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Abstract 

Kinematic specification of dynamics (KSD) states that full-
body kinematic patterns of daily activities are reflective of a 
person’s plans, goals, and intentions. Furthermore, it has been 
shown that observers of those activities are well attuned to 
differences between those kinematic patterns. However, 
despite a substantial body of research on the identification of 
intentional motion, it is not yet clear what the essential 
kinematic information is required to perceive the intention 
from the kinematic pattern. Therefore, we analyzed four 
different intentional full body motions (sit-to-stand 
transitions: stand, press-stand, press-sit, and reach-up), to 
determine the essential kinematic information that 
differentiates them. We utilized principal component analysis 
(PCA), linear mixed models, and hierarchical multinomial 
logistic regression to create two predictive regression models 
that allow us to successfully identify and distinguish the four 
intentional motions.  

Keywords: Intention Recognition; Kinematic Specification 
of Dynamics; Sit-to-Stand Transition; Point-Light Displays; 

Introduction 

     Activities that people perform in their daily lives are 

reflected in a person’s full body kinematic patterns 

(Johansson, 1973). Moreover, human observers can easily 

perceive even small differences in the patterns of a person’s 

motion profile (Ansuini, 2005; Becchio, Manera, Sartori, 

Cavallo, & Castiello, 2012; Richardson & Johnston, 2005). 

It has therefore been argued that the information humans 

derive from another person’s biological motion profile can 

be used to establish successful coordination with others 

(Pezzulo, Donnarumma, & Dindo, 2013; Sartori, Becchio, 

Bara, & Castiello, 2009) and with intelligent machines, such 

as robots (Vernon, Thill, & Ziemke, 2016). 

Kinematic Specification of Dynamics  

     In order to study biological motion, Johansson (1973) 

created the first point-light displays by attaching small lights 

to his participants and limiting the exposure of his camera 

recording to capture only those lights. Johansson called 

these recordings point-light displays and discovered that 

when he placed the lights on key joint centers, observers of 

the displays could identify that the moving points 

represented a person performing a specific action.  

 Runeson (1994) framed the findings behind point-light 

displays in his principle of kinematic specification of 

dynamics (KSD). The KSD principle postulates that because 

movement kinematics are lawfully related to the dynamics 

that produce a movement, the movement specifies the 

dynamics from which it arose. In other words, the relations 

among a person’s joint centers and joint angles specify the 

action that they are performing.  

Specification of Action Capabilities  

Overall, kinematic information has been shown to be 

remarkably rich. For example, point-light displays of an 

actor pretending to lift a heavy box are noticeably different 

from displays of the actor actually lifting a heavy box 

(Runeson, 1994). Furthermore, observing the kinematics of 

a person can not only specify the action that is being 

performed, it can also carry rich information about the 

action capabilities of the observed person. For example, 

Ramenzoni, Riley, Davis, Shockley, & Armstrong (2008) 

have shown that after observers view another person 

walking, they become more accurate at estimating the 

walker’s maximum reach-with-jump height. Additionally, 

after watching another person walk while wearing (unseen) 

ankle weights, observers are sensitive to reductions in the 

walker’s maximum reach-with-jump height caused by the 

additional weight. These findings indicate that a person’s 

general movement pattern provides sufficient information to 

make an educated judgment of a person’s action 

capabilities. 

Specification of Intention 

     Although it is evident that people can distinguish another 

person’s activities based on the kinematic structure of the 

displayed motion, there has been some debate about the 

richness of KSD in terms of social interaction and 
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intentions. In general, it is hypothesized that the 

intentionality as reflected in human motion can be used to 

understand another person’s action plans. Thus, one’s own 

actions can subsequently be adjusted in response to this 

understanding and smooth action coordination can be 

executed (Becchio, Sartori, Bulgheroni, & Castiello, 2008). 

However, Jacob & Jeannerod (2005) argued that the 

kinematics involved at the start of a chain of movements 

might not reflect the end goal of that chain of movements, 

meaning the kinematics might not accurately reflect the 

intention. They proposed a thought experiment involving 

the story of Dr. Jekyll and Mr. Hyde; the two identities 

belong to the same person, but the former is a renowned 

surgeon who performs surgeries on anesthetized patients. 

The latter is a dangerous sadist who performs the same hand 

movements on his non-anesthetized victims. Jacob & 

Jeannerod argued that if someone were to witness one of the 

two identities reaching and grasping for a scalpel, then it 

would be impossible to specify the social nature and 

intention through the grasping motion.  

    Several studies were performed in response to Jacob and 

Jeannerod’s thought experiment and found evidence against 

their claim. Ansuini, Giosa, Turella, Altoè, & Castiello 

(2008) showed that prior intention shapes kinematics by 

measuring prior-to-contact grasping kinematics for reach-to-

grasp movements performed toward a bottle filled with 

water. By comparing hand shaping across tasks involving 

different subsequent actions such as pouring the water into a 

container, throwing the bottle, and moving the bottle from 

one spatial location to another, the authors demonstrated 

how prior intention in grasping an object strongly affected 

the positioning of the fingers, the duration of the reaching, 

and the contact phase of the movement. Becchio et al. 

(2008) performed a similar experiment investigating 

differences between grasping an object to move it to another 

location and grasping an object to hand it to another person. 

The velocities and shapes of participants’ hands for both the 

opening and closing phases of the grasping movement were 

significantly different between the two conditions, as well as 

the trajectory of the movement during the passing phase. 

While Becchio and colleagues demonstrated that movement 

kinematics differ based on the social or operational 

intention, Manera, Becchio, Cavallo, Sartori, & Castiello 

(2011) showed that observers can also differentiate between 

distinct reaching intentions. They presented point-light 

displays of different grasping movements including a slow 

grasping movement, a fast grasping movement, a grasping 

movement with the cooperative intention of passing an 

object to another person, and a grasping movement with the 

competitive intention of grabbing an object before another 

person. With only access to the kinematic information of the 

initial forward movement, observers were able to accurately 

classify which of the four actions was being presented 72% 

of the time, indicating that the observed kinematic patterns 

may be used for action coordination during joint activities 

(see also Sartori et al., 2009). 

 

Kinematic Specification of Action and Intention 

     Although it has been shown that one's movement 

kinematics provide the information necessary for another 

person to identify one’s action capabilities and intentions, 

the informational basis for this ability has not been 

identified (though see Ansuini, Cavallo, Bertone, & 

Becchio, 2015). Therefore, in the current study, we adopted 

a similar approach to Weast-Knapp et al. (2019) who used 

Principal Components Analysis (PCA) to decompose the 

kinematic data of walking movements to isolate the 

informational basis for an observer trying to perceive a 

person’s action capabilities. However, rather than focusing 

on the informational basis to estimate a person’s action 

capabilities, here we explore a different type of full-body 

movement (sit-to-stand transition, STS) that was executed 

with different intentions that altered the basic STS motion 

(see Figure 1b) in order to identify the essential kinematic 

information of a full-body motion with varying intentions. 

To gain insight on how people can perceive intention from 

motion, we must first confirm if the essential kinematic 

information is different between the motions. If the 

differences exist, the next goal will be to confirm that 

humans can extract the same information. Therefore, this 

paper tackles the first goal of clarifying the essential 

kinematic structures for STS intentional motion.   

a) 

 

 
 

b) 

 
 Stand Press-stand Press-sit Reach-up 

 

Figure 1: a) Experimental setup for data collection as 

established and published in Patil et al. (2018). b) 

Intentional sit-to-stand transitions. 
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Method 

     In order to enable the analysis of intentional motion, we 

utilized one subset of a larger data set that was originally 

collected in context of understanding joint angle variations 

for exoskeleton control (Patil et al., 2018). The data subset 

was taken from a healthy, 28-year old male participant.  

Setup and Procedure 

     In order to induce four different intentional STS 

transitions, a setup was created by Patil et al. (2018) as 

shown in Figure 1a. A button was placed in front of 

participants at the shoulder height while sitting and 1.6-

times the arm length from the shoulder. A pull switch was 

positioned above the participant at a height of 0.8 times the 

arm length and at a distance of 0.5 times the arm length 

from the shoulder while standing. Motion data was recorded 

using a 20-camera 3D motion capture system (Motion 

Analysis Corporation, Santa Rosa, CA). A 29-marker set 

based on the Helen Hayes body marker placement protocol 

(Kadaba, Ramakrishnan, & Wootten, 1990) was used to 

track the motion. A screen was positioned at eye level in 

front of the participant to provide instructions for the 

specific trial. Every trial started with the participant sitting 

at a stool (height 45.72 cm) without any hand or back rests.  

The participants were shown a “ready” signal on the 

screen and, after 3 seconds, the instruction to perform any of 

four randomized tasks marked the go-signal.  The 

participants performed 100 trials of four intentional STS 

transition tasks (25 trials per intention): stand - the 

participants were asked to stand up at a comfortable speed 

without any intention of subsequent activity, press-stand - 

the participants were asked to stand up from the chair while 

pushing the button in front of them and finish standing up; 

press-sit - the participants  were asked to stand up from the 

chair while pushing the button in front of them and to then 

immediately sit back down; reach-up - the participants were 

asked to stand up to pull on the switch above their head and 

after pulling the switch finish standing up. For all trials, the 

participants were instructed not to use their hands to push 

down on the chair or their thighs during STS and not to lift 

their feet from the heel or toes during the trial. The 

participants were allowed to take breaks whenever they felt 

fatigued. For the purpose of the current analysis, we 

included the first four trials of each performed intentional 

sit-to-stand transitions within the data subset.  

Data Analysis and Results 

Determining Essential Principal Components 

     Seven of the original 29 markers (corresponding to the 

head, right shoulder, right elbow, right hip, right knee, right 

ankle, and right hand) were selected to form a simple 

sideview configuration of each motion with the right side of 

the body represented. We cut off each time series using the 

furthest point forward in the motion of the hip marker as 

shown in Figure 1b. This served to truncate the movement 

to the initial intention-expressing forward portion of rising 

from a seated position and excluded the stand-to-sit 

backwards transition. In the future, we plan to use this 

motion data to explore how human observer respond when 

viewing it. The Y and Z coordinates of the recorded 3-

dimentional motion data were used to perform a Euclidean 

transformation which provided one value for each marker 

for each frame of the data set (cf. Weast et al., 2019). The 

data was then submitted to PCA via R (base package: 

prcomp). PCA is a statistical tool that allows for the 

reduction of high-dimensional data with the goal of 

revealing hidden structure in the underlying relationship 

between variables. For example, previous research has 

utilized PCA to uncover the most important factors 

contributing to variation in movement kinematics in gait 

(Vallery & Buss, 2006), juggling (Post, Peper, & Beek, 

2003) and even the movements of cooperating actors 

(Ramenzoni, Riley, Shockley, & Baker, 2012). Here, we 

used PCA to reduce the seven-marker data set to a subset of 

principal components (PC) that captured the dynamics of 

the kinematic movements. We decided to use PCA rather 

than machine learning techniques, as we are interested in 

which joint centers hold the essential kinematic information 

to differentiate the motions. Though machine learning can 

help determine the presence of differences and classify each 

motion, it will not offer insight as to which body segments 

participate in providing the structure that differentiates 

movements. Subsequent analyses were performed on this 

subset to identify the activity of key markers for 

discriminating between intended movements.  

We completed 16 PCA analyses, one per STS motion file 

(4 intentions × 4 repetitions). Each PCA analysis yielded a 7 

(markers) × 7 (PC dimensions) matrix of coefficients, as 

well as a vector of the amount of total variance accounted 

for by each PC. The variance vectors were used as criteria to 

reduce the original data to those PCs that (1) accounted for 

at least 10% of the total variance in the motion pattern, and 

(2) provided sufficient variation between intentional 

movement profiles to be a useful candidate for future 

discrimination.  PC1 and PC2 reliably met criteria (1), 

suggesting that the data could be reduced to the first two 

PCs without much loss in information. To determine (2) we 

submitted the percent explained variance of each PC to a 

linear mixed effects model (R package: lme4) with intention 

as a fixed effect and instance (each intentional motion was 

performed four times) as a random effect. For the sake of 

brevity, we only report the F-tests (Satterthwaite’s degrees 

of freedom method) for overall significance of the models. 

Only models for PC1, F(3,12) = 47.49, p < .001, and PC2, 

F(3, 9) = 54.51, p < .001, were significant, suggesting that 

the amount of explained variance for both PC1 and PC2 

differed by intentional movement. For the remaining PCs 

this relationship was non-significant, supporting our choice 

to further analyze PC1 and PC2.  
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Elimination of Non-significant STS Markers in 

PC1 & PC2 

Having reduced the data to the first two PCs, two 

additional sets of linear mixed model analyses (7 per PC1 

and PC2; 14 total) were completed to establish whether the 

PCA coefficients for each marker systematically varied as a 

function of the intentional motion.  

 

Table 1. Results of linear mixed model for STS markers 

on PCs 1 and 2 

 

Marker Model PC1 Model PC2 

M1 (Head) F = 86.10, p < .001 * F = 4.82, p = .03 * 

M2 (Shoulder) F = 100.44, p < .001 * F  = 9.37, p = .004 * 

M3 (Elbow) F = 8.52, p = .003 * F = .57, p = .65 

M4 (Hip) F = 132.40, p < .001 * F = 19.64, p < .001 * 

M5 (Ankle) F = 3.10, p = .08 F = .09, p = .96 

M6 (Knee) F = 1.07, p = .41 F = .08, p = .97 

M7 (Hand) F = 3,132, p < .001 * F = 2.86, p = .10 

* candidate markers 

 

Again, intentional motion was entered into the model as a 

fixed effect with instance as a random effect. The purpose of 

this series of analysis was to further reduce the 

dimensionality of the data by identifying candidate markers, 

whose activity might be used to build a parsimonious model 

for predicting the intended motion. In short, we sought to 

determine which markers might qualify for submission to a 

predictive model for intention, as well as how few may be 

used to build a model that reliably discriminates between the 

intentional movements.  

As can be seen in Table 1, the analysis on PC1 revealed 

that the coefficients corresponding to markers M1, M2, M3, 

M4, and M7 varied systematically as a function of 

intentional motion; repeating this analysis for the 

coefficients in PC2, we found significant systematic 

variability for markers M1, M2, and M4. These sets of 

markers provided a list of variables to enter into subsequent 

regression analysis for PC1 and PC2.Table 2. Results of 

linear mixed model for STS markers on PCs 1 and 2  

Regressing Intention Categories onto Candidate 

Markers 

     Using our candidate markers, we performed two 

hierarchical multinomial logistic regressions (one for each 

PC) to determine which combination of markers was most 

parsimonious in reliably discriminating between the 

intentional movements. For the analysis along PC1, a single 

marker per hierarchical step was loaded into the regression 

model in order from largest to smallest PCA coefficient 

mean. This resulted in a statistically significant model 

containing markers M7 (hand) and M3 (elbow), which 

improved the likelihood of determining the corresponding 

intentions, above and beyond the null (chance) model, as 

well as all models formed by prior steps in the analysis (see 

Table 2). 

 

Table 2. Summary of model results for hierarchical 

multinomial regression for STS markers in PC 1. Only 

models that yielded a significant improvement are reported. 

 

Step Variables Entered df 
Likelihood 

Ratio 
p 

1 M7 42 35.81 < .001 

2 final M7 + M3 39   7.85    .049 

 M7 = hand, M3 = elbow 

 

We followed an identical method for PC2, hierarchically 

entering each marker into the regression model beginning 

with the marker possessing the largest PCA coefficient 

mean. The resulting model was statistically significant, 

containing M1, M2, and M4, and improved the likelihood of 

determining the corresponding intentions, above and beyond 

the null (chance) model, as well as all models formed by 

prior steps in the analysis (see Table 3). 

 

Table 3. Summary of model results for hierarchical 

multinomial regression for STS markers in PC 2. 

 

Step 
Variables 

Entered 
df 

 Likelihood 

Ratio 
p 

1 M1  42  6.37 < .001 

2 M1 + M2  39  13.10    .004 

3 final M1 + M2 + M4   36  14.88    .002 

  M1 = head, M2 = shoulder, M4 = hip 

Examining Improved Accuracy from Model 1 to 

Final Model 

     Finally, we compared the accuracy in intention 

categorization for each of the regression results by 

calculating the predicted probabilities derived from the 

fitted values of the Step 1 and final models. For brevity, we 

report the predicted probability of the true (correct) 

intentional movement given the PC coefficients for each 

marker. As expected, we observed significant improvement 

in predictive probabilities from the first to the final models. 

For both PC1 and PC2, the predicted probabilities of the 

final model that corresponded to the correct intention was 

greater than 95%. Moreover, this was achieved using 

relatively few markers (PC1: 2 out of 7, PC2: 3 out of 7). 

Our results suggest that, for PC1, hand and elbow marker 

activity appear to provide the essential kinematic 

information to differentiate movement categories (see Table 

4). 
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Table 4. Correct predicted probabilities of multinomial 

regression models using PC1. 

 

 PC 1: Predicted Probabilities 

Intention Model 1 Final Model 

Stand 97.99% 100% 

Press-stand 70.20% 97.03% 

Press-sit 86.50% 98.70% 

Reach-up 58.22% 95.78% 

 

For PC2, the reduction to head, shoulder, and hip suggests 

that these markers may contain the essential kinematic 

information to further differentiates movement categories 

(see Table 5). 

 

Table 5. Correct predicted probabilities of multinomial 

regression models using PC2 

Discussion 

     We aimed to identify the essential kinematic information 

available to observers for distinguishing intentional STS 

transitions.   

Overall, the results suggest that, while the four intentional 

STS transitions (stand, press-stand, press-sit, reach-up) are 

built upon similar motion profiles, there are distinct 

differences regarding the essential kinematic information 

along the first two PCs, which allows for the accurate 

differentiation of each intention by means of a specific 

subsets of markers. Analyses of the coefficients in PC1 and 

PC2 sufficiently capture the majority of the variance 

attributed to differentiating the four intentional STS 

transitions. Additionally, the stratification of specific 

markers within the two PCs allows us to specify (and 

differentiate) the essential kinematic structure of each 

intentional motion. This provided the opportunity to 

formulate regression models that were capable of accurately 

predicting intention, above and beyond chance level. Both 

predictive models allowed for the classification of each 

intentional STS transition with 95-100% accuracy.   

Thus, within each PC, there exists essential kinematic 

information that can be extracted from the time series of 

similar, yet distinct, intentional motions. Each marker in the 

final model, can then be understood as one of the essential 

communicators of intention for each STS transition. In turn, 

the variation in coefficients indicates how each marker 

contributes to the overall movement pattern of each 

intention.  

For example, analyzing PC1 showed that the majority of 

variance in the motion data can be explained by the markers 

reflecting the arm motion (i.e.: elbow and hand marker). 

Considering that the arm motion differed significantly 

across intentions (e.g. reaching up vs. reaching forwards), 

this result is consistent with expectations. Subsequently, 

analyzing PC2 indicated the presence of additional essential 

kinematic information in the head, shoulder, and hip 

markers, which distinguishes suprapostural differences in 

the kinematics of the full-body motion. 

Ultimately, our results reinforce empirical findings 

showing that humans are capable of visually distinguishing 

different intentional motion patterns (c.f. Ansuini, 2005; 

Becchio, Manera, Sartori, Cavallo, & Castiello, 2012; 

Pezzulo, Donnarumma, & Dindo, 2013; Sartori, Becchio, 

Bara, & Castiello, 2009) by revealing the essential 

information that defines and differentiates the kinematic 

structure of intentional motion. 
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