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ABSTRACT 

Genetic Prediction of Complex Traits Across Diverse Populations 

Taylor Cavazos 

 

Background: Discoveries made through genome-wide association studies have revolutionized the field of 

human genetics by uncovering disease mechanisms and enabling precision medicine. Although there has 

been tremendous effort to obtain cohort sizes on the order of hundreds of thousands of individuals, there is 

an immense underrepresentation of non-European ancestries, which has potential to contribute to health 

inequity. Here, we present works on (i) an in-depth simulation to identify optimal approaches for achieving 

equitable accuracy for polygenic risk scores (PRS) in diverse populations and (ii) an application of trans-

ancestry discovery of germline associations in the complex phenotype of multiple primary tumors.  

Methods: (i) Through our simulation framework, we implement many strategies for building PRS, 

including a local-ancestry specific approach, and measure accuracy in admixed and African ancestry 

individuals. (ii) We also conducted a whole-exome sequencing study of two large, multi-ancestry 

populations consisting of 6,429 multiple cancer cases, 29,091 single cancer cases, and 165,853 cancer-free 

controls. We employed single-variant and gene-based tests to characterize the genetic susceptibility to 

multiple primary tumors in comparison to individuals with one and, separately, no cancers through the 

investigation of rare and common variation. Results and Conclusions: (i) Variants discovered in African 

ancestry populations have greater potential to achieve unbiased PRS prediction across populations. Studies 

should prioritize the inclusion of diverse participants in GWAS, and care must be taken with the 

interpretation of currently available risk scores. (ii) Our applied trans-ancestry analysis of multiple primary 

tumors identifies rare loss-of-function variants and gene-level associations with cross-cancer pleiotropy and 

potential for prioritizing cancer survivors at high risk for developing subsequent tumors.  

 

Keywords: polygenic risk scores, population genetics, statistical genetics, local ancestry, GWAS, whole-

exome sequencing, cancer, pleiotropy 
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CHAPTER I 

Introduction 

Many common and rare human diseases are influenced, at least partially, by genetic variation or changes 

in an individual’s DNA sequence. Advances in techniques for measuring genetic variation, such as 

population scale genotyping and sequencing strategies, has led to the identification of thousands of genetic 

variants that may contribute to the development of specific traits and diseases. Disentangling the genetic 

contribution to disease is especially advantageous for personalizing screening prevention and treatment 

strategies; however, most human genetics studies have been conducted in individuals of European ancestry 

and discoveries may not translate to the greater diversity of global populations. In this chapter, I will detail 

the motivations for and complexity of studying human genetics, as well as describe the methodological and 

technological advances in the field that have enabled this work. I will also highlight coauthored studies that 

utilize germline genetics for disease prediction, specifically in cancer. Finally, I will summarize the current 

state of germline genetics research in populations of non-European ancestry, discuss the implications of 

underrepresentation in genetics studies, and show relevant examples where inclusion of diverse individuals 

leads to additional discovery. 

 

1.1 Genetic variation in humans 

The human genome acts as the blueprint for the human body and contains extensive information about 

human evolution, development, and disease. The hereditary genetic material, passed down from parent to 

child, is encoded as deoxyribonucleic acid (DNA) and is over 3 billion base pairs long. The ability to 

decipher and unlock discoveries from our genetic information  can be attributed to a 13-year, international 

initiative by the Human Genome Project to sequence the first human genome1,2.  The development of a 

large-scale sequencing strategy, called shotgun sequencing3, and methodological advances in genome 

assembly were crucial for reading and determining the correct order of nucleotides in our DNA. In 2001, 
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these advances culminated in the landmark achievement of creating a consensus human DNA sequence, 

constructed from multiple individuals, that formed the basis of the human reference genome used today1,2. 

 

Since 2001, over 100,000 human genomes representing at least 26 global populations have been sequenced 

through research efforts such as the 1000 Genomes Project4, the International HapMap Project,5 the 

Haplotype Reference Consortium (HRC)6, and most recently the Trans-Omics for Precision Medicine 

(TOPMed)7 program among others.  Comparisons across individual’s genomes have shown that we are 

remarkably similar in terms of our genetic makeup, sharing ~99.9% of our DNA; however, the ~0.1% where 

we differ contains relevant insights into what makes us unique. Thus, through comparisons with the human 

reference genome, we can identify variation in the DNA sequence at either a single position or multiple 

positions, called single nucleotide polymorphisms (SNPs) or indels respectively. An ongoing challenge has 

been to link genetic variation found throughout human genomes to functional consequences, as well as 

determine which genetic variants influence physical traits, biomarkers, and disease.  

 

In order to gain insights from DNA and measure its influence on complex traits, we need genetic 

information for tens to hundreds of thousands of individuals; unfortunately, the cost of whole-genome 

sequencing has been a limiting factor. It cost ~1 billion dollars to sequence the first human genome and 

although this has decreased substantially to ~$1,000 per genome, sequencing a large number of individuals 

for each phenotype of interest is still impractical. A more efficient and cost-effective approach is through 

genotyping arrays, which measure targeted sites in the genome that can be used to infer missing sites 

(imputation); genotyping with imputation has been shown to be highly accurate for common variation 

(occurring in at least 1% of the population)8. Along with advances in genotyping technologies, the 

establishment of large population-based prospective cohorts has been crucial for facilitating genetic 

discovery. One example is the UK Biobank (UKB), an open-access resource of ~500,000 participants 

recruited between ages 40 to 69 with detailed phenotyping and longitudinal followup9. Another cohort, used 

in this dissertation and previously published work, is the Kaiser Permanente Research Bank (KPRB) which 
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includes members of Kaiser Permanente Northern California with extensive health information from self-

reported surveys and electronic health records10. We can leverage these large-scale cohorts to conduct 

genome-wide association studies (GWAS), where regression models are used to test each position across 

the genome for an association with a trait of interest in a set of individuals11. 

 

1.2 Improving disease prediction with germline genetics 

The vast amount of genetic and phenotypic data available has enabled the discovery of genetic variation 

with implications for both predicting and understanding mechanisms for rare and common disease. Early 

genetic studies focused on rare, monogenic/Mendelian diseases having a single disease-causing gene. This 

led to the discovery of HBB for sickle cell anemia, CFTR for cystic fibrosis, and HTT for Huntington’s 

disease. Variation in these genes tend to be high penetrance, meaning a large proportion of individuals who 

are carriers for the disease variant will show the disease phenotype12. In contrast, most common diseases 

tend to have a complex, polygenic architecture with hundreds to thousands of genetic variants across many 

genes all having smaller effects on the phenotype. Examples of diseases with a complex genetic architecture 

includes cancer, cardiovascular disease, and diabetes. While there are distinctions between Mendelian and 

complex disorders, these are often simplifications that do not fully convey the genetic and phenotypic 

variability of each trait13,14. For example, breast cancer risk can be substantially increased due to a single 

high penetrance variant in BRCA1/2, or from many variants with small effects, or a combination of both15.  

 

While genetic studies of Mendelian disorders are more likely to identify the true disease-causing variant, 

due to their high penetrance, it is more challenging to identify the causal variant in studies of common, 

polygenic disease. In fact, GWAS often detect non-causal (“tag”) variants that are physically close and/or 

correlated with the true disease variant11. This is a result of linkage disequilibrium (LD), which describes 

how often variants are acquired together following mating and genetic recombination16. The lack of causal 

inference makes biological interpretation, mechanistic understanding, and downstream drug discovery 

challenging; however, even with the limitations, GWAS results are actively being validated and found to 
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provide biological and medical insight for a large number of diseases and traits11. Additionally, identifying 

variants that have a correlated effect on disease risk has the potential to enable the development of strong 

genetic risk prediction models. 

 

The ability to predict an individual’s risk is important, especially for diseases with established screening or 

prevention strategies; by understanding who is at risk for breast cancer we can better personalize the age at 

which they receive a mammogram and if we know an individual is at high risk for coronary artery disease, 

they can be given statins to prevent heart attack17. Generally, a clinically useful prediction model should be 

able to stratify individuals by disease risk and accurately predict the probability that a currently 

asymptomatic individual will eventually develop a disease of interest18.  For example, individuals with a 

high penetrance risk variant in BRCA1/2 can have up to a 75% lifetime risk of developing breast cancer. 

As discussed previously, most variants have very small effects on disease risk; therefore, an alternative 

approach is needed to make accurate risk predictions for common, complex traits. One such approach, 

shown to have potential clinical utility, is the polygenic risk score (PRS). PRS additively combine many 

risk variants, with small effects, into a single score with a stronger disease association. For traits such as 

coronary artery disease, atrial fibrillation, and type 2 diabetes, individuals in the top percentiles of the PRS 

have been shown to have a greater than 3-fold increased risk of the disease compared to the overall 

population17,19. Although there are limitations, that will be discussed in detail below (Section 1.4), early 

PRS studies have shown tremendous potential as a clinical instrument for disease detection and prevention 

especially in combination with known lifestyle and environmental risk factors17,19.  

 

1.3 Cancer genetics and pleiotropy 

Cancer is one of the leading causes of death in the world population and nearly 40% of males and females 

are at risk for developing cancer at some point in their lifetime20; therefore, strategies for early prediction 

and prevention are necessary to combat the global burden of cancer. GWAS have demonstrated the 

polygenic architecture of many cancers and identified hundreds of rare and common risk variants that can 
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be leveraged for risk prediction, as well as for deciphering shared mechanisms of cancer growth21. Our prior 

work in prostate cancer found novel rare variants with evidence of purifying selection at known prostate 

cancer risk gene, HOXB1322. Additionally, by integrating gene expression and protein affinity data, we 

highlighted the potential of using functional data to link biological mechanisms to noncoding variants 

associated with prostate cancer risk22. We have also identified pleiotropic variation, or variants that are 

associated with more than one trait, in cancer. In our study of 18 different cancers we identified 100 

pleiotropic associations, providing further evidence for genomic regions that may elucidate key functional 

pathways activated during cancer development23. In addition to single-variant pleiotropy, we also illustrated 

previously unreported pleiotropic patterns using PRS for cross-cancer prediction24. Of the 16 cancer-

specific PRSs evaluated, 11 were associated with risk for a separate cancer24. One key component of 

reducing the global burden of cancer is utilizing pleiotropic variation and risk models to characterize the 

shared genetic susceptibility and mechanisms of cancer, which will inform screening strategies. 

 

1.4 The lack of diversity in human genetic studies 

There have been over 5,700 GWAS conducted covering more than 3,300 traits and identifying greater than 

71,000 variant-trait associations11. These studies represent tremendous progress in the field and highlight a 

clinical potential for utilizing germline variation to inform screening strategies, enable precision medicine, 

and guide lifestyle factors for disease risk reduction. However, less than 20% of individuals represented in 

GWAS are of non-European ancestry, which is not reflective of the global representation of ancestries in 

the world population25. The overrepresentation of Europeans in GWAS is due to a number of factors; 

however, main contributors are the continued use of existing cohorts, like the UK Biobank which is largely 

individuals of European ancestry, as well as challenges in recruitment of non-European individuals into 

genetic studies as a result of, historically supported, mistrust for clinical research26. 

 

The Eurocentric bias in GWAS has severe implications with potential to contribute to health inequity. The 

majority of current genetic discoveries primarily benefit individuals of European ancestry and do not 
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replicate in studies of non-European populations26,27. The limited transferability of European findings in 

non-European populations can be attributed to differences in LD across ancestries between the true causal 

variant and discovered European tag variant or as a result of population-specific causal disease variants26. 

Thus, European discovered variation may have less clinical significance in non-European populations. PRS 

developed in European populations combine many weak trans-ancestry predictors into a single score and 

the accumulation of these variants leads to an even larger discrepancy in predictive accuracy for diverse, 

non-European populations. For 17 anthropometric and blood-based traits, there was a 4.5-fold decrease in 

accuracy when applying European-derived PRSs to individuals of African ancestry compared to 

Europeans28.  The limited utility of European findings in underrepresented populations has been widely 

demonstrated and although a the majority of studies have been restricted to European populations25–29, there 

is a push to improve diversity and inclusion in genomics research. Many studies are underway to close the 

gap in genetic discovery for diverse populations, including NIH’s All of Us Research Program30, the Human 

Heredity and Health in Africa (H3Africa)31 consortium, and the Population Architecture through Genomics 

and Environment (PAGE)27,32 study, among others. 

 

Expanding genetic studies to non-European populations has immense potential to unlock novel insights 

into genetic diversity, facilitate fine mapping of causal disease variation, and reduce health disparities. In 

studies of non-European populations from PAGE, Wojcik et al. identified 65 variants that were not 

previously discovered in studies of European populations that had ~5x the number of samples32. It is also 

possible to leverage existing large-European studies, while being inclusive and improving power for 

discovery in underrepresented populations through a trans-ancestry meta-analysis. Trans-ancestry meta-

analyses aim to identify potentially causal variants by combining GWAS from multiple ancestries while 

accounting for potential population differences in linkage disequilibrium and effect estimates33. It has been 

shown through recent trans-ancestry studies that the discovery of novel genetic associations is unlikely to 

result from continuing to increase sample size of European populations, but rather to incorporate studies of 

diverse populations32,34,35. 
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In this dissertation, I aim to provide additional evidence supporting the inclusion of diverse populations in 

genetic studies to enable discovery. Through a simulation study, I will highlight the implications of 

underrepresentation in GWAS as it relates to the clinical use of PRS and recommend strategies for limiting 

the disparity in predictive accuracy across populations. I will also provide a real-world example of a trans-

ancestry exome-wide association study of multiple primary tumors, a complex cancer phenotype. Overall, 

my work explores critical areas in genetics research that contribute to the discovery and downstream 

application of genetic findings in diverse populations. 
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CHAPTER II 

Addressing the limitations of polygenic risk scores 

2.1 Abstract 

The majority of polygenic risk scores (PRS) have been developed and optimized in individuals of European 

ancestry and may have limited generalizability across other ancestral populations. Understanding aspects 

of PRS that contribute to this issue and determining solutions is complicated by disease-specific genetic 

architecture and limited knowledge of sharing of causal variants and effect sizes across populations. 

Motivated by these challenges, we undertook a simulation study to assess the relationship between ancestry 

and the potential bias in PRS developed in European ancestry populations. Our simulations show that the 

magnitude of this bias increases with increasing divergence from European ancestry, and this is attributed 

to population differences in linkage disequilibrium and allele frequencies of European discovered variants, 

likely as a result of genetic drift. Importantly, we find that including into the PRS variants discovered in 

African ancestry individuals has the potential to achieve unbiased estimates of genetic risk across global 

populations and admixed individuals. We confirm our simulation findings in an analysis of HbA1c, asthma, 

and prostate cancer in the UK Biobank. Given the demonstrated improvement in PRS prediction accuracy, 

recruiting larger diverse cohorts will be crucial—and potentially even necessary—for enabling accurate 

and equitable genetic risk prediction across populations. 

 

2.2 Introduction 

Increasing research into polygenic risk scores (PRS) for disease prediction highlights their clinical potential 

for informing screening, therapeutics, and lifestyle1. While their use enables risk prediction in individuals 

of European ancestry, PRS can have widely varying and much lower accuracy when applied to non-

European populations2–4. Although the nature of this bias is not well understood, it can be attributed to the 

vast overrepresentation of European ancestry individuals in genome-wide association studies (GWAS), 
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which is 4.5-fold higher than their percentage of the world population; conversely, there is 

underrepresentation of diverse populations such as individuals of African ancestry in GWAS, which is one 

fifth their percentage3. Potential explanations for the limited portability of European derived PRS across 

populations includes differences in population allele frequencies and linkage disequilibrium, the presence 

of population-specific causal variants or effects, or potential differences in gene-gene or gene-environment 

interactions4. However, in traits such as body mass index and type 2 diabetes, 70 to 80% of European-based 

PRS accuracy loss in African ancestry has been attributed to differences in allele frequency and linkage 

disequilibrium; therefore, most causal variants discovered in Europeans are likely to be shared5. Recent 

methods developed to improve PRS accuracy in non-Europeans have prioritized the use of European 

discovered variants and population specific weighting6–8. However, only small gains in accuracy are 

possible with limited sample sizes of non-European cohorts4.  

 

PRS have been applied and characterized within global populations, but there is limited understanding of 

PRS accuracy in recently admixed individuals and whether this varies with ancestry. Studies applying PRS 

in diverse populations3–5,9 or exploring potential statistical approaches to improve accuracy in such 

populations6,10 typically present performance metrics averaged across all admixed individuals. Only one 

study to date has suggested that PRS accuracy may be a function of genetic admixture (i.e., for height in 

the UK Biobank8). However, it is unknown if the relationship between accuracy and ancestry exists when 

variants are discovered in non-European populations or what the best approach for applying PRS to 

admixed individuals will be when there are adequately powered GWAS in non-European populations.   

 

To help answer these questions, here we systematically and empirically explore the relationship between 

PRS performance and ancestry within African, European, and admixed ancestry populations through 

simulations. We highlight PRS building approaches that will achieve unbiased estimates across global 

populations and admixed individuals with future recruitment and representation of non-European ancestry 

individuals in GWAS. We also investigate reasons for loss of PRS accuracy, and attribute this to population 
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differences in linkage disequilibrium (LD) tagging of causal variants by lead GWAS variants, as well as 

allele frequency biases potentially due to genetic drift undergone by European ancestry populations. Finally, 

we confirm our simulation findings by application to data on HbA1c levels, asthma, and prostate cancer in 

individuals of European and individuals of African ancestry from the UK Biobank. 

 

2.3 Materials and Methods 

2.3.1 Simulation of population genotypes 

We used the coalescent model (msprime v.7.311) to simulate European (CEU) and African (YRI) genotypes, 

based on whole-genome sequencing of HapMap populations, for chromosome 20 as described previously 

by Martin et al.2 Genotypes were modeled after the demographic history of human expansion out of 

Africa12, assuming a mutation rate of 2 x 10-8. We simulated 200,000 Europeans and 200,000 Africans for 

each simulation trial, for a total of 50 independent simulations (20 million total individuals). We generated 

founders from an additional 1,000 Europeans and 1,000 Africans (10,000 total across the 50 simulations) 

to simulate 5,000 admixed individuals (250,000 total across the 50 simulations) with RFMIX v.213 

assuming two-way admixture between Europeans and Africans with random mating and 8 generations of 

admixture. 

 

2.3.2 True and GWAS estimated polygenic risk scores 

We generated true genetic liability for all European, African, and admixed individuals within each 

simulation trial2. Briefly, m variants evenly spaced throughout the simulated genotypes were selected to be 

causal and the effect sizes (𝛽) were drawn from a normal distribution 𝛽~𝑁 (0, ℎ2

𝑚
), where h2 is the 

heritability2. Constant heritability and complete sharing of effect sizes in African ancestry and European 

ancestry individuals was assumed. The true genetic liability was computed as the summation of all variant 

effects multiplied by their genotype for each individual (𝑋 =  ∑ 𝛽𝑚𝑔𝑚
𝑚
𝑖=1 ) standardized to ensure total 

variance of h2 (𝐺 =  𝑋− 𝜇𝑋
𝜎𝑋

∗ √ℎ2). Finally, the non-genetic effect (𝜀 = 𝑁(0, 1 − ℎ2)) standardized to 
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explain the remainder of the phenotypic variation (𝐸 =  𝜀− 𝜇𝜀
𝜎𝜀

∗ √1 − ℎ2)  was added to the genetic risk 

defining the total trait liability (𝐺 + 𝐸)2. Cases were selected from the extreme tail of the liability 

distribution, assuming a 5% disease prevalence. An equal number of controls and 5,000 testing samples 

were randomly selected from the remainder of the distribution; all 5,000 admixed individuals were also 

used for testing. Across simulation replicates we varied causal variants (m = {200, 500, 1000}) and trait 

heritability (h2 = {0.33, 0.50, 0.67}); however, for simplicity main text results assume m = 1000 and h2 = 

0.50.   

 

The estimated PRS were constructed from GWAS of the simulated genotypes (modeled after chromosome 

20) in European and African ancestry populations, each with 10,000 cases and 10,000 controls. Odds ratios 

(ORs) were estimated for all variants with minor allele frequency (MAF) > 1% and statistical significance 

of association was assessed with a chi-squared test. While causal variants may be included in the estimated 

PRS, they are drawn from the total allele frequency spectrum; thus, they are primarily rare (93% and 87% 

of causal variants have MAF < 1% in European and African ancestry populations when m = 1000) and 

restricted from our analysis. For each population, variants were selected for inclusion into the estimated 

PRS by p-value thresholding (p = 0.01 (Main Text), 1x10-4, and 1x10-6 (Supplements)) and clumping (r2 < 

0.2) in a 1 Mb window within the GWAS population, where r2 is the squared Pearson correlation between 

pairs of variants. A fixed-effects meta-analysis was also performed to calculate the inverse-variance 

weighted average of the ORs in African and European ancestry populations, and LD r2 values for clumping 

used both datasets as the reference.  

 

For each individual, an estimated PRS was calculated as the sum of the log(OR) (i.e., the PRS ‘weights’) 

multiplied by their genotype for all independent and significant variants at a given threshold. The PRS were 

constructed for testing samples with variants and weights each selected from European or African ancestry 

GWAS, or a fixed-effects meta of both combined. Additional multi-ancestry PRS approaches7,10 were also 
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explored for admixed individuals. Accuracy was measured by Pearson’s correlation (r) between the true 

genetic liability and estimated PRS within each population. Across simulation trials, averages and ninety-

five percent confidence intervals for r were calculated following a Fisher z-transformation for approximate 

normality14. The statistical significance of differences in accuracy between PRS approaches was assessed 

within ancestry groups, defined by global genome-wide European ancestry proportions, with a z-test (also 

following Fisher transformation). Specifically, within each simulation trial the z-statistic, measuring the 

difference between two PRS approaches, was computed and a two-sided p-value was obtained; results were 

summarized across trials by taking the median p-value. While using r as a measure of accuracy has the 

added benefit of being independent from heritability, in admixed individuals we also calculate the 

proportion of variance (R2) for total trait liability (genetic and environmental component) explained by the 

estimated PRS. 

 

2.3.3 Multi-ancestry polygenic risk scores 

Local Ancestry Weighting PRS 

In addition to genotypes of simulated admixed individuals, RFMIX13 also outputs the local ancestry at each 

locus for every individual. Thus, we used this information to create a local ancestry weighted PRS that is 

not impacted by ancestry inference errors. For admixed African and European ancestry individuals an 

ancestry-specific PRS was constructed for each population (k) by limiting each PRS to variants found in 

that ancestry-specific subset of the genome (𝑖 ∈ 𝑘),  as defined by local ancestry, and weighting using 

variant effects discovered in that population7. Each ancestry-specific PRS was then combined, weighted by 

the genome-wide global ancestry proportion (𝜌𝑘) for that individual as follows7: 

𝑃𝑅𝑆 =  𝜌𝐸𝑈𝑅 ∑ 𝛽𝑖,𝐸𝑈𝑅𝐺𝑖
𝑖 ∈𝐸𝑈𝑅

+ (1 − 𝜌𝐸𝑈𝑅) ∑ 𝛽𝑖,𝐴𝐹𝑅𝐺𝑖
𝑖 ∈𝐴𝐹𝑅

 

In this way each individual has a PRS constructed from the same independent variants with personalized 

weights that are unique to the individual’s local ancestry. 
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Linear Mixture of Multiple Ancestry-Specific PRS 

Using a linear mixture approach developed by Márquez-Luna et al.10 we combined two PRS estimated in 

each of our global training populations  

𝑃𝑅𝑆 =  𝛼1𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼2𝑃𝑅𝑆𝐴𝐹𝑅  

where individual PRS were constructed using significant and independent variants (p < 0.01 and r2 < 0.2 in 

a 1Mb window) and effect sizes from a GWAS in that training population. For simulations, mixing weights 

(𝛼1 and 𝛼2) were estimated in an independent African ancestry testing population and as validation, 

accuracy was assessed in our simulated admixed ancestry individuals. 

 

2.3.4 Application to real data 

We obtained genome-wide summary statistics for HbA1c15, asthma16,17, and prostate cancer18,19 calculated 

in European and African ancestry individuals (Table S1). Summary statistic variants that were not present 

in both the UK Biobank European and African ancestry testing populations were removed. PRS for each 

phenotype were constructed from associated and independent GWAS variants within each training 

population by p-value thresholding (p= {5x10-8, 1x10-7, 5x10-7, 1x10-6, 5x10-6, 1x10-5, 5x10-5, 1x10-4, 5x10-

4, 1x10-3, 5x10-3, 0.01, 0.05, 0.1, 0.5, 1}) and clumping (LD r2 < 0.2) of variants within 1Mb with PLINK20. 

Additionally a fixed-effects meta-analysis of the two populations was performed using METASOFT 

v2.0.121. The selected PRS variants exhibited limited heterogeneity between the European and African 

ancestry training set summary statistics. In particular, of all possible European (African) ancestry selected 

PRS variants, only 5.4% (9.4%), 6.9% (5.7%), and 7.0% (4.8%) were heterogeneous between the two 

groups for HbA1c, asthma, and prostate cancer, respectively (i.e., I2 > 25% and Q p-value < 0.05). 

 

PRS performance was evaluated in an independent cohort using genotype and phenotype data for 

individuals of European ancestry and individuals of African ancestry (Table S1) from the UK Biobank, 

imputation and quality control previously described22. We undertook extensive post-imputation quality 

control of the UK Biobank, including the exclusion of relatives and ancestral outliers from within each 
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group. Specifically, analyses were limited to self-reported European and African ancestry individuals, with 

additional samples excluded if genetic ancestry PCs did not fall within five standard deviations of the self-

reported population mean. For each individual, their PRS was computed as the weighted sum of the 

genotype estimates of effect on each phenotype from the discovery studies (Table S1), multiplied by the 

genotype at each variant. For each population-specific variant set, weights from either the European or 

African summary statistics or the fixed-effects meta-analysis were used. A total of 96 polygenic risk scores 

were evaluated in each phenotype exploring the impact of ancestral population (two scenarios), p-value 

threshold (16 scenarios), and variant weighting (three scenarios). The proportion of variation explained by 

each PRS (partial-R2) approach was assessed for UKB European-ancestry and African-ancestry individuals 

separately. The partial-R2 was calculated from the difference in R2 values following linear regression of 

HbA1c levels on age, sex, BMI, and PCs (1-10) with and without the PRS also included. Similarly, for 

asthma and prostate cancer, we determined the Nagelkerke’s pseudo partial-R2 following logistic regression 

of case status on age, sex (asthma only), BMI (prostate cancer only), and PCs (1-10) with and without the 

PRS. Additionally, in African ancestry individuals we created a combined PRS (𝛼1𝑃𝑅𝑆𝐸𝑈𝑅 + 𝛼2𝑃𝑅𝑆𝐴𝐹𝑅) 

where 𝑃𝑅𝑆𝐸𝑈𝑅 and 𝑃𝑅𝑆𝐴𝐹𝑅  was the most optimal PRS using variants from the designated population and 

the weight and p-value that resulted in the highest accuracy; albeit in sample, optimization was done within 

a single PRS to ensure limited overfitting of the combined model10. We used 5-fold cross validation to 

assess model performance in which 80% of the cohort was used to estimate the mixing coefficients (𝛼1 and 

𝛼2) and the combined PRS partial-R2 was calculated in the remaining 20% of the data. Reported partial-R2 

was averaged across folds10. For our binary phenotypes with unbalanced cases and controls we used 

stratified 5-fold cross validation. 

 

2.4 Results 

2.4.1 Generalizability of European-derived risk scores to an admixed population 

We constructed PRS from our simulated European datasets and applied them to independent simulated 

European, African, and admixed testing populations, assuming 1000 true causal variants (m) and trait 
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heritability (h2) of 0.5. On average, 1552 (range = [1134-1920]) variants were selected for inclusion into 

the PRS at p-value < 0.01 and LD r2 < 0.2 (Table 1). The average accuracy across replicates (50 

simulations), measured by the correlation (r) between the true and inferred genetic risk, was much higher 

when applying the PRS to Europeans (r = 0.77; 95% CI = [0.76, 0.77]) than to Africans (r = 0.45; 95% CI 

= [0.44, 0.47]; Figure 1). This is in agreement with decreased performance seen in real data when applying 

a European derived genetic risk score to an African population2–5. 

 

To understand the relationship between ancestry and PRS accuracy, admixed individuals were stratified by 

their proportion of genome-wide European (CEU) ancestry: high (100%>CEU>80%), intermediate 

(80%>CEU>20%), and low (20%>CEU>0%). PRS performance decreased with decreasing European 

ancestry (Figure 1). Average accuracy (Pearson’s correlation) for the high, intermediate, and low European 

ancestry groups was 0.73 (95% CI = [0.72, 0.74]), 0.61 (95% CI = [0.60, 0.62]), and 0.53 (95% CI = [0.51, 

0.54]), respectively (Figure 1). In comparison to Europeans, the performance of the European derived PRS 

was significantly lower in individuals with intermediate (20% decrease, p = 1.27x10-47), and low (32% 

decrease, p = 6.48x10-16) European ancestry, and with African-only ancestry (41% decrease, p = 8.00x10-

155). There was no significant difference for individuals with high (5.3% decrease, p = 0.09) European 

ancestry. These trends remained consistent when varying the genetic architecture (Figure S1), specifically 

decreasing the number of causal variants (m) and varying the trait heritability (h2). Additionally, the 

relationship between ancestry and accuracy persisted with the inclusion of variants at lower p-value 

thresholds (Figure S2).  

 

By further binning admixed individuals into deciles of global European ancestry and determining the 

variance explained of the total liability (genetics and environment) by the PRS, we estimated a 1.34% 

increase in accuracy for each 10% increase in global European ancestry, replicating a previous analysis of 

height in the UK Biobank8. The slope of this linear relationship increased with increasing heritability but 

was not found to vary with the number of true causal variants (Figure S3). 
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2.4.2 Population-specific weighting of European selected variants 

Using a well-powered GWAS from our simulated African cohort (10,000 cases and 10,000 controls), we 

aimed to explore the potential accuracy gains achieved from a PRS with European selected variants, but 

with population specific weighting of these variants. We applied three different weighting approaches to 

incorporate non-European effect sizes: (1) effect sizes from an African ancestry GWAS for all variants; (2) 

effect sizes from a fixed-effects meta-analysis of European and African ancestry GWAS for all variants, 

both having 10,000 cases and 10,000 controls; and (3) population specific weights based on the local 

ancestry for an individual at each variant in the PRS (Figure 2).  

 

The most accurate PRS approach varied by the proportion of European ancestry. Populations with greater 

than 20% African ancestry benefited significantly from the inclusion of population specific weights (Figure 

2). Intermediate European ancestry benefitted most from using fixed-effects meta-analysis weighting 

instead of European weights (r = 0.64 vs. 0.61, p = 0.02). In contrast, variant weighting from an African 

ancestry GWAS instead of from European had higher accuracy in low European ancestry (r = 0.65 vs. 0.53, 

p = 0.009) and African-only (r = 0.64 vs. 0.45, p = 2.02x10-44) populations. Individuals with high European 

ancestry had similar accuracy with weights from a fixed-effects meta-analysis as from European (r = 0.73 

in both, p = 0.79), but decreased performance with the inclusion of weights from an African ancestry GWAS 

(r = 0.62 vs. 0.73, p = 0.01).  

 

No clear benefits, and in some cases significant decreases, were observed for local ancestry informed 

weights compared to weights from a European or African ancestry GWAS or fixed-effects meta-analysis. 

Individuals with high, intermediate, and low European ancestry had lower accuracy using local ancestry 

informed weights compared to the best weighting in each ancestry group: r = 0.71 vs. 0.73 (from fixed-

effect or European weights; p = 0.58); r = 0.61 vs. 0.64 (from fixed-effect weights; p = 0.004); and r = 0.63 

vs. 0.65 (from African weights; p = 0.60), respectively (Figure 2). 
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2.4.3 Performance of non-European PRS variant selection and weighting approaches 

In our simulations, population specific weighting of PRS SNPs discovered in European ancestry 

populations improved PRS accuracy; however, the disparity between performance in European ancestry 

individuals versus African and admixed ancestry individuals remained large. We aimed to explore the 

potential improvements in PRS that could be gained by including variants discovered in large, adequately 

powered African ancestry cohorts. Following clumping and thresholding of significant variants using LD 

and summary statistics from the simulated African populations, an average of 5269 (range = [4462-6071]) 

variants were included in the PRS (Table 1) reflective of the greater genetic diversity and decreased LD 

compared to Europeans23. In contrast, when constructing a PRS using the same LD and p-value criteria 

applied to a fixed-effects meta-analysis of European and African ancestry, an average of only 92 (range = 

[38-197]) variants were included in the PRS. This substantially smaller number was a result of few variants 

being statistically significant in both populations. Of the total number of variants included from the 

European GWAS, African ancestry GWAS, and fixed-effects meta, only 1.15%, 0.54%, and 15.0% on 

average were the exact causal variant from the simulation; an additional 3.72%, 5.34%, and 33.3% tagged 

at least one causal variant with r2 > 0.2 (and were within r1000 kb of that causal variant) in European 

ancestry populations and 3.45%, 2.42%, and 28.1% in African ancestry populations (Table 1). The limited 

overlap between true causal and GWAS selected variants is a result of causal variants in our simulation 

arising from the total spectrum of allele frequencies, and therefore more likely to be rare, while GWAS is 

better powered to detect common variants in the study population from which they were identified2. These 

common variants may not adequately tag rare variants due to low correlation24.    

 

Overall, we constructed twelve PRS with variants selected from GWAS in European or African ancestry 

populations or a fixed-effects meta of both (three scenarios) and weights from the same approaches plus an 

additional local ancestry specific weighting method (four scenarios) (Figure 2). For Europeans, the highest 

PRS accuracy was achieved with European selected variants and weights (r = 0.77; 95% CI = [0.76, 0.77]); 
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however, a similar accuracy was observed for weights from a fixed-effects meta (r = 0.76; p = 0.53). For 

Africans, the highest PRS accuracy was with African selected variants and weights from a fixed-effects 

meta (r = 0.75; 95% CI = [0.74, 0.75]), similar performance was observed with African variants and weights 

(r = 0.74, p = 0.28). For admixed individuals, the highest performing PRS depended on the population 

ancestry percentage. In individuals with high European ancestry (>80%), the best PRS was with European 

selected variants and fixed-effects meta or European weights (r = 0.73; 95% CI = [0.72, 0.74]). For 

individuals with intermediate (20%-80%) or low (<20%) European ancestry, the most accurate PRS was 

from using African selected variants and weights from a fixed-effects meta-analysis (r = 0.68; 95% CI = 

[0.67, 0.68] and 0.71; 95% CI = [0.70, 0.72], respectively). Again, no benefit was observed with the 

inclusion of local ancestry specific weights for any set of PRS variants. Using a more stringent p-value 

threshold and including fewer variants into the PRS did not result in a change of the best PRS variants and 

weights (Figure S2). 

 

2.4.4 Inclusion of variants from diverse populations 

We found that including in the PRS variants discovered in African ancestry GWAS with population specific 

weights results in less disparity in PRS accuracy across ancestries compared to European selected variants, 

confirming that GWAS in non-bottlenecked populations may yield a more unbiased set of disease 

variants25. For example, applying to individuals of African ancestry a PRS derived from GWAS variants 

and weights discovered in training data from the target population results in a 15.7% higher accuracy 

compared to using a PRS comprised of variants discovered in a European GWAS (also with African 

weights). In contrast, the gains in accuracy achieved by sourcing variants from ancestry-matched studies 

were much lower in European ancestry individuals. Compared to a PRS with variants from an African 

ancestry GWAS (with European weights), a PRS derived from a European GWAS (also with European 

weights) only gave a 3.9% higher accuracy. We also observed better generalization of PRS based on African 

selected variants across all admixed groups (Figure 2). 
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Unlike in Europeans, a PRS with variants discovered in African ancestry populations generalized across 

ancestral groups with population-specific weighting. However, similar to the European PRS, the African 

ancestry derived PRS (with African variants and weights) was estimated to have a 1.62% increase in the 

variance explained of the total trait liability by the PRS for each 10% increase in African ancestry (Figure 

S4). Through a linear combination of the European and African ancestry derived PRS (Methods)10, the 

relationship between ancestry and accuracy diminished to less than a 0.4% increase per 10% increase of 

African ancestry (Figure S4). 

 

While the best single PRS for admixed individuals with at least 20% African ancestry selected variants 

based on a GWAS in an African ancestry population with weights from a fixed-effects meta-analysis, a 

linear combination of the European and African ancestry derived PRS had higher accuracy; this was 

particularly true at decreased African ancestry cohort sizes. We saw considerable improvements with the 

combined PRS over using a European derived (European selected variants and weights) PRS, especially 

for low European ancestry (CEU < 20%) where even with 10-fold fewer African samples there was a 27.4% 

increase in PRS accuracy compared to the European derived risk score and a 12.3% increase compared to 

a PRS with African ancestry selected variants and weights from a fixed-effects meta (Figure 3). 

 

2.4.5 Allele frequency and LD of GWAS variants 

We sought to understand what factors impacted PRS generalizability across the different variant selection 

approaches. GWAS performed in European and African ancestry populations (for SNPs with MAF t 0.01) 

were both more likely to identify significant variants that were more common in their own population than 

in the other. Approximately 60% of variants identified in European ancestry populations had minor allele 

frequencies less than 1% in African ancestry populations and vice-versa; however, given the underlying 

assumption of homogeneity, the smaller number of variants selected by a meta-analysis of the two 

populations tended to have more similar minor allele frequencies (Figure 4a). Although European and 

African ancestry GWAS were both better powered to detect variants at intermediate frequencies within the 
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same study population, GWAS in European ancestry populations may be unable to capture derived risk 

variants that have remained in Africa, which could be the result of genetic drift, whereas GWAS in African 

ancestry populations are not subject to this bias25. 

 

We also examined LD tagging of causal variants by GWAS selected variants within our simulated European 

and African populations. Each causal variant’s LD score was calculated by summing up the LD r2 between 

that causal variant and every GWAS tag variant within r1000 kb. The LD scores calculated in European 

and African ancestry populations were highly correlated (Pearson’s r > 0.7) for the GWAS and fixed-effects 

meta selected variants. Variants selected from a fixed-effects meta had the highest LD score correlation 

between populations, as expected given that the variants reached significance in both populations and 

therefore were more common with similar LD patterns (Figure 4b). Since LD score correlation did not vary 

largely between simulations, we examined the raw LD scores for a single simulation in order to illustrate 

differences in LD score magnitude not captured by the Pearson’s correlation.  

 

We found that European selected variants had higher LD scores in European compared to in African 

ancestry populations; however, variants selected from an African ancestry GWAS tagged causal variants 

in both populations more strongly (Figure 4c). This is unlikely to be due to the larger number of African 

selected variants, as the results were unchanged following normalization of LD scores by dividing the total 

LD score for each causal variant by PRS size (Figure S5). Fixed-effects meta-analysis variants had similar 

LD score magnitudes. However, while a greater proportion of the fixed-effects meta selected variants were 

causal, fewer were strong tags for causal variants not directly identified, highlighting the potential need for 

a model that does not assume homogeneity of effects for tag variants26. Additionally, causal variants with 

identical effect sizes may have differing allele frequencies across populations which would result in 

heterogeneous allele substitution effects; this helps indicate why a fixed-effects meta-analysis may not be 

the optimal approach. 
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2.4.6 Application to real data 

To corroborate our simulation findings, we undertook an analysis of 96 PRS developed for the prediction 

of multiple complex traits in European and African ancestry individuals from the UK Biobank, including 

HbA1c levels, asthma status, and prostate cancer (Table S1). We tested variant selection strategies based 

on p-value thresholding and LD clumping of genome-wide summary statistics15 computed in independent 

European or African ancestry cohorts and variant weights from the same approaches with an additional 

weighting from a fixed-effects meta across populations. Multiple p-value thresholds and weighting 

strategies were tested to assess the PRS accuracy in African ancestry individuals relative to European 

ancestry individuals across parameters. 

 

In UK Biobank Europeans, a GWAS significant European-derived PRS (with European variants and 

weights) had a partial-R2 of 1.6%, 1.2%, and 1.5% respectively for HbA1c levels, asthma, and prostate 

cancer; the same PRS applied to African ancestry individuals, with approximately 13.1% European 

ancestry8, only explained 0.07%, 0.38%, and 0.19% (Figure S6). Although the proportion of variation 

explained by the PRS (partial-R2) was consistently lower in UK Biobank African ancestry individuals 

compared to Europeans, prediction was improved through the inclusion of variants or weights discovered 

in an independent African ancestry cohort across all traits (Figure S6). Interestingly, we found that a linear 

combination of the best performing PRS with European discovered variants and African ancestry 

discovered variants improved accuracy substantially (Table S2), supporting our simulation finding that a 

combined PRS which includes variants from the target population, even at smaller sample sizes, is the 

optimal approach for constructing PRS in admixed and non-European individuals.    

 

2.5 Discussion 

Our work shows that incorporating variants selected from European GWAS into a PRS can result in less 

accurate prediction in non-European and admixed populations in comparison to variants selected from a 

well-powered African ancestry GWAS. Through simulations and application to real data analysis of 
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multiple complex traits, we provide empirical evidence that supports the use of a linear mixture of multiple 

population derived PRS to remove bias with ancestry and achieve higher accuracy in admixed individuals 

with currently available non-European sample sizes. We also demonstrate the anticipated improvements in 

PRS prediction accuracy that may be achieved with the inclusion of diverse individuals in GWAS, 

highlighting the need to actively recruit non-European populations.  

 

Our simulation finding that prediction accuracy of a European derived PRS linearly decreases with 

increasing proportion of African ancestry in admixed African and European populations is consistent with 

a recent study of height where there was a 1.3% decrease for each 10% increase in African ancestry8. This 

decrease in prediction accuracy has been attributed to linkage disequilibrium and allele frequency 

differences, as well as differences in effect sizes across populations contributing to height8. Our work adds 

further insights into this reduction in PRS accuracy, showing that (1) it exists in the absence of trans-

ancestry effect size differences consistent with previous theoretical models that did look at admixture2,5, 

and (2) variants selected from an African population may not have these same biases. Recent work found 

that known GWAS loci discovered in Europeans have allele frequencies that are upwardly biased by 1.15% 

in African ancestry populations which results in a misestimated PRS; a phenomenon that likely arises due 

to population bottlenecks and ascertainment bias from GWAS arrays25. In our simulation study, which was 

not impacted by ascertainment bias, we show that GWAS in African ancestry populations also identify 

variants with population allele frequency differences; however, these variants have more consistent LD 

tagging of causal variants across populations. Our observations support the hypothesis that well-powered 

African ancestry GWAS will be able to more accurately capture disease associated loci that are more 

broadly applicable across populations, due to having undergone less genetic drift25.  

 

A major advantage of our study is having large simulated European and African ancestry cohorts to provide 

guidelines for developing the best possible PRS in admixed individuals with current and future GWAS. 

Through our exploration of 12 PRS, with various variant selection and weighting approaches, we re-
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capitulate recent results applying similar PRS strategies to an admixed Hispanic/Latino population9. For 

individuals with intermediate proportions of European ancestry (20-80%), we also see improvements using 

European selected variants and population-specific or fixed-effects meta weights; however, as non-

European cohorts get increasingly large it will be imperative to perform variant discovery in these 

populations as gains in accuracy with weight adjustment of European selected variants will be limited 

especially in individuals with higher proportions of non-European ancestry. 

 

Current methods for improving PRS accuracy in diverse populations have prioritized the inclusion of 

variants from European GWAS, as these have higher statistical power to identify trait associated loci. For 

example, one such approach uses a two-component linear mixed model to allow for the incorporation of 

ethnic-specific weights6. Another method creates ancestry-specific partial PRS for each individual based 

on the local ancestry of variants selected from a European GWAS7. This approach was found to improve 

trait predictability, compared to a traditional PRS with population specific or European weights, in East 

Asians for BMI but not height7. In contrast, implementing this local-ancestry method7 in our simulation, 

we found that PRS accuracy was higher with African or fixed-effects meta weighting than with local 

ancestry in admixed African ancestry populations. Our results suggest that true equality in performance 

will be difficult to obtain solely based on European-identified variants even with local ancestry-adjusted 

weights. Although local ancestry weighting may have greater benefits when complete sharing across 

populations is not assumed, we show that in the absence of population-specific factors, the optimal PRS 

approach involves using variants identified in a large African population and population-specific weighting.  

 

To create a multi-ancestry PRS without incorporating local ancestry, Márquez-Luna et al. (2017) uses a 

mixture of PRS taking advantage of existing well-powered GWAS studies and supplementing with 

additional information that can be gained from a smaller study in the population of interest10. While this 

approach may offer relative improvement in PRS accuracy for non-Europeans compared to a European-

derived PRS, our simulation suggests that the inclusion of significant tag variants discovered in Europeans 
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may unnecessarily hinder predictive performance in non-Europeans. We investigate this approach in the 

context of varying admixture proportions and find that it achieved high accuracy across all admixed 

individuals, was not biased by ancestry, and significantly improved performance over a European-only PRS 

with 10-fold fewer African ancestry cases. Thus, a combination of multiple single population PRS may be 

the best currently available approach for admixed individuals, and this approach will likely continue to 

improve as the individual PRS are further developed.  

 

An important novel finding of our work that the inclusion of variants from an African-ancestry population 

results in less disparity in PRS accuracy across other populations, illustrates the need to recruit diverse 

populations in GWAS and make these data readily available. Large consortia such as H3Africa, PAGE, the 

Million Veterans Program, and All of Us are undertaking efforts to support this initiative. Based on our 

analysis of HbA1c, asthma, and prostate cancer in the UK Biobank, we find that improvement in PRS 

prediction accuracy is currently possible by incorporating findings from GWAS in African ancestry 

populations, albeit with lower power. In addition to smaller sample sizes, this potential improvement may 

be limited by ascertainment bias in what SNPs are included on genotyping arrays and poorer imputation in 

non-Europeans. GWAS arrays and their imputation have substantially higher coverage among Europeans, 

and this may result in decreased PRS portability of findings across traits; in such situations, whole genome 

sequencing in diverse populations may be needed in order to improve accuracy27,28. Our study and others 

support the immense genetic diversity that can be unlocked by studying underrepresented populations to 

both eliminate the disparity in genetics for prediction medicine and provide novel insights into disease 

biology for all populations25,27,29.  

 

Although our simulation study provides important insight into the future of PRS use, it has important 

limitations. First, while coalescent simulations allow for decreased computational burden, model 

assumptions may result in inaccurate long-range linkage disequilibrium especially for whole genome 

simulations30. However, given we only simulated chromosome 20, biases are expected to be modest30. We 
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also use a case-control framework for our simulation; therefore, power and potential differences in 

population PRS accuracy may be even higher if a quantitative trait was used. In addition, our simulations 

assume random mating among admixed individuals and therefore do not reflect the more complex 

assortative mating that may be observed, which may impact the distribution of local ancestry tract lengths 

in our simulation and therefore hinder the improvement of PRS accuracy by local ancestry weighting31. 

Also, although we provide evidence to suggest the contribution of population differences in allele frequency 

and LD tagging of causal variants to loss of PRS accuracy with varying ancestry, we do not delineate how 

each of these factors decrease accuracy independently; this is a direction for future work. Finally, we have 

only simulated individuals from Yoruba, a West African population, which is not representative of the 

greater diversity in Sub Saharan Africa32. Future studies must be done to ensure our findings can be 

extended to individuals from other regions of Africa.  

 

Overall, our findings support the concern that while studies have demonstrated the potential clinical utility 

of PRS, adopting the current versions of these scores could contribute to inequality in healthcare4. Going 

forward, future studies should prioritize the inclusion of diverse participants and care must be taken with 

the interpretation of currently available risk scores. While statistical approaches may offer improvements 

in accuracy compared to current European-derived risk scores, in order to truly diminish the disparity and 

achieve PRS accuracies similar to in European ancestry populations we must actively recruit and study 

diverse populations. 
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2.7 Tables 

Table 2.1 Summary of PRS variants and causal tagging across simulations 

Table 2.1 Legend: The set of PRS variants from each GWAS and the fixed-effects meta-analysis were 
selected by p-value thresholding (p < 0.01) and clumping (r2 < 0.2) across the 50 simulations. Each PRS 
variant was compared to the causal set of variants (m = 1000) within each simulation to determine the direct 
overlap between the two sets and the LD r2 between the PRS variant and every causal variant within a 1000 
kb window. The total number of selected PRS variants that tag at least one causal variant at r2 greater than 
0.8, 0.6, 0.4, or 0.2 is listed in the table. 
 

  

GWAS Population Total # PRS Variants (p<0.01) # Causal # in LD with a Causal Variant

European 1552 [1134-1920] 18 [10-26] r2> 0.8 r2> 0.6 r2> 0.4 r2> 0.2

LD in Europeans 27 [16-40] 32 [22-44] 39 [25-55] 58 [38-80]
LD in Africans 20 [9-36] 25 [16-42] 34 [24-54] 53 [35-70]

African 5269 [4462-6071] 28 [18-40] - - - -
LD in Europeans 94 [67-122] 132 [95-171] 183 [123-238] 280 [202-364]
LD in Africans 37 [26-48] 48 [34-61] 67 [50-89] 127 [81-170]

Fixed-Effects Meta 92 [38-197] 12 [5-22] - - - -
LD in Europeans 15 [6-26] 17 [6-28] 21 [9-39] 29 [16-47]
LD in Africans 13 [6-21] 14 [6-25] 17 [9-29] 24 [10-43]

* The number of variants is reported as the average and range [low-high] across the 50 simulations.
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2.8 Figures 

 

Figure 2.1 Accuracy of European derived PRSs by proportion of total ancestry 
 
Figure 2.1 Legend: Variants and weights were extracted from a GWAS of 10000 European cases and 
10000 European controls. PRS accuracy was computed as the Pearson’s correlation between the true genetic 
risk and GWAS estimated risk score across 50 simulations in independent test populations of 5000 
Europeans, 5000 Africans, and 5000 admixed individuals. Admixed individuals were grouped based on 
their proportion of genome-wide European ancestry. Simulations assume 1000 causal variants and a 
heritability of 0.5 to compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to 
select variants for the estimated risk score. 
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Figure 2.2 PRS construction approaches and performance in admixed individuals 

Figure 2.2 Legend: PRS were constructed using variants and weights selected from either a European or 
African population (10000 cases, 10000 controls each) or a fixed-effects meta-analysis of both. An 
additional local ancestry specific method was used for PRS weighting. Performance, measured as the 
Pearson’s correlation between the true and GWAS estimated risk score, is shown across 50 simulations. 
Simulations assume 1000 causal variants and a heritability of 0.5 to compute the true genetic risk. A p-
value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the estimated risk scores. 
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Figure 2.3 Impact of African ancestry sample size on PRS accuracy and generalization 

Figure 2.3 Legend: The number of African samples used in the GWAS and subsequent PRS construction 
was decreased to reflect availability of diverse samples in real data. Analysis was conducted assuming 1%, 
5%, 10%, 50%, and 100% (matched size of European dataset) of the total African ancestry cases. Average 
accuracy and the 95% confidence interval were reported across the 50 simulations for different variant 
selection and weighting approaches. Simulations assume 1000 causal variants and a heritability of 0.5 to 
compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the 
estimated risk score. A linear mixture of single population PRS (𝛼1𝐸𝑈𝑅 + 𝛼2𝐴𝐹𝑅), with variants and 
weights selected from that population, was also tested in the admixed population. The mixture coefficients 
(𝛼1 and 𝛼2) were estimated in an independent African ancestry testing population.     
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Figure 2.4 Allele frequency distribution of GWAS selected variants and LD tagging of causal variants 

Figure 2.4 Legend: Variants were selected from a European or African ancestry GWAS or a fixed-effects 
meta of both populations. 4a. GWAS variants were binned by their minor allele frequency estimated from 
the European, African, and admixed populations. The error bar represents the 95% CI across simulations. 
4b. LD scores were calculated for every causal variant by adding up the LD r2 for each GWAS tag variant 
within r1000 kb of the causal variant. LD scores calculated in a Europeans and Africans were compared 
by Pearson’s correlation. The results were summarized across simulations as the average and 95% CI. 4c. 
Raw LD scores for each causal variant (m = 1000) calculated in a European or African population for one 
simulation. Each panel shows the approach used for variant selection. Causal variants directly discovered 
through the GWAS are colored in grey. 
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2.9 Supplementary Materials 

Table S2.1 Summary of HbA1c variants included for each PRS 
 
Table S2.1 Legend: Using summary statistics for HbA1c from Wheeler et. al. 201715, variants were 
selected for inclusion into the PRS following p-value thresholding and LD clumping (r2 < 0.2) within 250kb 
windows. The intersection between PRS variants selected from either a European or African GWAS and 
available sites in UKB Europeans and Africans is reported. 

PRS 
Training 
Dataseta 

P-Value 
N Variants Available Testing / N Variants in Score (%) 

UKB Europeans UKB Africans 
European 

 
p < 5e-8 83 / 84 (98.81%) 64 / 84 (76.19%) 
p < 1e-7 87 / 88 (98.86%) 66 / 88 (75.0%) 
p < 5e-7 107 / 108 (99.07%) 82 / 108 (75.93%) 
p < 1e-6 118 / 119 (99.16%) 91 / 119 (76.47%) 
p < 5e-6 158 / 159 (99.37%) 121 / 159 (76.1%) 
p < 1e-5 187 / 188 (99.47%) 141 / 188 (75.0%) 
p < 5e-5 274 / 275 (99.64%) 206 / 275 (74.91%) 
p < 1e-4 354 / 355 (99.72%) 257 / 355 (72.39%) 
p < 5e-4 724 / 726 (99.72%) 490 / 726 (67.49%) 
p < 1e-3 1,113 / 1,117 (99.64%) 726 / 1,117 (65.0%) 
p < 5e-3 3,498 / 3,503 (99.86%) 2,169 / 3,503 (61.92%) 
p < 0.01 6,006 / 6,016 (99.83%) 3,705 / 6,016 (61.59%) 
p < 0.05 22,917 / 22,943 (99.89%) 13,772 / 22,943 (60.03%) 
p < 0.1 40,980 / 41,040 (99.85%) 24,821 / 41,040 (60.48%) 
p < 0.5 137,803 / 137,990 (99.86%) 85,660 / 137,990 (62.08%) 
p < 1 195,825 / 196,161 (99.83%) 125,585 / 196,161 (64.02%) 

African p < 5e-8b 1 / 1 (100.0%) 1 / 1 (100.0%) 
p < 1e-7b 1 / 1 (100.0%) 1 / 1 (100.0%) 
p < 5e-7 2 / 2 (100.0%) 2 / 2 (100.0%) 
p < 1e-6 2 / 2 (100.0%) 2 / 2 (100.0%) 
p < 5e-6 10 / 10 (100.0%) 10 / 10 (100.0%) 
p < 1e-5 16 / 16 (100.0%) 16 / 16 (100.0%) 
p < 5e-5 60 / 61 (98.36%) 61 / 61 (100.0%) 
p < 1e-4 109 / 111 (98.2%) 111 / 111 (100.0%) 
p < 5e-4 464 / 472 (98.31%) 471 / 472 (99.79%) 
p < 1e-3 874 / 891 (98.09%) 887 / 891 (99.55%) 
p < 5e-3 3,906 / 3,988 (97.94%) 3,975 / 3,988 (99.67%) 
p < 0.01 7,294 / 7,429 (98.18%) 7,406 / 7,429 (99.69%) 
p < 0.05 30,575 / 31,129 (98.22%) 31,025 / 31,129 (99.67%) 
p < 0.1 55,859 / 56,940 (98.1%) 56,687 / 56,940 (99.56%) 
p < 0.5 210,251 / 214,648 (97.95%) 213,662 / 214,648 (99.54%) 
p < 1 318,848 / 326,687 (97.6%) 324,706 / 326,687 (99.39%) 

a GWAS summary statistics extracted from Wheeler et. al. 2017. 
b PRS is not computed when only one variant is available.  
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Figure S2.1 European derived risk score accuracy with varying simulation causal variants and assumed 
heritability 

Figure S2.1 Legend: Our simulation assumes a set number of causal variants (m) and trait heritability 
(h2) when generating the true genetic risk score. We varied these parameters and tested all combinations 
assuming m = {200, 500, 1000} and h2 = {0.33, 0.5, 0.67}. The accuracy was measured by Pearson’s 
correlation between the true and GWAS estimated risk score for each of the 50 simulations. We used a 
European GWAS to select independent variants and effect sizes for the PRS (p < 0.01 and LD r2 = 0.2). 
This risk score was applied to Europeans, Africans, and admixed populations. 
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Figure S2.2 PRS accuracy with varying p-value thresholds 

Figure S2.2 Legend: The p-value used for variant selection approach was decreased to allow fewer 
variants into the PRS. In addition to p < 0.01, shown in the main text results, we also tested p < 1x10-4 and 
1x10-6. Simulations assume 1000 causal variants and a heritability of 0.5 to compute the true genetic risk. 
A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the estimated risk scores. 
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Figure S2.3 Normalized LD tagging of causal variants by GWAS selected variants 
 
Figure S2.3 Legend: LD scores were calculated for every causal variant by adding up the LD r2 for each 
GWAS tag variant within r1000 kb of the causal variant. LD scores were then normalized by the total 
number of GWAS selected variants from each population reflected by the 3 panels. The normalized LD 
scores for each causal variant (m = 1000) calculated in a European or African population is shown for one 
simulation. Causal variants directly discovered through the GWAS are colored in grey. 
 

 

Figure S2.4 HbA1c PRS performance in the UK Biobank 

Figure S2.4 Legend: Partial-R2 was calculated for each PRS, within Europeans and Africans from the 
UK Biobank, by fitting a linear model of HbA1c with age and sex and subtracting the null R2 from a 
model including the PRS in addition to age and sex.  
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CHAPTER III 

Genetic susceptibility to multiple primary tumors 

3.1 Abstract 

Background: Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second 

primary cancer in their lifetime. Genetic factors contributing to the development of multiple primary 

cancers, beyond known cancer syndromes, have been underexplored. Methods: To characterize genetic 

susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome sequencing study of 

individuals drawn from two large multi-ancestry populations (6,429 cases, 165,853 controls). We created 

two groupings of individuals diagnosed with multiple primary cancers: 1) an overall combined set with at 

least two cancers across any of 36 organ sites; and 2) cancer-specific sets defined by an index cancer at one 

of 16 organ sites with at least 50 cases from each study population. We then investigated whether variants 

identified from exome sequencing were associated with these sets of multiple cancer cases in comparison 

to individuals with one and, separately, no cancers. Results: We identified 22 variant-phenotype 

associations, 10 of which have not been previously discovered and were significantly overrepresented 

among individuals with multiple cancers, compared to those with a single cancer. Conclusions: Overall, 

we describe variants and genes that may play a fundamental role in the development of multiple primary 

cancers and improve our understanding of shared mechanisms underlying carcinogenesis. 

 

3.2 Introduction 

The substantial global burden of cancer coupled with increasing survival due to improved screening, 

surveillance, and treatments has yielded a growing number of cancer survivors who are at risk of developing 

a second primary cancer in their lifetime1,2. The prevalence of multiple primary cancers globally is 

estimated to be between 2 and 17%, with the wide range likely due to differences in cancer registration 

practices, case definitions, population characteristics, and follow-up times1,2. Cancer predisposition 
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syndromes, such as Li-Fraumeni, Lynch, and hereditary breast and ovarian cancer, are known to increase 

the risk of multiple primary cancers; however, less than 2% of all cancers are attributed to hereditary cancer 

syndromes1. Genetic risk factors for multiple primary cancers beyond known syndromes are not well 

understood. 

 

Genome-wide association studies (GWAS) have implicated many common, low penetrance variants in 

5p15 (TERT-CLPTM1L)3, 6p21 (HLA)4,5, 8q246, and other loci in the risk of several cancer types. 

Additional studies have investigated pleiotropy in these regions or characterized cross-cancer susceptibility 

variants7,8. A pleiotropic locus has the potential to not only affect risk of many different cancer types, but 

also increase the likelihood that a single individual develops multiple primary cancers. In our prior work, 

we discovered that the rare pleiotropic variant HOXB13 G84E had a stronger association with the risk of 

developing multiple primary cancers than of a single cancer9. This suggests that there may be increased 

power to detect pleiotropic variation in individuals with multiple primary cancers relative to those with only 

a single cancer. Identifying widespread pleiotropic signals is informative for understanding shared genetic 

mechanisms of carcinogenesis, toward the identification of informative markers for cancer prevention and 

precision medicine.  

 

In this study, we survey the landscape of rare and common variation in individuals with multiple primary 

cancers, single cancers, and cancer-free controls through whole-exome sequencing (WES) in two large, 

multi-ancestry studies. We evaluate associations previously discovered in studies of individuals with a 

single cancer and find novel pleiotropic variation in individuals with multiple primaries. 

 

3.3 Materials and Methods 

3.3.1 Study populations and phenotyping 

Our study included ancestrally diverse individuals with multiple primary cancers or no cancer from two 

large study populations: the Kaiser Permanente Research Bank (KPRB) and the UK Biobank (UKB). From 
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the KPRB, we included individuals who were previously genotyped through the Research Program on 

Genes, Environment and Health (RPGEH) and the ProHealth Study. For the UKB, we specifically studied 

participants from the 200K release of WES data, which also included individuals diagnosed with a single 

cancer10.  

 

For both study populations, ascertainment of cancer diagnoses has been previously described7,11. Both 

studies included prevalent and/or incident diagnoses of malignant, borderline, and in situ primary tumors11. 

ICD codes indicating non-melanoma skin cancer or metastatic cancer were not considered primary tumors. 

Cancers were primarily defined according to the SEER site recode paradigm12. However, for hematologic 

cancers, we incorporated morphology following WHO classifications13, placing cancers into three major 

subtypes: lymphoid neoplasms, myeloid neoplasms, and NK- and T-cell neoplasms (Table S1). Cases were 

individuals with ICD-9 or ICD-10 codes for primary tumors at two or more distinct organ sites. In the 

KPRB, controls without a cancer diagnosis were matched 1:1 to cases on age at specimen collection, sex, 

genotyping array, and reagent kit.  In the UKB, controls included all individuals without a cancer diagnosis.  

 

In both study populations, we excluded duplicates/twins and first-degree relatives, retaining the individual 

from each related pair who had higher coverage at targeted sites. Following quality control (QC) of WES 

data (described below), the KPRB and UKB study populations used in this project included 3,111 and 3,318 

cases with multiple primary cancers and 3,136 and 162,717 cancer-free controls, respectively. The UKB 

also contributed 29,091 individuals with a single cancer diagnosis. While our study was primarily 

unselected for cancer type, prostate cancer cases were oversampled in the KPRB due to inclusion of 

individuals from the ProHealth Study. 

 

3.3.2 Genetic ancestry and principal components analysis 

Genetic ancestry was defined using genome-wide, imputed array data that underwent extensive QC, as 

previously described11. Ancestry principal components (PCs) were computed using flashPCA214 by 
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projecting our study samples onto PCs defined by 1000G phase 3 reference populations15. Individuals were 

assigned to the closest reference population using distance from the top 10 PCs. Individuals with ancestral 

PCs greater than five standard deviations from the reference population mean were excluded. The final 

analytic dataset included individuals of European, African, East Asian, South Asian, and Hispanic/Latino 

ancestry; however, the analysis was largely biased towards individuals of European ancestry as they were 

overrepresented (Figure S1). A total of N = 646 (10.2%) and N= 8,739 (5.26%) individuals were of non-

European ancestry in the KPRB and UKB, respectively (Table 1).   

 

3.3.3 Whole-exome sequencing and quality control 

The Regeneron Genetics Center used the Illumina NovaSeq 6000 platform to perform WES for both study 

populations where the source of DNA was saliva for the KPRB and blood for the UKB. Sample preparation 

and QC were performed using a high-throughput, fully-automated process that has been previously 

described in detail16. Briefly, following sequencing, reads were aligned to the GRCh38 reference genome 

and variants were called with WeCall16 for the KPRB and DeepVariant17 for the UKB. Samples with gender 

discordance, 20x coverage at less than 80% of targeted sites, and/or contamination greater than 5% were 

excluded.  

 

Additional QC was applied to filter low quality variants and related individuals. First, genotype calls with 

low depth of coverage (DP) were updated to missing (DP < 7 for SNPs and DP < 10 for indels). Then, sites 

with low allele balance (AB) were removed. Specifically, variants without at least one sample having AB 

t 15% for SNPs or AB t 20% for indels were excluded. Following previous studies16, we excluded variants 

with missingness > 10% and HWE p-value < 10-15, computed across all individuals in each study 

population. After these steps, a total of ~3.51M high-quality sites were retained for the KPRB and ~15.92M 

were retained for the UKB; excluding singletons, there were ~1.36M and ~8.22M variants, respectively. In 

the UKB, the larger number of variants observed was due to rare variation present in the larger sample size; 
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when restricting to common variants (MAF > 1%), there were ~186K and ~137K variants, respectively for 

the KPRB and UKB. 

 

3.3.4 Association analysis in individuals with multiple cancers versus cancer-free controls 

Genetic association analyses of single variants and genes investigated the following cancer phenotypes: (1) 

diagnosis with at least two primary cancers across any of the 36 organ sites ("any 2+ primary cancers”) and 

(2) groupings of individuals defined by a shared index cancer at one of 16 organ sites with at least 50 cases 

from each study population ("cancer-specific analyses”). Primary analyses compared multiple cancer cases 

to cancer-free controls. Within our cancer-specific analyses of 16 organ sites, there were cases shared across 

our index cancer groupings. For example, the set of individuals with at least one diagnosis of breast cancer 

overlaps with those having at least one ovarian cancer diagnosis.  

 

Single-variant and gene-based association analyses were performed using REGENIE v2.2.4, a machine-

learning approach for performing whole-genome regression to correct for cryptic population structure, as 

well as, adjust for case-control imbalance by applying saddlepoint approximation when the standard case-

control p-value is less than 0.0518. We assessed single-variant associations for high-quality variants shared 

across both populations with minor allele count (MAC) > 2 across cancer phenotype cases and controls 

within each study. The number of variants tested in our single-variant analyses varied by cancer phenotype 

(~337K [other female genital cancer-specific analysis] to ~722K [any 2+ primary cancers]). WES variants 

were functionally annotated using SnpEff v5.019 and dbNFSP v3.520 accessed through ANNOVAR21. 

Missense variants were classified using five algorithms: (1) SIFT (“D”); (2) HDIV from Polyphen2; (3) 

HVAR from Polyphen2; (4) LRT (“D”); and (5) MutationTaster (“A” or “D”). For our gene-based burden 

analyses, we restricted to rare variants with a MAF < 0.5%, including singletons, computed across all 

individuals within each study population. Following previous work, three gene-based models were 

evaluated and the model with the lowest p-value was selected22: (1) all rare variants with predicted loss-of-

function (pLOF) by SnpEff, (2) pLOF and missense rare variants predicted to be deleterious by the above 
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five classification algorithms, and (3) pLOF and missense rare variants predicted to be deleterious by at 

least one algorithm. In our gene-based and single-variant analyses, we adjusted for covariates including 

age, top 10 PCs, and sex (except for sex-specific index cancers of the breast, cervix, ovary, uterus, other 

female genital organ, and prostate). In the KPRB population, we additionally adjusted for genotyping array 

and reagent kit, as they were used to perform case-control matching. In the UKB, we adjusted for flow cell 

(S2 vs S4), which differed for the initial 50K and subsequent 150K release of WES samples. 

 

Single-variant and gene-based burden analyses for each phenotype were combined across study populations 

in a fixed-effects meta-analysis using METASOFT23 and metafor v3.0.224, respectively. For our single-

variant analyses, we report all suggestive, independent [linkage disequilibrium (LD) r2 < 0.2] associations 

with p < 5x10-6. For our gene-based analyses, we report all associations adjusted for the number of genes 

tested (p < 2.65x10-6 = 0.05/ 18,842). In both analyses, we report meta-analysis p-values. 

 

3.3.5 Distinguishing susceptibility signals for multiple cancers versus single cancers 

We also evaluated whether the variants and genes associated with the diagnosis of multiple primary cancers 

(versus non-cancer controls) remained associated when comparing individuals with multiple cancers to 

those diagnosed with a single cancer. These analyses assessed whether the variants or genes were 

pleiotropic for developing multiple cancers or general markers of susceptibility to a specific cancer. We 

undertook these analyses in the UKB sample only, since individuals diagnosed with a single primary cancer 

were not sequenced in the KPRB. Single-variant and gene-level analyses were implemented as described 

above. For each variant or gene of interest identified in our case-control analyses, we performed a case-

case analysis comparing individuals diagnosed with multiple cancers to those diagnosed with a single 

cancer. For our cancer-specific analyses, we compared individuals diagnosed with the index cancer plus 

any other cancer to those diagnosed with the index cancer only. For example, for a finding discovered in 

our cancer-specific analysis of prostate cancer, we performed a case-case analysis comparing individuals 

diagnosed with prostate cancer plus any other cancer to individuals with only a prostate cancer diagnosis.  
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3.4 Results 

3.4.1. Characterization of multiple primary cancer diagnoses in two large study populations 

Our meta-analyses included 6,429 cases with multiple primary cancers and 165,853 cancer-free controls 

(Table 1). All cases had at least two independent primary cancer diagnoses, and 656 cases had more than 

two diagnoses (Figure S2). In the KPRB, the maximum number of cancer diagnoses for an individual was 

6 (n = 1) and in the UKB, the maximum number was 5 (n = 2). Overall, 36 unique cancer sites were 

represented across multiple cancer cases in the two study populations, with 180 unique pairs of sites (e.g., 

breast and melanoma) and 298 unique ordered pairs of sites by diagnostic sequence (e.g., breast followed 

by melanoma) (Table S2). Only 51 of the 298 ordered pairs had at least 25 cancer cases when grouping 

individuals by first and second cancer diagnosis (i.e., ignoring any subsequent cancer diagnoses; Table S2, 

Figure 1). The top ordered pairs represented in the combined study populations were prostate then 

melanoma (N = 221), cervix then breast (N = 202), melanoma then prostate (N = 180), breast then 

melanoma (N = 174), and prostate then colorectal (N = 170). Prostate, breast, melanoma, colorectal, and 

cervix were the most common sites of first cancer diagnoses (Figure 1). The prevalence of each cancer pair 

was similar in the KPRB and UKB (Figure S3). As most individual cancer pairs were underpowered for 

downstream analysis, we considered all multi-cancer cases combined, as well as groupings of individuals 

with a shared index cancer (16 cancers) (Figure S4, Table S3). Among those with multiple cancers, the 

cancers with the largest number of cases were prostate (N = 1,977; oversampled in KPRB), breast (N = 

1,874), melanoma (N = 1,443), colorectal (N = 1,324), and urinary bladder (N = 829).  

 

3.4.2. Exome-wide single variant association analyses 

We found two independent, genome-wide significant associations (p < 5x10-8) and 20 suggestive 

associations (p < 5x10-6) between individual variants and the multiple cancer phenotypes (i.e., either any 

2+ primary cancers or cancer-specific analyses) (Figure 2, Table S4). We found an additional two 

significant and two suggestive associations (Figure S5) in our cancer-specific analyses of lymphoid and 
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myeloid neoplasms; however, we assumed them to represent somatic alterations in the blood as they had 

low allele balance across our heterogenous samples (Figure S6) and occur in genes known to be impacted 

by clonal hematopoiesis of indeterminate potential (CHIP)25. Results were relatively homogeneous across 

the KPRB and UKB study populations (Table S4). 

 

Of our 22 findings, two variants were suggestively associated with any 2+ primary cancers, rs555607708 

(OR [95% CI] = 2.72 [1.79, 4.15], p = 3.10x10-6), a frameshift variant in CHEK2 known to be associated 

with risk at many cancer sites26, and rs146381257 (OR [95% CI] = 7.82 [3.28, 18.62], p = 3.45x10-6), a 

5’upstream variant in ZNF106. The risk-increasing allele for rs555607708 (CHEK2) was most commonly 

found among individuals with at least one breast cancer (41.9%), prostate cancer (30.6%), melanoma 

(22.6%), or cervical cancer (16.1%) (Figure 2). For rs146381257 (ZNF106), frequencies were increased in 

prostate cancer (33.3%), lung cancer (28.6%), breast cancer (28.6%), lymphoid neoplasms (23.8%), urinary 

bladder cancer (19.0%), pancreatic cancer (14.3%), and kidney cancer (14.3%).  

 

An additional 10 of our findings were previously reported risk variants for a single cancer (Figure 2). 

Notably, we detected an association with the MC1R variant rs1805008 for melanoma27 (OR [95% CI] = 

1.56 [1.35, 1.81], p = 2.73x10-9), when comparing all individuals with at least one melanoma diagnosis plus 

any other cancer diagnosis to cancer-free controls. We also replicated the previously associated prostate-

specific antigen (PSA) variant, rs1763254228 (KLK3, OR [95% CI] = 1.49 [1.28, 1.73], p = 3.87x10-7) in 

individuals with at least one prostate cancer diagnosis. In addition, we replicated associations between 

missense risk variant rs6998061 (8q24 locus, POU5F1B) and multiple tumor types in both our prostate 

cancer-specific analysis29 (OR [95% CI] = 1.23 [1.13, 1.33], p = 4.39x10-7) and our colorectal cancer-

specific analysis30 (OR [95% CI] = 1.25 [1.15, 1.37], p = 1.06x10-7). 

 

The remaining variants demonstrating associations with multiple cancer phenotypes were not previously 

associated with any single cancer (Figure 2). They included a variant discovered in our breast cancer-



 50 

specific analysis, rs143745791 (NCBP1, OR [95% CI] = 5.95 [2.79, 12.67], p = 3.76x10-6), for which 16.2% 

of carriers, restricted to cases, had a breast and cervical cancer diagnosis, and a variant discovered in our 

urinary bladder cancer-specific analysis, rs141647689 (SDK1, OR [95% CI] = 9.29 [3.63, 23.80], p = 

3.45x10-6), for which 14.3% of carriers also had prostate cancer (Figure 2). Three variants found in our 

lymphoid neoplasm-specific analysis had increased frequencies in cases who also had a diagnosis of 

prostate cancer: rs535484207 (RANBP2, OR [95% CI] = 256.01 [26.82, 2,442.95], p = 1.46x10-6), 

rs139586367 (UFL1, OR [95% CI] = 284.06 [27.95, 2,886.15], p = 1.79x10-6), and rs191064896 (ADGRB1, 

OR [95% CI] = 108.36 [15.02, 781.08], p = 3.32x10-6), where 21.4%, 40.0%, and 25.0% of carriers for the 

risk-increasing allele, for each respective variant, had both cancers. The ADGRB1 variant was also present 

at increased frequencies among individuals with a lymphoid neoplasm and breast cancer diagnosis (25.0%, 

Figure 2). 

 

3.4.3. Gene-based analyses of multiple cancers 

Out of 18,842 genes tested, we found 10 significant associations (p < 2.65x10-6) across our analyses of any 

2+ primary cancers and our cancer-specific analyses (Figure 3, Table S5). An additional four CHIP genes 

(ASXL1, TET2, JAK2, and DDX41) were significantly associated with myeloid neoplasms and are likely 

driven by somatic alterations (Figure S7). 

 

In our analyses of any 2+ primary cancers and our breast cancer-specific analysis, we replicated associations 

for known pleiotropic genes, BRCA2 (pLOF, p = 3.76x10-11 and 1.91x10-9) and CHEK2 (pLOF + missense, 

p = 2.95x10-11 and 1.67x10-8) (Figure 3). BRCA2 also emerged in our ovarian cancer-specific analysis 

(pLOF, p = 1.91x10-9). We found associations between the known prostate cancer gene ATM and any 2+ 

primary cancers and in our prostate cancer-specific analysis (pLOF + missense, p = 9.84x10-7 and 2.56x10-

6). Additional associations were observed between SAMHD1 and SLC642 and any 2+ primary cancers 

(pLOF + missense, p = 2.40x10-7 and p = 5.44x10-7, respectively). BRCA1 also surfaced in the breast cancer-

specific analysis (pLOF, p = 6.68x10-8). 
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Predicted loss of function variants in BRCA1 and BRCA2 were present at increased frequencies in 

individuals with a breast cancer diagnosis and ovary as an additional cancer site (Figure 3), such that 28.6% 

and 13.6% of individuals, respectively, were a carrier for at least one variant in the burden set. For BRCA1, 

there was also an increase of carriers with an additional melanoma (9.52%) or lung cancer (9.52%) 

diagnosis. For BRCA2, there was an increase of carriers with an additional uterine (8.47%), lung (6.78%), 

or colorectal cancer (6.78%). 

 

3.4.4. Comparison of mutation burden in individuals with multiple versus single cancers 

Out of the 22 associated variants (Figure 2), 10 remained associated when comparing individuals with 

multiple cancers to those with single cancers (Table S6; p < 0.05). Two of these variants were positively 

associated in our analysis of any 2+ primary cancers: rs555607708 (CHEK2; OR [95% CI] = 1.57 [1.09, 

2.25], p = 0.015) and rs146381257 (ZNF106; OR [95% CI] = 5.38 [1.07, 27.18], p = 0.042). The other eight 

variants were positively associated with diagnosis of a specific index cancer plus any other cancer versus 

the specific cancer alone (Table S6). Two of these eight variants were associated in our breast cancer-

specific case-case analysis: rs7872034, a missense variant in SMC2 (OR [95% CI] = 1.16 [1.05, 1.27], p = 

0.0025) and rs143745791, a missense variant in NCBP1 (OR [95% CI] = 3.71 [2.08, 6.61], p = 8.37x10-6). 

 

Of the 10 findings from the gene-level burden analyses (Figure 3), eight remained positively associated 

with multiple cancers in comparison with single cancers (p<0.05; Table S7). Five of these genes were 

discovered in our case-case analysis of any 2+ primary cancers: SLC6A2 (OR [95% CI] = 1.86 [1.42, 2.41], 

p = 3.90x10-6), ATM (OR [95% CI] = 1.42 [1.15, 1.77], p = 1.10x10-3), CHEK2 (OR [95% CI] = 1.56 [1.23, 

1.98], p = 2.31x10-4), SAMHD1 (OR [95% CI] = 1.56 [1.14, 2.13], p = 5.34x10-3), and BRCA2 (OR [95% 

CI] = 1.86 [1.31, 2.65], p = 5.42x10-4). ATM (OR [95% CI] = 1.82[1.20, 2.75], p = 4.64x10-3) was positively 

associated in our prostate cancer-specific case-case analysis, and the two remaining genes were positively 
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associated in our breast cancer-specific case-case analysis: BRCA1 (OR [95% CI] = 2.38 [1.07, 5.30], p = 

0.0340) and BRCA2 (OR [95% CI] = 1.97 [1.22, 3.18], p = 5.50x10-3). 

 

3.5 Discussion 

We investigated the genetic basis of carcinogenic pleiotropy through whole exome sequencing of 

individuals diagnosed with multiple primary cancers from two large, multi-ancestry study populations. 

Comparing individuals with multiple cancers to cancer-free controls uncovered 22 independent, 

suggestively associated variants, ten of which remained associated when comparing individuals with 

multiple cancers to those with a single cancer. Across our multiple cancer phenotypes, we also recapitulated 

previously known gene-based associations in ATM, BRCA1/2, CHEK2 and found potentially novel 

associations in SAMHD1 and SLC6A2. These genes remained associated with multiple cancer diagnoses 

when comparing to individuals with a single cancer. These findings offer insights into germline exome 

variants that increase an individual’s risk of developing multiple primary cancers. 

 

Compelling findings from our analyses of all individuals with more than one cancer diagnosis include 

associations with the rare variant rs146381257 in ZNF106. Carriers of the rs146381257 risk allele (C) were 

primarily over-represented in individuals with at least one prostate, breast, lung, or urinary bladder cancer 

and in individuals with lymphoid neoplasms. Carriers also demonstrated an increased risk of developing 

multiple cancers compared to individuals with a single cancer. ZNF106 is an RNA binding protein involved 

in post-transcriptional regulation and insulin receptor signaling. Although germline variation in ZNF106 

has not previously been associated with cancer risk, a recent study found it to be associated with worse 

urinary bladder cancer survival31. 

 

Additional noteworthy findings from our analyses of all multiple primary cancers combined include cancer 

susceptibility signals in SAMHD1 and SLC6A2, both having a significantly higher risk being diagnosed 

with multiple cancers compared to single cancers. Germline SAMHD1 mutations are implicated in Aicardi-
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Goutieres Syndrome (AGS)32, an autosomal recessive condition that results in autoimmune inflammatory 

encephalopathy. Most cancer-related studies have focused on the role of somatic alternations in SAMHD133; 

however, a study  of chronic lymphoid leukemia (CLL) proposed an oncogenic role of germline SAMHD1 

variation mediated by DNA repair mechanisms34. Consistent with this hypothesis, we also found increased 

SAMHD1 variation in individuals with lymphoid neoplasms, as well as with prostate, breast, colorectal and 

lung cancers. SLC6A2, also known as NAT1, has been found to be prognostic for colon cancer35, and both 

in-vivo and in-vitro studies have linked expression to survival in many cancer types, including prostate36 

and breast37. Polymorphisms in SLC6A2 may also interact with smoking exposure to modulate risk for 

tobacco-related cancers38.  

 

Because we compared multiple primary cancers with both cancer-free controls and individuals diagnosed 

with a single cancer, we were well positioned to explore patterns of pleiotropy and disentangle variation 

likely to be driven by single cancers. For example, we identified two variants, rs7872034 (missense variant 

in SMC2) and rs143745791 (missense variant in NCBP1), suggestively associated with a diagnosis of at 

least one breast cancer (plus any other cancer) versus no cancer. These variants remained associated with a 

diagnosis of breast and another cancer when comparing to individuals diagnosed with a single breast cancer. 

While rs7872034 is in high LD (r2 = 0.98) with a known breast cancer risk variant (rs4742903; SMC2 

intron)39, it may also increase the risk of developing multiple cancers. Regarding rs143745791, germline 

variants in NCBP1 have not been previously associated with cancer; because it is rare (MAF < 0.2%), larger 

sequencing efforts may be necessary identify variation in studies of individuals with a single cancer. 

Expression of this gene has been found to promote lung cancer growth and poor prognosis40, and NCBP1 

is overexpressed in basal-like and triple-negative breast cancers41. Similarly, BRCA1/2 germline variants 

are prevalent among these subtypes; however, in our study populations, BRCA1/2 carriers were more 

common among those with an additional ovarian cancer whereas NCBP1 carriers more frequently had an 

additional cervical cancer.  
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In our prostate cancer-specific analysis comparing individuals with multiple cancers versus those with only 

a single cancer, we discovered a suggestive association with rs3020779, an eQTL for RNF123 (also known 

as KPC1), which is a gene involved in p50 mediation and downstream stimulation of multiple tumor 

suppressors42. In our analysis of head and neck cancer, we detected an association with rs12253181 (eQTL 

for RTKN2); while this gene has not previously been associated with head and neck cancer risk, it has been 

shown to function as an oncogene in non-small cell lung cancer (NSCLC) and decreasing its expression 

may inhibit proliferation by inducing apoptosis43. 

 

Limitations of our study included the identification of variants that were likely-somatic in our analyses of 

hematologic cancers due to an expansion of hematopoietic clonal populations with the same acquired 

mutation (i.e., CHIP). Confounding of germline testing by CHIP has been reported in TP5344 and TET245, 

so careful interpretation is critical to avoid unnecessary clinical intervention. An additional limitation of 

our, and other, studies are obtaining accurate effects estimates for rare variants and the reliance on available 

annotations for inclusion into gene-based tests. Replication of rare findings in larger cohorts and 

optimization of functional impact annotations could lead to more precise results. Also, while our approach 

did not allow for formal replication, it was designed to identify signals for a largely understudied phenotype 

that were concordant in two populations. Finally, while all individuals with multiple cancers were included 

in our study regardless of genetic ancestry, non-European ancestries were underrepresented; larger, more 

diverse cohorts will be needed to fully explore the genetic basis of multiple cancers. 

 

Strengths of this work include studying individuals of multiple ancestries who were largely unselected for 

specific cancer phenotypes.  We also performed the first ever exome-wide study of genetic susceptibility 

to multiple primary cancers, using two large multi-ancestry study populations. Our study design allowed us 

to characterize variation across multiple primary cancers representing 36 unique sites, as well as to conduct 

cancer-specific analyses of 16 sites. Using this approach, we confirmed many known single-variant and 
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gene-based findings, strengthening and supporting our novel results reported for individual cancers through 

our cancer-specific analyses. 

 

In summary, by undertaking an exome-wide survey of common and rare variation in two large study 

populations, we identified several variant and gene-based associations that may increase the risk of 

developing multiple cancers within individuals. Our findings have potential implications for improving our 

understanding of the shared mechanisms of carcinogenesis. They may also enable screening strategies that 

prioritize individuals at risk for developing additional cancers. Furthermore, since many of the genes 

reported here have been considered as potential therapeutic targets in cancer, our work supports the use of 

germline information to help guide precision medicine. Future studies should aim to replicate our findings 

and undertake experiments that validate the functionality of the discovered pleiotropic variants. Combined 

with future research, our results have potential to inform genetic counseling, improve risk prediction for 

multiple cancers, and guide novel treatment and drug development. 
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3.7 Tables 

Table 3.1 Study populations 

Table 3.1 Legend: Characteristics of the Kaiser Permanente Research Bank and UK Biobank study 
populations by ancestry group. Cases are individuals with multiple primary cancers. Controls are those 
without any cancer.   
 

 Population: Kaiser Permanente Research Bank 
 

Population: UK Biobank 
 Cases Controls 

 

Cases Controls 

Ancestry N 
Mean 
Age 

Female 
(%) N 

Mean 
Age 

Female 
(%) 

 

N 
Mean 
Age 

Female 
(%) N 

Mean 
Age 

Female 
(%) 

AFR 99 70.5 33.3 100 70.4 32.0 
 

29 55.9 51.7 3,292 51.8 60.4 

EAS 95 69.7 49.5 91 69.5 49.5 
 

10 58.8 80.0 1,009 52.6 66.9 

EUR 2,786 72.8 43.0 2,81
5 72.9 43.3 

 

3,249 61.9 51.7 154,047 56.6 54.6 

LAT 131 69.5 46.6 130 69.5 45.4 
 

5 63.8 80.0 334 51.8 62.6 

SAS - - - - - - 
 

25 58.2 60.0 4,035 53.3 47.0 
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3.8 Figures 

 

 

Figure 3.1 Cancer diagnosis pairs present in the combined study populations 
 
Figure 3.1 Legend: Circos plot describing the pairs of first and second cancer diagnoses with at least 25 
cases present in Kaiser Permanente Research Bank and the UK Biobank study populations combined. Each 
connection reflects the number of cases with both of the linked primary cancers, where the color of the line 
shows the first cancer site diagnosed. 
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Figure 3.2 Germline single variant association results for multiple primary cancers combined or grouped 
by organ site  

Figure 3.2 Legend: Suggestive (p < 5x10-6) germline variant associations with multiple cancer phenotypes 
versus cancer-free controls (n = 165,853) following a fixed-effects meta-analysis of Kaiser Permanente 
Research Bank and UK Biobank WES data. Associations were detected for any 2+ primary cancers (n = 
6,429) and with groups of cases defined by a shared index cancer, at any time point, plus any other cancer 
diagnosis: melanoma + (n = 1,443), prostate + (n = 1,977), breast + (n = 1,874), head and neck + (n = 283), 
thyroid + (n = 198), urinary bladder + (n = 829), colorectal + (n = 1,324), lymphoid neoplasms + (n = 728). 
Variants that have been previously associated in single cancer studies have superscript (a). The heatmap 
reflects the number of carriers with the risk-increasing allele for each associated variant with the index (y-
axis) and additional (x-axis) cancer over the total number of carriers, restricting to cancer cases. When the 
index and additional cancer are the same, the heatmap value represents all carriers with the specified cancer 
diagnosis divided by the total number of carriers. Abbreviations: SNP – single nucleotide polymorphism; 
EA – effect allele; OR – odds ratio. 
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Figure 3.3 Germline gene-based association results for multiple primary cancers combined or grouped by 
organ site 

Figure 3.3 Legend: Burden tests were performed combining variants defined as pLOF with or without 
deleterious missense variants, defining deleteriousness by at least one (1/5) or all five (5/5) prediction 
algorithms used (Methods), at a MAF < 0.5%. Following a fixed-effects meta-analysis of Kaiser 
Permanente Research Bank and UK Biobank data, Bonferroni significant associations (p < 2.65x10-6 = 
0.05/ 18,842) corrected for the number of genes tested were found for comparisons of cancer-free controls 
(n = 165,853) with all cases with any 2+ primary cancers (n = 6,429) and with groups of cases defined by 
an index cancer for the following phenotypes: prostate + (n = 1,977), breast + (n = 1,874), and ovary + (n 
= 239). For each gene, the variant grouping with the smallest p-value and fewest number of variants was 
selected. The heatmap reflects the number of carriers of each associated variant, with the index (y-axis) and 
additional (x-axis) cancer over the total number of carriers, where carrier is defined as having at least one 
alternate allele across all variants in a given gene, restricting to cancer cases. When the index and additional 
cancer are the same, the heatmap value represents all carriers with the specified cancer diagnosis divided 
by the total number of carriers. Abbreviations: OR – odds ratio; pLOF – predicted loss of function. 
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3.9 Supplementary Materials 

Table S3.1 Cancer definitions 

Cancer Site SEER Codes WHO Codes 
Head and Neck 20010, 20011 NA 
Esophagus 21010 NA 
Stomach 21020 NA 
Small Intestine 21030 NA 
Colorectal 21040, 21050 NA 
Anus 21060 NA 
Liver 21070, 21071, 21072 NA 
Pancreas 21100 NA 
Gallbladder and Biliary Tract 21080, 21090 NA 
Other Digestive 21110, 21120, 21130 NA 
Lung 22030, 22031 NA 
Other Respiratory 22010, 22020, 22050, 22060 NA 
Bone 23000 NA 
Soft Tissue Sarcoma 24000 NA 
Melanoma 25010 NA 
Non-Epithelial Skin 25020 NA 
Breast 26000 NA 
Cervix 27010 NA 
Uterus 27020, 27030 NA 
Ovary 27040 NA 
Other Female Genital 27050, 27060, 27070 NA 
Prostate 28010 NA 
Testis 28020 NA 
Other Male Genital 28030, 28040 NA 
Urinary Bladder 29010 NA 
Kidney 29020 NA 
Other Urinary Organs 29030, 29040 NA 
Eye and Orbit 30000 NA 
Brain 31010, 31011 NA 
Thyroid 32010 NA 
Other Endocrine 32020 NA 
Mesothelioma 36010 NA 
Kaposi Sarcoma 36020 NA 

T-Cell and NK-Cell Neoplasms NA 9729, 9837, 9834, 9831, 9948, 9827, 9719, 9717, 9716, 9708, 9700, 9701, 
9718, 9702, 9705, 9714, 9659, 9650, 9665, 9667, 9651, 9652, 9653 

Lymphoid Neoplasms NA 9728, 9836, 9823, 9670, 9833, 9671, 9689, 9940, 9732, 9731, 9699, 9699, 
9690, 9691, 9695, 9698, 9673, 9680, 9679, 9678, 9687, 9826 

Myeloid Neoplasms NA 

9875, 9963, 9964, 9961, 9950, 9962, 9975, 9945, 9876, 9946, 9980, 9982, 
9980, 9985, 9983, 9986, 9989, 9896, 9866, 9871, 9897, 9895, 9895, 9895, 
9920, 9920, 9920, 9920, 9861, 9872, 9873, 9874, 9867, 9891, 9840, 9910, 

9870, 9931, 9805 
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Table S3.2 Cancer pairs with at least 25 cases combined across study populations 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Cancer Dx 1 Cancer Dx 2 Num Cases UKB Num Cases Kaiser Total Cases 
Prostate Melanoma 47 174 221 
Cervix Breast 146 56 202 
Melanoma Prostate 60 120 180 
Breast Melanoma 65 109 174 
Prostate Colorectal 88 82 170 
Prostate Urinary Bladder 46 115 161 
Breast Colorectal 86 65 151 
Urinary Bladder Prostate 86 53 139 
Melanoma Breast 70 62 132 
Colorectal Prostate 65 65 130 
Breast Lung 68 60 128 
Breast Uterus 63 58 121 
Prostate Lung 45 59 104 
Prostate Lymphoid Neoplasms 34 68 102 
Uterus Breast 50 48 98 
Colorectal Breast 39 37 76 
Breast Lymphoid Neoplasms 38 37 75 
Prostate Kidney 27 37 64 
Lymphoid Neoplasms Prostate 32 31 63 
Colorectal Colorectal 46 13 59 
Melanoma Colorectal 29 30 59 
Colorectal Lung 32 23 55 
Breast Ovary 25 29 54 
Melanoma Lymphoid Neoplasms 24 29 53 
Prostate Pancreas 18 32 50 
Colorectal Melanoma 19 29 48 
Melanoma Urinary Bladder 8 37 45 
Melanoma Lung 19 22 41 
Thyroid Breast 19 21 40 
Urinary Bladder Melanoma 16 24 40 
Breast Urinary Bladder 21 17 38 
Colorectal Urinary Bladder 17 19 36 
Kidney Prostate 21 15 36 
Uterus Colorectal 14 22 36 
Cervix Melanoma 26 9 35 
Cervix Lung 27 6 33 
Ovary Breast 17 15 32 
Urinary Bladder Lung 13 19 32 
Prostate Myeloid Neoplasms 4 27 31 
Lymphoid Neoplasms Colorectal 20 9 29 
Prostate Head and Neck 7 22 29 
Colorectal Lymphoid Neoplasms 13 15 28 
Breast Myeloid Neoplasms 15 12 27 
Lymphoid Neoplasms Breast 16 11 27 
Breast Kidney 15 11 26 
Breast Pancreas 15 11 26 
Lymphoid Neoplasms Lung 17 9 26 
Head and Neck Lung 15 11 26 
Head and Neck Prostate 11 15 26 
Breast Head and Neck 19 6 25 
Lymphoid Neoplasms Melanoma 11 14 25 
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Table S3.3 Groupings of multiple cancer cases by a shared index cancer 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

Index Cancer Num Cases UKB Num Cases KPRB Total Cases 
Prostate 809 1168 1977 
Breast 1030 844 1874 
Melanoma 547 896 1443 
Colorectal 745 579 1324 
Urinary Bladder 347 482 829 
Lung 401 389 790 
Lymphoid Neoplasms 366 362 728 
Cervix 408 127 535 
Uterus 214 243 457 
Kidney 229 189 418 
Head and Neck 145 138 283 
Myeloid Neoplasms 111 142 253 
Ovary 142 97 239 
Pancreas 93 105 198 
Thyroid 91 107 198 
Esophagus 99 39 138 
Stomach 88 42 130 
Other Female Genital 63 57 120 
Brain 71 40 111 
T-Cell and NK-Cell Neoplasms 70 37 107 
Eye and Orbit 89 16 105 
Other Respiratory 55 44 99 
Soft Tissue Sarcoma 51 47 98 
Other Urinary Organs 38 39 77 
Non-Epithelial Skin 25 51 76 
Anus 33 38 71 
Liver 42 29 71 
Testis 59 10 69 
Small Intestine 36 25 61 
Gallbladder and Biliary Tract 30 19 49 
Mesothelioma 30 11 41 
Other Digestive 19 15 34 
Other Male Genital 14 16 30 
Other Endocrine 15 9 24 
Bone 11 7 18 
Kaposi Sarcoma 1 3 4 
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Table S3.4 Single-variant case-control meta-analysis associations for multiple cancer phenotypes 

Phenotype SNP Chrom Position Gene EA Beta SE Pvalue Cochran's 
Q 

Pvalue 
Q 

Multiple 
Cancers rs555607708 22 28695868 CHEK2 A 1.0 0.22 3.1E-06 3.0 0.082 

Multiple 
Cancers rs146381257 15 42448087 ZNF106 C 2.1 0.44 3.5E-06 0.62 0.43 

Melanoma rs1805008 16 89919736 MC1R T 0.45 0.075 2.7E-09 0.69 0.41 
Melanoma rs7195043 16 89954453 DEF8 T 0.24 0.043 3.1E-08 0.015 0.90 
Melanoma rs72813432 16 89898544 TCF25 G 0.27 0.054 5.0E-07 0.11 0.75 
Melanoma rs1805007 16 89919709 MC1R T 0.34 0.072 2.3E-06 1.8 0.18 
Melanoma rs369230 16 89579029 CPNE7 G 0.21 0.046 4.5E-06 2.4 0.12 
Prostate rs17632542 19 50858501 KLK3 T 0.40 0.078 3.9E-07 0.77 0.38 
Prostate rs6998061 8 127416393 POU5F1B G 0.20 0.040 4.4E-07 0.11 0.74 
Prostate rs3020779 3 49687375 RNF123 T 0.24 0.051 3.5E-06 0.035 0.85 
Breast rs7872034 9 104134528 SMC2 A 0.19 0.038 5.8E-07 2.5 0.11 
Breast rs143745791 9 97643352 NCBP1 A 1.8 0.39 3.8E-06 1.1 0.30 
Head and Neck rs12253181 10 62195767 RTKN2 G 0.54 0.12 2.8E-06 0.21 0.65 
Thyroid rs147096750 10 68430491 DNA2 A 4.5 0.88 4.4E-07 0.57 0.45 
Urinary 
Bladder rs2976393 8 142682200 PSCA G 0.29 0.055 1.0E-07 4.1E-06 1.0 

Urinary 
Bladder rs141647689 7 3962611 SDK1 A 2.2 0.48 3.5E-06 0.20 0.66 

Colorectal rs6998061 8 127416393 POU5F1B G 0.23 0.043 1.1E-07 0.19 0.67 
Colorectal rs71818417 13 49546318 RCBTB1 TCA 0.90 0.17 1.6E-07 0.18 0.67 
Lymphoid 
Neoplasms rs535484207 2 108720130 RANBP2 A 5.6 1.2 1.5E-06 1.1 0.30 

Lymphoid 
Neoplasms rs139586367 6 96526408 UFL1 C 5.7 1.2 1.8E-06 0.54 0.46 

Lymphoid 
Neoplasms rs191064896 8 142520791 ADGRB1 A 4.7 1.0 3.3E-06 0.0070 0.93 

Lymphoid 
Neoplasms rs115235886 5 140128528 IGIP G 0.94 0.20 4.6E-06 0.070 0.79 

Lymphoid 
Neoplasms rs188201162 1 148979731 PDE4DIP T 1.1 0.25 4.6E-06 0.032 0.86 

Myeloid 
Neoplasms rs756958159 20 32434638 ASXL1 AG 5.2 0.77 1.5E-11 0.61 0.43 

Myeloid 
Neoplasms rs751713049 17 76736877 SRSF2 T 7.0 1.1 6.7E-10 2.3 0.13 

Myeloid 
Neoplasms rs559063155 2 197402110 SF3B1 C 7.7 1.6 2.4E-06 0.071 0.79 

           
           

Table S3.5 Gene-based case-control meta-analysis associations for multiple cancer phenotypes 

Phenotype Gene Mask Beta SE Pvalue Cochran's Q Pvalue-Q 
Multiple Cancers SLC6A2 pLOF+missense (1/5) 0.69 0.14 5.4E-07 1.9 0.17 
Multiple Cancers ATM pLOF+missense (5/5) 0.49 0.10 9.8E-07 2.1 0.15 
Multiple Cancers CHEK2 pLOF+missense (5/5) 0.89 0.13 3.0E-11 3.3 0.068 
Multiple Cancers SAMHD1 pLOF+missense (1/5) 1.0 0.20 2.4E-07 5.4 0.021 
Multiple Cancers BRCA2 pLOF 1.7 0.26 3.8E-11 22 3.3E-06 
Prostate ATM pLOF+missense (5/5) 0.83 0.18 2.6E-06 0.52 0.47 
Breast  CHEK2 pLOF+missense (5/5) 1.3 0.23 1.7E-08 0.0080 0.93 
Breast  BRCA1 pLOF 3.9 0.71 6.7E-08 10 1.5E-03 
Breast  BRCA2 pLOF 2.3 0.39 1.9E-09 17 3.6E-05 
Ovary BRCA2 pLOF 3.5 0.74 2.2E-06 9.6 2.0E-03 
Myeloid Neoplasms ASXL1 pLOF 4.5 0.62 3.5E-13 0.25 0.62 
Myeloid Neoplasms TET2 pLOF 3.4 0.54 5.5E-10 0.58 0.45 
Myeloid Neoplasms JAK2 pLOF+missense (5/5) 3.7 0.50 3.7E-13 0.94 0.33 
Myeloid Neoplasms DDX41 pLOF+missense (5/5) 3.8 0.78 1.0E-06 1.2 0.28 
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Table S3.6 Case-case analysis for significant single-variant associations 

Phenotype SNP Chrom Position Gene EA Beta SE Pvalue 
Multiple Cancers rs555607708 22 28695868 CHEK2 A 0.45 0.18 0.015 
Multiple Cancers rs146381257 15 42448087 ZNF106 C 1.7 0.83 0.042 
Melanoma rs1805008 16 89919736 MC1R T 0.15 0.10 0.13 
Melanoma rs7195043 16 89954453 DEF8 T 0.010 0.069 0.89 
Melanoma rs72813432 16 89898544 TCF25 G 0.15 0.080 0.054 
Melanoma rs1805007 16 89919709 MC1R T 0.015 0.095 0.88 
Melanoma rs369230 16 89579029 CPNE7 G 0.095 0.071 0.18 
Prostate rs17632542 19 50858501 KLK3 T -0.10 0.12 0.41 
Prostate rs6998061 8 127416393 POU5F1B G 0.048 0.057 0.40 
Prostate rs3020779 3 49687375 RNF123 T 0.14 0.066 0.038 
Breast rs7872034 9 104134528 SMC2 A 0.15 0.048 2.5E-03 
Breast rs143745791 9 97643352 NCBP1 A 1.3 0.29 8.4E-06 
Head and Neck rs12253181 10 62195767 RTKN2 G 0.69 0.17 7.5E-05 
Thyroid rs147096750 10 68430491 DNA2 A 2.3 0.98 0.020 
Urinary Bladder rs2976393 8 142682200 PSCA G 0.14 0.095 0.13 
Urinary Bladder rs141647689 7 3962611 SDK1 A 1.2 0.48 0.013 
Colorectal rs6998061 8 127416393 POU5F1B G 0.083 0.061 0.17 
Colorectal rs71818417 13 49546318 RCBTB1 TCA 1.3 0.45 4.5E-03 
Lymphoid Neoplasms rs535484207 2 108720130 RANBP2 A 3.0 1.7 0.073 
Lymphoid Neoplasms rs139586367 6 96526408 UFL1 C 1.9 2.3 0.41 
Lymphoid Neoplasms rs191064896 8 142520791 ADGRB1 A 1.6 1.5 0.29 
Lymphoid Neoplasms rs115235886 5 140128528 IGIP G 0.77 0.25 2.0E-03 
Lymphoid Neoplasms rs188201162 1 148979731 PDE4DIP T NA NA NA 
Myeloid Neoplasms rs756958159 20 32434638 ASXL1 AG 0.97 0.77 0.21 
Myeloid Neoplasms rs751713049 17 76736877 SRSF2 T 0.38 0.69 0.59 
Myeloid Neoplasms rs559063155 2 197402110 SF3B1 C 0.37 1.3 0.77 
         

 

Table S3.7 Case-case analysis for significant gene-based associations 

Phenotype Gene Mask Beta SE Pvalue 
Multiple Cancers SLC6A2 pLOF+missense (1/5) 0.62 0.13 3.9E-06 
Multiple Cancers ATM pLOF+missense (5/5) 0.36 0.11 1.1E-03 
Multiple Cancers CHEK2 pLOF+missense (5/5) 0.45 0.12 2.3E-04 
Multiple Cancers SAMHD1 pLOF+missense (1/5) 0.44 0.16 5.3E-03 
Multiple Cancers BRCA2 pLOF 0.62 0.18 5.4E-04 
Prostate ATM pLOF+missense (5/5) 0.60 0.21 4.6E-03 
Breast  CHEK2 pLOF+missense (5/5) 0.23 0.21 0.29 
Breast  BRCA1 pLOF 0.87 0.41 0.034 
Breast  BRCA2 pLOF 0.68 0.24 5.5E-03 
Ovary BRCA2 pLOF 0.54 0.47 0.25 
Myeloid Neoplasms ASXL1 pLOF 0.51 0.68 0.45 
Myeloid Neoplasms TET2 pLOF -1.3 1.1 0.23 
Myeloid Neoplasms JAK2 pLOF+missense (5/5) -0.73 0.48 0.13 
Myeloid Neoplasms DDX41 pLOF+missense (5/5) 0.63 0.55 0.25 
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Figure S3.1 Genetic ancestry in the Kaiser Permanente Research Bank and UK Biobank 

Figure S3.1 Legend: Principal components (PCs) were computed using imputed and quality-controlled 
genotype array data with flashPCA2. To enable accurate ancestry assignment, PCs were projected onto the 
1000G phase 3 reference populations. Individuals were assigned to genetic ancestry populations using the 
minimum distance to the top 10 PCs, and outliers with PCs greater than 5 standard deviations from the 
assigned population mean were removed. Abbreviations: EUR – European; AFR – African; SAS – South 
Asian; EAS – East Asian; LAT – Hispanic/Latino.  
 
  



 66 

 

 

Figure S3.2 Number of primary cancer diagnoses and time intervals between cancer diagnoses for Kaiser 
Permanente Research Bank and UK Biobank individuals with multiple cancers 

Figure S3.2 Legend: The number of primary cancer diagnoses for each individual was tabulated for the 
Kaiser Permanente Research Bank and UK Biobank study populations. The above bar plot shows 
individuals binned according to time between cancer diagnoses, reflecting the subsequent diagnosis 
occurring up to 1 year, 2 to 5 years, 6 to 10 years, or more than 11 years after the prior diagnosis. 
Abbreviations: Dx – Diagnosis  
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Figure S3.3 Most common cancer pairs present in Kaiser Permanente and UK Biobank cases with 
multiple cancers  

Figure S3.3 Legend: Circos plots describing pairs of first and second cancer diagnoses with at least 25 
cases present in the Kaiser Permanente Research Bank (left) and UK Biobank (right). Each connection 
reflects the number of individuals with both of the linked primary cancers, where the color of the line shows 
the first cancer site diagnosed. 
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Figure S3.4 Cancers represented in the Kaiser Permanente Research Bank and UK Biobank with 
sufficient sample size for exome-wide association analyses 

Figure S3.4 Legend: All individuals with multiple cancer who were diagnosed with at a specific site, at 
any time point, were grouped together. A total of 16 cancer sites (represented above) had sufficient sample 
size (N > 50) in each study population for downstream analyses. 
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Figure S3.5 Significant single variant association results due to CHIP 

Figure S3.5 Legend: Significant variant associations (p < 5x10-6) with blood cancer phenotypes compared 
to cancer-free controls following a fixed-effects meta-analysis of the Kaiser Permanente Research Bank 
and UK Biobank WES data. Because of low allele balance, which is suggestive of confounding by clonal 
hematopoiesis of indeterminate potential (CHIP), mutations are expected to be somatic. The heatmap 
reflects the number of carriers with the risk-increasing allele for each associated variant with the index (y-
axis) and additional (x-axis) cancer over the total number of carriers. When the index and additional cancer 
are the same, the heatmap value represents all carriers with the specified cancer diagnosis divided by the 
total number of carriers, restricting to cancer cases. 
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Figure S3.6 Allele balance for findings related to lymphoid and myeloid neoplasms 

Figure S6 Legend: For significant variants discovered in our cancer-specific analyses of either myeloid 
or lymphoid neoplasms, we looked at the allele balance as a function of age for individuals heterozygous 
at each locus. If the majority of heterozygous individuals had allele balance below 0.5, we assumed that 
they were likely somatic due to confounding by clonal hematopoiesis of indeterminate potential (CHIP). 
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Figure S3.7 Significant gene-based association results due to CHIP 

Figure S7 Legend: Burden tests were performed combining variants defined as pLOF with or without 
deleterious missense variants, defining deleteriousness by at least one (1/5) or all five (5/5) of prediction 
algorithms used (Methods), at a minor allele frequency < 0.5%. Bonferroni significant associations (P < 
2.65x10-6 = 0.05/ 18,842) corrected for the number of genes tested were found for comparisons of cancer-
free controls with myeloid neoplasms following a fixed-effects meta-analysis of Kaiser Permanente 
Research Bank and UK Biobank data. For each gene, the variant grouping with the smallest p-value and 
fewest number of variants was selected. The heatmap reflects the number of carriers of each associated 
variant, with the index (y-axis) and additional (x-axis) cancer over the total number of carriers where carrier 
is defined as having at least one alternate allele across all variants in a given gene. When the index and 
additional cancer are the same, the heatmap value represents all carriers with the specified cancer diagnosis 
divided by the total number of carriers, restricting to cancer cases. Myeloid associations occur in frequently 
mutated clonal hematopoiesis of indeterminate potential (CHIP) genes. 
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