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Abstract This paper proposes a damage detection method based on the geometrical variation 
of transient trajectories in phase-space, and the proposed methodology is compatible with non-
stationary excitations (e.g., earthquake-induced ground motion). The work presented assumes 
zero-mean non-stationary excitation, and extends the random decrement technique to convert 
non-stationary response signals of the structure into free-vibration data. Transient trajectories 
of the structure are reconstructed via the embedding theorem from the converted free-vibration 
data, and trajectories are mapped successively into phase-space to enhance statistical analysis. 
Based upon the characterized system dynamics in terms of phase-space, the time prediction 
error is adopted as the damage index. To identify the presence and severity of damage in a 
statistically rigorous way, receiver operating characteristic curves and the Bhattacharyya 
distance are employed. The results from both numerical simulations and experiments validate 
the proposed framework, when the test structures are subject to non-stationary excitations. The 
extension achieved in this paper enables the phase-space damage detection approach to be 
compatible with non-stationary scenarios, such as traffic, wind, and earthquake loadings. 
Moreover, the results indicate that this phase-state-based method is able to identify damage-
induced nonlinearity in response, which is an intrinsic characteristic associated with most 
structural damage types. 

Keywords: structural health monitoring, phase-space, non-stationary excitation, random 
decrement technique, nonlinear damage 

 
1 Introduction 

Vibration-based damage detection techniques are widely applied to prevent structural 
catastrophes, optimize maintenance schedules, minimize retrofit costs, and extend remaining 
useful lives. Numerous nondestructive testing approaches such as ultrasonic interrogation, X-
ray radiography, eddy current, and thermal imaging have been developed and utilized for the 
past decades. However, the aforementioned techniques are primarily local detection approaches 
and impractical, even impossible, to implement for inaccessible components or large-sized 
structures [1-3]. As an alternative, vibration-based structure health monitoring (SHM), which 



has flourished in recent years, provides an effective and reliable approach for identifying 
globally-observant (“performance level”) damage in aerospace, mechanical, and civil structures. 

One major category of processing vibration-based SHM testing measurements algorithm 
is driven by data analytics, in which damage features are directly extracted from the measured 
structural responses [4]. In such data-driven modeling, prior assumptions on physics-based 
modeling and intensive forward computation of their subsequent model evaluations are 
bypassed, which makes them enjoy broader applicability in SHM [5]. Recent successful 
examples include autoregressive, autoregressive/moving average, wavelet, Hilbert–Huang 
transform, and network-based data modeling methods [4]. 

In recent years, a novel data-driven damage detection method, rooted in reconstructing the 
system’s phase-space, has been proposed based on characterizing geometric variation of steady-
state dynamics [6-9]. Under deterministic (and originally, chaotic) excitation, the attractor is 
reconstructed from observed steady-state structural responses according to the principles of 
embedology, and then relevant damage features are extracted from topology changes of the 
attractor between the baseline and test conditions, which are formally compared under 
hypothesis testing. It has been reported that the damage detection resolution of this method is 
of an order-of-magnitude higher than several conventional data driven model-based methods 
[10]. Moreover, the phase-space methodology is able to identify damage-induced nonlinearity, 
which is an intrinsic characteristic associated with many damage types such as bolt loosening 
and breathing cracks [11]. 

One issue critical to this phase-space-based method is the application of chaotic excitation 
(for sufficient phase/frequency diversity in response) to extract damage features from the 
steady-state response. This is sometimes impractical or implausible for complex, spatially-
extended structures with large dimension and complexity, such as high-rise buildings and 
aerospace vehicles. Although Nichols et al., Overbey et al., and Gang et al. have shown that 
phase-space embedding may be employed practically for structural damage detection even with 
stationary stochastic excitations [12-15], most ambient excitations encountered in the real world 
are non-stationary in nature, e.g., traffic loading, fluctuating wind loading, and seismic waves. 
Therefore, it is desirable to develop an applicable phase-state-based approach for non-stationary 
excitations.  

Considering the fact that transient trajectories reconstructed from the free response of a 
structure conveys damage-induced information, a new method is proposed to detect damage 
under non-stationary excitations. In lots of the realistic applications, the non-stationarities fall 
into a weak form, i.e. the higher order statistics are time-dependent but the mean stays constant. 
For instance, the ambient excitations from earthquake, wind, traffic, etc. are all feasibly 
modeled as constant (zero) mean series in numerous literatures. This work extends the 
traditional random decrement technique, for free decay responses with stationary excitations, 
to the scenarios with non-stationary structural responses, by assuming zero-mean non-
stationary excitations. Multiple reconstructed trajectories from free decay responses are 
overlapped in order to enhance the data points for a statistical analysis. The time prediction 
algorithm is employed to extract the damage feature from transient trajectories obtained from 
the baseline and testing conditions. The receiver operating characteristic (ROC) curve and the 
Bhattacharyya distance are adopted as statistical tools to identify the presence and severity of 
the damage. To validate the proposed flow, a 3-degree-of-freedom numerical model with both 



linear and nonlinear damages is introduced, as well as an experimental test-bed with bolt-
loosening damage. Excited by non-stationary time series, both the linear and nonlinear damages 
can be detected in the numerical verification example. For the experimental test-bed, the 
nonlinear damages induced by loosened bolts are also identified successfully. The rest of this 
article is organized as this: section 2 introduces the traditional random decrement technique and 
extents it to non-stationary excitation, section 3 proposes the novel damage detection method 
using transient trajectories, section 4 and section 5 explore a numerical and experimental 
example to verify the proposed method respectively, and section 6 gives the conclusion. 
 
2 Extended random decrement technique 
2.1 Random decrement technique 

The original random decrement (RD) technique was introduced by Henry Cole in the early 
1970s for estimating damping in aerospace structures [16]. Generally, given initial 
displacement, velocity, and random excitation, the “randomdec” signatures of the system can 
be extracted from the measured response x(t) using RD function δ(p) estimated as [17]: 

,             (1) 

where A is the “initial condition” value assumed by x(t) at time tk, p is the forward time window 
comprising the response range x(tk:tk+p) initiated from time tk, and N is the number of such p-
windows. The implement of the RD function is straightforward and demonstrated in Figure 1. 

 
 (a)                         (b)                      (c) 

Figure 1. Procedure of RD technique for (a) original response (b) RD after several averages, 
and (c) RD after sufficient number of averages 
 

Using Eq. (1), the randomdec signature of linear structures is composed of two parts. The 
first part contributing the randomdec signature is the transient part, which is determined by 
initial conditions. Since all sections begin with the same initial condition A, the transient part 
obtained from the RD technique is the free decay response of the system. On the other hand, 
the second part is the “steady state” part (the particular solution) dependent upon the random 
excitations. With sufficient averaging, the random part will vanish, leading to only the transient 
free decay response in the randomdec signature. Therefore, the randomdec signature under 
stationary excitation is of the same form with the free decay response of the system. 
2.2 Extended random decrement technique 

In theory, the aforementioned RD technique requires stationary excitation; however, most 
ambient excitation is non-stationary in nature. So it is necessary to extend the RD technique to 
non-stationary processes, which is more general for mechanical and civil structures. 
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Considering a multi-degree-of-freedom linear system subjected to zero-mean non-stationary 
excitation f(t), the equation of motion can be expressed as, 

                   
,                           (2) 

where M, C and K are the mass, damping and stiffness matrix respectively, x is the displacement 
response, and  and  are the time derivatives for different orders, i.e. velocity and 
acceleration. According to the dynamics for linear structures, the displacement response at the 
i-th degree-of-freedom can be defined as, 

                    ,                            (3) 

where denotes the value of the r-th modal vector at the i-th degree, m is the modal order 
and describes the r-th modal displacement. Substituting Eq. (3) into Eq. (1), the RD 
function can be rewritten as  

,   (4) 

where subscript ref denotes the reference degree-of-freedom. According to dynamics of 
structures, the r-th model displacement is the addition of two parts,  

                     

,                         (5) 

where 

,       (6) 

and ξr , ωr and ωDr are the r-th modal damping ratio, natural frequency and damping frequency 
respectively. Yr(0) and �̇�r(0) are the initial modal displacement and velocity for the r-th model 
respectively. gr(t-τ) denotes the unit impulse response function of the linear structure system. 
Because the unit impulse response function attenuates, it is assumed that the “influence time” 
of this function is limited, thus Yr2(t) can be rewritten as,  

         

,            (7) 

where q describes the length of the unit impulse response function. Substituting t with tk+p in 
Eq. (5) and Eq.(6), there is 

,  (8) 

where 

. 

The Appendix provides the detailed calculation of randomdec signal F(p) of non-
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stationary excitation and the corresponding statistical properties. Substituting the calculated F(p) 
and Eqs. (5-8) into Eq. (4), the RD function can be expressed as, 

     ,
         

(9) 

where 

 

From Eq. (9), if the system is subjected to non-stationary excitation with zero mean, the 
random decrement signature of system response includes two terms. The first term is only 
relative to the initial modal displacement and velocity of the linear system, which is equivalent 
to the free decay responses of the system. The second term in Eq. (9) depends on the external 
excitation. According to the detailed derivation and discussion given in Appendix, the mean of 
F(p) is zero and the variance of F(p) converges to zero quadraticly as the superimposed time N 
increases; thus the second term should be close to 0 or negligible as noise in engineering 
practice. So the randomdec signatures of a system subjected to non-stationary excitation are of 
the same form as free vibration decay of the structure. Therefore, the original RD technique is 
extended to deal with non-stationary excitation, which is called extended random decrement 
technique (ERD) in this paper.  

Based on the superposition principle, application of the ERD technique requires the 
assumption of structural system linearity. However, the random decrement technique has been 
successfully employed to nonlinear systems by several studies, such as estimation modal 
parameters for the nonlinear roll motion equation [18] and damage detection for nonlinear 
dynamic systems [19]. Consequently, ERD technique can be reasonably extended to extract 
free decay response for nonlinear structures.  
 

3 Damage identification method 
3.1 Trajectories reconstruction 

A d-dimension dynamic system may be described by the first-order ordinary differential 
equation, 

                   ,                        (10) 

where  is the state vector and  is a generic/nonlinear function of the state variables and 
time t, and describes the first-order derivative of state variable with respect to time. 
Regarding each dimension of the state vector as an independent coordinate, the state vector, as 
a function of time, forms trajectories in the phase state. It is usually impractical to measure all 
the state variables during experiments, but according to the embedding theorems proposed by 
Takens [20], the qualitative trajectory can be reconstructed from a single measured variable. 
That is to say, the single measured time series are copied n times in an appropriately delayed 
fashion, in order to represent the n coordinates of the reconstructed trajectory. Hence, each 
discrete time instance of the trajectory at time l can be expressed as 
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          ,              (11) 

where T is the time lag (delay) and n is named embedding dimension. The geometric shape of 
the trajectory depends on embedding parameters T and n. If the lag is selected too small, such 
as T = 0, the reconstructed trajectory will be identical to each other, so that there is no redundant 
information. However, for overly long lags, the resulting trajectory will become temporally 
unrelated, and thus the underlying dynamics of the trajectory will be destroyed. While there is 
no single optimal lag, one strongly-motivated choice may be obtained in accordance with 
choosing a minimum in the average mutual information (AMI) function[21], which indicates 
there is little statistical redundancy in the time series at that corresponding lag. The common 
criterion is to select the value T when the AMI function reaches its first minimum. 

Moreover, improper choice of the embedding dimension n may also lead to a poor 
reconstruction. When the dimension is chosen too small, the trajectory may intersect itself, 
while large n will result in computational burdens (the “curse of dimensionality”) and possibly 
embedding external randomness, i.e, non-causal dynamical response. A frequently used 
algorithm for optimal choice of n is the false nearest neighbors (FNN) approach [22], in which 
the trajectory is embedded in n=1 dimensions, the nearest neighbors to each point in the 
trajectory are determined. Then the trajectory is successively embedded in higher and higher n 
values while the percentage of false projections of the nearest neighbors is calculated. The 
percentage of false nearest neighbors should decline to zero or at least a very small value if the 
trajectory is considered fully unfolded. Thus, the dimension corresponding to the first zero 
percentage of FNN is chosen as the optimal (minimal) embedding dimension. 
3.2 The damage feature and damage detection metric 

Under chaotic excitation, the trajectory of a dynamic system will asymptotically migrate 
toward the steady-state condition (i.e., the attractor), which is a deterministic object. Therefore, 
the trajectory can be utilized to identify damages. Similarly, since the signal from ERD 
technique asymptotically decreases from initial condition toward zero along specific trajectory, 
the transient trajectory is a deterministic process and may be utilized as a candidate feature for 
damage detection. 

Using the reconstructed transient trajectory, statistically averaged features may be 
developed to capture the spatial or temporal evolution of points on the baseline trajectory as a 
predictor for how points will evolve on a testing trajectory. Since the baseline and testing 
trajectory are both decayed from the initial condition to nearly zero, they can be viewed as 
measurement synchronization, thus the time prediction strategy is utilized in this work [9]. For 
time prediction algorithm, two fiducial points  and  at the same time index t are 
randomly selected from baseline trajectory  and test trajectory  respectively. And then 
the nearest geometrically corresponding neighborhoods are acquired for each fiducial point, 
giving 

        
,                  (12) 

where h denotes a Theiler window, the subscript nnf refers to the nearest neighbors, z denotes 
 or , and Q is the number of neighbors. In order to minimize artificial near-time 

correlations, the Theiler window is used to separate the neighbors whose time index qj to s is 
closer than h steps. Parameter h usually is a function of the time lag and h = 2T is adopted in 
this study. 
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Next, each neighbor set is time-incremented L time steps (time prediction horizon) in the 
future and the time prediction error is quantified by the Euclidean distance between the centroid 
of time-evolved neighbor set on these two trajectories: 

              
,                  (13) 

where TPEs is the point-wise time prediction error for a given fiducial point. A schematic of 
time prediction algorithm is illustrated in Figure 2. 

 

  (a)                                    (b) 
Figure 2.Time prediction strategy for (a) baseline trajectory X (b) testing trajectory Y 
Then, a set of fiducial points are randomly selected, and their TPEs are computed. Because 

the distribution of the TPE, a random variable, is usually unknown, the bootstrap technique is 
adopted to resample the TPE, resulting in a time prediction error mean (TPEM) [23]. According 
to central limit theorem, the distribution of TPEM is reasonably assumed to be normal due to 
the averaging, and TPEM is used as the damage feature in this study. 

The transient trajectory is reconstructed from the structural free decay response, thus it 
approaches the origin within a few recurrences in the phase state. Correspondingly, if there are 
insufficient neighbors for statistical analysis, or the radius for searching neighbors is too large 
to explore the local dynamics, the damages cannot be identified accurately. An overlapping 
strategy is adopted to overcome this limitation. The structural response is divided into k 
segments with the same length. After a free decaying vibration corresponding to one segment 
is calculated by the ERD technique, it will be reconstructed into the same phase state 
overlapping with the other k-1 trajectories.  

The number of fiducial points  and the number of neighbors Q depend on the total 
number of points in the phase–state, if damage features are extracted from steady-state 
trajectory. However, in this study, the trajectories are transient, thus  and Q no longer obey 
this rule. Instead,  should be related to the number of points on the trajectory before 
overlapping, due to the similarity of those overlapped trajectories from the same initial 
condition, and the number of neighbors Q should depend on the number of the trajectories. 
Without losing generality,  is arbitrarily set to be half of the number of points on the 
trajectory in this work, and Q is set to be half of the number of trajectories k. A parametric study 
is carried out later in this paper. 
 With transient trajectories reconstructed, prediction errors from both baseline and testing 
conditions are available as two clusters. With the distributions described probabilistically, the 
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area under the receiver operating characteristic curves (AUC) and the Bhattacharyya distance 
(BD) are introduced to detect the presence and magnitude of damages in a statistically 
significant sense. The ROC curve is a visualization depicting the true positive rate (as vertical 
axis) against the false positive rate (as horizontal axis) for all possible classifications. The ROC 
curve with high true positive rate and low false positive rate, will locate at upper right corner 
in the figure. Hence, when the area under ROC curve approaches 1, perfect classification is 
achieved, and when its value is 0.5, classification performance is equivalent to a random guess 
[14]. 

The BD is a statistical distance measured defined as [24] 

         
,                  (14) 

where u and s correspond to the means and standard deviations of TPEM for baseline and 
testing (damaged) conditions. The subscripts h and d represent the baseline and damaged 
condition respectively. If the value of and are the same, the second term becomes zero, 
and the BD reduces to the conventional definition of Fisher exponent or deflection coefficient. 
Compared to traditional statistical distance measures, the BD better encodes the separation of 
distributions under different damage scenarios; if the damage primarily causes change of 
variances instead of a mean shift, the BD evaluation is dominated by the second term, which 
cannot be represented in the conventional Fisher distance. The procedure of the proposed 
method is plotted in Figure 3.  

As damage level progressively increases, the TPEM distributions will correspondingly 
deviate along one side apart from the distribution of the baseline. But due to the uncertainty of 
ambient excitation, damage does not move the TPEM distribution monotonically when the 
structure is in a low-level damage condition. In order to reduce the uncertainty, if the TPEM 
distribution locates at the opposite side, the AUC is set to be 0.5 and BD is set to be 0.001 
artificially, indicating the classification result is vague and there is no detectable damage 
affecting the global performance. 

 
Figure 3. The procedure of the proposed method 

4 Numerical simulations 
4.1 Computational model set-up 

A 3-DOF simulated spring-mass system subject to ambient excitation, as shown in Figure 
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4, is adopted to validate the proposed method, in which all the structural responses are available 
analytically.  

 
Figure 4. 3-DOF spring mass system 

The mass and stiffness are set to be mi=1kg and ki =2.0×104N/m respectively for all i=1,2,3. 
Rayleigh damping is adopted building matrix C which is proportional damping model to the 
mass matrix M and stiffness matrix K, i.e., C=αM +βK. Assuming the damping ratios for the 
first and third modes of the system are both 0.02, leading to the damping coefficients α=2.0189 
and β=1.259×10-4. 

According to the assumption that the non-stationary excitation f(t) is the product of white 
noise e(t) and an envelope function h(t), as shown in the Appendix. Two types of non-stationary 
excitations are discussed in this paper. The first one selected is an amplitude modulation (AM) 
signal, whose envelope function is designed as 

 
,                    (15) 

where τ denotes time delay, a and b are parameters for the AM function e-at-e-bt and these two 
stochastic parameters vary in the intervals [0.005,0.015] and [0.015,0.025] respectively. The 
second type of excitation is AM and frequency modulation (FM) signal, which the envelop 
function is designed as 

 
,      (16) 

where  describes the FM function, in which  is bounded in [0.05,0.1] and ω0 is 
bounded in [15π,25π], since most of the natural non-stationary excitation is low frequency, such 
as seismic waves. The input force f(t) to the system is applied on the right hand side of the 
structure. 

 
(a)                                 (b) 

Figure 5. Non-stationary excitation and corresponding power spectrum for (a) AM signal (b) 
AMFM signal 

 
To consider both linear and nonlinear damages, the spring element k2 is tuned in two ways: 
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linear stiffness degradation and nonlinear change to the stiffness governed by 

         
,       (17) 

where superscript d represents damage, and are linear and nonlinear damage severity 
coefficient respectively,  and are the displacement at mass 1 and 2. All damage scenarios 
are listed in Table 1. 

Table 1. Simulation damage scenarios 
Damage cases Case0 Case1 Case2 Case3 Case4 Case5 Case6 

 0 1% 3% 5% 10% 15% 20% 
 0.00 0.05 0.10 0.25 0.50 0.75 1.00 

 
When only linear damage condition is considered, the nonlinear coefficient is set to be 

0 at all damage cases. Simulations are conducted using Newmark’s direct integration method, 
with a 0.01-second time step. Displacement responses at all three masses are calculated, each 
of which consists 505,000 points and is recorded at a 400 Hz sampling rate. The segment of the 
first 5000 points is abandoned, and the rest of the time series are divided into 10 segments, with 
50,000 points each. Prior to RD technique analysis, each segment is normalized to zero mean 
and unit standard deviation in order to remove the global signal-to-noise variability and/or 
excitation amplitude fluctuation. 
4.2 Damage detection results 

First, linear damage cases are implemented. For random decrement technique, the trigger 
value A is set to be 1.5  since it is the optimal value for A according to reference [25], and 
length T is selected as 1 000. After the RD signals from baseline are obtained, AMI and FNN 
functions are utilized to estimate the optimal embedding lag and dimension. Since the general 
trend of AMI and FNN functions from all segments are similar, the AMI and FNN values from 
a sample segment are plotted in Figure 6. AMI reaches the first minimum at lag T=10 for all 
three DOFs, so the appropriate lag is set to be 10. The percentage of FNN function declines 
rapidly and firstly approaches zero at M=4, indicating the signal contains most of information 
in the first few dimensions. 

  
(a)                                 (b) 

Figure 6. Embedding parameters using displacement response for (a) AMI (b) FNN 
 

Ten trajectories are reconstructed under the same damage scenario using the optimal 
embedding parameters and overlapped into one phase state. The time prediction error algorithm 
and bootstrap technique are implemented to compute the distribution of TPEM. Results of this 
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computation for sensor 1 and sensor 3 are illustrated in Figure 7. It is observed that the 
distributions shift to the right when there is damage. With more severe damage, the damaged 
distribution moves farther apart from the baseline (baseline and case 0 both indicate the 
undamaged condition). Moreover, there is not only mean shift of these distributions, but also 
the variance change, thus the variance should be considered in the statistical metric for 
discriminating damages, as proposed in Eq. (14). 

  
(a)                                 (b) 

Figure 7. Distribution of TPEM for (a) Sensor 1 (b) Sensor 3 
 

Figure 8 depicted the two statistical metrics, namely AUC and BD. From Figure 8-(a), 
even with 1% of stiffness loss (case 1), the AUCs for all sensors are very close to 1, indicating 
the proposed method is sensitive and applicable for early damage warning, which is critical for 
condition-based maintenance scheduling. Figure 8-(b) shows that BD will increase as damage 
level increases, thus the comparative severity can be inferred from BD plots. The absolute 
magnitude of damage could be calibrated and identified via a supervised learning procedure, 
but this procedure is beyond the scope of this study. 

 
(a)                                 (b) 

Figure 8. Statistical metrics under linear damage for (a) AUCs (b) BDs 
The results from linear damage cases motivate sufficiently to extend the methodology to 

nonlinear damage cases. To consider the variability caused by nonlinear damage, the procedure 
depicted in Figure 3 is repeated for 50 times with different stochastic excitations, the mean 
values along with the 10th and 90th percentiles of the two metrics are shown in Figure 9, where 
the mean is located at the intersection between dot line and error bar at each damage case, and 
the 10th and 90th percentiles are marked with short horizontal line at the end of error bars. 
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Under low level damages, e.g. case 1 and 2, the range of error bars for AUC expanses widely. 
This trend is related to the uncertainty caused by nonlinear damage, which can be viewed as 
noise at some extent; thus the percentiles of AUCs spread widely when the damage severity is 
small. However, the interval between 10th and 90th percentiles decreases rapidly as damage 
severity increases, for example, from damage case 3 to 6 (5% stiffness loss in spring k2 in case 
3), the 10th and 90th percentiles almost the same and mean of the AUCs for all sensors approach 
1, indicating there is little false positive for detecting the presence of damage in these damage 
cases. Similarly, the interval of the percentiles of BDs will constrict as damage level deteriorates, 
the mean of BDs will increase, and thus the damage severity can be identified. 

  
  (a)                                    (b) 

Figure 9. Error bar of nonlinear damage under AM excitation for (a) AUCs (b) BDs 
 

The same procedure is repeated for AMFM excitation and error bars for AUCs and BDs 
are shown in Figure 10. Although the 10 percentage and 90 percentage of AUCs and BDs for 
all sensors fluctuate heavier comparing to AM excitation, the average of these two metrics 
increases monotonically as damage severity increase, indicating that the present and severity of 
damage under AMFM excitation can be nicely identified. 

 

  (a)                                    (b) 
Figure 10. Error bar of nonlinear damage under AMFM excitation for (a) AUCs (b) BDs 

 
4.3 Effect of noise 

To validate the proposed method in a more rigorous test, the AM time history 
measurements under linear damage are artificially contaminated by different levels of white 
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noise (uncorrelated with the input), and then BDs are calculated for sensor 1 and 3 for the sake 
of brevity. The results clearly indicate the deterioration of damage identification performance 
with increasing levels of noise, especially when loss of stiffness is below 5% (case 1 to case 3). 
However, at relatively high damage severity, e.g. above 10%, the BDs under different noise 
level just vary around the noise-free value, indicating that the damage-induced change 
dominates the detection rather than noise. However, the detection capability saturates when the 
damage is severe, because the damage induced nonlinearity causes significant variance that 
dominates the BD compared to the mean shift, and thus growing damages (shifting of mean) 
may not increase BD as it used to. Nonetheless, for small damages, the results demonstrate a 
monotonically increasing BD, even with moderate amount of noise contamination, indicating 
the capability of severity evaluation. 

 
(a)                                 (b) 

Figure 11. BDs under different noise level for (a) sensor 1 (b) sensor 3 
 

5 Experimental verification 
5.1 Test description  

Theoretically, the ERD technique can only applied to deal with linear signals/damages, but 
it has been successfully extended for nonlinear systems by previous researches[17, 18], and 
promising results have obtained from the numerical simulation early in this paper. Capabilities 
of identifying nonlinear damages of the proposed method are further investigated using a more 
complex and realistic structure. A four-story and one-bay plane steel frame is used as a damage 
detection test-bed shown in Figure 12. The size of components is 350×65×4mm and 
components are connected via steel angle brackets using two bolts. The base is a 12mm thick 
steel plate in order to separate the unmeasured excitations. A shaker is connected to the structure 
by a stinger connected to the column at the first floor. A commercial input signal deviser and 
conditioner by Spectrum company are used to send the AMFM waveform, which is designed 
according to Eq.(16), to the shaker. Damage is introduced by removing bolts at the connection 
A as shown in Figure 12. The damage scenarios are listed in Table 4. Four ICP accelerometers 
are deployed at the joint between the column and the beam. The nominal sensitivity of each 
accelerometer is 100mVg−1. 505 000 data points are measured for each accelerometer under 
each case with 500Hz sampling rate. The segment of first 5 000 points is abandoned, and the 
rest of the time series are divided into 10 segments, with 50 000 points each. Prior to ERD 
technique analysis, each segment is normalized to zero mean and unit standard deviation in 



order to remove the global signal-to-noise variability and/or excitation amplitude fluctuation. 

       
  (a)                              (b) 

Figure 12. Description of the four-story test-bed structure: (a) sketch (b) photo 
 

Table 4. Three damage cases 
Damage case 0 1 2 3 

Description Baseline 
One bolt 
loosened 

The second 
bolt 

finger tight 

Two bolts 
loosened 

 
5.2Damage detection results 

The data measured from healthy condition need to be split into baseline and reference to 
get BD and AUC value when the system is under healthy condition. To that end, the 20 recorded 
acceleration segments under healthy condition are divided into baseline and reference data sets, 
each set with 10 segments.  

The RD technique is adopted, in which the trigger value A and length Pare chosen as 1.5
 and 1 000 respectively, and then the transient trajectories are reconstructed and plotted in 

an overlapped fashion. Figure 13 illustrates the RD signals and corresponding trajectory 
construction at sensor 4. It shows that the overlapped trajectories are a width-limited stripe 
evolving from the initial conditions to zero. 

 
(a)                                 (b) 

Figure 13. RD technique and trajectories under AMFM excitation (a) RD signals (b) phase 
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state diagram 
 

The probability density functions of TPEMs, which are showed in Figure 14, are acquired 
using time prediction error algorithm. As can be seen in these graphs, larger deviation from 
healthy scenario in general indicates larger damage, and both the mean and variance of the 
random variable vary as damage amplitude increase, therefore BD in Eq. (6) is adopted in an 
effort to statistically discriminate the amount of deviation. 

  
(a)                                 (b) 

Figure 14. Distribution of the prediction error mean for (a) Sensor 2 (b) Sensor 4 
 

The AUCs and BDs for the reconstructed phase state are plotted in Figure 15. Even in 
damage case 1, only the value of AUC for sensor 1 and sensor 2 under 0.8, all other values are 
1, indicating that the damage present can be detected to some extent. Furthermore, the BDs will 
increase as the damage level increase. This implies that the damage severity can be identified 
successfully. 

 
(a)                                 (b) 

Figure 15. Statistic metrics for (a) AUCs (b) BDs 
 
6 Conclusion 

A transient phase-state-based damage detection method under non-stationary ambient 
excitation is introduced in this study. The method is based on the fact that the transient 
trajectories, reconstructed from free decay response with non-stationary excitation, would 
explore variation in structural dynamics caused by damages, just like the attractor embedded 
from the steady-state response under deterministic excitation. The random decrement technique 
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is extended to extract the free decay response from the non-stationary response, and trajectories 
reconstructed from different data segments are overlapped into the phase space in order to have 
sufficient realizations for statistical analysis. Time prediction error algorithm is employed to 
obtain the damage feature and then the area under ROC curve and the Bhattacharyya distance 
are utilized as statistical metrics to identify presence and severity of the damage respectively. 

A 3-DOF mass spring numerical system and a lab-scale structure with different nonlinear 
damage magnitude are utilized to validate the damage identification performance of the 
proposed method. Results from the computational system show that the presence and severity 
of damages are accurately identified. Although noise degrades the accuracy, compelling results 
are obtained as damage level increases. Results from the experiment indicate that the proposed 
method can be extended for nonlinear damage identification as well.  
The transient phase space based method shows promising performance of damage identification 
and further study will be focused upon in-situ factors influence analysis, including real 
operational and environmental uncertainties.  
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Appendix 

In order to extend the RD technique for non-stationary excitation, the statistical 
characteristics of the non-stationary excitation need to be considered. According to the 
evolutionary spectrum theory[26], the non-stationary ambient excitation f may be viewed as non-
stationary white noise in the form of a convolution model. In other words, the white noise e is 
filtered by a time-vary linear system, 

            
,                       (a.1) 

where he(tk,τ) is the impulse response function of the linear system with time delay τ , p denotes 
the maximum time delay step and tk represents the k-th time point using interval sampling 
strategy. 

Due to the statistical independence of the white noise e, the mean and variance of the non-
stationary ambient excitation f can be written respectively as 

    
,             (a.2) 

where σe denotes the variance of the white noise.  
If the excitation f is divided into N segments with length p, all segments are averaged as 

                ,                          (a.3) 
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where the subscript l is the starting time step of the l-th segments. Considering the Eq. (a.2) 
and Eq. (a.3), the mean of the averaged F(p) can be deduced as  

        .               (a.4) 

Eq. (a.4) shows that the mean of F(p) for the non-stationary ambient excitation is zero. And via 
the same procedure, the variance of the signature F(p) can be obtained as 

,  (a.5) 

where 

               
.                 (a.6) 

Substituting Eq. (a.1) into Eq. (a.6), 

         
.             (a.7) 

Substituting Eq. (a.7) into Eq. (a.5), the variance of signature F(p) can be expressed as, 

.   (a.8) 

From Eq. (a.8), we know that the variance depends on the impulse response function, 
that is, the variance rests with the type of the non-stationary ambient excitation. 
(1) White noise amplitude excitation 

If the excitation can be modeled as white noise amplitude signal, which is a product of 
white noise with a time-independent function satisfying the following conditions, 

         ,                     (a.9) 

where W(tl) is the modulation function. Substituting Eq.(a.9) into Eq.(a.8), there is 

            
.                     (a.10) 

(2) The correlation amplitude excitation 
When the impulse response function he(tl,τ) is time-variant, the non-stationary excitation, 

called the correlation amplitude signal, will vary with time, such as the vehicle loadings, seismic 
waves and fluctuating wind excitation. Assuming that the period between tl and tl+1 in Eq. (a.3) 
is much greater than the decay period of the impulse response function, i.e., 

               
.                 (a.11) 

Note the second term in Eq.(a.8) is much smaller than the first term under aforementioned 
assumption. Therefore, Eq. (a.8) can be rewritten as: 
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The preceding results indicate that the mean of the non-stationary excitation is zero and 
the variance of randomdec signal will decrease quadratic with the superimposed times N, given 
that the non-stationary excitation can be represented by a product of white noise with an 
envelope function. 
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