectorize loops in stripped binaries. The approaches of

both Yardimci and Bauman both use an indirect branch table which maps original program

addresses to rewritten program addresses to support indirect control flow. Our approach uses

a similar indirect branch table for external callback support, but it generates more optimal

code because only those callbacks which are actually invoked need branch table entries and

control flow graph entry points in rewritten code.

5.2 Code transformations using dynamic traces

Dynamic instrumentation tools such as PIN [68], Dyninst [17], DynamoRIO [2] and Val-

grind [76] are dynamic binary translation (DBT) tools, providing runtime APIs to analyze

and instrument code at run time. These tools do not support saving the changes to an output

binary with the intent of replacing the original binary. They can have substantial runtime

overhead [77], and require specific assembly-level transformation passes for each application,

whereas our approach leverages existing techniques present in production compilers.

Just-in-time (JIT) compilers such as V8 [48] and SpiderMonkey [73] collect dynamic traces

to determine which code to optimize and to speculate dynamic data types. Sulong [83] is a

frontend for the Graal compiler that effectively creates an LLVM bitcode execution engine.

Similar to our approach, Sulong optimizes LLVM bitcode using dynamic traces and applies

instrumentation such as bounds checks to detect safety violations. However, such source-

level JIT compilation approaches leverage language semantics and thus do not address the

problem of binary lifting or analysis. Instead, they focus on solving a different set of problems

such as how to optimize dynamic type checks or when to trigger different tiers of execution.

74

5.3 Binary code lifting

LLBT [90, 91] statically retargets binaries to different ISAs after lifting them to LLVM IR.

McSema [43], Dagger [15], Rev.ng [42] and RevNIC [28] (based on S2E) and SecondWrite [8]

lift machine code for the purpose of high-level static binary translation on LLVM IR.

HQEMU [55] extends QEMU’s back-end to lift code to LLVM IR similarly to S2E, for the

purpose of optimization. It does not decouple lifted code from the QEMU runtime to produce

a standalone executable binary.

5.4 Virtualization-deobfuscation

Current deobfuscation approaches follow two general directions. Rolles [85] and Sharif et

al. [89] assume the presence of an interpreter and (respectively manually or automatically)

identify the virtual program counter variable in memory, using this to find the interpreter

loop and subsequently reconstruct bytecode control flow. Although Sharif et al. show that

this can be done automatically for state-of-the-art obfuscators, even producing a CFG of

uncovered bytecode, semantics of bytecode instructions cannot be determined automatically

by existing work. Rolles assigns semantics by manually analyzing dispatch handlers to

determine the type of implemented instructions.

Coogan et al. [35] and Yadegari et al. [107] instead do not make any assumptions about

the type of obfuscation being used, or even if any obfuscation is used at all. They instead

reason about the semantics of code by looking at observable behaviour: system calls with

which the obfuscated program interacts with the operating system. The general idea is

to apply semantic-preserving transformations on the code in such a way that the resulting

CFG approximates that of the bytecode. Although these approaches have the advantage of

75

including semantics, they suffer from imprecision: the resemblance of the deobfuscated code

to the original program code is only as high as can be approximated from the observable

behaviour.

5.5 Sanitizers

We applied AddressSanitizer that is part of the LLVM compiler framework to recovered

binaries. There are many other sanitizers. MemorySanitizer detects uninitialized reads. It

consists of a compiler instrumentation module and a run-time library. Although we did

not include it in our evaluation, we could apply it to recovered programs as we applied

AddressSanitizer.

UndefinedBehaviorSanitizer(UBSan) [66] detects undefined behaviors. UBSan modifies the

program at compile-time to catch different kinds of undefined behavior during program exe-

cution. Using a misaligned or null pointer, signed integer overflow, and conversion between

floating-point types that would overflow the destination are some of the undefined behaviors

UBSan can catch.

ThreadSanitizer is another llvm tool that detects data races, deadlocks, and misuses of

thread synchronization primitives (e.g., pthread mutexes) in multi-threaded programs by

instrumenting memory accesses and atomic operations. deadlocks, and misuses of thread

synchronization primitives in multi-threaded programs [88]. However, our current approach

doesn’t handle multi-threaded programs. Therefore it is not applicable to recovered binaries.

There are also number of sanitizers that detect type confusion bugs in C++ programs by

detecting downcasts of a base class pointer into an illegally derived class pointer. Some of

these type confusion sanitizers are CaVer [63], TypeSan [51], and HexType [58]. Since our

current technique doesn’t symbolize the stack and has no type info for memory locations,

76

these sanitizers are not applicable to recovered binaries.

5.6 Control Data Attack Mitigations

Control data defenses are powerful at stopping code reuse attacks. Broadly they can be

categorized into randomization and enforcement based defenses. Randomization based ap-

proaches provide probabilistic protection against attacks by randomizing low level details of

a program, while enforcement mechanisms enforce a security policy.

Control flow integrity (CFI) is one of the examples of enforcement based mitigation proposed

by Abadi et al. in 2005 [6]. We have showed that recovered programs already come with

CFI because of the nature of dynamic lifting. At a high level, CFI restricts the control-flow

of a program to valid execution traces by inserting a check at every indirect control flow

transfer to make sure the target is valid.

Indirect control flow transfers can be divided as ”forward” and ”backward” edges. The

forward edges are indirect calls and jumps. The backward edges are return instructions.

Integrity of the forward edges can be enforced by checking if the target is in the set of

allowed targets. The backward edges must be paired with the most recently called function

and they can be verified by a shadow stack. The shadow stack is used to store valid return

addresses and it is allocated in a protected memory region separate from the program’s run-

time stack. Before a function returns to caller, the return address on program’s runtime stack

is compared with the return address on the shadow stack. Several different techniques have

been proposed to implement the shadow stack and compute the set of allowed targets [20].

There are number of efforts to improve original CFI work. Some of the efforts to improve

CFI include applying CFI using binary rewriting [100, 98], adapt CFI to protect C++ virtual

dispatch [110, 50, 97], integrate CFI with

77

fine-grained randomization [79], and enforce CFI using cryptography [70]. CFI research has

also find adoption in open source community. LLVM and gcc, two of the most popular open

source compilers, include CFI implementations [97].

Another policy similar to CFI is object type integrity (OTI) [21]. While CFI verifies the

targets of indirect control flow, OTI protects object identities. It is proposed to stop attacks

that corrupt virtual table pointers. OTI can stop these attacks by enforcing that the vtable

pointer written to the object in the constructor function matches the one used for dynamic

dispatch.

Code-pointer integrity (CPI) and code-pointer separation (CPS) are another set of policies

that can prevent code reuse attacks [61]. They check the integrity of code pointers in the

program. CPI ensures that all the code pointers including pointers that can be used to reach

a code pointer cannot be modi

ed by an attacker. CPS is less stricter version of CPI to reduce run-time overheads. It only

prevents modifying the code pointers directly and leaves the pointers that may refer to the

other code pointers unprotected.

Randomization based defenses are an alternative to enforcement-based defenses. Randomiza-

tion based defenses add randomness to the low-level details of the program without changing

the semantics of the program. The most widely deployed randomization based defense is

address space layout randomization (ASLR) [78]. When ASLR is enabled, the base address

of different memory regions in the program are chosen randomly every time the program

is loaded on memory. This would shift gadgets in executable code and make their location

unpredictable, therefore, prevent code reuse attacks. However, if a single pointer to a known

memory region gets leaked, attackers can use this information to derandomize entire memory

region.

There are number of techniques to add more fine-grained randomization to the programs.

78

One such technique is random insertion of NOP instructions throughout the program’s

code [54]. Another technique is to randomize the location of every instruction [52]. Just-in-

time compilers can also apply fine-grained randomization techniques [53].

However, attackers can still perform code reuse attack if they can disclose the code loaded on

memory. There have been several solutions proposed to address this weakness. One of the

solutions is Isomeron that provides randomization strategy resilient to code disclosure [38].

Another solution is enforcing execute only memory for code. The memory used to hold

executable code is generally readable and if the read permission is removed, the attacker

cannot leak the code. One of the systems that employs execute only code is Readactor [37].

There have also been efforts to enable execute-only code for legacy binaries [26] and on

systems without memory management units [16].

79

Chapter 6

Conclusion

Programs written in unsafe languages like C and C++ are prone to memory corruption

errors. These memory errors can be exploited by attackers and the attackers can take

complete control of a vulnerable program. Extensive existing research presented many bug

finding techniques and mitigations for programs written in unsafe languages. However, most

of the existing work is for programs for which source code exists. Software is as safe as its

weakest link and in our software ecosystem, we have several components working together.

Some of these components do not have source code available and it is very important to

protect these components as well.

In this dissertation, we presented BinRec, a new solution for binary lifting based on dy-

namic analysis. Our approach lifts a program to compiler-level intermediate code for ease

of analysis, while ensuring that it can still compile the resulting IR. Compared to existing

static analysis-based techniques, our approach can seamlessly handle indirect control flow

transfers, handwritten assembly, and code obfuscation. Our approach tries to overcome the

coverage issue of dynamic analysis by using trace merging and incremental recovery. We

demonstrate the powerful applications made possible by our approach: recovering program

80

semantics of virtualization-obfuscated binaries, attack surface reduction in the recovered bi-

nary, and applying compiler-level optimizations and hardening transformations to stripped

binaries.

81

Bibliography

[1] CodeVirtualizer. https://www.oreans.com/codevirtualizer.php.

[2] DynamoRIO. https://dynamorio.org.

[3] Ropper. https://scoding.de/ropper/.

[4] StackProtector. http://www.llvm.org/doxygen/StackProtector_8h_source.html.

[5] VMProtect. https://vmpsoft.com/.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM Conference on Computer and Communications Security, CCS
’05, page 340–353, New York, NY, USA, 2005. Association for Computing Machinery.

[7] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy bounds checking: An efficient
and backwards-compatible defense against out-of-bounds errors. In 18th USENIX
Security Symposium, SSYM ’09, pages 51–66, Berkeley, CA, USA, 2009. USENIX
Association.

[8] K. Anand, M. Smithson, K. Elwazeer, A. Kotha, J. Gruen, N. Giles, and R. Barua. A
compiler-level intermediate representation based binary analysis and rewriting system.
In Eurosys, 2013.

[9] B. Anckaert, M. Jakubowski, and R. Venkatesan. Proteus: virtualization for diversified
tamper-resistance. In ACM DRM, pages 47–58, 2006.

[10] S. Andersen and V. Abella. Data execution prevention. changes to functionality in
Microsoft Windows XP service pack 2, part 3: Memory protection technologies.
http://support.microsoft.com/kb/875352/EN-US, 2004.

[11] D. Andriesse, X. Chen, V. Van Der Veen, A. Slowinska, and H. Bos. An in-depth
analysis of disassembly on full-scale x86/x64 binaries. In USENIX SEC, 2016.

[12] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient Detection of All Pointer and
Array Access Errors, volume 29. ACM, 1994.

[13] E. Bauman, Z. Lin, and K. W. Hamlen. Superset disassembly: Statically rewriting
x86 binaries without heuristics. In NDSS, 2018.

82

https://www.oreans.com/codevirtualizer.php
https://dynamorio.org
https://scoding.de/ropper/
http://www.llvm.org/doxygen/StackProtector_8h_source.html
https://vmpsoft.com/
http://support.microsoft.com/kb/875352/EN-US

[14] F. Bellard. Qemu, a fast and portable dynamic translator. In USENIX ATC, 2005.

[15] A. Bougacha, G. Aubey, P. Collet, T. Coudray, J. Salwan, and A. de la Vieuville. Dag-
ger: Decompiling to IR. https://llvm.org/devmtg/2013-04/bougacha-slides.

pdf, April 2013.

[16] K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz, and P. Larsen.
Leakage-resilient layout randomization for mobile devices. In NDSS, 2016.

[17] B. Buck and J. K. Hollingsworth. An API for runtime code patching. IJHPCA, 2000.

[18] S. Bucur, V. Ureche, C. Zamfir, and G. Candea. Parallel symbolic execution for auto-
mated real-world software testing. In Proceedings of the Sixth Conference on Computer
Systems, EuroSys ’11, page 183–198, New York, NY, USA, 2011. Association for Com-
puting Machinery.

[19] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer.
Control-flow integrity: Precision, security, and performance. ACM Comput. Surv.,
2017.

[20] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer.
Control-flow integrity: Precision, security, and performance. ACM Comput. Surv.,
50(1), Apr. 2017.

[21] N. Burow, D. McKee, S. A. Carr, and M. Payer. Cfixx: Object type integrity for c++.
In NDSS, 2018.

[22] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI’08, page 209–224,
USA, 2008. USENIX Association.

[23] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In OSDI, 2008.

[24] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow bending:
On the effectiveness of control-flow integrity. In USENIX SEC, 2015.

[25] D. Chanet, B. De Sutter, B. De Bus, L. Van Put, and K. De Bosschere. System-wide
compaction and specialization of the linux kernel. ACM SIGPLAN Notices, 2005.

[26] Y. Chen, D. Zhang, R. Wang, R. Qiao, A. M. Azab, L. Lu, H. Vijayakumar, and
W. Shen. Norax: Enabling execute-only memory for cots binaries on aarch64. In 2017
IEEE Symposium on Security and Privacy (SP), pages 304–319, 2017.

[27] W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige. Tainttrace: Efficient flow tracing with
dynamic binary rewriting. In ISCC, 2006.

[28] V. Chipounov and G. Candea. Reverse engineering of binary device drivers with
RevNIC. In EuroSys, 2010.

83

https://llvm.org/devmtg/2013-04/bougacha-slides.pdf
https://llvm.org/devmtg/2013-04/bougacha-slides.pdf

[29] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: a platform for in-vivo multi-path
analysis of software systems. 2012.

[30] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable binary translation at low cost.
Computer, 2000.

[31] C. Collberg and J. Nagra. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 1st edition,
2009.

[32] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.
Technical report, Department of Computer Science, The University of Auckland, New
Zealand, 1997.

[33] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and stealthy
opaque constructs. In ACM POPL, pages 184–196, 1998.

[34] D. D. I. F. Committee. Dwarf debugging information format version 4.
http://www.dwarfstd.org/doc/DWARF4.pdf.

[35] K. Coogan, G. Lu, and S. Debray. Deobfuscation of virtualization-obfuscated software:
a semantics-based approach. In CCS, 2011.

[36] J. Corbet. User-space page fault handling. https://lwn.net/Articles/636226/,
2015.

[37] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. Sadeghi, S. Brunthaler, and
M. Franz. Readactor: Practical code randomization resilient to memory disclosure. In
2015 IEEE Symposium on Security and Privacy, pages 763–780, 2015.

[38] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and F. Monrose. Isomeron: Code
randomization resilient to (just-in-time) return-oriented programming. In NDSS, 2015.

[39] B. De Sutter, B. De Bus, and K. De Bosschere. Link-time binary rewriting techniques
for program compaction. ACM TOPLAS, 2005.

[40] S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In POPL,
1998.

[41] A. Di Federico and G. Agosta. A jump-target identification method for multi-
architecture static binary translation. In 2016 International Conference on Compliers,
Architectures, and Sythesis of Embedded Systems (CASES), pages 1–10. IEEE, 2016.

[42] A. Di Federico, M. Payer, and G. Agosta. Rev.Ng: A unified binary analysis framework
to recover CFGs and function boundaries. In Proceedings of the 26th International
Conference on Compiler Construction, CC 2017, pages 131–141, New York, NY, USA,
2017. ACM.

[43] A. Dinaburg and A. Ruef. McSema: Static translation of x86 instructions to LLVM.
In ReCon 2014 Conference, Montreal, Canada, 2014.

84

http://www.dwarfstd.org/doc/DWARF4.pdf
https://lwn.net/Articles/636226/

[44] S. Dinesh, N. Burow, D. Xu, and M. Payer. Retrowrite: Statically instrumenting cots
binaries for fuzzing and sanitization. In S&P, 2020.

[45] A. Eustace and A. Srivastava. ATOM: A flexible interface for building high perfor-
mance program analysis tools. In USENIX TCON, 1995.

[46] P. Godefroid, N. Klarlund, and K. Sen. Dart: Directed automated random testing. In
Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’05, page 213–223, New York, NY, USA, 2005. Association
for Computing Machinery.

[47] P. Godefroid, M. Levin, and D. Molnar. Automated whitebox fuzz testing. In NDSS,
2008.

[48] Google. V8. https://v8.dev.

[49] A. Gussoni, A. D. Federico, P. Fezzardi, and G. Agosta. Performance, correctness,
exceptions: Pick three. In Binary Analysis Research Workshop, 2019.

[50] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos. Shrinkwrap:
Vtable protection without loose ends. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, page 341–350, New York, NY, USA,
2015. Association for Computing Machinery.

[51] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van der Kouwe.
TypeSan: Practical type confusion detection. In 23rd ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, pages 517–528, New York, NY,
USA, 2016. ACM.

[52] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. Ilr: Where’d my
gadgets go? In 2012 IEEE Symposium on Security and Privacy, pages 571–585, 2012.

[53] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Librando: transparent code
randomization for just-in-time compilers. In CCS ’13, 2013.

[54] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz. Profile-guided auto-
mated software diversity. In Proceedings of the 2013 IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), pages 1–11, 2013.

[55] D.-Y. Hong, C.-C. Hsu, P.-C. Yew, J.-J. Wu, W.-C. Hsu, P. Liu, C.-M. Wang, and
Y.-C. Chung. Hqemu: A multi-threaded and retargetable dynamic binary translator
on multicores. In CGO, 2012.

[56] R. N. Horspool and N. Marovac. An approach to the problem of detranslation of
computer programs. The Computer Journal, 1980.

[57] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic generation of
data-oriented exploits. In USENIX SEC, 2015.

85

https://v8.dev

[58] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer. Hextype: Efficient detection of
type confusion errors for c++. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 2373–2387. ACM, 2017.

[59] A. Knowledge, L. M. Society, C. Barrett, D. Kroening, and T. Melham. Problem
solving for the 21st century efficient solvers for satisfiability modulo theories.

[60] A. Kurmus, R. Tartler, D. Dorneanu, B. Heinloth, V. Rothberg, A. Ruprecht,
W. Schröder-Preikschat, D. Lohmann, and R. Kapitza. Attack surface metrics and
automated compile-time OS kernel tailoring. In NDSS, 2013.

[61] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-pointer
integrity. In OSDI, 2014.

[62] M. A. Laurenzano, M. M. Tikir, L. Carrington, and A. Snavely. Pebil: Efficient static
binary instrumentation for linux. In ISPASS, 2010.

[63] B. Lee, C. Song, T. Kim, and W. Lee. Type casting verification: Stopping an emerging
attack vector. In 24th USENIX Security Symposium, SSYM ’15, pages 81–96, Austin,
TX, 2015. USENIX Association.

[64] C.-T. Lee, J.-M. Lin, Z.-W. Hong, and W.-T. Lee. An application-oriented linux kernel
customization for embedded systems. J. Inf. Sci. Eng., 2004.

[65] C. Linn and S. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In ACM CCS, pages 290–299, 2003.

[66] LLVM Developers. Undefined behavior sanitizer.
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html, 2017.

[67] K. Lu, M.-T. Walter, D. Pfaff, S. Nürnberger, W. Lee, and M. Backes. Unleashing use-
before-initialization vulnerabilities in the linux kernel using targeted stack spraying. In
Proceedings of the 2017 Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2017.

[68] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[69] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: Cryptographically
enforced control flow integrity. In CCS, 2015.

[70] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: Cryptographically
enforced control flow integrity. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, CCS ’15, page 941–951, New York, NY,
USA, 2015. Association for Computing Machinery.

[71] A. Milburn, H. Bos, and C. Giuffrida. SafeInit: Comprehensive and practical mitigation
of uninitialized read vulnerabilities. In Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS)(San Diego, CA, 2017.

86

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

[72] A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution paths for malware
analysis. In 2007 IEEE Symposium on Security and Privacy (SP ’07), 2007.

[73] Mozilla. Spidermonkey. https://ftp.mozilla.org/pub/spidermonkey/

prereleases/60/pre3, 2018.

[74] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: Highly compat-
ible and complete spatial memory safety for c. In 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’09, pages 245–258, New
York, NY, USA, 2009. ACM.

[75] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. Cets: Compiler enforced
temporal safety for c. In 2010 International Symposium on Memory Management,
ISMM ’10, pages 31–40, New York, NY, USA, 2010. ACM.

[76] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic binary
instrumentation. In PLDI, 2007.

[77] M. Panchenko, R. Auler, B. Nell, and G. Ottoni. Bolt: a practical binary optimizer
for data centers and beyond. In CGO, 2019.

[78] PaX. Address space layout randomization (ASLR).
https://pax.grsecurity.net/docs/aslr.txt, 2003.

[79] PaX. Microsoft equation editor.
https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.

html, 2018.

[80] M. Prasad and T.-c. Chiueh. A binary rewriting defense against stack based buffer
overflow attacks. In USENIX ATC, 2003.

[81] L. V. Put, D. Chanet, B. D. Bus, B. D. Sutter, and K. D. Bosschere. Diablo: a reliable,
retargetable and extensible link-time rewriting framework. In ISSPIT, 2005.

[82] C. Qian, H. Hu, M. A. Alharthi, P. H. Chung, T. Kim, and W. Lee. RAZOR: A
framework for post-deployment software debloating. In USENIX SEC, 2019.

[83] M. Rigger, R. Schatz, R. Mayrhofer, M. Grimmer, and H. Mossenbock. Sulong, and
thanks for all the bugs: Finding errors in c programs by abstracting from the native
execution model. In ASPLOS, 2018.

[84] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented programming:
Systems, languages, and applications. 15, 2012.

[85] R. Rolles. Unpacking virtualization obfuscators. In WOOT, 2009.

[86] B. Schwarz, S. Debray, G. Andrews, and M. Legendre. PLTO: A link-time optimizer
for the intel ia-32 architecture. In WBT, 2001.

87

https://ftp.mozilla.org/pub/spidermonkey/prereleases/60/pre3
https://ftp.mozilla.org/pub/spidermonkey/prereleases/60/pre3
https://pax.grsecurity.net/docs/aslr.txt
https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.html
https://blog.0patch.com/2017/11/did-microsoft-just-manually-patch-their.html

[87] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Addresssanitizer: A fast
address sanity checker. In USENIX ATC, 2012.

[88] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer: Data race detection in practice.
In 2009 Workshop on Binary Instrumentation and Applications, WBIA’09, pages 62–
71, New York, NY, 2009. ACM.

[89] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Automatic reverse engineering of malware
emulators. In S&P, 2009.

[90] B.-Y. Shen, J.-Y. Chen, W.-C. Hsu, and W. Yang. LLBT: an LLVM-based static
binary translator. In CASES, 2012.

[91] B.-Y. Shen, W.-C. Hsu, and W. Yang. A retargetable static binary translator for the
ARM architecture. TACO, 2014.

[92] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino, A. Dutcher, J. Grosen,
S. Feng, C. Hauser, C. Kruegel, and G. Vigna. SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis. In S&P, 2016.

[93] M. S. Simpson and R. K. Barua. MemSafe: Ensuring the spatial and temporal memory
safety of c at runtime. Software: Practice and Experience, 43(1):93–128, 2013.

[94] A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for reverse
engineering data structures. In NDSS, 2011.

[95] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a distributed
environment. Technical report, Microsoft Research, 2001.

[96] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok: Eternal war in memory. In 2013
IEEE Symposium on Security and Privacy, pages 48–62, 2013.

[97] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson, L. Lozano, and
G. Pike. Enforcing forward-edge control-flow integrity in gcc & llvm. In Proceedings
of the 23rd USENIX Conference on Security Symposium, SEC’14, page 941–955, USA,
2014. USENIX Association.

[98] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos,
and C. Giuffrida. Practical context-sensitive cfi. In CCS, 2015.

[99] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos. Memory errors: The
past, the present, and the future. In D. Balzarotti, S. J. Stolfo, and M. Cova, editors,
Research in Attacks, Intrusions, and Defenses, pages 86–106, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[100] V. van der Veen, E. Goktas, M. Contag, A. Pawlowski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In S&P, 2016.

88

[101] J. Wagner, V. Kuznetsov, G. Candea, and J. Kinder. High system-code security with
low overhead. In 2015 IEEE Symposium on Security and Privacy, pages 866–879.
IEEE, 2015.

[102] C. Wang, J. Davidson, J. Hill, and J. Knight. Protection of software-based survivability
mechanisms. In IEEE/IFIP DSN, pages 193–202, 2001.

[103] R. Wang, Y. Shoshitaishvili, A. Bianchi, A. Machiry, J. Grosen, P. Grosen, C. Kruegel,
and G. Vigna. Ramblr: Making reassembly great again. In NDSS, 2017.

[104] S. Wang, P. Wang, and D. Wu. Reassembleable disassembling. In USENIX SEC, 2015.

[105] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, 2012.

[106] Z. Wu, S. Gianvecchio, M. Xie, and H. Wang. Mimimorphism: A new approach to
binary code obfuscation. In CCS, 2010.

[107] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray. A generic approach to
automatic deobfuscation of executable code. In S&P, 2015.

[108] E. Yardimci and M. Franz. Mostly static program partitioning of binary executables.
In ACM TOPLAS, 2009.

[109] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim. QSYM : A practical concolic execution
engine tailored for hybrid fuzzing. In USENIX SEC, 2018.

[110] C. Zhang, S. A. Carr, Y. Ding, and D. Song. Dr af t vtrust : Regaining trust on virtual
calls. 2015.

[111] M. Zhang and R. Sekar. Control Flow Integrity for COTS Binaries. In USENIX SEC,
2013.

89

Appendix A

Stack Unwinding Optimization

A.1 Musl libc’s setjmp and longjmp Implementation

for x86 32

90

Listing A.1: Source of setjmp.s

1
2 . g l o b a l s e t jm p
3 . hidden s e t jm p
4 . g l o b a l s e t jmp
5 . g l o b a l set jmp
6 . g l o b a l setjmp
7 . type set jmp , @function
8 . type setjmp , @function
9 . type setjmp , @function

10 s e t jm p :
11 se t jmp :
12 set jmp :
13 setjmp :
14 mov 4(%esp) , %eax
15 mov %ebx , (%eax)
16 mov %es i , 4(%eax)
17 mov %edi , 8(%eax)
18 mov %ebp , 12(%eax)
19 l e a 4(%esp) , %ecx
20 mov %ecx , 16(%eax)
21 mov (%esp) , %ecx
22 mov %ecx , 20(%eax)
23 xor %eax , %eax
24 r e t

91

Listing A.2: Source of Binrec’s setjmp

1
2 void a t t r i b u t e ((a l w a y s i n l i n e)) non l ib se t jmp (){
3
4 addr t re taddr = ldl mmu (R ESP , 0) ;
5 R ESP += s izeof (s tackword t) ;
6
7 r e g t ∗ r e s p = (r e g t ∗)R ESP ;
8 unsigned long ∗buf = (unsigned long ∗)∗ r e s p ;
9 buf [0] = R EBX;

10 buf [1] = R ESI ;
11 buf [2] = R EDI ;
12 buf [3] = R EBP;
13 buf [4] = R ESP ;
14 buf [5] = retaddr ;
15 R EAX = 0 ;
16 PC = retaddr ;
17 }

Listing A.3: Source of longjmp.s

1
2 . g l o b a l longjmp
3 . g l o b a l longjmp
4 . type longjmp , @function
5 . type longjmp , @function
6 longjmp :
7 longjmp :
8 mov 4(%esp) ,%edx
9 mov 8(%esp) ,% eax

10 t e s t %eax ,%eax
11 jnz 1 f
12 inc %eax
13 1 :
14 mov (%edx) ,%ebx
15 mov 4(%edx) ,% e s i
16 mov 8(%edx) ,% ed i
17 mov 12(%edx) ,%ebp
18 mov 16(%edx) ,% ecx
19 mov %ecx ,%esp
20 mov 20(%edx) ,% ecx
21 jmp ∗%ecx

92

Listing A.4: Source of Binrec’s longjmp

1
2 void a t t r i b u t e ((a l w a y s i n l i n e)) nonl ib longjmp (){
3
4 R ESP += s izeof (s tackword t) ;
5 // g e t f i r s t param (b u f f e r)
6 r e g t ∗ r e s p = (r e g t ∗)R ESP ;
7 unsigned long ∗buf = (unsigned long ∗)∗ r e s p ;
8 // g e t second param (r e t v a l f o r set jmp)
9 R ESP += s izeof (s tackword t) ;

10 r e s p = (r e g t ∗)R ESP ;
11 R EAX = ∗ r e s p ;
12
13 i f (!R EAX)
14 R EAX++;
15 R EBX = buf [0] ;
16 R ESI = buf [1] ;
17 R EDI = buf [2] ;
18 R EBP = buf [3] ;
19 R ESP = buf [4] ;
20 PC = buf [5] ;
21 }

93

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Overview
	Contributions

	Background
	The x86 Instruction Set Architecture
	Stripped Binaries
	Memory Corruption
	Dynamic Linking Structures
	Static vs Dynamic Disassembly
	Static Disassembly
	Dynamic Disassembly

	Execution Driving Methods
	Symbolic Execution
	Concolic Execution
	Selective Symbolic Execution with S2E

	BinRec
	Introduction
	Current Limitations in Binary Lifting
	C1 Code vs Data, and Reference Ambiguity
	C2 Indirect Control Flow
	C3 External Entry Points
	C4 Ill-formed code
	C5 Obfuscation

	Design
	Key Considerations for Dynamic Lifting
	Dynamic Lifting Engine
	Canonicalization
	Lowering
	Control Flow Miss Handling

	Implementation
	Parallel Tracing
	Library Calls
	Optimization

	Evaluation
	Comparison with static lifters
	Performance
	Code Coverage
	Lifting Time

	Applications
	Control-flow Hijacking Mitigation
	Virtualization-deobfuscation
	AddressSanitizer
	SafeStack
	Attack Surface Reduction

	Discussion and Future Work
	Lessons Learned
	Stack Symbolization with Static Analysis
	Future Work

	Related Work
	Low-level binary analysis and rewriting
	Code transformations using dynamic traces
	Binary code lifting
	Virtualization-deobfuscation
	Sanitizers
	Control Data Attack Mitigations

	Conclusion
	Bibliography
	Appendix Stack Unwinding Optimization
	Musl libc’s setjmp and longjmp Implementation for x86_32

