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Original Article

The primary goal of the artificial pancreas (AP) is to elimi-
nate the occurrence of severe hypoglycemia and reduce the 
time spent in hyperglycemia (>180 mg/dL) in an effort to 
improve quality of life and reduce long-term complications.1 
Safe and effective control of type 1 diabetes mellitus (T1DM) 
using an AP has been researched widely for several decades, 
with many advances, but several challenges remain. These 
challenges include overcoming large meal disturbances, the 
effects of exercise, and the delays associated with subcutane-
ous glucose sensing and insulin delivery.2 One of the most 
difficult aspects of the diabetes therapy routine is dealing 
with meals, and it has been shown that inaccurate estimation 
of meal sizes occurs frequently, resulting in additional glu-
cose fluctuations.3 Recent behavioral studies have also 
shown that people with T1DM are interested in an automated 
system but are concerned with relinquishing full control.4,5 
Therefore, an automatic AP that is safe and robust to daily 
living conditions and is trusted by the users is critical.

The AP is a multilayered device that will contain several 
features, including a core glucose controller, devices for 
monitoring of glucose and possibly other biologically rele-
vant compounds or signals, software to interface with the 

user, safety systems to monitor the status of the system, and 
telemedicine to convey information about the system to the 
user and family and/or medical personnel. The core of the 
AP is the controller, the design of which has been explored 
by several research teams, with promising results.6-11 
Continuous glucose monitoring (CGM) devices and insulin 
pumps are continually being improved, and are at a perfor-
mance level that enables automatic control.12,13 Currently, 
longer clinical trials with several meals and exercise are 
being performed with good results.6,14 Generally, the trials 
with meals larger than 50 g of carbohydrate (CHO) use a 
feed-forward approach, announcing meals and giving a full 
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Abstract
The Glucose Rate Increase Detector (GRID), a module of the Health Monitoring System (HMS), has been designed to 
operate in parallel to the glucose controller to detect meal events and safely trigger a meal bolus. The GRID algorithm was 
tuned on clinical data with 40-70 g CHO meals and tested on simulation data with 50-100 g CHO meals. Active closed- and 
open-loop protocols were executed in silico with various treatments, including automatic boluses based on a 75 g CHO meal 
and boluses based on simulated user input of meal size. An optional function was used to reduce the recommended bolus 
using recent insulin and glucose history. For closed-loop control of a 3-meal scenario (50, 75, and 100 g CHO), the GRID 
improved median time in the 80-180 mg/dL range by 17% and in the >180 range by 14% over unannounced meals, using an 
automatic bolus for a 75 g CHO meal at detection. Under open-loop control of a 75 g CHO meal, the GRID shifted the 
median glucose peak down by 73 mg/dL and earlier by 120 min and reduced the time >180 mg/dL by 57% over a missed-meal 
bolus scenario, using a full meal bolus at detection. The GRID improved closed-loop control in the presence of large meals, 
without increasing late postprandial hypoglycemia. Users of basal-bolus therapy could also benefit from GRID as a safety alert 
for missed meal corrections.
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or partial bolus near meal time.10,15-17 This approach is taken 
due to the large glucose excursion caused by high CHO 
meals and the delays in subcutaneous glucose sensing and 
insulin action. For fully automatic control to be possible with 
the currently available glucose sensing and insulin delivery 
routes, meal detection must be integrated into the control 
scheme.

Several types of meal detection algorithms have been 
devised and studied in recent years.18-21 In those cases, 1 
minute sampling was used, which may increase the speed of 
detection and allow for increased accuracy. At this time, 
however, most CGMs provide data at a 5-minute sampling 
time. In Dassau et al,18 the algorithms were tuned using data 
with withheld boluses, enhancing the meal excursion and 
allowing for higher sensitivity and faster detection. In addi-
tion, only isolated meals were evaluated, not full traces with 
several meals, and other disturbances. Some of the algo-
rithms were trained and tested on 1-minute simulation data, 
with very little noise and disturbances.19,20 The present arti-
cle contains an algorithm that has been trained and tested on 
clinical data that were in fully closed-loop mode, a reason-
able model for the actual conditions in which meal detection 
will be utilized.

The Glucose Rate Increase Detector (GRID) is a module 
of the Health Monitoring System (HMS) that has been 
designed as a component of the AP that operates in parallel 
to the controller. The objective of the GRID is to detect per-
sistent increases in glucose associated with a meal, and trig-
ger a meal bolus to blunt the meal peak safely. It may be used 
in open-loop control, closed-loop control with user input, or 
fully automatic closed-loop control.

Methods

The modules of the HMS are each designed to monitor a 
specific component of the AP, or type of adverse event or 
disturbance seamlessly without interference. The most prev-
alent and risky occurrence is hypoglycemia. Thus, the Low 
Glucose Predictor (LGP) was designed to predict and pre-
vent severe hypoglycemia in parallel to a controller, and has 
been shown to be effective in clinic in combination with the 
zone–Model Predictive Control (zone-MPC) controller.22-24

In an automatically controlled system, unmeasured distur-
bances such as meals can cause large excursions out of the 
target zone, leading to hyperglycemia and, often, subsequent 
hypoglycemia due to overdelivery in response to a meal. The 
GRID has been designed as the second module in the HMS, 
for the express purpose of detecting meal excursions with 
high specificity and short reaction time.

HMS With GRID Design

The GRID algorithm uses CGM data to estimate the rate of 
change (ROC) of glucose and detect meal-related glucose 
excursions. The GRID consists of 3 main subsections: (1) a 

preprocessing section to prepare the CGM data for analysis, 
(2) an estimation section to approximate the ROC of glucose, 
and (3) a detection section to logically pinpoint meal events.

In the preprocessing section, the algorithm filters the data 
using a noise-spike filter,25
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where k is the sampling instant, G kF NS, ( )−1  is the previous 
filtered value from the noise spike filter, G kF NS, ( )  is the fil-
tered value resulting from the noise-spike filter, G km ( )  is 
the measurement, and ∆G is the maximum allowable ROC, 
set to 3 mg/dL in a 1-minute period, to limit the ROC to a 
physiologically probable value.26,27 The data are then passed 
through a low pass filter to damp high frequency 
fluctuations,25
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where ∆t is the sampling period, τF  is the filter time con-
stant, and GF NS,  is the filtered value. The value for τF  has 
been tuned to smooth the data without introducing a long 
delay to optimize the specificity and detection speed of the 
algorithm.

In the estimation section, the ROC of glucose is calcu-
lated using the first derivative of the 3-point Lagrangian 
interpolation polynomial, evaluated at the most recent point, 
as follows:18,22
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In the detection logic, the detection, GRID+ , is positive 
(equal to 1) at the current point only if the filtered point is 
above a value Gmin  and (∧) either the last 3 ROC values are 
above Gmin,

’
3  or (∨) the last 2 are above Gmin,
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The value of Gmin  is chosen large enough to isolate post-
meal glucose values and to avoid the hypoglycemia region. 
The ROC cutoffs are chosen to isolate postmeal rises and the 
hierarchical approach (with either 2 at a higher ROC or 3 at a 
lower ROC) allows faster detection with higher ROC values.
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Kalman Filter Algorithm

A standard Kalman filter (KF) was used as a benchmark to 
evaluate the GRID algorithm. The KF was a version of the 
Optimal Estimation algorithm used by Palerm et al,28 modi-
fied for use with 5-minute sampling. The detection logic was 
implemented as it was in the GRID, and tuned along with the 
number of states (2 states including glucose value and ROC 
of glucose and 3 states including the acceleration of glucose 
as well) and the Q to R ratio for specificity and detection 
speed, resulting in slightly different tuning than the GRID 
for the detection logic.

Integration of HMS Into Control Scheme

The knowledge of a meal event is helpful for disturbance 
rejection, and can be used as a form of inferential control. 
Using GRID, the state of the system, with respect to meal 
events, is estimated. Once the discrete meal event is detected 
by the GRID module, a sequence of events to reject the dis-
turbance is activated. There are 2 modes explored in this 
article, as shown in Figure 1: the User-Input Mode, in which 
the detection triggers an alert that requests meal information, 
which is then used to deliver a full or partial meal bolus; and 
the Automatic Mode, in which a medium-sized meal bolus or 

Figure 1. Flow chart for GRID treatment protocols, followed after a meal is detected. Automatic Mode protocols are in the green box 
(on the left) and User-Input Mode protocols are in the blue box (on the right).
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a correction to low normal glucose levels is calculated and 
delivered automatically. Both modes can operate with the 
Recent History Correction (RHC) function active to adjust 
the recommended bolus. The RHC has 2 functions: (1) to 
calculate the insulin delivery over the last 60 minutes and 
subtract the amount over basal from the recommended bolus 
and (2) to calculate a correction to 140 mg/dL for the lowest 
glucose value in the past 60 minutes and add it to the recom-
mended bolus. The correction to 140 mg/dL can be negative, 
reducing the recommended bolus if recent glucose values 
were on the lower end of the target zone. This action pro-
vides an additional safeguard against overdelivery. All of 
these calculations are based on the clinical parameters of the 
subjects, including insulin to carbohydrate ratios and correc-
tion factors.

The full incorporation of the HMS, including the GRID 
and the LGP, is shown in Figure 2, with CGM information 
being sent to both LGP and GRID, and insulin information 
being sent to GRID to allow for calculation of the RHC. The 
HMS operates in parallel with the controller to minimize 
interference and also to reduce the likelihood of adverse 
safety events due to module failure.

Training and Validation

The GRID and KF algorithms were tuned using training data 
from clinical trials and tested on a validation set of clinical 
data and an in silico data set, all with unannounced meals. As 
mentioned above, the algorithms were tuned, in order of 
importance, for low detection time, low false positive rate 
(high specificity), and high number of meals positively 

identified. Tuning involved exploring a wide parameter 
space for 4 tuning parameters, τF , Gmin , Gmin,

’
3 , and Gmin,

’
2  

with a fine mesh. Specifically, tuning was performed with 
the interest of keeping the time to detection as low as possi-
ble while keeping the false positive rate below 2 per day and 
maintaining a high detection rate. The details of tuning have 
not been included in the interest of space. Study details from 
all trials used for training and validation are shown in Table 1, 
with further results detailed in several references.29-32

Retrospective Clinical Data. The training data comprised 12 
fully closed-loop, 24-hour trials with subjects with T1DM 
using zone-MPC with a target zone of 80-140 mg/dL and 
HMS with LGP, performed at the Sansum Diabetes Research 
Institute using the Artificial Pancreas System (APS©).33 The 
subjects were given small to medium-sized meals (40-50 g 
CHO) and performed 30 minutes of moderate exercise, with 
some subjects receiving 16 g CHO snacks before exercise, 
and several receiving 16 g rescue CHO per the HMS. All 
subjects used Dexcom® SEVEN® PLUS, (Dexcom®, San 
Diego, CA) CGMs with a 5-minute sampling period, and 
received subcutaneous insulin delivery.

After tuning the algorithms, validation was performed 
on data from a separate set of clinical trials with different 
subjects, all with T1DM.34 Again, zone-MPC with HMS 
was used in the AP system. Subjects consumed meals of 
40-70 g CHO and several received 16 g rescue CHO per 
the HMS.

In Silico Trial Testing. To further compare sets of tuning 
parameters, in silico trials were conducted using the Food 
and Drug Administration (FDA)–accepted UVA/Padova 
metabolic simulator consisting of 10 adult subjects. The sim-
ulation was started at 3:00 am and closed-loop control using 
zone-MPC with Insulin-on-board (IOB) input constraints 
was initiated at 5:00 am. The zone-MPC target glucose zones 
were 80-140 mg/dL from 7:00 am to 10:00 pm and 110-170 
mg/dL from midnight to 5:00 am, with smooth transitions in 
between.24 Meals of 50, 75, and 100 g were given at 7:00 am, 
1:00 pm, and 6:00 pm, respectively, with control continuing 
until 3:00 am the next day. Data were collected using a sam-
pling time of 1 minute and tested using the GRID and KF 
algorithms after down-sampling to 5 minutes.

Cost–Benefit Analysis

The success of automatically rejecting the meal disturbance 
is highly dependent on the speed of detection. If detected too 
late, it may be of no use, or even cause hypoglycemia if too 
much insulin is delivered in excess of the controller correc-
tion. The simulator provides a sampling period of 1 minute, 
so an analysis of the benefit of faster sampling rate on speed 
of detection, rise at detection, and the percentage of meals 
detected was performed.

Figure 2. Block diagram of a fully automated AP with the 
GRID receiving CGM and insulin delivery information, and, upon 
detection of a meal, relaying a bolus recommendation to the 
glucose controller. The HMS is outlined in red, with submodules 
GRID and LGP outlined in blue, the controller in red, and physical 
devices and the subject in orange.
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Prospective Application

Several in silico scenarios with GRID actively running and 
triggering meal boluses were performed to test the algorithm. 
All scenarios used a sampling period of 5 minutes.

Standard Care Alert. For subjects on standard basal-bolus 
therapy, meal boluses are sometimes missed, especially by 
adolescents or busy adults.35 A missed meal bolus during 
standard basal-bolus therapy was simulated, to evaluate the 

ability of the algorithm to inform a CGM user of the missed 
bolus in a timely manner, blunting the glucose peak and 
decreasing the time in hyperglycemia. An 18-hour scenario 
with a 50, 75, or 100 g CHO meal at 4.5 hours was simulated 
with several protocols, shown in Table 2. User-input boluses 
are delivered at the cycle after detection to simulate the delay 
of waiting for user response.

Zone-MPC With Inferential Control. As shown above, the 
GRID was integrated into the control scheme as a form of 

Table 1. Characteristics of Training Clinical Data Sets, Validation Clinical Data Sets, and Simulation Testing Set.

(A) Training (B) Validation (C) Simulation

N, data sets 12 10 10
Male sex, number  4  7 —
Age, years 53 (28-62) 52 (30-62) —
Height, cm 167 (157-193) 170 (156-178) —
Weight, kg 70 (53-132) 65 (54-94) 72 (46-99)
Total daily basal, U 18.4 (11.6-46.2) 24 (7.5-39.5) 29.7 (22-45.7)
Total daily insulin, U 33 (22.9-73.2) 38 (23.1-105) 43 (34-72)
Default carbohydrate ratio, g CHO/U 10.5 (6.33-15) 11.5 (3.5-20) 16.5 (9-22)
Hypoglycemia treatmentsa, g CHO 56 (16-112) 24 (0-112) 0 (0-80)
Default correction factor, mg/dL/U 51.5 (25-100) 58 (12.5-70) 42.5 (26-53)
Overall duration, hours 22 (19-24) 24 (22-25) 24
Time <50 mg/dL, % 0 (0-1.6) 0 (0-14) 0 (0-1.3)
Time <70 mg/dL, % 2 (0-6.4) 1.7 (0-20) 0 (0-5.9)
Time 70-80 mg/dL, % 2.5 (0.76-6.8) 1.7 (0-13) 0 (0-3.9)
Time 80-140 mg/dL, % 46 (15-65) 26 (15-41) 44 (29-53)
Time 140-180 mg/dL, % 22 (4.5-39) 19 (6.8-25) 18 (9.3-26)
Time 180-250 mg/dL, % 18 (4.2-41) 24 (7.1-45) 26 (14-40)
Time >250 mg/dL, % 7.6 (0-20) 25 (4.6-53) 9.5 (0-36)
Total insulin delivered, U 22.3 (14.6-53.8) 37.2 (14.7-56.2) 35.8 (29.3-50.8)
Size of meal 1, g CHO 50 (50-51) 70 (70-70) 50 (50-50)
Baseline glucose at meal 1, mg/dL 112 (63-204) 108 (58-244) 117 (98-139)
Time of meal 1a 19:25 ± 00:30 18:54 ± 00:08  7:00
Peak glucose after meal 1, mg/dL 218 (128-266) 286 (217-366) 229 (178-286)
Time of peak glucose after meal 1, minb 100 (60-115) 113 (70-120) 113 (77-120)
Size of meal 2, g CHO 40 (38-40) 40 (40-40) 75 (75-75)
Baseline glucose at meal 2, mg/dL 111 (79-160) 126 (67-185) 116 (91-138)
Time of meal 2a 06:58 ± 00:08 07:52 ± 00:07 13:00
Peak glucose after meal 2, mg/dL 285 (176-378) 269 (164-387) 250 (219-423)
Time of peak glucose after meal 2, minb 91 (65-115) 90 (75-115) 107 (73-120)
Size of meal 3, g CHO — 70 (70-70) 100 (100-100)
Baseline glucose at meal 3, mg/dL — 150 (39-226) 97 (70-141)
Time of meal 3a — 12:52 ± 00:07 19:00
Peak glucose after meal 3, mg/dL — 291 (83-401) 310 (233-509)
Time of peak glucose after meal 3, minb — 115 (60-120) 111 (86-120)

Zone-MPC with unannounced meals was used during each trial and simulation. Values after the number of males are presented as median (range) except 
where indicated. All ranges are calculated with CGM data.
amean ± standard deviation.
bCalculated as peak within 2 hours of the start of the meals.
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inferential control, by detecting the meal disturbance, calcu-
lating an insulin bolus to reject the disturbance, and feeding 
this information to the zone-MPC controller. The LGP mod-
ule of the HMS was also active, with a prediction threshold 
of 65 mg/dL and an activation threshold of 100 mg/
dL.22,23,36,37 A 24-hour scenario with 3 meals of 50, 75, and 
100 g CHO was performed, as above in the In Silico Trial 
Testing section. Control protocols are shown in Table 3.

Results and Discussion

Training and Validation

Based on the training data, the best set of tuning parameters 
for the GRID was the following: τF  = 6 min, Gmin  = 130 
mg/dL, Gmin,

’
3  = 1.5 mg/dL/min, and Gmin,

’
2  = 1.6 mg/dL/

min. This combination of parameters resulted in a mean time 
to detection of 42 minutes from the start of the meal, 87.5% 
of meals detected within 2 hours, and 1.6 false positive 
detections per day. Due to the large number of snacks and 
hypoglycemia rescues, adjusted values for meals detected 
and false positive alarms were calculated, resulting in 65% 
of all carbohydrate ingestions being detected and only 0.58 
false positive detections per day. For KF, the best set of tun-
ing parameters was a 2-state estimate with Q R:  = 0.1, 
Gmin  = 140 mg/dL, Gmin,

’
3  = 1.75 mg/dL/min, and Gmin,

’
2  = 1.85 

mg/dL/min. The mean time to detection was 45 minutes 
from the start of the meal, 79.2% of meals were detected 
within 2 hours, and 1.5 false positive detections occurred per 
day. The adjusted calculation resulted in 57% of all carbohy-
drate ingestions being detected and only 0.58 false positive 
detections per day. Both algorithms were compared to the 

insulin response by the controller, quantified as the time 
from the start of the meal to the time when the average deliv-
ery over 15 minutes was more than 50% above the basal rate. 
The insulin response was compared because, depending on 
the glucose values and trend at meal time, and the subject’s 
sensitivity to CHO and insulin, some meals did not result in 
a pronounced excursion. In these cases, a positive meal 
detection alert is not expected or necessary. In both valida-
tion and simulation, both algorithms performed with higher 
detection rates and lower false positive rates than in the train-
ing set. In simulation, detection was faster for the GRID. 
Results of GRID and KF on the training, validation, and 
simulation data are shown in Figure 3, with paired t test 
results comparing GRID to KF shown above the boxes with 
asterisks or circled asterisks when statistically significant.

Cost–Benefit Analysis

The cost of faster sampling can be seen in the form of 
expensive sensors and increased energy consumption by 
the sensors, receivers, and controllers, which could lead to 
shorter life and increased monetary cost. As the glucose 
sampling period increases, it is expected that detection of 
meals will deteriorate, so a faster sampling period could 
improve the performance of a controller with inferential 
control using meal detection. The cost–benefit analysis of 
this system was performed by testing sampling times of 1 to 
30 minutes, as seen in Figure 4. For meals above 50 g CHO, 
a 5-minute increase in time to detection and a 15 mg/dL 
increase in glucose at detection resulted when increasing 
from 1- to 5-minute sampling, while all meals were still 
detected. Metrics for smaller meals were more impacted, 

Table 2. Standard Care Alert Simulation Protocols.

Protocol Announced meal GRID mode GRID protocol Recent History Correction active Bolus size (%)

A Yes Off — — 100
B No Off — — 0
C No User-Input Partial No 50
D No User-Input Partial Yes 50
E No User-Input Full No 100
F No User-Input Full Yes 100

Table 3. Zone-MPC With Inferential Control Simulation Protocols.

Protocol Announced meal GRID mode GRID protocol Recent History Correction active Bolus size (%)

A Yes Off — — 100
B No Off — — 0
C No User-Input Partial Yes 50
D No User-Input Full Yes 100
E No Automatic 75 g CHO meal bolus Yes 100
F No Automatic Correction to 80 mg/dL Yes 100
G No Automatic Minimum of E and F Yes 100
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Figure 3. Results for the GRID (red) and KF (blue), compared with the zone-MPC insulin response (green). (A) Training set from a 
12-subject clinical trial using zone-MPC with 2 unannounced meals (50 and 40 g CHO); (B) validation set from a 10-subject clinical trial using 
zone-MPC, with 3 unannounced meals (70, 40, and 70 g CHO); and (C) simulation set from a 10-subject scenario, with 3 unannounced meals 
(50, 75, and 100 g CHO). (1) Time of detection; (2) rise in glucose at detection; (3) the percentage of meals that were detected within 2 
hours; (4) rate of false positive detections. The metrics with statistically significantly different results from the GRID algorithm (paired t test, 
P < .05 and P < .01) are shown above the boxes with asterisks and circled asterisks, respectively. Means are shown as crosses and totals in x’s.

due to a less pronounced glucose excursion. Small meals 
can generally be dealt with without the use of additional 
insulin from meal detection. This result indicates that a 
sampling period of 5 minutes is sufficient for meal detec-
tion of medium to large meals but, if reliable 1-minute sam-
pling were readily and cheaply available, meal detection 
could be improved.

Prospective Application

Standard Care Alert. The GRID yielded positive meal 
detections approximately 40-45 minutes from the start of 
meals, and reduced both the meal peaks and the duration of 
hyperglycemia, when compared to unannounced meals, as 
shown in Figure 5 for a 75 g CHO meal. The result of the 
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delay in the bolus during GRID-active protocols is shown 
in Figure 5 by the presence of red and yellow cells in the 
heat plots, but is a large improvement over the missed meal 
protocol (B).

The time in range results of single meals of 50, 75, or 100 
g CHO with open-loop therapy are shown in Figure 6, with 
paired t test results comparing the unannounced protocol (B) 
to the others shown above the boxes with asterisks or circled 
asterisks when statistically significant. In the case of open-
loop control, a full bolus with RHC is recommended at 

detection (E), with significantly better time in range and 
much less time in the hyperglycemia range than the unan-
nounced protocol (B).

Zone-MPC With Inferential Control. Detailed results of the 
zone-MPC protocols are shown in Figure 7, with time in 
range in Figure 8. The GRID yielded positive meal detec-
tions approximately 40-45 minutes from the start of the meal, 
and delivered a calculated bolus, as described above. For the 
Automatic Mode bolus protocol (E), the meal peak and time 

Figure 4. Results of a cost–benefit analysis of sampling period on meal detection metrics using in silico data. Meals of 25, 50, 75, or 
100 g CHO with no bolus are shown in red diamonds, orange squares, green circles, and blue triangles, respectively. Both Zone-MPC, 
shown in dotted lines with open symbols, or Standard Care (basal/bolus), shown with solid lines and filled symbols, control types were 
tested. The GRID was executed on the data with sampling periods varying from 1 to 30 minutes. (A) Mean rise in glucose from meal 
commencement to time of detection; (B) mean time from meal commencement to time of detection; and (C) percentage of meals 
detected within 2 hours from the start of the meal.
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Figure 5. Results of an in silico study of 10 adult subjects using the UVA/Padova simulator with a 75 g CHO meal at 4.5 hours. (A) 
Announced meals using standard basal-bolus therapy; (B) unannounced meals using standard basal-bolus therapy (bolus withheld); (C) 
unannounced meals using standard therapy and the GRID active in User-Input Mode, delivering a 50% bolus for the meal, 5 minutes after 
detection; (D) unannounced meals using standard therapy and the GRID active in User-Input Mode, delivering a 50% bolus for the meal 
plus RHC, 5 minutes after detection; (E) protocol C with a 100% bolus; and (F) protocol D with a 100% bolus. Announced boluses are 
shown in white crosses, and User-Input Mode delivery in white squares. Meals are shown in gray bars, and GRID positive alerts in black 
squares.

in the 80-180 range were significantly better than in the 
unannounced case (B). For all meals, the time in the 80-180 
range was improved over the unannounced protocol (B) by 
both the Automatic Mode bolus protocol (E), and User-Input 
Mode protocol (D). Although up to 5 hypoglycemia treat-
ments were given per HMS with LGP, 7 out of 10 subjects 
had no hypoglycemia (<70 mg/dL), and the number of treat-
ments and time under 70 mg/dL was not significantly higher 
for any of the protocols when compared to announced meals. 
In the case of closed-loop control, a full bolus for a 75 g 
CHO meal with RHC is recommended at detection (E), with 

significantly better time in range and much less time in the 
hyperglycemia range than the unannounced protocol (B). 
Detailed results are shown in Table 4.

Conclusions

The GRID module of the HMS was designed to accurately 
and quickly identify meal glucose excursions and logically 
recommend an insulin bolus to reject the meal disturbance. 
The algorithm was tuned using noisy clinical trial data 
with unannounced meals and several snacks, and the same 
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controller used in the simulations. It should be noted that, 
while tuning for speed of detection was the first priority, 
any algorithms that produced more than 2.0 false positive 
detections per day were excluded. Even with those algo-
rithms included, the fastest detection time would have 
been 35 minutes for KF or GRID. Thus, with controlled 
data and medium-sized meals, a 30-plus-minute delay for 
meal detection based on CGM data is the limit of detection 
speed.

The GRID is designed as a parallel module to the control-
ler that focuses on meal detection, to trigger a rejection of the 
meal disturbance. This approach provides a more bolus-like 
meal response by the controller, and the IOB constraint 
keeps overdelivery from occurring, essentially front-loading 
the insulin for the meal response without need for outside 
input. With the knowledge that the meal detection is delayed 
by at least 30 minutes, the disturbance rejection action was 
logically modified by the RHC function, which reduced the 

Figure 6. Time in range results of an 18-hour in silico study of 10 adult subjects using the UVA/Padova simulator with, from top to 
bottom, 50 g (1), 75 g (2), or 100 g (3) CHO meal at 4.5 hours. Scenarios A-F correspond to A-F in Figure 5 and Table 2 in red, dark 
red, light blue, blue, light green, and green, respectively (from left to right in each grouping). Means are shown in black crosses, and 
medians in orange dots. Protocols that have statistically significantly different results from the unannounced (B) protocol (paired t test, 
P < .05 and P < .01) are shown above the boxes with asterisks and circled asterisks, respectively.
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Figure 7. Results of a 24-hour in silico study of 10 adult subjects using the UVA/Padova simulator with 50, 75, and 100 g CHO meals 
at 7:00, 13:00, and 19:00, respectively, all using zone-MPC and unannounced meals with active GRID with RHC in C-G. (A) Announced 
meals using Zone-MPC; (B) unannounced meals; (C) User-Input mode, delivering a 50% bolus for the most recent meal plus, 5 minutes 
after detection; (D) protocol C with a 100% bolus; (E) Automatic Mode, immediately delivering a bolus for a 75 g CHO; (F) Automatic 
Mode, immediately delivering a bolus to correct the current level to 80 mg/dL; and (G) minimum of methods used in (E) and (F). 
Announced boluses are shown in white crosses, Automatic Mode delivery in magenta squares, and User-Input Mode delivery in white 
squares. Meals are shown in gray and black bars, LGP-alarm rescue carbohydrates in white diamonds, and GRID positive alerts in black 
squares.

recommended bolus by recent delivery and adjusted for 
recent glucose history.

During closed-loop control, the GRID was able to improve 
control in the presence of large meals, without increasing the 
instances of hypoglycemia or increasing the time in the 
hypoglycemia range (<70 mg/dL), as seen in Figure 7, Figure 8, 
and Table 4. In addition, fast recognition of missed meal 

boluses in open-loop mode, for users on standard therapy can 
greatly improve the time in range and serve as a safety alert 
for users of the currently available devices.

A robustness study of the GRID with more complex 
meal scenarios and insulin and meal inaccuracies will be 
performed in the future to evaluate the GRID system fur-
ther, but is outside of the scope of the current article. In 
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Table 4. Characteristics of an In Silico Study of 10 Adult Subjects Using the UVa/Padova Simulator.

A B C D E F G

Time <50 mg/dL, % 0 (0-0) 0 (0-1.3) 0 (0-0) 0 (0-4.5) 0 (0-1.5) 0 (0-2.6) 0 (0-2.8)
Time 50-70 mg/dL, % 0 (0-0) 0 (0-4.6) 0 (0-3.8) 0 (0-3.5) 0 (0-4.7) 0 (0-5.6) 0 (0-5.7)
Time 70-80 mg/dL, % 0 (0-2.0) 0 (0-3.9) 0 (0-3.2) 0 (0-4.9) 0 (0-4.9) 0 (0-3.9) 0 (0-4.0)
Time 80-180 mg/dL, % 89 (72-96) ⊛ 57 (44-78) 63 (53-81) 73 (48-85) ⊛ 74 (54-85) ⊛ 66 (46-82) 66 (51-82)
Time >180 mg/dL, % 9.9 (3.6-28) ⊛ 39 (22-51) 34 (19-42) 25 (15-39) ⊛ 25 (15-35) ⊛ 31 (18-42) * 31 (18-40)
Time >250 mg/dL, % 0 (0-0) ⊛ 9.5 (0-36) 7.8 (0-30) 3.6 (0-17) 4.7 (0-13) 6.7 (0-20) 6.7 (0-18)
Total insulin delivered, U 40 (31-64) 36 (29-51) 37 (30-54) 38 (30-60) 38 (31-61) 37 (30-54) 37 (30-54)
Hypoglycemia treatments, g CHO 0 (0-16) 0 (0-80) 0 (0-32) 0 (0-64) 0 (0-64) 0 (0-80) 0 (0-64)
Size of meal 1, g CHO  50  50  50  50  50  50  50
Baseline glucose at meal 1, mg/dL 117 (98-139) 117 (98-139) 117 (98-139) 117 (98-139) 117 (98-139) 117 (98-139) 117 (98-139)
Time of meal 1 7:00 7:00 7:00 7:00 7:00 7:00 7:00
Peak glucose after meal 1, mg/dL 183 (148-197) ⊛ 229 (178-286) 224 (178-283) 221 (178-259) 212 (178-238) * 222 (178-258) 222 (178-258)
Time of peak glucose from start of meal 1, min 81.5 (53-116) 113 (77-120) 108 (77-120) 104 (76-119) 89.5 (75-119) 106 (77-120) 106 (77-120)
Time 80-180 mg/dL from start of meal 1 to 

meal 2 %
93 (75-100) ⊛ 58 (36-85) 62 (44-85) 73 (52-85) * 80 (56-90) ⊛ 68 (51-85) 68 (51-85)

Glucose at detection for meal 1, mg/dL 158 (147-173) 159 (147-169) 159 (147-169) 159 (147-169) 159 (147-169) 159 (147-169) 159 (147-169)
Time of detection from start of meal 1, min 48 (45-55) 43 (40-45) 43 (40-45) 43 (40-45) 43 (40-45) 43 (40-45) 43 (40-45)
Equivalent meal size for bolus, g CHO  50 — 11 (6.6-17) 36 (32-42) 63 (60-69) 22 (15-29) 22 (15-29)
Size of meal 2, g CHO  75  75  75  75  75  75  75
Baseline glucose at meal 2, mg/dL 108 (95-123) 116 (91-138) 114 (91-139) 105 (87-125) 94 (78-123) 109 (91-124) 109 (91-124)
Time of meal 2 13:00 13:00 13:00 13:00 13:00 13:00 13:00
Peak glucose after meal 2, mg/dL 189 (161-222) ⊛ 250 (219-423) 247 (216-421) 235 (204-344) 232 (197-330) 242 (212-361) 242 (212-361)
Time of peak glucose from start of meal 2, min 78.5 (58-120) 107 (73-120) 107 (72-119) 99.5 (69-115) 97 (67-118) 104 (71-120) 104 (71-120)
Time 80-180 mg/dL from start of meal 2 to 

meal 3 %
89 (67-100) ⊛ 42 (33-64) 53 (39-71) 64 (39-82) ⊛ 63 (40-83) ⊛ 52 (37-74) 52 (37-74)

Glucose at detection for meal 2, mg/dL 149 (144-156) 156 (152-198) 153 (148-199) 159 (147-188) 157 (149-185) 156 (147-167) 156 (147-167)
Time of detection from start of meal 2, min 40 (30-50) 40 (30-55) 40 (30-55) 43 (30-55) 45 (30-55) 43 (30-55) 43 (30-55)
Equivalent meal size for bolus, g CHO  75 — 21 (3.3-31) 57 (48-66) 58 (56-62) 22 (15-31) 22 (15-31)
Size of meal 3, g CHO 100 100 100 100 100 100 100
Baseline glucose at meal 3, mg/dL 96.5 (86-137) 97 (70-141) 92.5 (68-132) 92 (84-199) 93 (83-190) 99 (84-188) 99 (84-188)
Time of meal 3 19:00 19:00 19:00 19:00 19:00 19:00 19:00
Peak glucose after meal 3, mg/dL 215 (186-241) ⊛ 310 (233-509) 294 (223-479) 276 (223-397) 279 (222-324) 299 (225-383) 299 (225-383)
Time of peak glucose from start of meal 3, min 75 (51-98) 111 (86-120) 101 (78-118) 85.5 (64-102) 87.5 (65-115) 103 (83-120) 103 (83-120)
Time 80-180 mg/dL from start of meal 3 to end, % 83 (60-96) ⊛ 52 (19-71) 63 (44-75) 71 (25-82) * 66 (39-79) * 59 (23-76) 59 (36-76)
Glucose at detection for meal 3, mg/dL 153 (144-163) 172 (145-244) 158 (150-209) 165 (146-319) 165 (147-273) 159 (154-351) 159 (154-351)
Time of detection from start of meal 3, min 40 (25-50) 40 (25-90) 37 (25-45) 40 (25-50) 40 (25-50) 37 (25-60) 37 (25-60)
Equivalent meal size for bolus, g CHO 100 — 31 (18-42) 80 (64-89) 58 (45-79) 24 (15-57) 24 (15-56)

Scenarios are A-G as described in Table 3. Values are presented as median (range). Metrics that are statistically significantly different results from the unannounced (B) protocol 
(paired t test, P < .05 and P < .01) are shown after the values with asterisks and circled asterisks, respectively.

Figure 8. Time in range results of a 24-hour in silico study of 10 adult subjects using the UVA/Padova simulator with 50, 75, and 100 g 
CHO meals at 7:00, 13:00, and 19:00, respectively. Scenarios A-G correspond to A-G in Figure 7 and Table 3 in red, dark red, light blue, 
blue, light green, green, and dark green, respectively (from left to right in each grouping). Means are shown in black crosses, and medians 
in orange dots. Protocols that have statistically significantly different results from the unannounced (B) protocol (paired t test, P < .05 
and P < .01) are shown above the boxes with asterisks and circled asterisks, respectively.
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addition, the HMS will be designed and evaluated using 
behavioral outcome measures to improve the system and 
ensure that the users trust and have improved lives due to 
the use of the HMS.
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