Title
SUMMARY OF RESEARCH PROGRESS MEETINGS OF OCT. 16, 23 AND 30, 1952.

Permalink
https://escholarship.org/uc/item/8q49g2c9

Author
Shewchuck, Sergey.

Publication Date
1952-12-23
TWO-WEEK LOAN COPY

This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SUMMARY OF RESEARCH PROGRESS MEETINGS OF OCTOBER 16, 23, and 30, 1952

Sergey Shewchuck

December 18, 1952

"Some of the results reported in this document may be of a preliminary or incomplete nature. It is the request of the Radiation Laboratory that the document not be circulated off the project nor the results quoted without permission."

Berkeley, California
SUMMARY OF RESEARCH PROGRESS MEETINGS OF OCTOBER 16, 23 and 30, 1952

Sergey Shewchuck
Radiation Laboratory, Department of Physics
University of California, Berkeley, California

December 18, 1952

Meeting of October 16

It has always been a problem whether there really does exist a finite delay time in secondary emission and thus whether a very fast scintillation counter can be built. The theory of delay times is quite unsatisfactory. For example, one based on a thermal emission phenomenon would give an appreciable random delay time, whereas a theory based on induced transitions would give negligible delays.

In the past several different values have been obtained for the delay time through various means. Greenblatt had arrived at a value of about 2×10^{-10} sec. At Philips in Eindhoven, Diemer and Jonker with work on a secondary emitting oscillator tube inferred a value of $<5 \times 10^{-11}$. But R. R. Law of RCA while investigating power amplifier multipliers discovered an exponential delay which appeared to have a time constant of about 3×10^{-10} sec. This was undoubtedly an inhibitive factor on the photomultiplier program. It is possible that Law's results could have been attributed to the consistent use of barium oxide coating on the cathodes of the tubes.

More recently an experiment at RCA designed to give more definite evidence on the delay time by use of a special beam deflector tube gave a value of less than 5×10^{-11} sec. At Stanford through investigating noise counts from a pulsed photomultiplier an upper limit of 7×10^{-11} sec. was arrived at by ignoring all transit time delays. It has been found by Varian Associates that 10,000 mc (x band) tubes can be made to multipact from 10,000 to 13,000 mc. This would indicate the emission time delay to be probably $<5 \times 10^{-11}$ sec (unless there are two modes of decay).

It seems safe to say now that it is possible to build multipliers with response up ten times faster than presently available.
II. Phase-Reversal Focussing in Linear Accelerators. Myron L. Good.

An abstract report UCRL-1981 of this talk is in the process of being published and is being quoted as follows:

"A modification, applicable to the linear accelerator, of the focussing principle discovered by Courant, Snyder and Livingston is presented. No foils, grids, magnets, or electrodes are used. One introduces, at periodic intervals along the machine, repeat lengths which are alternately greater than and less than the synchronous repeat length \(l = \beta \lambda \). This causes the synchronous particle to alternately lead and lag the rf peak by the synchronous phase angle \(\phi_s \). (This does not affect the energy gain.)"

"It has been pointed out by McMillan that in a linear accelerator without grids or foils in the path of the beam one cannot have first-order radial focussing and phase stability at the same time. The above modification causes the beam to periodically alternate from a condition of radial defocussing (with phase stability) to one of radial focussing (with phase instability). Both the radial and phase equations of motion become, for small oscillations, the Hill-Meissner equation and overall stability results. The strength of focussing is comparable to that obtained by using grids. The phase acceptance angle is being investigated."

Meeting of October 23, 1952

I. Electron Interaction. Dr. E. A. Ash.

Dr. E. A. Ash, who is a pupil of Dr. D. Gabor of England in electronics, is presently working on post-doctorate studies at Stanford. During his talk he described the objectives and the nature of his experimental work conducted at London University to determine and to check with theory the amount of error and the order of magnitude of the effect of electron interaction in plasmas.

Meeting of October 30, 1952

I. Charged Unstable Particles. Dr. C. C. Butler.

During a visit to the University of California campus, Dr. C. C. Butler of Manchester, England, co-discoverer of V particles, spoke at UCRL on the various charged particles found in cosmic rays. Photographs of rare events were shown and the statistical data based on them was interpreted. Among the particles described were tau, K, zeta, and s particles, as well as the possibility of neutral V particles.