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ORIGINAL RESEARCH

Screening mammography is performed for early detec-
tion of breast cancer before clinically detectable signs 

of disease manifest (1–4). A major limitation of mam-
mography is that patients with suspicious mammographic 
findings, such as Breast Imaging Reporting and Data Sys-
tem (BI-RADS) category 4 lesions, are recommended for 
biopsies that often yield benign outcomes. Of the more 
than 1 million breast biopsies performed annually in the 
United States, up to 75% have benign findings (5,6). De-
spite substantial research over the decades, tissue biopsy-
proven positive predictive value (PPV3) (7) has not im-
proved much (8). Thus, radiologists would benefit from 
tools or adjuncts to the BI-RADS system to more precisely 

assess breast cancer probability in women with BI-RADS 
category 4 lesions.

The American College of Radiology developed the BI‐
RADS lexicon that standardizes mammographic report-
ing to facilitate cancer risk communication and biopsy 
recommendation (9). However, substantial inter- and 
intraobserver variability in the application of BI‐RADS 
remains, resulting in variation in biopsy rates across the 
United States (10,11) More importantly, established risk 
factors associated with breast cancer such as personal or 
family history of cancers, hormone replacement therapy, 
obesity, diabetes, hypertension, and so forth are not in-
corporated into the clinical decision model. The inclusion 
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Purpose: To evaluate the performance of a biopsy decision support algorithmic model, the intelligent-augmented breast cancer risk cal-
culator (iBRISK), on a multicenter patient dataset.

Materials and Methods: iBRISK was previously developed by applying deep learning to clinical risk factors and mammographic descrip-
tors from 9700 patient records at the primary institution and validated using another 1078 patients. All patients were seen from March 
2006 to December 2016. In this multicenter study, iBRISK was further assessed on an independent, retrospective dataset (January 
2015–June 2019) from three major health care institutions in Texas, with Breast Imaging Reporting and Data System (BI-RADS) 
category 4 lesions. Data were dichotomized and trichotomized to measure precision in risk stratification and probability of malignancy 
(POM) estimation. iBRISK score was also evaluated as a continuous predictor of malignancy, and cost savings analysis was performed.

Results: The iBRISK model’s accuracy was 89.5%, area under the receiver operating characteristic curve (AUC) was 0.93 (95% CI: 
0.92, 0.95), sensitivity was 100%, and specificity was 81%. A total of 4209 women (median age, 56 years [IQR, 45–65 years]) were 
included in the multicenter dataset. Only two of 1228 patients (0.16%) in the “low” POM group had malignant lesions, while in the 
“high” POM group, the malignancy rate was 85.9%. iBRISK score as a continuous predictor of malignancy yielded an AUC of 0.97 
(95% CI: 0.97, 0.98). Estimated potential cost savings were more than $420 million.

Conclusion: iBRISK demonstrated high sensitivity in the malignancy prediction of BI-RADS 4 lesions. iBRISK may safely obviate biop-
sies in up to 50% of patients in low or moderate POM groups and reduce biopsy-associated costs.

Supplemental material is available for this article.
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and performance accuracy. Some earlier models incorporate all 
BI-RADS categories or focus on either screening or diagnostic 
data only. Other models are strictly limited to imaging data or 
integrate few clinical parameters and are often trained on public 
breast cancer screening datasets only.

We aim to evaluate the performance of our improved biopsy 
decision support algorithmic model, the intelligent-augmented 
breast cancer risk calculator (26) (iBRISK), on a large patient 
dataset in a multicenter study.

Materials and Methods

Source of Data
The institutional review boards of the participating institu-
tions approved this study, which was performed in strict com-
pliance with Health Insurance Portability and Accountability 
Act guidelines, and granted waivers of informed consent. We 
used retrospective, multi-institutional datasets to assess the 
performance of our previously developed and now improved 
iBRISK, a decision support tool that characterizes breast le-
sions classified as BI-RADS category 4 on mammograms and 
stratifies women according to POM (26). Data for this vali-
dation study include patient clinical data and mammography 
reports, which were consecutively drawn from the systemwide 
data warehouse of our institution, Houston Methodist Hospi-
tal (HMH) (27) (the same data source for model development 
and improvement [March 2006–December 2016]). Data were 
also consecutively curated from the electronic medical records 
from MD Anderson Cancer Center (MDACC) (March 2016–
September 2018) and the University of Texas Health Science 
Center San Antonio (UTHSCSA) (January 2015–June 2019). 
Our study evaluated only patients with BI-RADS category 
4 lesions with mammographic abnormalities. To limit the 
number of input variables and keep the model user-friendly, 
mammography alone was used. Also, the final features of the 
iBRISK model were purely from mammographic descriptors 
and clinical factors.

Patients
The study included patients with lesions categorized as BI-
RADS 4 at diagnostic mammography, including recalls from 
screening, who were seen consecutively in diverse clinical set-
tings. Minimum inclusion criteria were data on age, height, 
weight, and calcification details at imaging, as well as a biopsy 
performed within 3 months after mammography. Patients with 
lesions classified into other BI-RADS categories or missing the 
aforementioned data were excluded (Fig 1). The study used 
only retrospective patient data; there was no direct patient con-
tact, and patients did not receive any treatments.

Outcome
Each patient in the test dataset was evaluated using iBRISK 
by inputting the individual’s set of 20 variables (Table S1) 
comprising the model, which were derived from clinical fac-
tors and mammographic descriptors (Table S1). Please see 
Appendix S1 for details on the iBRISK model (26), its im-

of these factors could contribute to a more robust and holistic 
assessment of a suspicious mammographic finding (Table S1) 
(12–14). The BI-RADS category 4 subgroup assigns wide vari-
ability in the probability of malignancy (POM), ranging from 
2% to 95%. Biopsies of BI-RADS category 4 lesions serve as a 
quality metric and performance standard (15–18). False-posi-
tive mammograms are estimated to cost around $4 billion in 
the United States yearly (19).

A recent report based on the National Mammography Da-
tabase subcategorized the majority of BI-RADS category 4 
cases into BI-RADS category 4A (55.6%) and BI-RADS cat-
egory 4B (31.8%), with associated low PPV3s of 7.6% and 
22%, respectively (8). These findings indicate the opportunity 
for exploring, developing, and validating precision diagnostic 
models that can appropriately downgrade low and moderate 
suspicious assessments to nonactionable levels. Supplemental 
tools and algorithms would have less impact on BI-RADS cat-
egory 4C lesions because they are fewer (12.6%) and of much 
higher PPV3 (69.3%).

Several models (20–25) have been developed previously, but 
they differ from our work in terms of scope, model predictors, 

Abbreviations
AUC = area under the ROC curve, BI-RADS = Breast Imaging 
Reporting and Data System, FNR = false-negative rate, FPR = 
false-positive rate, HMH = Houston Methodist Hospital, iBRISK = 
intelligent-augmented breast cancer risk calculator, MDACC = MD 
Anderson Cancer Center, POM = probability of malignancy, PPV3 
= biopsy-proven positive predictive value, ROC = receiver operating 
characteristic, UTHSCSA = University of Texas Health Science 
Center San Antonio

Summary
The intelligent-augmented breast cancer risk calculator (or, iBRISK) 
demonstrated potential to serve as an adjunct to Breast Imaging 
Reporting and Data System (BI-RADS) to improve risk stratification 
of BI-RADS category 4 lesions and reduce unnecessary biopsies in 
patients with lesions with low probability of malignancy.

Key Points
 ■ The intelligent-augmented breast cancer risk calculator (iBRISK) 

was developed to assess probability of malignancy of Breast 
Imaging Reporting and Data System (BI-RADS) category 4 le-
sions.

 ■ The iBRISK model achieved an accuracy of 89.5%, area under 
the receiver operating characteristic curve of 0.93 (95% CI: 0.92, 
0.95), sensitivity of 100%, and specificity of 81%; only 0.16% 
of lesions determined to have a low probability of malignancy 
(POM) by the model were malignant, and lesions with high POM 
had a biopsy-proven predictive value of 85.9%.

 ■ A cost savings analysis demonstrated that iBRISK can reduce un-
necessary biopsies of BI-RADS category 4 lesions by up to 50% in 
patients with lesions classified as low or moderate POM and can 
reduce financial costs.

Keywords
Mammography, Breast, Oncology, Biopsy/Needle Aspiration, Ra-
diomics, Precision Mammography, AI-augmented Biopsy Decision 
Support Tool, Breast Cancer Risk Calculator, BI-RADS 4 Mam-
mography Risk Stratification, Overbiopsy Reduction, Probability 
of Malignancy (POM) Assessment, Biopsy-based Positive Predictive 
Value (PPV3)
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low versus “not low” or “not high” versus high and then cor-
related with the same χ2 analysis of the pathologic findings 
(benign or malignant). In either case, in the χ2 analysis, we 
correlated the iBRISK trichotomized or dichotomized pre-
dictor with the pathologic finding. Receiver operating char-
acteristic (ROC) curve analysis for all patients in the test 
set, as well as subdivision by race classifications in the data 
warehouse and electronic medical records, was performed, 
and the area under the ROC curve (AUC) was calculated. 
An assessment of the impact of missing variables on model 
accuracy was performed using data from MDACC (1424 
patients); that is, we simulated states of missing features by 
progressively removing one feature at a time and assessing 
the impact on model accuracy and stability. We estimated 
possible iBRISK-assisted biopsy avoidance, and potential 
cost savings were calculated in a cost analysis.

To assess the importance of each of the 20 factors in the 
model, 20 unique sets of scores were derived in which each 
set of scores represented the effect of removing a different fac-
tor, that is, without imputation of said factor’s value. Logistic 
regression was used to derive AUCs for each of the 20 sets of 
scores as a marker of model performance. Differences in per-
formance (as measured by the areas under the empirical ROC 
curves) between the full and factor-restricted models were as-
sessed using the method of DeLong et al (30). Decreases in 
AUC, along with their associated 95% Wald CIs, between the 
full model and each of the cluster-restricted models were used 
to measure cluster effect on model performance. The signifi-
cance of POM differences between groups was determined 
using χ2 tests. A P value of less than .05 was considered statis-
tically significant. All analyses were conducted using SAS 9.4 
software (SAS Institute) (31).

provement and updating, comparison with other models, and 
predictors. The calculator provided a POM score between 0 
and 1, as well as biopsy decision-making support recommen-
dations based on these scores. Evaluations were performed 
while blinded to patients’ pathologic results. Afterward, 
model results were compared with biopsy outcomes, which 
served as ground truth.

Missing Data
The validation data of HMH and MDACC were complete 
datasets without missing values. UTHSCSA, however, had 
1.34% missing data. Thus, of 20 features each for all 500 
cases (ie, 10 000 observations from this site), 134 observa-
tions were missing. We used one-hot encoding (28,29) to 
vectorize the input parameters, and after the parameters 
were vectorized, the binary values in the missing data be-
came all zeroes (0,0), compared with (0,1) for “yes” and 
(1,0) for “no”. Interestingly, continuous input variables like 
age, height, and weight were and would always be available 
in real-time workflow.

Statistical Analysis
An iBRISK score was derived for each patient (n = 4209). 
A single continuous predictor logistic regression model was 
fitted to the data to test the ability of the iBRISK scores 
to predict pathologic findings. The iBRISK scores were tri-
chotomized into “low,” “moderate,” or “high” POM (cut-
off points were determined based on the dynamics of our 
training data and model settings) and correlated with the 
pathologic findings (a dichotomous categorical factor: ma-
lignant or benign), which served as ground truth in a χ2 
test. Additionally, the model scores were dichotomized into 

Figure 1: Flow diagram shows patient case selection for refined model training, validation, and multicenter testing. BI-RADS = Breast Imaging 
Reporting and Data System, iBRISK = intelligent-augmented breast cancer risk calculator.

http://radiology-ai.rsna.org
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as indicated by the trichotomized data. Figure S1 outlines the 
scores as a continuous predictor according to race and ethnic-
ity distribution.

Trichotomized into low, moderate, and high POM.— iBRISK 
designated patients as having low POM for scores of less than 
0.4, moderate POM for scores between 0.4 and 0.55, and high 
POM for scores greater than 0.55. Overall, 29.2% (1228 of 
4209) of patients in the multicenter validation dataset had low 
POM, 42.8% (1788 of 4209) had moderate POM, and 28.1% 
(1193 of 4209) had high POM. While the distribution of pa-
tients in the three POM categories was significantly different 
between institutions (Fig S2), the calculator performed equally 
at all three sites in terms of sensitivity, accuracy, and when di-
chotomized as described below.

The proportion of benign lesions within these 4209 patients 
was significantly different between the POM groups (P < .001). 
When the model predicted a low POM, the likelihood of a be-
nign biopsy finding was 99.8% (Fig 3), with a false-negative rate 
(FNR) of 0.16% (two of 1228 were malignant). Most patients 
in the moderate POM category also had benign biopsy findings 
(93.4%, 1670 of 1788), with a slightly higher malignancy rate 
of 6.6% (118 of 1788). The high POM group had a malignancy 
rate of 85.9% (1025 of 1193). The calculator designated only 

Results

Patient Characteristics
The testing dataset (4209) comprised 2285 of 3887 (58.8%) 
patients from HMH, 1424 of 2643 (53.9%) from MDACC, 
and 500 of 743 (67.3%) from UTHSCSA (Fig 1). Median and 
IQR values for the multicenter validation dataset (n = 4209) 
were as follows: age, 56 years (IQR, 45–65 years); height, 
162.6 cm (IQR, 153.8–167.9 cm); weight, 85.73 kg (IQR, 
59.3–87.1 kg); and body mass index, 32.08 (IQR, 23–34). 
Non-Hispanic White individuals (2504 of 4209 [59.49%]) 
and commercial insurance and self-paying patients (3006 of 
4209 [71.42%]) were the majority for race and insurance sta-
tus, respectively. Descriptive statistics of other demographic 
predictors can be found in Tables 1 and 2.

Model Performance

Score as a continuous predictor.— Logistic regression was 
fitted to the data, assuming model score as a continuous 
predictor of malignancy, resulting in an AUC of 0.97 (95% 
CI: 0.96, 0.98) (Fig 2A). Figure 2B shows the graph for the 
logistic estimate. The model suggests the POM is zero for 
scores less than 0.4 and extremely high for scores above 0.7, 

Table 1: Demographic Characteristics for Training, Validation, and Test Sets

Characteristic Training Set Validation Set Multicenter Test Set

Sample size 9700 1078 4209
Age (y) 54 (45–63) 52 (43–62) 56 (45–65)
Height (cm) 162.6 (157.5–167.6) 161.5 (156.5–67.6) 162.6 (153.8–167.9)
Weight (kg) 73.4 (60.5–89.8) 72.6 (59.4–87.5) 85.73 (59.3–87.1)
BMI (kg/m2) 28 (24–32) 27 (24–31) 32.08 (23–34)
Race or ethnicity
 African American 1562 (16.1) 140 (13.0) 592 (14.1)
 Asian 718 (7.4) 43 (4.0) 273 (6.5)
 Caucasian (non-Hispanic) 6557 (67.6) 852 (79.0) 2504 (59.5)
 Hispanic 136 (1.4) 5 (0.5) 532 (12.6)
 Native American 10 (0.1) 0 (0.0) 8 (0.2)
 Other 630 (6.5) 32 (3.0) 256 (6.1)
 Unknown 87 (0.9) 6 (0.6) 44 (1.1)
Insurance
 Commercial, self-pay, or other 7314 (75.4) 725 (67.3) 3006 (71.4)
 Medicaid 252 (2.6) 31 (2.9) 155 (3.7)
 Medicare (includes part B) 1950 (20.1) 300 (27.8) 934 (22.2)
 Unknown 184 (1.9) 22 (2.0) 114 (2.7)
History
 Previous breast cancer 4161 (42.9) 498 (46.2) 1546 (36.7)
 Previous other cancer 708 (7.3) 57 (5.3) 851 (20.2)
 Family history of cancer 3550 (36.6) 390 (36.2) 303 (7.2)

Note.—Data are reported as medians, with IQRs in parentheses, or numbers of patients, with percentages in 
parentheses. Race category “other” includes Pacific Islanders, Alaskan Natives, and Native Hawaiians. BMI = 
body mass index.

http://radiology-ai.rsna.org
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Table 2: Distribution of Model Variables across Medical Centers in Test Set Grouped by iBRISK-determined Probability 
of Malignancy Categories

Variable Low (n = 1228) Intermediate (n = 1788) High (n = 1193) Overall (n = 4209)

Visit age (y)* 56 (18–91) 60 (27–96) 60 (22–94) 56 (18–96)
Race
 Asian 72 132 69 273
 Black 147 282 163 592
 Caucasian 712 1094 698 2504
 Hispanic 171 210 151 532
 Indian American 4 2 2 8
 Other 122 68 110 300
Height (cm)* 162.6 (125.3–198.12) 165.1 (150–177.8) 162.6 (139.7–198.12) 162.6 (125.3–198.12)
Median weight (kg) 86 89.36 84.37 85.73
Median BMI (kg/m2) 32.00 33.2 31.64 32.08
Insurance
 Commercial and self-pay 865 (70.44) 1335 (74.66) 806 (67.56) 3006 (71.42)
 Medicare 289 (23.53) 379 (21.20) 266 (22.30) 934 (22.19)
 Medicaid 38 (3.09) 64 (3.58) 53 (4.44) 155 (3.68)
Menopausal status
 Premenopausal 642 (52.28) 910 (50.89) 589 (49.37) 2141 (50.87)
 Postmenopausal 586 (47.72) 878 (49.11) 604 (50.63) 2068 (49.13)
Left or right breast
 Left 600 (48.86) 1001 (55.98) 639 (53.56) 2240 (53.22)
 Right 607 (49.43) 944 (52.80) 571 (47.86) 2122 (50.42)
Cancer history
 Family history of cancer 472 659 415 1546
 Previous history of breast cancer 330 303 218 851
 Personal history of other cancers 97 124 82 303
Skin change
 Nipple retraction 2 11 11 24
 Trabecular thickening 3 6 13 22
 Solitary dilated duct 12 41 24 77
 Other skin changes 166 250 134 550
Presence of palpable lump 146 357 277 780
Presence of nipple discharge 23 42 18 83
Mammogram density
 Fatty 41 102 66 209
 Scattered 393 755 438 1586
 Heterogeneously dense 570 760 500 1830
 Extremely dense 75 139 69 283
Presence of mass on mammogram 460 (37.46) 1289 (72.09) 777 (65.13) 2526 (60.01)
Mass appearance
 Oval 116 309 163 588
 Round 40 134 78 252
 Irregular 85 289 201 575
 Spiculated 7 51 79 137
 Circumscribed 90 228 91 409
 Obscured 42 153 84 279
 Microlobulated 11 37 17 65
 Indistinct 21 129 104 254
Calcifications present 828 (67.43) 1244 (69.57) 776 (65.05) 2848 (67.66)
Calcification appearance
 Heterogeneous or coarse 259 (21.09) 283 (15.83) 195 (16.35) 737 (17.51)
 Amorphous 348 (28.34) 211 (11.80) 137 (11.48) 696 (16.54)
 Linear or pleomorphic 28 (2.28) 53 (2.96) 62 (5.20) 143 (3.40)

(Table 2 continues)
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14.1% (168 of 1193) of benign biopsy findings as high POM 
(false-positive rate [FPR]) (Table 3, Fig 3).

Dichotomized into low versus not low POM.— Model scores 
were dichotomized into low versus not low POM following the 
clinical decision process in the 4209 patients. The proportion of 
benign lesions was significantly different between the two risk 
groups (P < .001). As previously mentioned, there were 1228 pa-
tients in the low POM group (FNR, 0.16%). There were 1838 
patients in the not low POM group who would have under-
gone biopsy with benign results, with an FPR of 61.66%. Model 
sensitivity was 99.83% (ie, the model would detect malignant 
lesions 99.83% of the time) (Table 4). Performance metrics be-
tween groups per institution are shown in Table S2.

Dichotomized into high versus not high POM.— When model 
scores were dichotomized into high versus not high POM, the 

proportion of benign lesions was significantly different between 
the two risk groups (P < .001). Among the lesions categorized 
as not high POM, 116 were malignant (FNR, 3.86%), while 
177 biopsies would have been conducted among patients with 
benign lesions (FPR, 14.68%). The model achieved 89.87% 
sensitivity, 94.22% specificity, and an AUC of 0.92 (Table 4; 
per institution, Table S2). Table S3 shows the percentage of 
benign and malignant biopsy findings and the FNRs and FPRs 
after model categorization of lesions as low, moderate, or high 
POM.

Contribution of factors in iBRISK, individually and in clus-
ters.— The contribution of each of the 20 factors in iBRISK 
was calculated using simple logistic regression to estimate 
the AUC after removing each factor from the model. Each 
factor removal resulted in a small but statistically significant 
decrease in performance, reflecting its relative contribution. 

Table 2 (continued): Distribution of Model Variables across Medical Centers in Test Set Grouped by iBRISK-determined 
Probability of Malignancy Categories

Variable Low (n = 1228) Intermediate (n = 1788) High (n = 1193) Overall (n = 4209)

 Round or punctate 30 (2.44) 106 (5.93) 68 (5.70) 204 (4.85)
Calcification distribution
 Linear 45 (3.66) 19 (1.06) 28 (2.35) 92 (2.19)
 Segmental 53 (4.32) 60 (3.36) 90 (7.54) 203 (4.82)
 Clustered 560 (45.60) 583 (32.61) 377 (31.60) 1520 (36.11)
 Regional or diffuse 47 (3.83) 76 (4.25) 56 (4.69) 179 (4.25)
Asymmetry or architectural distortion 51 (4.15) 131 (7.33) 85 (7.12) 267 (6.34)
Axillary adenopathy 33 (2.69) 139 (7.77) 127 (10.65) 299 (7.10)
Medications
 Blood pressure medication 238 (19.38) 318 (17.79) 205 (17.18) 761 (18.08)
 Heart medication 140 (11.40) 131 (7.33) 97 (8.13) 368 (8.74)
 Cholesterol medication 92 (7.49) 133 (7.44) 78 (6.54) 303 (7.20)
 Diabetes medication 75 (6.11) 128 (7.16) 52 (4.36) 255 (6.06)

Note.—Unless otherwise noted, values are numbers, and values in parentheses are percentages. Race category “other” includes Pacific Is-
landers, Native Americans, Alaskan Natives, and Native Hawaiians. BMI = body mass index, iBRISK = intelligent-augmented breast cancer 
risk calculator.
* Values are medians, with ranges in parentheses.

Figure 2: (A) Receiver operating characteristic curve of iBRISK score as a continuous estimate of the probability of breast lesion malignancy. (B) Graph shows prob-
ability of malignancy by model score (logistic estimate with confidence limits). AUC = area under the receiver operating characteristic curve, iBRISK = intelligent-augmented 
breast cancer risk calculator.
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Menopausal status and mammographic mass had the largest 
contributions according to decrease in AUC (Fig 4A, Table 
5). We grouped the final 20 factors in the model into the fol-
lowing six clusters: (a) demographics (age, race, menopausal 
status, and laterality), (b) metabolic factors (height, weight, 
insurance, and medications, including hormone replacement 
therapy), (c) history (personal history of breast or other can-
cers, family history of breast or other cancers), (d) physical 
signs (skin changes, nipple discharge, palpable lump, and 
lymphadenopathy), (e) mammographic density and mammo-
graphic mass, and (f ) mammographic calcification features 
(vascular calcification, calcification morphology, and calcifi-
cation distribution) and asymmetry and architectural distor-
tion. Mammographic mass, metabolic factors, and mammo-
graphic calcification features showed the highest contribu-
tions (Fig 4B, Table 5).

Missing Feature Analysis
Using MDACC data (n = 1424) to assess the impact of miss-
ing features on the accuracy and stability of the iBRISK 
model, we observed progressively slighter declines with each 
additional missing feature and a statistically significant level 
drop in accuracy when the fourth feature was removed. Thus, 
the model can tolerate up to three missing features while re-
taining robustness and confidence in the accuracy of results 
generated (Fig 5).

Estimated Annual Cost Savings
Table S4 shows the median projected cost (based on the Medi-
care reimbursement rate) of biopsy ($380) and the average 
cost for each type of biopsy. The most common type of biopsy 
among MDACC patients was stereotactic biopsy (68%). The 
cost of biopsy ranged from $321 (stereotactic biopsy) to al-

Figure 3: Percentage of benign and malignant pathologic findings after biopsy of breast lesions according to iBRISK 
probability of malignancy level. iBRISK = intelligent-augmented breast cancer risk calculator.

Table 3: Association between Trichotomized Model Probability of Malignancy and 
Pathologic Finding in Test Set

Pathologic Finding

Model Probability of Malignancy

Low Moderate High Total

Benign
 No. of lesions 1226 1670 168 3064
 Percentage TNR: 99.84 TNR: 93.40 FPR: 14.08 …
Malignant
 No. of lesions 2 118 1025 1145
 Percentage FNR: 16.00 FNR: 6.60 TPR: 85.92 …
Total no. of lesions 1228 1788 1193 4209

Note.—Test set comprised 4209 patients. The distribution of pathologic findings was significantly 
different between the three model probability of malignancy groups on the basis of a χ2 test (P < 
.0001). FNR = false-negative rate, FPR = false-positive rate, TNR = true-negative rate, TPR = true-
positive rate.
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most $3600 (mammography-guided surgical biopsy). Table S5 
provides the information used to derive our estimate of cost 
savings as a result of triaging patients classified as low risk by 
iBRISK to not undergo biopsy. As shown, biopsy can poten-
tially be avoided for approximately 390 000 women, with cost 
savings of more than $420 million.

Discussion
We improved iBRISK and evaluated the model by using a ret-
rospective multi-institutional dataset made up of patients from 
MDACC, UTHSCSA, and HMH. iBRISK demonstrated high 
sensitivity and specificity for the prediction of POM, resulting 
in improved risk stratification of BI-RADS category 4 lesions, 
such that only 0.16% (two of 1228) of lesions classified as low 
POM in women assessed by iBRISK were malignant, and PPV3 
among the high POM group was 85.9% (1025 of 1193), which 
is close to that of the BI-RADS 5 risk category (80.3%–97.9%) 
and outperforms radiologists’ BI-RADS 4 categorization ac-
curacy (20,32,33). Thus, iBRISK can potentially obviate up to 
50% of biopsies in patients with BI-RADS 4 mammograms.

The iBRISK calculator can assist physicians, primarily radiolo-
gists, in triaging patients to low POM groups to avoid biopsies of 
benign lesions, while high-risk groups can be treated as patients 
with BI-RADS category 5 lesions. A more precise stratification 
system that considers vital patient characteristics in addition to 

abnormal, suspicious imaging features is needed to enhance POM 
estimation to guide the safe management of such mammographic 
findings, prevent overbiopsy and associated costs, and reduce pa-
tient emotional distress (34,35). The goal is not to replace or mod-
ify the BI-RADS standards but to improve precision in predicting 
the malignancy of category 4 lesions, which are currently overbi-
opsied, when iBRISK is used alongside the BI-RADS system.

While various models have been proposed and several studies 
performed (20,21,24,25), a safe, pragmatic, and effective system 
that addresses these concerns has not been reported. A 2015 
study included the Gail model, body mass index, and genetic 
marker information for breast cancer risk estimation in women 
with suspicious findings on BI-RADS 4 mammograms (21). 
Similar to our current study, this study considered clinical fac-
tors, albeit in a more limited fashion, but did not improve POM 
estimation precision within the BI-RADS 4 category. A 2019 
study proposed a combined machine and deep learning approach 
applied to digital mammograms and electronic health records to 
identify false-negative findings in BI-RADS categories 1, 2, and 
3 (24). The algorithm identified 34 of 71 (48%) of such find-
ings on mammograms. Another study in 2021 developed a deep 
learning fusion network model using mammography imaging 
biomarkers and clinical features of BI-RADS category 3, 4, and 
5 lesions to predict malignancy (25). However, their test cohort 
was relatively small (internal test cohort, 244 patients; external 

Table 4: Association between Dichotomized Model Probability of Malignancy and Patho-
logic Finding in Test Set

A. Low versus Not Low

Pathologic Finding

Model Probability of Malignancy

Low Not Low Total

Benign
 No. of lesions 1226 1838 3064
 Percentage TNR: 99.84, specificity: 40.01 % FP: 61.66, FPR: 59.99 …
Malignant
 No. of lesions 2 1143 1143
 Percentage % FN: 0.16, FNR: 0.17 TPR: 38.34, sensitivity: 99.83 …
Total no. of lesions 1228 2981 4209

B. High versus Not High

Pathologic Finding

Model Probability of Malignancy

Not High High Total

Benign
 No. of lesions 2887 177 3064
 Percentage TNR: 96.15, specificity: 94.22 % FP: 14.68, FPR: 5.78 …
Malignant
 No. of lesions 116 1029 1145
 Percentage % FN: 3.86, FNR: 10.13 TPR: 85.32, sensitivity: 89.87 …
Total no. of lesions 3003 1206 4209

Note.—Test set comprised 4209 patients. The proportion of benign lesions was significantly different 
between each pair of probability of malignancy groups on the basis of a χ2 test (P < .0001). FN = false 
negative, FNR = FN rate, FP = false positive, FPR = FP rate, TNR = true-negative rate, TPR = true-
positive rate.
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test cohort, 100 patients). Most current published works do not 
compare results with the BI-RADS guidelines, address the is-
sue of precision POM estimation of BI-RADS category 4 mam-
mogram suspicious findings, or address the issue of overbiopsy, 
and do not involve multiple nonimaging parameters. Further, 
current published artificial intelligence models for cancer prob-
ability estimation were developed using clinical images from a 
public breast cancer screening dataset (22,23,36) and do not in-
corporate the above parameters.

Because of variability in malignancy rates associated with 
BI-RADS category 4, the BI-RADS fifth edition proposes 
the following subcategories for likelihood of malignancy: 4A 
(2%–10%), 4B (11%–50%), and 4C (50%–95%). Reported 
PPV3 for BI-RADS category 4 ranged from 15% to 30% 
(37–40) and was recently reported as 21.1% (4A: 7.6%, 4B: 
22.2%, 4C: 69.3%) (8) in the United States and between 
21% and 27.1% in other countries (32,41). Subcategoriza-
tion of BI-RADS 4 is not widely adopted, as the malignancy 

Figure 4: Contribution of the removal of 
iBRISK factors to a decrease in AUC for (A) 
individual factors and (B) factor clusters. AUC = 
area under the receiver operating characteristic 
curve, iBRISK = intelligent-augmented breast 
cancer risk calculator.
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rate in the 4A (low risk) category is up to 10% (20). Our 
study demonstrated that iBRISK outperforms BI-RADS sub-
category recommendations, with an FNR of less than 1% in 
the low POM category. There were malignancy rates of 6.6% 
in the iBRISK moderate POM group, which is still lower 
than the published BI-RADS category 4A range, and 85.9% 
in the high POM group, close to the BI-RADS 5 category. 
Also, a recent published study found that essentially, in the 
BI-RADS 4 category, digital breast tomosynthesis had no 
comparative advantage over digital mammography in terms 
of PPV3 and cancer detection rate, which could answer 

questions on the impact of the broad implementation of digi-
tal breast tomosynthesis on precision (42).

Our study had certain limitations. First, the iBRISK model 
was built, refined, and internally validated with patient data 
from a major health system in the greater Houston area, and 
this reported multi-institutional testing is largely restricted to 
data from three leading hospitals in Texas. A larger multicenter 
study involving other states is being planned to further assess the 
model’s performance in more diverse patient populations and 
breast imaging practices. Second, the study required complete 
retrospective data curation to incorporate both mammographic 

Table 5: Contribution of Removal of iBRISK Model Factors to Decrease in Model Performance

A. Individual Factors

Scenario Factor Removed

AUC

AUC Loss P ValueEstimate 95% CI

0 None (full model) 0.97 0.96, 0.98 … …
1 Age at visit 0.96 0.95, 0.97 0.0106 <.001

2 Race 0.96 0.95, 0.97 0.0106 <.001
3 Height 0.96 0.95, 0.97 0.0111 <.001
4 Weight 0.96 0.95, 0.97 0.0108 <.001
5 Insurance 0.96 0.96, 0.97 0.0080 <.001
6 Cancer history 0.96 0.95, 0.97 0.0095 <.001
7 Menopausal status 0.95 0.95, 0.96 0.0149 <.001
8 Laterality 0.96 0.96, 0.97 0.0069 <.001
9 Skin change 0.96 0.95, 0.97 0.0098 <.001
10 Palpable lump 0.96 0.95, 0.97 0.0096 <.001
11 Nipple discharge 0.96 0.95, 0.97 0.0100 <.001
12 Mammogram density 0.96 0.95, 0.97 0.0110 <.001
13 Mammogram mass presence 0.96 0.95, 0.96 0.0132 <.001
14 Mammogram mass shape or margin (appearance) 0.96 0.95, 0.97 0.0091 <.001
15 Calcifications 0.96 0.95, 0.97 0.0099 <.001
16 Calcification form 0.96 0.96, 0.97 0.0081 <.001
17 Calcification distribution 0.96 0.95, 0.97 0.0088 <.001
18 Mammogram lymphadenopathy 0.96 0.95, 0.97 0.0095 <.001
19 Mammographic asymmetry or distortion 0.96 0.95, 0.97 0.0103 <.001
20 Medications 0.96 0.95, 0.97 0.0089 <.001

B. Factor Groups

Scenario Group Removed

AUC

AUC Loss P ValueEstimate 95% CI

0 None (full model) 0.97 0.96, 0.98 … …
1 Demographics 0.90 0.89, 0.91 0.0682 <.001
2 Metabolic 0.83 0.81, 0.84 0.1421 <.001
3 History 0.96 0.95, 0.97 0.0095 <.001
4 Physical signs 0.83 0.82, 0.85 0.1352 <.001
5 Mass features 0.79 0.78, 0.81 0.1756 <.001
6 Calcification features 0.83 0.81, 0.84 0.1411 <.001

Note.—AUC = area under the receiver operating characteristic curve.

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 5: Number 6—2023 ■ radiology-ai.rsna.org 11

Ezeana et al

and patient risk factors not readily considered in mammogra-
phy reports, resulting in 53.9%–67.3% of patients from the 
initial datasets at the three participating sites to be included in 
the final analysis. However, the model performed well across the 
sites, suggesting model robustness to external data. Third, 85% 
of the 20 model variables were needed for robust POM scor-
ing using iBRISK, with the calculator tolerating a maximum of 
three missing features. The slight accuracy decreases with each 
additional missing feature using the MDACC dataset empha-
size the requirement of precise data curation and annotation for 
the optimal function of this tool. Fourth, iBRISK substitutes 
missing data with a default (unknown) or average number value, 
thus affecting its accuracy. However, demographic and specific 
information on mammographic calcifications would be avail-
able when used in real time. The lack of consistent reporting on 
mammographic calcification form and calcification distribution 
underscores the urgent need for consistent structured breast im-
aging reporting systems that optimize data acquisition, archiving, 
retrieval, and extraction. The envisaged clinical workflow is an 
online iBRISK calculator where these 20 features including 
demographics, history, and mammographic features would be 
inputted after a mammography examination with a BI-RADS 
category 4 designation by the radiologist or other providers and 
the risk score generated. Fifth, findings of previous scans have 
not been included because of availability constraints, though it 
can be argued that progression of calcifications and lesions over 
time is important. Extending our analysis beyond lesion classifi-
cation as benign versus malignant to clinical outcomes, histology 
of cancer types, and aggressive versus less aggressive tumors was 

beyond the scope of this study and should be investigated in 
future studies. Sixth, most biopsies evaluated in the cost savings 
analysis were stereotactic biopsies. While other biopsies were per-
formed at this site, the data retrieval and study period occurred 
during the migration of the electronic medical record system to 
a new platform; therefore, successful data curation with accurate 
clinical information of the other biopsy types could not be per-
formed. Of note, stereotactic biopsies are much cheaper. Last, 
iBRISK POM assessment serves as an adjunct to breast imaging 
for clinical providers and patients in biopsy decision-making and 
thus is not a definitive diagnostic tool.

In summary, our study demonstrates that iBRISK can effec-
tively aid in risk stratification of BI-RADS category 4 lesions 
and reduce overbiopsy of these lesions. Ultimately, the iBRISK 
calculator will be published as an online interface and made 
open access, noncommercial, and accessible by health systems 
and centers worldwide. Future studies aim to improve the model 
further, particularly by including more granular data and other 
BI-RADS categories.
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Figure 6: Online iBRISK interface showing 20 fields. iBRISK = intelligent-augmented breast cancer risk calculator.
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