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K -NEUTRON ELASTIC SCATTERJNG FROM K d ~ K -.d 

·· AND K-d ~ K-pn at 1 BeV / c 

Nathan Nay Shew Je1v 

Lawrence Radiation Laboratory 
· University of California 

Berkeley, California 

October 1959 

ABSTRACT 

We present experimental angular distributions for K-d ~K-d and 

K-d ~K-pn at incident K momenta of 810, 910, 1010, and 1110 MeV/c. 

These distributions are analyzed simultaneously in terms of free 

nucleon scattering parameters, using Glauber's impact parameter 

formalism as starting point. This formalism was modified to make it 

applicable to our data, which contained a proton momentum cut made 

during scanning. In addition, we incorporated into our analysis two 

other modifications to this formalism. One of these arose from the 

difference in flux factors between K-d and K--nucleon scattering, the 

other from the smearing of the nucleon cross-sections due to Fermi 

momentum. Finally, this formalism was extended to include spin 

dependence. The method of analysis required both the K-p and K-n 

elastic scattering amplitudes. We input the K-p amplitudes from two 

models based on experiment. These were held fixed during the fitting. 

We then parametrized the K-n amplitudes and fitted our data by varying 

the K-n parameters to get a minimum for the fitting x2 . The a~alysis 

included both the single and double scattering effects. 
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I. INTRODUCTION 

We present here a bubble chamber study of K--deuteron scattering at 

four K momenta: 810, 910, 1010, and 1110 MeV/c. We study both the 

elastic scattering reaction and the reaction in which the K breaks up 

the deuteron into a neutron and a proton. Out of the 219 000 pictures 

scanned, we obtained 44 000 2-prong events. After applying selection 

criteria to these, we have a total of 7800 elastic scattering events and 

24 000 break-up events. These numbers are for the four incident momenta 

combined. 

We analyze our data samples simultaneously in terms of free nucleon 

scattering parameters, using Glauber's impact parameter formalism to do 

this. We need to modify this formalism to make it applicable to our 

data, which contain a proton momentum cut made during scanning. This 

cut affects the break-up reaction cross-section 'data. The modification 

to the break-up cross-section formula is obtained via a diagrammatic 

method. We find two other modifications which we incorporate into our 

~itting procedure. One of these arises from the difference in flux 

factors between K-d and K--nucleon scattering. The other arises from 

Fermi momentum smearing of the nucleon cross-sections. Finally, we extend 

this formalism to include spin dependence. 

Our analysis require both the K-p and K-n elastic scattering 

amplitudes. We input the K-p amplitudes from two models based on 

experiment. These are held fixed during fitting. We then parametrize 

the K-n amplitudes and fit our data through a variation of the parameters 

in the K-n amplitude to minimize the fitting x2 . Our analysis also 

includes double scattering effects. 

The contents of the main sections of this report consist of the 
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following. In Section II, we give the relevant details of the 

experimental procedure. In Section III, we present the impact parameter 

formalism for K-d scattering, followed by modifications which are needed 

in order to apply this formalism to our data. We conclude this section 

with an extension of this formalism to include spin. In Section IV, we 

discuss the details of the procedure of analyzing our data. This 

includes the choice of a deuteron form factor, details of the K-p elastic 

scattering models, the parametrization of the K-n elastic scattering 

amplitudes, and the various steps of the fitting procedure. This 

section ends with a discussion of the results obtained in our analysis. 
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II. EXPERIMENTAL DETAILS 

A. Collecting and Processing of Data 

1. The K Beam 

This experiment was done with a two-stage separated K beam, using 

the Lawrence Radiation Laboratory 25-inch bubble chamber as detector. 

The beam was designed to operate in the momentum range 800 to 1200 MeV/c. 

The K particles were produced from a copper target in the Bevatron 

0 external proton beam and were extracted at 0 . They were separated from 

the other particles by two stages of separation. The layout of the beam 

is shown in Fig. l, and is described in Ref. 1. From a delta-ray 

count, the beam in the bubble chamber was found to contain between 90 and 

95% K- (depending on momentum). About 85% of the contamination was muons, 

the rest being pions. (See Section II-B.) 

2. Scanning and Measuring 

A total of 219,000 pictures were taken at incident K- momenta of 

810 MeV/c (23,000 pictures) 910 MeV/c (76,000 pictures), 1010 MeV/c 

(54,000 pictures), and 1110 MeV/c (66,000 pictures). We scanned for 

2-prong events which had a positive track of projected length ~ lmm. 

About 1/2 the film (So%, 33%, 72%, 49% for the four incident momenta, 

respectively) was scanned with just this cut. The remaining half was 

scanned with the additional restriction that the positive track be of 

projected length ~ 9 em and hence must stop within the bubble chamber. 

The fiducial volume was such that apart from very steep tracks, the 

origins were more than 9 em (projected on the scan table) from the 

chamber boundaries. The number of events found in the portion of the 

film scanned with no upper limit on the positive track length was 

about 2.3 times that of the other half. The lower cut was imposed to 
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avoid picking up counterfeit events, the short prong of which being 

really a low energy delta-ray. In the case of K--deuter6n elastic 

scattering, this cut limits our angular distributions to regions away 

from the forward direction (-t ~ 0.02 (BeV/c)
2

). It presents no 

difficulties in our analysis of the elastic scattering data. However, 

in the case of the reaction in which the deuteron is broken up into a 

free proton and a free neutron, corrections must be put in to account 

for this cut. This point requires a modification of the theoretical 

formula we will use in our analysis. We discuss this in detail in 

Section III-B. 

Due to the large number of events in the film containing a sigma and 

one other prong, and also due to the difficulty of measuring the momenta 

of short tracks from curvature, we rejected all events which had a 

scatter or kink occurring within the beginning 4 em (projected) of the 

out-going tracks. From the known pd, dd, and K-d total cross-sections, 

we estimate that this criterion rejected 4 ± 2% of the genuine events in 

the break-up reaction and 3 ± 2% in the K-d elastic reaction. 

Any event with a V pointing at the origin of the 2-prong interaction 

was rejected at the time of scanning. In cases of ambiguous origins, 

the event was accepted for measuring and fitting. 

All the scanned film was used to obtain the K-d elastic scattering 

cross-sections. The half of the film scanned with no upper limit 

imposed on the length of the positive track was used to obtain distribu-

tions for the break-up reaction. We also used this portion of film to 

check whether the upper limit on the length of the positive track made 

any difference in the K-d elastic scattering angular distribution. The 

results showed that within our statistics the cut did not affect the 

distrubutions. Consequently, we used all the scanned film to get the 
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K-d elastic scattering cross-sections without having to introduce a 

correction for this cut. 

The scanning yielded a total of 44,000 2-prong events. These were 

then measured on the Franckenstein measuring system. About half of these 

events were measured before these measuring machines went under automatic 

computer control. The remaining half was measured with these machines 

2 under computer control provided by the COBWEB system. The momenta of 

all stopping tracks were obtained from range measurements. Events that 

failed at either the measuring stage or the spatial re-construction stage 

were remeasured. We estimate that less than 1% of the scanned events 

were missing after the remeasurements. 

3. Event Processing 

The measured events were processed through the FOG-CLOUDY-FAIR 

system of geometry re-construction, kinematic fitting, and data selection 

computer programs.3 

In the fitting procedure, we subjected each event to the following 

hypotheses: 

-7 rc pA (A not seen) 

The first of these is a 4-constraint fit (4-c), the second and third 

are 1-C fits. For each of these hypotheses, CLOUDY calculated a good

* ness-of-fit parameter M , which is defined as 

* M = 
n 
I: 

i=l 
[ xi"~-. x~J

2 

4 u - I: 1\n Fn(x.) 
p, =l XJ XJ J 

lvhere xi are the parameters to be varied in the fitting procedure, 

• 

f 
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m x. the actual measured values corresponding to x., ~- the errors for 
l l l 

m 
xi' /\.£ are Lagrangian multipliers, and F.£ the energy-momentum conserva-

* tion constraints. In the case in which ~/\£F.£ is 0, M is the usual 

definition of a 2 
X. . This would be the case whenever the energy and 

momentum balance was satisfied to within the pre-set limits of 0.1 MeV 

and 0.1 MeV/ c, respectively. 

After processing the events through CLOUDY, various physical 

quantities of interest were abstracted and additional ones calculated in 

FAIR. This system of computer programs outputs the data in the convenient 

forms of histograms, scatter plots, lists, or tapes. 

In addition to constraining the events to the three hypotheses 

mentioned above, we also constrained them to the following two hypotheses: 

~" pn 

This was done in an effort to estimate what fraction of the small pion 

contamination of the beam (see Section II-B) fitt~d the K-d hypotheses. 

B. Beam Flux Normalization 

l. Beam Count 

We used the track-counting method to obtain the normalization for 

the beam flux. The tracks of incoming particles were counted every fifty 

frames in each roll of film. The criteria by which we judged beam 

tracks were obtained from previously measured and constrained events of 

the type 

- -
K d ~ 1r A (p) 

in which the A decay was seen. Using plots of these constrained events, 



-8-

we determined the beam momentum bite and its azimuthal angular spread at 

the bubble chamber entrance window. Together with an exact knowledge of 

the position of the entrance window, this information enabled us to 

construct a beam track template for each incident momentum. Also 

included on the template was the start of the fiducial volume limits by 

which we accepted events. A track was counted as a beam track if it 

entered through the entrance window, was within the azimuthal angular 

acceptance at the entrance window, and reached the start of the fiducial 

volume without scattering or decaying. Bending of the beam particle 

tracks by the bubble chamber magnetic field was taken into account. 

On the average 35 frames per roll were counted. The average 

number of beam tracks per frame was calculated. From this number we 

determined the total path length of the K- tracks used in this experiment. 

2. Beam Contamination 

A number of corrections were made to the number of counted beam 

tracks obtained via the procedure described above. One was beam contamina-

tion from other particles. This contamination came from negative pions 

and muons. To determine the extent of this contamination, a delta-ray 

count was performed on the film taken in a companion hydrogen run which 

used the same beam conditions and at the same momenta as in this 

. t 4 
exper~men . Because of kinematics, an incident particle can produce 

delta-rays only up to a certain maximum momentum. Thismomentum is 

determined by the maximum kinetic energy Tmax transferrable to the 

electron. In terms of the mass m of the incident particle and .its 

momentum p, T is given by the formula5 max 

T max 2m 
e 

2 
(p/m) 

(/ 
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where m is the mass of the electron. In this delta-ray count, we 
e 

recorded the number of delta-rays of momentum greater than the maximum 

that can be produced by a K at the given incident momentum. The number 

of tracks which interacted after producing such a delta-ray was also 

noted. As the muons do not interact strongly, these tracks can be 

assumed to be pions. From the number counted, we estimated that about 

85% of the contamination came from negative muons, the remainder from 

negative pions. The results for the percentage of combined c_ontamination 

at each momentum are shown in Table I. We have checked these results 

by doing a separate delta-ray count on 10% of the deuterium film used 

in this experiment. The results obtained agreed with the results of 

the delta-ray count on the hydrogen film. 

3. Beam Attenuation 

A second correction made on the beam count comes from the 

attenuation of the beam as it traverses the liquid in the bubble chamber. 

The main contribution to this attenuation comes fr,om K--deuteron scatter-

ing. The total cross-sections for K incident on deuterons have been 

accurately measured in counter experiments.6 Within the momentum 

interval covered by our experiment, these total cross-sections range 

from 65mb to 85mb. (See Fig. 2.) The number of interactions in the 

K-beam was thus expected to be large, thus appreciably depleting the 

number of beam tracks going through the entire bubble chamber. We 

corrected for this attenuation by using the measured values of the 

total cross-sections. From the values given in Ref. 6, we calculated 

the mean free path, using the formula 
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Table r. Normalization and correction factors. 

Beam Momentum (Mev/c) 810 910 1010 1110 
'I 
~ 

No. of Incident K-: 

in K-d (x 105) 1.55 6.76 5.04 6.42 
in K-pn (x 105) 1.10 2.21 3.63 3.20 

1( -!1 Contamination (%) 4.9 6.0 5.3 9.1 

Fid. Vol. Length (em) 28.8 28.6 28.5 28.7 
(corrected for beam 
attenuation) 

K-d x2 Correction Factor 1.12 1.17 1.18 1.13 

Scan Efficiency (%) 
for K-d 97 ·9 96.8 97.3 96.5 
for K-pn 91.7 92.8 92.4 89.6 
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Fig. 2. K-d and K-p total cross-sections. The data points are 
from,Ref. 6. The smooth curves are interpolations of 
the data points. 
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is the total cross-section, n the number of scatterers per 

In our case, the density of deuterium was 0.1352 gm/cm3.7 

with Avogadro's number, this gives 

1 = 2.456 x 104 
cm-mb 

n 

The average length a track goes before undergoing one interaction 

given by 

( -.£/"A L = )\ 1-e ) 
' 

where .£ is the length of the interaction fiducial volume. In this 

unit 

is 

experiment, the length of beam track within this volume was 30 em. The 

track lengths corrected for beam attenuation at each incident momentum 

are shown in Table I. The corrections range from 4.1% in the case of. 

810 MeV/c events to a high of 5.8% for the 1q10 MeV/c events, at which 

momentum the total cross-section is near the highest value for K d 

scattering. 

C. Selection.of Events 

1. x. 2 
Selection 

Of the 44,000 two-prong events that came through the system of 

fitting programs, the break down into the number of events fitting the 

three interactions hypothese 

(Hl) 

~ K-pn (H2) 

~ K pi\ (H3) 

are displayed in Venn diagrams in Fig. 3~ The criteria we used for these 

selections had been the x.2 for each fit. In particular, we had used the 
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810 MeV/c 910 MeV/c 

1010. MeV/c 1110 MeV/c 

Fig. J. Break-down of the number of events fitting the 
different hypotheses. 
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following: 

2 (K-d) :s_ 10 4c X 

2 (K-pn) < 4 lC X 

2 (rc-pA) < 4 lC X ' 

These cut-off values for the x2 are the limits within which approximately 

95% of the area under the theoretical x2 distributions are included. 

As can be seen from the diagrams in Fig. 3, a majority of the 

events (~86% for the four momenta together) fitting the elastic 

scattering hypothesis also fit the K-pn hypothesis. This is not an 

unexpected result, since the deuteron can simulate the break-up reaction, 

with the neutron and the proton seen as going off in the same direction. 

When a deuteron is mistaken for a proton, or vice versa, range measurements 

give values for the momentum of the track which differ from the actual 

momentum by 60 to 100 MeV/c. But a one-constraint fitting hYPothesis 

would not be able to distinguish this difference in the majority of 

2 cases. This is reflected in good x values for both hypotheses. The 

ionization is not of help in the identification either. Both the proton 

and the deuteron appear as solid, dark tracks in the range of momentum 

values with which they emerge from the interaction with the incident 

K particle. Ho1•ever, the elastic scattering reaction is a 4-constraint 

fitting hypothesis, whereas the break-up reaction has only one 

constraint. To get~ a sample of elastic events, we made the assumption 

that all the events fitting the elastic reaction are good K-d elastic 

scattering events. In order to include as few break-up events as 

possible in this sample, we made use of an additional handle. As noted 

above, the deuteron can simulate the break-up reaction, but only with the 

proton and neutron seen going off in nearly the same direction. This 

:.-; 

~' 
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means that the angle between the proton and. the neutron, when the events 

are put through the break-up hypothesis, should be around 0° for genuine 

elastic scattering events. The real break-up events should have a uniform 

distribution in this angle, since in this case the neutron and the proton 

are not strongly correlated. In Fig. 4, we have plotted the distribution 

of events as a function of the cosine of the angle between the proton and 

the neutron for the K d.elastic scattering events obtained with just the 

x2 cut applied to all the events that came through the system. We note 

that almost all the events (~84%) fall within the interval between 0.9, 

and 1.0. As our final sample of K-d elastic scattering events we took 

only the events in the interval between 0.5 and 1.0. These were subsequently 

corrected for biases and losses (to be considered below). The resulting 

angular distributions were then used in our analysis. 

As our sample of break-up events, we took all the events that 

satisfied hypothesis H2 (as determined by the x2 ) and subtracted out 

those that also fitted the K-d elastic scattering criteria described 

above. In Fig. 5, we have plotted the histograms of the cosine of the 

angle between the proton and the neutron for these ev~nts. The excess 

of events in the forward boxes represents K-d elastic scattering events 

which have a x2 > 10 for hypothesis Hl. 2 These large X events occur at 

small momentum transfers in the break-up distributions. We removed this 

contamination by using only the part of the break-up distribution above 

-t = O.o6 (BeV/c)2 in our analysis. Since our analysis takes into account 

break-up events regardless of the length of the proton track, we have 

included in our sampl~ of K-d ~ K-pn events only those from film scanned 

with no upper limit on the length of the outgoing proton track. 
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2. Lambda Contamination 

From the diagrams in Fig. 3, we see that a large number (~4o%) of 

the K-d elastic scattering events fit also the n-pA hypothesis H3. To 

determine what fraction of this number represents actual n-pA events, we 

examine Fig. 6. This is a missing-mass histogram resulting from having 

all the events that satisfied hypothesis Hl put through the fit for hypothesis 

H3. We see that for each momentum the mass peak is below the lambda rest 

mass. This is consistent with mis-identifying the K-d elastic scattering 

events as n pA events. From the absence of a bump near the lambda rest 

mass, we estimate that the lambda contamination was negligible (less than 

1%) in our sample of K-d elastic scattering events. 

In the case of the break-up reaction, we can estimate the contamination 

from the n-pA events in another way. It was found in Ref. 8 that there 

should be 1350 n-pA events and 480 n-p~0 events in the 1.11 BeV/c film 

which had a spectator proton track between 1.5 mm and 6 em in length. 

The two numbers include both the visible and invisible decay modes of 

the lambda. They also include corrections to bring their cross-sections 

into agreement with other experiments considered in Ref. 8. From a separate 

scan, we also found that there were 590 events fitting n-pA and 530 

fitting n-p~0 , with the spectator proton track longer than 6 em. Combining 

these numbers gives 2950 events with a lambda in the final state. Only 

1/3 of these lambdas (~980) decay via the invisible mode nn°. Since we 

used only 1/2 the film at 1.11 BeV/c for the break-up reaction, we have 

included only 1/2 this number of lambdas ( ~490) in our sample. From the 

fit of our sample to hypothesis H3, we have 526 events that fitted only 

this hypothesis. Thus we see that the n pA events are separated out by 

2 
the x section. We conclude that the lambda contamination is also small 

in the break-up reaction (less than 2%) of the 1.11 BeV/c sample. We 

.. , 
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have not scanned for n-~ events with long spectator proton for the 

remaining three momenta. But from the number of events fitting only 

hypothesis H3 in these momenta, we estimate the A contamination to be 

about the same as in the 1.11 BeV/c sample. 

D. Correction of Biases and Losses 

1. Azimuthal Angle Scanning Bias 

In scanning for events for this experiment, we had imposed the 

criterion that each event must have a positive track longer than lmm. 

This cut was imposed for measuring purposes. Unfortunately, this 

introduced a bias against events with a short positive track pointing 

along the camera axis, which was up-and-down with respect to the bubble 

chamber. (The beam entered the chamber in a horizontal plane· at mid

chamber. The three cameras were positioned at the bottom, looking 

vertically up.) These events appeared fore-shortened on film. A dis

tribution of events as a function of the azimuthal angle of the positive 

track about the beam axis shows cl'early this scan bias. This is shown 

in Figs. 7 and 8. If there were no biases, these distributions would be 

uniform. The large number of events missing around 0° and 180°, 

corresponding to the up-down direction, indicates such a bias. This 

bias is against short tracks. It causes a depletion of events in the 

forward direction in the angular distributions, thus effectively 

flattening their slope. To avoid this bias, we have included in our 

distributions only those events with the positive track coming out of the 

interaction vertex within 45° of the horizontal plane. The only exception 

to this is the distribution for the break-up reaction at 0.81 BeV/c .. 

Since we do not have many events at this incident momentum and since 

the azimuthal angular distribution for the break-up reaction at this 



I' 

(f) 

\·-
1-
z 
w 
::> 
w 

LL 
0 

~ 
w 
CD 
:c 
:::> 
z 

(f) 

1-
z 
w 
::> 
w 

LL 
0 

~ 
w 
CD 
:c 
:::> 
z 

-21-

KO, 0.81 BEIJ/C KD• 0.91 BEIJ/C 

so. ----------~----. 150. 

125. 

40. 

(f) 

1- 100. 
z 
w 

30. ::> 
w 

u- 75. 
0 

~ 
w 

20. CD 
:c 
:::> 
z 

10. 

OL------------~·-----------~~ 0 90. 180. 270. 360. 
OL-------~--------------------~ 0 90. 180. 2?0. 3&0. 

PHI• DEGREES PHI• DEGREES 

KD, 1. 01 BEIJ/C KO, 1.1 BEIJ/C 

100.~-----

75. 75. 

(f) ... 
z 
w 
::> 
w 

so. LL 
0 

so. 

0! 
w 
CD 
I: 
:::> 
z 

2S. 

~L-----~9~0_------1~8~0·.-----~27~0~.-----~360'. ~L-----~9~0~.--~~1B~O-.------Z7~0~,----~3SO'. 

PHI• DEGREES PHI• DEGREES 

XBL 699-5653 

Fig. 7. Histograms of the azimuthal angle of the positive 
track about the beam axis forK-d--) K-d events. 



(f) 

.t-
z 
w 
:::> 
w 

lL. 
D 

~ 
w 
ill 
I: 
:::> 
z 

(f) 

t-
z 
w 
:::> 
w 

lL. 
D 

~ 
w 
co 
I: 
:::> 
z 

-22-

KPN,O.B1 BEIJ/C KPN,0.91 BEIJ/C 
100.,..--------~---------, 160. 

125. 

75. 

(f) 

t-
z 
w 
:::> 
w 

lL. 75. D 

~ 
w 
ill 
I: 
:::> so. 
z 

25. 

2S. 

~~---~9~0~.----1~8~0-.----~2~70~.---~3~60'. 0 
0 90. 180. 270. 3SO. 

PHI, DEGREES PHI, DEGREES 

KPN,1.01 BEIJ/C KPN, 1.1 BEIJ/C 
200.,-----------~----------. 200. 

(f) 

t-
z 
w 
:::> 
w 

100. lL. 
D 

~ 
w 
co 
I: 
:::> 
z 

. so. so . 

~~-----9~0~.-----1~8~0-.-----2~70~.----3~60. ~~---~9~0-.-----1~8~0.---~27~0~.----~3~60. 

PHI, DEGREES PHI, DEGREES 

XBL 699-5651 

Fig. 8. Histograms of the azimuthal angle of the positive track 
about the beam axis for K-d ~ K-pn. 

"' 

• 



'· 

-23-

momentum does not show a serious bias,·we have included all the events 

in this case for analysis. 

As an illustration of the change in the angular distribution arising 

from this scan bias, we show j_n Fig. 9 two histograms of the angular 

distribution for K-d elastic scattering at 1.11 BeV/c. Events in 

Fig. 9a have their positive track come out of the interaction vertex 

within 45° of the horizontal plane. Events in Fig. 9b have this track 

ff 'th 1 f than 45°. come o w1 an ang e o more 

2. x2 Distribution Correction 

The experimental x2 distributions for the K-d elastic scattering 

hypothesis at the four incident momenta are shown in Fig. 10. As is quite 

common, these experimental distributions have a large tail. One way to 

2 correct for this long tail effect is to accept events up to a x = 20 

as K-d elastic scattering events. We have decided to accept events up 

to a x2 = 10, which is normal for a x2 of 4 degrees of freedom. We 

account for the events in the tail by correcting the number of events 

thus obtained by the excess of events in the experimental tail over those 

in the theoretical tail (defined by the interval 10 ~ x
2 ~ 20). The 

correction factor at each incident momentum is shown in Table I. 

To consider the effect of this x2 cut on the break-up reaction 

events, we look at Fig. 5. This gives histograms of the cosine of 

the angle between the proton and the neutron in the break-up reaction. 

We see that there is an excess of events in the forward bins. These are 

2 K-d elastic scattering events with a x > 10. To eliminate these high 

x~-d elastic scattering events from our sample of break-up events, we 

exclude from our sample of the latter those events which have the cosine 

of the angle between the proton and the' neutron within the interval 

(0.9, 1.0). This cut removed some real break-up events. But these 
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events have predominantly small momentum transfers to the K-. We 

correct for this bias by using only the part of the momentum transfer 

distribution with -t > o.o6 (BeV/c)
2 

in our analysis. 

3. Scan Efficiency 

We rescanned portions of our film to check for scan biases. All 

of the film which were scanned the first time with an upper cut on the 

positive track length were rescanned completely. This portion of our 

film was used to obtain the sample of K-d elastic scattering events. 

Of the portion of film scanned with no upper cut on the positive track 

length, approximately 1/3 was rescanned. This portion was used to 

obtain the break-up reaction events. 

To estimate the scan efficiency for the elastic scattering reaction, 

we use the method described in Ref. 9 for the case of two scans. The 

over-all efficiency is given by 

E 
(~12 - l)(4 - ~12) 

~12 

where ~12 = ~ + ~ and Ai is the efficiency of scan i. The individual 
l 2 

efficiencies A. are estimated through the relations 
l 

= ' 

where Ni is the number of events found in scan i and N12 is the number 

of events found in both scans. The overall efficiency E for the elastic 

scattering reaction calculated with this method are given in Table I for 

each incident momentum. 

Since we did not rescan completely the film used for the break-up 

.. . 

I 
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reaction, we just used the rescan to estimate the efficiency of the first 

scan and correct our data according to this. The efficiencies for this 

reaction are also shown in Table I. 
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III. FORMALISM FORK--DEUTERON SCATTERING 

Having obtained the data in the form of angular distributions for 

the elastic scattering and the break-up reactions, we wish to analyze 

these distributions in detail in terms of a theoretical model of 

deuteron interactions. The particular model we have chosen is based 

10 on the impact parameter formalism as developed by R. J. Glauber. We 

present in Section III-A this formalism in some detail, neglecting, 

however, the complications due to spin. In Section III-B, we modify 

this formalism in order to make it applicable to our data, which 

contains a cut on the proton momentum. We conclude in Section III-C 

by extending the formalism to include spin effects. 

A. The Impact Parameter Formalism 

The impact parameter method of treatin~ high energy collisions of 

10 composite particles was developed by R. J. Glauber and more recently 

discussed by V., Franco and R. J. Glauber, 11 C. Wilkin, 12 and others. l3 

We first discuss in this section this formalism for the case of 

particle-nucleus scattering. After having done this, we then 

specialize the results to K--deuteron scattering. We consider both 

the K-d elastic scattering and the break-up reactions. 

1. Particle-Nucleus Scattering 

The basic idea of the impact parameter method stems from the close 

analogy between wave mechanics and classical optics. As is well known, 14 
.· 

the Schr5dinger equation (mass m=l/2, n=c=l) I 

has the same form as the wave equation of light propagation, with the 

index of refraction given by 
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The Glauber approximation corresponds to the eikonal method of solving 

the wave equation. (See Ref. 10). The solution is given by 

== exp [ -k..· r: 
~ 

z . 

- ~k J dz" V(z"
2 

+ "5
2

) J, 
-d:, 

where z" is along the direction of the incident momentum k., and 
~ 

The vector b is perpendicular to k. and has the 
~ 

(III-1) 

interpretation of an impact parameter in classical scattering theory. 

The equation for the scattering amplitude (see Appendix A) is given by 

(III-2) 

Putting Eq. III-1 into Eq. III-2, we obtain 

- 1}'3- - iq·r [ ijz 2 -2 J A(q) == - 4; d r V(r) e exp ;k d.z"'V(z' +b ) , 

-oo 

where we have put q == kf-ki. For small angle scattering, q·r ~ q·b, and 

we can rewrite A(q) in the form 

00 z 

A(q) - J;jd
2"5 eiq·b jdz V(r) exp[:iJdz" V(z'

2
+"5

2 )J. (III-3) 
-oo -oo 

The integration with respect to z can be carried out, and it gives 

-2k -i . 2 -2 -i . 
[ 

z ]00 00 
i exp ar.! dz' V(z' +b ) ~" 2ik{ exp [ 2kj dz' 

-oo -oo 

Putting this back into Eq. III-3, we arrive at the equation given by Glauber, 



where we have defined 
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2 -2) dz V(z +b (III-4) 

In the absence of absorption, V(r) is real, and x(b) can be interpreted 

as a change of phase arising from the scattering by the potential V(r). 

In the case of scattering from two scattering centers located at r1 and 

We have from this and Eq. III-4 the relation that 

In other words, the scattering phases due to different scatterers are 

additive. Here X· are similarly defined as x(b) in Eq. III-4, and s. are 
J J 

projections of r. onto the x-y plane. The z direction is taken along the 
J 

beam axis k .. The fact that the phases rather than the amplitudes add 
l 

coherently gives rise to double scattering terms in this formalism, as 

we shall see below. If we make the simplifying assumption that, in 

scattering a particle off a nucleus of mass number A, the phases x.(b-s.) 
J J 

arising from scattering by the individual nucleons j add coherently; 

i.e. if we assume that 

x(b) == 
A 
L: x. ("5-s.) 

. 1 J J J== ' 

then the particle-nucleus scattering amplitude would be given by 

To account for the motion of the nucleons within the nucleus, we form 

the expectation value of the amplitude between the initial and final 

.-
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nuclear states and have 

Writing this in terms of the center of mass position variables of the 

nucleons and nuclear wave functions, we have equivalently 

(III-5) 

-The 3-dimensional a-function comes from the fact that not all of the r. 
J 

are linearly independent. They are constrained by the center-of-mass 

relation 
A -

. 2:1 r. = 
J= J 

0 . 

For scattering of the incident particle by the individual nucleon 

j, we can also write the amplitude as 

(-) ikj'2- iq·b [ { (-)}] Aj q = 2:n: d b e 1 - exp 2ixj b . 

An approximate inversion of this formula is given by 

{ (-)} 1 }2- -) -iq•b exp 2ixj b = 1- 2:n:ik d q Aj(q e (III-6) 

This is a good approximation for small angle scattering. In such cases, 

A.(q) is peaked in the forward direction (small q), and q and b would be 
J -

approximately coplanar. Putting Eq. III-6 into Eq. III-5 yields finally 

the multiple scattering series, 
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Expanding the product within the square bracket gives rise to terms which 

can be interpreted as due to single-, double-, and triple-scattering, and 

so on. 

2. Specialization to K--Deuteron Scattering 

We now specialize this mu.ltiple scattering formula and apply it to 

K--deuteron scattering. The deuteron and the nucleons will be treated as 

spinless. particles. We extend this formalism to include spin in 

Sec. III-C. 

Let r be the relative coordinate vector pointing from the neutron 

to the proton. Thus we have for the proton and neutron center-of-mass 

coordinates r = r/2 and r = -r/2. We let s be the projection of r onto 
P n 

the x-y plane. After using the 3-dimensional 5-function to integrate out 

one of the space volume integrals in Eq. III-7 (A = 2 in this case), the 

scattering amplitude becomes 

(III-8) 

A ( q' )e -iq' · (b-ts/ 2) }] _ 
p •. 

Carrying out the indicated integrations with respect to b and r (see 

Appendix B), this can be rewritten as 
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Af. Ci) = Gf. (Qj2) A (q) + Gf. (-0}2) A (q) 
~ ~ n ~ p 

(III-9) 

where 
(III-10) 

~f(p) and ~i(p) are the Fourier transforms of ~f(r) and ~i(r), 

respectively. The first two terms of Eq_. III-9 are the single scattering 

contributions to K--deuteron scattering. These correspond to the 

impulse approximation contributions. The third term gives the double 

scattering correction to the impulse approximation. 

3. K-d Elastic Scattering· 

We next consider K--deuteron elastic scattering. In this case we 

have ~f(p) = ~i(p) = ~D(p), the deuteron momentum space wave function. 

We define the deuteron form factor as 

This is the convolution integral giving the Fourier transform of the 

product ~~D(r)l 2 ; i.e. we also have 

(-) }3- iq·r
1 

(-)
1
2 G q = d r e ~D r 

where ~D(r) is the deuteron coordinate space wave function. In cases 

where ~D(r) depends only on the magnetude of r, we have G(q) 

Thus from Eq. III-9, the elastic scattering amplitude becomes 

G( -q). 
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+ 2ikj~2q' G(q') A (q' + qj2)A (-q' + qj2) rc n . p 

(III-11) 

The elastic scattering cross-section is given by 

Written out explicitly, this is 

- G;r
2

) Im [ {A: (ii) + A; (<iJ} fi<i' G(<i') An ( ~) Ap (<i_) J 

+ (2~k)2 I J d2ii.' G(?) An (<i+) Ap ((i._) 12 ' (III-12) 

where ~ = ± q' + qj2. 

4. Total Cross-Sections and Cross-Section Defect 

To obtain the total cross-section forK--deuteron scattering in terms 

of the total cross-sections for K- -nucleon scattering, we note from the 

optical theorem that the K-d total cross-section is given by 

Similarly, the K--pucleon total ·cross-sections are given by 

j = p, n 

Because of the normalization of the deuteron wave function, G(O) = 1. 
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Taking the imaginary part of Eq. III-11, we find that 

(J' + (J' - dO" 
n P 

where the cross-section defect dO" is defined by 

(III-13) 

Thus the K-d total cross-section is not simply the sum of the single 

nucleon total cross-sections. It has an additional contribution dO" 

coming from the double scattering effects arising from the composite 

structure of the deuteron. Depending on the relative phases of the 

nucleon amplitudes A (q) and A (q), this contribution can be. either 
n p . 

positive or negative. 

5. Break Up of the Deuteron 

Finally, we turn our attention to the reaction in which the deuteron 

is broken up into a free neutron and a free proton in the final state. 

The amplitude is still given by Eq. III-9. Though in the present case 

we still have ~i(p) = ~D(p), ~f(p) is unknown. The usual approximation 

. t d d t h dl th' h b th 1 . t' ll 2n ro uce o an e lS as een e c osure approx2ma 2on. 

assumes that the set of final states ~f(p) is complete. With this 

assumption, we then have 

(III-14) 

lj"' 

•• 
The differential cross-section is given by 

(III-15) 
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Using the closure relation and Eq. III-10, we have 

" 
= jd3p d3p, cp:(p'-q') t)(p'-p) cpi (p-q) (III-16) 

With a change of the variables of integration, the last integral can be 

rewritten as 

This is just the deuteron form factor G(q-q'). Thus we have 

(III-17) 

Using this relation and Eqs. III-9 and III-15, we obtain the cross-

section for the break-up reaction 

- 2!k Im [A: (C[) Ja2
C[' G(<i.' -<i/2) An (<i_+) V<i.J J (III-18) 

- 2!k Im [A;(<i_) }~2ij G(<i.'+<i/2) An(<i_+) V<i.J J .-

+ l }~2q' d2q" G(q' -q") A* (q ) A* (q ) A (q") A (q") ~ 
(21tk)2 n + P - n + P -

where ~, = ± q" + qj2, and ~ are defined previously. 
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As noted before, G(O) == 1. Eq. III-18 is essentially the formula we 

used in fitting our break-up reaction data. We now need to modify it to 

account for the proton momentum cut we made in scanning. 

B. Modifications to the Impact Parameter Formalism 

We wish to apply Eqs. III-12 and III-18 to the analysis of our 

experimental data. Aside from spin, Eq. III-12 can be applied to our 

elastic scattering data without any modifications. However, Eq. III-18 as 

it stands can not be used to analyze our break-up reaction data. In the 

derivation of this equation, it was assumed that the final states 

included all the momentum states of the outgoing particles. This was 

used in the derivation of Eq. III·l6,which states that 

(III-19) 

The integral on the right hand side is equal to the deuteron form 

factor G(q-q') only if the integration over pis taken over the whole 

3-momentum space. We have used this fact to arrive at Eq. III-18, 

expressing the break-up cross-section in terms of the deuteron form 

factor. On the other hand, we have made a cut.on the minimum length 

of the proton track in our scanning. This implies that the limits of 

integration in Eq. III-19 no longer extend over the whole space. 

Consequently Eq. III-18 must be modified to reflect this. For example, 

the single nucleon scattering terms in Eq. III-18 must be weighted by a 

factor other than G(O). This factor depends on the limit of integration 

chosen for the integral in Eq. III-19. However, the integration 

variable p in Eq. III-19 does not correspond to the spectator momentum 

exactly. Consequently, we. run into difficulties in trying to define the 

limits of integration that correspond to our experimental cut. In an 
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attempt to clarify this, we adopt a different approach to the problem 

in the following. As a consequence of this approach, two other modifica-

tions to Eq. III-18 also emerge. One of these is Fermi momentum 

smearing; the other is the flux factor effect. We discuss these at 

length later. 

1. Modifications to the Break-Up Reaction Formula 

The approach we use in this section to modify the break-up reaction 

cross-section formula is based on the method of Feynman diagrams. Such 

a diagrammatic method has already been used to discuss the elastic 

tt · f deuterons. 15,l6 W t t ·th th · · · th sea er~ng o e s ar w~ e express~on g~v~ng e 

cross-section for the interaction of two incoming' particles, yielding 

three particles in the final state. Fig. lla gives a schematic diagram 

of such a reaction together with the particle labeling scheme. The 

differential cross-section for this process can be written as17 

dcr( s, t) 
dt 

l l f4 4 4 3 2 2 -- d p
1

d p
2

d p
3 

II 8(pj) 5(p.-m.) x 
( 2rr ) 5 j =l J J 

(III-20) 

where T is the invariant transition matrix, and s f...(x,y,z) 

is the completely symmetric function given by 

f...(x,y,z) 

and 

2 2 2 = x +y +z - 2(xy + xz + yz) 

if p
0 

< 0 

if p
0 

> 0 

' 

We take particle l to be the out-going K particle. To express Eq. III-20 

.-
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in terms of 2-body cross-sections, we note that the 3-body phase space 

is given by 

where R2 (s~) is defined by 

and s~ = (pk+pd-p
3

)
2 

is the total energy squared of the two-particle 

system. Using this recursion relation, Eq. III-20 can be rewritten as 

do-(s,t) 
dt 

1 

We consider the single scattering contributions to T. They come 

(III-21) 

from the two diagrams in Figs. llb and llc. The amplitude can be written 

as 

T 

where 

T (s ,t) 
n n 
2 2 
~- m 

q = p -p 
-p d n 

+ 
T (s ,t) J p p 
--'!::--2 ~2 ' 
~- m 

2 
sn = (pk+~) 

2 
sp = (pk+~) 

' 

T (s ,t) and T (s ,t) are the single nucleon scattering amplitudes, m the 
n n p p 

nucleon mass, and g the d-n-p coupling constant. The amplitude squared 

is given by 

.. 

• 
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(III-22) 

We consider the terms in this equation separately. Putting the first 

term into Eq. III-21, taking p
3 

in Eq. III-21 to be the spectator proton 

momentum and writing it as p, we get for the neutron single scattering 

contribution to the K-pn cross-section 

dcr(s,t)l 
dt 

n 

(Note: all terms 

R2.) We can also 

into two particles 

dcr ( s , t) 
n n 

dt 

1 

to the right of R2 come 

write the cross-section 

in the final state as19 

Using this we can rewrite Eq. III-23 as 

dcr( s, t) I 
dt 

n 

1 

(III-23) 

under the integrals involved in 

for two initial particles going 

_/ . 2 . 2 dcr ( s , t) 
2lA(sm'~'m ) n d~ 

(III-24) 

Since A(s,~,m~) is an invariant, we can evaluate it ~n any coordinate 

system. In the laboratory system in particular, we have 

where Flab is the incident K- lab momentum. Aside from energy factors 

coming from the normalization of the initial stat~ ,{A(s,~,m~) is 

essentially the flux factor for K- incident on a deuteron. ·The 

coupling constant g is related to the deuteron wave function by
20 
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l 

' 

where p is the momentum of the spectator in the deuteron rest system. 

Putting this into Eq. III-24 we get 

~A(s, ,~m2 ) 
2EpPlab 

dcrn(s, ,t) 
dt (III-25) 

We emphasize in particular that the integration involved in this 

equation is over the spectator proton momentum. In a similar manner, 

the second term in Eq. III-22 gives a contribution corresponding to 

proton single scattering to the Kpn cross-section (Eq. III-21) of the 

form 

( )I f 2 
_/A(s',rr?,m2 ) 

dcr s, t = d 3 -
1 

( - ) I 1 K dt p cpD p -----::2E::=-P~--
p p lab 

-

dcr P ( s, 't) 
dt (III-:-26) 

p in this case corresponds to the spectator neutron momentum. In both 

Eqs. III-25 and III-26, 

4-momentum (p,"m2+p2 ). 

2 
s, = (pd+pk-p) , where pis the spectator 

The third term of Eq. III-22 gives an inter-

ference between the neutron and proton single scattering amplitudes 
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dcr(s,t)l =}3- *(-) (- -) dt d p cpD p cpD p-q 
np 

x [A*(s ,t) A (s ,t) + c.c. J n n p p 

(III-27) 

- -Here p corresponds to the proton lab momentum, and q = Pk - Plab' Plab 

and pk the lab momentum of the incident K- and outgoing K-, respectively. 

A (s ,t) and A (s ,t) are defined so that they are related to the 
n n p p 

nucleon cross-sections by 

dcri ( s., t) 
dt J. = 

2. Consequences of the Modifications 

i = n, p . 

Summing up Eqs. III-25, III-26, and III-27, we get the single 

scattering contributions to the break-up reaction cross-section. These 

terms correspond to the first three terms of Eq. III-18. Eqs. III-25, 

III-26, and III-27 contain three modifications to Eq. III-18. We now 

discuss each of these in turn. 

By examining Eqs. III-25, III-26, and III-27, it can be seen how 

21 Eq. III-18 is modified to take Fermi momentum smearing into account. 

We see from these equations that the nucleon cross-sections are not 

evaluated at an energy that corresponds to a K incident on a nucleon 

at rest in the lab. They are evaluated at an energy ~iven by 

s' 
' 

which depends on the variable of integration p, the spectator momentum. 

Thus the single scattering contributions to. the break-up reaction 
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cross-section consist of weighted averages of the nucleon cross-sections, 

the weight being essentially the Fermi momentum distribution of the 

deuteron. 

A second modification to Eq. III-18 arises from the flux factors. 

We refer to Eq. III-25 to discuss this. The effect is contained in the 

ratio 

R(p) = 
~/\(s' ,~,m2 ) 

2EpPlab 

appearing under the integral in Eq. III-25. If we assume that the 

target nucleon was initially at rest in the lab, we have 

Because I ~D(p)l 2 
peaks at small values of p and falls off rapidly with 

increasing p, we can make the replacement Ep = f14 "'ill under the 

integral in Eq. III-25. In this case the ratio becomes R(p) = 1, and 

the integral in Eq. III-25 is just 

which, due to the normalization of the deuteron wave function, is unity. 

Thus Eq. III-25 reduces to the first term of Eq. III-18 exactly in this 

approximation. Similarly Eq. III-26 and III-27 go over exactly to the 

second and third term of Eq. III-18, respectively. In the general case 

where we do not assume the target nucleon to be at rest, R(p) differs .. 
• 

from unity. It is a decreasing function of the magnitude of p. A 

graph of R(p) verses \PI (the angular dependence of R on p has been 

integrated out) is given in Fig. 12 for incident K momenta of 0.81, 

1.11, and 5.0 BeV/c. For a given I:PI, we see that R(p) deviates more 
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FLUX CORRECTION R~TIO 
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XBL 699-5655 

Fig. 12. Ratio of flux factors vs. Fermi momentum 
at 3 incident K- momenta. 
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from unity at the smaller incident K ·momentum than at the larger incident 

momenta. This implies that the flux factor effect is small at higher 

energies. For a fixed incident momentum, R(p) decreases as IPI increases. 

The net effect of this is to depress the tail of the Fermi momentum 

distribution by 10 to 20%. This in turn affects the integrated cut-off 

corrections, which we discuss below. 

The third modification shown by Eqs. III-25, III-26, and III-27 is the 

way we account for the proton momentum cut made in our scanning. We 

first discuss the proton single scattering term, given by Eq. III-26. 

The integral in Eq. III-26 is over the spectator neutron momentum. We 

have included in our sample of break-up events those with all possible 

spectator neutron momentum. Consequently the limits of this integral 

should be taken over all momentum space. As far as the proton single 

scattering contribution is concerned, the main effect of the proton 

momentum cut made in our scanning is to cut out the events scattered into 

the forward direction ( -t ~ 0. o6 (BeV / c )2 ). The d.istribution at larger 

-t. values are unaffected. As pointed out in Sec. II-C, we are not using 

the forward part of our experimental distributions. Consequently 

Eq. III-26 can be used directly to describe the proton single scattering 

contribution to our experimental break-up reaction, with the integral 

occurring in this equation taken over all momentum space. This means 

that we can replace the factor G(O) in the second term of Eq. III-18 by 

unity. However, because of the presence of the ratio of flux factors 

in Eq. III-26, we should replace G(O) by 

(III-28) 

The value of this integral turns out to be around 0.96 in the range of 
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incident momenta covered by our experiment (see Fig. 13). 

In the case of neutron single scattering and its interference with 

proton single scattering (Eqs. III-25 and III-27, respectively), we need 

to put in a lower integration limit that corresponds to the lower cut on 
( 

the proton momentum in our scanning. Tn both Eqs. III-25 and III-27, the 

variable of integration is the proton momentum. Consequently, the 

correction needed is just to set the lower integration limit equal to 

the lower proton momentum cut value. The lower curve on each graph in 

Fig. 13 shows the integrated corrections, given by Eq. III-28, as a 

function of the lower integration limit p
0

• The upper curve in each 

graph is a plot of the integrated corrections using the deuteron wave 

function alone (Eq. III-28 without the ratio of flux factors). The 

value on the lower curve at a particular momentum cut p
0 

is to be used 

in place of G(O) appearing in the first term of Eq. III-18. As can 

be seen from this figure, the net effect of the flux factors is to 

lower the integrated corrections by 3 to 4%. This difference becomes 

smaller at higher incident momenta. 

C. Spin Dependence 

To generalize the results of Sec~ III-A to include spin, we take as 

starting point Eq. III-9, 

Af. (CjJ = Gf. (qj2) A (q) + Gf. ( -g}2) A (q) 
l l n l p 

+ 2!k fa2
(i' Gfi((i') An((i'+<i/2) Ap(-(i'+<i/2). 

Because the K has 0 spin, we can assume that A (q) and A (q) commute. 
n ·. p 

Thus we need not replace the product AnAp in this equation by ~ its 

anti-commutator in order to get the amplitude Afi(q) symmetric with 

respect to both the neutron and the proton. We assume that the nucleon 
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amplitudes A. ( q) have a spin dependence given by 
J 

A. ( q) = f. ( q) + i O.·fi gJ. ( q) 
J J j q 

j = n,p 

where f.(q) and g.(q) are the spin~nonflip and spin-flip amplitudes of K 
J J 

scattering on nucleon j, 0-. the Pauli spin matrices for nucleon j, and n 
J q 

the unit normal to the scattering plane. 

For elastic scattering, we have f = i. The cross-section is given by 

To get the unpolarized cross-section, we have to average over the 

initial and sum over the final spin alignments. The result is 

(III-29) 

is the triplet projection operator, and Tr means 

the trace in the product spin-space of the nucleons, which is the product 

of the traces in the individual nucleon spin spaces. l The factor 3 comes 

from averaging over the spin alignments of the deuteron in the initial 

state. The calculations are presented in Appendix c. The final result 

is (Eqs. C-11 and C-15 of Appendix C) 

(
do-)SD 
dD el 

+ purely double scattering (III-30) 

where 
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(
do-)SD =- G(9/2) Imfd2q GC') M (- -,) 
dQ el :rrk q np q, q 

M (q- q-') is given by 
np ' 

Mnp(Ci,Ci') = {f:(Ci)+f;(Ci)) [ fn(q+)fP(Ci_) - ~ gn(Ci+)gP(q_)n<4·nq_ J 

+} (g:(q)+g;(q)) [gn(q+)fp(q_)nq·D'q++gp(q_)fn(q+)Bq·Bq_J 

( ~~)se.l The definitions of nq, q+' q_, etc. are given in Appendix c. Wt 

represents the single scattering contribution to the elastic cross-section. 
SD 

( ~) represents the contribution coming from the interference between 
· el . 
the single scattering and the double scattering amplitudes. We neglect 

the purely double scattering term, since it gives only a small (< l%) 

contribution compared to the other terms. (See Ref. ll; for the definition 

of this term, see Appendix c.) 
ll 

The K-d total cross-section is given by the formula 

4:rr 
0" --d - k (III-31) 

Carrying out the calculations indicated on the right hand side gives 

(see Appendix C) 

where 

0" +o- -do
n P 

(III-32) 
. -
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This is the generalization of Eq. III-13 for the cross-section defect. 

In the case of the break-up reaction, ·He again use the closure 

approximation. · For the unpolarized cross-section, the sum over the 

· fi.naJ. spin alignments runs over both the singlet and the triplet spin 

states of the nucleons. The summation then yields the identity operator 

rather than the triplet projection operator as in the case of elastic 

scattering. As a result, it leaves only one triplet projection operator 

in the cross-section formula, the one arising from the initial deuteron. 

The cross-section is then given by 

( dd~ ) == L: ~3 Tr [ p3 Af+l. ( q) Af1" ( q.) J 
't Kpn f 

Carrying out the calculations (see Appendix C), we get 

1-rhere 

(~~tD + purely double scattering 
Kpn 

+ 2G(q) Re [f (q)f*(Ci) + -
3
1 

g (q)g*(Ci)] 
n p n p 

( 
d(J ym 1 

drt ~K == - rrk pn 

Mn and M are given by p 

J 2-
Im d q' 

(III-33) 

(III-3lt) 
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r:(q) [fn(q+)fP((i_)-} gn(q+)gP(q_)nq+·nq_] 

+ g *((i) [g (q )f (q )n ·n + -
3
1 

g (q )f (q+)~ .~ 
n n + p - q q+ p - n q q _ 

+ -
3
1 

g ( Ci )g ( q_ )n . (~ x r~ ) J 
. n + p - q q_ q+ 

f:(q) [ fn(q+)fp(q_) -} gn(q+)gp(q_)~~.{lq_] 

+ g:(Ci) [ gP(Ci_)~ ((J+)Bq·Bq_ +} gn(Ci+)fP(Ci_)flq.n:q+ 

+!
3

g (Ci )g (Ci )n ·(B x B )] 
n + p - q q+ q_ 

As in the elastic scatte:d.ng case, here (~~t represents the single 

Kpn (d )SD 
scattering contribution to the break-up reactio~ d~ represents the 

Kpn 
interference betv1een the single and double scattering amplitudes. Again, 

because of its smalln'ess, we neglect the purely double scattering term. 

Equations III-30, III-32, and III-34 are the generalizations of Eq. III-12, 

III-13, and III-18 to include spin effects. Except for the modifications 

to the factors G(O) and G(q) i.n Eq. III-34, discussed in Sec. III-B, these 

were.the equations we used to analyze our data. ·VIe dicuss the procedure 

of this analysis in detail in the next section. 
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DJ. .ANALYSIS OF DATA 

In this section we describe the method we used to analyze our data. 

It involves using E~s. III-30, III-32 and III-34 to do a simultaneous 

fit to our K-d elastic scattering and break-up reaction data. In order 

to do this, we need to know the deuteron form factor and the elastic 

scattering amplitudes for K- incident on the proton and on the neutron. 

" We assume that the deuteron form factor is obtained from the Hulthen wave 

function. We take as the K-p elastic scattering amplitude two models 

obtained from fits to experimental data. As the K--neutron elastic 

scattering amplitude, we assume two parametrizations, the parameters of 

which we vary to obtain a fit to our experimental data. 

A. Deuteron Form Factor 

Various forms of the deuteron wave function can be used to obtain 

the deuteron form factor. 22 We used in our analysis the Hulth~n wave 

function 

where 

and 

-ar -t3r e -e 
r 

. ] l/2 
N == [ cx(3(<X+t3) 2 

2n(<X-t3) 

0.0457 BeV/ c 

t3 0. 237 BeV / c 

The Fourier transform of the Hulthen wave function is given by 

The deuteron form factor is defined by 
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iq·r 
e 

Carrying out the integrations gives 

G( q) ~ 2~N2 {tan -tl~2 J + tan -l [ 4~~~~2 J - 2 tan -1 [ 2q(cx;f3) 2]} 
(CX+f3) -q 

Here q denote the magnetude of q. A graph of G(q) as a function of q2 

is given by the upper curve in Fig. 14. 

We also need the function 

2N2 
q 

00 

/
pdp [ 21 2 

ex +p 
Po 

This function appears in the proton and neutron single scattering inter-

ference term of the break-up reaction, (Eq. III-34). The lower limit p
0 

corresponds to the lower cut on the proton momentum we made in our 

scanning. We note that G (q) =:= G(q) for p = 0. G (q) can be ;integrated 
Po o Po 

numerically for various values of p . A plot of G (q) as a function of 
o Po 

2 . I q lS given by the lower curve in Fig. 14 for p = 0.095 BeV c, the 
0 

value we used for the lower cut on the proton momentum in our sample 

of break-up events. Comparing the two curves in Fig. 14, we see that the 

proton momentum cut affects the low momentum transfer events the most. 
I 

B. Two Models of K-p Elastic Scattering 

K--proton elastic scattering with incident K- momenta around l BeV/c 

has been studied in detail in three experiments. 23, 24 ' 25 The authors 

of Ref. 23 have fitted their data to a model of elastic scattering in 

the form of a background term plus resonances: 
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Fig. ll>. Upper curve is the deuteron form factor given by 
the Hulthen wave function. lower curve is the 
same form factor modified by the lower spectator 
momentum cut. 
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g - g + gr p - b 

The background terms were parameterized as 

The resonant terms 

g - 0 b -

were given 

f 1 
r 2 

1 
gr :::; 2 

by 

(fl + fa) 

(gl + go) 

bt 
e 

where the isospin amplitudes fi and gi were given in the standard form 

fi 
1 

:::; k 

1 
gi :::; 

k 

~ [ ( .e +1 ) T I, .e + + .e T I, .e _ J P .e ( z ) 

f [ T I' .e + - T I, .e - J p~ ( z ) 

(IV -1) 

The isospin index I is 0. or 1, z is the cosine of the em scattering 

angle, and k the particle momentum in the em system. For the amplitudes 

TI,.e± appearing in Eq. IV-1, the authors of Ref. 23 included only the 

* * . resonant amplitudes of the Y1 (1765) and the Y0 (1810). All the other terms 

in Eq. IV-1 were set equal to zero. The resonant amplitudes were para-

metrized in the usual Breit-Wigner form 

T x/(E-i) 

where x :::; r (k)/r(k) is the elasticity of the resonance and e 

E :::; 2(~ -E )/r(k). The .e and k dependences of the widths r (k) and r(k) 
e 

were those given in Blatt and Weisskopf.2b In fitting their data, these 
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authors varied the parameters b, a
1

, a
2

, and the resonant masses and 

widths. From their best fit, they obtained the following values for the 

resonant parameters: 

M2 1758 ± ll MeV M3 1811 ± 4 MeV 

r2 113 ± 25 MeV r3 = 73 ± 10 MeV 

x2 = 0.46 ± 0.05 x3 = 0.67 ± 0.08 

where. the indices 2 and 3 refer to the orbital angular momentum of the 

resonances. The values for the parameters of the diffractive background 

terms were 

2b = 3.2 ± 0.13 (GeV/c) 

al 3·73 ± 0.12 (mb)3/4 

a2 = 0.89 ± 0.39 (mb) 3/ 4 

The parametrization of the elastic scattering amplitudes f and g given 
p p 

above corresponds to separating these amplitudes into contributions from 

diffractive scattering and from resonances. This combination has been 

suggested by two experimental facts: l) The general diffractive nature 

of the forward portion of the elastic scattering angular distributions 

and 2) the occurence of numerous resonances within the energy region we 

are considering. The combination of these two features gives a 

reasonable description of :rr-nucleon elastic scattering as well as the 

K -nucleon data. 27 

A second model of K p elastic scattering has been given in Ref. 24. 

The full amplitude was given by 

f = (f + f )/2 p l 0 

gp = (gl + g )/2 
' 0 

where f
1 

and g
1 

were defined in Eq. IV-1. To account for the background, 
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the authors of Ref. 24 assumed that each partial wave amplitude T was 

a superposition of a background amplitude Tb and a resonant amplitude Tr. 

(To simplify notation, we suppress the indices I and £ that should appear 

with each T and S occurring in this section.) To insure unitarity, they 

superposed the two amplitudes by the relation 

s = s s 
b r 

where each S and T are related to 6 and ~ through 

S = 1 + 2i T 
2i6 

~ e 

With this assumption, the partial wave amplitudes turned out to be 

T T T 2i6b 
b + r 1lte 

The resonant amplitudes T were parametrized in the same way as described 
r 

in the first model. The background amplitudes were given th~ momentum 

dependence 

a + b1 (Pk - 0.8 GeV/c) 

a + b2 (Pk - 0.8 GeV/c) 

for Pk > 0.8 GeV/c 

for Pk < 0.8 GeV/c 

where a, b1, and b2 are complex parameters varied in the fitting, and pk 

the incident K lab momentum. The background terms were assumed to come 

only from the s11, P11 and P
13 

waves. Table II lists the different 

partial waves and their fitted values obtained from the best fit of 

Ref. 24. 

In the analysis of our data, we assume that the K p elastic 

scattering amplitudes are given by either one of the models described 

above. In the next section, we discuss the two parametrizations for the 

K--neutron elastic scattering amplitude. 
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Table II. Parameters for solution (b) of Ref. 24. The 
parameter in brackets have been kept fixed. 
The errors are statistical only. 

Non resonant Re a Im a Re b1 Im b1 
Re b2 amplitudes 

SOl 
0.04 0.81 -0.38 0.01 

±0.03 ±0.02 ±0.14 ±0.06 

sll 
0.13 0.55 -0.20 0.34 0.43 

±O.o6 ±0.02 ±0.21 ±0.09 ±0.46 

POl 
0.11 0.47 -0.76 0.11 -0.31 

±0.04 ±0.02 ±0.20 ±0.14 ±0.30 

pll 
0.10 0.02 0.02 0.60 1.07 

±0.04 ±:0.01 ±0.20 ±0.08 ±O.o6 

p03 
0.38 0.19 -0.49 0.61 0.68 

±0.03 ±0.01 ±0.09 ±0.07 ±0.27 

pl3 
0.17 0.02 -0.45 0.49 -o. 79 

±0.02 ±0.01 ±0.02 ±0.01 ±0.22 

Resonant MassE Width r 0 Elasticity amplitudes (MeV)'r (MeV) 

SOl 1663 ± 3 26± 8 0.14 ± 0.04 

DQ3 1695 ± 3 35 ± 7 0.18 ± 0.03 

Dl3 1668 ± 5 56 ± 18 0.09 ± 0.02 

D05 1807 ± 10 123 ± 32 0.09 ± 0.01 

D15 1768 ± 2 128 ± 8 0.45 ± 0.01 

F05 1817 ± 2 71 ± 4 0.62 ± 0.02 

Fl5 [ 1910] [ 50] [ 0.08] 

F07 1864 ± 2 39 ± 7 0.12 ± 0.02 

F17 [ 2040] [ 150] [ 0. 25 ] 

G07 [ 2100] [ 160] [ 0. 25 ] 

Im b2 

0.91 
±0.15 

1.76 
±0.50 

-0.04 
±0.05 

0.40 
±0.08. 

-0.27 
±O.Q8 
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c. Parametrizations of the K--Neutron Elastic Scattering Amplitude 

We consider two models forK--neutron elastic scattering which are 

similar to the K-p models described in the previous section. In the 

first model, we parametrize the K- -neutron amplitude similar to the 

first K-p model. We assume the background terms to be given by28 

B 

~ 
t l/2l 2 2 

(l + 2 ) ( -t/4R ) exp (t/4R ) 
4k 

where the parameters A and B are complex and R is real. R has the 
I 

( IV-2) 

interpretation of a root-mean~square radius of interaction, and k is the 

particle momentum and sn the K-n energy in the K-n center of mass .. 
i ' 

The constants A, B, and R give us five parameters which we vary to obtain 

a fit to the data. The full amplitudes is given by 

where f 1 and g1 are the isospin 1 resonant amplitudes and are parametrized 

in the same way as in Eq. IV-1. We include in f 1 and g1 the resonances 

* * * Y1 (166o), Y1 (1765), and Y1 (1910). Because of our limited data, the 

masses and widths of these resonances are not varied in our fitting · 

procedure. They are taken to be those given in Ref. 29. The normaliza-

tion of f and g is such that the differential cross-section is given by 
n n 

dcr 
n 

dn = 

We parametrize our second K-n elastic scattering model similar to the 

second K-p model described in the previous section. Included in the 
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* resonant amplitudes are again the three Y
1 

resonances used in the first 

K-n model. Their masses and widths are also fixed at the values given 

in Ref. 29. As in the K-p model, we assume the background comes only 

from the s11, P11, and P
13 

partial waves. Unlike the K-p model, these 

waves are not parametrized with an energy dependence. Since we fit each 

incident momentum separately (see below), this explicit energy dependence 

can be neglected. We adopt this simpler parametrization in order to 

reduce the number of fitting parameters. The background waves s11, P
11

, 

and P
13 

are considered as complex, thus giving us six parameters with 

which to fit our data. We take them to be the real and imaginary parts 

D. Fitting Procedure 

1. Definition of the Fitting X 2 

We used a minimization procedure to analyze our data, fitting each 

incident momentum separately. We assume that the K-p elastic scattering 

amplitudes are known and, in fact, are given by either one of the models 

of Sec. IV-B. This K-p input is not varied in the fitting. Then using 

a parametrization of the K-n amplitudes described in Sec. IV-C, we 

calculate the K-d elastic scattering and the break-up reaction cross-

sections through Eqs. III-30 and III-34 and compare the results with 

our experimental data. The comparison is via a X 
2 function, which is 

defined as 

r 
where ~: is the calculated cross-section, ~~ the corresponding 

l l_ 

experimental data point, and 6~. the statistical error for the data 
l 

point. The index i ranges over the experimental data points from both 

the K-d elastic scattering and the break-up reaction angular distributions. 



-62-

The x2 is minimized through a variation of the parameters occuring in the 

K n amplitudes. The actual minimization was done by an LRL Computer 

Library Program VARMIT,3l a computer routine based on the variable 

metric method of reaching a minimum of a function. 32 

2. Treatment of Double Scattering Terms 

ln calculating the K-d elastic and the break-up reaction cross-sections, 

we have used Eqs. III-30 and III-34. The double scattering terms in 

these two equations involve double integrals over intermediate momentum 

transfers. We neglect the purely double scattering terms, since they 

contribute less than 1% to the cross-sections. 33 We retain the 

interference terms between the single and double scattering amplitudes. 

The double integrations involved in these interference terms have to be 

carried out numerically during fitting. They require an enormous amount 

of computer time in each fit (-30 minutes just for checking the gradient 

of the x2 function required for the fitting). Consequently, we adopted 

an iterative method in order to cut down on running time. In this 

method, we included only the single scattering terms in our calculation 

c 
of~ .. These single scattering terms do not involve any integration and 

1 

so can be computed very quickly. As a Oth order fit, we set the 

interference terms between single and double scattering amplitudes equal 

to 0. After completing this fit, we calculated these interference terms 

and added them to the calculated ~~ used for a second fit. After 
1 

completing the second fit, we re-calculated the interference terms and 

c then added the results to the calculated ~- used for a third fit, and so 
1 

on. The iterations converged very quickly in the sense that the parameter 

values and the calculated interference terms did not change very much 

after the second iteration (less than 5%). In this way, we were able 

to complete a fit in less than 15 minutes of CDC 6600 computer time. 
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3. Fermi Momentum Smearing 

The effect of Fermi momentum smearing in the break-up reaction shows 

up in the t-distributions for this reaction. If the target nucleons in 

the deuteron were at rest, there should be very few events beyond a 

certain maximum value of -t (corresponding to backward scatters). This 

maximum value depends on the incident momentum. But experimentally we 

do see events beyond this maximum value, the number of which can not be 

ascribed to measurement errors alone. The way to account for this 

smearing is to take a weighted average of the nucleon cross-sections. 

This was brought out by Eqs. III-25, III-26, and III-27 and was briefly 

discussed right after the derivation of these equations in Sec. III-B. 

As in the case of double scattering, the integrals involved in the 

smearing procedure require numerical integration. Again this takes up 

lengthy computer time in each fit. We therefore replaced the integrations 

by finite sums. Fig. 15 is a typical plot of the Fermi distribution as a 

function of K--nucleon em energy. The highly peaked curve is the 

distribution without any cut on the spectator momentum. The lower curve 

is one with a lower cut on the spectator momentum. We note that this 

latter distribution is essentially flat and is about 120 MeV wide. This 

is consistent with the energy spread formula 

r ·g 2 Plab <p~:~( 
3m 

given by Ref. 21. Here m is the nucleon mass, and <p~ is the expectation 

value of p2 taken between deuteron states.· With the Hulth~n wave function, 

2 <p > =a~, and we get (in BeV units) 

r 0.125 Plab 
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HlJLTHEN DISTRBTN IN ECKNl 
20 . .---------------~~------------~~------------~ 

15. 

10. 

5.0 

ECKN-CM), BEU 
XBL 699-5656 

Fig. 15. Upper curve is the Hulthen distribution as a 
function of the em energy of the KN system at 
K- incident momentum 0.91 BeV/c. The lower 
curve is the same distribution with the low 
momentum (< 100 MeV/c) spectators excluded. 

... 
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We subdivided the energy spread interval arising from Fermi motion into 

smaller intervals and evaluated the nucleon cross-sections at these 

energy values. We calculated the break-up reaction cross-section by 

taking a weighted average of these nucleon cross-sections over the 

entire energy spread. Since the distribution with a spectator momentum 

cut is essentially flat, we have taken the weights to be equal for each 

of the energy subintervals. The resulting break-up cross-section was 

then used in our analysis. 

4. Inclusion of Total Cross-Section Data 

We have utilized the K-d and K-p total cross-section data of Ref. 6 

in our analysis. We used these data to fit the total cross-section 

formula given in Eq. III-32. The extrapolated total cross-sections at 

our incident momenta were used with the K-d elastic scattering and break-

up reaction data simultaneously in our fit. We note that the cross

section defect dG and the K-n total cross-section involve fitting 

parameters. These parameters were varied to obtain an over-all x2 for 

our fit. 

E. Results and Discussion 

We discuss here the results of our fitting. We have tried the two 

parametrizations of K-n elastic scattering given in Sec. IV-C. Using 

the two models of K-p elastic scattering discussed in Sec. IV-B with 

each of these parametriations, we have 4 combinations. For ease of 

discussion, we denote the 4 cases as follows: 



-66-

Case I: lst K-p model (ebt) with 1st 
K n parametrization (ebt) 

II: lst K-p model (ebt) with 2nd K-n parametrization (SP wave) 

III: 2nd K-p model (SP wave) with 1
st 

Kn parametrization (ebt) 

IV: 2nd K-p model (SP wave) with 2nd K-n parametrization (SP wave) 

The descriptions within the parentheses pertain to the background 

amplitudes. Through a comparison of the results obtained in the 4_cases 

listed here, we first examine to what extend does the fit depend on the 

model we use. Following this, we discuss what effects does the 

inclusion of Fermi energy spreading and of double scattering have on 

our fits. Finally, we display and discuss the angular distributions 

obtained in the best fit. 

1. Comparison of Models 

Table III lists the x2 of each of the 4 cases of fitting given above, 

2 2 together with the number of degrees of freedom for the X • The x values 

given in this table are for the over-all fit to both the K-d elastic 

scattering and the break-up reaction data. As can be seen from this 

2 table, the x values are large for the number of degrees of freedom 

corresponding to them. This is especially noticeable in the case of 

910 MeV/c incident momentum. However, as we shall see below, a detailed 

examination into the fitting gives a better picture. It is found that 

the K-d elastic scattering data generally fit well. Large contributions 

2 to the X come from the break-up reaction distributions, especially the 

large angle region. 

One effect due to the choice of K-p models is evident from Table III. 

The two fits using the lst model of K-p scattering (cases I and II) give 

smaller X 2 values than the two using the 2nd K-p model (cases III and IV). 

"' 
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Table III. Results of fits with Fermi energy spread 
r ~ 0.125 P1 b' The errors shown are 
statistical ~nd do not include those from 
the K-p distributions which were taken as 
input. 

Beam Momentum (MeV/ c) 810 910 1010 1110 

cr~~ (mb) I 12.0±0. 7 10. 7±0.2 11.8±1.6 11.0±0.3 
II 11. 7±0.6 11.4±0. 7 11.8±0.4 10.3±0. 7 

III 11. 7±1.4 11.6±0.6 10.6±0. 3 
IV 11. 5±0. 5 11.0±0.8 11.5±0.3 10.5±0.7 

el (mb) I 18. 3±2.2 13.6±0. 7 12. 3±2. 9 13.6±2.9 crKn 
II 16 .6±0. 7 17-9±1.5 12.8±0.5 14.9±2.4 

III 8.5±1.7 12. 9±1. 5 15.2±3.4 
IV 10.0±0.6 22.9±1.0 14.2±0.1 14. 5±2.4 

cr~t(mb) I 32. 5±0. 5 39.0±0.4 34.6±0. 9 33.0±0. 5 
II 33.1±2.2 37. 7±2.6 33- 3±1.4 31. 7±2. 3 

III 30.6±0.8 34. 7±0. 7 33.2±0.2 
IV 31.6±1.8 37 -9±2. 7 33- 5±1.1 31.6±2.3 

tot( b) crKp m 40.8±0.3 44.1±0. 3 50-9±0.4 44. 7±0.3 

tot( ) crKd mb 70.4±0.3 79- 4±0. 3 82.1±0.4 74.0±0.3 

2 
I 80.7 151.7 25.9 47.2 X 

II 32.0 148.8 32.6 47.4 
III 109.2 100.2 74.0 
IV 76.8 254.1 59-2 74-7 

Degrees I 15 18 18 20 
of II 14 17 17 19 

Freedom III 15 18 18 20 
IV 14 17 17 19 
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In fact, the blank entry in this table under 910 MeV/c in case III is 

due to the fact that we were unable to reach a minimum in this fit. The 

reason for this was that, using the 2nd K-p model, the K-p cross-section 

gives as large a contribution to the break-up reaction distribution as 

the experimental data at this incident momentum. Consequently, the 

fitting would like to make the K-n contribution as small as possible in 

2 order to reduce the X st Case III uses the 1 parametrization of the K-n 

amplitude. The parameters that the fit varies in this case are the 

coefficient and the exponent of the exponential background amplitude 

(see Sec. IV-C). The coefficient is determined by the total cross-section 

data to be non-zero. As a result, the only way that the fitting program 

can minimize the K-n contribution is to go to as'large a negative 

exponent as possible. This was what actually happened. 

Also listed on Table III are the K-d and K-n total elastic 

scattering cross-sections and the K-n total cross-sections. The elastic 

cross-sections were obtained from integrating the differential elastic 

cross-sections calculated in each fit, while the K-n total cross-sections 

were obtained from the imaginary part of the K-n amplitude given by_ our 

models. For comparison purposes, we also include in Table III the 

experimental K-d and K-p total cross-sections at the same incident 

momenta. These values were extrapolated from the data of Ref. 6 (see 

Fig. 2}. el tot As can be seen from Table III, ~Kd and ~Kn remain unchanged 

(within errors) as we go from Case I through Case IV. This means that 

these two quantities are model-independent. However, the same can not be 

said about ~~!· Table III indicates that~~ depends on which model of 

K-p scattering we use. However, it should be noted also that it is 

independent of the K-n models to within errors. 
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2. Effect of Fermi Energy· Spread 

To compare the effect of Fermi momentum smearing, we have tried 

varying the width of the energy spread used in calculating the break-up 

reaction cross-section. The results in Table III were obtained with a 

width given by 

r = 0 .• 125 Plab 

Table IV shows the corresponding results obtained with an energy spread 

given by 

r = 0.085 Plab 

Finally, Table V shows the results obtained with no Fermi energy spread 

(equivalent to having the initial nucleons at rest}. As can be seen from 

2 
a comparison of x given in Tables III and V, the largest difference 

between fits with a Fermi energy spread and those with no spread is in 

the 1010 MeV/c data. On an over-all basis, fits with an energy spread 

do give a slightly improved x2 . In all three energy spreads used, the 

el tot . 
results for ~Kd and ~Kn rema~n the same within errors. (See Tables III, 

IV, and V.) 
el 

This is also true in the case of ~Kh' even though it was 

found above to depend on the K-p models used. 

3. Effect of Double Scattering 

We plot in Figs. 16 and 17 the interference term between single and 

double scattering for K-d elastic scattering and the break-up reaction, 

respectively. The lower curves in each graph give the negative of the 

interference term, the upper curves the total value of the corresponding 

cross-sections. As can be seen from these figures the break-up reaction 

interference term (which extends below eac~ graph for -t greater than the 

horizontal intercept) is relatively unimportant. But the elastic scattering 

interference term range from a few per cent of the complete cross-section 
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Table IV. Results of fits with Fermi energy 
spread r = 0.085 plab· 

Beam Momentum (Mev/ c) 810 910 1010 

el (mb) I 12.1±0. 7 10.6±0.2 11.4±0.6 O"Kd 
II 11.5±0. 7 11.3±0.8 11.8±0.3 

III 11. 7±1.4 11. 7±1.0 
IV 11. 5±0.6 11.0±0.8 11.4±0.4 

el (mb) I 18.4±2.0 13. 5±0. 7 12.0±1.4 (J"Kn 
'II 15.8±0.8 19.1±1. 7 12. 7±0.1 

III 8.5±1. 7 12.4±1.8 
IV 10.0±0.7 23.8±1.4 14.6±0.1 

tot (mb) I 32-5±0.4 39.0±0.3 35.2±0.8 (J"Kn 
II 33 .1±2. 2 37 .6±2.6 32. 9±0. 9 

III 30.6±0.8 34.6±0. 7 
IV 31. 7±1. 9 37 .8±2.8 33-3±1.2 

2 I 62.5 162.0 53.0 X. 
II 26.0 153.2 49.1 

III 91.5 151.4 
IV 65.5 223.5 86.1 

1110 

10.2±0.4 
10. 3±0. 7 
10.4±0.4 
10. 5±0.6 

13. 9±2.8 
14.4±2.0 
15.2±3.0 
14.0±1.9 

32.8±0.6 
31. 7±2.2 
33 .2±0.4 
31. 5±2.1 

42.6 
49.9 
81.1 
81.8 

.. ~ .. 

' .. 
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.. 
Table v. Results of fits with no Fermi energy spread. 

'~ 

Beam Momentum (Mev/ c) 810 910 1010 1110 

el (mb) I 12.1±0.6 10.5±0.3 11.6±0.2 10. 5±0.4 crKd 
II 11.6±0. 7 11.3±0 .6 11.8±0.3 10.4±0. 7 

III 11.91:1.3 11. 5±0.6 10.3±0.4 
IV 11.0±0 •. 6 10.9J:0.7 11. 5±0.3 10.5±0. 5 

el (mb) I 18.0±2.0 13. 0±0 .6 14.7±1.4 10. 5±0. 5 crKn 
II 15.8±0.9 21.1±1.3 13. 2±0 .1 14.2±1.9 

III 8. 5±1.6 12. 7±1.3 15.8±3.0 
IV 10.4±0. 7 25.3±1.1 15.6±0.2 13.6±1.3 

cr.tot(mb) I 32. 5±0. 4 39.0±0.4 34.3±0.8 35.0±0.4 
Kn II 33.1±2.4 37. 3±2.0 32-5±1.0 31. 9J:2.2 

III 30.4±0. 7 34.4±0.2 33.2±0.3 
IV 31. 7±2.0 37. 7±2.4 33-3±1.1 31.4±1.8 

2 I 49.8 220.1 158.2 32.4 X 
II 19.8 185.7 119.4 50.1 

III 94-7 291.6 lo6 ·5 
IV 80.9 194.9 152.9 100.7 

.... 

-~ 
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K-d ~ K-d angular distributions. Data points are from 
our experiment. Curves through this data points are 
from our fits in Case I. Lower curves in each graph 
give the K-d elastic single and double scattering 
interference term. 
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K-d ~ K-pn angular distributions. Data points are from 
our experiment. Curves through these data points from 
fit of Case r. Lower curves in each graph give the 
break-up reaction single and doub.le scattering interference 
term. 
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at small angles to above 30% at larger angles. The over-all effect of 

these interference terms on the fitted curves is barely noticeable when 

we make a comparison between the distributions fitted with these interference • 

terms and those obtained with no interference terms. This is reflected 

2 2 
in the small change in x values in each case. These x values are given 

in Tables VI and VII for cases I and II, respectively. However the 

fitting parameters, given in Tables VI arid VII, are very sensitive to 

these changes. These results show up in the K-n angular distributions, 

which we plot in Fig. 18 for Case I. The solid curves are the K-n elastic 

scattering cross-sections obtained from fits which included the interference 

terms, the dashed curves from fits not using these terms. The data points 

with error bars are the K-n distributions obtained from our break-up reaction 

events with the requirements that the proton momentum is less than 250 

MeV/c (i.e. spectator proton) and the neutron momentum is greater than 

250 MeV/c (non-spectator nuetron). The data points are normalized to 

the solid curves within the interval between -1.0 and 0.6. 

4. Angular Distributions 

Figure 16 shows the angular distributions in -t for the K-d elastic 

scattering reaction. The data points shown with error bars are our 

experimental points. The smooth curves are taken from our simultaneous 

fits given by Case L Figure 16 shows that the fits to the K-d elastic 

scattering data are generally reasonable. 2 
The x for just these elastic 

scattering data points turns out to pe about the same as the number of 

these data points. This holds true even for the 910 MeV/c data, though 

2 
the over-all x at this incident momentum turned out to be large (see 

Table III). 

This tendency for elastic scattering data to fit well holds true 
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Table VI. Parameter values obtained in Case r. 
R, A, B refer to parameters given in Eq. IV-2. 

·•' 

Fit with single-double scattering interference term. 

);.. 

Momentum (Mev/c) 810 910 1010 1110 

1/ rJ'2 R) (Bev/ c) -l 3.28±0.20 5-78±0.47 5.04±1.18 2. 35±0.18 

ReA 2 l/2 (mb-Bev .) 1.00±0.13 -0.46±0. 31 -0. 38±0. 90 0. 36±0.10 

I rnA (mb-Bev2 )1/ 2 
l. 55±0.03 0.95±0.03 1.26±0.07 2.00±0.04 

ReB 2 l/2 (mb-Bev ) 1.69±0.50 -0.10±1. 30 -0. 70±1. 70 2.61±0. 99 

ImB 2 l/2 (mb-Bev ) 0. 92±0. 26 0.39±0. 70 0.99±1.05 -l. 94±1.17 

2 
80.7 151.7 25.9 47.2 X 

Fit without single-double scattering interference term. 

Momentum (MeV/c) 810 910 1010 1110 

1/ rJ2 R) ( Bev / c ) -l 3-35±0.24 8.13±1.10 7·75±0.92 3.69±0.19 

ReA (mb-Bey2)1/ 2 0. 85±0 .15 -0. 57±0. 71 -l. 49±1. 25 l. 36±0 .12 

ImA (mb-Bev
2

)1/ 2 1.55±0.01. 0.94±0.03 1.20±0.05 2.14±0.03 

ReB (mb-Bey2)1/ 2 1.16±0.52 -0.13±1.65 -2.94±4.84 -0.53±0.41 

ImB (mb-Bel)1/ 2 0.64±0.30 1.60±1.42 -3-58±5.03 1.00±0.82 

2 
X 82.6 153.6 23.5 50.8 



Table VII. Parameter values obtained in Case II. s
11

, 
P11, P

13 
are the ~hree background waves 

used in the 2nd K n parametrization. 

Fit with single-double scatterjng interference term. 

Momentum (Be'f/c) 810 910 1010 1110 

0.29±0.05 -0.04±0.07 0.17±0.06 0.31±0.05 

0.23±0.04 -0.24±0.04 0.14±0.04 0.13±0.05 

0.31±0.03 0.07±0.06 0.11±0.02 0.02±0.07 

0.26±0.03 0.27±0.05 0.27±0.03 0.45±0.06 

o.o7±o.o6 -o.l4±o.lo o.o6±0.05 ~o.o4±o.lo 

0.14±0.05 0.23±0.08 0.13±0.05 0.44±0.09 

32.0 148.8 32.6 47.4 

Fit without single-double scattering interference term. 

Momentum (Be V /c) 810 910 1010 1110 

Re s
11 

0.18±0.05 -0.03±0.06 0.20±0.06 0.35±0.05 

Im s
11 

o.22±o.o3 -0.29±0.02 o.o6±o.o5 o.lo±o.o4 

Re P
11 

0.22±0.03 o.o6±0.05 o.ll±O.o4 o.oJ+±o.o6 

Im pll 0.24±0.02 0.22±0.03 0.26±0.03 0.45±0.05 

Re pl3 

Im pl3 
2 

X 

0.05±0.05 -0.10±0.08 0.03±0.07 -0.01±0.09 

0.16±0.04 0.34±0.05 0.15±0.05 0.43±0.08 

52.3 194.6 66.2 76.2 
r:.' 

•· 
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K-n elastic scattering angular distributions. Data 
points are impulse approximation K-n distributions from 
our experiment. Solid curves .are from fit of Case I with 
single-double scattering interference terms. Dashed 
curves are without these terms. 
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generally for all our fits. The large contributions to the over-all x2 

come invariably from the break-up reaction distribution, particularly 

the large -t region. Figure 19 shows the break-up reaction data. Again 

the points with error bars are the experimental points. The solid curves 

shown result from fits of Case I with a Fermi energy spread r =0.125 Plab' j 

The dashed curves are the break-up reaction cross-sections obtained with 

no energy spread. Figure 19 shows that the fits to the data at 1010 MeV/c 

comes out rather well. The fits at 810 MeV/c and at 1110 MeV/c are not 

as good. And the one at 910 MeV/c is completely off. All these results 

are reflected in the over-all x2 values given in Table III. 

As pointed out in the previous paragraph, large x2 contributions come 

from data points at large -t values. In Case I, which gives the results 

of Fig. 19, we are using a K-n model with an exponential parametrization 

for the background amplitude. This term goes as ebt (see Sec. IV-C). At 
. 

large negative t, this background contribution to the K-n amplitude is 

small. Essentially, there are no parameters to vary to fit the data 

points at large scattering angles. The contributions to the break-up 

reaction cross-section in this region come mainly fr0m the non-varying 

resonant part of the K-n amplitude and from the fixed input qf the K-p 

distribution. Consequently, there are two possible reasons connected 

with the large x2 
contributions coming from data points in this large-angle 

region. One of t~ese is connected with the K p amplitude, the other with 

the K-n amplitude. In the case of K-p, the K p elastic scattering distribu

tions given by the K-p models discussed in Sec. IV-B may be too high in 

the backward region. This is especially true at 910 MeV/c. We show in 

Fig. 20 the K-p distributions used as input in our fitting. The solid 

curves are from the lst K-p model, the dashed curves from the 2nd. The 

data points shown are from our experiment, obtained with the impulse 
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Fermi energy spread. Dashed curves are without Fermi 
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approximation method described in Sec. rv~E-3. We have compared the K p 

angular distribution calculated from the 1st K-p model at 910 MeV/c 

momentum with the experimental distribution given by Ref. 25. The results 

indicate that the calculated distribution is higher by about 20 to 30% in 

the backward region. This could account for part of the discrepancy at 

large -t in our fit. In the case of the K-n amplitude, there are indications 

* that other Y1 resonances occur around the 910 MeV/c region besides the 

Y~(l66o) and the Y~(1765) used in our parametrization.34 If this were 

the case, our K-n amplitude should also include these. There is then a 

possibility that the K-n amplitude may be different in the backward 

direction, depending on the spin-parity assignments and the branching-

ratio of these new resonances into the KN channel. This may also account 

for part of the discrepancy in our fit. 

In contrast to Case I, which has zero degree of freedom in fitting the 

data points at large -t, Case II does have a certain freedom in this region. 

In Case II, the K-p amplitudes remained the same as in Case I. However, 

the K-n background amplitude included the s11, P11, and P
13 

waves 

instead of an exponential. These three partial waves afforded some 

latitude in fitting the large -t data points. The results of the fitting 

are given by the solid curves in Fig. 21. The dashed curves in this 

figure are from the results of Case I. 2 The x values are improved, as 

shown in Table III. However, this is accomplished at the expense of the 

K-n angular distributions, which we show in Fig. 22. The solid curves 

in this figure are the K n elastic scattering angular distributions 

obtained in Case I. The dahsed curves are from Case II. The data 

points are impulse approximation results, as described in Sec. IV-E-3. 



-82-

KPN CROSS-SECTION 
1000 . .-----------------------------------, 

0.81 BEU/C 
CASE II 

"' : 100.~~--------------------------------1 

u 

' :> 
w 
ro 

~· 10-~------------~~----~~~~------1 
0 

b 
0 

1 -~~-------.2~5--------_~s·o~------.~7~5------~1.0 

-T, !BEU/C)>o<2 

KPN CROSS-SECTION 
1000-r-----------------------------------, 

"' 

1.01 BEU/C 
CRSE II 

: 100-~.T-----~---------------------------; 

u 

' :> 
w 
ro 

' Q) 

:c 

~ 10-r------"~c.~-------~~~~--------__, 

0 

' b 
0 

1 -~~-----------~50~--------~1~.~0--------~1.5 

-T, !BEU/C)u<2 

KPN CROSS-SECTION 
1000 • .---~----------~------------------, 

"' 

0.91 BEU/C 
CASE II 

! 100 -~-------------'------.,----'-----------l 

u 

' :> 
w 
Q) 

' Q) 

:c 

~ 10 .1------------~~---------,-:;,..4=-i=~rl 

0 

' b 
C:l 

1 -~~--~---.2~5~------.5~0~------.~75~----~1.0 

KPN CROSS-SECTION 
1000.,-----------------------------------, 

"' 

1.11 BEU/C 
CASE II 

: 100.~----------------------------------4 

u 
' :> 
w 
Q) 

' Q) 

:c 

~ 10.~----~~-------------~~~~----~ 
0 

' b 
0 

1 -~'L-----------.s~o~--------~1-.0~--------~1.5 

Fig. 21. 

XBL 699-5688 

K-d ~K-pn angulars distributions. Solid 
curves from fit of Case II, dashed curves 
from fit of Case I. 



.. 

0 
00 
r-
(f) 

' 00 
>:: 

a 
0 

' b 
0 

0 
00 
t-
(f) 

' 00 
>:: 

c:j 
0 

' b 
0 

-83-

KN EL>lSTIC CROSS-SECTION KN EL>lSTIC CROSS-SECTION 
100. <O. ------

0. 81 BEU/C, 1 0. 91 BEU/C, I 

10. 

' I 
0 I 
00 I 
t- ' ' (f) ' ' ' 1.0 00 1.0 ' + >:: ' ' 

a 
0 

' b ' 

t+t 
.10 0 ' 

' ' ' ' / 

.01 .10 _........__.. ·-- --__ .. ________ . ......____ 
-1 .o -.50 .so 1.0 -1.0 -.so .50 '.0 

COS(KN-CMl COS(KN-CMl 

KN EL>lSTIC CROSS-SECTION KN EL>lSTIC CROSS-SECTION 
10.,---------------------------------~ 10. ---···-·------~---·· 

I 

I 

' 
I 

/ 
/ 

/ 

0 
00 
t-
(f) 

' 00 
>:: 

a 
0 

' b 
0 

1.11 BEU/C, I 

1.0 

' ' 

• <O 
-1.0 --~----o------:so--- 1.0 .10L...-----~---

-1.0 -.so . so 1.0 

Fig. 22. 

cosrKN-CMl COS(KN-CMl 

XBL 699-5686 

K-n elastic cross-sections. Solid curves from fit of 
Case I, dashed curves from fit of Case II. Data points 
are the impulse approximation K-n distributions from 
our experiment. 



-84-

From Fig. 22, we see that the Case II distributions (dashed curves) 

are depressed at large angles so as to give a better fit to the K-pn 

distributions in the large angle region. This again reflects the 

possibility that the input K-p distributions are high in the large angle 

region. 

For completeness, we include in Table VIII the angular distributions 

for K-d ~K-d. We show in Fig. 23 the calculated K-d ~K-pn angular 

distributions with no cut on the proton momentum. These curves are 

from Case I .. 

. • 
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Table VIII. K-d elastic scattering angular distributions. 

810 MeV/c 910 MeV/c 

-t (dcr/dt) -t (dcr/dt) 

(EeV/c)
2 

mb/(EeV/c)
2 

(EeV/c)
2 2 

~ .... mb/(EeV/c) 

0.02 0.03 150.7±15.3 0.02 0.03 114.6±6.6 

0.03 0.04 121.2±13. 7 0.03 0.04 97.5±6.1 

0.04 0.05 83. 9±11. 4 0.04 0.05 64.0±5.1 

0.05 0.07 49.7±6.2 0.05 0.06 59.4±4.8 

0.07 0.09 31.1±4. 9 0.06 0.07 38.5±3.8 

0.09 0.11 17.1±3.6 0.07 0.08 33.9±3.6 

0.11 0.14 10.4±2.3 0.08 0.10 22.5±2.1 

0.14 0.18 5.4±1. 5 0.10 0.12 14. 7±1. 7 

0.12 0.16 5.1±0.7 

0.16 0.20 1. 9±0. 4 

1010 MeV/c 1110 MeV/c 

0.03 0.04 111.8±7 .6 0.02 0.03 124.1±7 .o 

0.04 0.05 82.0±6.5 0.03 0.04 100.7±6.3 

0.05 0.06 56.2±5.3 0.04 0.05 68.2±5.2 

0.06 0.08 33.8±3.0 0.05 0.07 45.0±3.0 

0.08 0.11 16. 7±1. 7 0.07 0.09 28.4±2.4 

. 0.11 0.14 10.0±1.3 0.09 0.12 15.9±1.4 -~ 

0.14 0.18 3.2±0.6 0.12 0.16 5.7±0.7 

0.18 0.23 1. 6±0. 4 0.16 0.21 2.5±0.4 
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Fig. 23. Calculated K-d ~K-pn angular distributions with 
no cut on the proton momentum. 
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V. SUMMARY AND CONCLUSIONS 

We have presented experimental angular distributions for the 

reactions K-d ~K-d and K-d ~K-pn at four incident K momenta. To 

analyze this dat~ use was made of Glauber's impact parameter formalism 

forK--deuteron scattering. The break-up reaction cross-section formula 

was modified to take into account the proton momentum cut made in the 

scanning. We chose to do this by looking at diagrams corresponding to 

the break-up process. Using this method, we obtained the modifications 

to the cross-section formula arising from the proton momentum cut. In 

addition, we obtained modifications which arise from the difference in 

flux factors between K--deuteron and K--nucleon scattering and from the 

smearing of the nucleon cross-sections due to Fermi momentum. Finally, 

we extended this formalism to include spin dependence. 

Using this formalism thus modified, we fitted our K-d elastic 

scattering and break-up reaction data simultaneously. The deuteron cross

section formulae were expressed in terms of the K-p and K-n amplitudes. 

We input into these formulae the K-p amplitudes from two models based on 

experiment. The K-n amplitudes were parametrized with a variable back

ground on top of fixed resonances. The background parameters were 

varied to get a fit to our data. 

We have tried incorporating Fermi smearing and double scattering 

into our fits. Comparing the results, we found that the inclusion of 

Fermi smearing in the break-up reaction improved the x2 The effect of 

double scattering is small in this reaction, but is sizeable in the K-d 

elastic scattering, becoming more important as -t gets large. The 

inclusion of double scattering also improved the fit in most cases. 

Of the 4 combinations of fits, we tend to favor Case I. Though 
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2 Case II gave somewhat smaller x values, the fact that the K-n elastic 

scattering distributions are lower at large angles than the experimental 

K-n distributions obtained with a simple impulse approximation (see 

Fig. 22) makes Case II less attractive. 
2 

The improvement in x in 

Case II comes from the freedom that Case II parameters have in the large 

angle region, which may contain uncertainties in the K-p distr~butions. 

Case I does not have this freedom. As a result, it is less 

susceptible to the K-p uncertainties in this region. The K-n elastic 

distributions resulting from Case I also conform in shape to the 

experimental impulse approximation K-n distributions, as shown in Fig. 22. 

From our fits, we found that the total K-d elastic cross-section 

el - tot -
~Kd and the K n total cross section ~Kn were independent of the K p 

and K-n models we used. The reason for this is clear. Ultimately, these 

two quantities are tied through the optical theorem to the K~d and K-p 

total cross-sections, which we input and which are more precisely known. 

Consequently, these two quantities are less affected by the uncertainties 

present in our models. el On the other hand, ~Kn showed a marked model-

dependence. From the values given in Table III, its dependence on the K-p 

models is obvious. (Compare Cases I and II with cases III and IV.) 

Its dependence on the K n models is less clear cut. But from the 

difference in the two K-n angular distributions (from which ~~ is 

obtained) shown on each graph in Fig. 22, we see that there is a 

dependence Aspointed out at the end of Sec. IV-E-4, the difference in 

the two distributions given by the solid and the dashed curves in 

Fig. 22 result from the K-n amplitude compensating the K-p amplitude 

to fit the K-pn distributions at large angles. Thus we find that our 

determination of the K-n amplitudes depends critically on the input K-p 

models (which had no variable parameters). One way to remedy this is 

I 
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to use actual experimental K-p and/or charge exchange data and to do 

a simultaneous fit with both the K p and the K-n amplitudes free to 

vary. The possibility of doing this is now being investigated. 
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APPENDIX A 

We derive in this Appendix the expression for the scattering amplitude 

rr 
as given by Eq. III-2. The Schrodinger equation can be written as (~=C=l) ~ 

' (A-1) 

where k
2 

= 2~E, U(r) = 2~V(r), and~= ~m~(m1+m2 ) is the reduced mass. 

The definition of the scattering amplitude A(kf,ki) is given through the 

asymptotic wave function 

ik. ·r ikr 
,l,(r-)~ e ~ (- - ) e 
'I' +A kf,ki -r- (A-2) 

where ki is the incident momentum, kf the final momentum, and k = lkil = 

jkfl (elastic scattering). We define a function v(r) through 

Then Eq. A-2 implies 

Eq. A-1 can now be written as 

ikr 
e --r 

The Green's function for this equation is given by 

Using this, the solution v(r) for Eq. A-4 is then given by 

e iklr-r'l 

For r~oo, 2 112 r·r' I r-r' I~ ( r -2r J! cose) ~ ( r-r' cose), where cose = rr' . 

(A-3) 

(A-4) 

(A-5) 
... 
• 
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Using this, Eq. A-5 becomes 

Comparing with Eq. A-3, we get 

We note that kr' cose = kf · r' (since e is the angle between r' and r, and 

r is the position vector of the scattered particle). Thus we finally 

arrive at Eq. III-2, 
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APPENDIX B 

In this Appendix, we furnish the steps by which we go from Eq. III-8 

to Eq. III-9. Rewriting Eq. III-8, we get 
:~ 

( -) ikj 2- iq·bj 3- *(-) (-) Afi q = 2n d b e d r ~f r ~i r x 

11 }2- { -i<f·("b-s/2) (-) -iCi'·(b+s/2) (- ·)}. x -.-- d q' e A q' +e A q' 2nlk n p 
L 

l }d2-,d2 "A(-') A(-") -ib·(q'+q") i(q'-q")·s/2] 
- (2nik)2 . q q n q p q e e · 

Integrating over b gives 

Integrating out the a-functions gives 

A~i(q) = ~d3r w;(r)Wi(r) [An(q) eiq·S/2 
+ AP(q) 

- ~Jd2q, A (q') A (q-q') eis· (q' -Ci/2)] 
2nlk n p (B-1) 

respectively. Again using the small angle scattering approximation 

q·s ~ q·r, we can rewrite Eq. B-1 as 
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x A q_ e +A q_ e [ ( -) ir . q; 2 ( - ) - ir . g; 2 
n p 

..... 
1 }2- (- ) (- - ) ir· (ii'-cv2)] - -.- d q_' A q_' A q_-q_' e 

2:ro.k n p 

Integrating over r gives 3-dimensional a-functions which can be used to 

do the p' integration. Carrying this out, we have 

(B-2) 

We define the overlap integral 

Then Eq_. B-2 1with a change of variables q_rr = q'-qj2, can be written as 

Af . ( q) = Gf . ( qj 2) A ( gJ + Gf . ( - qj 2) A ( q) 
l l n l p 

(B-3) 

' ..... 
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APPENDIX C 

We derive in this Appendix the generalizations of Eqs. III-12, III-13, 

and III-18 to include spin dependence. Our starting point is Eq. III-9. 

We assume that the K-d amplitude has the form 

where 

M1 = Gf.(qj2) A (q)+Gf.(-q/2) A (q) 
l n l p (C-1) 

(C-2) 

Here we have defined ~ = ±q'+q/2. The spin dependence of the nucleon 

amplitudes is assume to be 

= f.(q) + iG-.·n g.(q), 
J J q J 

j n,p 

"' where n q 
is the unit normal to the scattering plane defined by 

jk.xql 
l 

the incident momentum k. and the momentum transfer vector q. We use a 
l 

hermitean representation for the Pauli matrices 0-j. Each 0-j (for j=n,p) 

satisfy the two relations 

1) [ (P-, ~ J 2iEcxt'rc1 

(C-3) 

2) (J"cx~ 

Ecxt'r is the completely anti-symmetric tensor of rank 3. We use the 

convention that all Greek indices run from 1 to 3, and repeated Greek 

indices are summed over this range. From these two relations we get 

I 
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Tr [ O"a] = o 

Tr [ (J"ac!]= 2oat3 

Tr [ O"a J3 c? ] = ~i ea~r 

The following relations are also needed~ 

l. Elastic Scattering 

= 25 
!J.V 

(c-4) 

(C-5) 

We consider first elastic scattering. The cross-section is given 

by Eq. III-29 (we take f=i), 

(~~) = !
3 

'Tr [ P
3
A +

1
. 

1
. ( gJ P

3 
A

1
. 

1
. ( q) J 

~" el 
( c-6) 

The first term of this equation is the single scattering contribution. 

The second is the interference between single and double scattering. The 

third term is due purely to double scattering. We evaluate first the 

single scattering term 

(
d(J")s 
dD el 

l 
- Tr 
3 

Using the hermitean conjugate of Eq. C-1, we can show that the commutator 

(C-7) 
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We use the following short-hand notation: 

fn = G(qj2) fn(g.) 

gn = G(qj2) gn(q) 

f = G(-qj2) f (q) p p 

gp = G(-qj2) gp(q) 

where G(q) = G .. (q) is the deuteron form factor. We have used this 
ll 

notation in Eq. C-7. The asterisk appearing in this equation denote 

(c-8) 

complex conjugation. We note also that a projection operator satisfy 

P2 p 
3 = 3. Using this fact and Eq. C-7, we can write 

Using the relations given in Eqs. C-3, C-4; and C-5, we can show that 

(C-9) 

With a similar procedure, we can show that 

(c.:.1o) 

Adding Eqs. C-9 and C-10 yields the single scattering cross-section 

(
d<r)s 2 2 2 
-'J() = If +f I + -3 I g +g I 
~6 el n p n p 

Written out explicitly, using the fact that G(qj2) = G(-qj2), this 

equation becomes 

The interference between the single and double scattering is given 

., 

! 
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by the second term of Eq. c-6. We denote this term by 

( C-12) 

Again we write, using Eq. C-8 and P
3

2 = P
3
,' 

Evaluating the second term of this equation gives 

* * 
(gn-gp) a f3 y i }'2-, - * * 

2 EO:f3ynq Tr(PJ~p~nM2 ) = 2nk d q G(q') (gn-gp) x 

X [ gp(q_) fn(q+) nq•nq- -gn(q+)fp(q_)nq•nq+ (C-13) 

+ gn (q+)gp(q_)nq· (nq xnq ) J 
+ -

Evaluating the first term gives 

From Eqs. C-12, C-13, and C-14, we get the single and double-scattering 

interference contribution to the elastic scattering cross-section 

where 

(d~)SD = 
dD el 

(C-15) 

Mnp == (f:(ii)+f;(ii)) {fn(ii+)fP(q_)- ~ gn(ii+)gP(q_)nq+·nq_} 

+} (g;(ii)+g;(ii))fgn(ii+)fP(ii_)nq·nq +gP(ii_)fn(ii+)nq·nq} l + I -
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2. Deuteron Break-up 

The break-up reaction cross-section is given by Eq. III-33, 

(C-16) 

Again the three terms on the right correspond to single scattering, 

interference between single and double scattering, and pure double 

scattering, respectively. We denote the single scattering term by 

(C-17) 

The spin structure of this equation is the same as Eq. C-10. However, 

rather than Eq. C-8, the amplitudes fn' gn' fp' and gp should be defined 

in the present case by 

f = Gf.(qj2) f (q), f = Gf.(-qj2) f (q) n J. n . p J. p 

Hence, reading off from Eq. C-10, Eq. C-17 becomes explicitly 

(C-18) 

·' 
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Using the closure approximation, we have from Eq. III-17 

L: G*f.(qj2) Gf.(qj2) = L: G*f.(-qj2) Gfl.(-qj2) = G(O) 
f l . l f l 

where G(q) is the deuteron form factor. Thus Eq. C-18 can be re-written 

as 

(C-19) 

The first bracket in this equation arises from neutron single scattering, 

the second from proton single scattering, and the third from their 

interference. 

Next we consider the second term of Eq. C-16. This is the 

interference between single and double scattering amplitudes. We 

denote this by 

(C-20) 

Again we note that the spin structure of this equation is the same as 

Eq. C-14. In this case, we have to replace each G(q) in Eq. C-14 by 

Gfi (q). We get for the cross-section explicitly 

( 
dcr ) SD l r_ 2- [ - - * : 1 - .l! - - ~ * : I ) ( - ) J drl Kpn = - :rrk Im Jd q' Mn ( q, cf); Gfi ( Yl 2)Gfi ( q;+Mp ( q, q';; Gfi ( -w 2 Gfi q' 

(C-21) 

where M (q,q') and M (q,q') are defined by 
n p 
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+g*(q)[g (q )f (q )~ -~ + _31 g (q )f (q )~ -~ n n + p - q q p - n + q q 
+ . -

+} gn(q+)gp(q_)~q·(~q xnq )] 
- + 

Mp ( q, q' )==f; ( q) [fn ( q+ )fp ( q_)- } gn ( q+ )gp ( q_)~q+ ·~q_ ] 

+g;(Ci)[gP(<i_)fn(<i+)nq·nq +} gn(<i+)fP(<iJflq.ilq 
- + 

+ !3 g (%)g (<i )~ ·(~ -xn )] . n P - q q+ q_ 

With the closure approximation relations, we can rewrite Eq. C-21 as 

( 
do- ) SD 1 f 2- [ ( - ) ( - -· ) ( - ) (- - ) J dQ Kpn == - nk~ Im d q' G q_ Mn q, q' + G q+ Mp q, q' 

3. Cross-Section Defect 

The K-d total cross-section is given by Eq. III-31, 

From Eq. C-1 and C-2 we get 

where 

Frc;>m Eq. C-2 

(Jd = (J + (Jp - do- ' n 

do- == 

Using the techniques described above, we get 

Tr [P
3

A (q) A (-q)J ~ 3[f (q)f'(-q)-R-·11- g (q)g (-q)J. n p n p q-qn p 

(C-22) 

(C-23) 

• 

.. ~ 
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" " Since n -= -n-, we finally get for Eq. C-23 -q q 

dcr =- 2
2 fa.2g_ G(q) Re [f (q)f (-q)+ !

3 
g (q)g (-q)J. 

k JL n p n p . (C-24) 

' 
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