
UC Berkeley
UC Berkeley Previously Published Works

Title
Graph regularization methods for Web spam detection

Permalink
https://escholarship.org/uc/item/8q0907wv

Journal
Machine Learning, 81(2)

ISSN
1573-0565

Authors
Abernethy, Jacob
Chapelle, Olivier
Castillo, Carlos

Publication Date
2010-11-01

DOI
10.1007/s10994-010-5171-1

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8q0907wv
https://escholarship.org
http://www.cdlib.org/

Mach Learn (2010) 81: 207–225
DOI 10.1007/s10994-010-5171-1

Graph regularization methods for Web spam detection

Jacob Abernethy · Olivier Chapelle · Carlos Castillo

Received: 9 July 2008 / Revised: 21 October 2009 / Accepted: 17 February 2010 /
Published online: 25 March 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We present an algorithm, WITCH, that learns to detect spam hosts or pages on
the Web. Unlike most other approaches, it simultaneously exploits the structure of the Web
graph as well as page contents and features. The method is efficient, scalable, and provides
state-of-the-art accuracy on a standard Web spam benchmark.

Keywords Adversarial information retrieval · Spam detection · Web spam · Graph
regularization

1 Introduction

Adversarial Information Retrieval (Fetterly 2007) studies how to perform information re-
trieval tasks, such as searching or ranking, in collections in which some objects have been
maliciously manipulated. The most prevalent form of such manipulation is spam, a problem
that pervades most electronic communications.

Web spam manifests itself as web content generated deliberately for the purpose of trig-
gering unjustifiably favorable relevance or importance of some Web page or pages (Gyöngyi
and Garcia-Molina 2005). It has been identified as one of the main challenges Web search
engines need to address (Henzinger et al. 2002), as it not only deteriorates the quality of

Editor: Pavel Laskov.

J. Abernethy (�)
University of California, Berkeley, USA
e-mail: jake@cs.berkeley.edu

O. Chapelle
Yahoo! Research, Santa Clara, USA
e-mail: chap@yahoo-inc.com

C. Castillo
Yahoo! Research, Barcelona, Spain
e-mail: chato@yahoo-inc.com

mailto:jake@cs.berkeley.edu
mailto:chap@yahoo-inc.com
mailto:chato@yahoo-inc.com

208 Mach Learn (2010) 81: 207–225

search results, but also weakens the trust between the user and the search engine provider,
and wastes a significant amount of computational resources in the search engine.

It has been observed that spam and non-spam pages exhibit different statistical prop-
erties (Fetterly et al. 2004), and this difference can be exploited for building automatic
classifiers. In fact, a number of machine learning approaches to Web spam detection
have been shown effective (Ntoulas et al. 2006; Urvoy et al. 2006; Mishne et al. 2005;
Kolari et al. 2006).

From a machine learning perspective, the spam detection task differs from a typical clas-
sification task since not only do we have standard features available for every page/host,
but we are also given a directed hyperlink structure on our data as well. A hyperlink often
reflects some degree of similarity (Davison 2000; Zhang et al. 2006) among pages. Complex
patterns can be observed in the hyperlinks; for instance, in the particular case of spam it has
been observed that non-spam hosts rarely link to spam hosts, even though spam hosts will
regularly link to non-spam hosts.

The techniques proposed to date for exploiting link-information in web spam classifica-
tion fit within roughly three categories. One group of techniques analyzes the topological
relationship (e.g.: distance, co-citation, etc.) between the Web pages and a set of pages for
which labels are known (Gyöngyi et al. 2004; Benczúr et al. 2006; Krishnan and Raj 2006;
Zhou et al. 2007; Wu et al. 2006; Joshi et al. 2007). Another option is to extract link-based
metrics for each node and use these as features in any standard classification algorithm (Bec-
chetti et al. 2006). Finally, it has been shown that the link-based information can be used to
refine the results of a base classifier by re-labelling using propagation through the hyperlink
graph, or a stacked classifier (Castillo et al. 2007; Gan and Suel 2007).

In this paper we present a learning algorithm that we call WITCH, for Webspam Identi-
fication Through Content and Hyperlinks, that directly uses the hyperlink structure during
the learning process in addition to page features. Specifically, we learn a linear classifier on
a feature space using an SVM-like objective function. The hyperlink data is exploited by
way of graph regularization, which produces a predictor with the goal that predicted val-
ues will vary smoothly between linked pages. Our results suggest that this method of SVM
with graph regularization is highly effective at detecting Web spam, outperforming all other
state-of-the-art methods that we have implemented.

The primary contributions of this work are as follows:

– We propose a novel approach for Web spam classification using a graph-regularized clas-
sifier.

– We demonstrate the effectiveness of this approach in a standard reference collection task.
– We show that our method performs well even with little training data.

Ours is, to the best of our knowledge, the first technique for spam detection that simulta-
neously uses features and the hyperlink graph directly for training. Note that these features
can be a combination of any type of features such as content-based and link-based features.

The rest of this paper is organized as follows. Section 2 describes the learning schema
we propose. Section 3 discusses various design choices such as the graph regularization
function. Finally, Sect. 4 compares the performances of our algorithm with several state-of-
the-art spam detection techniques.

2 Learning schema

For the remainder of this paper, we will discuss classification of hosts as spam or non-spam.
A host is a group of Web pages sharing the same “host” component in their URLs. All

Mach Learn (2010) 81: 207–225 209

techniques can be similarly applied to individual pages as well. Assume we are given the
following:

– A set of l labeled examples (x1, y1), . . . , (xl , yl) ∈ R
d × {−1,+1}, where xi denotes the

d-dimensional feature vector associated with the i-th host and yi is its label: +1 for spam
and −1 for non-spam;

– A set of u unlabeled examples, xl+1, . . . ,xn ∈ R
d , with n = l + u; and

– A weighted directed graph whose nodes are x1, . . . ,xn. Let E be the sets of pairs (i, j)

whenever node i is connected to node j , and let aij ≥ 0 be the weight of the link from xi

to xj . (The weights can be constructed in various ways, which we discuss in Sect. 3.)

We define the hinge function, [x]+ � max(0, x), for any real value x ∈ R. For conve-
nience, we will often write X for our data matrix, where row i is xi . Similarly, the vector Y

is the corresponding column vector of labels, Yi � yi .

2.1 Learning with graph regularization

Suppose we want to learn a linear classifier f (x) = w · x. A familiar approach is to train
a linear Support Vector Machine (SVM) (Vapnik 1998). In this case, w is found as the
minimizer of the following objective function:

Ω(w) = 1

l

l∑

i=1

[1 − yi(w · xi)]p+ + λw · w, (1)

where λ is a regularization parameter and p is either 1 (hinge loss) or 2 (quadratic loss). The
above objective function captures the necessary trade-off between fitness and complexity,
for we would like to choose w to correctly classify our training data while maintaining a
large margin. Here we use the hinge function to represent the loss on the training data, but
any convex loss function R(·, ·) may be used. Throughout the remainder of the paper, we
employ the squared hinge loss,

R(t, y) � [1 − ty]2
+,

which is convenient as it provides a differentiable objective which can easily be optimized
by any primal optimization algorithm. The second term of (1), w · w, represents the inverse
size of the margin and is often referred to as the regularization term.

For the special case of classification tasks on the Web, one has the additional advantage of
the hyperlinks between nodes. Hyperlinks can be represented as a directed graph with edge
set E. Of course, hyperlinks are not placed at random, and it has been shown empirically
that they imply some degree of similarity between the source and the target node of the
hyperlink (Haas and Grams 1998; Davison 2000). Based on this observation, it is natural to
add an additional regularizer to the objective function:

Ω(w) = 1

l

l∑

i=1

R(w · xi , yi) + λw · w + γ
∑

(i,j)∈E

aijΦ(w · xi ,w · xj), (2)

where aij is a weight associated with the link from node i to node j . The first two terms cor-
respond to a standard linear SVM described above. The third term enforces the desired graph
regularization. The function Φ represents any distortion measure, and is chosen according
to the problem at hand.

210 Mach Learn (2010) 81: 207–225

The objective function (2) was first introduced in Belkin et al. (2005) but in that paper
the graph is not given at hand and is constructed from the examples. It was also used for
web page classification in Zhang et al. (2006). In both cases, Φ was chosen to be Φ(u,v) �
(u − v)2. This particular metric, “squared distance”, encodes a prior knowledge that two
neighbors should have similar predicted values. This case has been well studied (Belkin
et al. 2004) and the associated regularizer can be rewritten in terms of the n × n Graph
Laplacian matrix L, defined by

Lij �
{

−aij , i �= j,
∑n

k=1 aik, i = j.
(3)

We may now write

∑

(i,j)∈E

aijΦ(w · xi ,w · xj) = w�X�LXw. (4)

It is important to note that squared distance is symmetric on the input. One novelty of
our proposed method is that we utilize asymmetric graph metrics that are tuned to the partic-
ular task of Web spam classification. With spam, hyperlink direction is of great importance
since we do not expect genuine hosts to link to spam hosts even when links in the opposite
direction are quite common. This has been empirically confirmed in Castillo et al. (2007),
Gan and Suel (2007). Thus, we will also consider “positive distance squared” as a distortion
measure, that is where

Φ(u,v) = max(0, v − u)2.

This choice of Φ penalizes any solution for which a node i points to a node j with higher
spaminess. By construction, spam nodes are labeled 1 and non-spam nodes −1. Thus,
a higher value of w · xi indicates a higher predicted spaminess. This choice of Φ does not
give a simple representation of the regularization in terms of the Graph Laplacian, yet we
can still efficiently optimize (2) as explained in Sect. 2.3.

In Sect. 3.2 we provide a much more detailed discussion of the choice of graph regularizer
and its effect on the performance.

2.2 Additional slack variables

When a variety of useful features are available for each node in our graph, the above opti-
mization may be sufficient to predict whether a host is genuine or not. However, in many
cases such features are not available, or are simply not useful for the task at hand. In this
case, a simple linear classifier w · x on the provided feature space may be inadequate.

This problem can be overcome by introducing a parameter zi for every node i, and learn-
ing a classifier of the form f (xi) = w · xi + zi . This extra term can be seen as an additional
slack variable that gives more freedom to the learned classifier. The introduction of an ad-
dition slack variable per node was also proposed in Zhang et al. (2006). As also suggested
in Zhang et al. (2006), however, it is necessary to regularize the vector z = [zi]ni=1 appropri-
ately.

Mach Learn (2010) 81: 207–225 211

Algorithm 1 WITCH

Params: λ1, λ2, γ , convex function Φ(·, ·)
Input: labeled training set (x1, y1), . . . , (xl , yl)

Input: unlabeled set xl+1, . . . ,xn

Input: hyperlink graph E with edge weights {aij }(i,j)∈E

Compute:

w, z ← arg min
w,z

Ω(w, z),

with Ω defined in (5).
Predict: label node i as sign(w · xi + zi).

Our new objective becomes:

Ω(w, z) = 1

l

l∑

i=1

R(w · xi + zi, yi) + λ1w · w + λ2z · z

+ γ
∑

(i,j)∈E

aijΦ(w · xi + zi,w · xj + zj). (5)

Here we introduce two regularization parameters λ1 and λ2 for controlling the values of both
w and z.

The latter objective function is the basis for WITCH, which we now summarize in Algo-
rithm 1.

2.3 Optimization

The unconstrained objective function (5) can be efficiently minimized in the primal using
the simple techniques described for instance in Chapelle (2006). This is one of the main
differences with Zhang et al. (2006) which proposes a dual algorithm for solving a similar
problem. But as pointed out in Chapelle (2006), primal training is much faster than its dual
version in the case of linear classifiers. Below, we present two different primal methods for
training.

Conjugate gradient Since the objective function is convex and differentiable, one can sim-
ply use nonlinear conjugate gradient (Shewchuk 1994) to optimize it. This is a standard and
very efficient method for nonlinear optimization and it only requires the computation of the
gradient. For R(t, y) = (1 − ty)2+ and Φ(u,v) = max(0, v − u)2, the gradient with respect
to w is given by:

1

2

∂Ω

∂w
= 1

�

∑

{i:yi si<1}
yixi (yisi − 1) + λ1w + γ

∑

(i,j)∈E
si<sj

aij (sj − si)(xj − xi), (6)

where we define the score si � w · xi + zi . The gradient with respect to z is similar. Note
that evaluating (6) requires O(nd) operations to compute the predictions si and O(�d +
|E|d) operations to compute both sums. Assuming that the number of conjugate gradient
iterations is independent of the size of the training set, which is generally true in practice,
the total complexity is O(nd) assuming that |E| = O(n). In terms of memory requirement,

212 Mach Learn (2010) 81: 207–225

it depends on whether or not the graph can fit into memory. In both cases, we have to store
zi and w · xi which are 2n numbers. If possible, it is better to load the graph in memory, but
if it is too large, it can be read from disk. The number of times it has to be read is equal to
the number of conjugate gradient iterations which, in our experiments, was typically on the
order of 100. Hence, this algorithm can scale up to very large graphs including, potentially,
the entire web graph.

Alternating optimization Let us rewrite the objective function (5) as a function of the spam
scores si = w · xi + zi :

Ω(w, s) = 1

l

l∑

i=1

R(si, yi) + λ1w · w + λ2

n∑

i=1

(si − w · xi)
2 + γ

∑

(i,j)∈E

aijΦ(si, sj). (7)

We propose to minimize (7) by alternating optimization on w and s, the advantage being
that each of the steps can be performed using standard algorithms:

1. Optimize w (fixed s): Ignoring the term independent of w, one has to minimize

λ1w · w + λ2

n∑

i=1

(si − w · xi)
2.

This is standard regularized linear regression on the entire dataset where the targets are
the si . Note that it would be straightforward to extend this step to nonlinear architectures:
any regression algorithm can be used here.

2. Optimize s (fixed w): For the sake of simplicity, let us consider the case where the loss
functions are quadratic: R(t, y) = (t − y)2 and Φ(u,v) = (u − v)2. The derivative of (7)
with respect to si is

1

2

∂Ω(w, s)
∂si

= 1

l
bi(si − yi) + λ2(si − w · xi) + γ

∑

j

(aij + aji)(si − sj),

where bi = 1 for labeled nodes (i.e. i ≤ l) and 0 otherwise. Note that in the last term the
sum is over all j , but aij is defined to be 0 if there is no link from i to j . At the optimum,
the derivative is 0 and

si =
1
l
biyi + λ2w · xi + γ

∑
j (aij + aji)sj

1
l
bi + λ2 + γ

∑
j (aij + aji)

.

In other words, the optimal si is a weighted average of yi , w · xi and all spam scores sj

for all neighbors j of i. Note that when λ2 and γ go to 0, we recover that for a labeled
node, si ≈ yi . So the fix-point solution is of the following form:

s = v + Ms, (8)

with

vi =
1
l
biyi + λ2w · xi

1
l
bi + λ2 + γ

∑
j (aij + aji)

and Mij = γ (aij + aji)
1
l
bi + λ2 + γ

∑
j (aij + aji)

. (9)

Mach Learn (2010) 81: 207–225 213

Algorithm 2 Minimization of (7) based on alternate optimization
Input and parameters are as in Algorithm 1
Compute: initial classifier f based on labeled data (x1, y1), . . . , (xl , yl).
Set: si ← 0.
repeat

Compute: output of the classifier f (xi) for all the pages (labeled and unlabeled).
Compute: vi as in (9) (simply replace w · xi by f (xi)).
repeat

s ← v + Ms.
until Convergence
Compute: regression solution f on (x1, s1), . . . , (xn, sn)

until Convergence

As for PageRank and other standard propagation algorithms, (8) can be solved by iterat-
ing from an arbitrary starting point s0:

st+1 = v + Mst . (10)

The fact that maxi

∑
j Mij < 1 ensures via the Perron-Frobenius theorem that the largest

eigenvalue of M is less than 1 and that this iterative procedure will converge.

The overall algorithm uses only standard techniques (regression and graph propagation)
and is summarized in Algorithm 2. It is also related to the method of “co-training” (Blum
and Mitchell 1998). We have indeed two complementary “views”, one corresponding to the
features as well as another to the graph, and at each iteration the training within one view
is leveraged for the other. More precisely, the feature-based classifier training can benefit
from an enriched training set containing all the unlabeled pages along with “pseudo-labels”
predicted from the graph regularization. Conversely, the graph regularization (a.k.a. the label
propagation mechanism) does not only rely on the labeled dataset as in standard propagation
algorithm such as Zhou et al. (2007), Joshi et al. (2007), but also takes into account the labels
predicted by the feature-based classifier.

Finally note that, for computational reasons, training the feature based classifier on the
entire set (x1, s1), . . . , (xn, sn) might not be feasible. In the same spirit as in co-training,
one might restrict the training set to the set of examples for which the pseudo-labels si are
estimated with enough confidence.

The alternate optimization method may be probably slower to converge than the direct
conjugate gradient descent described above. On the other hand, it is easier to implement
and more scalable as operations on the features and the graph are performed separately. For
the particular dataset employed in the present paper, the corpus was quite small we have
therefore only implemented the conjugate gradient method.

Note on retraining Before proceeding to the next section, we emphasize one algorithmic
difficulty of using graph regularization for the task of web spam prediction. Clearly, the
Web graph is not static; pages appear and disappear constantly. One sees that, for any of the
proposed optimization methods, we must retrain entirely for each modification in the graph,
since node labels are heavily dependent on their neighbors. Strictly speaking, this is true,
yet the story is not quite as bad as it seems. Minor additions to the graph are unlikely to
make significant changes to the solution of w, a fixed-dimensional vector that was already
trained on a large amount of data. The addition of a new node i, however, will require

214 Mach Learn (2010) 81: 207–225

Table 1 Performance for
Different Graph Weights Weighting method ai,j AUC

Absolute ni,j 0.9524

Binary 1[ni,j > 0] 0.9587

Square root √
ni,j 0.9632

Logarithmic log(1 + ni,j) 0.9646

learning a new slack variable zi . But this value can be chosen to optimize (5) with all other
neighboring node scores fixed, a very fast computation. The resulting joint solution will be
nearly optimal, and full updates can be performed occasionally from here with a “warm
start”.

3 Design choices

We note that the choice of edge weights and the choice of graph regularizer contribute
substantially to algorithmic performance. In this section we present several choices and test
the behavior of our method with respect to each. The specific details of the experimental
setting are deferred to Sect. 4.

3.1 Graph weights

For each pair of nodes i, j , we are provided with the number of links ni,j from i to j

(indicating how many links exist from a page in host i to a page in host j). Since our
algorithm requires a weighted graph on the set of nodes, we must decide how to choose the
weights {ai,j }. There are several natural choices at hand:

1. Absolute weights: ai,j � ni,j

2. Binary weights: ai,j � 1[ni,j > 0]
3. Square-root weights: ai,j � √

ni,j

4. Logarithmic weights: ai,j � log(1 + ni,j).

We tested these choices in the benchmark collection for Web spam described in detail
in Sect. 4. Among these, logarithmic weights tended to give the best performance in terms
of AUC (Area Under the ROC Curve). In a different setting, logarithmic weights were also
shown to be effective for propagating trust in Wu et al. (2006). Square-root weights had
similar performance. Absolute weights were generally a poor choice, as hosts with a vast
number of outgoing or incoming links were over-penalized by the regularization. The per-
formance results1 with different weighting schemes are shown in Table 1.

3.2 The graph regularizer Φ

Since we expect a host’s “spaminess” (or similarly, “authenticity”) to be preserved locally
within the web, the graph regularization function Φ(·, ·) ought to encode how we enforce

1These values do not represent the final algorithmic performance since we did not use any model selection
to select hyperparameters. As here our goal is only to compare different graph weights, we simply checked
performance across a range of parameter choices and, for each weighting scheme, we recorded the best test-
set performance. Algorithmic results with model selection can be found in Table 3.

Mach Learn (2010) 81: 207–225 215

this locality in our predictions. If node i links to node j , then Φ(fi, fj) should measure how
“unnatural” the (fi, fj) link pair is.

We have already defined two possible regularization functions:

Φsqr(fi, fj) � (fi − fj)
2,

Φ+
sqr(fi, fj) � max(0, fj − fi)

2 = [fj − fi]2
+.

The first of these penalizes the square of any deviation between the predicted values of i

and j . Note that this penalization is independent of the direction of the link, so a nonspam
node will be penalized if it receives a link from a spam node. Naturally we assume that
nodes have control only over their out-links and typically not their in-links.

The second function only penalizes the predicted spam scores when the node creating
the link has a lower predicted spam value than the link’s destination. By employing Φ+

sqr, we
are inherently assuming that, while it is perfectly consistent for node spaminess to decrease
from the originator of a link to its destination, it is less likely that spaminess would increase.

For the task at hand, the latter choice would appear to be most appropriate. In such a
directed network, we certainly expect good nodes to point to good nodes and likewise bad
to point to bad ones. Furthermore, since bad nodes do not want to appear bad and thus
can freely insert links to fool a search engine, it is perfectly natural to observe bad nodes
pointing to good ones. On the other hand, we tend to expect that good nodes have no obvious
incentive to link to bad nodes, and thus we expect to only rarely observe good-to-bad pairs.

We have also observed this empirically: among the labeled nodes within the web col-
lection described in Sect. 4, only 1.8% of the out-links from non-spam hosts point to spam
hosts, while 14.7% of out-links from spam hosts point to non-spam hosts.

Interestingly, we have found that the best choice of regularization is neither of the above
but rather a mixture of the two. For any α ∈ [0,1], define:

Φα(a, b) � αΦsqr(a, b) + (1 − α)Φsqr+(a, b)

=
{

(a − b)2 when a ≥ b,

α(a − b)2 when a < b.

We found this mixed regularization to be extremely effective, and surprisingly a great
improvement over either using only Φsqr or only Φ+

sqr. In Fig. 1, we plot performance as
measured by AUC, as a function of the choice of α. The left side is performance using Φ+

sqr,
while the right side is using Φsqr.

The improvement from the mixed regularization appears to be due to the following ob-
servation. Relying solely on Φ+

sqr to regularize correctly fails on nodes that have only a
handful of incoming links from spam and/or outgoing links to nonspam hosts, such as the
one described in Fig. 2. For these nodes, any spaminess score will be unregularized.

For such nodes, whose incoming links are all bad and outgoing links are all nonspam, to
obtain a more useful spaminess score, we must rely more on incoming and outgoing links
regardless of their relative spam values. Thus a small amount of Φsqr aids in dealing with
such special cases. As we see from the plot, α = 0.1 is roughly the optimal value, thus 10%
of “undirected regularization” is all that we need, and performs much better than purely
directed graph regularization Φ+

sqr.
For the remainder of the results in the paper, we report performance results using Φ0.1, i.e.

where α = 0.1, as the regularization function. The value of α can be tuned more carefully,
but performance is relatively stable around this value.

216 Mach Learn (2010) 81: 207–225

Fig. 1 Performance as a
function of the regularization
parameter α. When α = 0, only
the nonspam → spam links are
penalized. When α = 1 any
deviation in the predicted spam
value between linked hosts incurs
a cost

Fig. 2 According to the directed graph regularization Φ+
sqr, the node in the middle can have any value. But

empirical observations suggest that the node in the middle is more likely to be non-spam than spam. A small
amount of undirected regularization can fix this problem

4 Experimental evaluation

We now proceed to compare experimentally the performance of WITCH with several state-
of-the-art methods.

4.1 Dataset

We experimented with the WEBSPAM-UK2006 spam collection (Castillo et al. 2006) for all
the results reported in this section. This public collection is the same used in the Web Spam
Challenge Tracks I and II (Web Spam Challenge 2007), which were recent competitions to
test Web Spam Detection methods.

The challenge dataset is a graph of 11,402 hosts in the .uk domain. Out of these,
7,473 were labeled. The hyperlink graph is represented as a list of 730,774 triples
(nodei ,nodej ,#links) which specify the number of links from host i to host j .

We used a set of 236 features proposed for the challenge including: content-based fea-
tures such as average word length, number of words in the title, link-based features such as
PageRank, number of neighbors, and others proposed in Becchetti et al. (2006) and Ntoulas
et al. (2006). Given the variance in scale of these different data types, we chose to normalize
the features by replacing each feature value xij with the fraction of instances having a value
of less than xij for feature j . Due to missing page contents, a subset of available features
was missing from 2,458 of the hosts. None of these hosts were part of the test set, but some

Mach Learn (2010) 81: 207–225 217

of them were part of the labeled training set. We have discarded the labels of these hosts and
ended up using a training set of 4,363 hosts, which is slightly smaller than the original one
containing 5,622 labels. We still kept the hosts with missing features (as unlabeled) and set
these feature values to 0.

The training/testing split was fixed and is the same that was used in the Web Spam Chal-
lenge Track I (aside from subtracting roughly 1,300 labels from the training set). For all
the results we report, the algorithm worked in a transductive2 setting: the complete graph
was given as input, including features for all nodes, with a subset of labelled nodes were
given for training. We also cite performance for smaller training sets, which were obtained
by sub-sampling the training set. Performance was always measured on the same test set of
1,851 hosts.

WITCH requires the choice of three hyperparameters, λ1, λ2, γ . We maintained a hold-
out set consisting of a random 20% sample of the training data. On a 7 × 7 × 7 grid of
parameters, we trained WITCH for each combination and chose the triple (λ1, λ2, γ) that
returned the best test performance on these data. The final results we report in Table 3 were
obtained after validation.

4.2 Optimization methods

We note that for all experimental results reported herein, for our proposed class of algo-
rithms, the optimization technique we employed was the conjugate gradient method, de-
scribed in Sect. 2.3. The optimization procedure also implemented a backtracking step, as
described in Algorithm 9.2 in Boyd and Vandenberghe (2004), with parameters α = 0.2,

β = 0.5. The final optimization was terminated once the decrement in the objective function
dropped below a threshold of 10−6.

4.3 Performance metric

To measure the performance of each method, we chose the metric Area Under the ROC curve
(AUC). AUC provides a natural measure of accuracy of a predicted ranking, and requires
only that the algorithm outputs an ordering of the test set.

Others have utilized the F-Measure, which combines precision and recall, to determine
performance. The drawback of the F-Measure is that it requires a fixed choice of classi-
fication threshold, and the result can be very sensitive to the choice of a threshold. Also,
because the training and test sets have not been labeled by the same people, the fraction of
spam hosts in them is different. This means that the threshold learned by various classifiers
can be very different from the one which would yield the best F-Measure on the test set.

Finally, for practical applications on Web search, a real-valued “spaminess” prediction is
more useful than a binary prediction, given that the spaminess will be combined with other
features to give the final ranking of the search results. Also, its particular weight may be
different on different search contexts.

4.4 Comparison with variant algorithms

Recall that WITCH takes advantage of three primary tools in training: host features, slack
variables, and regularization along the hyperlink graph. Each of these elements plays a dif-
ferent role in the algorithm and contributes to performance at varying levels. To see the

2Transduction is a learning paradigm where the test set is known at training time (Vapnik 1998).

218 Mach Learn (2010) 81: 207–225

relative importance of each, we now consider alternative approaches that involve various
subsets of the proposed techniques.

1. Only Features. We train a linear classifier on the given feature space with no graph reg-
ularization. The algorithm is effectively a Support Vector Machine except that we use
squared hinge-loss. The final label on node i is given by w · xi , where w is the minimum
of the objective

Ω(w) = 1

l

l∑

i=1

[1 − yiw · xi]2
+ + λw · w.

2. Features + Graph Regularization (GR). We train a linear classifier on the provided fea-
ture space but we additionally regularize according to the hyperlink graph structure. As
above, we label node i with w · xi , where w minimizes the objective

Ω(w) = 1

l

l∑

i=1

[1 − yiw · xi]2
+ + λw · w + γ

∑

(i,j)∈E

aijΦ0.1(w · xi ,w · xj).

3. Slack Variables + GR. We ignore features and directly learn the label using graph reg-
ularization. Here, we learn node i’s label directly as zi , where the vector z is found by
minimizing

Ω(z) = 1

l

l∑

i=1

[1 − yizi]2
+ + λz · z + γ

∑

(i,j)∈E

aijΦ0.1(zi, zj).

Note that this method belongs to the same family as TrustRank (Gyöngyi et al. 2004)
and Anti-Trust Rank (Krishnan and Raj 2006) algorithms. Indeed, these algorithms do
not use feature vectors and are only based on the hyperlink graph. Both algorithms also
exploit the fact that normal hosts rarely link to spam hosts.

4. Features + Slack + GR (WITCH). We now utilize all tools available. We simultaneously
train a linear classifier and slack variables, and we regularize the predicted values along
the graph. The predicted label of node i is w ·xi +zi , where the vectors w and z are found
by minimizing

Ω(w, z) = 1

l

l∑

i=1

[1 − yi(w · xi + zi)]2
+ + λ1w · w + λ2z · z

+ γ
∑

(i,j)∈E

aijΦ0.1(w · xi + zi,w · xj + zj). (11)

We observe that, technically, this list is not exhaustive. However, we see that upon closer
inspection the remaining combinations do not produce any new methods. In particular, the
following lemma shows that using slack variables without graph regularization is equivalent
to method 1 above but with a larger value of λ. Given that we have optimized λ by cross-
validation in setting 1, this implies that we cannot get a better result in setting 4 when γ = 0
than in setting 1. In short, “Features + Slack” is not in fact an alternative when the squared
hinge loss is used. This is stated explicitly in the following lemma, whose proof we postpone
to the Appendix.

Mach Learn (2010) 81: 207–225 219

Fig. 3 Performance of WITCH,
and variants, as described in
Sect. 4.4. Experiments have been
repeated 10 times with random
choices of the subsets. The
median result is plotted

Lemma 1 The solution of (11) when we set γ = 0 is the same as that obtained in objective 1
when we set λ = λ1(

1
lλ2

+ 1).

In Table 3 we report performance for each of the above four methods. The most stunning
result appears to be the effect of the slack variables, which provided a significant boost in
performance. Training only the slack variables and ignoring features entirely significantly
outperforms solely feature-based methods. In addition, utilizing the features in combination
with slack provided another reasonable benefit.

To see how performance depends on subset size, in Fig. 3 we also compare each of
the above algorithms for seven different training-set sizes. To obtain these AUC values, we
trained a classifier on a large parameter grid for each of the 7 ×4 = 28 subset-size × method
pairs. After finding the best parameter settings for each subset-size × method, we retrained
10 classifiers with different training sub-samples of the same size and took the median
AUC performance of these. This was to reduce variance which was particularly high for
the smaller subsets.

The improvement coming from the slack variables can be interpreted as an underfitting
problem: there apparently exists no w which results in a good spam detector. We can think
of three main reasons for this. First, probably the class of linear functions is too restrictive
for this classification problem, particularly when the features may have been adversarially
generated with the purpose of appearing authentic. Second, the labeling task is quite subjec-
tive and there is often disagreement among human editors (Castillo et al. 2006), and thus the
labels are quite noisy. Third, the feature set may not be rich enough. The additional slack
variables introduce enough degrees of freedom to accurately model a spam classifier under
these circumstances.

4.5 Comparison with Web Spam Challenge results

The Track I of the Web Spam Challenge, in which we did not take part, ended in April of
2007. The best performance in terms of AUC3 for this track was obtained by Gordon Cor-
mack with 0.956. The method he implemented used a stack of ten classifiers (Web Spam

3This track in fact had several winners, as the competition consider F-Measure as well as AUC for a perfor-
mance metric.

220 Mach Learn (2010) 81: 207–225

Table 2 Results with stacked
graphical learning Classifier AUC

Decision trees 0.900

1-step s.g.l. 0.934

2-step s.g.l. 0.935

SVM 0.923

1-step s.g.l. 0.946

5-step s.g.l. 0.953

Challenge 2007); we note, however, that this participant used some specially designed clas-
sifiers that utilized features not provided by the competition.

On the same dataset, WITCH outperforms all submissions to the first track of the chal-
lenge, obtaining an AUC performance of 0.963.4 Surprisingly, we achieved this result de-
spite using a smaller training set in our experiments (see Sect. 4.1).

The challenge included a Track II that ended in July 2007, and for this track we submitted
predictions using the methods discussed herein. WITCH obtained the highest AUC against
the 10 other submissions (Graph Labeling Workshop 2007). The data in Track II was gener-
ated from the data in the first track, but a different numeric feature set was provided, a new
training/test set split was made, and no external information (such as the web page contents
or the address of the web host) was available.

4.6 Comparison with stacked graphical learning

Stacked graphical learning is a meta-learning scheme described recently by Cohen and Kou
(2006). It uses a base learning scheme C to derive initial predictions for all the objects in the
dataset. Then it generates a set of extra features for each object, by combining the predictions
for the related objects in the graph by an aggregate function (in our case, we averaged the
prediction for all the linked hosts disregarding direction). Finally, it adds this extra feature
to the input of C , and runs the algorithm again to get new predictions for the data.

This learning scheme was shown to be effective when applied to the Web Spam Detec-
tion task (Castillo et al. 2007). Results reported there were obtained by cross-validation on
the training set, and here we repeat the same experiments using the training/testing split
proposed in the Web Spam Challenge.

The algorithm begins by training a base classifier, bagging of ten C4.5 decision trees.
We then apply two iterations of stacked graphical learning (more iterations do not improve
the performance). The final results are shown in Table 2 and correspond to the classifier
in Castillo et al. (2007). We also provide results setting the base classifier to be a standard
SVM, and this achieved somewhat better performance than a decision tree classifier.

As reported previously, stacked graphical learning significantly improves the perfor-
mance of both the bagged decision tree algorithm and the standard SVM, yet still under-
performs the techniques we propose. We believe the gap is likely due to the “local” nature
of SGL, whereas WITCH utilizes the entire graph in training.

Finally, Fig. 4 shows the AUC obtained by an SVM with stacked graphical learning for
different training set sizes.

4The hyperparameters λ1, λ2, γ were chosen on a validation set as we describe in Sect. 4.1.

Mach Learn (2010) 81: 207–225 221

Fig. 4 Results of stacked SVM
for different sizes of the training
set. Experiments have been
repeated 10 times with randomly
chosen subsets of the training set.
The median of these 10 results is
plotted

Fig. 5 AUC obtained by the
method described in Zhou et al.
(2007) for various sizes of the
training set, taking the median of
the same samples as in Fig. 4

4.7 Comparison with link-based methods

We compared our algorithm to Transductive Link Spam Detection, proposed in Zhou et
al. (2007), which uses only hyperlinks and not content-based features. This methods outper-
forms other well-known graph-based methods based on label propagation such as TrustRank
(Gyöngyi et al. 2004) and Anti-Trust Rank (Krishnan and Raj 2006).

A technical requirement of this algorithm is that the hyperlink graph must be strongly
connected, which is generally not the case in the real world. To handle this problem we
create a dummy node with bidirectional links to every node in the original graph. To ensure
that this additional node does not contribute substantially to the final solution, we set the
weight associated of each new edge to a small value, 10−6. The algorithm also requires the
choice of a parameter α, which we selected on a validation set. Results are presented in
Fig. 5.

222 Mach Learn (2010) 81: 207–225

Table 3 Results for all methods
with two different sizes of the
training set. The first group of
methods was discussed in Sect. 4
and the second group of methods,
which we propose, are described
in Sect. 3

Training algorithm AUC 10% AUC 100%

SVM + stacked g.l. 0.919 0.953

Link based (no features) 0.906 0.948

Challenge winner – 0.956

Only Features 0.859 0.917

Features + GR 0.874 0.917

Slack + GR 0.919 0.954

WITCH (Feat. + Slack + GR) 0.928 0.963

4.8 Summary of experimental results

Table 3 summarizes the performances of each method discussed in this paper. The particular
design choices used to obtain these results are as follows:

1. The function Φ was the mixed regularizer described at the end of Sect. 2. As mentioned,
the best parameter choice here was α = 0.1, used throughout.

2. The various hyperparameters were chosen by doing a grid search tested on a hold-out
set. This is described in greater detail at the end of Sect. 4.1.

3. All optimizations were done using the conjugate gradient method, described in Sect. 4.2.

We emphasize that, in terms of a AUC, an improvement from 0.95 to 0.96 is quite significant
and can be interpreted roughly as a 20% reduction in ranking error. The results in Table 3
suggest that this boost is indeed due to the incorporation of both the hyperlink structure as
well as the page contents. This observation agrees with a natural intuition, namely that it is
better to leverage both types of data to accurately judge spaminess.

5 Conclusions

In this paper we have presented a novel algorithm, WITCH, for the task of detecting Web
spam. We have compared WITCH to several proposed algorithms and we have found that
it outperforms all such techniques. Finally, WITCH obtained the highest AUC performance
score on an independent Web spam detection challenge.

We attribute these positive results to a few key observations. First, best results are
achieved when both content features and the hyperlink structure are used. Second, simply
training a graph-regularized linear predictor is insufficient, as the addition of slack variables
provides a very significant improvement. Third, one needs to choose the right graph reg-
ularization function, as we have observed that penalizing both spam → nonspam links and
nonspam → spam links is important, yet the tradeoff should be much heavier on the lat-
ter. Lastly, we have observed that the form of the graph weights contributes significantly to
performance, where using the logarithm of the number of links worked best.

For any machine learning technique to have practical impact in a Web search setting, it
must also be effective when the training set is small, since labeling is expensive compared
to the number of hosts on the web. To the best of our knowledge, this is the first time this
issue has been addressed in a Web spam detection system. Our result show that our technique
works better than a classifier trained using stacked graphical learning, and in particular when
there is little training data available.

Mach Learn (2010) 81: 207–225 223

Scalability is another issue we have addressed and we argue in Sect. 2.3 that this method
can scale up to very large graphs. To further improve speed, a training based on stochastic
gradient descent (Bottou 2004) would be yet another alternative.

For future work, the method we have presented could be applied to other tasks on the
Web, such as topical classification (Zhang et al. 2006).

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

Appendix: Proof of Lemma 1

Let us first compute:

min
zi

1

l
[1 − yi(w · xi + zi)]2

+ + λ2z
2
i . (12)

Setting the derivative with respect to zi at 0, one finds that the minimum is reached for

zi = yi[1 − yi(w · xi)]+
1 + lλ2

.

Plugging this value in (12), we have:

min
zi

1

l
[1 − yi(w · xi + zi)]2

+ + λ2z
2
i = λ2

1 + lλ2
[1 − yi(w · xi)]2

+.

From here it is easy to see the equivalence between setting 1 and 4 when γ = 0:

min
z

1

l

l∑

i=1

[1 − yi(w · xi + zi)]2
+ + λ1w · w + λ2z · z

= lλ2

1 + lλ2

(
1

l

l∑

i=1

[1 − yiw · xi]2
+ + λw · w

)
,

where λ is defined such as

λ1 = lλ2

1 + lλ2
λ,

that is,

λ � λ1

(
1

lλ2
+ 1

)
.

More generally, instead of the squared hinge loss, let us consider a general loss function �.
Then it is not difficult to see that the solution of setting 4 with γ = 0 is the same as the one
of setting 1 where the loss is replaced by its infimal convolution with the squared function
s(t) = λ2t

2:

�̃(x) = (�
 s)(x) = inf
t

f (x + t) + s(t).

The squared hinge loss is particular case because its infimal convolution with the squared
function yields another squared hinge loss.

224 Mach Learn (2010) 81: 207–225

References

Becchetti, L., Castillo, C., Donato, D., Leonardi, S., & Baeza-Yates, R. (2006). Link-based characterization
and detection of Web Spam. In Second international workshop on adversarial information retrieval on
the Web (AIRWeb), Seattle, USA, August 2006.

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization and semi-supervised learning on large graphs.
Lecture Notes in Computer Science, 3120, 624–638.

Belkin, M., Niyogi, P., & Sindhwani, V. (2005). On manifold regularization. In Proceedings of the tenth
international workshop on artificial intelligence and statistics (AISTATS).

Benczúr, A., Csalogány, K., & Sarlós, T. (2006). Link-based similarity search to fight web spam. In Adver-
sarial information retrieval on the Web (AIRWEB), Seattle, Washington, USA.

Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. In COLT: proceed-
ings of the workshop on computational learning theory (pp. 92–100). San Mateo: Morgan Kaufmann.

Bottou, L. (2004). Stochastic learning. In Advanced lectures on machine learning. Lecture notes in artificial
intelligence (pp. 146–168). Berlin: Springer.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.
Castillo, C., Donato, D., Becchetti, L., Boldi, P., Leonardi, S., Santini, M., & Vigna, S. (2006). A reference

collection for web spam. SIGIR Forum, 40(2), 11–24.
Castillo, C., Donato, D., Gionis, A., Murdock, V., & Silvestri, F. (2007). Know your neighbors: Web spam

detection using the web topology. In Proceedings of SIGIR, Amsterdam, Netherlands, July 2007. New
York: ACM.

Chapelle, O. (2006). Training a support vector machine in the primal. Neural Computation, 19(5), 1155–
1178.

Cohen, W. W., & Kou, Z. (2006). Stacked graphical learning: approximating learning in Markov random
fields using very short inhomogeneous Markov chains (Technical Report).

Davison, B. D. (2000). Topical locality in the web. In Proceedings of the 23rd annual international ACM
SIGIR conference on research and development in information retrieval (pp. 272–279), Athens, Greece.
New York: ACM.

Fetterly, D. (2007). Adversarial information retrieval: the manipulation of web content. ACM Computing
Reviews.

Fetterly, D., Manasse, M., & Najork, M. (2004). Spam, damn spam, and statistics: using statistical analysis
to locate spam web pages. In Proceedings of the seventh workshop on the Web and databases (WebDB)
(pp. 1–6), Paris, France, June 2004.

Gan, Q., & Suel, T. (2007). Improving web spam classifiers using link structure. In AIRWeb’07: proceedings
of the 3rd international workshop on adversarial information retrieval on the web (pp. 17–20), New
York, NY, USA. New York: ACM.

Graph Labeling Workshop (2007). http://graphlab.lip6.fr/.
Gyöngyi, Z., & Garcia-Molina, H. (2005). Web spam taxonomy. In First international workshop on adver-

sarial information retrieval on the Web (pp. 39–47), Chiba, Japan.
Gyöngyi, Z., Garcia-Molina, H., & Pedersen, J. (2004). Combating Web spam with TrustRank. In Proceed-

ings of the 30th international conference on very large data bases (VLDB) (pp. 576–587), Toronto,
Canada, August 2004. San Mateo: Morgan Kaufmann.

Haas, S. W., & Grams, E. S. (1998). Page and link classifications: connecting diverse resources. In DL’98:
proceedings of the third ACM conference on digital libraries (pp. 99–107), New York, NY, USA. New
York: ACM.

Henzinger, M. R., Motwani, R., & Silverstein, C. (2002). Challenges in web search engines. SIGIR Forum,
36(2), 11–22.

Joshi, A., Kumar, R., Reed, B., & Tomkins, A. (2007). Anchor-based proximity measures. In WWW
(pp. 1131–1132).

Kolari, P., Java, A., Finin, T., Oates, T., & Joshi, A. (2006). Detecting spam blogs: a machine learning ap-
proach. In Proceedings of the national conference on artificial intelligence (AAAI), Boston, MA, USA,
July 2006.

Krishnan, V., & Raj, R. (2006). Web spam detection with anti-trust rank. In ACM SIGIR workshop on adver-
sarial information retrieval on the Web.

Mishne, G., Carmel, D., & Lempel, R. (2005). Blocking blog spam with language model disagreement.
In Proceedings of the first international workshop on adversarial information retrieval on the Web
(AIRWeb), Chiba, Japan, May 2005.

Ntoulas, A., Najork, M., Manasse, M., & Fetterly, D. (2006). Detecting spam web pages through content
analysis. In Proceedings of the World Wide Web conference (pp. 83–92), Edinburgh, Scotland, May
2006.

http://graphlab.lip6.fr/

Mach Learn (2010) 81: 207–225 225

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain (Tech-
nical Report CMU-CS-94-125). School of Computer Science, Carnegie Mellon University.

Urvoy, T., Lavergne, T., & Filoche, P. (2006). Tracking web spam with hidden style similarity. In Second
international workshop on adversarial information retrieval on the Web, Seattle, Washington, USA,
August 2006.

Vapnik, V. (1998). Statistical learning theory. New York: Wiley.
Web Spam Challenge (2007). http://webspam.lip6.fr/.
Wu, B., Goel, V., & Davison, B. D. (2006). Propagating trust and distrust to demote web spam. In Workshop

on models of trust for the Web, Edinburgh, Scotland, May 2006.
Zhang, T., Popescul, A., & Dom, B. (2006). Linear prediction models with graph regularization for web-

page categorization. In KDD’06: proceedings of the 12th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 821–826), New York, NY, USA. New York: ACM.

Zhou, D., Burges, C. J. C., & Tao, T. (2007). Transductive link spam detection. In AIRWeb’07: proceedings of
the 3rd international workshop on adversarial information retrieval on the web (pp. 21–28), New York,
NY, USA. New York: ACM.

http://webspam.lip6.fr/

	Graph regularization methods for Web spam detection
	Abstract
	Introduction
	Learning schema
	Learning with graph regularization
	Additional slack variables
	Optimization
	Conjugate gradient
	Alternating optimization
	Note on retraining

	Design choices
	Graph weights
	The graph regularizer Phi

	Experimental evaluation
	Dataset
	Optimization methods
	Performance metric
	Comparison with variant algorithms
	Comparison with Web Spam Challenge results
	Comparison with stacked graphical learning
	Comparison with link-based methods
	Summary of experimental results

	Conclusions
	Open Access
	Appendix: Proof of Lemma 1
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

