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A SEMI-SUPERVISED HEAT KERNEL PAGERANK MBO
ALGORITHM FOR DATA CLASSIFICATION∗

EKATERINA MERKURJEV† , ANDREA L. BERTOZZI‡ , AND FAN CHUNG§

Abstract. We present an accurate and efficient graph-based algorithm for semi-supervised classi-
fication that is motivated by recent successful threshold dynamics approaches and derived using heat
kernel pagerank. Two different techniques are proposed to compute the pagerank, one of which pro-
ceeds by simulating random walks of bounded length. The algorithm produces accurate results even
when the number of labeled nodes is very small, and avoids computationally expensive linear algebra
routines. Moreover, the accuracy of the procedure is comparable with or better than that of state-
of-the-art methods and is demonstrated on benchmark data sets. In addition to the main algorithm,
a simple novel procedure that uses heat kernel pagerank directly as a classifier is outlined. We also
provide detailed analysis, including information about the time complexity, of all proposed methods.

Keywords. heat kernel pagerank; graphs; graph Laplacian; threshold dynamics; random walk.
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1. Introduction

Classification is an important problem in machine learning and computer vision.
The goal is to partition a data set efficiently and accurately into a number of classes.
This task occurs in numerous applications, such as medical or genomics data, spam
detection, face recognition and financial predictions. In this paper, we present a very
accurate and efficient semi-supervised algorithm for data classification, named heat
kernel pagerank MBO, formulated in a graphical setting and derived using heat kernel
pagerank. This procedure is simple, performs well even for a very small number of
labeled nodes, and its time complexity is linear in the number of nodes of the data set
in the case of sparse graphs. The task can be done in O(rnK) operations in the worst
case for dense graphs, for a fixed number of classes m, where r is the number of random
walks, n is the size of the data set and K is the maximum number of steps of each
random walk. The heat kernel pagerank MBO method also avoids computationally
expensive linear algebra routines. Moreover, in this paper, in addition to the main
algorithm, we also derive a simple method that uses heat kernel pagerank directly as
a classifier. To the best of our knowledge, this is the first application of heat kernel
pagerank to semi-supervised data classification.

We approach the classification problem via the use of heat kernel pagerank, one of
the many versions of pagerank [34]. The original pagerank [61], was designed by Google
in the 1990’s to rank the importance of websites in search engine results. However, partly
due to its generality and simplicity, it was later applied to many other tasks in a variety
of fields, such as biology and chemistry [34]. Overall, two particular uses comprise the
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majority of the applications of pagerank. First, pagerank measures the “significance”
of each node in relation to the whole graph (i.e. in [46]); in other words, pagerank
produces a ranking of the vertices. Second, it is often used for local graph clustering
to find a cluster around a particular point (i.e. in [23]). In this paper, we apply heat
kernel pagerank to semi-supervised data classification, using recent threshold dynamics
approaches such as [31] and [56] for the motivation. In the latter work, extended to
the multiclass case in the former paper, the authors propose a threshold dynamics
data segmentation scheme, building upon the graph Ginzburg-Landau functional that
is provably close to the graph cut measure of a partition [5], and is closely related to
total variation through gamma convergence. Total variation has had a major impact in
low-dimensional image processing in Euclidean space [12–14,64] and its graphical cousin
has been studied in machine learning and network science through quantities such as
the Cheeger cut, Ratio cut, and modularity optimization [39,54].

Using heat kernel pagerank provides several advantages. It can be computed very
efficiently by two approaches, described in Section 4, one of which consists of simulating
random walks of bounded length. The techniques avoid potentially computationally
expensive linear algebra routines, such as the calculation of eigenvalues and eigenvectors
of large matrices. These calculations are present in [31] and [56].

Embedding the data in a graphical setting, which is the framework used in this
paper, provides several advantages. First, the setting also affords the flexibility to
incorporate diverse types of data sets, i.e. set of images, hyperspectral data, text data,
etc. Moreover, it provides a way to analyze data whose different clusters are not linearly
separable. The setting also allows procedures to exploit non-local information and take
into account the relationship between any two nodes in the data set. In the case of
image processing, this allows one to capture repetitive structure and texture [56].

The methods we formulate are semi-supervised, where a set of known labelings,
called the fidelity set, is to be provided a priori. One advantage of our main algorithm
is that it is accurate even in the case of a very small number of labeled points. In fact,
for several data sets, we obtain good accuracies even when the fidelity set is comprised
of less than 0.5% of all the nodes.

We note that the number of classes needs to be specified for our algorithm. In the
case when the number of desired clusters is unknown, several strategies can be applied.
One strategy is to first approximate the number. The elbow method [44] plots the
percentage of variance against the number of clusters to locate the “elbow criterion”,
which is then set to be the desired number of clusters. Another approach is X-means
clustering [62], which proceeds similarly to k-means clustering and repeatedly alternates
between subdividing clusters and proceeding with the best split. Once a certain stopping
criterion is reached, the result will possess the desired number of clusters.

We mention a few recent papers on modularity optimization in the case when the
number of clusters is unknown. The work [39] by Hu et al. interprets modularity
optimization from a very new perspective as a minimization problem involving the total
variation functional. In addition, Boyd et al. in [6] explore a similar connection between
modularity and total variation. Moreover, [40] considers the multi-class segmentation
problem using the piecewise constant Mumford-Shah model in a graph setting, and
solves it very efficiently.

1.1. Main contributions and results. The main contributions of the paper
are the following:

• We introduce a very accurate and efficient graph-based algorithm for semi-
supervised learning (SSL) data classification, called heat kernel pagerank MBO,
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that uses heat kernel pagerank for the main steps.

• In addition to the main algorithm, we outline a simple semi-supervised learning
method that uses heat kernel pagerank directly as a classifier.

• This is the first application of heat kernel pagerank to semi-supervised data
classification, to the best of our knowledge.

• All proposed methods avoid potentially computationally expensive linear al-
gebra routines; for example, the calculation of eigenvalues and eigenvectors of
large matrices.

• We provide a detailed analysis of our algorithms, including its time complexity.
The time complexity in the case of a sparse graph is linear in the number of
nodes in the data set. For a dense graph, the random walk approach requires
O(rnK) operations in the worst case, for fixed number of classes m, where r is
the number of random walks, n is the size of the data set, and K is the bound
on the number of steps of each random walk.

• Analysis and experiments show that the algorithms handle the cases of both
sparse and dense graphs very efficiently.

• The semi-supervised heat kernel pagerank MBO algorithm performs very well
even when the number of labeled nodes is very small. For example, for the
MNIST data set, even when only 0.43% points are associated with a known
class, the procedure is still able to classify around 94.46% of the nodes correctly!
When 1.32% points are associated with a known class, the accuracy reaches
97.44%.

• We describe two different approaches for computing heat kernel pagerank, one
of them is more suited to the case of sparse graphs, the second- to the case of
dense graphs.

• We validate our methods by performing experiments using benchmark data
sets. It produces accuracy better than or comparable with that of the state-of-
the-art.

The paper is organized as follows: Section 2 provides some background on the
graphical framework and heat kernel pagerank, and Section 3 presents a model using
heat kernel pagerank directly as a classifier. Section 4 formulates the new algorithm
as well as provides details on computing heat kernel pagerank, and Section 5 provides
some detailed analysis on the algorithms presented in the paper and gives information
on the time complexity of the procedures. Section 6 presents experimental results on
benchmark data sets, and Section 7 concludes the paper.

1.2. Previous work. The problem of classification involves exploiting the
similarities and the structure of the data to properly cluster the set into several groups.
Our procedure uses the graphical framework, involving a set of vertices and edges with
weights assigned on the edges, as a simple and clear way to obtain the underlying
similarities in a data set.

The graphical setting has been often used in the literature for that purpose: for
example, [3, 16, 72, 74–76] consider graphs for their methods. The framework has been
especially useful in image processing applications [7, 27–29, 35–37, 41, 50, 52, 65]. Spe-
cific applications include the image denoising method of Buades [10] and that of El-
moataz [29], which incorporates generalizations of the graph Laplacian for the task of
manifold smoothing and image denoising. In addition, methods involving spectral graph
theory [19, 59], based on a graphical setting, are often formulated to solve clustering
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problems.
More recently, the graphical setting has been used as a framework for some opti-

mization tasks. In particular, a popular general minimization problem considered for
machine learning and image processing is

min
u

{
E(u)=R(u)+F (u)

}
,

where R(u) is the regularization functional, F (u) is the fidelity term and u is a function
defined on the space of the data set that describes an appropriate characteristic. The
R(u) term in some sense smoothes the data, and the fidelity term allows one to incor-
porate labeled nodes. With regards to the regularization term, the total variation (TV)
functional has been used very successfully in image processing tasks [15, 33, 73]. Due
to some of its unfavorable properties, [31, 39, 56] use the Ginzburg-Landau functional
as a smooth but arbitrarily close approximation to the TV semi-norm. Our method is
motivated by these algorithms and the work involving heat kernel pagerank [20–23].

Heat kernel pagerank, described in detail in [20], has been applied in several recent
works to a number of tasks. For example, [21] presents a local graph partitioning
algorithm using the pagerank, which, for a subset with Cheeger ratio h, finds local cuts
with Cheeger ratio at most O(

√
h). In [22], the authors describe an algorithm solving

linear systems with boundary conditions using heat kernel pagerank. The method in [23]
is a local clustering algorithm, which uses a novel way of computing the pagerank.
An interesting application is presented in [66], which outlines a method for finding a
consensus value in multi-agent networks. In addition, [24] considers the problem of
computing a local cluster in a graph in the distributed setting using the pagerank.

The classification algorithm presented in the paper is semi-supervised, so that a
small set of labeled data points is provided to the method in advance. Such problems
have been studied in the context of diffuse interfaces; for example, [4] introduces a
procedure for image processing and machine learning in which the Ginzburg-Landau
functional with fidelity term is minimized using convex splitting. Other semi-supervised
learning approaches involving the functional include [31, 32, 55–57]. Semi-supervised
approaches derived using total variation include [2, 53].

In the case of unsupervised methods, there are no apriori labeled nodes. Such
algorithms proceed by clustering similar nodes together. To prevent trivial solutions, a
constraint on the size of the clusters is usually incorporated into the procedure. Two
popular constraints are the normalized cut [54,71] and the Cheeger cut [17,54,65]; each
of them favors solutions where the clusters are of similar size. The latter constraint has
been studied recently in works such as [8, 9, 38, 68].

2. Background

2.1. Graph framework. In this paper, we embed the data set into a graphical
framework with an undirected graph G=(V,E), where V is the set of vertices and E
is the set of edges. A weight function (w) is defined on each edge, and represents a
measure of similarity between the vertices it is connecting. The degree of a vertex x
is formulated as d(x)=

∑
y∈Vw(x,y). Denote by D the diagonal matrix containing the

degrees of vertices as diagonal entries, and let W denote the similarity matrix containing
the weight function values. Let the set of vertices V and edges E be Hilbert spaces defined
via the following inner products:

〈u,γ〉V =
∑
x

u(x)γ(x)d(x)r,
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〈ψ,φ〉E = 1

2

∑
x,y

ψ(x,y)φ(x,y)w(x,y)2q−1,

‖u‖V =
√
〈u,u〉V ,

‖φ‖E,∞=max
x,y

|φ(x,y)|,

for some r∈ [0,1], q∈ [ 12 ,1], u,γ∈V , and ψ,φ∈E. The gradient operator is defined as

(∇u)w(x,y)=w(x,y)1−q(u(y)−u(x)),

and the divergence operator can be formulated as the adjoint of the gradient

(divwφ)(x)=
1

2d(x)r

∑
y

w(x,y)q(φ(x,y)−φ(y,x)),

where the following adjoint equation is used: 〈∇u,φ〉E =−〈u,divwφ〉V . Using the oper-
ators above, one can define a family of graph Laplacians �w=divw ∇̇ :V→V:

(�wu)(x)=
∑
y

w(x,y)

d(x)r
(u(y)−u(x)).

If u is viewed as a vector in R
m, we can write

−�wu=(D1−r−D−rW )u.

We also formulate the Dirichlet energy and total variation:

1

2
‖∇u‖2E =

1

4

∑
x,y

w(x,y)(u(x)−u(y))2,

TVw(u)=max
{〈divwφ,u〉V :φ∈E ,‖φ‖E,∞≤1

}
=

1

2

∑
x.y

w(x,y)q|u(x)−u(y)|.

The expression D1−r−D−rW forms a general expression for the graph Laplacian,
which is the graph version of the Laplace operator. The parameter r allows the user to
control the type of Laplacian. For example, the cases of r=0 and r=1 result in the
unnormalized Laplacian L=D−W and the random walk Laplacian Lw=D−1L.

With regards to the weight function w, the goal is to choose w so that similar
vertices are weighted by a large value and dissimilar vertices are weighted by a small
value. While many versions of weight functions exist, two popular ones are the Gaussian

w(x,y)=e−
d(x,y)2

σ2

and the Zelnik-Manor and Perona weight function [63], which gives a local rescaling,

w(x,y)= e
− d(x,y)2√

τ(x)τ(y) ,

where d(x,y) is a metric computing the distance, in some sense, between x and y. Also,√
τ(x)=d(x,z), where z is the M th closest vertex to x.
The metric d(x,y) will depend on the data set. For example, in the case of points in

R2, one might consider it to be the usual Euclidean distance, since points far apart are
more likely to be in separate clusters than those closer together. When working with
images, one might consider comparing neighborhoods around pixels x and y using the
L2 or L1 norm. Of course, techniques like rotation invariance can also be incorporated.
For text classification, one can use term frequency inverse document frequency to form
feature vectors for each document and then use cosine similarity to compare the vectors.
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2.2. Heat kernel pagerank and personalized pagerank. The heat equation,
formulated as

∂u

∂t
=Δu,

occurs very frequently in many different kinds of applications. For example, in financial
mathematics, it is used to solve the Black-Scholes partial differential equation. In this
section, we show some ways of solving the heat equation in a graphical setting:

∂u

∂t
=−Lu, (2.1)

where the Laplace operator Δ is replaced by the graph Laplacian.
The heat kernel of a graph G is the matrix e−tL, which is a solution to the heat

Equation (2.1). If the random walk Laplacian Lw= I−D−1W = I−P is considered,
the resulting heat kernel is Ht= e−t(I−P ). Note that P =D−1W is just a transition
probability matrix for the random walk in which one moves from vertex i to vertex j
with probability given by (D−1W )ij .

The heat kernel pagerank is defined as ρt,f =fHt for row vector f :

ρt,f =fHt=

∞∑
k=0

e−t t
k

k!
fP k. (2.2)

From (2.2), one can see that, in the case that f is a probability distribution, the heat
kernel pagerank is just the expected distribution of the random walk with probability

matrix P , where k steps are taken with probability e−t tk

k! , and the starting point is
chosen from f . Therefore, in this case, one can approximate the heat kernel pagerank
vector by simulating enough random walks (with the number of steps calculated ac-
cording to the Poisson distribution, and with the starting point taken from f) to obtain
a close approximation to the expected distribution. This approach is the one taken
by [23,66] when computing heat kernel pagerank.

In [66], Simpson and Chung show a useful application of heat kernel pagerank.
Consider the following heat equation in a graphical setting:

u̇(t)=−Lwu(t), u(0)∈Rn. (2.3)

According to Theorem III.2 in [66], the solution to (2.3) is given by

u(t)=D−1ρtrt,f , f =u(0)trD, (2.4)

where M tr denotes the transpose. Therefore, the heat equation in a graphical setting,
defined using the random walk Laplacian can be solved using heat kernel pagerank.

Another version of pagerank is personalized pagerank prα,f [25, 70], defined by:

prα,f =

∞∑
k=0

α(1−α)kfP k, (2.5)

where P is a transition probability matrix, f is a probability distribution and α is a
scalar between 0 and 1. Personalized pagerank describes a surfer model in which a web
surfer, with probability α, jumps to a page chosen from a probability distribution f ,
but with probability 1−α, moves according to the transition probability matrix. It also
represents the probability distribution of the random walk arriving at each node.
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3. Heat kernel pagerank as a classifier
In [51], Lin et al. introduce a simple semi-supervised learning model using per-

sonalized pagerank directly as a classifier. In fact, their method consists of calculating
the personalized pagerank for different f , and assigning the class number to each node
depending on which distribution gives a higher value of the pagerank for that node.
Note that, very often, the sum of the heat kernel pagerank converges more rapidly than
the geometric sum of personalized pagerank. Therefore, in this section, we describe a
procedure based directly on heat kernel pagerank instead of personalized pagerank. The
method is a direct use of heat kernel pagerank as a classifier.

For a data set of m classes, the procedure to cluster the set into m parts is:

• Calculate {f1, ...,fm} by setting fi at node x to 1 if x is a labeled node assigned
to class i. Otherwise, set it to 0.

• Normalize fi to have the L1 norm of 1.

• Calculate m different heat kernel pageranks ρt,fi for i=1 :m.

• The class of node x is argmaxi{ρt,fi(x)}.
We will refer to this algorithm as HKPR in Section 5, where we describe its results

and compare it to the other model proposed in this paper. This simple procedure, which
uses heat kernel pagerank directly as a classifier, performs well enough; in most cases,
the accuracy is only about 1%−2% worse than that of the main algorithm.

To the best of our knowledge, this is the first application of heat kernel pagerank
to semi-supervised classification.

4. Semi-supervised heat kernel pagerank MBO algorithm

4.1. Motivation. To formulate our method, we use a variational approach.
Recall the general minimization problem for data classification mentioned in Section 1:

min
u

{
E(u)=R(u)+F (u)

}
,

where u describes the class of the nodes, R(u) is the regularization functional and F (u)
is the fidelity term. Regarding the R(u) term, the total variation functional has been
used very successfully in image processing applications as a regularization term [33]. In
addition, many papers use total variation to approximate the length of the boundary
of the binary segmentation function, often referred to as perimeter.

Another related functional, the Ginzburg-Landau (GL) functional, originally pro-
posed to describe physical phenomena such as superconductivity, is formulated as

GL(u)=
ε

2

∫
|∇u|2dx+ 1

ε

∫
W(u)dx,

where W(u) is a double-well potential, such as W(u)= 1
4u

2(u−1)2, and ε is a positive
constant. It has been shown [45] that the GL functional converges, in the sense of
Γ-convergence, as ε→0, to the perimeter, a quantity that is also often approximated
by total variation. The relationship between the two functionals also applies in the
graphical framework, and can be formulated in terms of gamma convergence. The
result is shown in [5], where is it proven that for any r and q=1, TVw is the Γ-limit,
in the sense of gamma convergence, of a sequence of graph-based GL-type functionals.
Therefore, one can consider the GL functional to be a smooth but arbitrarily close
approximation to total variation.

The advantage of using the GL functional for algorithm derivations lies in the fact
that it leads to a simple minimization scheme, while the minimization of total variation
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results in an unwanted nonlinear curvature term. Moreover, the GL scheme contains
the Laplace operator, which allows for the usage of heat kernel pagerank.

Following their ideas, the method in [56] is formulated by considering the Ginzburg-
Landau functional as a regularization term. The functional plus fidelity term is mini-
mized using gradient descent, which results in the following equation:

u̇(t)=−2εLu(t)− 1

ε
W ′(u)− ∂F

∂u
. (4.1)

Here, note that the Laplace operator is now replaced by the graph Laplacian, since the
graphical framework is used. One possibility to solve (4.1), explored by [56], is to split
the dynamics into two steps of first propagating by the heat equation with an extra
term (derived from the fidelity term) and then propagating by an equation involving
the double-well potential. The last step becomes thresholding as ε→0. Therefore, this
method becomes a variation (proposed in the graphical setting) of the MBO approach
proposed by Merriman, Bence and Osher [58] to approximate motion by mean curvature.

Another possibility, which we follow here, is to split the dynamics into three steps:

(1) Propagate by the heat equation:

u̇(t)=−Lu(t). (4.2)

(2) Propagate by the equation involving the fidelity term:

u̇(t)=−∂F

∂u
. (4.3)

(3) Propagate by the following equation:

u̇(t)=−1

ε
W ′(u). (4.4)

To obtain an approximate solution of (4.1) at discrete times, one would alternate
between the three steps until convergence. The advantage of this splitting is that step
1 involves solving only the heat equation, and we pursue this splitting to formulate our
method. Note that, in the limit as ε→0, the last step becomes thresholding:

u(x)=

{
1 if v(x)≥ 1

2 ,

0 if v(x)< 1
2 ,

where v is the solution to the second step of the dynamics. Due to the binary answer
in the last step, this procedure is applicable only to binary problems. The next section
will adapt the procedure to an arbitrary amount of classes.

4.2. Algorithm. In the case of m classes and n data points, instead of a vector
u, we use a matrix U=[u1; . . . ;un], where every node is associated with a probability
distribution ui (row vector) over the classes. Moreover, ui is an element of the Gibbs
simplex Σm:

Σm :=

{
(x1, . . . ,xm)∈ [0,1]m

∣∣∣∣∣
m∑
i=1

xi=1

}
.

We denote the vertices of the simplex by ei for i=1 :m; the vector ei contains all zero
values, except the ith entry, which is equal to 1. To extend the theory of the previous
section to an arbitrary amount of classes, we do not change steps (4.2) and (4.3), except
that the label vector will now be a matrixU. The third step, however, has to be modified



E. MERKURJEV, A.L. BERTOZZI, AND F. CHUNG 1249

to pertain to any number of classes, so we first project each row of U to the simplex
(using [18]) and then we displace towards the closest vertex in the Gibbs simplex.

The new algorithm thus consists of the following steps. First, an initial U is chosen.
For fidelity points, we initialize the row of U to be the corresponding vertex of the
simplex. For the rest of the points, we choose the probability distributions randomly.
To obtain the next iterate of the matrix U, three steps are taken:

(1) Propagation using the heat equation:

U̇=−LU. (4.5)

(2) Propagation using:

U̇=−∂F

∂u
(U) (4.6)

(3) Thresholding:

ui
n+1=eh, (4.7)

where vertex eh is the vertex in the simplex closest to the projection of the ith row
of the result of step 2 to the simplex, using the procedure in [18].
We alternate between the three steps until:

‖ui
n+1−ui

n‖22
‖ui

n+1‖22
<η,

where η is a small positive constant. The final classification is obtained by assigning to
node i the class that holds the highest probability in its class distribution ui.

Step (4.5) is solved using heat kernel pagerank, which we calculate using two dif-
ferent approaches. To be more specific, first let ci represent the i

th column of the result
of step (4.5) and ci0 represent the ith column of U at the start of step (4.5). Now, note
that (4.5) consists of solving a system of heat equations in graph form:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

u̇(t)=−Lwu(t), u(0)= c00∈Rn

u̇(t)=−Lwu(t), u(0)= c10∈Rn

...
...

u̇(t)=−Lwu(t), u(0)= cm0∈Rn,

(4.8)

where m is the number of classes. We can use heat kernel pagerank to solve each of those
problems; details were given in Section 2.2. More precisely, it is known that column i
of the result of step (4.5), which is the solution of the ith equation above, is given by

ci=D−1ρtrt,f , f = ci0
trD.

The ci’s are then concatenated to form the matrix [c1 . . .cm], which is the result of step
(4.5). Step (4.6) is calculated explicitly, i.e.

Un+1−Un

dt
=−∂F

∂u
(Un).

The heat kernel pagerank MBO algorithm is outlined in Figure 4.3. The version
of the algorithm that calculates heat kernel pagerank using series will be referred to as
HKPR1; the version that uses random walks for the task will be referred to as HKPR2.
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Heat Kernel Pagerank Approximation (Series)

Require: a row vector f , probability matrix P of size n×n, t∈R+, maximum
max number of terms to include in the series, tolerance tol

� Initialize s= e−tf , r1=f , k=1.
while m>tol and c<max do

� rT1 ←PT rT1
� r2←e−t tk

k! r1
� s←s+r2
� m←||r2||∞
� k ← k+1

end while
return s

Figure 4.1: Heat Kernel Pagerank Approximation (Series)

Heat Kernel Pagerank Approximation (Random Walk)

Require: a row vector f , probability matrix P of size n×n, t∈R+, an upper
limit K on length of a walk, a number r of random walks

Write f =f+−f−.
Initialize row vectors μ+ and μ− to zero row vectors of length n.
for i=1 : r do

� Choose a starting vertex v0 using the probability distribution f+
||f+|| .

� Simulate a random walk starting from v0 using probability matrix P , where
the number of steps k taken is a Poisson random variable (with parameter
t), and k≤K.
� Let vf be the last vertex of the walk.
� μ+(vf )←μ+(vf )+1

end for
Repeat the for loop using probability distribution f−

||f−|| and μ−.

return ||f+||
r μ+-

||f−||
r μ−

Figure 4.2: Heat Kernel Pagerank Approximation (Random Walk)

4.3. Computing an approximation to heat kernel pagerank. Step (4.5)
of the new algorithm is solved using heat kernel pagerank:

ρt,f =fHt=

∞∑
k=0

e−t t
k

k!
fP k. (4.9)

We approximate it via two different approaches: using series and using random walks.
The first approach is to efficiently sum each term of the series (4.9) until the max-

imum value of the last term is small enough. In other words, each term of the series
(4.9) is efficiently calculated until

||e−t t
k

k!
fP k||∞<γ,

for some k and γ. This shortened sum approximates heat kernel pagerank. The approach
is detailed in Figure 4.1. In practice, we calculate at most j terms of the series, where
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Heat Kernel Pagerank MBO Algorithm for Classification

Require: a graph G of size n, degree matrix D, probability matrix P , matrix U
holding the probability distributions over classes, number of classes m, class
matrix C (n×1 matrix) holding the class assignments, t∈R+, tolerance tol

Initialize U to U0.
� U =U0, Uold=U0.
while d<tol do
� Uold←U
for i=1 :m do

� Let ci be the ith column of U .
� Calculate the heat kernel pagerank ρt,f using P with the row vector
ctri D, using series for version one (HKPR1) and using random walks for
version two (HKPR2).
� ci←D−1ρtrt,f

end for
� U← [c1 . . .cm]
� Propagate U using

U̇ =−∂F

∂u
(U)

� Project each row of U to the simplex using [18].
� Replace each row of U by the closest vertex in the Gibbs simplex

� d← ‖U−Uold‖2
2

‖U‖2
2

end while
for i=1 :n do

Ci=argmax(Ui), where Ui is the ith row of U .
end for
return C

Figure 4.3: Heat Kernel Pagerank MBO Algorithm

j is a chosen variable; for the experiments, we use up to 12 terms in the series. For a
sparse matrix P , the sum can be computed efficiently.

To give the motivation for the second approach, we first assume that f is a proba-
bility distribution. In this case, fP k is the distribution on the vertices after k random
walk steps (with probability matrix P ), starting with a vertex chosen from the proba-
bility distribution f . Therefore, heat kernel pagerank can be considered as the expected

distribution of the random walk, if k steps are taken with probability e−ttk

k! (Poisson
distribution), with the starting vertex chosen from f .

This motivates a random walk procedure to calculate heat kernel pagerank. We
first compute r random walks, where each walk proceeds using the probability transition
matrix P for k steps, where k is a Poisson random variable, starting with a vertex chosen
from f . However, since long walks occur with low probability, we limit the random walk
length to K steps. Then, the distribution over the final vertices of the r random walks
can approximate heat kernel pagerank. This is also the approach taken by [23].

Since f might not be a probability distribution, we first decompose it into positive
and negative portions, f+ and f−, and then normalize each part to sum to one. Then,

ρt,f =fHt=(f+−f−)Ht= ||f+||
{ f+
||f+||Ht

}
−||f−||

{ f−
||f−||Ht

}
, (4.10)
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where, of course, f+
||f+|| and f−

||f−|| are probability distributions. The random walk pro-

cedure is applied to both of the probability distributions, and the pagerank is obtained
using the linear combination in (4.10). This approach are summarized in Figure 4.2.

Remark 4.1. One of the differences between our algorithms and those of [56] is
the fact that we avoid eigenvector and eigenvalue computations. To achieve that goal,
the authors of [56] present the Nyström extension procedure. Note that the Nyström
extension method can be used to approximate the eigenvectors and eigenvalues of a
graph Laplacian involving a dense graph, not a sparse graph. Therefore, in the case of
sparse graphs, another algorithm, such as the Rayleigh-Chebyshev procedure of Chris
Anderson [1], must be used to compute the eigenvalues and eigenvectors. Of course,
any complexity estimate for computing the eigenvalues and eigenvectors will be specific
to the class of matrices one is applying the method to. The advantage of the algorithms
introduced in this paper is that they avoid potentially computationally expensive linear
algebra routines, including the calculation of eigenvectors and eigenvalues of large ma-
trices. As an aside, the Nyström extension procedure is indeed a very efficient method
to compute the eigenvectors and eigenvalues of the graph Laplacian of dense graphs;
for a graph with n vertices, the complexity of the algorithm is O(nL), where L is the
number of samples.

5. Analysis of the algorithms
In this section, we present detailed analysis of the algorithms introduced in the

paper. In Section 5.1, we derive error bounds for the approximation of heat kernel
pagerank, derived using two different ways: random walks and series. We show that
one can construct the approximation as close as needed to the true value of heat kernel
pagerank, and specify how it can be done. In Section 5.2, we present the time complexity
analysis of our methods, for both sparse and dense graphs.

5.1. Error bounds for approximating heat kernel pagerank. To derive
error bounds for the approximation of heat kernel pagerank and its true value, we use
a theorem from [23], detailed below as Theorem 5.1. Theorem 5.2 involves the case of
computing the approximation using random walks. Theorems 5.3 and 5.4 describe the
case of calculating the approximation using series.

5.1.1. Approximation of heat kernel pagerank using random walks.

Theorem 5.1. (from [23]) Let Xi be i.d.d. Bernoulli random variables with X=∑r
i=1Xi. Then,

(1) For 0<ε<1, P (X< (1−ε)E(X))< exp(− ε2

2 E(X)).

(2) For 0<ε<1, P (X> (1+ε)E(X))< exp(− ε2

4 E(X)).

Theorem 5.2. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . Let ρ̂t,f be the approximation
to the heat kernel pagerank ρt,f computed using r random walks on the graph, each with
at most K steps. For any small positive constants 0<ε,δ<<1, there exists a sufficiently
large r= r(δ,ε), such that the following bound holds:

||ρ̂t,f −ρt,f ||∞≤ε (5.1)

with probability >1−δ.

Proof. First, let variables εo and δo be derived from ε and δ as follows:

εo=min(
ε

2||f ||1 ,ε), δo=1− n
√
1−δ. (5.2)
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We start the proof for the special case when f is a probability distribution and
extend this to the general case at the end of the proof. In the former case, the formula
for heat kernel pagerank

ρt,f =fHt=

∞∑
k=0

e−t t
k

k!
fP k (5.3)

can be considered as the expected distribution of the random walk constructed using
the probability matrix P , using the number of steps taken from the Poisson distribution
and the starting point chosen from f . Moreover, we note that a large amount of steps
are taken with a small probability, by Markov’s inequality. In particular, the number
of steps k taken by the random walk follows:

P (k>a)≤ t/a. (5.4)

Therefore, we limit the number of steps of the random walk to K. We set K to be

K=
log(1/εo)

log(log(1/εo))
. (5.5)

Our algorithm for computing heat kernel pagerank consists of simulating r random
walks, each with at most K steps. Let Zu

k be an indicator random variable which equals
to 1 if a random walk beginning from a vertex drawn from the probability distribution f
ends at a vertex u and if it consists of k steps. The variable k is chosen for each random
walk according to a Poisson distribution (with K as the upper bound). Also, let Zu be
the random variable that describes the random walk process that ends at vertex u in at
most k steps; Zu=1 if a random walk has at most k steps and ends at vertex u, and 0
otherwise. Thus, Zu=Zu

1 + ...+Zu
k .

Let ρ(k)t,f be the contribution to the heat kernel pagerank vector ρt,f of random
walks of length at most k. By construction, the expectation of Zu is ρ(k)t,f (u), or the
entry of ρ(k)t,f corresponding of vertex u:

E(Zu)=ρ(k)t,f (u). (5.6)

Also, let the number r of random walks be chosen as

r=
C

ε3o
log(1/δo), (5.7)

where C>0 is a constant.
Let ρ̂t,f be the approximation to heat kernel pagerank ρt,f computed using r random

walks, each with length chosen from the Poisson distribution and at most K. Let
Y u
1 , ...,Y u

r be independent and identically distributed copies of Zu when k=K. Let

Y u=Y u
1 + ...+Y u

r .

By construction,

ρ̂t,f (u)=
Y u

r
=

1

r
(Y u

1 + ...+Y u
r ). (5.8)

Note that if ρt,f (u)>εo, then ρ(k)t,f (u)>εo/2, by definition. Then, in the case
when ρt,f (u)>εo, using Theorem 5.1,

P (
Y u

r
< (1−εo)ρ(k)t,f (u))=P (Y u< (1−εo)rρ(k)t,f (u))
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< exp(−(ε2o/2)rp(k)t,f (u))

< exp(−(ε2o/2)
C

ε3o
log(1/δo)(εo/2))

< exp(−(C/4)log(1/δo))

<δC/4
o <δo/4 (5.9)

for C large enough, since δo is a small positive number <<1. Similarly, using Theorem
5.1,

P (
Y u

r
> (1+εo)ρ(k)t,f (u))=P (Y u> (1+εo)rρ(k)t,f (u))

< exp(−(ε2o/4)rp(k)t,f (u))

< exp(−(ε2o/4)
C

ε3o
log(1/δo)(εo/2))

< exp(−(C/8)log(1/δo))

<δC/8
o <δo/4 (5.10)

for C large enough, since δo is a small positive number <<1.
Therefore, in the case that ρt,f (u)>εo,

P (|Y
u

r
−ρt,f (u)|≤εoρt,f (u))>1−δo/2. (5.11)

In the case when ρt,f (u)≤εo, we see that ρ(k)t,f (u)≤εo. By Chebyshev’s inequality,

P (|Y
u

r
−ρt,f (u)|≥εo)≤

var(Y
u

r )

ε2o

≤ ρ(k)t,f (u)−ρ(k)t,f (u)
2

ε2or

≤ ρ(k)t,f (u)

ε2or

≤ ε2o
Clog(1/δo)

<δo/2 (5.12)

for C large enough (in this case, C>4ε2o/(δolog(1/δo)) works).
Therefore, in the case that ρt,f (u)≤εo,

P (|Y
u

r
−ρt,f (u)|≤εo)>1−δo/2. (5.13)

Consider the probability that a vertex u satisfies

|ρ̂t,f (u)−ρt,f (u)|≤εo. (5.14)

This can be calculated from

P (|ρ̂t,f (u)−ρt,f (u)|≤εo)=P (ρ̂t,f (u)>εo)P (|ρ̂t,f (u)−ρt,f (u)|≤εo |P (ρ̂t,f (u)>εo))

+P (ρ̂t,f (u)≤εo)P (|ρ̂t,f (u)−ρt,f (u)|≤εo |P (ρ̂t,f (u)≤εo)).

(5.15)
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Note that if |ρ̂t,f (u)−ρt,f (u)|≤εoρt,f (u), then we have that |ρ̂t,f (u)−ρt,f (u)|≤εo, since
0≤ρt,f (u)≤1.

From (5.11), (5.13) and (5.15), we see that

P (|ρ̂t,f (u)−ρt,f (u)|≤εo)≥P (ρ̂t,f (u)>εo)(1−δo/2)+P (ρ̂t,f (u)≤εo)(1−δo/2)

≥1−δo (5.16)

for C large enough.
Therefore, P (|ρ̂t,f (u)−ρt,f (u)|≤εo)≥1−δo for a vertex u in the graph. It follows

that P (|ρ̂t,f (u)−ρt,f (u)|≤εo ∀ u∈V )≥ (1−δo)
n=1−δ. The full error bound, in the

case f is a probability distribution, becomes

||ρ̂t,f −ρt,f ||∞≤εo<ε (5.17)

with probability at least 1−δ=(1−δo)
n.

In the case when f is not a probability distribution, the analysis above is valid for
f+/||f ||1 and f−/||f ||1. Then, we have

||ρ̂t,f −ρt,f ||∞≤||||f ||1ρ̂t,f+/||f ||1 + ||f ||1ρ̂t,f−/||f ||1 −||f ||1ρt,f+/||f ||1 −||f ||1ρt,f−/||f ||1 ||∞
≤||f ||1||ρ̂t,f+/||f ||1 + ρ̂t,f−/||f ||1 −ρt,f+/||f ||1 −ρt,f−/||f ||1 ||∞
≤||f ||1||ρ̂t,f+/||f ||1 −ρt,f+/||f ||1 + ρ̂t,f−/||f ||1 −ρt,f−/||f ||1 ||∞
≤2εo||f ||1
≤ε (5.18)

with probability at least 1−δ=(1−δo)
n, since f =u(0)trD, and ||u(0)||∞=1.

5.1.2. Approximation of heat kernel pagerank using series.
Theorem 5.3. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, f ∈R

n and P =D−1W . Let ρ̂t,f be the approximation to heat kernel
pagerank ρt,f computed using the summation of the first s terms of the sum

ρt,f =fHt=

∞∑
k=0

e−t t
k

k!
fP k. (5.19)

Then we have the following error estimate for t≤1 (which we use in our procedure):

||ρ̂t,f −ρt,f ||∞= ||
∞∑
k=s

e−t t
k

k!
fP k||≤ dmax

s!
, (5.20)

where dmax is the maximal degree of the graph. If the graph is a sparse graph, where
each node has at most p neighbors, then

|| ˆρt,f −ρt,f ||∞= ||
∞∑
k=s

e−t t
k

k!
fP k||≤ p

s!
. (5.21)

Proof. Consider the induced matrix norm

||P ||∞= max
x∈Rn,||x||=1

||Px||∞. (5.22)

Then we have that

||ρ̂t,f −ρt,f ||∞= ||
∞∑
k=s

e−t t
k

k!
fP k||∞
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≤
∞∑
k=s

e−t t
k

k!
||f ||∞||P k||∞

≤
∞∑
k=s

e−t t
k

k!
||f ||∞||P ||k∞

≤||f ||∞e−t
∞∑
k=s

tk

k!
(5.23)

since ||P ||∞=1. Since et=
∑∞

k=0 t
k/k!, the Taylor polynomial error bound gives

||ρ̂t,f −ρt,f ||∞≤||f ||∞e−t 1

s!
tset

≤||f ||∞ 1

s!
ts. (5.24)

The variable t in the algorithm is the time step taken to propagate the equation

u̇=−Lwx, u(0)∈Rn. (5.25)

by timestep t. As mentioned earlier, the solution to the propagation of (5.25) is:

u(t)=D−1ρtrt,f , f =u(0)trD. (5.26)

We can propagate by smaller timesteps by choosing t<1, so

||ρ̂t,f −ρt,f ||∞≤ ||f ||∞
s!

. (5.27)

Since f =u(0)trD and ||u(0)||∞=1 according to the procedure of the algorithm,

||ρ̂t,f −ρt,f ||∞≤ dmax

s!
, (5.28)

where dmax is the maximal degree of the graph. If the graph is sparse, where each node
has at most p neighbors, then the second part of the theorem follows directly.

Theorem 5.4. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . Let ρ̂t,f be the approximation
to heat kernel pagerank ρt,f computed using the first s terms of (5.19). Then, for every
small positive constant 0<ε<<1, there exists an R=R(ε) such that, for s>R,

||ρ̂t,f −ρt,f ||∞<ε. (5.29)

Proof. The result follows for s that satisfies s!>dmax/ε.

5.2. Time complexity analysis. To show the efficiency of our algorithms, we
present detailed time complexity analysis, for both sparse and dense graphs. We show
that the algorithms scale well with the number of nodes in the graph.

Theorem 5.5. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . Computing an approximation
ρ̂t,f to heat kernel pagerank ρt,f using series involves O(np) operations in the case of a
sparse graph, where there are at most p non-zero entries in each row of W .
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Proof. We assume that the graph is sparse with each node in the data set connected
to at most p neighbors. We also assume the weight matrix W is a symmetric matrix,
and that, due to sparsity, at most p entries in each row of W are nonzero. To compute
an approximation ρ̂t,f to heat kernel pagerank ρt,f , we calculate s terms:

ρ̂t,f =

s−1∑
k=0

e−t t
k

k!
fP k. (5.30)

Note that

ρ̂Tt,f =

s−1∑
k=0

e−t t
k

k!
(WD−1)kfT . (5.31)

since P =D−1W . Since W has at most p nonzero entries in each row, it takes O(np)
operations to multiply WD−1 and an n×1 vector. Since we compute only the first few
terms of the series, it takes O(n) operations to perform the scalar multiplication by

e−t tk

k! , as well as to perform the addition. Therefore, computing the approximation to
heat kernel pagerank involves O(np) computations.

We end the proof by noting that, in the case when the graph is not sparse, the
computation is dominated by the matrix multiplication of WD−1 by an n×1 vector,
which takes O(n2) operations. Thus, the heat kernel pagerank computation consists of
O(n2) calculations in the non-sparse case.

Theorem 5.6. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . If the number of neighbors
of each vertex is bounded by p, where p<<n, computing an approximation ρ̂t,f to heat
kernel pagerank ρt,f using random walks involves O(r(n+K)) operations in the worst
case, where r is the number of random walks, and K is the maximum amount of steps
taken by each walk. In the non-sparse case, there are O(rnK) operations in the worst
case.

Proof. First, we assume that the graph is sparse with each node in the data set
connected to at most p neighbors, where p<<n. We also assume the weight matrix W
is a symmetric matrix, and that, due to sparsity, at most p entries in each row of W
are nonzero. Choosing a starting vertex from a probability distribution of n elements
takes, in the worst case scenario, O(n) operations. We limit the number of random
walk steps to K since long walks are performed with very small probability (because
the number of steps is a Poisson random variable). After choosing the initial vertex,
the next random walk step is more quickly performed, since the distribution for the
subsequent steps occurs with bounded support. In particular, once the initial vertex is
chosen, the distribution for the next step has at most p nonzero entries. We also assume
that drawing from a distribution of bounded support requires constant time. Therefore,
since there are r random walks to be performed, and this calculation dominates the
computation, there are O(r(n+K)) computations in the worst case.

We end the proof by noting that, in the non-sparse case, choosing an initial vertex
of a random talk takes O(n) operations in the worst case. Choosing the subsequent
vertex still takes O(n) operations in the worst case as the graph is not sparse. Since
there are at most K steps in each of the r random walks, the procedure takes O(rnK)
operations in the worst case in the non-sparse scenario.

Theorem 5.7. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . In the sparse case, the time
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complexity of the Heat Kernel Pagerank MBO Algorithm is linear in the number of
nodes, if the approximation to heat kernel pagerank is computed using the series, for a
fixed number of classes m and a set scalar p, where each node in the graph is connected
to at most p neighbors.

Proof. We see that the for loop in the Heat Kernel Pagerank MBO algo-
rithm involves O(np) operations to approximate heat kernel pagerank using series and
O(n) operations for the scaling by the degree matrix. The for loop is executed m
times. The propagation step requires O(nm) operations and the projection step re-
quires O(nmlogm) computations. The thresholding step involves O(nm) calculations.
Therefore, for fixed m and p, this algorithm is linear in complexity.

In the case the graph is not sparse, Theorem 5.5 shows that the procedure consists
of O(n2m) computations.

Theorem 5.8. Let G=(V,E) be a graph with n vertices, with similarity and degree ma-
trices W and D, respectively, f ∈R

n and P =D−1W . If the number of neighbors of each
vertex is bounded by a number <<n, the time complexity of the Heat Kernel Pagerank
MBO Algorithm is O(r(n+K)) in the worst case, for a fixed amount of classes, if the
approximation to heat kernel pagerank is computed using random walks. Here, r is the
number of random walks to be computed and K is the maximum number of steps in each
random walk. In the non-sparse scenario, the method consists of O(rnK) calculations
in the worst case.

Proof. The for loop in the algorithm involves O(r(n+K)) operations in the
worst case to approximate the heat kernel pagerank via the random walk approach
and O(n) operations for the scaling by the degree matrix. The for loop is executed
m times. The propagation step requires O(mn) operations and the projection step re-
quires O(nmlogm) computations. The thresholding step involves O(mn) calculations.
Therefore, for a fixed number of classes m, the algorithm requires O(r(n+K) calcula-
tions in the worst case. In the case the graph is not sparse, Theorem 5.6 shows that the
procedure consists of O(rnK) operations in the worst case.

Theorem 5.9. Let G=(V,E) be a graph with n vertices, with similarity and degree
matrices W and D, respectively, f ∈R

n and P =D−1W . If the number of neighbors of
each vertex is bounded by a number <<n, for a fixed number of classes m, the time
complexity of the HKPR Algorithm from Section 3 is O(n) if the pagerank is computed
using series, and O(r(n+K)) in the worst case, if the pagerank is computed using
random walks. Here, r is the number of random walks to be computed and K is the
maximum number of steps in each random walk.

Proof. Let the number of classes m be fixed. The first two steps take O(n) com-
putations. Moreover, for the third step, we see that O(n) operations are involved to
approximate heat kernel pagerank with series, while O(r(n+K)) operations are needed
in the worst case to approximate the heat kernel pagerank via the random walk ap-
proach. The thresholding step involves O(n) calculations. The result follows directly.
As a side note, in the case of a dense graph, the HKPR Algorithm takes O(rnK)
operations in the worst case, if the pagerank is calculated using random walks.

Remark 5.1. Note that each of the versions is more advantageously applied in
different scenarios. In the case of a sparse graph, our computations show that computing
the pagerank with truncated series is faster. However, in the case of a large dense graph,
it is better to proceed with the random walk version of the algorithm, which requires
only O(rnK) computations.
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6. Experimental results

MNIST (10 classes- 3.57% labeled points)

Method Accuracy
boosted stumps* [43,49] 92.3-98.74%

transductive classification [69] 92.6%
tree GL [30] 93.0%

k-nearest neighbors* [48,49] 95.0-97.17%
neural/conv. nets* [26, 48,49] 95.3-99.65%
nonlinear classifiers* [48, 49] 96.4-96.7%
GL [31] (3.57% labeled pts.) 96.8%
MBO [31] (3.57% labeled pts.) 96.91%

HKPR (Section 3) 96.43%
HKPR1 MBO 97.52%
HKPR2 MBO 97.48%

- Note that some of the comparable algorithms,
marked by *, use substantially more data for
training (85.7% at the most and the 21.4% at small-
est) than the proposed algorithm, see the main
text for more information.

COIL (10% labeled points)

Method Accuracy
k-nearest neighbors [67] 83.5%

LapRLS [3,67] 87.8%
sGT [42,67] 89.9%
SQ-Loss-I [67] 90.9%

MP [67] 91.1%
GL [31] 91.2%
MBO [31] 91.46%

HKPR (Section 3) 92.12%
HKPR1 MBO 91.09%
HKPR2 MBO 91.23%

MNIST (2 classes - 3.57% labeled points)

Method Accuracy
GL [31] 98.37%
MBO [31] 98.29%

HKPR (Section 3) 94.94%
HKPR1 MBO 98.35%
HKPR2 MBO 98.43%

Two Moons (2.5% labeled points)

Method Accuracy
spectral clustering [30] 80%

p-Laplacian [11] 94%
Cheeger cuts [68] 95.4%
HKPR (Section 3) 95.73%
HKPR1 MBO 96.26%
HKPR2 MBO 96.02%

LFR1

% of points belonging to fidelity / 4% 8% 12% 16% 20%
Mixing parameter

0.1 99.38% 100% 100% 100% 100%
0.2 97.62% 100% 100% 100% 100%
0.3 86.20% 99.08% 100% 100% 100%
0.4 64.13% 99.08% 99.96% 100% 100%
0.5 40.50% 80.70% 98.36% 99.54% 99.95%
0.6 29.36% 58.34% 77.84% 85.77% 91.70%
0.7 21.14% 35.08% 45.92% 56.52% 65.10%
0.8 13.6% 23.21% 29.80% 37.64% 43.00%

LFR50

% of points belonging to fidelity / 4% 8% 12% 16% 20%
Mixing parameter

0.1 100% 100% 100% 100% 100%
0.2 100% 100% 100% 100% 100%
0.3 99.95% 99.99% 99.99% 99.99% 99.99%
0.4 96.87% 99.31% 99.55% 99.70% 99.81%
0.5 70.38% 93.57% 97.83% 99.10% 99.37%
0.6 39.84% 60.14% 75.80% 81.99% 89.71%
0.7 26.26% 44.75% 53.69% 60.20% 65.56%
0.8 16.68% 28.14% 35.58% 41.76% 46.63%

Table 6.1: Results for benchmark data sets: Moons, MNIST, LFR and COIL.

In this section, we validate our method by presenting results of experiments on
benchmark data sets. The accuracy of our algorithm is better than or comparable with
that of the state-of-the-art methods. The algorithm still performs very well in the case
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of a very low number of labeled points! Even when heat kernel pagerank is used directly
as a classifier (HKPR method), the performance is still good. For the experiments, we
use t=0.1, max=12, tol=10−9, and calculate r and K using (5.5) and (5.7). The
accuracy results of the proposed methods are shown in Tables 6.2 and 6.1, where the
algorithms proposed in this paper are written in italics. The best results are written in
bold. We also provide those of other methods for comparison.

6.1. Results for a small number of labeled points. Our algorithm per-
formed very well even when the number of labeled points was very small. For example,
as shown in Table 6.2, for the full MNIST data set, even when only 0.43% points were
associated with a known class, the algorithm was still able to classify around 94.46%
of the nodes correctly. When 1.32% points were associated with a known class, the
accuracy reached around 97.44%, a remarkable achievement for such a low fidelity per-
centage. In the case of the Two Moons data set, the algorithm was able to segment
around 91.53% points correctly when only 0.5% of the nodes were labeled. For the 0.9%
fidelity set, still very small, the algorithm obtained an accuracy of 94.25%. In the case
of 2.5% labeled points, the accuracy improved to around 96.26%.

Therefore, one advantage of our method is that it still performs very well when only
a small number of nodes are labeled, a very realistic scenario!

MNIST (10 classes) Accuracy

% of labeled points 1.32% 1.29% 1.14% 1.00% 0.86% 0.71% 0.57% 0.5% 0.43%
HKPR1 97.44% 97.41% 97.38% 97.33% 97.29% 97.05% 96.81% 96.17% 94.46%
HKPR2 97.41% 97.40% 97.35% 97.32% 97.24% 97.01% 96.81% 96.15% 94.44%

Two Moons Accuracy

% of labeled points 2.5% 2.2% 1.9% 1.6% 1.3% 1.1% 0.9% 0.7% 0.5%
HKPR1 96.26% 95.85% 95.64% 95.48% 95.07% 94.78% 94.25% 93.15% 91.53%
HKPR2 96.02% 95.73% 95.56% 95.42% 95.02% 94.78% 94.20% 93.13% 91.49%

Table 6.2: Accuracy results for a very small number of labeled points.

6.2. Two moons. This data set is constructed from two half circles in R
2 with

a radius of one, with centers at (0,0) and (1,0.5). A thousand uniformly chosen points
are sampled from each circle, embedded in R

100 and i.d.d. Gaussian noise with standard
deviation 0.02 is added to each coordinate. Therefore, the set consists of two thousand
points. The graph is constructed using the 100-dimensional points as feature vectors,
and is sparsified based on 10 nearest neighbors with local scaling using the 10th closest
neighbor.

We performed 100 experiments, each with a different fidelity set. For HKPR1 and
HKPR2, for 2.5% fidelity, the average accuracy was 96.26% and 96.02%, respectively.
The timing was around a second and 17 seconds, respectively. The average number of
iterations was around 3.29 and 8.29, respectively. When heat kernel pagerank is used
directly as a classifier (HKPR algorithm), the average accuracy was around 95.73%.

6.3. MNIST. The MNIST data set [49] is composed of 70,000 28×28 images of
handwritten digits 0 through 9. The task is to correctly assign each image to a digit;
this is a 10 class segmentation problem. We used feature vecctors consisting of 784 pixel
intensity values present in each image. To construct the weight matrix, we use a graph
sparsified using 8 nearest neighbors with local scaling based on the 8th closest neighbor.
Note that we do not perform any preprocessing, i.e. the graph is constructed from the
raw data directly.
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First, we tested the full MNIST dataset, consisting of 70,000 images of 10 digits,
performing 100 experiments over different fidelity sets. For HKPR1 and HKPR2, for
3.57% fidelity, the average accuracy was 97.52% and 97.48%, respectively. The average
number of iterations was 8.69 and 16, respectively. The timing was around 22.25 seconds
for the first version. Using heat kernel pagerank directly as a classifier (HKPR method)
gives an accuracy of around 96.43%.

We also tested a binary subset of MNIST, consisting of only digits 4 and 9, resulting
in a data set of 13,782 nodes. This data set was chosen because these digits are hard
to distinguish when handwritten. The graph and the fidelity set was constructed in the
same way as for the 70K MNIST data set. We performed experiments with 100 fidelity
sets. For HKPR1 and HKPR2, for 3.57% fidelity, the average accuracy was 98.35%
and 98.43%, respectively. The timing was around a second and around 8 minutes,
respectively. The average number of iterations was around 14.78 and 34, respectively.
The HKPR method’s average accuracy was around 94.94%.

From Table 6.2, one can see that our method performs very competitively with these
procedures, and in most cases outperforms them, even with a small number of labeled
points. Moreover, we note that we do not process the data, unlike some supervised
approaches we compare with.

6.4. LFR network. In their paper [47], the authors introduce a class of graphs
that are built with heterogeneous distributions of class size and node degree, since many
real networks have this property. The degrees and class sizes are assigned from a power-
law distribution with power ξ and β, respectively. In addition, this class of graphs has a
mixing parameter μ associated to them, which is the fraction of edges each node shares
with other classes. The maximum degree dmax, mean degree dav, largest class size smax,
smallest class size smin, μ, ξ, β are parameters that are entered by the user. The code
is found in [47].

To construct the LFR1 network, each with 1000 nodes, we set the parameters dmax,
dav, smax, smin, ξ, β to 50, 20, 50, 10, 2, 1, respectively. We vary the μ parameter from
0.1 to 0.8 in 0.1 increments. A higher μ makes it more difficult to classify each node.
The number of classes in each LFR1 network was about 40.

To construct the LFR50 network, each with 50,000 nodes, we first consider 50 LFR1
networks L1, ...L50, each with a mixing parameter μ, and then connect each node in Ls

to 20μ nodes in Ls+1, chosen uniformly at random, and L51=L1. Since each LFR1
network contains around 40 classes, each LFR50 graph consists of around 2000 classes.
As in the LFR1 case, we vary the mixing parameter μ of the LFR1 networks used
to construct LFR50, from 0.1 to 0.8 in 0.1 increments. The mixing parameter of the
resulting network is approximately 2μ

1+μ . In addition, because of the way the network
is constructed, the graph has very similar structure to an LFR1 graph. Moreover, the
strength of each node in the network is around 1+2μ times that of it in the LFR1
network, and the total number of edges in the network is scaled by around 50(1+2μ).

The accuracy for this data set depends on the mixing parameter and the size of
the fidelity set. For HKPR1, the procedure took around 1 second and 19 minutes,
respectively, for LFR1 and LFR50.

6.5. COIL. The COIL data set [16,60] from the Columbia University Image
Library is a set of color 128×128 images of objects, taken at different angles. There are
six classes and 1500 images. Discarding 38 images from each class leaves 250 per class.
To construct the weight matrix, we used 4 nearest neighbors with local scaling based on
the 4th closest neighbor. We conduct experiments for over 100 different fidelity sets. For
HKPR1 and HKPR2, for 10% fidelity, we obtained an average accuracy of 91.09% and
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91.23%, respectively. The average number of iterations was 8.26 and 16, respectively.
The timing was around 1 second and 92 seconds on average, respectively. When heat
kernel pagerank is used directly as a classifier (HKPR), the average accuracy is 92.12%.

6.6. Timing. Details about the timing of the heat kernel pagerank MBOmethod
are displayed in Table 6.3; we see that the algorithm is very efficient. The timing is
also very comparable to (or better than) that of the state-of-the-art. To name some
comparison, for the MNIST data set, the training for neural or convolution nets can
take 2-3 days [26, 48, 49] due to the large size of the training set! A recent algorithm
in [30] lists its timing as 132 seconds, several times slower than our proposed method.
In the case of the two moons data set, [30] reports competitive times in the range of
0.5 to 50 seconds. In particular, [68] notes its time for the two moons data set as 5.6
seconds.

We also emphasize one advantage of the heat kernel pagerank MBO algorithm over
graphical methods, like [31], that involve computing the eigenvectors and eigenvalues
of the graph Laplacian (or any other large matrix), which is not part of the procedure
for our proposed method. Computing the eigendecomposition can be computationally
expensive; for example, Table 6.3 shows that the calculation for the MNIST data set,
which consists of 70,000 nodes, takes around 1700 seconds using the Raleigh-Chebyshev
procedure [1]. Our algorithm avoids this computation.

Timing of Heat Kernel Pagerank MBO Method (in seconds)

data set/method 2 moons COIL MNIST MNIST
(2 digits) (10 digits)

heat kernel pagerank MBO method a 1.708 1.461 1.374 24.257

aThis is the timing of the method using pre-computed weights of the graph.

Method in [30]: Timing for the Computation of Eigenvalues and Eigen-
vectors of the graph Laplacian (in seconds)

data set/method 2 moons COIL MNIST MNIST
(2 digits) (10 digits)

computation of eigenvectors 0.55 0.19 45.43 1683.57
and eigenvalues in [31] a

aEigenvectors and eigenvalues are computed using the Rayleigh-Chebyshev procedure [1].

Table 6.3: Timing

7. Conclusion
In summary, we have introduced an accurate, efficient and simple graph-based semi-

supervised algorithm for classification, called heat kernel pagerank MBO, with results
that are competitive with or better than those of the state-of-the-art procedures, and
accuracy that is high even in the case of a small number of labeled points. This method,
motivated by recent threshold dynamics approaches, introduces the usage of heat ker-
nel pagerank for its main steps. In addition to its aforementioned advantages, it avoids
potentially computationally expensive linear algebra routines. The computational com-
plexity is linear in the number of nodes for sparse graphs; the algorithm requires O(rnK)
operations in the worst case for a dense graph, for a fixed number of classes m, where
n is the size of the data set, and r and K are variables that describe the number of and
the maximum length of random walks, respectively.

Moreover, in this paper, we have also outlined a procedure that uses heat kernel
pagerank directly as a classifier for semi-supervised learning. Overall, the new ideas
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form a powerful approach to the classification problem.
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