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When does turbulence spreading matter?

Rameswar Singh and P H Diamond

CASS, University of California San Diego,

9500 Gilman Dr, La Jolla, CA 92093, USA∗

(Dated: March 20, 2020)

Few, if any, of the many papers on turbulence spreading, address the key question

of how turbulence spreading actually affect profile structure? Here we are using a

reduced model to answer that question. Turbulence spreading is most relevant near

regions where the profiles support a strong intensity gradient ∇I. One such case

is at the edge of an L mode discharge, near a source of turbulence (i.e., either a

localized source of edge turbulence or an influx of turbulence from the Scrape off

Layer (SOL)). Another is in ‘No Man’s Land’ (NML), which connects the pedestal

to the stiff core in H mode. In the case of L mode, without an edge intensity source,

the turbulence intensity profile is nearly flat and spreading has a weak effect. An

edge localized source increases the edge ∇I, which then drives inward spreading.

Invasion of turbulence from SOL to edge softens the edge pressure gradient. In H

mode, the strong shear suppression of pedestal turbulence necessarily forces a sharp

∇I in NML. This sharp ∇I drives a significant flux of turbulence from the core to the

pedestal, where it is ultimately dissipated by shearing. Counter-intuitively, results

indicate that spreading actually increases pedestal height and width and hence the

energy content in H mode. This suggests that models of pedestal structure should

include NML turbulence spreading effects. The relation of avalanches to spreading is

studied. Spreading weakly affects the avalanche distribution, but the spatiotemporal

correlation of intensity increases with spreading.

∗ rsingh@ucsd.edu
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I. INTRODUCTION

Turbulence spreading is a process of turbulence self-scattering by which locally excited

turbulence spreads from place of excitation to other places. This is a phenomenon of inho-

mogeneous turbulence and is outside the realm of classic K41 paradigm. Naturally occurring

turbulent systems and laboratory fluid dynamical systems such as pipe flows[1], plane Cou-

ette flow[2], turbulence in plasma and fusion devices exhibits inhomogeneous turbulence. In

magnetized plasma turbulence, the fluctuation envelope is inhomogeneous on the mesoscales

l ⊂ (ρi, a) (ρi is ion larmor radius and a is minor radius) and so produces a flux of turbu-

lence energy. Spreading is expected to impact transport and hence confinement. The radial

spreading of turbulence has been widely observed in many global nonlinear simulations[3–

7] and has been lately related to transport scaling modification[8]. This non-local phe-

nomenon of turbulence spreading is frequently invoked as a mechanism for fast transients

and other exotic phenomena, like the breakdown of gyro-Bohm transport scaling[8–10], and

the breakdown of Ficks law[11]. Turbulence penetrates internal transport barrier and limits

its performance[12]. Turbulence spreading through a magnetic island has been observed both

in gyrokinetic simulations[13, 14] and experiments[15, 16]. Other indirect evidence of turbu-

lence spreading in action include observation of anomalous transport in the core of NSTX[17],

observation of non-zero fluctuations and anomalous transport in the the linearly stable zone

of a JT − 60U reverse shear discharge[18]. Indirect evidence of turbulence spreading is seen

just after transport barrier formation or its collapse. Fluctuation levels in the core drops in a

short time scale (much shorter than transport time scale) after H mode transition in DIII-D

tokamak[19]. In the TJ-2 stellerator, the density fluctuations at the inner radii increase on

the same time scale as the time scale of collapse of the edge radial electric field shear during

H-L back transition[20]. In the inner core (ρ < 0.2), even in cases without apparent MHD

(e.g. when q > 1), the measured temperature and density gradients tend to flatten and local

simulations tend to predict spurious stability. The turbulence spreading from outer core to

the inner core can help sustain the lower gradients in this central region. Finally, there is the

transport short-fall problem: Some earlier local non-linear simulations[21, 22] considerably

underpredicted the turbulence and transport level in No Man’s Land (NML), as compared

to experimental measurements. NML is the interface region connecting the pedestal top to

the stiff core (see figure(2)). However this underprediction was later addressed by changing
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3

the turbulence drive (i.e., temperature gradient) in the local simulations by a few percent.

This small change lies within the experimental error bars[23, 24]. But local simulations do

not treat the turbulence spreading effect correctly. While local multi-scale simulation can

resolve some of the shortfall question, there is still room for modelling including spreading

effects and for further studies with global, flux driven simulations. These observations can

not be reconciled within the framework of local turbulence and transport. These are some

situations where turbulence spreading may come to rescue.

Turbulence spreading is often modelled theoretically as propagating intensity front solutions

of the Fisher-KPP[25, 26] nonlinear reaction-diffusion equation[10]. The reaction term con-

sists of sum of linear growth and nonlinear damping (usually quadratic) in intensity. The

intensity diffusion term is also nonlinear, with diffusivity proportional to intensity itself i.e.

∝ I. A profile of linear growth rate is prescribed to study spreading of an initial slug of

turbulence in frozen background profiles. This approach has, no doubt, lead to some under-

standing of turbulence spreading from unstable to stable zone and sheds some light on the

origin of breakdown of gyro-Bohm transport scaling[10]. Spreading from an unstable to a

stable zone leads to reduction of intensity in the unstable zone and introduces an additional

dependence on ρ⋆ = ρi/a to the turbulence intensity, which is otherwise determined by local

physics. This leads to a deviation of transport scaling from gyro-Bohm scaling. However,

physical plasma systems are flux driven which means the total flux (turbulent + classical

flux) must balance the input flux profile in steady state. This constraint forces profiles to

evolve with intensity spreading. Hence we relax the frozen profile assumption, to study the

effect of spreading on steady state profiles.

From a fusion point of view, anything affecting confinement is of immediate interest. So we

ask the following questions.

1. How does turbulence spreading influence profiles?

2. In the cases where it does, what are the distinguishing features?

Before proceeding with a description of the model used and the results obtained in this

paper, we compare and contrast our work with previous works. Most of the previous the-

oretical and simulation studies on turbulence spreading simply focused on spreading of a

slug of turbulence which ignored its effect on profile evolution. These include the various

works illustrated below, and contrasted with our work in table(I). The works of Garbet et
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4

al [27], Naulin et al [28] and Wang et al [29] considered the pressure, density and temperatures

equations respectively self consistently, and studied transient evolution of a pulse of turbu-

lence. They ignored the question of how spreading affects the steady sate profiles, which

directly map to confinement. This pinpoints why our study of spreading effect on profiles is

important. Pulse propagation is important if one is specifically interested in fast transient

nonlinear response. Steady state profiles are at least of importance from fusion perspective.

This is why this paper is distinct from the previous works.
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Models What is studied? Relevance

1-field (I)[10][30] Space-time evolution of a pulse of

turbulence in frozen background

Fast transients on time scales

shorter than transport time

2-fields (I &P )[27] Space-time evolution of a pulse of

turbulence in frozen background

Fast transients on time scales

shorter than transport

2 fields (I & n)[28] Space-time evolution of a pulse ofI

& n

Fast transient response on time

scales shorter than the transport

time

2 fields (I and T )[29] Intensity pulse speed with heat flux Fast transient response on time

scales shorter than the transport

time

Delta-f gyrokinetic PIC

simulation with gKPSP[31]

Magnetic shear effect on spreading

in frozen background

Demonstrated that spreading is

most effective at intermediate

values of magnetic shear (∼ 0.5)

GYRO simulations[32] Spreading in piecewise-flat profiles. Illustrated breaking of gyro-Bohm

scaling due to spreading

GTS simulations[33] Spreading through an externally

imposed E ×B shear well.

Demonstrated blocking of

spreading through shear layer

GTC simulations[34] Spreading through qmin in frozen

background

Demonstrated that steady sate

turbulence fills the whole volume

without any gap at the qmin

location

Delta-f gyrokinetic PIC

simulation[8]

Steady state profiles of turbulence

intensity at different ρ⋆ in frozen

background

Demonstrates turbulence intensity

in linearly stable zone

L mode: 2 fields (I & P ); H

mode: 3 fields (I, P &

n)(this work)

Effect of spreading on steady state

profiles

Profile structure, confinement

Table I. Comparing and contrasting our work with others. I, P , and n represent turbulence

intensity, pressure and density respectively.
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6

Turbulence spreading matters whenever there is a strong intensity gradient. In L mode,

the turbulence intensity monotonically increases radially outward. This could be due to

strong resistive edge turbulence or due to the invasion of turbulence from scrape off layer

(SOL). Hence spreading is expected to have some effect on profiles. In this paper, effects of

turbulence spreading on L mode profiles are studied in a simple 2-field model consisting of

intensity(I) and pressure(P ) evolution equations. The strong edge turbulence in L mode is

modelled by using an additional edge localized source in the intensity equation. Turbulence

invasion from SOL is modeled using a finite in-flux boundary condition at the edge. Either

way, enhanced edge turbulence softens the edge pressure gradient and degrades confinement.

The inward turbulence spreading then reduces the edge intensity and increases the core in-

tensity. This causes steepening of edge pressure gradient. However this effect is negligible,

without an edge localized source or turbulence invasion from SOL, due to mild intensity

profile gradient near the edge. This is schematized in figure(1).

Figure 1. Schematic of spreading effect with edge source of intensity due to invasion from SOL or

localized edge source. I and P represent turbulence intensity and pressure respectively.
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7

In H mode, we argue that turbulence spreading in No Man’s Land (NML) has a signifi-

cant effect on pedestal height and width, issues of great pragmatic interest. Understanding

the physics mechanisms determining barrier height and width are of utmost importance

because the latter impact global confinement. Generally, bigger barrier height and width

are better for confinement. Edge transport barriers appear as a result of the suppression of

edge turbulence by enhanced E×B shear due to bifurcation of radial electric field at higher

input power[35–37]. H mode pedestal height and width are usually controlled by the input

heat, particle and momentum fluxes. However the width and height of the pedestal do not

continue to increase without bound. The stable limiting size of the pedestal is thought to be

set by peeling-ballooning stability[38]. In this conventional wisdom, the role of turbulence

spreading is ignored.

Turbulence spreading can play a significant role in determining the radial profile of turbu-

lence intensity and hence sets the extent of the region of turbulence suppression. Turbulence

spreading is most active in regions of strong turbulence intensity gradient. So NML near

the pedestal top in H mode is a place where turbulence spreading effects are very strong.

This is schematized in figure(2).

0 0.5 1
0

1

2

3

4

5

Figure 2. Turbulence intensity and pressure profile at weak spreading. Also rough partitions of

core, pedestal, and NML are shown. Clearly intensity gradient is strong in NML.

In this paper effects of turbulence spreading on H mode pedestal size are studied
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in a 3-field model which self-consistently evolves density(n), pressure(P ) and turbulence

intensity(I). Pressure and density fluxes are treated as bi-stable due to E × B shear sup-

pression of turbulent diffusivity and a constant neoclassical diffusivity. Turbulence intensity

is excited by critical pressure gradient with E × B shear reduction of the linear growth

rate and saturated by non linear damping. Turbulence spreads via nonlinear diffusion of

intensity. The effect of spreading is studied by varying the effective Prandtl number- defined

as the ratio of the turbulent intensity diffusion coefficient to the turbulent heat diffusion

coefficient. We find that turbulence spreading in fact elevates the pedestal (maintaining

the pedestal pressure gradient) by reducing turbulence intensity in NML. Indeed, turbulent

intensity in NML is strongest when spreading is weakest, as shown in the schematic in

figure(2). With increasing Prandtl number, the turbulence intensity in NML decreases and

pedestal height and width increase. We also see that turbulence penetrates the pedestal

and that depth of penetration increases with Prandtl number. Hence turbulence spreading

plays a positive role in confinement improvement in H mode. In contrast, spreading has a

weak effect on L mode confinement, though it is often invoked to explain the breakdown of

gyro-Bohm scaling.

Finally, we must mention that our approach is somewhat at best semi-quantitative. No nu-

merical simulation has identified effect of spreading on profiles. There is no unique control

parameter for spreading in gyrokinetic simulations or in experiments. No data from experi-

ments and simulations exist that can be used for quantitative comparison with our results

on spreading effect on plasma profiles at steady state. This supports our semi-quantitative

approach which helps in understanding of the role of turbulence spreading on profile forma-

tion.

Nevertheless, our results suggest that predictive models of pedestal structure must address

NML turbulence and spreading effects. Core turbulence simulations use pedestal parameters

from pedestal models, e.g. EPED, as a boundary condition. But the pedestal structure

models do not have turbulence spreading effects. So, accuracy of such core turbulence

simulations may be compromised.
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Intensity

grad

Flux of 

intensity

Intensity 

relaxation

Grad P 

steepening

Figure 3. Schematic of spreading effect on profile

The schematic shown in figure(3) summarizes the effect of spreading on profile. Spreading

leads to local reduction of turbulence and steepening of pressure gradient. This is true in

general and irrespective of confinement regime type. However the spreading effect on profile

is more significant in H mode (compared to L mode) due to strong intensity gradient at

NML.

The rest of the paper is organized at follows. In Section(II), a self-consistent 3-field model

for coupled evolution of turbulence intensity, pressure and density profiles is described. This

model is used to study turbulence spreading effect on profiles. This is then, reduced to a

2-field model to study spreading effects in L mode in Section(III). The spreading effects

on H mode profiles are described in Section(IV). Finally the paper is concluded with a

discussion in Section(V).

II. COUPLING TURBULENCE SPREADING TO PROFILES

Conventionally, turbulence spreading is treated as a Fisher-KPP type 1d reaction diffusion

equation. This is in the spirit of a K − ε model[39] for the turbulence intensity field used

in subgrid-scale modeling, where K is kinetic energy and ε is dissipation. The turbulence

intensity I
(

=
∣

∣

∣

eδφ
T

∣

∣

∣

2
)

is evolved as

∂I

∂t
= χ

[

µI − γNLI
2
]

+ σ
∂

∂x
I
∂I

∂x
(1)

where the first term on the right hand side represents local linear turbulence drive, with µ the

growth or damping rate. The second term results in nonlinear saturation of the intensity

at the mixing length level I = µ/γNL, when µ > 0. The nonlinear damping γNL is due

to local mode-mode coupling. The third and final term is the nonlinear diffusion of the
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turbulence intensity due to mode-mode coupling, which results in spatial scattering. The

nonlinear turbulent diffusion term arises naturally when nonlinear coupling in k-space and

nonlinear scattering in x-space are treated on equal footing using a multi-scale closure of

E × B non-linearity, which treats both mode k and envelope scales, i.e. ~∇ → i~k + ∂x[40].

∑

k′

(

~k · ~k′ × ~z
)2
Ik′R(~k,~k

′)Ik → −
∂

∂x
Dx(Ik)

∂Ik
∂x

+ k2
⊥
DkIk (2)

where R(~k,~k′) is a response function which determines the correlation time, Dx =
∑

k′ R(~k,~k
′) |δVE,k′|

2,

and Dk =
∑

k′

(

~k · ~k′ × ~z
)2
R(~k,~k′) |δVE,k′|

2. The first term is the (radial) nonlinear diffu-

sion, and the second represents local nonlinear transfer. We note that other forms of

diffusivity are possible, but the choice D(I) = σI is usually made as this correspond to

weak turbulence closure[41]. As shown by Gurcan et al [30], equation(1) can be derived from

a Fokker-Planck type analysis of the intensity field evolution in space, assuming intensity

random walks due to turbulence scattering with a step size of the turbulence correlation

length and time step equal to the correlation time. This equation can also be derived by

application of quasi-linear theory to the wave kinetic equation.

Some of the drawbacks of the Fisher model are the following. The Fisher model equation(1)

supports travelling front solutions connecting turbulent and laminar fixed points only in the

linearly unstable region. Moreover, this model predicts very weak penetration of turbulence

into linearly stable regions, with characteristic depth of penetration λ =
√

σ
γNL

[30]. This

can not explain the large fluctuation levels observed in linearly stable zones like internal

transport barrier in JT-60U[42]. Finally the biggest drawback is that the Fisher model

ignores self-consistent coupling to profile evolution.

A recent advance[43] on this type of the model was developed. This is based on bi-stable and

sub-critical turbulence, similar to that for Poiseuille and plane Couette flows[44] and pipe

flow transition to turbulence[1, 45]. This model seems to overcome the first two drawbacks

above. The bi-stable sub-critical model reads

∂I

∂t
= χ

[

µI + 2βI2 − I3
]

+ σ
∂

∂x
I
∂I

∂x
(3)

The following observations support the choice of of the above phenomenological model for

sub-critical turbulence spreading in magnetized fusion plasma. Inagaki et al.[46] have demon-

strated global hysteresis between the turbulence intensity and the local temperature gradient
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in the Large Helical Device L mode plasma. This hysteresis itself implies a memory in the

turbulence and suggests the possibility of a bi-stable relationship between the intensity and

the local gradient. We note that this hysteresis can also be explained by a mismatch in the as-

sumed heat deposition profiles during the heat modulation[47]. From theory and simulation,

the 3D Hasegawa-Wakatani system is known to be sub-critical in the presence of magnetic

shear, due to a nonlinear streaming instability[48–50]. Collisional electrostatic drift-wave

turbulence in a sheared slab described by cold ion Braginskii equations is shown to be self-

sustained when initialized at nonlinear amplitude[51, 52]. Guo and Diamond[53] argued that

the turbulence exhibits bi-stability in the vicinity of temperature corrugations in the E×B

staircase, a self- organized structure of quasi-periodic shear flow layers. These corrugations

arise due to inhomogeneous turbulent mixing and drive ion-temperature-gradient-driven

(ITG) turbulence locally, which can result in further roughening of the temperature profile

and thus nonlinear turbulence drive. A sufficiently strong ambient perpendicular shear flow

can also cause the turbulence to be sub-critical —this effect has been observed in gyrokinetic

simulations[54, 55]. Finally, we note that phase-space structures such as holes and granula-

tions, which can interact with drift waves[56], are known to drive nonlinear instabilities[57].

Bi-stable sub-critical turbulence makes for stronger penetration of the stable zone[43]. The

bi-stable regime supports traveling turbulence front solutions, with characteristic length

scales which are qualitatively similar to those of the Fisher model yet penetrate the linearly

stable or marginal region. An new propagating wave solution is possible in the linearly

stable region with reduced amplitude and speed.

Hence we make a two pronged improvement to the Fisher model. First, the reaction term in

Fisher equation is generalized to treat sub-critical bi-stable turbulence. Second, the intensity

equation is self-consistently coupled to the pressure and density profile evolution equations.

The linear growth rate of intensity is related to the local pressure gradient, and the turbu-

lent heat flux in pressure equation and particle flux in the density equation is proportional

to local intensity. We consider following 3-field continuum model consisting of turbulence

intensity I, pressure P and density n

∂I

∂t
= f(I, P, n) + σ

∂

∂x
I
∂I

∂x
(4)
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where the first term on the right hand side is the reaction term which consist of turbulence

growth and damping and is a function of I, P and n. σ is spreading coefficient. Note that

the nonlinear diffusion term do not produce any source term in the intensity equation(4).

This is explained in the Appendix(A).

∂P

∂t
=

∂

∂x

(

αpI

1 + ǫV ′2
E

+Dcp

)

∂P

∂x
+ Sp (5)

and

∂n

∂t
=

∂

∂x

(

αnI

1 + ǫV ′2
E

+Dcn

)

∂n

∂x
+ Sn (6)

where a bi-stable form of flux due to shear suppression is used. αp and αn are turbulent

pressure and density diffusivity coefficients respectively. Dcp and Dcn are neoclassical pres-

sure and density diffusivities. The E×B velocity shear V ′

E is obtained from the radial force

balance, assuming no poloidal and toroidal flows V ′

E = − 1
eBn2

dp
dx

dn
dx

. Note that the contribu-

tion of pressure curvature is also ignored. The pressure source is chosen as localized at the

core and density source is localized at the edge, with the functional forms Sp = S0pe
−wpx

2

and Sn = S0ne
−(x−x0)2 respectively. Above model is solved numerically for the boundary

conditions ∂I
∂x
(x = 0) = ∂I

∂x
(x = a) = 0, ∂n

∂x
(x = 0) = ∂P

∂x
(x = 0) = 0, n(x = a) = 0.01

and P (x = a) = 0. Here a represents minor radius of tokamak. Note that the turbulence

intensity at the edge in L mode is significantly enhanced, compared to the core. This can

be modeled either by adding a localized source of intensity or by setting up a finite intensity

flux boundary condition at the edge.

III. SPREADING EFFECT IN L MODE

A. Model for L mode studies

Note that in L mode, transport bifurcations do not occur. So the E × B shearing effect

can be ignored in the equations. In such as a situation the neoclassical diffusion terms can

also be ignored as turbulent diffusion dominates. Also density equation is needed to localize

E×B shear towards the edge. Since shearing feedback can be ignored in L mode, we consider

the following subset of equations consisting of intensity and pressure only. Retaining the

bistable subcritical reaction term f = χ [µI + 2βI2 − δI3] the intensity equation reads as:
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∂I

∂t
= χ

[

µI + 2βI2 − δI3
]

+ σ
∂

∂x
I
∂I

∂x
+ δ(x− a)

I0
τ

(7)

where the first term on the right hand side represents local linear turbulence drive, with

growth rate µ =
(

(

∂P
∂x

)2
− µ2

c

)

, µc is the critical pressure gradient. The growth rate is

positive only when the pressure gradient exceeds the critical gradient. χ is total growth

rate. β measures the strength of nonlinear growth. β > 0 yields sub-critical turbulence,

β = 0 yields supercritical turbulence. I0 is an edge localized source of turbulence intensity

added to model additional edge turbulence as seen in experiments. The pressure evolution

equation is reduced to

∂P

∂t
=

∂

∂x
αpI

∂P

∂x
+ Sp(x), Sp = Sp0e

−wpx
2

(8)

where α is turbulent pressure diffusion coefficient. Above model is solved numerically for

the boundary conditions ∂I
∂x
(x = 0) = ∂I

∂x
(x = a) = 0, ∂P

∂x
(x = 0) = 0, P (a) = 0. Enhanced

turbulence intensity at the edge may also result from the turbulence invasion from the

scrape off layer (SOL). This can be modeled by setting I0 = 0 and setting up a finite

intensity flux boundary condition ∂I
∂x
(x = a) 6= 0 at edge. Noise is added to the pressure

source to excite avalanches. Noise in pressure source is not unrealistic, as all thermal and

particle sources are in practice noisy. Note that this reduced model for L mode also has

fewer free parameters than the full model does. We introduce following normalizations for

the numerical calculations. Space and time is normalized as x → x̂ = x/a, t→ t̂ = tρ2⋆ci/a,

where ρ⋆ = ρ
a
. Pressure is normalized by reference value P0[= 1 × 1019KeV m−3]: P →

P̂ = P/P0. Turbulent diffusivities generally ∝ χGB
I
ρ2⋆

. Hence this normalization leads to

σ → σ̂ = σ/χGB, αP → α̂P = αP/χGB. The intensity is normalized as I → Î = I/ρ2⋆. Also

effective growth rate as χ→ χ̂ = χa/ciρ
2
⋆ and the dimensionless parameters as β → β̂ = βρ2⋆,

δ → δ̂ = δρ4⋆. The source is normalized as Sp → Ŝp = aSn/n0ciρ
2
⋆. The normalized equations

look same as the original equations with “hatted” variables.

B. Results for L mode

Defining Prandtl number as Pr = σ̂
α̂
, scans of steady state profiles with respect to Pr

with different combinations of σ̂ and α̂, β̂ and I0/τ̂ were made. We discuss the results of
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Pr scan below.

For fixed value of Pr resulting from different combinations of σ̂ and α̂, the profiles of I and

P are different. This means that the system of equations can not be re-scaled in terms of

Pr. The net turbulence energy
´

dxI, increases and total confinement
´

dxP degrades, with

increasing β̂. As a result, a supercritical pressure profile at low β̂ may become a sub-critical

profile at high β̂, for fixed input power. Variations in α̂ cause more pronounced effect in

pressure and intensity profiles. Decreasing α̂ increases both confinement and turbulence

intensity. Pressure gradient steepens and edge intensity rises. This result is due to lack of

self-consistent E × B shear suppression of turbulence in our simple L mode model.

1. Spreading in presence of an edge localized source: In L mode plasma, turbulence

intensity monotonically rises with radius, making the edge turbulence intensity higher than

that in the core. Our simple model, without an edge source of intensity either due to local

effect or due to incoming flux of turbulence from SOL, produces an almost flat intensity

profile at the edge. Hence to model an increasing profile of intensity a localized edge source of

intensity is used in the intensity equation. Increasing the edge localized source increases the

edge turbulence intensity, which softens the edge pressure gradient with overall confinement

degradation. Edge intensity is affected more than the pressure gradient. Now increasing σ̂ in

general reduces edge turbulence intensity and enhances core turbulence intensity. As a result

the edge pressure gradient steepens and core confinement degrades. However this effect is

more noticeable in the presence of edge intensity source which makes edge intensity gradient

strong. This is evident in figure(4). Otherwise, the effect of spreading on the pressure profile

is very weak. Steady state profiles are independent of the form of the initial profiles (not

shown here).
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Figure 4. σ̂ scans of pressure (a) and intensity (b) profiles at χ̂ = 20, β̂ = 2.5, α̂ = 0.2, µc = 1.2,

δ̂ = 1, Ŝp = 13e−100x̂2

without edge source I0/τ̂ = 0. σ̂ scans of pressure (c) and intensity (d)

profiles at χ̂ = 20, β̂ = 0, α̂ = 0.2, µc = 1.2, Ŝp = 13e−100x̂2

with edge source I0/τ̂ = 104. Initial

profiles I(x) = 0.1e−100(x̂−1)2 and P̂ (x) = 0.4(1 − x̂2). The dashed line labeled CG is the critical

gradient profile.

2. Spreading effect with SOL turbulence invasion: A similar qualitative effect

is seen without an edge localized source but with turbulence invasion from the SOL. This

is modeled as a finite influx boundary condition at the edge. A finite influx at the edge

produces an intensity profile monotonically increasing in radius. Turbulence spreading effects

on the pressure profile are again more pronounced, due to strong edge intensity gradient.

SOL turbulence invasion increases edge turbulence intensity, which softens the edge pressure

gradient leading to over-all confinement degradation. Softening of the edge pressure gradient

depends on edge intensity and follows a linear relation on a log-log scale. This relation is

independent of whether turbulence is produced locally or is result of invasion from SOL, i.e.,

see fig(5).
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Figure 5. Pressure (a) and intensity (b) profiles with normalized edge intensity flux Γ̂
Î
= −σ̂Î ∂Î

∂x̂
.

The physical intensity flux ΓI and the normalized intensity flux Γ̂
Î

are related as ΓI = ciρ
4
⋆Γ̂Î

. (c)

Edge intensity flux scan of edge intensity and edge pressure gradient at Pr = σ̂
α̂

= 1. (d) Edge

intensity and edge pressure gradient relation. Parameters χ̂ = 20, β̂ = 2.5, α̂ = 0.2, σ̂ = 0.1,

µc = 1.2, δ̂ = 1, Ŝp = 13e−100x̂2

. Initial profiles same as in figure(4).

3. Interaction of spreading and avalanching: Avalanches are excited by a white

noise in the pressure source. Avalanches are quantified by frequency spectra of intensity

fluctuation and fluxes obtained from respective time histories. The results capture typical

features of frequency spectra as commonly seen in gyro-kinetic and sand-pile simulations.

The frequency spectrum has three distinct regions. In low frequency region the power

spectrum is almost flat and scales as ω0. In high frequency region the power spectrum

scales as ω−α, where α > 1 and is different for intensity and heat flux spectra. For the

intensity spectrum α = 2 and for heat flux spectrum α = 2.5. The intermediate fre-

quency region of the spectra scales as ω−1. These three spectral regions have also been

identified in sand-pile models[58, 59], fluid simulations of resistive pressure gradient driven

turbulence[60], dissipative trapped electron mode turbulence[61] and full-f global flux driven
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gyrokinetic simulations[62]. The effect of sub-critical parameter dependence and spreading

on the avalanche distribution are studied. We notice that noise promotes spreading at early

times. The frequency spectra of intensity and fluxes are weakly affected by β̂, as shown

in fig(6). Turbulence spreading weakly affects the avalanche distribution as seen from the

Prandtl number scan of frequency spectra of fluctuations and fluxes, see figure(7). Both cor-

relation time and and correlation length of the intensity fluctuations increases with Prandtl

number as can be seen from 2D space-time auto-correlation function shown in figure(8). We

also observe that inward and outward velocities are not symmetric and the in-out velocity

asymmetry increases with Pr.

10 -1 10 0 10 1 10 2 10 3
10 -6

10 -4

10 -2

10 0

10 2
(a)

10 -1 10 0 10 1 10 2 10 3

10 -4

10 -2

10 0

(b)

Figure 6. Frequency spectra of normalized intensity |δI|/ 〈I〉 (a) and edge heat flux (b) with β̂ at

Pr = 1. The downward shift of the frequency spectra is because the time averaged intensity 〈I〉

increases with β̂.
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Figure 7. Frequency spectra of intensity (a) and edge heat flux (b) with Pr.
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Figure 8. (a) 2d auto-correlation of intensity at Pr = 1. (b) 2d auto-correlation of intensity at

Pr = 6. Plotted on log scale along z axis. Upper and lower boundaries are the locii of first zeroes

of the correlation function. Slope of the boundary yields speed of the avalanches and sign of the

slope indicates propagation direction. Different positive and negative slopes indicate asymmetry in

speed of incoming and outgoing avalanches.

IV. SPREADING EFFECTS IN H MODE

A. Model for H mode studies

In H mode the E × B shearing is strong and transport bifurcation is important. So

E × B shearing feedbacks are retained in the model equations(4)(5)and(6). We consider

the unistable reaction term as f = χ
[(∣

∣

∣

∂P
∂x

∣

∣

∣− µc

)

Θ
(∣

∣

∣

∂P
∂x

∣

∣

∣− µc

)

− λV ′2
E

]

I − βI2 where the

first term is critical pressure gradient driven linear growth rate reduced by E × B shear

damping, µc is critical pressure gradient, Θ is Heaviside function. The second term is

for nonlinear saturation of turbulence. The third term accounts for non-linear turbulence

spreading. As explained in the previous section both second and third terms originate from

E × B convective non-linearity upon applying a two scale closure. λ controls the strength

of shear reduction, β controls the strength of non-linear saturation. With this the intensity

evolution equation(4) reads

∂I

∂t
= χ

[(
∣

∣

∣

∣

∣

∂P

∂x

∣

∣

∣

∣

∣

− µc

)

Θ

(
∣

∣

∣

∣

∣

∂P

∂x

∣

∣

∣

∣

∣

− µc

)

− λV ′2
E

]

I − βI2 + σ
∂

∂x
I
∂I

∂x
(9)
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where σ controls the strength of turbulence spreading. This is supplemented with pressure

and density equations for completeness.

∂P

∂t
=

∂

∂x

(

αpI

1 + ǫV ′2
E

+Dcp

)

∂P

∂x
+ Sp (10)

and

∂n

∂t
=

∂

∂x

(

αnI

1 + ǫV ′2
E

+Dcn

)

∂n

∂x
+ Sn (11)

But one may ask why stick to such a primitive model when models such as those evolving

6 fields are already available[63]? Note that our aim is not to rediscover the L-H mode

transition but to understand and explore the effect of turbulence spreading on the pedestal in

H mode. 2-field models consisting of density and intensity or pressure and intensity fail to

localize E ×B shear towards the edge. Only a 3-field model (and beyond) self-consistently

localizes the E ×B shear towards the edge. This is because density remains flat at most of

the locations except near edge. This model can be thought as an extension of that of Hinton-

Staebler[35] here, with intensity as an additional field, or as a sub-set of a model due to Miki

et al [64] without poloidal flow and zonal flow dynamics. The model equations(9),(10) and

(11) are solved numerically using finite volume scheme for the boundary conditions ∂I
∂x
(x =

0) = ∂I
∂x
(x = a) = 0, ∂n

∂x
(x = 0) = ∂P

∂x
(x = 0) = 0, n(x = a) = 0.01 and P (x = a) = 0. We

introduce normalizations similar to that used in Section(III) for the numerical simulations.

Space and time is normalized as x → x̂ = x/a, t → t̂ = tciρ
2
⋆/a. P and n are normalized

by reference values P0 = 1 × 1019KeV m−3 and n0[= 1 × 1019m−3]: P → P̂ = P/P0 and

n → n̂ = n/n0. Further V ′

E → V̂ ′

E = V ′

Ea/ciρ⋆ = − 1
n̂2

dP̂
dx̂

dn̂
dx̂

. Turbulent diffusivities generally

∝ χGB
I

ρ⋆2
. Hence this normalization leads to σ → σ̂ = σ/χGB, αn → α̂n = α/χGB,

αP → α̂P = αP/χGB, DcP,cn → D̂cP,cn = DcP,cn/χGB. The intensity is normalized as

I → Î = I/ρ⋆2. Also χ → χ̂ = χa/ciρ
2
⋆, (λ, ǫ) → (λ̂, ǫ̂) = (λ, ǫ)ρ⋆c

2
i /a

2 and β → β̂ = βa/ci.

Finally the sources are normalized as Sn → Ŝn = aSn/n0ciρ
⋆2 and SP → ŜP = aSp/P0ciρ

⋆2.

The normalized equations look same as the original equations with “hatted” variables.

B. Pedestal/ H mode results

Figure(9) shows the variation of turbulence intensity, pressure and density profile with

variation of the spreading strength σ̂. It can be seen that width and height of both density
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and pressure pedestals increase with σ̂ at fixed pressure gradient. At the same time turbu-

lence intensity in No Man’s Land (NML) decreases. The reduction of intensity at NML is

consistent with the finding of Hahm et al [10] that turbulence spreading into a linearly stable

zone reduces the turbulence intensity in the unstable zone. Global confinement improves

with σ̂. Turbulence intensity is strongest in the NML, when spreading is weakest. Turbu-

lence intensity decreases with σ̂ leading to global confinement improvement. The intensity

gradient is negative in NML and positive in the core. As a result turbulence spreading is

radially outward in NML, and inward in the core region. The intensity gradient is stronger in

NML than in the core. Consequently, outward spreading is stronger than inward spreading,

which makes the intensity flux profile asymmetric. The outward spreading at NML increases,

and inward spreading in core decreases with increasing σ̂. This is shown in figure(10) where

it can be observed that the in-out asymmetry in turbulence spreading increases with σ̂. This

explains why the turbulence in the NML is depleted faster than that in the core. Turbulence

spreads from NML in to the pedestal, where it is dissipated by strong E × B shear. Thus

the pedestal acts a sink of turbulence coming from NML, resulting in a reduction of total

turbulence energy. The pedestal expands in reaction to turbulence reduction in NML due

to spreading. This leads to global confinement improvement. However the pedestal is not

completely free of turbulence - some turbulence survives in the vicinity of the pedestal top.

The depth of penetration of turbulence increases with σ̂. This means that the turbulence

front propagating faster in NML ends up deeper in the pedestal.
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Figure 9. Results of model calculations with parameters χ̂ = 20, µc = 1.2, λ̂ = 0.5, β̂ = 1

,α̂p = α̂n = 0.5, D̂cp = D̂cn = 0.5, Ŝp = 60e−100x̂2

, Ŝn = 120e−100(x̂−0.9)2 . Radial profiles of

density(a), pressure(b), intensity(c). Variation of pedestal top pressure P̂ped, pedestal top intensity

Îped and pedestal top radial position x̂ped is shown in (d). Arrows indicate trend of profiles with σ̂.
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Figure 10. Normalized turbulence intensity flux with σ̂.

Effect of additional non-diamagnetic shear- To test further the conclusion that

the pedestal grows in reaction to turbulence reduction at NML, additional non-diamagnetic
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shear V ′

φ is added to the self-consistent diamagnetic shear V ′

E localized within NML. We find

that additional non-diamagnetic shear that adds to the diamagnetic E × B shear in NML

elevates the pedestal by lowering the turbulence there. This is shown in figure(11). This

means that controlling turbulence in the NML is the key to a wider pedestal, and hence

confinement improvement.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 11. Results of model calculations with additional non-diamagnetic shear V̂ ′

φ with parameters

χ̂ = 20, µc = 0, λ̂ = 0.5, β̂ = 1, σ̂ = 0.1, α̂p = α̂n = 0.5, D̂cp = D̂cn = 0.5, Ŝp = 60e−100x̂2

,

Ŝn = 120e−100(x̂−0.9)2 . Radial profiles of density(a), pressure(b), intensity(c) and E × B shear (d)

are shown. Blue, green and red curves correspond to V̂ ′

φ = 0, V̂ ′

φ = −1 (Θ(x− 0.8) −Θ(x− 0.86))

and V̂ ′

φ = −2 (Θ(x− 0.8) −Θ(x− 0.86)) respectively. Arrows indicate trend of profiles with V̂ ′

φ.

These plots clearly show that additional non-diamagnetic shear in NML reduces turbulence intensity

and and elevates pedestal.
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V. CONCLUSIONS AND DISCUSSIONS

We studied the effect of turbulence spreading on profile formation, with a special focus

on steady state structure of profiles in L and H mode discharges. Minimal models are set up

for numerical studies so as to isolate the effect of spreading. A 2-field model evolving turbu-

lence intensity and pressure is employed to understand spreading effects on L mode profiles

and avalanches. For H mode studies, a 3-field model self-consistently evolving intensity,

pressure and density is used. Such a three field model is a bare minimum to study pedestal

formation. Note that the density profile is mostly flat except near the edge. This helps in

localizing the diamagnetic electric field shear near the edge - a necessary requirement for

pedestal formation. The principal results of this paper are as follows:

• Turbulence spreading has an impact on profiles structure whenever there is a tur-

bulence intensity gradient produced self-consistently with profiles or due to influx

boundary condition.

• An intensity gradient induces a flux of intensity which leads to local reduction in

fluctuation intensity and thus a steepening of the pressure profile.

• Spreading effect on profiles in L mode is weak, due to weak intensity gradient. Spread-

ing effects become more visible with enhanced edge intensity, be it either due to an

edge-localized source or due to turbulence invasion from the SOL. Edge pressure gra-

dient and intensity exhibit a linear relation on a log-log scale(see figures(4) and(5)).

• The avalanche distribution is weakly affected by turbulence spreading as seen from

frequency spectra of intensity fluctuations and fluxes. The sub-criticality parameter β

weakly affects avalanche distribution(see figures(6),(7) and(8)).

• H mode profiles are strongly affected by turbulence spreading due to the strong inten-

sity gradient at interface connecting barrier and core - i.e. No Man’s Land. Turbulence

spreads from the core (unstable zone) to the pedestal (stable zone) where it is sup-

pressed by strong E×B shear. Turbulence in NML is reduced, and pedestal height and

the width increases in response to spreading. Thus we see that turbulence spreading

is good for H mode confinement(see figures(9) and (10)).
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Figure 12. Schematic of spreading effect on profiles

• Additional non-diamagnetic E × B shear (such as that due toroidal rotation) added

to diamagnetic E ×B shear at NML elevates the pedestal by lowering the turbulence

there. This means that controlling turbulence in the NML is another way to achieve

a wider pedestal and hence confinement improvement(see figure(11)).

The turbulence spreading effects on profile discovered here with reduced models are also ex-

pected to apply to more comprehensive transport models, which include separate equations

for ion and electron pressure, poloidal and toroidal momentum equations etc. Spreading

changes the local intensity profile which affects turbulent fluxes. Plasma profiles are af-

fected by turbulent fluxes and plasma profiles affect turbulent fluxes and local intensity.

This is schematized in figure(12).

The most important finding of this paper is that the turbulence spreading enhances pedestal

height and width. Thus spreading can have a positive impact on confinement in H mode.

While this adds another dimension to the physics of pedestal size, it is extremely difficult to

test in experiments because there is no unique control knob to turn spreading on/off. Even

in simulations, it is still unclear as to how to separate spreading from spatially local energy

transfer(cascading). Experimental measurements already include the effect of spreading.

One can not have discharges with and without spreading. Spreading and nonlinear satura-

tion both result from the ExB convective non linearity, which combines scattering in k-space

and x-space respectively. This follows straightforwardly from a two-scale DIA closure of the

ExB nonlinearity as shown in equation(2). Controlled spreading studies in nonlinear global

GK simulations have yet to be achieved. Hence the findings of our reduced model provide

impetus for deeper research on the physics of pedestal size. The results of this paper suggest
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that spreading should be included in pedestal models. Having realized that the scattering

in k and x are coupled, the only way to study the effect of spreading in reduced models is to

vary it’s strength by diffusivity parameter scans. This freedom is simply not available in the

real experiments and non-linear simulations. In simulations, one can vary the sources ( in

flux driven case) or gradients ( for gradient driven case). Of course, there is much evidence

of turbulence spreading in experiments and simulations, identified by transient turbulence

pulses and observation of turbulent transport in linearly stable region (see the review article

by Hahm and Diamond[11] and the references therein for a comprehansive list). But none

has identified how spreading affect profiles, possibly due to the afore-mentioned reasons. No

simulations or experiments, with controlled variation of spreading strength, exist to compare

directly with our results.

Nevertheless, there are a few works related to turbulence spreading that make tangential

contact with some of the results obtained in this paper. These are discussed next with a

focus on qualitative comparisons.

A recent full-f gyrokinetic simulations with GYSELA[65, 66] suggest that SOL asymmetry

induces SOL flows which are unstable to parallel shear flow instability (PSFI). Such shear-

driven fluctuations in turn energize edge turbulence. The resulting inward flux of turbulence

creates a turbulence intensity profile that is monotonically increasing in radius as seen in

tokamak experiments. Thus SOL turbulence and inward spreading of SOL turbulence have

been identified as the important effects (in Refs[65, 66]) to explain the radially increasing

turbulence intensity profile in L mode. This result is qualitatively similar to our L mode

results presented in figures (4) and (5) obtained by using an edge localized source of intensity

and/or inward flux of turbulence intensity at the edge. However it must be mentioned that

the simulations in Refs[65, 66] do not include kinetic electrons and hence do not include the

possibility of resistive-drift modes in the L-mode edge. It may be possible that significant

local drive by resistive-drift mode in the edge region alters the intensity profile such that

spreading from the SOL is not important. This can happen when resistive-drift mode driven

local intensity in the edge region becomes comparable to PSFI driven turbulence intensity

in the SOL region. Recent linear and nonlinear gyrokinetic analysis on AUG and JET cases

has shown that local models are able to adequately describe the experimental flux levels[67].

This indicates that SOL turbulence invasion could be insignificant when resistive-drift mode

is strongly excited in the edge region.

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/1

.5
1
1
7
8
3
5



26

Fluid simulations in Ref[68] studied the effect of turbulence spreading on the pedestal im-

mersed in interchange turbulence in the SOL and arrived at the conclusion that spreading

shrinks the barrier width. This result looks opposite to our result on H mode. However one

must be cautioned that the barrier in this work[68] is a “model” barrier formed by manually

setting the interchange drive to zero in a radial domain. In contrast, the barrier in our study

is formed by a transport bifurcation induced by radial electric field shear in H mode. Also,

SOL turbulence spreading effect is not considered in our H mode calculations and is left for

futre studies. This is for reasons of simplicity.

Finally, the pedestal widening effect of additional non-diamangetic ExB shear in NML, pre-

sented in figures(11), is qualitatively consistent with wide pedestal transition on torque ramp

down in Q-H mode in DIII-D tokamak[69–71]. The torque ramp down modifies the ExB

shear profile such that the ExB shearing rate increases at the pedestal top and decreases in

the pedestal center. This leads to enhancement of pedestal width and height. See figure(3)

in Ref[69], figure(14) in Ref[70] and figure(9) in Ref[71]. Of course, our model does not

evolve toroidal and poloidal flows. The non-diamagnetic shear at NML is added manually

to see its effect on local turbulence and pedestal size. This was done to test that the pedestal

widening is actually due to reduction of turbulence intensity in NML. Turbulence reduction

in NML, either by enhanced ExB shear in NML or by enhanced turbulence spreading, leads

to a wider pedestal.

Turbulence intensity fluctuations are often observed to be non-Gaussian in experiments. In

this light, one could also construct a CTRW (continuous time random walk) model for tur-

bulence spreading. In Fokker Planck approach the time step is fixed, acts like a clock. In

CTRW time steps are no longer fixed and evolve dynamically as the walker position does.

For separable joint probability distribution function (pdf)

ξ(x− x′, x′; t− t′, t) = p(x− x′, x′; t)ψ(x′; t− t′)

, where p is for step size pdf and ψ is for waiting time pdf, one can expect to get an intensity

evolution equation with the diffusion part replaced by

ˆ t

0

dt′
[

ˆ

dx′φ(x′; t− t′)p(x− x′, x′; t)I(x′, t′)− φ(x; t− t′)I(x, t′)

]

Here φ(x; t− t′) is memory function and is related to the inhomogeneous waiting time pdf

ψ(x; t−t′) through their Laplace transforms as φ(x; s) = sψ(x, s) [1− ψ(x, s)]−1. This makes
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the intensity evolution highly non-local in both space and time. Note that φ becomes a delta

function only when the CTRW is Markovian. Further discussion on choice of step size and

waiting time pdfs, and a formal derivation of a CTRW model for turbulence spreading will

be presented elsewhere.
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Appendix A: Spreading term in the intensity equation

The second term on the r.h.s of equation(4) is negative of divergence of intensity flux

−∂ΓI

∂x
, where the intensity flux is given by ΓI = −σI ∂I

∂x
. The diverence of flux can be

expanded as follows
∂

∂x
σI
∂I

∂x
= σI

∂2I

∂x2
+ σ

(

∂I

∂x

)2

. One might think that this produces a source term σ
(

∂I
∂x

)2
in the intensity equation.

However, such can be re-absorbed again in the form of a divergence of a flux, as

σI
∂2I

∂x2
+ σ

(

∂I

∂x

)2

=
∂

∂x
σI
∂I

∂x

. The term σ
(

∂I
∂x

)2
can be classified to an intensity gradient dependent reaction term or

nonlinear advection term. It is only a part of the total contribution to the divergence of

flux. There is no source term in the intensity equation(4). A true source term for I is one

that does not depend on I or I ′ itself.
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