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Abstract

We use the geo-referenced June Agricultural Survey of the U.S. Department of Agriculture to
match values of individual farms in California with a measure of water availability as medi-
ated through irrigation districts, and degree days, a nonlinear transformation of temperature,
controlling for other influences on value such as soil quality, to examine the potential effects
of climate change on irrigated agriculture in California. Water availability strongly capital-
izes into farmland values. The predicted decrease in water availability in the latest climate
change scenarios downscaled to California can therefore be expected to have a significant
negative impact on the value of farmland.
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1 Introduction

Climatic variables such as temperature and precipitation are essential inputs to agricultural

production. Different combinations and seasonal patterns have direct consequences on yields

and hence profits. Following the pioneering study by Mendelsohn et al. (1994), we consider

the potential impact of climate change on California agriculture, extending the earlier anal-

ysis with several new features.

In a semi-arid area like California, climate change is likely to affect agriculture in two

distinct ways. One pathway is the direct effect of climate on crop growth, represented

through the crop production function: changes in temperature, precipitation, solar radiation

or atmospheric carbon dioxide may affect crop yield and the demand for water for irrigation.

For example, an increase in precipitation during the growing season would reduce the demand

for supplemental irrigation water, while an increase in temperature during the growing season

would increase that demand. Another potential pathway is through the supply of water for

irrigation. In California and some of the other western states, precipitation occurs almost

entirely during the winter months (October - March), while the period when there is the

greatest demand for water - urban as well as agricultural – is typically the late spring and

summer (April - September); as a result, some form of storage is required to keep the runoff

until when it is to be used. The snowpack in the mountains serves as an important source

of natural storage that complements the man-made system of reservoirs in these regions. In

California, for example, the total amount of water stored naturally in the state’s snowpacks

at the beginning of April in a ”good” water year just about matches the total amount stored

behind the state’s major reservoirs; thus, the snowpack effectively doubles our ability to store

water for warm-season uses. Current climate-change projections suggest that, by middle of

the century, at a least a third of this storage in springtime snowpacks will be lost due to the

increase in winter temperatures. Unless some man-made replacement storage is developed,

this will cause a significant reduction in the total water supply available for use in California.

1



Because of the greater weight placed on urban uses, in California these effects are likely to

fall disproportionately on agriculture.

Therefore, in order to assess the potential effect of climate change on the profitability

of farming in a region that relies on supplemental irrigation, it is necessary to consider not

only the direct effects of climate on crop yields and farm profit but also the effects of climate

change on the effective water supply and the availability of water for agricultural users. The

main innovation of this paper is that we explicitly account for both types of effects.

Although it is well understood in theory (see for example Burness and Quirk (1979) and

(1980)), only a few empirical studies have examined whether and how access to irrigation

water is capitalized into farmland value in practice, including Selby (1945), Hartman and

Anderson (1962), Crouter (1987), and Faux and Perry (1999). The study by Selby uses

aggregate data: the dependent variable is the countywide average value of irrigated land in

199 counties in 11 western states, which is examined as a function of the average cropping

pattern, crop yield and cost of irrigation water in the county.1 The other studies use individ-

ual farm-level observations. Hartman and Anderson (1962) consider land value in farm sales

within a single irrigation district in Colorado as a function of the amount of water available

from the irrigation district; Crouter (1987) considers land sales within a different irrigation

district in Colorado; Faux and Perry (1999) consider land sales in four irrigation districts

in Malheur County, Oregon. The first two of these studies find that water availability is a

significant determinant of farmland value. However, all three of these studies cover a much

smaller area than our sample, which extends to about 150 irrigation districts in 39 counties

in California.2 Our larger spatial coverage permits us to allow for the effect on farmland

value of variables that are not likely to vary much within the small scale covered by these

other studies. The only other study that incorporates surface water use on a larger scale

relies on average farmland values in a county, where both dryland and irrigated farmland

1Renshaw (1958) also uses aggregate data and studies the average value of irrigated farmland in each of
34 Bureau of Reclamation projects as a function of cropping pattern.

2Our statistical analysis relies on 112 of those districts.
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values are averaged (Mendelsohn and Dinar 2003). Rather than relying on data aggregated

to the county level, we utilize the geo-referenced June Agricultural Survey that allows us to

match farm-level data on the value of a farm with fine-scale climate and soil databases.

The other novel feature of this study is the use of degree days, a non-linear transformation

of the temperature variable suggested by agronomic experiments to be a better predictor of

plant growth.3 We then employ the fine-scale climate data set to show how the degree days

variables are correlated with undemeaned temperature and precipitation variables.

Our empirical analysis establishes a statistical link between farmland values and both

water availability and climate, controlling for soil characteristics and population density

as a key socio-economic influence on land value. We find that surface water availability

and climate conditions clearly and robustly capitalize into farmland values. Since the most

recent climate scenarios are now predicting a sharp increase in growing-season temperatures

in California as a well as a potentially large decrease in available surface water, our results

suggest a correspondingly large combined impact on farmland value.

The paper proceeds as follows: The next section explains the concept of degree days.

Section 3 describes the unique dataset we use in this study. Section 4 describes and discusses

our empirical results. Section 5 briefly considers the potential impact of climate change on

agriculture in California, and Section 6 concludes.

2 Degree Days

Most of the agronomic literature argues that plant growth is only indirectly driven by tem-

perature, and in a non-linear fashion. Plant growth is linear in temperature only within a

certain range, between specific lower and upper bounds. These bounds underpin the concept

of degree days. Degree days are defined as the sum of degrees above a lower baseline and

3The concept of degree days is introduced also in a study of potential climate impacts on the value of
farmland in areas not primarily dependent on irrigation, but without the derivation presented in the next
section (Schlenker et al. 2004).
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below an upper threshold during the growing season. We follow the definition of Ritchie and

NeSmith (1991) and use degree days 8− 32◦C. Plant growth is approximately linear in the

number of degree days in this range.4

For degree days 8− 32◦C we set the lower bound equal to 8◦C and the upper bound to

32◦C. In other words, a day with a temperature below 8◦C results in zero degree days; a day

with a temperature between 8◦C and 32◦C contributes the number of degrees above 8◦C;

and a day with a temperature at or above 32◦C contributes 24 degree days. Degree days are

then summed over all days in the growing season.

Expressing this more formally, degree days D are the expected degrees above a lower

threshold b1 and below an upper threshold b2

D =





b2 − b1 if t > b2

t− b1 if b1 < t ≤ b2

0 if t ≤ b1

Hence the expectation over degree days is truncated at the two bounds b1 and b2. The

probability that the average temperature t is between the two truncation points is given by

Prob(b1 < t ≤ b2) = F (b2)− F (b1)

where F is the cumulative distribution of temperature with mean µ and standard deviation

σ. In the case where this distribution is the normal distribution, the expected degree days

4Ritchie and NeSmith argues that temperatures above 34◦ have negative impacts on plant growth for
dryland farming. However, since California is highly irrigated, we omit the degree days above 34◦C from
the analysis.
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conditional on the fact that t ∈ (b1, b2) is given using Φ() for the standard normal distribution.

E[t− b1|b1 < t ≤ b2] =

∫ b2
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where φ() is the density function of the standard normal. Combining equations, we get

E[D|b1 < t ≤ b2] = σ
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Finally, the unconditional expectation becomes

E[D] = Prob(t ≤ b1)E[D|t ≤ b1] + Prob(b1 < t ≤ b2)E[D|b1 < t ≤ b2] + Prob(t > b2)E[D|t > b2]
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A practical problem in implementing this calculation is that, while the degree day concept is

based on an aggregation of daily temperatures, most of the available data on climate provide

only observations on a monthly basis and hence only the monthly standard deviation σm is

known. However, Thom (1954, 1966) develops the necessary relationship between daily and

monthly variations in temperature under the assumption of normality. Later articles relax

the normality assumption and compare monthly and daily observations at U.S. stations to

generate better estimates. Moreover, as Lehman (1987) points out, the error associated with

normal distribution is likely to be minor for the Central Valley of California, where most of
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Figure 1: Number of Degree Days (8◦C − 32◦C) for the Months April Through September
in California

our observations are situated.

We use a 103-year high-resolution temperature and precipitation climate data set for the

coterminous United States, which is outlined in more detail in the data section below. We

derived the sum of degree days during the main growing season, i.e., for the months of April

through September using the 30 year temperature averages between 1960-1989. The results

are displayed in Figure 1 for the sum of degree days for the months April through September.5

The mountain range is clearly visible as higher altitudes have lower temperatures. On the

other hand, the hottest temperatures can be found in Imperial Valley in Southern California

that, unless irrigated, would become a dessert.

5Note that the maximum number of this range is given to be 4392, i.e., 183 days times 24 degree days
per day.
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One might wonder how the degree days variable compares to the monthly climate vari-

ables used in the original study by Mendelsohn et al. (1994), and also most recently by

Schlenker et al. (2005).6 We regress degree days 8 − 32◦C, as well as its squared term, on

the sixteen climate variables in question; results are displayed in Table 1, columns 1 and 3

using all PRISM cells in California and columns 2 and 4 just the cells where the agricultural

area is positive.7 In all specification we adjust for the spatial correlation of the error terms

following the non-parametric approach of Conley (1999). Omitting the spatial correlation of

the error terms would underestimate the true variance-covariance matrix as the errors are

assumed to be independent even though they are not. Intuitively, averaging several unre-

lated observations results in a much cleaner signal than if one were to average observations

with highly correlated errors. The t-values are of course reduced once we adjust for spatial

correlation, though most of the temperature coefficients remain significant.

In Schlenker et al. (2004), the study of the potential impact of warming on farmland

values in the large area east of the 100th meridian in the U.S., the historic boundary of land

that can be farmed without irrigation, we have shown that the use of degree days yields

estimates that are consistent with agronomic findings, and that these results are robust

to changes in specification. Moreover, an encompassing test reveals that the five climatic

variables degree days 8 − 32◦C, degree days 8 − 32◦C squared, the square root of degree

days above 34◦C, precipitation during the growing season, and precipitation squared, are

better predictors of farmland values than the sixteen monthly climatic variables for dryland

agriculture.8

While the degree days model for counties east of the 100th meridian yields estimates

that appear reasonable and in line with predictions (i.e., the quadratic form peaks at a

6These are average monthly temperature and precipitation in January, April, July and October.
7Shawn Bucholtz of the Economic Research Service at the United States Department of Agriculture was

kind enough to provide us with processed LandSat satellite images of the agricultural area in each PRISM
grid cell for the entire US.

8As note above, we do not include the variable degree days 34◦ in the current analysis as there is some
controversy whether and at what point temperatures become harmful when sufficient water can be applied
to a crop.
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Table 1: Explaining Degree Days as a Function of Undemeaned Climate Variables

Degree Days Degree Days
Degree Days Degree Days 8− 32◦C 8− 32◦C

Variable 8− 32◦C 8− 32◦C Squared Squared
Constant -1509 -1424 -551 352

(14.44) (24.26) (1.04) (1.06)
January Temperature -13.5 -5.34 15.8 5.02

(2.49) (0.88) (1.05) (0.29)
January Temperature Squared 0.139 -0.435 -5.01 -4.19

(0.33) (1.12) (5.11) (3.49)
April Temperature -28.6 31.7 -86.9 -7.77

(2.42) (1.72) (2.23) (0.08)
April Temperature Squared 3.08 1.07 11.8 10.5

(9.51) (1.55) (7.07) (2.89)
July Temperature 135 130 -26.1 -116

(22.40) (13.12) (0.44) (1.83)
July Temperature Squared -0.876 -0.718 9.03 11.4

(6.40) (3.09) (7.67) (7.56)
September Temperature 82.3 23.3 -125 -197

(3.74) (0.90) (2.32) (1.21)
September Temperature Squared -1.61 -2.02E-3 8.35 8.92

(2.47) (0.00) (3.97) (1.68)
January Precipitation 5.02 3.88 7.07 18.0

(1.31) (1.61) (0.77) (1.47)
January Precipitation Squared -7.09E-2 -0.143 -9.33E-2 -0.750

(0.98) (2.03) (0.42) (2.07)
April Precipitation -7.82 -4.86 -66.3 -21.6

(0.79) (1.16) (1.38) (0.97)
April Precipitation Squared 0.520 0.296 3.99 1.29

(1.08) (0.69) (1.59) (0.49)
July Precipitation -34.8 -42.6 50.5 -273

(2.51) (3.15) (0.94) (3.93)
July Precipitation Squared 17.4 27.8 4.34 158

(3.13) (3.53) (0.22) (3.97)
September Precipitation -11.6 0.567 22.8 3.19

(1.20) (0.11) (0.61) (0.13)
September Precipitation Squared 0.139 0.198 -2.42 2.48

(0.28) (0.52) (1.01) (0.95)
Subset All Obs. Agric. Obs. All Obs. Agric. Obs.
Number of Observations 23979 5899 23979 5899

Notes: Table lists regression coefficients and t-values in brackets. Coefficients for the last two columns are
divided by 1000 for easier exposition. Temperature are in degree Celsius, precipitation in cms. All t-values
are corrected for the spatial correlation of the error terms using Conley’s non-parametric approach. We
use a Barlett window of 5 degrees in both latitude and longitude, which translates into a cutoff point of
approximately 350 miles. The first and third column use all PRISM cells in California in the estimation,
while the second and fourth only rely on the cells with positive agricultural area.8



level deemed optimal by field experiments), the sixteen monthly variables often switch signs

(Kaufmann 1998). Darwin (1999) criticizes the use of these variables for giving counter-

intuitive results. Several of the quadratic functional forms have a positive squared term,

suggesting temperature / precipitation extremes are value-maximizing. Even for hill-shaped

relationships the peak levels sometimes appear inconsistent with agronomic findings.

Later on in section 4 we obtain coefficient estimates on the degree days variables that

are again in line with agronomic predictions.9 On the other hand, a comparable regression

using the sixteen monthly climate variables gives mixed results.10

Table 1 suggests an explanation for why some of the variables appear to have the counter-

intuitive U-shaped relationship. If the true relationship between farmland value and degree

days is positive in the linear and negative in the squared term of degree days, then the

reduced-form relationship between farmland value and temperatures will be a composite of

the relationships in Table 1. All coefficients in the regression explaining degree days will be

multiplied by a positive constant, while all coefficients in the regression explaining degree

days squared will be multiplied by a negative constant, and the composite result is hence

indeterminate as long as the two coefficients are of the same sign.11

One striking feature of Table 1 is that some of the signs switch when the analysis is

shifted from all PRISM cells to cells with positive agricultural area. This suggests that

9As noted above, we do not include degree days 34◦C in the regression as there is disagreement at what
point temperature become harmful if sufficient water can be applied.

10For example, optimal temperatures are 7.6◦C, 20.6◦C, 21.4◦C in January, April, and July, while Septem-
ber temperatures are U-shaped. The problem with these monthly climate variables is that they account for
only three of the six months that characterize the growing season for most crops (April - September). On
the other hand, if one used the monthly climate variables for every month in the growing season, let alone
every month in the year, there would be serious multicollinearity. The problem was recognized in the 1960s
when there was a discussion in the agricultural economics literature of the need to find an index for weather.
Johnson and Haigh (1970) uses principal components to reduce the dimensionality of monthly temperature
and precipitation data in a hedonic study of agricultural land values; Doll (1967) uses regression to create
a weather index for studying the crop yield response to weather; Oury (1965) uses an index of aridity for
fitting a crop production function.

11For example, the coefficient on April temperature squared is positive and statistically significant in the
both regression equations (for degree days and degree days squared). If farmland values are a quadratic
function of degree days, i.e., are increasing in degree days and decreasing in degree days squared, the
reduced form equation regressing farmland values on April temperature squared is a composite of a positive
and negative term.

9



the relationship between degree days and the undemeaned climate variables is not uniform

in California. For example, (Lehman 1987) points out that the relationship between mean

temperatures and the variance thereof is spatially disperse, yielding different reduced form

relationships for various spatial areas.12

3 Data

Farmland Values

The Ricardian approach to farmland valuation, as originally suggested in Mendelsohn et al.

(1994) relies on the observation that the value of land in equilibrium should equal the dis-

counted stream of future cash flows. If the price of farmland were higher than the discounted

stream of future profits, it would be better to sell the farmland and invest the proceeds in

Treasury bonds yielding a stream of interest payments. Farmers will sell their land until the

price falls to the point where it equals the discounted stream of future cash flows. On the

other hand, if the price of farmland were below the discounted value of future cash flows,

arbitrageurs would buy the land and drive up the price until it is back in equilibrium. In

an efficient market the value of land is therefore directly related to the maximum attainable

profit.13

The dependent variable in a Ricardian analysis therefore is farmland value. Our analysis

uses individual farm-level observations from the June Agricultural Survey. This survey is

conducted in June of each year to forecast the planted area of most crops. The survey is

split into two parts: the first is a random sample of the Census of Agriculture, while the

second is a stratified sample of farms based on geographic location. We rely on the second

part as it is a geo-referenced sample of all farms, i.e., USDA randomly selects latitude and

longitude combinations and records all farms in that one square-mile section.14 We use the

12Recall that the variance of temperatures enters the inverse Mills ratio when we derive degree days.
13This argument was first advanced by Renshaw (1958), who proposed using the differential increase in

farmland values as a way to measure the economic benefits from irrigation projects.
14It is hence possible to have several observations for each longitude-latitude pair.
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Figure 2: Sample Locations of the June Agricultural Survey in the Years 1998-2003

Notes: Figure displays the sample locations of the June Agricultural Survey as dots. County boundaries are
added in grey.

reported farmland value per acre in our analysis. Our data set includes observations for the

years 1998-2003, and all farmland prices were adjusted by the GDP implicit price deflator

to be in 2000 dollars. Figure 2 displays the sample location for the state of California.
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Climate Variables

We use a 103-year high-resolution temperature and precipitation climate data set for the

coterminous United States. This small-scale climate series was developed by the Spatial

Climate Analysis Service at Oregon State University for the National Oceanic and Atmo-

spheric Administration. Researchers at Oregon State developed the PRISM model that is

employed by almost all professional weather services and regarded as one of the most reli-

able interpolation procedures for climatic data on a small scale.15 We derived the sum of

degree days during the main growing season, i.e., for the months of April through Septem-

ber as outlined in Section 2 above using the 30 year temperature averages between 1960-1989.

Other Control Variables

Our study area, shown in Figure 2, comprises over 90% of the irrigated farmland in California,

including the Central Valley, the Imperial Valley, and several of the coastal valleys. Total

agricultural water use in California amounted to about 33 million acre feet (MAF) in 2000.

Of this, about 20 MAF is surface water diversions from rivers etc, and the rest is supplied by

pumping groundwater. About 7 MAF of the surface water is supplied through water service

contracts to irrigation districts by two major water projects, the federal Central Valley

Project (CVP), operated by the US Bureau of Reclamation, and the State Water Project

(SWP) operated by the State Department of Water Resources (DWR). In addition, many

irrigation districts own water rights to divert water from rivers. Furthermore, about 15% of

the irrigated acreage in the Central Valley is farmed by individual farmers not organized in

irrigation districts who obtain their water from their own groundwater wells.16 In this study

we focus on the farms that lie within 112 irrigation districts; these account for about 55% of

the irrigated acreage in California.17

15The PRISM run we use gives monthly minimum and maximum temperature values as well as precipita-
tion estimates on a 2.5 mile x 2.5 mile grid for the contiguous United States.

16Farmers in a substantial number of irrigation districts also have their own wells and obtain a portion of
their water through self-supplied groundwater.

17The remainder are not included because water supply data was missing or incomplete. The irrigation
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Our measure of access to irrigation water in this study is average surface water deliveries

per acre in each district over the period from 1992 to 2002.18 These data were pieced together

from a variety of sources, including the annual operations reports from the CVP and the

SWP, data published by the Association of California Water Agencies, and data in the files

of the regional DWR offices.19 The water delivery data are an ex post measure of surface

water availability. In future work we intend to include an estimate of the irrigation districts’

ex ante expectations, as of the time of crop planting, regarding how much water will be

available for delivery during the balance of the growing season.

Another possible measure of access to irrigation water is the average water right per acre

of the district, but this information is often both hard to obtain and unreliable. A single

irrigation district may hold tens of water rights, and these are kept in paper files which have

not been computerized or synthesized, and are available with limited access in the offices of

the State Water Resources Control Board; the system is designed for inspecting individual

water rights but not for the mass screening of several thousand water rights. Furthermore,

the water right can often be a misleading indication of access to water. In the case of water

service contracts, for example, the SWP is in the position of having signed contracts to

deliver 4.2 MAF, but has a firm supply of only about 2.5 MAF. With regard to rights for

surface water diversion, in many cases the existing rights have not been perfected and the

face value of the water rights along a stream may exceed the normal flow; without some

process of quantification, the amount of water to which access is provided by the right is

highly uncertain.20

We also obtained observations on more than 15,000 groundwater wells in the Central

district boundaries were obtained from DWR.
18In this analysis, we limit our sample to years after 1992 when the Central Valley Improvement Act was

passed that allocated more water to instream environmental uses and limited the amount of water that can
be exported at the pumping plants in the Delta. However, we also conducted an analysis using average
deliveries between the years 1982-2002 and found little difference in the results.

19We also obtained some data from these sources on the retail prices for irrigation water charged by the
districts, but the price data are less complete than the delivery data.

20In future work, we hope to be able to develop some more useful information on the effective supply of
water covered by districts’ water rights
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Valley. Groundwater is a virtually unregulated resource and in many areas it provides a

substitute for surface water in the event of a shortage. The depth of groundwater varies

significantly spatially and also temporally both between years and between months within

a year. We calculate the average well depth in the month of March, the beginning of the

growing season, for each of the years 1990 to 1998 and then average the depths over these

years. The groundwater depth at each farm location is derived as a weighted average of all

well locations, where the weight is the inverse of the distance of each well to the farm to the

power of 2.14, the exponent that minimizes the sum of prediction errors from cross-validation.

In the cross-validation step each well is sequentially excluded from the data and the depth

is calculated using all remaining wells. The square of the difference between interpolated

depth and actual depth is summed over all well locations.

There are several soil data bases of potential interest to our analysis. In order of increas-

ing detail they are the (i) National Soil Geographic (NATSGO) Data Base that relies on the

National Resource Inventory (United States Department of Agriculture 2000), (ii) State Soil

Geographic (STATSGO) Data Base (United States Department of Agriculture 1994) and

(iii) Soil Survey Geographic (SURGO) Data Base (United States Department of Agriculture

1995). While SURGO is the most detailed soil database, designed to allow erosion man-

agement of individual plots, there is no uniform reporting requirement. Instead we use the

more aggregated soil database STATSGO that groups similar soils into polygons for the en-

tire United States. Average soil qualities are given for each polygon. While this soil database

gives a first approximation of the actual average soil qualities, significant heterogeneity could

remain.

Finally, farmland close to urban areas has an inflated value compared to farmland else-

where because of the option value of the land for urban development (and also, perhaps,

because of superior access to urban consumers). Plantinga et al. (2002) examine the effects

of potential land development on farmland prices and find that a large share of farmland

value, more than 80% in major metropolitan areas, is attributable to the option to develop
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the land for urban uses. The City and County Data Book lists population density and in-

come per capita on a county level. However, given that our analysis relies on individual

geo-referenced farm-level data, we construct a variable to approximate population pressure

that is on a smaller scale than the county-level aggregates of the City and County Data

Book. We derive the gravitational population pressure by calculating the weighted sum of

the population in each Census Tract. The total number of people in each of the roughly

65,000 tracts is weighted by the inverse of the squared distance between the farm and the

centroid of each tract in meters (U.S. Census Bureau 2002).

4 Empirical Analysis

In this section we highlight the importance of access to water as a determinant of farmland

values. The expectation is that more abundant and more secure access to water should result

in higher farmland values.21

Table 2 presents our estimates for the hedonic regression with farmland value per acre

as the dependent variable. We use a random effects model to allow farmland with identical

longitude / latitude pairs to be correlated. As mentioned earlier, the June Agricultural

Survey randomly selects a longitude/latitude pair and then samples all farms within the 1-

square mile section around that location. It is hence possible to obtain several observations

for the same longitude/latitude pair.22

The estimates in Table 2 are based on observations with a farmland value below $15,000

21This is the core assumption of Huffaker and Gardner (1986), Whittlesey and Herrell (1987), Crouter
(1987), and Gardner and Huffaker (1988).

22As noted earlier, the standard OLS estimate underestimates the true variance-covariance matrix. OLS
assumes all errors to be independent, even though they are in fact correlated. It is not uncommon in hedonic
studies for variables to be statistically significant yet to switch signs between alternative formulations of the
model. This could occur in a case like the present one, where the error terms are not i.i.d. Similarly, Moulton
(1986) points out that treating grouped data as independent can underestimate the true variance-covariance
matrix. One of his examples is a hedonic regression study of housing in the greater Boston area where he
finds that the standard OLS variance-covariance matrix underestimates the true variance-covariance matrix
by a factor of between 1.3 and 2.4. The effect of the understatement of the variance-covariance matrix is to
overstate the significance of the regression coefficients.
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Table 2: Hedonic Regression of Farmland Value ($ per acre, 2000) using Degree Days.

Variable Coefficient t-Value
Constant 1365 ( 0.38)
Thousand Degree Days (8− 32◦C) April-September 5493 ( 2.48)
Thousand Degree Days (8− 32◦C) April-September Squared -1112 ( 2.78)
Precipitation April - September (Feet) 3591 ( 0.78)
Precipitation April - September (Feet) Squared -75.3 ( 0.02)
Percent Clay (Percentage Points) -70.2 ( 3.75)
K-Factor of Top Layer -29.7 ( 1.00)
Minimum Permeability of All Layers (Inches / Hour) -130 ( 1.13)
Average Water Capacity (Inches / Inch) -70.8 ( 1.01)
Percent High Class Soil (Percentage Points) 5.95 ( 1.27)
Population Density 30.1 ( 2.32)
Depth to Groundwater (Feet) -1.47 ( 0.37)
Federal + Private Water (Acre-feet / Acre) 656 ( 4.62)
Number of observations 2555

Notes: Table list coefficient estimates from a random-effects model and t-values in parenthesis. Sample
includes observations with farmland values below $15,000 and water prices below $20 per AF.

per acre.23 Including higher value observations in the analysis increases the R-square of the

regression, but the variable with the greatest explanatory power becomes population density.

At the same time the confidence levels for soil quality and water availability are reduced.

Farmland with values above $15,000 per acre is generally close to urban areas and the value

of this land reflects what is happening in the urban land market and the value of the future

potential to develop this land for urban use, not what is going on in the local agricultural

economy. Including these observations creates large outliers and results in estimates that

are mainly driven by the outliers.24

The coefficients on the climatic variables appear reasonable. The result for degree days

implies that the quadratic form peaks at 2469 degree days for a six-month period. This is

consistent with the agronomic literature which indicates degree days requirements of this

23Our main results are insensitive to the cutoff point. For example, if we choose cutoff points of $10,000
and $20,000, the optimal number of degree days becomes 2201 and 2473, respectively. The value of surface
water availability becomes $538 and $723 per acre-feet. Only 4% of the area in our sample has a value above
$15,000.

24We also experimented with using median regression to estimate the hedonic farmland value equation and
found that this produced similar results which were very stable and almost insensitive to the cutoff point.

16



order of magnitude for several important crops grown in the Central Valley.25 Since many

tree crops need cool nights, increasing temperatures substantially above the required degree

days to grow a crop can only be harmful.26 Precipitation is expected to be valuable and is

indeed positive, but not statistically significant. Precipitation during the summer months is

very limited in California, with most districts receiving only an inch or two of rain.

The sign of the regression coefficient on water availability in Table 2 makes intuitive

sense: the availability of surface water is valuable.27 However, two points should be noted.

First, the coefficient on average water delivery measures the capitalized value not of one acre

foot of water per acre in a single year but rather of the long-run annual availability of one

acre-foot per acre. Second, what is capitalized is the net value - i.e. the marginal value of

water minus the retail cost to the farmer. By way of illustration, if the gross capitalized

value of an acre-foot of water were $1000 per acre-foot, yielding an annual value of, say $50

per acre-foot (using a discount rate of 5%), and the annual delivery cost to the farmer were

$20, the net capitalized value of the water would be $600 per acre-foot.28 We therefore test

the sensitivity of our results to variations in water price by excluding irrigation districts with

high prices from the analysis to get a better estimate of the net value of water. Restricting

25The degree day requirement are somewhat crop-specific, with various lower and upper bounds. As a
means of illustration, the growing period for corn is about 120 days, or roughly two-thirds of the six-month
period April-September. A proportional number of degree days would be 1640, which is close to reported
requirements. For further comparison of degree days and other temperature variables see Schlenker et al.
(2004).

26A map showing the number of degree days in California is depicted above in Figure 1. As mentioned
above, we did not include degree days 34◦C as there is some dispute at what point temperatures become
harmful if a plant is highly irrigated. (The 34◦C was obtained from dryland agriculture. Accordingly, if we
include the variable, it is negative but insignificant with a t-value of 1.05.

27We assume that the errors of our hedonic farmland equation are i.i.d on a per-acre basis. If this assump-
tion is appropriate, the standard errors will be estimated correctly. Since we are dealing with individual
farmland data and not county averages, no weighting is required. One might wonder whether the variance of
the errors is smaller for larger farms. We hence estimate a random-effects model with heteroscedastic random
effects. Since the number of observations per group is limited, it is difficult to estimate the group-specific
variance precisely. The noise is so large that we obtain several group-specific variances that are negative,
which is theoretically infeasible. Alternatively, we apply White’s consistent estimator in the second stage,
which reduces the t-value on water availability from 4.62 to 4.18. The degree days variable remains significant
as well.

28At this point we are not including prices as an explanatory variable in the regression equation because
our price data are still very incomplete.
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the sample to observations that have prices less than $30, $40, $50, and $60, changes the per

acre value of an acre-foot from $656 in Table 2 to $450, $434, $365, and $324 respectively as

the hedonic regression only picks up the net benefit of the water availability. The optimal

number of degree days changes slightly to 2470, 2460, 2544, and 2511, respectively. The

linearity of the coefficient on water availability is confirmed when we include dummies for

different ranges of water availability.29

The sample includes districts with no access to surface water; these are farming areas

that depend exclusively on groundwater.30 The coefficient on groundwater depth is negative,

suggesting that greater depth is less desirable as it results in higher pumping cost. However,

the coefficient is not statistically significant.

Soil variables have intuitive signs; yet only the variable clay content is statistically signif-

icant at conventional levels. Higher clay percentages are undesirable as they imply drainage

problems, especially in the west side of the Central Valley. Higher values of the variable K-

factor indicate increasing erodibility of the top soil. The water capacity of soil indicates how

much water it can hold. While a large water capacity is good for dryland farming where the

water should stay in the root zone, it can be damaging in irrigated agriculture as it indicates

drainage problems. The fraction of soil that is considered top soil has a beneficial effect

on farmland values. Finally, as expected, population density has a strong influence on land

prices: this variable is significant and of a large magnitude compared to the sample mean.

The potential to sell agricultural land for urban development is often the most profitable

option for farmers.

Hedonic regressions rely on a cross-section and hence are prone to misspecification and

29There is one exception: The category of districts with more than 5AF has a negative sign. However,
Glenn-Colusa Irrigation District is the only district that has more than 5 acre-foot per acre in our sample,
and hence we are picking up some unique feature of this district with the dummy variable. When we checked
the sensitivity of our results to including/excluding a single district at a time, the only one with a large
impact is Glenn-Colusa. We therefore exclude the district from the previous analysis as we fear that there
is something distinctive about this district that is not presently captured in our data.

30It should be noted that the pumping of groundwater is not monitored in California and therefore there
is little reliable data on the amount of groundwater that is actually pumped by farmers.

18



omitted variable bias (Mundlak 1961, Deschenes and Greenstone 2004). However, in the

following we show that the estimate on surface water availability is insensitive to the inclusion

and exclusion of all the other control variables. While there is no direct way to test for

omitted variable bias, this is at least comforting as it implies that omitted variable would

have been correlated with surface water availability and farmland values, but not any of

the other control variables. In case the omitted variable were correlated with one of the

other controls as well, excluding it should significantly shift the parameter estimate on water

availability.

Using an approach suggested by Leamer (1983) we estimate the robustness of our re-

sults to varying modeling assumptions by taking permutations of our set of independent

variables. While it is somewhat ad hoc to rerun models with all possible combinations of

the independent variables, this sensitivity analysis, presented in Table 3, indicates that our

main estimates are robust across different modeling assumptions. Specifically, we use three

sets of permutations: (i) all possible combinations of the five soil variables; (ii) soil variables

as well as the location variables population density and depth to groundwater; (iii) all the

variables in (ii) plus the four climatic variables. Since we allow each of the n variables under

consideration to be included or excluded in the model, there are 2n possible combinations.

The results of the possible combinations on our variables of interest (the value of surface

water availability) are given in Table 3. The inclusion or exclusion of soil and location

variables appears to have a very limited effect on the estimates. This result gives us some

confidence that there are no omitted soil or location variables that might seriously bias our

estimates.31 Similarly, excluding the climatic variables has limited effect on the coefficient

estimate of water availability, suggesting that there is not a strong link between climate and

surface water availability. Instead it is our hypothesis that the first farmers who settled in

California chose plots close to major waterways that facilitate irrigation.32

31If a soil variable of great importance had been omitted, one would expect it to be somewhat correlated
with the other soil variables, rendering our results sensitive to the inclusion or exclusion of soil variables.

32One potential concern is that water availability might be correlated with soil quality, i.e., the first settlers
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Table 3: Sensitivity of Coefficient Estimate on Surface Water Availability to Different Model
Specification

Possible Permutations Number of Coefficient Estimates
Between the Following Variables Models Mean Min Max σ
Soil variables 32 674 646 712 16
Soil and location variables 128 649 569 712 29
Soil, location, and climatic variables 2048 731 568 852 61

The soil variables are (i) Percent Clay, (ii) K-Factor of Top Layer, (iii) Minimum Permeability of All Layers,
(iv) Average Water Capacity, and (v) Percent High Class Soil. The location variables are (i) Population
Density, (ii) Depth to Groundwater. The climatic variables are (i) Degree Days, (ii) Degree Days Squared,
(iii) Precipitation, and (iv) Precipitation Squared.

5 Potential Impacts on Farmland Value

In this section we briefly speculate on potential impacts of climate change on the average

value of farmland in California. There is no claim of definitive empirical results, as these must

wait on the development of more complete and accurate data on water rights, prices and de-

liveries and perhaps also more detailed climate and streamflow projections. Initially, climate

scientists speculated that the increase in annual precipitation under most major climate sce-

narios would moderate the pressure on water resources. However, recent hydrological studies

for moderate-temperate climates utilizing a smaller geographic scale discovered that despite

the possible modest increase in annual precipitation, the runoff during the main growing

season, i.e., between April and August in the Northern Hemisphere, might actually decrease

as a seasonality effect dominates the annual effect (Lettenmaier and Sheer 1991, Hamlet and

Lettenmaier 1999, Leung and Wigmosta 1999). Gleick and Chalecki (1999) conclude that

”some consistent impacts have been identified [...] among the most important is the shift

with the oldest and largest water rights chose plots with the best soil and hence water availability could
be correlated with unobserved soil characteristics. This would bias our estimates on the value of water
availability upwards. However, as indicated in the text, it appears likely that the first settlers mainly chose
plots close to major waterways. Since the Central Valley is comprised of former lake beds with relatively
homogenous soils, the distance to the nearest river is usually not a proxy for soil quality. Hence we use
this variable in a Durbin-Wu-Hausman endogeneity test, and find no evidence that water availability is
endogenous.
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in the timing of runoff that results from changes in snowfall and snowmelt dynamics”. The

idea is that more precipitation will fall as rain, rather than snow, during the winter rainy

season (relative to the pre-warming pattern), and runoff from a melting snowpack will occur

earlier in the spring. Both changes will mean reduced runoff in late spring and early summer.

The decrease in water availability when it is needed most, during the growing season, will

increase the demand for irrigation (McCabe Jr. and Wolock 1992), putting more pressure

on river and groundwater systems. The predicted decrease in water availability depends on

the seniority of water rights. More senior rights holders are likely to be served first and are

hence less prone to a decrease in water availability. For the same reason, junior right holders

will face potentially large reductions in availability. Given that the estimated value is $568

to $852 per AF for cheap water over the various model permutations in Table 3, a reduction

of as much as one or two AF per acre, not implausible according to the most recent climate

change scenarios downscaled to California (Katherine Hayhoe et al. 2004), would result in

a decrease in the value of the affected farmland of as much as $1,700 per acre (high per AF

value, two AF). Since the area-weighted per acre value of all observations in our sample is

$4,177, this clearly represents a very substantial impact.

6 Conclusions

This paper studies how surface water availability, soil characteristics, and climatic variables

capitalize into farmland values, and how these values would be affected by changes in the

climatic variables. Using a micro-level data set of individual farms in California we find a

major effect of water availability on farmland values, controlling for other influences.

Our estimate of the value of surface water is highly statistically significant and robust

under a wide set of modeling assumptions. Permutations over all possible combinations

of control variables yield coefficient estimates that are confined to a fairly narrow range,

suggesting that our results a not driven by a particular modeling assumption. Predicted
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changes in water availability due to climate change hence have the potential to severely

impact the value of farmland.

The other climate variable, degree days, is also statistically significant, even under the

random-effects model, and the estimates on the linear and quadratic terms imply an optimal

number of degree days that is consistent with agronomic findings.

Perhaps the most important caveat to the analysis of this paper is that results on the

impact of changes in surface water availability must be regarded as preliminary because the

data here are complex, and we are continuing to develop finer and more accurate measures,

including some measure of the seniority of water rights. In addition, since the analysis

relies on cross-sectional data it does not pick up any potential changes not reflected in the

data, most notably changes in prices, technology, CO2 fertilization, or the potential reduced

water-requirements through CO2 fertilization.
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