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Temporal Causal Strength Learning with Multiple Causes 
 

Cory J. Derringer (cjd78@pitt.edu) 
Benjamin M. Rottman (rottman@pitt.edu) 

Department of Psychology, University of Pittsburgh 
3939 O’Hara Street, Pittsburgh, PA 15260 USA 

 
Abstract 

When learning the relation between a cause and effect, how 
do people control for all the other factors that influence the 
same effect? Two experiments tested a hypothesis that people 
focus on events in which the target cause changes and all 
other factors remain stable. In both four-cause (Experiment 1) 
and eight-cause (Experiment 2) scenarios, participants learned 
causal relations more accurately when they viewed datasets in 
which only one cause changed at a time. However, 
participants in the comparison condition, in which multiple 
causes changed simultaneously, performed fairly well; in 
addition to focusing on events when a single cause changed, 
they also used events in which multiple causes changed for 
updating their beliefs about causal strength. These findings 
help explain how people are able to learn causal relations in 
situations when there are many alternative factors. 

Keywords: causal learning; causality; causal strength; 
conditionalizing 
 

Introduction 
Learning the strengths of causal relationships is essential for 
successfully manipulating the environment. Consider a 
student deciding whether to take a GRE prep course. 
Knowing the extent to which taking the course would 
improve or harm her score would help the student decide 
whether the course is worthwhile. 

However, causal relationships do not exist in isolation; 
often multiple causes influence the same effect in different 
ways (e.g., whether the student has been taking practice 
tests or drinking at the local pub). Further, the causes could 
be confounded; one more hour studying may mean one less 
hour sleeping. In the same way statisticians use regression 
to estimate the effect of one variable above and beyond 
another, individuals should attempt to control for alternative 
causes to estimate the unique strength of a target cause. 

In the next section we briefly review the dominant theory 
for how people control for alternative causes. We then 
propose a new theory called the Informative Transitions 
heuristic, and report two experiments that tested this theory. 
 
Controlling for Alternatives Using Focal Sets 
Focal set theory (Cheng & Novick, 1990; Cheng & 
Holyoak, 1995) proposes that when assessing the strength of 
a target cause (A) on an effect, people examine a subset of 
the data in which the other factor(s) are constant. For 
example, given the data in Figure 1, a learner could choose 
the subset in which B=0 (the gray shading). Within this 
subset a learner could calculate causal strength. (There are 
multiple theories for how people calculate causal strength 

within a focal set; see Hattori and Oaksford (2007) for a 
summary.) 

 
Time 1 2 3 4 

Cause A 1 1 0 0 
Cause B 0 1 0 1 
Effect 1 1 0 1 

 
Figure 1: A focal set (gray shading) for cause A conditional 

on cause B's absence 
 
It has been widely demonstrated that people often control 

for alternative causes when estimating the strength of a 
target cause (Spellman, 1996; Spellman, Price, & Logan, 
2001; Waldmann & Holyoak, 1992; Waldmann, 2000; 
Waldmann & Hagmayer, 2001). However, the precise 
mechanism(s) is less clear. We first review two limitations 
of focal sets, and then discuss other options. 

First, when the alternative cause B is a binary variable, 
two focal sets may be used: the presence or absence of B. 
Using these different focal sets, the subject could come to 
different conclusions about the strength of the target cause. 
In Figure 1, the focal set B=0 implies that A causes the 
effect (A is correlated with the effect in this focal set), but 
the focal set B=1 implies that it does not.  

The second problem is that it is unclear exactly how 
people would use focal sets when there are multiple 
alternative factors. Imagine a situation in which there are 
four possible causes (A-D) of an effect. When assessing the 
causal strength of A, a learner could choose a focal set such 
as (B=0, C=0, D=0); however, using this focal set ignores 
the other 7 possible combinations of B, C, and D, which 
means ignoring 7/8ths of the potential data. If there are 8 
causes (Experiment 2), choosing any one particular focal set 
(e.g., when all the other factors are 0), involves ignoring 
127/128ths of the potential combinations. If a learner only 
experiences a small number of observations, there may not 
be observations in which A=1 and A=0, while all the other 
factors are 0; the relation between A and the effect cannot 
be inferred. Thus, selecting one focal set for each cause 
seems an inefficient strategy. In sum, there is a tension 
between using just one focal set, which involves discarding 
data, and using multiple, which requires integrating the 
conclusions in some yet-unspecified way. 

 
Controlling for Alternatives in Other Ways 
Here we list a couple alternative approaches to controlling 
for alternative causes aside from focal sets. First, in many 
learning situations, associative theories (e.g., Rescorla & 
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Wagner, 1972) asymptote to focal sets (see Spellman, 
1996). One prediction of the standard version of Rescorla 
and Wagner’s learning rule (RW) is that the associations 
between a cue and outcome get updated only on trials when 
the cue is present, which we will assess in the following 
experiments.  

Second, when there are too many alternatives, people may 
stop controlling for alternative causes due to a working 
memory overload (Goedert, Harsch, & Spellman, 2005), in 
which case the causal strength estimates would resemble the 
bivariate relation between each cause and the effect. 

Third, though we are not proposing it as a descriptive 
theory, it is useful to consider multiple regression as a gold 
standard computational-level theory, especially when there 
are many alternatives that need to be controlled for. 
 
Using Informative Transitions  
The current experiments test an alternative way that people 
may calculate conditional causal strength judgments as they 
experience data over time, which we call the Informative 
Transitions heuristic. We propose that people leverage the 
fact that causes in the environment are often 
autocorrelated—that they often remain in the same state for 
extended periods of time1. For example, if someone is in a 
bad mood in the morning, they are likely to be in a bad 
mood at lunchtime. Some degree of stability occurs for 
many other variables (the economy, one’s health etc.). The 
data in Table 1a are an example in which each of the four 
causes is fairly stable over time. When causal factors change 
fairly infrequently, causes often change in isolation 
(provided that they are independent). 

These transitions from one timepoint to the next in which 
only one potential cause changes and the others remain 
stable (hereon “informative transitions”, or “IT”s) can give 
the learner unique insight into the relationship between the 
changing cause and the effect. Any change or lack of change 
in the effect during an IT informs the learner about the 
relationship between that cause and the effect holding the 
other causes constant. If the cause and effect change in the 
same direction (positive IT), it provides evidence that the 
cause is positive (generative) such as Table 1a Time 6-7 for 
Cause A. If they change in the opposite direction (negative 
IT), then the cause is more likely to be negative (inhibitory) 
(e.g., Table 1a, Time 4-5 for Cause D). If the cause changes 
but the effect stays constant (neutral IT), it may not be a 
cause at all (Time 3-4 for Cause B in Table 1a).  

According to the IT heuristic, transitions in which 
multiple causes change simultaneously (Table 1b) are less 
informative; a change in the effect cannot be attributed to a 
single cause. If people use the IT heuristic, they will learn 
about causal strength more from ITs (Table 1a) than when 

                                                
1 In reality, the number of causes that change on average from 

one observation to the next depends on how many causes are being 
observed and how frequently the causes change on average. If 
there is a very large number of causes, then typically more than 
one will change. However, if the causes are very stable, then it is 
possible for only one (or even less than one) cause to change on 

multiple causes change (Table 1b). By contrast, focal set 
theory predicts no differences based on trial order.  

The IT heuristic retains the most compelling aspect of the 
focal set theory: it simplifies scenarios with many causes, 
allowing the subject to examine the bivariate relationship 
between each cause and the effect. In a sense, the IT 
heuristic can be viewed as dynamically using different focal 
sets at different times (e.g., for Time 1-2 in Table 1a, the 
target cause is B, and the focal set is A=1, C=0, D=1; for 
Time 2-3 the target cause is C, and the focal set is A=1, 
B=0, D=1, etc.).  
 
Table 1a: Dataset wherein all transitions are informative 
 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Cause A 1 1 1 1 1 0 1 1 1 1 1 1 1 0 
Cause B 1 0 0 1 1 1 1 1 1 0 0 0 1 1 
Cause C 0 0 1 1 1 1 1 1 0 0 1 1 1 1 
Cause D 1 1 1 1 0 0 0 1 1 1 1 0 0 0 
Effect 0 0 0 0 1 0 1 0 0 0 0 1 1 0 
 
Table 1b: Data from Table 1a, rearranged to remove ITs 
 
Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Cause A 1 1 0 1 1 1 1 1 1 1 1 1 0 1 
Cause B 1 0 1 1 0 1 1 0 1 0 1 0 1 1 
Cause C 1 0 1 1 1 0 1 1 1 0 1 1 1 0 
Cause D 1 1 0 1 0 1 0 1 0 1 0 1 0 1 
Effect 0 0 0 0 1 0 1 0 1 0 1 0 0 0 
 

The current experiments test the IT heuristic by changing 
the order of the learning data to manipulate the number of 
ITs. Tables 1a and 1b are an example; they have the same 
14 trials, but in a different order. If learners use the IT 
heuristic, they will be more successful at detecting the 
underlying causal relations in datasets like Table 1a than 1b.  
 

Experiment 1 
Method 
Participants For each experiment, 100 participants located 
in the United States were recruited through Amazon’s 
Mechanical Turk service. Each participant had previously 
completed at least 100 tasks on MTurk and had an approval 
rate of at least 95 percent. Participants were paid two 
dollars, with accuracy bonuses as an incentive. The study 
lasted approximately 15 minutes. 
 
Design We examined how participants learn about positive 
causes, negative causes, and neutral factors (non-causes). 
We created three types of datasets so that participants would 
not have a strong expectation of the number of each type of 
cause: one positive, one negative, two neutral; two positive, 
one negative, one neutral, and one positive, two negative, 
one neutral. Twenty datasets were created for each type. 
Each participant viewed six datasets (two of each type), 
randomly selected and presented in random order.  
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The independent variable (between subjects) was the 
order of the trials within a dataset: whether each transition 
was informative (Table 1a) or not (Table 1b).  

The datasets were created manually in the following way. 
On each trial, one cause was selected to change, and the 
effect was changed in the appropriate direction. For 
example, if a positive cause was selected to change, the 
effect would change in the same direction. By contrast, 
when a negative cause changed, the effect changed in the 
opposite direction. When a neutral cause changed, the effect 
did not change. Each cause changed either three or four 
times overall, and there were 14 trials for each dataset.  

With a logistic regression predicting the presence/absence 
of the effect, this scheme guaranteed that positive and 
negative causes always had strong logistic regression 
weights (51.13 and -51.13 respectively), while neutral 
causes would have weights approaching zero2 (Table 5).  

We created datasets for the No-IT condition by reordering 
the datasets from the IT condition to remove all of the 
informative transitions (e.g., Table 1b). For any given 
transition either no causes change, or two or more change.  
Still, the regression weights remained the same. For 
example, in Tables 1a and 1b, Cause A is positive, B and C 
are neutral, and D is negative. 

 
Procedure Participants were told to imagine that they 
worked in a nursing home, and were in charge of making 
sure each patient slept well. Their task was to examine the 
medications taken by each patient to find out which ones 
enhanced or interfered with sleep. Participants observed 14 
sequential days of data for each patient. For each day, 
participants were shown which of four medications the 
patient took that day. Medications were represented using 
animated pictures of pills, which were either full-color 
(cause present) or visibly faded (cause absent). These 
presence/absence cues for each cause remained on-screen 
for the duration of the trial. Participants predicted whether 
the patient would sleep well or poorly that night, and 
received feedback immediately. They were then allowed to 
adjust sliding scales indicating their beliefs about the causal 
status of each medication. When they were satisfied with 
their current judgments, they clicked a button to proceed to 
the next trial, and the on-screen presence/absence cues 
changed to reflect the changes during that transition 
(pictures either faded or came back to full color for causes 
that changed).   

The sliders used the scale -10 (strong sleep inhibitor) to 
10 (strong sleep enhancer). The numerical values on the 
scale were given to the participants during the instruction 
phase. After viewing data from 14 timepoints, participants 
submitted final judgments about the influence of each 
medication using the same scale. This procedure was then 

                                                
2 For a technical and non-obvious reason, our particular data 

generation process guaranteed that if all the causes were entered 
into a linear regression to predict the effect, positive, negative, and 
neutral causes always had regression weights of 1, -1, and 0 
respectively; the positive and negative causes were very strong. 

repeated for five more patients, using different datasets. 
After completing the study, participants’ bonus amount was 
calculated and paid. Bonus amounts were calculated based 
on participants’ final judgments for each cause. Five cents 
were paid for final judgments that were sufficiently 
accurate, and the maximum possible bonus was $1.20. 
 
Results 
Trial-By-Trial Updating of Causal Strength Beliefs 
Recall that participants had the opportunity to update their 
current beliefs about each drug’s effectiveness after every 
trial. If transitions are important for causal strength learning, 
participants would be more likely to update causes that 
change. For this analysis, we focused on the first five 
transitions, because most of participants’ learning took place 
toward the beginning of each scenario; the probability of 
updating a given cause was .27 after Trial 1 and .09 after 
Trial 14. 

We tested whether participants were more likely to update 
their beliefs about causes that had just changed vs. causes 
that did not change using a logistic regression, which 
included a by-subject random intercept and a by-subject 
random slope for whether the cause changed. For this 
model, we analyzed a subset of the data that only included 
positive and negative causes on trials in which the effect 
changed. Participants in both the IT (B = 1.10, SE = 0.09, p 
< .001) and No-IT conditions (B = 0.27, SE = 0.09, p < .01) 
were significantly more likely to update their causal strength 
beliefs for causes that changed than causes that did not 
change (Table 2).  

 
Table 2: Trial-by-Trial Probability of Updating Causal 

Strength Based on Whether the Cause Changed. 
 

 Experiment 1 Experiment 2 
Cause IT No-IT IT Random 
Changed .35 .21 .38 .27 
Did Not Change .17 .18 .09 .13 

 
Participants in the No-IT condition were still more likely 

to update their beliefs about causes that changed on the most 
recent trial, even though multiple causes changed 
simultaneously. This effect highlights one reason we 
expected people to perform better in the IT condition: 
participants in the No-IT condition received worse 
information about the relationships between the causes and 
the effect from transitions, but were still more likely to 
update their beliefs to reflect that information. 

We used similar regressions to test the RW prediction that 
participants would be more likely to update present causes 
than absent ones (Table 3). Participants in the IT (B = 2.66, 
SE = 0.26, p < .001) and No-IT conditions (B = 2.36, SE = 
0.22, p < .001) updated more often for causes that were 
present.  
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Table 3: Trial-by-Trial Probability of Updating Causal 
Strength Based on Whether the Cause was Present. 

 
 Experiment 1 Experiment 2 
Cause IT No-IT IT Random 
Present .28 .27 .23 .35 
Absent .06 .04 .03 .02 

 
Trial-By-Trial Accuracy of Predictions of the Effect 
Given that participants were more likely to update their 
beliefs about the causes that changed in the most recent trial 
compared to those that did not, it is clear that transitions 
play a role in temporal causal strength learning. Next we 
analyzed the differences in accuracy for predicting the effect 
on each trial. Recall that on each trial, participants were 
asked to predict whether or not the patient would sleep well. 
We predicted that participants in the IT condition would be 
more accurate than those in the No-IT condition. 

We tested this using a logistic regression, predicting 
accuracy on a given trial using trial number, condition (IT 
vs No-IT), and an interaction between the two. We included 
a by-subject random intercept and by-subject random slope 
for trial number, allowing for individual differences in how 
accuracy changes over the course of the trials. Figure 2 
summarizes our findings: participants in the IT condition 
improved more over time than participants in the No-IT 
condition (B = 0.05, SE = 0.01, p < .01). This interaction 
seems to come from the surprising finding that accuracy in 
the IT condition started out lower than the accuracy in the 
No-IT condition; this pattern was not found in Experiment 
2, so we do not dwell on it. The overall accuracy difference 
between participants in the IT condition (58.5% correct) and 
those in the No-IT condition (59.8% correct) was 
nonsignificant.  
 
Final Judgments of Causal Strength If ITs help 
participants learn causal strengths, then participants’ final 
judgments of causal strength in the IT condition would be 
more positive for the positive causes, and more negative for 
the negative causes, relative to the No-IT condition.  
Because the data were heavily skewed, with many 
judgments near the positive extreme for positive causes and 
the negative extreme for negative causes, we used a Gamma 
GLM. For positive causes, we transformed the data by 
multiplying each judgment by -1 and adding 11. For 
negative causes, we added 11 to each judgment. This 
ensured that the shape of each distribution would not 
change, but that they could be mapped onto a gamma 
distribution, which required all values to be positive. We 
incorporated a by-subject random intercept to allow for 
individual differences in subjects’ baseline judgments. 
Participants in the IT condition judged the positive causes to 
be more positive (B = 0.04, SE = 0.01, p < .01), and the 
negative causes to be more negative (B = -0.05, SE = 0.02, p 
< .001), relative to the No-IT condition (Table 4).  
 

Table 4: Mean (SD) of Final Causal Strength Judgments. 
 
 Experiment 1 Experiment 2 
Cause IT No-IT IT Random 
Pos. 5.4 (4.5) 3.5 (5.3) 5.4 (5.1) 3.2 (5.8) 
Neg. -5.0 (5.1) -2.7 (5.5) -5.2 (5.8) -3.9 (5.6) 
 

 
 

Figure 2: Accuracy of Trial-By-Trial Predictions of Effect 
in Experiment 1. 

 
Discussion 
Participants formed and updated their causal strength beliefs 
based on which causes changed during transitions. 
Additionally, participants’ predictions of the effect 
improved more in the IT condition than in the No-IT 
condition, and participants in the IT condition made more 
accurate final judgments of causal strength. Together, these 
findings support the idea that transitions facilitate causal 
learning.  

Interestingly, although participants in the No-IT condition 
were less accurate in their final judgments, they were clearly 
learning, and the judgments were significantly different 
from 0 in the correct directions for both positive and 
negative causes (p’s < .001). This pattern of results raises 
the question of how participants in the No-IT condition were 
able to perform as well as they did. As outlined in the 
introduction, if participants used focal sets, it is not clear 
exactly what focal sets they were using. One possibility is 
that the bivariate correlations between each cause and the 
effect in our datasets were moderately strong (Table 5), so it 
is possible that participants in the No-IT condition used the 
bivariate relations and did not control for alternative causes. 
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Table 5: Regression weights and average bivariate 
correlations for causes in Experiments 1 and 2 

 
Analysis Positive Neutral Negative 

Experiment 1 
Log. Regression Weight 51.13 < 0.001 -51.13 
Bivariate Correlation 0.48 0.00 -0.47 

Experiment 2 
Log. Regression Weight 51.13 < 0.001 -51.13 
Bivariate Correlation 0.23 0.01 -0.22 

 
Experiment 2 

In Experiment 2, we attempted to test the limits of causal 
strength learning by having participants learn causal 
strengths in a scenario with eight causes. Having eight 
causes also reduces the bivariate correlations relative to 
Experiment 1 (Table 5), thereby making the task harder and 
potentially allowing for a bigger difference between the two 
conditions. However, the multiple regression weights were 
still just as strong for the positive and negative causes. 
 Another advantage of adding more causes in Experiment 
2 is that an eight-cause scenario is even more difficult to 
explain in terms of focal sets. As previously discussed, as 
the number of causes increases, a smaller fraction of the 
potential data would be included in any particular focal set.  

Importantly, the order of the trials does not matter for the 
focal set account. By contrast, if participants use the IT 
heuristic, they will perform better with more ITs.  
 
Method 
Participants One hundred workers were recruited through 
Amazon’s Mechanical Turk service using the same 
qualification criteria from Experiment 1. Participants were 
paid two dollars, with accuracy bonuses as an incentive. The 
study lasted approximately 15 minutes. 
 
Design and Procedure There were several differences 
compared to Experiment 1. Each participant made 
judgments about eight causes instead of four, over 25 days 
instead of 14. To compensate for the increased length of 
each scenario, participants only completed three scenarios 
instead of six. The IT datasets were created using a script 
rather than manually, and each cause changed three times. 
Additionally, rather than creating No-IT datasets, we 
randomized the order of the trials as a comparison for the IT 
condition. This means that sometimes there were 
informative transitions (when only one cause changed) in 
the Random condition. The modal number of ITs per dataset 
in the Random condition was four—the maximum number 
was nine—compared to 24 in the IT condition. On average, 
3.36 causes changed for each transition in the Random 
condition. 
 We used three types of datasets. The first type had three 
positive causes, three negative causes, and two neutral 
causes. The second type had two positive, three negative, 
and three neutral causes. The third had three positive, two 

negative, and three neutral causes. Each participant viewed 
one dataset from each type, with the order of the datasets 
being randomized. Aside from these changes Experiment 2 
was the same as Experiment 1. 
 
Results 
Trial-By-Trial Updating of Causal Strength Beliefs 
Experiment 2 replicated the pattern of results from 
Experiment 1 (Table 2). Participants updated their beliefs 
about causal strength more when a given cause changed 
compared to when it did not change. Furthermore, this 
occurred in both the IT condition (B = 2.03, SE = 0.14, p < 
.001) and the Random condition (B = 1.00, SE = 0.10, p < 
.001). In addition, they also were more likely to update their 
causal strength judgments when a cause was present in the 
IT (B = 3.01, SE = 0.30, p < .001) and Random conditions 
(B = 5.49, SE = 0.79, p < .001) (Table 3).  
 

 
 

Figure 3: Accuracy of Trial-By-Trial Predictions of Effect 
in Experiment 2.  

 
Trial-By-Trial Accuracy of Predictions of the Effect We 
hypothesized that if participants are better able to infer 
causal strength in the IT condition, they would also be better 
able to predict the effect. Figure 3 plots the probability of 
correctly predicting the effect.  

A logistic regression with by-subject random intercepts 
found that participants were more accurate in the IT 
condition than in the Random condition (B = 0.27, SE = 
0.06, p < .001). The interaction from Experiment 1 was 
marginal in Experiment 2 (B = -0.01, SE = .01, p = 0.06).  
 
Final Judgments of Causal Strength As in Experiment 1, 
we examined the differences in participants’ final judgments 
of positive and negative causes in the IT and Randomized 
conditions (Table 4). A mixed effects Gamma regression 
with random intercepts for each participant found stronger 
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causal strength judgments in the IT condition for both 
positive (B = 0.08, SE = 0.02, p < .001) and negative causes 
(B = -0.07, SE = 0.02, p < .01). Participants in the Random 
condition performed significantly above chance (p’s < 
.001). Overall, the results were similar to Experiment 1. 
 

General Discussion 
Our main hypothesis was that participants learn causal 
strengths better in stable environments (IT condition). 
Indeed, participants’ final causal strength estimates were 
stronger—closer to the normative regression weights—in 
these environments, suggesting that participants capitalize 
on the stability of the environment to learn causal strengths. 

More generally, participants were more likely to update 
their beliefs about a cause immediately after that cause 
changed, even in learning environments in which more than 
one cause changed from one observation to the next. This 
finding builds upon research concerning how people learn 
cause-effect relations in single-cause environments; that 
research also found that people are more likely to update 
beliefs about a cause after it has changed (Soo & Rottman, 
2015). The current paper generalizes this finding to 
situations with multiple causes and demonstrates the 
effectiveness of this learning habit in stable environments.  

Our finding that participants update their beliefs more 
often after a cause changes parallels another finding: 
participants updated their beliefs more for present causes 
than absent ones. RW predicts this as well (cf. Van Hamme 
& Wasserman, 1994). 

Several questions are as yet unanswered. Participants in 
the No-IT and Random conditions could infer causal 
direction, despite low bivariate relations in Experiment 2. 
Understanding this may yield other causal learning insights.  

Additionally, there are some differences in the results of 
Experiment 1 vs. 2, particularly in the accuracy of the trial-
by-trial predictions of the effect. In Experiment 2 the 
accuracy in the IT condition was generally better than the 
Random condition (Figure 3). By contrast, in Experiment 1, 
the accuracy in the IT condition started lower than in the 
No-IT condition, and rose more quickly (Figure 2). This 
raises the possibility that informative transitions may, in 
certain situations, temporarily impair learning. Aside from 
the main difference of 8 vs. 4 causes, there are other 
differences between the two experiments that could explain 
these different patterns: weaker bivariate relations and more 
learning trials in Experiment 2, and the fact that the Random 
condition in Experiment 2 did not exclude informative 
transitions. Investigating these factors can elucidate whether 
situations with many informative transitions may 
temporarily result in worse causal learning. 

Individuals often face situations in which multiple causes 
can influence an effect. One way people may cope with this 
complexity is by focusing on times when a cause changes, 
especially in situations with fairly stable causes over time.  
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