Lawrence Berkeley National Laboratory

LBL Publications

Title

EOSN: A TOUGH2 Module for Noble Gases

Permalink

https://escholarship.org/uc/item/8q6711ps

Authors

Shan, Chao Pruess, Karsten

Publication Date 2003-03-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

EOSN: A TOUGH2 Module for Noble Gases

Chao Shan and Karsten Pruess Earth Sciences Division

March 2003

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

EOSN: A TOUGH2 Module For Noble Gases

Chao Shan and Karsten Pruess

Earth Sciences Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720

March 2003

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies, of the U.S. Department of Energy under contract No. De-AC03-76SF00098

Abstract

We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO₂, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2/EOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

Table of Contents

1. Introduction	5
2. Treatment of Diffusion in TOUGH2	7
3. Gas Diffusivity Model	
4. Model for Henry's Coefficients	
5. New Data Block	16
6. Sample Problems	
6.1. Sample Problem 1 - Transport of Noble Gases to an Extraction Well.	
6.2. Sample Problem 2 - One-Dimensional Noble Gas Transport	
7. Conclusions	
Acknowledgments	
References	

List of Figures

Figure 1. Diffusivity in saturated water vapor as a function of temperature for air an	d
six gases	12
Figure 2. Henry's coefficients as a function of temperature for air and six gases	15
Figure 3A. TOUGH2 input file for sample problem 1	19
Figure 3B. Selected output for sample problem 1	20
Figure 3C. Produced noble gas mass fractions in the gas phase for sample problem	1 21
Figure 4A. TOUGH2 input file for sample problem 2	23
Figure 4B. Selected output for sample problem 2	24
Figure 4C. Noble gas mass fractions in the gas phase at production end for sample	
problem 2	25

List of Tables

Table 1. Constants for calculating the dimensionless parameter Ω_D	10
Table 2. Gas parameters	11
Table 3. Coefficients used to calculate Henry's coefficients for seven gases	13
Table 4a. Set of data points used for calculating the coefficients for CO_2	14
Table 4b. Set of data points used for calculating the coefficients for air	14

1. Introduction

Among many TOUGH2 fluid property modules, EOS7R is the one that can simulate two-phase, five-component flow and transport problems. The two phases are the water and gas phases, and the five components are water, brine, air and two radionuclides (Oldenburg and Pruess, 1995). Pruess et al. (2000) used TOUGH2 with the EOS7R module to simulate the transport of different tracers in a geothermal reservoir. These tracers included R-134a, tritium, neon, and xenon. The natural availability and chemical stability make some gases, especially noble gases, good tracers in studying transport processes in the subsurface. Phase partitioning and gas diffusion are two important mechanisms that affect transport processes. For trace gases, phase partitioning can be described using Henry's law, and gas diffusion using Fick's law. Each law is characterized by a coefficient: the Henry's coefficient and the gas diffusivity. Laboratory experiments have shown that both coefficients are temperature dependent. For noble gases and some other gases such as carbon dioxide (CO_2) , this thermodynamic effect is so strong that it may significantly affect results in cases of large temperature variations. In fact, the dependence of noble gas solubility on temperature is sufficiently strong as to make monitoring of noble gas concentration in subsurface water of meteoric origin a useful tool for determining recharge temperature (Ballentine and Hall, 1999). Information on multi-phase processes (boiling, condensation) can also be obtained.

TOUGH2/EOS7R requires users to input Henry's coefficients and gas diffusivities as constant values, which is both inconvenient and inaccurate for strongly non-isothermal systems. In applying TOUGH2/EOSN, users only need to give the names of the two gases; all required thermodynamic properties are provided internally. There are, however, options for users to overwrite internal molecular weights for modeling user-specified isotopes. Currently there are six user-selectable gases: He (helium), Ne (neon), Ar (argon), Kr (krypton), Xe (xenon), and CO₂ (carbon dioxide). The capability to model radioactive decay by means of half-life is already included in EOSN. We provide the new capabilities by adding two subroutines into TOUGH2: NOHEN for calculating the temperaturedependent Henry's coefficients for the three gas components (air and two user-selected

gases), and GASDIF for calculating their temperature- and pressure- dependent diffusivities in the gas phase. We set diffusivities for the two other components (water and brine) to zero in both (aqueous and gas) phases. We also set a default value of 10^{-9} m²/s for diffusivities of the three gas components (air and two user selected gases) in the aqueous phase. There is an option, however, for users to specify aqueous phase diffusivities for all five components through the data block, DIFFU (Pruess et al., 1999).

2. Treatment of Diffusion in TOUGH2

TOUGH2 uses an "advective-diffusive model" (ADM) in which total mass flux of a component is computed as the sum of advective and diffusive fluxes. It is well established that for gases the advective and diffusive fluxes are coupled, as given by the dusty gas model (Mason and Malinauskas, 1983; Webb, 1998). However, Webb and Pruess (2001) have shown that for trace gases the dusty gas model reduces to the ADM, and this is the approximation used here. The diffusive flux of component κ in phase β (= aqueous, gas) is written as (Pruess et al., 1999)

$$\mathbf{f}_{\beta}^{\kappa} = -\phi \tau_{0} \tau_{\beta} \rho_{\beta} d_{\beta}^{\kappa} \nabla X_{\beta}^{\kappa} \tag{1}$$

where ϕ is porosity, $\tau_0 \tau_\beta$ is the tortuosity which includes a porous medium-dependent factor τ_0 and a coefficient τ_β that depends on phase saturation S_β [i.e., $\tau_\beta = \tau_\beta (S_\beta)$], ρ_β is density, d_β^{\star} is the diffusion coefficient of component κ in the bulk fluid phase β , and X_β^{\star} is the mass fraction of component κ in phase β . According to Eq. (1), each fluid component diffuses separately under its own mass fraction gradient and with its own diffusion coefficient. Diffusion coefficients for gases are calculated internally as functions of pressure and temperature (see Section 3), while aqueous phase diffusion coefficients are taken as constants, with no provisions for temperature dependence of these parameters.

It is convenient to define a single diffusion strength factor that combines all material constants and tortuosity factors into a single effective multiphase diffusion coefficient, as follows.

$$\sum_{\beta}^{\kappa} = \phi \tau_0 \tau_{\beta} \rho_{\beta} d_{\beta}^{\kappa} \tag{2}$$

For general two-phase conditions, the total diffusive flux can then be written as the sum of diffusive fluxes in aqueous and gas phases.

$$\mathbf{f}^{\kappa} = -\sum_{l}^{\kappa} \nabla X_{l}^{\kappa} - \sum_{e}^{\kappa} \nabla X_{e}^{\kappa}$$
(3)

Space discretization of Eq. (3) in multiphase conditions raises some subtle issues (Pruess et al., 1999). Generally speaking, it is not permissible to evaluate space-discretized

expressions separately in gas and aqueous phases and then add them, because this ignores the coupling between diffusion and phase partitioning. The default option in TOUGH2, selected with MOP(24) = 0, fully accounts for such coupling and can cope with the most general case of diffusion across a phase boundary. As an alternative, by setting MOP(24) = 1, diffusive fluxes can be evaluated separately in gas and aqueous phases and then added.

Tortuosity effects have a porous medium-dependent part τ_0 and a saturationdependent part τ_{β} , as indicated in Eq. (1). The following three alternative formulations are available.

1. Relative permeability model

For domains whose tortuosity parameter $\tau_0 = \text{TORTX} \neq 0$ is specified in data block ROCKS, tortuosity will be taken as $\tau_0 \tau_\beta (S_\beta) = \tau_0 k_{r\beta} (S_\beta)$. Here, $k_{r\beta}$ is the relative permeability to phase β .

2. Millington model

For domains where TORTX = 0, the Millington (1959) model will be used

$$\tau_0 \tau_\beta = \phi^{1/3} S_\beta^{10/3} \tag{4}$$

3. Constant diffusivity model

Diffusivities d_{β}^{κ} may optionally be user-specified as negative numbers. Then $\tau_0 \tau_{\beta} = S_{\beta}$ will be used for tortuosity, and the absolute values of the users' input will be taken as the diffusivities.

Alternative 3 corresponds to the formulation for gas diffusion in earlier versions of TOUGH2. In the absence of phase partitioning and adsorptive effects, it amounts to effective diffusivity being approximately equal to d_{β}^{κ} , independent of saturation. This can be seen by noting that in the mass balance equation for component κ (Pruess et al., 1999) the contribution to the accumulation term from phase β is given by $\phi S_{\beta} \rho_{\beta} X_{\beta}^{\kappa}$, approximately canceling out the $\phi S_{\beta} \rho_{\beta}$ coefficient in the diffusive flux.

A crude (saturation-independent) enhancement of vapor diffusion can be chosen by specifying a suitable value, typically of order 1, for the parameter group $B = \phi \tau_0 \tau_\beta$. This is to be entered as parameter BE in the first record in data block PARAM.

3. Gas Diffusivity Model

The thermodynamic noble gas diffusivity is calculated using the following equation modified from Reid et al. (1987):

$$D_{AB} = 0.01881 \times T^{3/2} \cdot M_{AB} / (P \cdot \sigma_{AB}^{2} \cdot \Omega_{D})$$
(5)

Equation (5) requires fixed units for all parameters. D_{AB} is the diffusivity of Gas A (air or the noble gas of interest) in Gas B (water vapor in TOUGH2), in m²/s. T is temperature, in K. P is pressure, in Pa. M_{AB} is defined by:

$$M_{AB} = \sqrt{(M_A + M_B)/(M_A \cdot M_B)}$$
(6)

where M_A and M_B are the molecular weights of Gases A and B, respectively.

The other two parameters in (5) are: σ_{AB} , a characteristic length, in angstrom; and Ω_D , a dimensionless coefficient defined by

$$\Omega_D = A \cdot (T^*)^{-B} + C \cdot e^{-DT^*} + E \cdot e^{-FT^*} + G \cdot e^{-HT^*}$$
(7)

where A through H are eight gas-independent constants, and T^* is a modified temperature that is defined by:

$$T^* = T / (\mathcal{E}_{AB} / k) \tag{8}$$

where \mathcal{E}_{AB} is the geometric mean characteristic Lennard-Jones energy of gas A and B (Reid et al., 1987); k is the Boltzmann constant.

The values of the eight constants are given in Table 1.

Table 1. Constants for calculating the dimensionless parameter Ω_D

Α	B	С	D	E	F	G	Н
1.06036	0.1561	0.193	0.47635	1.03587	1.52996	1.764744	3.89411

The other three parameters, M_{AB} , σ_{AB} , and ε_{AB}/k are gas-specific. Their values for five noble gases, CO₂, and air are given in Table 2. Although air is a mixture of different gases (mainly nitrogen and oxygen), here we treat it as a single pseudo-component.

	He	Ne	Ar	Kr	Xe	CO ₂	Air
M _{AB}	0.552594	0.317797	0.288662	0.259692	0.251205	0.279742	0.300064
σ_{AB}	2.596	2.7305	3.0915	3.148	3.344	3.291	3.176
€ _{AB} /k	90.93405	162.9064	274.7527	380.4576	432.3218	397.412	252.181

Table 2. Gas parameters

We define water vapor as Gas B and calculate these gas-specific constants. The rationale is that the thermodynamic effect on gas diffusivity is significant only in an environment with large temperature variation such as in geothermal reservoirs, where water vapor is the dominant component in the gas phase. For most other groundwater problems, temperature is in the range of 10 °C to 20 °C, and air is likely the dominant component in the gas phase. As a result, using the above constants may cause some error. However, the thermodynamic effect is usually insignificant for those problems and users may not want to consider it at all.

Equation (5) is programmed in the subroutine GASDIF of TOUGH2/EOSN, and the constants listed in the two tables are used in the subroutine GASDIF. For two-phase conditions in a pure water system, P is a function of T so that D_{AB} in (5) is actually a function of temperature only. Figure 1 shows the calculated temperature-dependent diffusivity in saturated water vapor for all seven gases.

Figure 1. Diffusivity in saturated water vapor as a function of temperature for air and six gases

4. Model for Henry's Coefficients

According to Henry's law, the partial pressure of a non-condensable gas (NCG) in the gas phase is proportional to the mole fraction of the dissolved NCG in the aqueous phase (Prausnitz et al., 1986)

$$P_{NCG} = K_h \cdot x_{aq}^{NCG} \tag{9}$$

The coefficient K_h in (9) is the Henry's coefficient and has units of pressure (Pa in TOUGH2). We use the model introduced by Crovetto et al. (1982) to calculate the Henry's coefficient as a function of temperature for gases.

$$K_{\mu} = 10^9 \cdot e^{a_0 + a_1/t + a_2/t^2 + a_3/t^3}$$
(10)

where the variable t is one thousandth of temperature in K, i.e.

$$t = 0.001 \times T \tag{11}$$

Equation (10) is an empirical one that is fitted against the calculated K_h using experimental data of Crovetto et al. (1982). The four coefficients in (10) are gas-specific, and their values for seven gases used in TOUGH2 are given in Table 3.

	He	Ne	Ar	Kr	Xe	CO ₂	Air
<i>a</i> ₀	-8.792806	-7.2590	-9.5200	-6.2920	-3.9020	-18.0239	-20.0899
<i>a</i> ₁	7.847946	6.9500	8.8300	5.6120	2.4390	18.6643	21.6153
<i>a</i> ₂	-1.573777	-1.3826	-1.8959	-0.8881	0.3863	-6.1679	-6.8549
<i>a</i> 3	0.075541	0.0538	0.0698	-0.0458	-0.2211	0.6078	0.7116

Table 3. Coefficients used to calculate Henry's coefficients for seven gases

The coefficients for Ne, Ar, Kr, and Xe are taken directly from Crovetto et al. (1982). The coefficients for He are obtained by fitting the Smith (1985) data for He to the Crovetto et al. (1982) model. For CO₂ and air we chose four data points for each gas from Naumov et al. (1974), and substituted them into (10). This provided four linear equations for a_0 through a_3 , which were solved simultaneously to obtain the coefficients for CO₂ and

air as shown in Table 3. Naumov et al. (1974) only provided the Henry's coefficient data for oxygen and nitrogen (D'Amore and Truesdell, 1988). We assumed that air is simply a mixture of 21% oxygen and 79% nitrogen, and used the following formula to estimate the Henry's coefficient for air (Pruess and Battistelli, 2002):

$$K_{h(Air)} = \frac{1}{(0.21/K_{h(O_2)} + 0.79/K_{h(N_2)})}$$
(12)

The data points used for calculating the coefficients for CO_2 and air are listed in Tables 4a, and 4b, respectively.

Table 4a. Set of data points used for calculating the coefficients for CO₂

<i>T</i> (°C)	10	90	170	350
K_h (MPa) – CO ₂	103.76	492.95	718.60	235.88

Table 4b. Set of data points used for calculating the coefficients for air

<i>T</i> (°C)	50	80	210	350
K_h (MPa) – air	9439.48	10083.7	4918.15	1017.06

The coefficients of Table 3 are stored in data blocks in subroutine NOHEN of TOUGH2/EOSN for calculating K_h using (10). The resulting Henry's coefficients as functions of temperature are shown in Figure 2.

5. New Data Block

A major change in preparing TOUGH2/EOSN input files is the new data block NOBLE that requires two records, one for the two user-selected gases. Users need to choose two gases from the six gases: He, Ne, Ar, Kr, Xe, and CO_2 , and input one name on each line. Users may also specify the molecular weight and half-life of the selected gases, partly or wholly.

In most cases, the new data block NOBLE is sufficient for providing modeling data. In some rare cases, users may want to use two optional data blocks SELEC and DIFFU. SELEC is needed only when brine properties are different from internally provided data. If there is a need for such a specification, users are recommended to specify IE(1) = 1 or 2 in Record SELEC.1 such that only the required number of additional records (SELEC.2 and SELEC.3) will be read. The use of DIFFU is for specifying the diffusivities in water for the five components: water, brine, noble gas #1, noble gas #2, and air, respectively. If DIFFU is not used, default diffusivities for five components (1 - water, 2 - brine, 3 - noble gas #1, 4 - noble gas #2, and 5 - air) in water will be used as follows: $D_{w1} = D_{w2} = 0$, $D_{w3} =$ $D_{w4} = D_{w5} = 10^{-9} \text{ m}^2/\text{s}$. The formats of SELEC, DIFFU, and all other data blocks are the same as those in standard TOUGH2 (Pruess et al., 1999). The data formats and instructions for NOBLE are as follows.

NOBLE: keyword to introduce a data block with names of two user-selected gases, as well as (optionally) their molecular weights and half-lives.

Record NOBLE.1

Format (A3, 7X, 2E10.4, I2)

GASNAME(1), GMW1, THALF1, INOBLE

GASNAME(1): the name of the first selected gas. Currently users may choose from only six gases. They are He, Ne, Ar, Kr, Xe, and CO2. Names are case-sensitive and must be entered exactly as indicated. All names must be typed starting from the first column.

- GMW1: the molecular weight (g/mole) of the first selected gas. This input is **optional** and can be left blank (or set 0) so that TOUGH2/EOSN will use the internally stored standard value for the first selected gas.
- THALF1: the half-life of the first selected gas, in seconds. This input is **optional** and can be left blank (or set 0) so that TOUGH2/EOSN will use the internally stored default value of 10⁵⁰, which implies no decay.
- INOBLE: an **optional** index to turn off temperature dependence of Henry's coefficients and gas phase diffusivities. If users input a non-zero integer such as 1, the program will keep using the Henry's coefficients and gas phase diffusivities that are calculated at the user-specified initial temperature. This option is provided for comparison only, and should not be used for field applications.

Record NOBLE.2

Format (A3, 7X, 2E10.4)

GASNAME(2), GMW2, THALF2

- GASNAME(2): the name of the second selected gas. Currently users may choose from only six gases. They are He, Ne, Ar, Kr, Xe, CO2. Names are case-sensitive and must be entered exactly as indicated. All names must be typed starting from the first column.
- GMW2: the molecular weight (g/mole) of the second selected gas. This input is **optional** and can be left blank (or set 0) so that TOUGH2/EOSN will use the internally stored standard value for the second selected gas.
- THALF2: the half-life of the second selected gas, in seconds. This input is **optional** and can be left blank (or set 0) so that TOUGH2/EOSN will use the internally stored default value of 10⁵⁰, which implies no decay.

6. Sample Problems

Here we use TOUGH2/EOSN to demonstrate temperature effects in two different problems under different conditions. The first problem was previously presented by Pruess et al. (2000). The second is a simple one-dimensional advection-diffusion problem with relatively large temperature variations. For both problems, we ran the simulation twice: with full temperature dependence of gas diffusivities and Henry's coefficients (INOBLE = 0) and without such temperature dependence (INOBLE = 1).

6.1. Sample Problem 1 - Transport of Noble Gases to an Extraction Well

A central well in a geothermal reservoir with a uniform thickness of 500 meters produces at a constant rate of 20 kg/s. The reservoir is homogeneous and the flow is radial. An impermeable boundary is set at a radial distance of 1000 meters. The reservoir has the following initial conditions: pressure of 33.479 bar, gas saturation of 20%, temperature of 240 °C, and aqueous phase mass fractions of 10^{-12} , 2.44×10^{-11} , and 2.142×10^{-11} for brine, neon (Ne), and xenon (Xe), respectively. The mass fractions of the noble gases correspond to equilibrium solubility at T = 10 °C for atmospheric abundances of isotopes, ²²Ne and ¹³²Xe. Our interests are the variations of mass fractions (in the gas phase) of Ne and Xe at the production well.

Using MESHMAKER we divided the domain into 31 elements along the radial direction. We then simulated the production process for 30 years. The input file for the case with full temperature dependence (INOBLE = 0) is given in Figure 3A.

Part of the printout after 50 time steps is given in Figure 3B, where we see clear decreasing trends for pressure, temperature, water saturation, and mass fractions of noble gases towards the production well.

*SAM1B	*	1-D radia	l flow wit	ch Ne & Xe.	Case B: I	NOBLE=0	,	
MESHMA	KER1-	*2-	*3-	*4-	*5-	*б	*7	*8
RZ2D								
RADII								
T	E 16							
FOUTD	5.40				•	· .		
цотр 1		0.3						
LOGAR						•		
20		1.e2		· .				
LOGAR								
10		1.e3					•	
LAYER-	1-	*2-	*3-	*4-	*5-	*6	*7	*8
1	500							
	500.							
ROCKS-	1-	*	*3	*	*5_	*6	*7	*8
POMED	2	2600	.04	43.2e-15	43 2e-15	43 2e-15	2.51	1000
LOUID	2	2000.		19.20 19	15.20 15	13.20 13	2.51	1000.
7		.4438	0.80	1.	.05			
7		.4438	0.00E-2	8.734e-05	5.e8	1.0		
MULTI-	1-	*2-	*3-	4-	*5-	*6	*7	*8 [′]
5	6	2 8					· · _	
START-	1-	*2-	*3-	*4-	*5-	*6	*7	*8
PARAM-	1	MOP: 12345	6/89^1234:	20 2	*5-	*0	*/~-	*8
2 J	00	946 728e6	-1	31 5576e6				
	1.e3	9.e3	, - .	51.557000				
- 1	.e-5	1.e-5						
		33.479e5		1.e-12		2.440e-11	. 2	.142e-11
		10.20		240.				
SOLVR-	1-	*2-	*3-	*4-	*5-	*б	*7	*8
5 Z1	00	8.0e-1	1.0e-7		. –		. –	
SELEC~	1-	*2-	*3-	*4-	*5-	*6	*7	*8
T	1	•						
NOBLE-	1.e5	*	*3	*1-	*	*6	*7	*8
Ne	T	22	0	0	j_	0_	···· ·· · · · · · · · · · · · · · · ·	0
Xe		132.	0.	0				
INCON-	1-	*2-	*3-	*4-	*5-	*6	*7	*8
	•							
FOFT -	1-	*2-	*3-	*4-	*5-	*6	*7	*8
A1 1								
							_	_
GOFT -	1-	*2	*3-	*4-	*5-	*6	*7	*8
OFNER	1	+ ^	+ ~	* *		+ -	÷ 7	
5ENER-	1- 1 1	2	3-	4- MACC	5-		^-/	
WT TM	er T			MASS	-20.			
ENDCY-	1-	*2	*3-	*4-	*5-	*6	*7	*8

Figure 3A. TOUGH2 input file for sample problem 1

ITERATING	AT [1. 1]	DELTEX = 0.100000E+04	MAX. RES. = 0.103827E+02 AT E	LEMENT A1 1 EQUATION	5
ITERATING	AT [1, 2]	DELTEX = 0.100000E+04	MAX, RES. = 0.758958E+00 AT E	LEMENT A1 5 EQUATION	5.
ITERATING	AT [1. 3]	DELTEX = 0.100000E+04	MAX, RES. = 0.808232E-01 AT E	LEMENT A1 2 EQUATION	5
A1 2(1, 4)	ST = 0.100000E	E+04 DT = 0.100000E+04 DX1=	216495E+05 DX2= 0.213770E-13 1	r = 239.632 P = 3326250.	S = 0.217241E+00
ITERATING	AT [2, 1]	DELTEX = 0.900000E+04	MAX. RES. = 0.257404E+01 AT E	LEMENT A1 1 EQUATION	5
ITERATING	AT [2, 2]	DELTEX = 0.900000E+04	MAX. RES. = 0.751154E+00 AT E	LEMENT A1 10 EQUATION	5
ITERATING	AT [2, 3]	DELTEX = 0.900000E+04	MAX. RES. = 0.958358E-01 AT E	LEMENT A1 1 EQUATION	5
A1 2(2, 4)	ST = 0.100000E	E+05 DT = 0.900000E+04 DX1=	548908E+05 DX2= 0.589594E-13 T	P = 238.689 P = 3271360.	S = 0.261158E+00
ITERATING	AT [3, 1]] DELTEX = 0.900000E+04	MAX. RES. = 0.223814E+00 AT E	LEMENT A1 8 EQUATION	5
ITERATING	AT [3, 2]	DELTEX = 0.900000E+04	MAX. RES. = 0.777234E+00 AT E	LEMENT A1 9 EQUATION	5
ITERATING	AT [3, 3]] DELTEX = 0.900000E+04	MAX. RES. = 0.679020E-02 AT E	LEMENT A1 1 EQUATION	5
Al 4(3, 4)	ST = 0.190000E	E+05 DT = 0.900000E+04 DX1=	277743E+05 DX2= 0.313204E-13 1	= 238.538 P = 3262618.	S = 0.268169E+00
ITERATING	AT [4, 1]] DELTEX = 0.900000E+04	MAX. RES. = 0.937637E-01 AT E	LEMENT A1 12 EQUATION	5 '
ITERATING	AT [4, 2]	DELTEX = 0.900000E+04	MAX. RES. = 0.661534E+00 AT E	LEMENT A1 9 EQUATION	5
ITERATING	AT [4, 3]	DELTEX = 0.900000E+04	MAX. RES. = 0.206486E-02 AT E	LEMENT A1 1 EQUATION	5
A1 2(4, 4)	ST = 0.280000E	E+05 DT = 0.900000E+04 DX1=	200681E+05 DX2= 0.250557E-13 1	r = 237.832 P = 3222075.	S = 0.300755E+00
ITERATING	AT [5, 1]] DELTEX = 0.900000E+04	MAX. RES. = 0.658156E-01 AT E	LEMENT A1 13 EQUATION	5
ITERATING	AT [5, 2]] DELTEX = 0.900000E+04	MAX. RES. = 0.619808E+00 AT E	LEMENT A1 9 EQUATION	5
ITERATING	AT [5, 3]] DELTEX = 0.900000E+04	MAX. RES. = 0.105861E-02 AT E	LEMENT A1 1 EQUATION	5
A1 1(5, 4)	ST = 0.370000E	E+05 DT = 0.900000E+04 DX1=	154866E+05 DX2= 0.218244E-13 T	P = 237.405 P = 3197732.	S = 0.322943E+00
ITERATING	AT [6, 1]] DELTEX = 0.900000E+04	MAX. RES. = 0.514660E-01 AT E	LEMENT A1 14 EQUATION	5
ITERATING	AT [6, 2]] DELTEX = 0.900000E+04	MAX. RES. = 0.438910E+00 AT E	LEMENT A1 8 EQUATION	5
ITERATING	AT [6, 3]] DELTEX = 0.900000E+04	MAX. RES. = 0.687613E-03 AT E	LEMENT A1 1 EQUATION	5
A1 3(6, 4)	ST = 0.460000E	E+05 DT = 0.900000E+04 DX1=	125018E+05 DX2= 0.164330E-13 T	P = 237.520 P = 3204262.	S = 0.315107E+00
ITERATING	AT [7, 1]	DELTEX = 0.900000E+04	MAX. RES. = 0.405896E-01 AT E	LEMENT A1 15 EQUATION	5
ITERATING	AT [7, 2]	DELTEX = 0.900000E+04	MAX. RES. = 0.471397E+00 AT E	LEMENT A1 7 EQUATION	5
ITERATING	AT [7, 3]] DELTEX = 0.900000E+04	MAX. RES. = 0.508508E-03 AT E	LEMENT A1 1 EQUATION	5
A1 2(7, 4)	ST = 0.550000E	E+05 DT = 0.900000E+04 DX1=	106709E+05 DX2= 0.147948E-13 1	P = 237.153 P = 3183400.	S = 0.331941E+00
ITERATING	AT [8, 1]	DELTEX = 0.900000E+04	MAX. RES. = 0.367082E-01 AT E	LEMENT A1 15 EQUATION	5
ITERATING	AT [8, 2]	DELTEX = 0.900000E+04	MAX. RES. = 0.404409E+00 AT E	LEMENT A1 4 EQUATION	5
ITERATING	AT [8, 3]] DELTEX = 0.900000E+04	MAX. RES. = 0.416910E-03 AT E	LEMENT AL 1 EQUATION	5
A1 4(8, 4)	ST = 0.640000E	E+05 DT = 0.900000E+04 DX1=	915444E+04 DX2= 0.123266E-13 1	r = 237.375 P = 3196015.	S = 0.321759E+00
•••					

SAM1B	1-D	radial	flow	with	Ne	£	Xe.	Case	Bt	TNOBLE=0
010110	 ÷ •	I GGIGI	~ ~ ~ ~ ~ ~	W L C A A		~		çubc	•••	1100000-0

OUTPUT DATA AFTER (50, 4)-2-TIME STEPS

THE TIME IS 0.188657E+02 DAYS

TOTAL TIME KYC ITER ITER KOR DXIM DXIM DXIM DXIM MAX. RES. NER KER DELTEX 0.163000E+07 50 4 197 2 0.37231E+04 0.60830E+13 0.60855E+12 0.52701E+08 5 5 0.72000E+05 SEGESSEGESSEGESSEGESSEGESSEGESSEGESSEG	000000	888888	888666666666	866666	8888888	886866666666666666666666666666666666666		000000000000000000000000000000000000000	89886866666666	388888888888888888888888888888888888888	3666666666666	366666666666	666666666666
Best State P T SL XBRINE(LIQ) XRN1(LIQ) XRN2(LIQ) XAIRG XRN1(GAS) XRN2(GAS) DL A1 1 0.29276E+07 0.23249E+03 0.33348E+00 0.232688E+01 0.28355E+11 0.29980E+11 0.40050E+05 0.36991E+08 0.16850E+08 0.82372E+00 A1 2 0.29374E+07 0.23247E+03 0.46648E+00 0.15925E+11 0.28335E+11 0.40103E+05 0.36991E+08 0.16850E+08 0.82372E+00 A1 4 0.29456E+07 0.23236E+00 0.15245E+11 0.2846E+11 0.40103E+05 0.36991E+08 0.16857E+08 0.82372E+00 A1 4 0.29515E+07 0.23336E+00 0.15245E+11 0.2846E+11 0.40147E+05 0.37032E+08 0.16891E+08 0.82372E+00 A1 4 0.29361E+07 0.23361E+03 0.5146E+11 0.2945E+11 0.40223E+05 0.37032E+08 0.82372E+00 A1 0.30361E+07 0.23361E+03 0.53174E+00 0.14622E+11 0.30472E+11 0.40451E+05 0.3732E+08 0.16977E+08	TOTAL 0.1630	TIME 00E+07	КСҮС 50	ITER 4	ITERC 197	KON 2 0	DX1M .37293E+04	DX2M 0.60890E-13	DX3M 0.60865E-12	MAX. RE: 0.52701E	5. NER -08 5	KER 5	DELTEX 0.72000E+05
ELEM. INDEX P T SL XBRINE(LIQ) XRN1(LIQ) XNN2(LIQ) XAIRG XRN1(GAS) XRN2(GAS) DL A1 1 0.23276E+07 0.23248E+03 0.33348E+00 0.23688E+11 0.23855E+11 0.29406E+11 0.40060E+05 0.36952E=08 0.16850E+06 0.82372E+00 A1 4 0.29486E+07 0.2328E+03 0.47620E+00 0.16595E+11 0.28313E+11 0.28146E+11 0.40178E+05 0.37009E+08 0.16876E+08 0.82374E+00 A1 4 0.29486E+07 0.2328E+03 0.46677E+00 0.16645E+01 0.28174E+11 0.28174E+11 0.40178E+05 0.37062E+08 0.16876E+08 0.82374E+00 A1 6 0.29916E+07 0.2316E+03 0.51178E+00 0.15466E+11 0.2945E+11 0.40238E+05 0.3702E+08 0.16977E+08 0.82374E+00 A1 7 0.30031E+07 0.23436E+03 0.5479E+00 0.13272E+11 0.30428E+05 0.37329E+08 0.16977E+08 0.82374E+00 A1 10 0.30438E+107 0.2	669696	366696	866666666666666666666666666666666666666	666666	8868686	89999999966996	6666666666666	666666666666666666666666666666666666666	966666666666666666666666666666666666666	3666666666666666	399998868888888		
Al 1 1 0.29276E+07 0.23249E+03 0.33348E+00 0.23688E-11 0.28355E-11 0.27980E-11 0.40060E-05 0.36952E-08 0.16850E-08 0.82372E+03 2 0.29374E+07 0.23267E+03 0.46688E+00 0.16292E-11 0.28335E-11 0.28141E-11 0.40102E-05 0.37092E-08 0.16867E-08 0.82372E+03 0.29465E+07 0.23236E+03 0.47620E+00 0.15297E-11 0.28317E-11 0.28306E-11 0.40122E-05 0.37032E-08 0.16867E-08 0.82372E+03 0.47677E+00 0.15245E+11 0.29174E-11 0.29246E-11 0.40122E-05 0.37032E-08 0.16867E-08 0.82372E+03 0.29365E+07 0.23358H+03 0.49677E+00 0.15266E-11 0.29174E-11 0.29245E-11 0.40178E-05 0.37032E-08 0.16917E-08 0.82275E+03 1 6 0.29916E+07 0.23359E+03 0.91678E+00 0.15466E-11 0.29476E-11 0.29245E-11 0.40231E-05 0.37102E-08 0.16917E-08 0.82275E+03 1 7 0.30091E+07 0.23436E+03 0.54190E+00 0.15466E-11 0.29276E-11 0.29245E-11 0.40231E-05 0.37122E-08 0.16917E-08 0.82215E+00 1 8 0.30283E+07 0.23436E+03 0.54190E+00 0.14622E-11 0.3027E-11 0.29245E-11 0.40231E-05 0.37229E-08 0.16917E-08 0.82141E+03 1 9 0.30488E+07 0.23436E+03 0.55474E+00 0.14622E-11 0.3027E-11 0.29245E-11 0.40261E-05 0.37229E-08 0.16977E-08 0.82141E+03 1 0 10 0.30707E+07 0.23548E+03 0.55674E+00 0.14291E-11 0.3027E-11 0.29245E-11 0.40618E-05 0.37428E+08 0.17022E-08 0.8201E+00 1 1 0.30938E+07 0.23548E+03 0.5593E+00 0.13335E-11 0.3131E-11 0.30345E-11 0.40618E-05 0.37428E+08 0.17022E-08 0.8201E+00 1 1 1 0.30938E+07 0.23548E+03 0.6538E+00 0.12522E-11 0.3213E-11 0.30345E-11 0.40618E-05 0.3746E+08 0.17171E-08 0.81735E+00 1 1 1 0.30338E+07 0.23548E+03 0.6538E+00 0.12522E-11 0.3213E-11 0.3131E-11 0.40518E-05 0.3746E+08 0.17171E-08 0.81735E+00 1 1 1 1 0.30345E+07 0.23648E+03 0.6538E+00 0.12522E-11 0.3271E-11 0.41525E-05 0.38866E+0 0.17171E-08 0.81735E+00 1 1 5 0.3131E+07 0.23649E+03 0.6786E+00 0.11141E+11 0.38217E-11 0.33266E-11 0.4358E+05 0.49517E+08 0.8175E+00 1 1 4 14 0.31677E+07 0.2368E+03 0.7385E+00 0.11141E+11 0.38217E-11 0.3386E+11 0.4358E+05 0.49517E+08 0.8156E+06 1 1 3 0.32660E+07 0.2389E+03 0.7385E+00 0.11141E+11 0.38217E+11 0.3338E+11 0.4358E+05 0.49512E+08 0.8156E+06	ELEM.	INDEX	P (PA)	(DE	Т G-С)	SL	XBRINE (LIQ) XRN1(LIQ)	XRN2 (LIQ)	XAIRG	XRN1 (GAS)	XRN2 (GAS)	DL (KG/M**3)
A1 25 0.33475E+07 0.23999E+03 0.79971E+00 0.10004E-11 0.23034E-10 0.20394E-10 0.24306E-07 0.10159E-07 0.81362E+03 A1 26 0.33479E+07 0.24000E+03 0.79996E+00 0.10000E-11 0.24227E-10 0.21290E-10 0.27258E-04 0.25551E-07 0.1059E-07 0.81361E+03 A1 27 0.33479E+07 0.24000E+03 0.79996E+00 0.10000E-11 0.24227E-10 0.21290E-10 0.27433E-04 0.25551E-07 0.10664E-07 0.81361E+03 A1 28 0.33479E+07 0.24000E+03 0.80000E+00 0.10000E-11 0.24400E-10 0.21411E-10 0.27433E-04 0.25730E-07 0.10664E-07 0.81361E+03 A1 28 0.33479E+07 0.24000E+03 0.80000E+00 0.10000E-11 0.24400E-10 0.21420E-10 0.27445E-04 0.25743E-07 0.10668E-07 0.81361E+03 A1 29 0.33479E+07 0.24000E+03 0.80000E+00 0.10000E-11 0.24400E-10 0.27447E-04 0.25743E-07 0.10668E-07 0.81361E+03 A1 30 0.33479E+07 0.24000E+03 0.80000E+00 0.1	A1 1 A1 2 A1 3 A1 4 A1 5 A1 6 A1 6 A1 6 A1 7 A1 8 A1 9 A1 10 A1 10 A1 11 A1 12 A1 13 A1 15 A1 16 A1 15 A1 16 A1 19 A1 20 A1 20 A1 22 A1 22 A1 22 A1 22 A1 22 A1 22 A1 24 A1 24	1 2 3 4 5 6 7 7 8 9 10 4 12 13 14 15 16 15 16 19 4 20 4 22 4 22 4 22 4	0.29276E+07 0.29374E+07 0.29486E+07 0.2956E+07 0.2956E+07 0.30091E+07 0.30091E+07 0.30283E+07 0.30282E+07 0.31278E+07 0.31278E+07 0.312182E+07 0.32875E+07 0.3266E+07 0.3320E+07 0.3420E+07 0.3420E+07 0.3420E+07 0.3420E+07 0.3420E+07 0.3420	0.232 0.232 0.233 0.233 0.233 0.234 0.234 0.234 0.235 0.235 0.235 0.236 0.237 0.237 0.238 0.238 0.238 0.238 0.239 0.239 0.239	49E+03 67E+03 88E+03 12E+03 39E+03 69E+03 01E+03 36E+03 74E+03 55E+03 43E+03 88E+03 32E+03 82E+03 97E+03 97E+03 97E+03 97E+03 90E+03 97E+03 90E+03 97E+03	0.33348E+00 0.46688E+00 0.46687E+00 0.498672E+00 0.51178E+00 0.52622E+00 0.55874E+00 0.55874E+00 0.55939E+00 0.65938E+00 0.65588E+00 0.7558E+00 0.75178E+00 0.75178E+00 0.77940E+00 0.77940E+00 0.79852E+00 0.79852E+00	0.23688E-11 0.16925E-11 0.16599E-11 0.15245E-11 0.152466E-11 0.15049E-11 0.14622E-11 0.14622E-11 0.14191E-11 0.13760E-11 0.12522E-11 0.12142E-11 0.12142E-11 0.11448E-11 0.11448E-11 0.1065E-11 0.10623E-11 0.10419E-11 0.1025E-11 0.1035E-11 0.10057E-11 0.10057E-11	0.28355E-11 0.28533E-11 0.28533E-11 0.2974E-11 0.29451E-11 0.29451E-11 0.30123E-11 0.30123E-11 0.30527E-11 0.30527E-11 0.32871E-11 0.32871E-11 0.34925E-11 0.34925E-11 0.36440E-11 0.45831E-11 0.54488E-11 0.54488E-11 0.54488E-11 0.5448E-11 0.54472E-11 0.18681E-10	0.27980E-11 0.28141E-11 0.28306E-11 0.28306E-11 0.2874E-11 0.28962E-11 0.29245E-11 0.29925E-11 0.30345E-11 0.30345E-11 0.3026E-11 0.32911E-11 0.32911E-11 0.32946E-11 0.40212E-11 0.40212E-11 0.40455E-11 0.51121E-11 0.62136E-11 0.81268E-11 0.1702E-10 0.1702E-10	0.40060E-05 0.40103E-05 0.40132E-05 0.40147E-05 0.4023E-05 0.4023E-05 0.4023E-05 0.40261E-05 0.40261E-05 0.40469E-05 0.40469E-05 0.41547E-05 0.41547E-05 0.4358E-05 0.4358E-05 0.4358E-05 0.4936E-05 0.54053E-05 0.54053E-05 0.74607E-05 0.7457E-05 0.7457E-05 0.7457E-05 0.7457E-05 0.7457E-05 0.7457E-05 0.74132E-04	0.36952E-08 0.36991E-08 0.37032E-08 0.37032E-08 0.37102E-08 0.3715E-08 0.3715E-08 0.3725E-08 0.3726E-08 0.3746E-08 0.3734E-08 0.38886E-08 0.49917E-08 0.45512E-08 0.45512E-08 0.49867E-08 0.68860E-08 0.68860E-08 0.68860E-08 0.99017E-08 0.19726E-07	0.16850E-08 0.16876E-08 0.1687E-08 0.1691E-08 0.16919E-08 0.16919E-08 0.16917E-08 0.17025E-08 0.17035E-08 0.17035E-08 0.17035E-08 0.17035E-08 0.17731E-08 0.17731E-08 0.18104E-08 0.18104E-08 0.22720E-08 0.22724E-08 0.22724E-08 0.22724E-08 0.25914E-08 0.3128E-08 0.3	0.82397E+03 0.82372E+03 0.82372E+03 0.82312E+03 0.82235E+03 0.82235E+03 0.82291E+03 0.82091E+03 0.81980E+03 0.81980E+03 0.81920E+03 0.8159E+03 0.81674E+03 0.81674E+03 0.81506E+03 0.81461E+03 0.8142E+03 0.81394E+03 0.81375E+03 0.81375E+03
	A1 25 A1 26 A1 27 A1 28 A1 29 A1 30 A1 31	25 26 27 28 29 30 31	0.33475E+07 0.33479E+07 0.33479E+07 0.33479E+07 0.33479E+07 0.33479E+07 0.33479E+07	0.239 0.240 0.240 0.240 0.240 0.240 0.240 0.240	99E+03 00E+03 00E+03 00E+03 00E+03 00E+03 00E+03	0.79971E+00 0.79996E+00 0.80000E+00 0.80000E+00 0.80000E+00 0.80000E+00	0.10004E-11 0.10000E-11 0.10000E-11 0.10000E-11 0.10000E-11 0.10000E-11 0.10000E-11	0.23034E-10 0.24227E-10 0.24388E-10 0.24400E-10 0.24400E-10 0.24400E-10 0.24400E-10	0.20394E-10 0.21290E-10 0.21411E-10 0.21420E-10 0.21420E-10 0.21420E-10 0.21420E-10	0.25955E-04 0.27258E-04 0.27433E-04 0.27446E-04 0.27447E-04 0.27447E-04 0.27447E-04	0.24306E-07 0.25561E-07 0.25730E-07 0.25743E-07 0.25743E-07 0.25743E-07 0.25743E-07	0.10159E-07 0.10604E-07 0.10668E-07 0.10668E-07 0.10668E-07 0.10668E-07 0.10668E-07	0.81362E+03 0.81361E+03 0.81361E+03 0.81361E+03 0.81361E+03 0.81361E+03 0.81361E+03

Figure 3B. Selected output for sample problem 1

A time series of simulation variables at the production well were recorded in file FOFT, and gas phase mass fractions of noble gases are plotted in Figure 3C. Results with and without temperature dependence are virtually identical in this problem.

6.2. Sample Problem 2 - One-Dimensional Noble Gas Transport

In this hypothetical problem we have a 10-meter long horizontal homogeneous porous rock column with a uniform cross-sectional area of 1 m^2 . The column has a low permeability of 10^{-18} m^2 (1 microdarcy) and is initially at equilibrium conditions with a pressure of 24 bar, a gas saturation of 10%, and a temperature of 200 °C. The initial mass fractions for brine and two noble gases (Ne and Xe) are exactly the same as those in sample problem 1. Mass and heat are removed at the surface of one end of the column by setting constant pressure of 1 bar and temperature of 50 °C at the surface, where noble gas concentrations are assumed to be zero (Figure 4A). A no-flow boundary condition is assigned to the other end of soil column. We are interested in the variations of mass fractions of Ne and Xe in the column.

Starting from the no-flow end we divided the domain into 10 elements along its length. Each element is one meter long, numbered sequentially from the no-flow end. The input file is given in Figure 4A.

Part of the printout after 100 time steps is given in Figure 4B, where we see a clear decreasing trend for pressure, temperature, and water saturation towards the discharge boundary at BND 1. The mass fractions of air and noble gases in the gas phase, however, show a non-monotonic behavior. This occurs because the lowered temperature causes water vapor condensation and thus the mass fractions for non-condensable components to increase. The process is simulated for 5 years.

SAM2B	1-D diff	usion with	Ne & Xe. C	ase B: INC)BLE=0		
ROCKS1-		*3-	*	*5-	*6	*	*8
MATRX 2	2600.	0.25	1.e-18	1.e-18	1.e-18	2.51	1000.
7	0 5	0 1	1	0.05			
· 7	0.5	0 09	1 -04	5.68	1 0	· · · ·	
,	0.5	0.05	1.6 04	9.60	1.0		
MIII TT 1-	*?	*3.	*44	*5-	*6	*7	*8
5 6	2 8	5	1	5	, ,		
START1-	*2	*3	*4-	*5-	*6	*7	*8
PARAM1-	MOP - 1234	56789*1234	56789*1234	*5-	*6	*7	*8
29000	1001000		30 2		Ũ		Ũ
25000	1 5768-8	600	360000				
1 6-5	1.570000		500000.				
1.0 5	24 65		1 0-12	·	2440e-11	2	142e-11
	10 10		200		2.440C II		.1420 11
FLEME1-	*2	*3.	*4-		*6	*7	*8
	1 1	1		<u> </u>	, a U	,	Ũ
BND 1		1.					
DIND T	T						
CONNE	*	*	*4-	*5-	*6	*7	*8
	8 1	1 1	05	05	1 0	,	. 0
AAA10BND 1	0 1	± ± 1	0.5	1 - 10	1.0		
MATODAD I		-	0.5	1.0 10	1.0		
TNCON1-	*2	*3	*4-	*5-	*6	*7	*8
BND 1		2	-	5	Ū	•	Ū
	1 65		1 e-12		0		0.
	10 10		50		0.		
	10.10		50.				
SOLVB1-	*2	*3	*4-	*5-	*6	*7	*8
5 71 00	8.0e-1	1.0e-7	·	5	÷	•	-
SELEC1-	*2	*3	*4-	*5-	*6	*7	*8
1		0	-	5	Ū		•
-1.e5							
NOBLE1-	*2	*3.	*4_	*5-	*6	*7	*8
Ne	22	ຸດັ	0	2	· ·		•
Xe	132	0	Ū				
FOFT1-	*2	*3.	*4-	*5-	*6	*7	*8
AAA10	~	Ū	-	5			
GOFT1-	*2	*3.	*4-	*5-	*6	*7	*8
	2	5	-	5	5	,	0
GENER1-	*2	×	*	*5-	*6	*7	*8
	2	5		5		•	U
ENDCY1-	*2	*3.	*4-	*5-	*6	*7	*8
	-	-	-	-	-	-	-

Figure 4A. TOUGH2 input file for sample problem 2

ITERATING AT [1, 1] DELTEX = 0.600000E+03 MAX.RES. = 0.820133E-03 AT ELEMENT AAA10 EQUATION 6
AAA10(1, 2) ST = 0.600000E+03 DT = 0.600000E+03 DT = $68788E+04$ DX2= $644325E+18$ T = 199.840 P = 2393212. S = $0.100213E+00$
TTERMING AT $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ DELIEA - 0.120000F404 MAX RES. = 0.10000F2-02 AT ELEMENT ANALO EQUATION 5
AA10(2, 3) ST = 0.180000F+04 DT = 0.120000F+04 DX1=131450E+05 DX2=102550E+17 T = 199.521 P = 2380067. S = 0.100637E+00
ITERATING AT [3, 1] DELTEX = 0.240000E+04 MAX. RES. = 0.327231E-02 AT ELEMENT AAA10 EQUATION 6
ITERATING AT [3, 2] DELTEX = 0.240000E+04 MAX. RES. = 0.183286E-03 AT ELEMENT AAA10 EQUATION 5
AAA10(3, 3) ST = 0.420000E+04 DT = 0.240000E+04 DX1=258947E+05 DX2=218106E-17 T = 198.888 P = 2354172. S = 0.101476E+00
ITERATING AT [4, 1] DELTEX = 0.480000E+04 MAX. RES. = 0.652281E-02 AT ELEMENT AAA10 EQUATION 6
ITERATING AT [4, 2] DELTEX = 0.480000E+04 MAX. RES. = 0.424592E-03 AT ELEMENT AAA10 EQUATION 5
AAA10(4, 3) ST = $0.900000E+04$ DT = $0.480000E+04$ DX = $5283E+05$ DX = $481425E-17$ T = 197.636 P = 2303914 . S = $0.103114E+00$
ITERATING AT $[5, 2]$ DELITE = 0.960000E-04 MAX, RES. = 0.129590E-01 AT ELEMENT AGAIN EQUATION 5 THERMOTING AT $[5, 2]$ DELITE = 0.960000E-04 MAX, RES. = 0.1219590E-01 AT ELEMENT AGAIN EQUATION 5
$\frac{112}{12} \frac{112}{12} \frac{1}{12} \frac{1}{1$
TTERATING AT [6 1] DELTEX = 0.10024/1.00 MAX RES = 0.25276E-01 AT ELEMENT AA10 FOLIATION 6
ITERATING AT [6, 2] DELTEX = 0.192000E+05 MAX. RES. = $0.282569E-02$ AT ELEMENT AAA10 EQUATION 5
AAA10(6, 3) ST = 0.378000E+05 DT = 0.192000E+05 DX1=169126E+06 DX2=268198E-16 T = 190.541 P = 2040025. S = 0.111992E+00
ITERATING AT [7, 1] DELTEX = 0.384000E+05 MAX. RES. = 0.498277E-01 AT ELEMENT AAA10 EQUATION 6
ITERATING AT [7, 2] DELTEX = 0.384000E+05 MAX. RES. = 0.753809E-02 AT ELEMENT AAA10 EQUATION 5
ITERATING AT [7, 3] DELTEX = 0.384000E+05 MAX. RES. = 0.103458E-04 AT ELEMENT AAA10 EQUATION 5
AAA10 $\{7, 4\}$ ST = 0.762000E+05 DT = 0.384000E+05 DX1=273028E+06 DX2=622423E-16 T = 182.073 P = 1766997. S = 0.121767E+00
ITERATING AT [8, 1] DELTEX = 0.3840002-05 MAX. RES. = 0.473175E-01 AT ELEMENT AAA10 EQUATION 6
TTERATING AT $\{8, 2\}$ DELTEX = 0.384000E+05 MAX. RES. = 0.7051278-02 AT ELEMENT AGAIN EQUATION 5
$\begin{array}{c} \text{AMALU}(0, 5) & 51 = 0.1140000200 \text{ JI} = 0.0364000200 \text{ JI} = 0.210035200 \text{ JI} 0.2220010042-10 \text{ JI} = 1.4.337 \text{ F} = 1.330230.5 = 0.1300302-00 \text{ JI} = 0.0000000000000000000000000000000000$
TUPERATING AT $[-9, 2]$ DELINE = 0.70000000 FAR. RES. = 0.138344F-01 AT ELEMENT AAA10 EQUATION 0
ITERATING AT $\begin{bmatrix} 9, 3 \end{bmatrix}$ DELTEX = 0.768000E+05 MAX. RES. = 0.326306E-04 AT ELEMENT AAA10 EQUATION 5
AAA10(9, 4) ST = 0.191400E+06 DT = 0.768000E+05 DX1=298292E+06 DX2=117253E-15 T = 161.421 P = 1258005, S = 0.142666E+00
ITERATING AT [10, 1] DELTEX = 0.768000E+05 MAX. RES. = 0.810462E-01 AT ELEMENT AAA10 EQUATION 6
ITERATING AT [10, 2] DELTEX = 0.768000E+05 MAX. RES. = 0.988582E-02 AT ELEMENT AAA10 EQUATION 5
ITERATING AT [10, 3] DELTEX = 0.768000E+05 MAX. RES. = 0.150359E-04 AT ELEMENT AAA10 EQUATION 5
AAA10(10, 4) ST = 0.268200E+06 DT = 0.768000E+05 DX1=196902E+06 DX2=904798E-16 T = 150.532 P = 1061104. S = 0.152281E+00
ITERATING AT [11, 1] DELTEX = 0.768000E+05 MAX. RES. = 0.729294E-01 AT ELEMENT AAA10 EQUATION 6
ITERATING AT [11, 2] $$ DELTEX = 0.768000E+05 MAX. KES. = 0.651091E-02 AT ELEMENT AAA10 EQUATION 5 $\Delta \lambda \lambda 10/13 = 31 \text{ cm} = 0.26500E+06 \text{ cm} = 0.26900E+05 \text{ cm} = 1.22470E+6 \text{ cm} = 710525E+16 \text{ m} = 141.326 \text{ cm} = 0.2225E \text{ cm} = 0.26975EE+00.2000E+0.2000E+0.20$
$\frac{1}{1} \frac{1}{1} \frac{1}$
TTERATING AT $\begin{bmatrix} 12 \\ 2 \end{bmatrix}$ DELICK = 0.153600E+06 MAX RES = 0.103761E-01 AT ELEMENT AAA10 EQUATION 5
ITERATING AT [12, 3] DELTEX = 0.153600E+06 MAX. RES. = 0.224911E-04 AT ELEMENT AAA10 EQUATION 5
AAA10(12, 4) ST = 0.498600E+06 DT = 0.153600E+06 DX1=164505E+06 DX2=977301E-16 T = 127.725 P = 759119. S = 0.169785E+00
SAM2B* 1-D diffusion with Ne & Xe. Case B: INOBLE=0
OFFPERT DATA AFTER (100. 3)-2-TIME STEPS THE TIME IS 0 368826E403 DAY

TOTAL TIME KCYC ITER ITERC KON DX1M DX2M DX3M MAX. RES. NER KER DELTEX
0.318666E+08 100 3 304 2 0.10952E+05 0.62976E-17 0.99511E-13 0.55567E-09 1 5 0.36000E+06
\$
ELEM. INDEX P T SL XBRINE(LIQ) XRN1(LIQ) XRN2(LIQ) XAIRG XRN1(GAS) XRN2(GAS) DL
(PA) (DEG-C) (KG/M**3
222 1 1 0 95048F+05 0 14434F+03 0 83629F+00 0 99960E-12 0 10174F-10 0 12057F-10 0 67245F+00 0 70007F-07 0 28381F-07 0 2222F+0
AAA 2 2 0.92099E+06 0.14205E+03 0.83522E+00 0.99958E-12 0.93955E-11 0.11899E-10 0.68503E+00 0.71479E-07 0.28942E-07 0.92435E+0
AAA 3 3 0.86646E+06 0.13750E+03 0.83320E+00 0.99954E-12 0.94810E-11 0.11604E-10 0.70958E+00 0.74085E-07 0.30036E-07 0.92837E+0

TOTA 0.318	L TIME 566E+08	КСҮС 100	ITER ITERC 3 304	kon 2 0	DX1M .10952E+05 (DX2M).62976E-17	DX3M 0.99511E-13	MAX. RE: 0.55567E-	5. NER -09 1	KER 5	DELTEX 0.36000E+06
	36666666	696666666666666666666666666666666666666	3666666666666666	666666666666666666666666666666666666666	66666666666666	3888888888888888	38866688666866				666666666666
ELEM.	INDEX	P (PA)	T (DEG-C)	SL	XBRINE(LIQ)) XRN1(LIQ)	XRN2 (LIQ)	XAIRG	XRN1 (GAS)	XRN2 (GAS)	DL (KG/M**3)
AAA 1 AAA 2 AAA 3 AAA 4 AAA 5 AAA 5 AAA 6 AAA 7 AAA 8 AAA 9 AAA10 BND 1	1 (2 (3 (4 (6 (7 (8 (9 (10 (11 (0.95048E+06 0.92099E+06 0.86646E+06 0.79433E+06 0.63142E+06 0.55418E+06 0.48262E+06 0.40155E+06 0.22815E+06 0.1000E+06	5 0.14434E+03 5 0.14205E+03 5 0.13750E+03 5 0.13750E+03 5 0.12214E+03 5 0.95659E+02 5 0.86397E+02 5 0.72215E+02 5 0.7469E+02 5 0.50000E+02	0.83629E+00 0.83522E+00 0.8352E+00 0.8318E+00 0.82615E+00 0.82117E+00 0.8218E+00 0.81548E+00 0.80918E+00 0.80076E+00 0.9000E+00	0.99960E-12 0.99958E-12 0.99954E-12 0.99948E-12 0.99948E-12 0.99936E-12 0.99931E-12 0.99931E-12 0.99927E-12 0.99924E-12 0.99924E-12 0.10000E-11	0.10174E-10 0.99395E-11 0.94810E-11 0.87817E-11 0.77720E-11 0.47318E-11 0.30230E-11 0.30230E-11 0.14777E-11 0.26968E-12 0.00000E+00	0.12057E-10 0.11899E-10 0.11201E-10 0.1201E-10 0.10729E-10 0.94996E-11 0.81855E-11 0.54904E-11 0.13116E-11 0.00000E+00	0.67245E+00 0.68503E+00 0.70958E+00 0.74450E+00 0.83301E+00 0.837773E+00 0.91651E+00 0.94474E+00 0.95005E+00 0.91924E+00	0.70087E-07 0.71479E-07 0.74085E-07 0.77204E-07 0.79013E-07 0.76562E-07 0.67393E-07 0.51432E-07 0.31165E-07 0.10221E-07 0.00000E+00	0.28381E-07 0.28942E-07 0.3036E-07 0.31589E-07 0.35312E-07 0.35312E-07 0.36198E-07 0.36198E-07 0.24681E-07 0.89868E-08 0.00000E+00	0.92228E+03 0.92435E+03 0.92435E+03 0.93414E+03 0.94136E+03 0.94965E+03 0.95859E+03 0.96771E+03 0.97654E+03 0.98453E+03 0.98857E+03

Figure 4B. Selected output for sample problem 2

The transient conditions close to the surface grid block AAA10 were recorded in the file FOFT, from which we obtained the data for Figure 4C that shows the mass fractions of Ne and Xe in the gas phase as functions of time. Results with temperature dependence (INOBLE = 0) and those without temperature dependence (INOBLE = 1) agree at early times (note that both axes are logarithmic) when both diffusion and temperature drop are insignificant, and start departing later when both diffusion and temperature drop become significant. The temperature in the column falls to about 50 °C at the end of the simulation, when diffusivities for both neon and xenon are more than 50 times larger than the corresponding diffusivities at 200 °C (Figure 1). That is why the mass fractions accounting for temperature effects (the markers) decrease faster in Figure 4C.

Figure 4C. Noble gas mass fractions in the gas phase at production end for sample problem 2

7. Conclusions

TOUGH2/EOSN can simulate noble gas transport in the subsurface, which may provide useful information on reservoir processes and conditions. The temperature effect may play an important role in gas diffusion-dominated processes and in fluid exchange between matrix blocks and surrounding fractures. The solubility/diffusivity difference between two different noble gases leads to a difference in resulting noble gas mass fractions (or concentrations), which may provide additional information for subsurface studies. Vaporization and condensation of water may greatly affect mass fractions of gases, which is a factor to be considered in data analyses. The study of noble gases may be extended to any other non-condensable gases or even volatile organic chemicals (VOCs).

Acknowledgments

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Geothermal Technologies, of the U.S. Department of Energy under contract No. DE-AC03-76SF00098. We thank S. Finsterle and C. Oldenburg for reviewing the manuscript.

References

- Ballentine, C. J., and C. M. Hall. Determining paleotemperature and other variables by using an error-weighted, non-linear inversion of noble gas concentrations in water, *Geochimica et Cosmochimica Acta*, 63(16): 2315-2336, 1999.
- Crovetto, R., R. Fernandez-Prini, and M. L. Japas. Solubilities of inert gases and methane in H2O and in D2O in the temperature range of 300 to 600 K, *J. Chem. Phys.* 76(2): 1077-1086, 1982.
- D'Amore, F., and A. H. Truesdell. A review of solubilities and equilibrium constants for gaseous species of geothermal interest, *Sci. Geol. Bull.*, 41(3-4): 309-332, 1988.
- Mason, E. A., and A. P. Malinauskas. Gas Transport in Porous Media: The Dusty Gas Model, Elsevier, Amsterdam, The Netherlands, 1983.
- Millington, R. J. Gas diffusion in porous media, Science, 130: 100-102, 1959.
- Naumov, G. B., B. N. Ryzhenko, and I. L. Khodakovsky. Handbook of Thermodynamic Data, English edition translated from Russian by USGS, Report USGS-WRD-74-001, Distributed by NTIS, U.S. Dept. of Commerce, Jan., 1974.
- Oldenburg, C. M., and K. Pruess. EOS7R: Radionuclide Transport for TOUGH2, Lawrence Berkeley Laboratory Report LBL-34868, Berkeley, CA, 1995.
- Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo. *Molecular Thermodynamics of Fluid-Phase Equilibria*, Prentice-Hall Inc., Englewood Cliffs, N. J., 1986.
- Pruess, K., and A. Battistelli. TMVOC, A Numerical Simulator for Three-Phase Non-Isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-

Unsaturated Heterogeneous Media, Lawrence Berkeley National Laboratory Report LBNL-49375, Berkeley, CA, 2002.

- Pruess, K., C. Oldenburg, and G. Moridis. *TOUGH2 User's Guide*, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, CA, 1999.
- Pruess, K., M. J. O'Sullivan, and B. M. Kennedy. Modeling of phase-partitioning tracers in fractured reservoirs, *Proceedings, Twenty-Fifth Workshop on Geothermal Reservoir Engineering*, Stanford University, Stanford, California, January 24-26, 2000. SGP-TR-165, LBNL-44802.
- Reid, R. C., J. M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids, McGraw-Hill, New York, 1987.
- Smith, S. P. Noble gas solubility in water at high temperature, *Trans. Am. Geophys.* Un. (EOS), v 66, p. 397, 1985.
- Webb, S. W. Gas-phase diffusion in porous media Evaluation of an advective-dispersive formulation and the dusty gas model for binary mixtures, J. Porous Media, 1(2): 187-199, 1998.
- Webb, S. W., and K. Pruess. Evaluation of Fick's law for trace gas diffusion in porous media, submitted to *Transport in Porous Media*, 2001.

Ernest Orlando Lawrence Gerkeley National Laboratory One Gyolotron Road | Berkeley, California 94720

.

Prepared for the U.S. Department of Buergy under Contract No. DB-AC03-755100023