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Abstract

Multi-model ensemble strategy is a means to exploit the diversity of skillful predictions from different models. This paper studies
the use of Bayesian model averaging (BMA) scheme to develop more skillful and reliable probabilistic hydrologic predictions from
multiple competing predictions made by several hydrologic models. BMA is a statistical procedure that infers consensus predictions
by weighing individual predictions based on their probabilistic likelihood measures, with the better performing predictions receiving
higher weights than the worse performing ones. Furthermore, BMA provides a more reliable description of the total predictive uncer-
tainty than the original ensemble, leading to a sharper and better calibrated probability density function (PDF) for the probabilistic
predictions. In this study, a nine-member ensemble of hydrologic predictions was used to test and evaluate the BMA scheme. This
ensemble was generated by calibrating three different hydrologic models using three distinct objective functions. These objective func-
tions were chosen in a way that forces the models to capture certain aspects of the hydrograph well (e.g., peaks, mid-flows and low
flows). Two sets of numerical experiments were carried out on three test basins in the US to explore the best way of using the BMA
scheme. In the first set, a single set of BMA weights was computed to obtain BMA predictions, while the second set employed multi-
ple sets of weights, with distinct sets corresponding to different flow intervals. In both sets, the streamflow values were transformed
using Box–Cox transformation to ensure that the probability distribution of the prediction errors is approximately Gaussian. A split
sample approach was used to obtain and validate the BMA predictions. The test results showed that BMA scheme has the advantage
of generating more skillful and equally reliable probabilistic predictions than original ensemble. The performance of the expected
BMA predictions in terms of daily root mean square error (DRMS) and daily absolute mean error (DABS) is generally superior
to that of the best individual predictions. Furthermore, the BMA predictions employing multiple sets of weights are generally better
than those using single set of weights.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The prevailing practice by hydrologists to date has
been to rely on a single hydrologic model to perform
hydrologic predictions. Despite the tremendous amount
of resources invested in developing more hydrologic
0309-1708/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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models, no one can convincingly claim that any particular
model in existence today is superior to other models for
all type of applications and under all conditions
[42,43,35,3,13]. Different models have strengths in captur-
ing different aspects of the hydrologic processes. Relying
on a single model often leads to predictions that represent
some phenomena or events well at the expenses of others.
Further, a proper accounting of uncertainty associated
with these predictions has not received adequate atten-
tion. Ensemble approaches based on multi-parameter sets
and ensemble hydrologic forcing inputs can help improve
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the uncertainty estimation [4,20,41,23]. But the structural
error inherent in any single model cannot be avoided in
this kind of ensemble strategy [17]. This has motivated a
number of researchers to advocate multi-model methods
for hydrologic predictions [33,17,1,3].

Multi-model methods were used in various forecasting
applications such as economic and weather forecasting as
early as the 1960s [2,9,10,28,38]. Shamseldin and col-
leagues were probably the first to explore the use of
multi-model methods for hydrologic predictions [33].
Georgakakos et al. [17] recently used a multi-model com-
bination approach to analyze the simulation results from
multiple models that participated in the distributed model
intercomparison project (DMIP) [35]. These multi-model
techniques provide consensus predictions by linearly com-
bining individual model predictions according to different
weighting strategies. The weights can be equal for all
models in the simplest case, or be determined through
certain regression-based methods. In the latter case, the
weights are the regression coefficients. Shamseldin and
O’Connor [34] also explored the use of artificial neural
network (ANN) techniques to estimate the model
weights. Raftery et al. [29] pointed out that the weights
determined by those regression based techniques are hard
to interpret because they take on arbitrary negative or
positive values and are not connected to model perfor-
mance. Furthermore, the reliability of the multi-model
predictions from these approaches is not satisfactory.
Nevertheless, multi-model ensemble averages produced
by these methods have shown to consistently perform
better than single model predictions when they are evalu-
ated based on various predictive skill and reliability
scores [33,34,19,45,17,1].

Recently, Bayesian model averaging (BMA) has gained
popularity in diverse fields such as statistics, management
science, medicine and meteorology [18,40,15,29,30]. Like
predictions from other multi-model methods, BMA
predictions are weighted averages of the individual pre-
dictions from competing models. But unlike some
multi-model methods, BMA also provides a more realis-
tic description of the predictive uncertainty that accounts
for both between-model variances and in-model
variances. The BMA weights, all positive and summing
up to 1, reflect relative model performance because they
are the probabilistic likelihood measures of a model being
correct given the observations. In various case studies,
BMA has been shown to produce more accurate and
reliable predictions than other multi-model techniques
Raftery et al., 1997; [8,40,31,30,14]. Recently, BMA
methods have also been applied to hydrologic applica-
tions such as groundwater modeling by Neuman and
Wierenga [27,26].

This study explores the use of BMA for hydrologic
streamflow predictions. We are interested in how BMA
scheme can be used to improve both the accuracy and
reliability of streamflow predictions. Particularly, we
investigate different ways to apply BMA scheme to fully
exploit the strengths of individual models. This paper is
organized as follows. Section 2 presents the BMA meth-
odology. Section 3 discusses the generation of hydrologic
model ensemble and the design of the numerical experi-
ments and test data sets. Section 4 describes the test
and validation results of multi-model predictions using
BMA schemes. Section 5 provides summaries and
conclusions.
2. Bayesian model averaging (BMA)

Bayesian model averaging (BMA) is a statistical scheme
to infer a probabilistic prediction that possesses more skill
and reliability than the original ensemble members pro-
duced by several competing models [22,29]. BMA has been
used primarily in generalized linear regression applications.
Recently, Raftery et al. [29,30] successfully applied BMA
to dynamical modeling applications (i.e., numerical
weather predictions). In this study, we apply BMA to
streamflow prediction problems. The BMA scheme is
briefly described as follows.

Consider a quantity y to be the forecasted variable (or
predictand), D ¼ ½yobs

1 ; yobs
2 ; . . . ; yobs

T � to be the training data
with data length T, and f ¼ ½f1; f2; . . . ; fK � the ensemble of
all considered model predictions. pkðy j fk;DÞ is the poster-
ior distribution of y given model prediction fk and obser-
vational data set D. According to the law of total
probability, the probability density function (PDF) of
the BMA probabilistic prediction of y can be represented
as:

pðyjDÞ ¼
XK

k¼1

pðfkjDÞ � pkðyjfk;DÞ ð1Þ

where pðfk j DÞ is the posterior probability of model predic-
tion fk, also known as the likelihood of model prediction fk

being the correct prediction given the observational data,
D. This term reflects how well this particular ensemble
member matches the observations. If we denote
wk ¼ pðfk j DÞ, we should obtain

PK
k¼1wk ¼ 1: The poster-

ior mean and variance of the BMA prediction can be
expressed as [29,30]:

E½yjD� ¼
XK

k¼1

pðfkjDÞ � E½pkðyjfk;DÞ� ¼
XK

k¼1

wkfk ð2Þ

Var½yjD� ¼
XK

k¼1

wk fk �
XK

i¼1

wifi

 !2

þ
XK

k¼1

wkr
2
k ð3Þ

where r2
j is the variance associated with model prediction

fk with respect to observation D. In essence, the expected
BMA prediction is the average of individual predictions
weighted by the likelihood that an individual model is
correct given the observations. There are several attrac-
tive properties to the BMA prediction. First the BMA
prediction receives higher weights from better performing
models as the likelihood of a model is essentially a mea-
sure of the agreement between the model predictions and
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the observations. Second, the BMA variance is essentially
an uncertainty measure of the BMA prediction. It
contains two components: the between-model-variance
and the within-model-variance, as shown in the first
and second terms of the right hand side of Eq (3). This
measure is a better description of predictive uncertainty
than that in a non-BMA scheme, which estimates
uncertainty based only on the ensemble spread (i.e., only
the between-model variance is considered), and conse-
quently results in under-dispersive predictions Raftery
et al. [29].

Before we present the BMA algorithm, it is assumed
that the conditional probability distribution pkðy j fk;DÞ
is Gaussian. Considering that the probability distribution
of streamflow error is non-Gaussian, both modeled and
observed streamflow data are pre-processed using the
Box–Cox transformation prior to the BMA procedure, so
that the transformed variables will be close to the Gaussian
distribution. The Gaussian assumption is made for compu-
tational convenience and BMA scheme can be applied by
assuming other probability distributions. Statistical tech-
niques such as Markov Chain Monte Carlo (MCMC)
method is capable of simulating any complex probability
distribution, therefore, can be a strategy to conduct BMA
without using the Gaussian approximation [21]. However,
it is beyond the focus of this paper. We will work with
the log-likelihood function since it is more convenient to
compute than the likelihood function itself. If we denote
h ¼ ½fwk; rk; k ¼ 1; 2; . . . ;Kg�, the log-likelihood function
can be approximated as:

‘ðhÞ ¼ log
XK

k¼1

wk � pk yjfk;Dð Þ
 !

ð4Þ

Obviously, it is impossible to obtain analytical solution
of h and an iterative procedure must be used. Following the
recommendation of Raftery et al. [30], we used the Expec-
tation–Maximization (EM) algorithm for this purpose. In
brief, the EM algorithm casts the maximum likelihood
problem as a ‘‘missing data’’ problem. The missing data
may not be actual data. Rather, it can be a latent variable
that needs to be estimated. For this study, a latent variable
zk;t is introduced. If the kth model ensemble is the best pre-
diction at time t, zk;t ¼ 1; otherwise zk;t ¼ 0. At any time t,
there is only one zk;t equal to 1 and the rest is equal to 0. As
in the namesake, the EM algorithm alternates between the
E (or expectation) step and the M (or maximization) step.
It starts with an initial guess, hð0Þ, for parameter h. In the E
step, zk;t is estimated given the current guess of h. In the M
step, h is estimated given the current values of the zk;t. The
EM steps are repeated until certain convergence criteria are
satisfied. The EM algorithm is illustrated in Box 1. The EM
algorithm can only find local optimum and the optimal
solution is very sensitive to initial guess of the optimizing
variables. For a more detailed description of the EM algo-
rithm, readers are referred to McLachlan and Krishnan
[24].
Box 1: EM Algorithm

A. Initialization:

Set Iter¼ 0;wIter
k ¼

1

K
;r2ðIterÞ

k ¼ 1

K

XT

t¼1

PK
k¼1ðyt� fk;tÞ2

� �
T

where T is the total number of data points in the
training period

B. Computing the initial likelihood:

‘ðhIterÞ ¼ log
XK

k¼1

wk � pk yjfk;Dð Þ
 !

¼ log
XK

k¼1

wk �
XT

t¼1

g yobs
t jfk;t; r

ðIterÞ
k

� � !
ðB1Þ

where g(.) denotes Gaussian distribution.

C. Executing the expectation step
Set Iter ¼ Iter þ 1.
For k ¼ 1; 2; . . . ;K, and t ¼ 1; 2; . . . ; T , compute:

ẑIter
k;t ¼

g ytjfk;t; r
ðIter�1Þ
k

� �
PK

k¼1gðyobs
t jfk;t; r

ðIter�1Þ
k Þ

ðB2Þ

D. Executing the maximization step

Compute the weight;wIter
k ¼ 1

T

XT

t¼1

zIter
k;t ðB3Þ

Update the variance;r2ðIterÞ

k ¼
PT

t¼1ẑIter
k;t � yobs

t � fk;t

� �2PT
t¼1ẑIter

k;t

ðB4Þ

Update the likelihood using Eq (B1).

E. Checking convergence:
If ‘ðhIterÞ � ‘ðhIter�1Þ is less than or equal to a
pre-specified tolerance level, stop; else go back
to Step C.

With proper estimate of h ¼ ½fwk; rk; k ¼ 1; 2; . . . ;Kg�
and pkðyjfk; h;DÞ, we can easily generate probabilistic pre-
dictions based on Eq. (1). An algorithm to generate BMA
probabilistic predictions is presented later in Section 4.3.2.
3. Generation of hydrologic model ensemble

To test BMA scheme for streamflow predictions, an
ensemble of competing predictions from several hydrologic
models were produced. For this study, we employed three
conceptual hydrologic models: the Sacramento Soil Mois-
ture Accounting (SAC-SMA) model, the Simple Water
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Balance (SWB) model, and the HYMOD model. SAC-
SMA is the most complicated model among the three, with
16 model parameters, and is still the most widely used oper-
ational hydrologic model in National Weather Service for
river and flood forecasting purpose [7]. SWB, also devel-
oped by NWS, is a simple hydrologic model used operation-
ally in the Nile River Forecast System in Egypt [32].
HYMOD is a simple hydrologic model developed for
research purposes at the University of Arizona [5]. Both
SWB and HYMOD have five tunable model parameters.
All three models need precipitation and potential evapo-
transpiration data as forcing inputs. A detailed description
of these individual models is outside the scope of this paper.
Interested readers should refer appropriate literature to
gain a more in-depth understanding of these models.

The three hydrologic models were calibrated using the
Shuffled Complex Evolution method (SCE-UA, [11,12].
Three distinct objective functions were used to force the
hydrologic models to favor different phases of the
hydrograph:

• Daily root mean square error (DRMS),
• Daily absolute error (DABS)
• Heteroscedastic maximum likelihood estimator

(HMLE)

The analytical expressions of these objective functions
are:

DRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
t¼1 yobs

t � yest
t

� �2

T

s
ð5aÞ

DABS ¼
PT

t¼1 yobs
t � yest

t

�� ��
T

ð5bÞ

HMLE ¼
PT

t¼1xt � yobs
t � yest

t

� �2ffiffiffiffiffiQT
t¼1

T

s
xt

ð5cÞ

where yobs
t and yest

t are observed and estimated streamflow

values, xt ¼ f 2ðk�1Þ
t and k is the unknown Box–Cox trans-

formation parameter [36]. The first objective function,
DRMS, forces the models to fit the high flows well, while
the last objective function, HMLE, tends to push the
Table 1
Geophysical and climatic characteristics of the test basins

Basin name

Bird Creek

Location Sperry, OK
Latitude 36�1604200

Longitude �95�5701400

Area, km2 2344
Ann. precip, mm 963
Ann. runoff, mm 220
Ann. pot. evap., mm 1312
Data period 10/1/1955–9/30/1962
Training/calib. period 1/1/1956–9/30/1960
Validation period 10/1/1960–9/30/1962
models to match low flows well. The second objective
function, DABS, places equal emphasis on all parts of
the hydrograph and is a compromise between DRMS
and HMLE.

We carried out hydrologic model calibration on three
hydrologic basins located in the United States: Bird
Creek River basin, near Sperry, OK; Leaf River basin,
Near Collins, MS; and French Broad River basin at
Blantyre, NC. These basins are chosen because they have
been widely studied and the hydrologic data sets were
carefully prepared by NWS Hydrology Laboratory
[37,32]. Table 1 lists the geophysical and climatic charac-
teristics of these test basins. The hydrologic data periods
for these basins are also shown. These basins span differ-
ent hydroclimatic regimes, from semi-arid (e.g., Bird
Creek), to moderate (e.g., Leaf River), and to wet (e.g.,
French Broad River).

The combination of three models and three objective
functions yields a nine-member ensemble of distinct model
predictions for each test basin. This ensemble forms the
basis for testing the BMA scheme in the next sections.
Table 2 summarizes the DRMS statistics over the calibra-
tion period for each ensemble member in different flow
intervals for the test basins. The entire flow range was
broken into a number of flow intervals based on pre-spec-
ified non-exceedance threshold (e.g., 10%, 25%, 50%, 75%,
90%, 100%). As expected, different ensemble members
exhibit different goodness-of-fit statistics in different flow
intervals, with the SAC-SMA as an obviously better
model among the three in most cases. It is worth noting
that, with a few exceptions, the ensemble members cali-
brated using DRMS tend to be associated with better sta-
tistics at the high flow ranges, while the ensemble
members calibrated using HMLE generally correspond
to better statistics in the low flow ranges. The ensemble
members calibrated with DABS tend to favor the mid-
dle-ranges.

A necessary condition for obtaining unbiased, optimal
results using the BMA scheme, as outlined in 2, is that
the likelihood function of the prediction error must be
properly computed. In this study, we employed a likeli-
hood function that assumes the underlying variable is
normally distributed for computational simplicity. It is
Leaf River French Broad

Collins, MS Blantyre, NC
31�4202500 35�17 05700

�89�2402500 �82�37 02600

1924 766
1313 1878
428 1080
1310 1159
10/1/1951–9/30/1969 10/1/1953–9/30/1964
10/1/1952–9/30/1960 1/1/1953–9/30/1958
10/1/1961–9/30/1969 10/1/1958–9/30/1964



Table 2
DRMS statistics of individual ensemble members during calibration period

Flow ranges, mm/day,
(% quantile)

SAC SWB HYM

DRMS DABS HMLE DRMS DABS HMLE DRMS DABS HMLE

Bird Creek 0–0.04 (0–50%) 0.2335 0.0334 0.0193 0.0935 0.0831 0.0324 0.2737 0.1577 0.1320
0.04–0.2 (50–75%) 0.4279 0.1474 0.1666 0.2705 0.2279 0.3562 0.4036 0.2510 0.2882
0.2–0.93 (75–90%) 0.7211 0.5137 0.5866 1.027 1.0531 1.2133 0.6098 0.3642 1.0487
0.93–64 (90–100%) 2.0965 2.6613 3.0749 2.6253 2.7281 6.3026 2.8133 3.3268 4.3429
Overall 0.7433 0.8505 0.9828 0.9055 0.9346 2.0166 0.9403 1.0553 1.4089

Leaf River 0–0.12 (0–10%) 0.0743 0.0441 0.0292 0.1016 0.1004 0.0860 0.0821 0.0442 0.0188
0.12–0.17 (10–25%) 0.1045 0.0585 0.0344 0.1579 0.1326 0.0966 0.1325 0.0873 0.0281
0.17–0.35 (25–50%) 0.1734 0.1132 0.0713 0.2622 0.2624 0.2149 0.2818 0.2168 0.0799
0.35–0.97 (50–75%) 0.4193 0.3088 0.2698 0.5499 0.5341 0.4296 0.5198 0.4130 0.2642
0.97–2.78 (75–90%) 0.8291 0.7150 0.9194 1.0961 0.8275 0.8481 0.8037 0.7012 0.9986
2.78–58 (90–100%) 2.2672 2.5400 2.8709 2.5171 3.0363 4.0484 2.9221 3.1897 4.4993
Overall 0.8358 0.8870 1.0093 0.9728 1.0814 1.3800 1.0428 1.0975 1.5206

French Broad 0–0.94 (0-10%) 0.2201 0.2225 0.1854 0.3731 0.2759 0.2347 0.2489 0.26 0.2465
0.94–1.47 (10–25%) 0.3152 0.3065 0.2561 0.4801 0.4212 0.3623 0.4801 0.4766 0.5068
1.47–2.36 (25–50%) 0.4168 0.4293 0.3792 0.6694 0.6125 0.6279 0.6426 0.5995 0.7503
2.36–3.6 (50–75%) 0.5221 0.5246 0.4712 0.9323 0.8452 0.8294 0.7629 0.7564 0.9703
3.6–5.39 (75–90%) 0.8801 0.7979 0.7223 1.1931 1.2038 1.1328 1.1391 1.1989 1.4745
5.39–53 (90–100%) 1.5227 1.6633 1.9693 2.2929 2.576 2.7719 2.2799 2.3146 2.7223
Overall 0.6556 0.6724 0.7085 1.0033 1.0277 1.0533 0.9471 0.9564 1.1524
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well known that the error in streamflow prediction is het-
eroscedastic and non-Gaussian [36,39]. To deal with this
problem, we performed a Box–Cox transformation on
streamflow values prior to BMA testing to ensure that
the streamflow prediction error is approximately
Gaussian.

In the following section, we carried out several numer-
ical experiments to assess the usefulness of BMA scheme
for streamflow prediction. Particularly, the BMA scheme
was evaluated using two strategies. In the first strategy,
we applied the BMA scheme to obtain a single set of
BMA weights for the entire Box–Cox transformed time
series. In the second strategy, we break the Box–Cox
transformed streamflow values into several flow ranges
and then apply the BMA scheme to each flow range sep-
arately. There is an intuitive advantage to using a multi-
flow interval approach: the strengths of individual models
in capturing different aspects of the hydrographs (i.e.,
peak flows and low flows) are reflected in the computa-
tion of the model weights. A model that predicts high
peak flows better than other models would be assigned
a higher weight than other models during peak flow peri-
ods. Reversely, a model that represents low flow better
would also be given a higher weight during the low flow
periods.

The results presented below seek to answer the following
questions: (1) how do we exploit the diversity in skill levels
of different predictions over different flow periods? (2) will
the BMA weights as defined in Eqs. (2)–(4) reflect the
model performance statistics? (3) how consistent are the
BMA predictions when the BMA weights obtained from
the training periods are applied to independent validation
periods?
4. Results

4.1. Statistical verification criteria

Before the results from the numerical experiments are
presented, we first define the criteria used to evaluate
the performance of model predictions. For hydrologic
predictions, the common goals are to maximize the pre-
dictive accuracy and reliability. There are many ways to
measure these goals. In this study, we employed a number
of criteria: DRMS and DABS (as defined in the previous
section), Ranked Probability Score (RPS) and Reliability
Diagram (REL). DRMS and DABS are commonly used
for evaluating the accuracy of deterministic predictions
and they are used here to evaluate the association of
the expected BMA predictions with observations. For
probabilistic predictions, it is desired that the probability
density function (PDF) is sharp subject to calibration. By
‘‘calibration’’, it means that the PDFs of the predictions
and observations are consistent. RPS and REL are widely
used as measures for assessing the quality of probabilistic
predictions. RPS is essentially the mean-squared error of
the probability forecasts averaged over multiple events.
A small value for RPS means that the PDF is sharp
and well calibrated. In streamflow prediction, the proba-
bility forecast is often expressed as a non-exceedance
probability forecast in pre-specified categories (i.e., 5%,
10%, 25%, 50%, 75%, 90%, 95% 100% non-exceedance).
The observed value for a given forecast category takes
on the value of 1 if the observed flow value is less than
the threshold for that category. Otherwise, the observed
value is 0. The analytical expression of RPS for an event
is given as:



1376 Q. Duan et al. / Advances in Water Resources 30 (2007) 1371–1386
RPSðtÞ ¼
XM

j¼1

F ðtÞj � OðtÞj

� �2

ð6Þ

where F ðtÞj is the forecast probability and OðtÞj is the ob-
served value, j ¼ f1; 2; . . . ;Mg is the probability category
and t is the event index. Here, we treat the flow value for
each day as an event. The average RPSðtÞ over an evalua-
tion period t ¼ f1; 2; . . . ; T g is equal to the overall RPS:

RPS ¼ 1

T

XT

t¼1

RPSðtÞ ð7Þ

Reliability diagram (REL) measures how the forecast
probability matches observation for all forecast categories.
In probability term, REL is the conditional distribution of
an observation given a particular forecast, pðO j F Þ. A per-
fect forecast implies pðO ¼ 1 j F Þ ¼ F . We will explain the
interpretation of REL later when we present the results.
For a more general discussion on verification statistics,
readers are referred to Murphy et al. [25,44]. For a more
detailed discussion on verification of probabilistic hydro-
logic forecast, readers are referred to Franz et al., Bradley
et al. [16,6].

Verification statistics such as DRMS, DABS and RPS,
are not meaningful when they are viewed in absolute terms.
That is why skill scores are used widely in verification liter-
ature [25,44]. Skill scores, DRMSS, DABSS, and RPSS,
are usually computed as the percentage improvement over
a reference point:

DRMSS ¼ 1� DRMS

DRMS�

� 	
� 100 ð8aÞ

DABSS ¼ 1� DABS

DABS�

� 	
� 100 ð8bÞ

RPSS ¼ 1� RPS

RPS�

� 	
� 100 ð8cÞ

where DRMS, DABS, and RPS are the verification
statistics of a prediction, and DRMS�, DABS�, and
RPS� are the reference verification statistics. In this
study, DRMS� and DABS� are the verification statistics
associated with the best individual prediction among
the original ensemble, while RPS� is the RPS value com-
puted from the original ensemble. Note that for skill
scores, the larger the values, the better are the
predictions.
4.2. Box–Cox transformation of streamflow values

Before we applied the BMA scheme as described in Sec-
tion 2 to the nine-member ensemble shown in Table 2, a
Box–Cox transformation was first performed on both the
ensemble members and the observation. The Box–Cox
transformation is given as follows:

zt ¼
yk

t �1

k ; k 6¼ 0

logðytÞ; k ¼ 0

(
ð9Þ
where yt is the original variable, zt is the transformed
variable, k is the Box–Cox coefficient. For each basin,
we derived a common optimal estimate of k for all
ensemble members and the observations, based on Kol-
mogorov–Smirnov test statistics. Fig. 1 displays the nor-
mal probability plots of the original and transformed
ensemble members. It is clear that the original ensemble
members are highly non-Gaussian, while the transformed
members appear much closer to be normally distributed.
Still we notice that a few transformed ensemble members
depart from the Gaussian distribution at the lower tail
end.
4.3. Testing of BMA scheme using a single set of weights

4.3.1. Verification of the accuracy of the expected BMA

predictions obtained using a single set of BMA weights

The BMA scheme was applied to the transformed
ensemble members to obtain a single set of BMA weights
for each basin using all data points from the training per-
iod. The weights for different ensemble members are shown
in Fig. 2. Before we examine the BMA weights, let’s first
look at the performance statistics of the expected BMA
predictions (denoted as BMA1 predictions hereafter),
which are really alternative deterministic predictions to
the individual predictions. Note that all statistics were
computed on streamflow values in original space (not the
Box–Cox transformed space). The DRMSS and DABSS
statistics of the expected BMA1 predictions, along with
that of the simple model average (SMA) predictions, are
shown in Fig. 3a and b. Fig. 3a shows that the DRMSS sta-
tistics of the expected BMA1 predictions are better than
that of the best individual predictions, substantially in the
cases of Bird Creek and French Broad. In terms of the
DABSS statistics, the BMA1 predictions are slightly better
than the best individual prediction in Bird Creek basin. But
in two other basins, the DABSS statistics of BMA1 predic-
tions are slightly worse than the best individual predictions
(Fig. 3b). Compared to the best individual predictions,
SMA predictions generally performed much worse than
the best individual predictions, except in one basin (i.e.,
Bird Creek). This indicates that simply averaging the origi-
nal ensemble predictions would not necessarily lead to
improved accuracy of the predictions.

One premise of the BMA scheme is that BMA weights
should reflect relative model performance. From Fig. 2,
we quickly notice visually that, indeed, individual model
performance roughly reflects the BMA weights, with SAC
model weighed more heavily than other models. The corre-
lation coefficients between the BMA1 weights and the
DRMS and DABS statistics were computed for each basin
and were shown in Table 3. All of these correlation coeffi-
cients have high negative values, indicating that higher
weights are strongly associated with lower DRMS and
DABS values. This confirms that the BMA weights do
indeed reflect model performance.
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Table 3
The correlation coefficients between BMA weights and DRMS and DABS
statistics

DRMS DABS

Bird Creek �0.88 �0.91
Leaf River �0.92 �0.93
French Broad �0.87 �0.88
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4.3.2. Verification of the skill and reliability of the BMA1

probabilistic predictions

One feature of the BMA scheme is that it can derive
probabilistic ensemble predictions from competing individ-
ual deterministic predictions. Box 2 briefly describes how
the BMA probabilistic ensemble predictions are generated
(see also [30]. For this study, we generated 100 BMA
ensemble predictions to get a reasonable empirical PDF
at each time step.

Box 2: Procedure for generateng BMA probabilistic
ensemble predictions

(0) Select the ensemble size, M. Set t ¼ 1.
(1) Generate an integer value of k from the

numbers ½1; . . . ;K� based on probability
½w1; . . . ;wK �.

(2) Generate a value of yt from PDF gkðyt j fk;tÞ.
(3) Repeat Steps (1) and (2) M times.
(4) Set t ¼ t þ 1. If t reaches T, stop; else go to

Step (1).

Fig. 4 displays the expected BMA1 predictions along
with the 90% confidence interval of the BMA1 ensemble
for one typical calendar year for each of the test basins.
The corresponding observations are shown as dots. To
put Fig. 4 in a proper perspective, we also show the corre-
sponding SMA predictions along the 90% confidence inter-
val of the original ensemble spread in Fig. 5. Fig. 6 shows
that the RPSS statistics. This figure clearly indicates that
the RPS values of BMA1 predictions are significantly bet-
ter (>30%) than that of the original ensemble predictions.
This implies that the PDFs of the BMA1 predictions are
sharper and more consistent with the observations than
that of the original ensemble predictions. Therefore, the
BMA1 predictions are much more skillful than the original
ensemble.

Fig. 7 shows the reliability diagram of the BMA1 predic-
tions and the original ensemble predictions for three flow
ranges: low flow (i.e., bottom 25% quantile based on obser-
vations), middle flow (i.e., middle 50% quantile) and high
flow (i.e., top 25% quantile). The reliability of the BMAm

predictions is also included in the figure. We will discuss
the reliability results in Section 4.4.2.
4.4. Testing of BMA scheme using multiple sets of weights

In previous section, the BMA scheme was applied to
the entire Box–Cox transformed time series. In this sec-
tion, we broke the streamflow values from the training
data period into several flow intervals. We then applied
BMA scheme to each flow range and obtain a distinct
set of weights for each flow range. The BMA predictions
for each flow range were computed individually using the
BMA weights corresponding to that particular flow
range. Afterwards, the BMA predictions for different
flow ranges were combined to obtain the BMA predic-
tion for the entire training data period. In the following
sections, the verification statistics were again computed
in the original space (i.e., not in the Box–Cox trans-
formed space).
4.4.1. Verification of the accuracy of the expected BMA

probabilistic predictions obtained using multiple sets of

weights

The streamflow values were broken into several flow
ranges based on non-exceedance thresholds, as explained
in Section 2. For this study, the flow range values for
Leaf River and French Broad basins correspond to
10%, 25%, 50%, 75%, 90% and 100% non-exceedance
levels for each basin. Because about 23% of the stream-
flow values for Bird Creek basin take on the value of 0,
the flow ranges for this basin correspond to 50%, 75%,
90% and 100%. For each flow range, we used the
BMA scheme to estimate a distinct set of BMA weights.
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Fig. 8 displays the BMA weights for all flow ranges and
all basins. For some flow ranges, there is a large variabil-
ity in BMA weights. For other flow ranges, the BMA
weight variability is muted. The weights for SAC models
are generally higher in most flow ranges. Table 4 shows
the values of correlation coefficients between BMA
weights and DRMS and DABS statistics averaged over
different flow ranges for each basin. These high correla-
tion values re-affirm the previous finding in Section 4.3
that BMA weights do reflect model performance.

Now let’s evaluate the DRMSS and DABSS statistics
of the combined BMA predictions obtained using multi-
ple sets of weights (denoted as BMAm predictions hereaf-
ter). Fig. 9 exhibits the DRMSS and DABSS statistics of
both the BMA1 and BMAm predictions. This figure indi-
cates that the BMAm predictions not only improve on the
best individual predictions, but also do better than the
BMA1 predictions in terms of DRMSS and DABSS sta-
tistics. This tells us that there is a potential advantage in
using multiple weight sets over a single set of values. This
probably indicates that BMAm predictions are more
capable of taking advantages of the diversity of the
ensemble members.
4.4.2. Verification of the skill and reliability of the BMAm

probabilistic predictions

Using the procedure described in Box 2, we again
created 100-member BMAm ensemble predictions for
each flow range using the associated BMAm weights.
The combined BMAm predictions for all flow ranges
are shown in Fig. 10, along with the 90% confidence
interval. Again, the 90% confidence interval seems to
encompass the observed very well. Fig. 11 shows the
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RPSS statistics for the BMA predictions using both the
single-set weights and multi-set weights. The RPSS sta-
tistics for BMAm predictions indicates that BMAm pre-
dictions are significantly more skillful and reliable than
the original ensemble predictions. But the RPSS statis-
tics of BMAm and BMA1 predictions is essentially the
same.

The reliability diagram of BMAm predictions is shown
in Fig. 7, along with that of the BMA1 and original
ensemble predictions. Based on Fig. 7, the reliability of
all three sets of ensemble predictions is comparable. All
of the ensemble predictions have good resolution, as indi-
cated by the full coverage of the observed probability
range by all predictions. The reliability is excellent for
some middle flow and all high flow ranges, as indicated
by the reliability curves closely wrapped around the 45�
line. The high reliability score is probably due to the fact
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Fig. 7. Reliability Diagrams of BMA1 and BMAm predictions for the validation periods.
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that all of the streamflow predictions have been cali-
brated to observed streamflow data. The reliability for
the low flow ranges is not as good as in the high flow
ranges. In these low flow cases, the original ensemble pre-
dictions tend to have an over-prediction bias. The reli-
ability of the two BMA ensemble predictions is similar
and they all tend to over-predict the low end and
under-predict the high end of each flow range. Note that
the low flow reliability diagram for Bird Creek is not
shown. This is because almost all of the observed and
predicted flow values in the low flow range are equal to
0. Note also that the reliability diagram of the middle
flow range for Bird Creek is similar to that of low flow
range for the two other basins.

4.5. Validation of BMA predictions using data from

independent periods

The previous sections show that the BMA scheme is a
promising tool for generating probabilistic predictions. A
natural question to ask is how robust are these results.
In this section, we designed a set of experiments to eval-
uate how the BMA predictions perform when they are
evaluated using data from an independent validation
period.

The validation periods for the test basins are listed in
the last row of Table 1. We used the weights obtained
from the training periods and computed BMA predic-
tions for the validation periods. The performance statis-
tics, including DRMSS, DABSS, RPSS and Reliability
Diagrams, are again employed to examine the consistency
of the BMA predictions. Table 5 lists these statistics for
the training and validation periods for BMA1 predic-
tions, while Table 6 provides the same information for
BMAm predictions. In terms of the DRMSS statistics,
the performance of both BMA1 and BMAm predictions
in the validation period is degraded somewhat from that
in the training period. The DABSS statistics indicates a
mixed picture: the performance of both BMA1 and
BMAm predictions in the validation period is shown to
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Fig. 8. BMA weights for different flow ranges.

Table 4
Correlation coefficients between BMA weights and DRMS and DABS
statistics averaged over different flow ranges

DRMS DABS

Bird Creek �0.7930 �0.8878
Leaf River �0.8285 �0.8543
French Broad �0.8243 �0.8123
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be improved over that in the training period for two
basins (i.e., Bird Creek and French Broad) and the
reverse is true for Leaf River. In terms of RPSS statis-
tics, both sets of BMA predictions are still much better
than the original ensemble. For Leaf River and French
Broad basins, there is not much difference in RPSS sta-
tistics between training and validation periods. For Bird
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Creek, the RPSS statistics for the validation period is
about half of the training period. The results here indi-
cate that there is some degradation in performance when
the weights generated from the training period are used
for the validation period. However, the advantage of
using BMA approach is still obvious compared to the
bench marks used (i.e., the best individual predictions
and the original ensemble).

Fig. 12 shows the reliability diagrams for the
low, middle and high flow ranges (as defined in Section
4.3.2) for all three basins. The reliability of all three sets
of ensemble predictions is very good and there is
no degradation in terms of reliability measure
between the validation and calibration period for the
test basins.
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Fig. 12. Reliability diagrams of BMA1 and BMAm predictions for the validation periods Table 1. Geophysical and climatic characteristics of the test
basins.

Table 5
Comparison of verification statistics between the training period and validation period for BMA1 predictions

DRMSS DABSS RPSS

Training Validation Training Validation Training Validation

Bird Creek 10.79 5.23 4.60 10.89 41.37 22.23
Leaf River 1.30 �0..38 �2.93 �1.91 31.43 30.72
French Broad 6.82 2.32 �1.41 4.70 45.01 36.04

Table 6
Comparison of verification statistics between the training period and validation period for BMAm predictions

DRMSS DABSS RPSS

Training Validation Training Validation Training Validation

Bird Creek 16.37 5.68 10.05 13.78 41.77 19.15
Leaf River 8.56 �0.03 10.28 �0.91 33.76 30.25
French Broad 6.28 2.08 0.20 3.22 38.92 41.13
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5. Summary and conclusions

All models are imperfect representations of the real-
world processes. Different models have strengths in captur-
ing different aspects of the real world processes. It is highly
desirable that some kind of consensus predictions can take
advantage of the diverse skills in different individual pre-
dictions. BMA scheme has shown to be a useful statistical
scheme that generates probabilistic predictions from differ-
ent competing predictions. This is accomplished through a
weighting strategy based on the likelihood of an individual
prediction being correct given the observations. We have
illustrated how the BMA scheme can be used to generate
probabilistic hydrologic predictions from several compet-
ing individual predictions. Here are the major findings of
this study.

(1) The expected BMA1 predictions obtained by using a
single set of weights computed over the entire training
period are better than or comparable to the best indi-
vidual predictions in terms of DRMSS and DABSS
statistics. The advantage of BMA1 predictions over
the original ensemble predictions is very significant,
by 30% or better. In Leaf River, the DRMSS and
DABSS scores is relatively weak, indicating that the
advantage of BMA approach can be limited in cer-
tain cases.

(2) The use of multiple sets of BMA weights to generate
BMAm predictions was a way to accentuate strengths
of individual models in capturing different phases of
the hydrograph. This is achieved by breaking the
streamflow records into a number of flow ranges so
the statistical property of the predictive errors in each
flow range is more homogeneous. We found that the
expected BMAm predictions are markedly improved
in terms of DRMSS and DABSS statistics compared
to the best individual model predictions. More signif-
icantly, BMAm probabilistic predictions are generally
better than the BMA1 predictions. Both BMA1 and
BMAm predictions are much better than the original
ensemble based on RPSS statistics. The original
ensemble, BMA1 and BMAm predictions are all very
reliable as the observed values are reliably contained
within the ensemble ranges.

(3) In both single weight and multi-weight BMA studies,
we found that the BMA weights were highly corre-
lated with the model performance statistics, confirm-
ing one of the central assumptions of the BMA
scheme that better performing models receive higher
weights because their likelihood of being correct is
higher given the observations.

(4) In validation studies, we found that there is some
degradation of performance in the validation period
in terms of DRMSS statistics. However, the DABSS
statistics send a mixed message, with two basins
showed improvement and one basin degradation.
Furthermore, the RPSS statistics still indicate the
clear advantage of BMA predictions. There is no deg-
radation in terms of reliability between the calibra-
tion and validation periods.

This study was based on three hydrologic basins with
limited lengths of hydrologic data. Unless more basins
and longer data sets are used, the results may not be gener-
alized to other basins. It would be an interesting future
study to find out minimum number of years of data needed
to have consistent results.

We must note the results from this study are basically an
analysis exercise involving post-processing of existing ret-
rospective model simulations or predictions. This scheme
can be easily implemented within any existing operational
or research prediction systems, where multiple models are
available. It can be quite suitable for applications to real-
time ensemble hydrologic forecasting. However, care must
be taken as uncertainty associated with retrospective simu-
lations (as in this study) is usually much less than that of
real-time predictions in which predicted meteorological
forcing data such as precipitation and air temperature is
used.
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