UCSF

UC San Francisco Previously Published Works

Title

Hypospadias and Genes Related to Genital Tubercle and Early Urethral Development

Permalink

https://escholarship.org/uc/item/8g87w81c

Journal

Investigative Urology, 190(5)

ISSN

0021-0005

Authors

Carmichael, Suzan L Ma, Chen Choudhry, Shweta et al.

Publication Date

2013-11-01

DOI

10.1016/j.juro.2013.05.061

Peer reviewed

o 707. Hathor manascript, available in 11110 2011 a

Published in final edited form as:

J Urol. 2013 November; 190(5): 1884–1892. doi:10.1016/j.juro.2013.05.061.

Hypospadias and genes related to genital tubercle and early urethral development

Suzan L. Carmichael¹, Chen Ma¹, Shweta Choudhry², Edward J. Lammer³, John S. Witte^{2,4}, and Gary M. Shaw¹

¹Department of Pediatrics, Division of Neonatology, Stanford University School of Medicine, Stanford, CA

²Department of Urology, University of California, San Francisco, CA

³Children's Hospital Oakland Research Institute, Oakland, CA

⁴Departments of Epidemiology and Biostatistics and Institute for Human Genetics, University of California, San Francisco, CA

Abstract

Purpose—We determined whether variants in genes associated with genital tubercle (the anlage for the penis) and early urethral development were associated with hypospadias in humans.

Materials and Methods—We examined 293 relatively common tagSNPs in *BMP4*, *BMP7*, *FGF8*, *FGF10*, *FGFR2*, *HOXA13*, *HOXD13*, *HOXA4*, *HOXB6*, *SRY*, *WT1*, *WTAP*, *SHH*, *GLI1*, *GLI2*, and *GLI3*. The analysis included 624 cases (81 mild, 319 moderate, 209 severe, 15 undetermined severity) and 844 population-based non-malformed male controls born in California from 1990-2003.

Results—There were 28 SNPs for which any of the comparisons (i.e., overall or for a specific severity) had a p-value <0.01. The homozygous variant genotypes for four SNPs in *BMP7* were associated with at least 2-fold increased risk of hypospadias, regardless of severity. Five SNPs for *FGF10* were associated with 3- to 4-fold increased risks, regardless of severity; for four of them, results were restricted to whites. For *GLI1*, *GLI2* and *GLI3*, there were 12 associated SNPs but results were inconsistent by severity and race-ethnicity. For *SHH*, one SNP was associated with 2.4-fold increased risk of moderate hypospadias. For *WT1*, six SNPs were associated with approximately 2-fold increased risks, primarily for severe hypospadias.

Conclusions—This study provides evidence that SNPs in several genes that contribute to genital tubercle and early urethral development are associated with hypospadias risk.

Keywords

hypospadias; genes; genital tubercle	

INTRODUCTION

Hypospadias is a common congenital malformation in which the urethral meatus is on the ventral side of the penis ^{1, 2}. Familial patterns indicate that genetic factors substantially contribute to its etiology ³.

Early development of the external genitalia and urethra depends on the formation and outgrowth of the genital tubercle, the anlage for the penis. This early stage is largely androgen-independent and precedes sexual differentiation. Experimental studies support the contribution of many transcription factors and signaling molecules to this process, including Wilms tumor 1, sonic hedgehog, homeobox proteins, bone morphogenetic proteins, fibroblast growth factors, and Gli transcription factors ⁴⁻⁹. Expression of the sex-determining region Y gene (*SRY*) and its direct target, *SOX9*, is critical to the initiation of the next phase, which is androgen-dependent and involves sexual differentiation and development of the penis and testes ¹⁰. Previous studies have investigated the association of hypospadias with genes that contribute to these events. A greater frequency of variants in cases than controls has been reported for *BMP4*, *BMP7*, *HOXA4*, *HOXA6*, and *WT1* but not *SRY* or *SOX9* among Chinese males ^{11, 12}, *FGF8* and *FGFR2* but not *BMP7* or *FGF10* among Swedish males ¹³, and one study did not observe differences among German males for *HOXA13* or *WTAP* ¹⁴. Severity of the phenotypes varied. These studies have primarily involved sequencing, among few subjects. ¹⁵.

Our hypothesis was that variants in genes associated with genital tubercle and early urethral development are associated with human hypospadias. We examined close to 300 relatively common variants in a large population of California male infants in the following genes, given that they have been the subject of previous genetic association studies in humans: *BMP4*, *BMP7*, *FGF8*, *FGF10*, *FGFR2*, *HOXA13*, *HOXD13*, *HOXA4*, *HOXB6*, *SRY and SOX9*, *WT1*, and *WTAP*. We also examined *SHH*, *GLI1*, *GLI2*, and *GLI3* (Table 1).

MATERIALS AND METHODS

The study population included male infants born from 1990-2003 to mothers who were residents of eight California Central Valley counties and from 1990-1997 to mothers who were residents of Los Angeles, San Francisco, and Santa Clara counties, reflecting counties where case ascertainment was actively conducted by the California Birth Defects Monitoring Program (CBDMP) by reviewing medical records at hospitals and genetic centers ¹⁶.

Cases were classified as mild (meatus was limited to the coronal or glanular penis, British Pediatric Association [BPA] codes 752.605, 752.625), moderate (meatus on the penile shaft, BPA 752.606, 752.626), or severe (meatus at the peno-scrotal junction or perineal area, BPA 752.607, 752.627). Assignment of severity was finalized based on review by a medical geneticist (EJL or Dr. Cynthia Curry) ¹⁷. Cases for which the anatomical position was not sufficiently described ("not-otherwise-specified," BPA codes 752.600, 752.620) were excluded. Cases classified as having a known single gene disorder or chromosomal abnormality were excluded. Mild cases without chordee (BPA752.605) were not ascertained

by CBDMP except in 2004; thus, mild cases are under-represented and primarily those with chordee ¹⁷.

The underlying study population included 1,246,172 non-malformed live born male infants eligible for control selection. We randomly selected 931 with available bloodspots (the DNA source), in proportion to the underlying birth population for each year, to give an approximate 2:1 ratio of controls to cases from Central Valley counties and a 1:1 ratio from other counties. The ratio differed due to the presence of a secondary on-going study in the Central Valley.

Covariates were from birth certificates: maternal race-ethnicity, education, age, and parity; plurality; and infant birthweight and gestational age at delivery. In total, 667 (88% of eligible) cases and 931 (93% of eligible) controls were available for genotyping.

Genomic DNA was extracted from dried bloodspots using MasterPureTM Complete DNA and RNA Purification Kit (Epicentre Biotechnologies Madison, WI), and 10 ng genomic DNA was then used for whole genome amplification (Qiagen Repli-g® kit). TagSNPs that assay known common SNPs either directly or indirectly via linkage disequilibrium among measured and unmeasured SNPs were selected (http://gvs.gs.washington.edu/GVS/). The program provided tagSNPs that cover common variation at r²>0.80 across each candidate gene for a "cosmopolitan" population, including Hispanics. TagSNPs with minor allele frequencies (MAF) >10% were selected. For *FGF10* and *SRY* we selected tagSNPs with MAF>1% because none had MAF>10%. For *GLI2* and *GLI3* we excluded the Yoruban (YRI) population from tagSNP selection to reduce the number of SNPs (both genes initially produced >100 tagSNPs). For *FGFR2*, we limited SNP selection to 2 non-intronic tagSNPs due to limited assay space. SNPs were genotyped using a custom multiplex Illumina GoldenGate assay.

We started with 324 SNPs. We excluded 19 for which the data indicated poor clustering of results and one with a call rate <90%. We also excluded 126 subjects (41 cases, 85 controls) with sample call rates <90%, leaving 626 cases and 846 controls for analyses. We further excluded 11 SNPs with p<0.01 for Hardy-Weinberg test of equilibrium among non-Hispanic white or Hispanic controls, leaving 293 for analysis. The single SNP we measured for *SOX9* was excluded based on the Hardy-Weinberg test.

Following our previous work, we genotyped 106 ancestry informative marker (AIM) SNPs to discriminate Native American, African, and European ancestry ¹⁸⁻²¹, and we used Structure 2.1 to estimate individual ancestry estimates (IAE) ^{22, 23}. Four SNPs were excluded that had call rates <90%. Structure was run using the admixture model with unlinked markers, with 50,000 burn-in iterations and 50,000 further iterations. Structure provided variables reflecting the proportions of Native American, African and European ancestry for each subject. Given that the three proportions sum to one, analyses included only two (Native American and African).

We used logistic regression to compare homozygous and heterozygous variant genotypes with homozygous wildtype (the more frequent allele among controls was designated as wildtype). We considered the presence of population stratification by examining models

restricted to self-identified non-Hispanic white and Hispanic subjects that contained product terms to estimate interaction. For SNPs for which the overall p-value for the product term was <0.10 (n=21), we focused on stratified results. We conducted analyses of all cases grouped together as well as separately by severity.

For the **9** genes for which there were >5 SNPs (*BMP7*, *FGF8*, *FGF10*, *HOXB6*, *GL11*, *GL12*, *GL13*, *WT1*, *WTAP*), we examined haplotypes. We used Haploview 4.2 to determine the LD structure and to define haplotype blocks and their frequencies based on all subjects' genotypes ²⁴. The most common haplotype was the reference. Maximum likelihood estimates of odds ratios (OR) and their corresponding 95% confidence intervals (CI) were calculated from logistic regression models to estimate relative risks.

We also evaluated genetic risk scores created by combining high-risk SNPs. For each individual we counted the number of genes in which they carried an associated variant (p<0.01). For variants with ORs<1, the reference genotype (homozygous wildtype) was scored as the risk genotype. We calculated scores overall and separately by severity (applying the p-value criterion within each group, such that a somewhat different set of variants was scored within each group). We then estimated ORs and 95% CIs associated with the risk scores, using logistic regression.

All ORs were adjusted for the two ancestral proportion variables and for maternal residence in the Central Valley due to the differing case-control ratio based on this variable inherent to the study design. In addition, non-stratified results were adjusted for maternal race-ethnicity (Hispanic, non-Hispanic white, or other). Two cases and two controls had missing race-ethnicity, such that SNP-based analyses included 844 controls and a maximum 624 cases (81 mild, 319 moderate, 209 severe, 15 undetermined).

The study was approved by the California Health and Human Services Agency Committee for the Protection of Human Subjects and Institutional Review Boards at Stanford University and Children's Hospital Oakland.

RESULTS

Comparing case versus control mothers, the former were more likely non-Hispanic white, more highly educated, older, and nulliparous (Table 2). Cases were more likely to be low birthweight and delivered before 37 weeks of gestation.

There were 28 SNPs for which any comparison had p<0.01 (Table 3). (Results for other SNPs are available in a supplementary table). The homozygous variant genotypes for four SNPs in *BMP7* were associated with at least 2-fold increased risk of hypospadias, regardless of severity. Five SNPs for *FGF10* were associated with 3-4-fold increased risks, regardless of severity; for four of these, results were restricted to whites. For *GLI1*, six SNPs were associated: three with reduced risk and three with increased risk, primarily among moderate cases. For *GLI2*, two SNPs were associated with 2-fold increased risks for moderate phenotypes, but only among whites, and one SNP was associated with 2-fold increased risk, but only for moderate hypospadias (severe phenotypes were also associated with increased risk for two of the SNPs, albeit p>0.01). For *GLI3*, one SNP was associated with increased

risk of mild, one with moderate, and one with severe hypospadias. For *SHH*, one SNP was associated with increased risk of moderate hypospadias. For *WT1*, six SNPs were associated with approximately 2-fold increased risk, primarily for severe hypospadias.

The similarity in results across multiple SNPs for certain genes reflected high linkage disequilibrium in some instances but not others. For example, for *BMP7* the pair-wise R-squared values for three of the four SNPs ranged from 0.83 to 0.95 (the fourth SNP, rs607007, was rare). For the other genes, the ranges were as follows: 0.43-0.97 for *FGF10*; 0.54-0.91 for *GLI1*; 0.28-0.65 for *GLI2*; 0.03-0.09 for *GLI3*; and 0.48-0.86 for *WT1*, with the exception of rs12293750, for which there was only one homozygous variant subject (data not shown).

Haplotype analyses, which included all cases as one group, produced two results with p<0.01. For a block in *GLI3* that included rs2237421, rs2237420, rs1527499 and rs3801165, the OR for the ACTG haplotype versus ACGG was 1.5 (95% CI 1.1, 2.0), p=0.0079. For a block in WTAP that included rs963800, rs2758313, rs2842972, rs4709364, rs3822849 and rs1440, the OR for the CCCCTG versus CCTCTG haplotype was 3.3 (95% CI 1.5, 7.3), p=0.002.

Results for the risk score analysis reflect the increase in risk due to having risk-associated SNPs in multiple genes (Table 4). As expected, a higher number of risk genes corresponded with higher ORs. For example, among severe cases a score of two or three was associated with at least a 3-fold increased risk, whereas a score of one was associated with a 1.6-fold increased risk.

DISCUSSION

SNPs in several genes that contribute to genital tubercle and early urethral development were associated with hypospadias risk, including *BMP7*, *FGF10*, *GLI* transcription factors, *SHH* and *WT1*. Results did not suggest an association with *BMP4*, *FGF8*, *FGFR2*, *SRY* or *WTAP*. This study included a more in-depth investigation of variants in these genes than previous studies, in a large, racially-ethnically diverse study population.

Experimental studies indicate that bone morphogenetic proteins and fibroblast growth factors contribute to genital tubercle development ^{4, 6}. Two studies have examined their contribution to hypospadias in humans. Sequence variations in *BMP4* were reported among three cases and in *BMP7* among six cases, out of 90, and none among 190 controls ¹¹. Among 60 Swedish boys with familial, isolated hypospadias, four had variants in *FGF8* and seven had variants in *FGFR2*, which were not observed among 96 controls ¹³. Several *FGFR2* relatively frequent polymorphisms were observed but not different among cases versus controls. No sequence variations were reported in *FGF10* or *BMP7* ¹³. In the current study, SNPs in *BMP4*, *FGF8*, and *FGFR2* were not associated with hypospadias, whereas, several SNPs in *BMP7* and *FGF10* were associated with at least 2-fold increased risks of hypospadias, regardless of severity. Findings for *FGF10* were predominately among non-Hispanic whites.

SHH contributes to epithelial-mesenchymal interactions and patterning in the genital tubercle ²⁵, and Shh knockout mice have genital tubercle agenesis ⁹. Gli transcription factors are encoded by three genes with overlapping function (GLI1-3), which are regulated by SHH ²⁵. GLI genes are associated with limb and craniofacial development, which involve developmental processes related to tissue patterning that may apply to urethral development ²⁵. Gli2 mutant mice have defective urethral formation ^{9, 25}. To our knowledge, the current study represents the first investigation of GLI1-3 or SHH and hypospadias in humans. Our study provided some evidence of an association for selected variants in these genes, but results were inconsistent across phenotypes and race-ethnicity.

WT1 is a zinc-finger transcription factor that contributes to normal development of the genitourinary system ^{26, 27}. WTAP contributes to WT1 function ²⁸. Sequence variations in WT1 were reported in three of 90 Chinese cases and zero of 276 controls ¹², and zero of 35 Swedish cases ²⁹. Variants in WT1 were reported among six of 80 severe hypospadias cases with cryptorchidism; all six eventually developed Wilms tumor or nephropathy ³⁰. No variants were observed among 70 cases without cryptorchidism. Utsch et al. sequenced the exons of WTAP ¹⁴. They observed two variants and stated that their frequency was not different between cases and controls. In the current study, a WTAP haplotype and several SNPs in WT1 were associated with hypospadias.

Experimental evidence also suggests that homeobox genes contribute to early genital tubercle development ^{4, 5}. *Hoxa13* knockout mice have hypospadias ⁴, and *Hoxa13* mutants have altered androgen receptor expression ⁴. In humans, mutations in *HOXA13* cause handfoot-genital syndrome, which includes hypospadias ⁵. However, no sequence variants in *HOXA13* were observed among 37 cases with hypospadias ¹⁴. Variants in *HOXA4* were observed among three subjects and in *HOXA6* among two subjects, among 90 total, and none among controls ¹¹. The current study did not provide support for an association of common variants in several homeobox genes with hypospadias.

Our study is strengthened by its size, population-based controls, ancestry informative markers, and inclusion of multiple genes. We chose to highlight results that met a relatively modest criterion for statistical significance (p<0.01) rather than conducting formal correction for multiple testing, given that our study focused on candidate genes. Our approach minimizes Type II errors (false negatives). However, we acknowledge that the trade-off is an increased possibility of false positive results. As such, we emphasize the need for replication of our findings in additional study populations. Our approach of investigating tagSNPs seemed appropriate, given that it captures the majority of genetic variation and is cost-efficient, and that minimal examination of the studied genes in humans preceded the current study. However, most tagSNPs are intronic and have no known functional consequences. Two exonic SNPs are included in Table 3 but are non-synonymous variants (rs2228226 in GLI1 and rs16754 in WT1). Thus, observed associations are likely driven by linkage disequilibrium with other less common unmeasured variants and merit further genetic inquiry. Elucidation of underlying causal variants could be useful for genetic counseling purposes or for directing mechanistic studies. Also of note, we were able to explore results by phenotypic severity, but sample size for some phenotype-specific results were limited, especially for mild cases. Under-ascertainment of mild cases or

misclassification of severity are potential limitations but unlikely to be responsible for our results.

CONCLUSIONS

This study found substantial evidence for an association of hypospadias with genes involved in genital tubercle development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the California Department of Public Health Maternal Child and Adolescent Health Division for providing data. We also thank Dr. Cynthia Curry for her contributions to case review for some of the study subjects. This project was partially supported by NIH R01 ES017060 and CDC 6U01DD000489. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the California Department of Public Health.

References

- 1. Dolk H, Vrijheid M, Scott JE, et al. Toward the effective surveillance of hypospadias. Environ Health Perspect. 2004; 112:398. [PubMed: 14998760]
- Paulozzi LJ. International trends in rates of hypospadias and cryptorchidism. Environ Health Perspect. 1999; 107:297. [PubMed: 10090709]
- Schnack TH, Zdravkovic S, Myrup C, et al. Familial aggregation of hypospadias: a cohort study. Am J Epidemiol. 2008; 167:251. [PubMed: 18042671]
- 4. Morgan EA, Nguyen SB, Scott V, et al. Loss of Bmp7 and Fgf8 signaling in Hoxa13-mutant mice causes hypospadia. Development. 2003; 130:3095. [PubMed: 12783783]
- Baskin, LS.; Liu, W.; Bastacky, J., et al. Anatomical studies of the mouse genital tubercle. In: Baskin, LS., editor. Hypospadias and Genital Development. Vol. 545. New York: Kluwer Academic/Plenum Publishers; 2004. p. 103-121.
- 6. Yucel, S.; Liu, W.; Cordero, D., et al. Anatomical studies of the fibroblast growth factor-10 mutant, sonic hedge hog mutant and androgen receptor mutant mouse genital tubercle. In: Baskin, LS., editor. Hypospadias and Genital Development. New York: Kluwer Academic/Plenum Publishers; 2004. p. 123-148.
- 7. Kojima Y, Kohri K, Hayashi Y. Genetic pathway of external genitalia formation and molecular etiology of hypospadias. J Pediatr Urol. 2010; 6:346. [PubMed: 19995686]
- Cohn MJ. Development of the external genitalia: conserved and divergent mechanisms of appendage patterning. Dev Dyn. 2011; 240:1108. [PubMed: 21465625]
- 9. Haraguchi R, Mo R, Hui C, et al. Unique functions of Sonic hedgehog signaling during external genitalia development. Development. 2001; 128:4241. [PubMed: 11684660]
- 10. Kashimada K, Koopman P. Sry: the master switch in mammalian sex determination. Development. 2010; 137:3921. [PubMed: 21062860]
- 11. Chen T, Li Q, Xu J, et al. Mutation screening of BMP4, BMP7, HOXA4 and HOXB6 genes in Chinese patients with hypospadias. Eur J Hum Genet. 2007; 15:23. [PubMed: 17003840]
- 12. Wang Y, Li Q, Xu J, et al. Mutation analysis of five candidate genes in Chinese patients with hypospadias. Eur J Hum Genet. 2004; 12:706. [PubMed: 15266301]
- 13. Beleza-Meireles A, Lundberg F, Lagerstedt K, et al. FGFR2, FGF8, FGF10 and BMP7 as candidate genes for hypospadias. Eur J Hum Genet. 2007; 15:405. [PubMed: 17264867]
- 14. Utsch B, Kaya A, Ozburun A, et al. Exclusion of WTAP and HOXA13 as candidate genes for isolated hypospadias. Scand J Urol Nephrol. 2003; 37:498. [PubMed: 14675924]

15. van der Zanden LF, van Rooij IA, Feitz WF, et al. Aetiology of hypospadias: a systematic review of genes and environment. Hum Reprod Update. 2012; 18:260. [PubMed: 22371315]

- 16. Croen LA, Shaw GM, Jensvold NJ, et al. Birth defects monitoring in California: a resource for epidemiologic research. Paediatr Perinat Epidemiol. 1991; 5:423. [PubMed: 1754501]
- 17. Carmichael SL, Shaw GM, Nelson V, et al. Hypospadias: trends and descriptive epidemiology in a California population. Epidemiol. 2003; 14:701.
- 18. Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H, et al. Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes. 2012; 61:3314–21. [PubMed: 22923468]
- 19. Choudhry S, Que LG, Yang Z, et al. GSNO reductase and beta2-adrenergic receptor gene-gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet Genomics. 2010; 20:351–8. [PubMed: 20335826]
- Via M, De Giacomo A, Corvol H. The role of LTA4H and ALOX5AP genes in the risk for asthma in Latinos. Genetics of asthma in Latino Americans (GALA) Study. Clin Exp Allergy. 2010; 40:582–9. [PubMed: 20067482]
- 21. Risch N, Choudhry S, Via M, et al. Ancestry-related assortative mating in Latino populations. Genome Biol. 2009; 10:R132. [PubMed: 19930545]
- 22. Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003; 164:1567. [PubMed: 12930761]
- Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155:945. [PubMed: 10835412]
- 24. Barrett JC, Fry B, Maller J, et al. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005; 21:263. [PubMed: 15297300]
- 25. Yamada G, Satoh Y, Baskin LS, et al. Cellular and molecular mechanisms of development of the external genitalia. Differentiation. 2003; 71:445. [PubMed: 14641326]
- 26. Kohler B, Schumacher V, Schulte-Overberg U, et al. Bilateral Wilms tumor in a boy with severe hypospadias and cryptochidism due to a heterozygous mutation in the WT1 gene. Pediatr Res. 1999; 45:187. [PubMed: 10022588]
- 27. Kohler B, Pienkowski C, Audran F, et al. An N-terminal WT1 mutation (P181S) in an XY patient with ambiguous genitalia, normal testosterone production, absence of kidney disease and associated heart defect: enlarging the phenotypic spectrum of WT1 defects. Eur J Endocrinol. 2004; 150:825. [PubMed: 15191353]
- 28. Little NA, Hastie ND, Davies RC. Identification of WTAP, a novel Wilms' tumour 1-associating protein. Hum Mol Genet. 2000; 9:2231. [PubMed: 11001926]
- 29. Nordenskjold A, Friedman E, Tapper-Persson M, et al. Screening for mutations in candidate genes for hypospadias. Urol Res. 1999; 27:49. [PubMed: 10092153]
- 30. Kohler B, Biebermann H, Friedsam V, et al. Analysis of the Wilms' tumor suppressor gene (WT1) in patients 46, XY disorders of sex development. J Clin Endocrinol Metab. 2011; 96:E1131. [PubMed: 21508141]

Table 1

Genes included in analyses.

Gene name	Gene symbol	Role	Number of SNPs analyzed (total=293)
Bone morphogenetic protein 4	BMP4	GT signaling cascade	3
Bone morphogenetic protein 7	BMP7	GT signaling cascade	62
Fibroblast growth factor 10	FGF10	GT signaling cascade	25
Fibroblast growth factor 8	FGF8	GT signaling cascade	7
Fibroblast growth factor receptor 2	FGFR2	GT signaling cascade	1
GLI family zinc finger 1	GLI1	GT signaling cascade,	7
GLI family zinc finger 2	GLI2	GT signaling cascade	45
GLI family zinc finger 3	GLI3	GT signaling cascade	91
Homeobox A13	HOXA13	GT signaling cascade	3
Homeobox D13	HOXD13	GT signaling cascade	2
Homeobox A4	HOXA4	GT signaling cascade, penile skin deveopment	3
Homeobox B6	HOXB6	GT signaling cascade, penile skin development	6
Sonic hedgehog	SHH	GT signaling cascade	3
Sex determining region Y	SRY	Initiation of sexual differentiation stage	1
Wilms tumor 1	WT1	Early GT development	27
Wilms tumor 1 associated protein	WTAP	Early GT development	7

GT = genital tubercle

 $\label{eq:Table 2} \textbf{Table 2}$ Descriptive characteristics of cases with hypospadias (n=626) and non-malformed controls (n=846).

		_
	Percent of Controls (n)	Percent of Cases (n)
Maternal race-ethnicity		
White	31 (258)	44 (274)
Hispanic	52 (439)	34 (215)
Others	17 (147)	22 (135)
Unknown	<1 (2)	<1 (2)
Maternal education		
< High school	39 (330)	25 (159)
High school	31 (265)	27 (170)
> High school	29 (244)	47 (295)
Unknown	<1 (7)	<1 (2)
Maternal age		
< 25 years	46 (393)	30 (185)
25-34 years	43 (360)	52 (329)
35 or more years	11 (93)	18 (112)
Number of previous live births		
0	36 (308)	52 (328)
1	33 (275)	26 (162)
2	31 (263)	21 (134)
Unknown	0 (0)	<1 (2)
Infant birthweight		
2500 g	5 (42)	30 (190)
> 2500 g	95 (804)	70 (436)
Gestational age at delivery		
< 37 weeks	7 (60)	23 (143)
37 weeks	89 (750)	74 (462)
Unknown	4 (36)	3 (21)
Maternal residence in Central Valley		
No	45 (381)	63 (392)
Yes	55 (465)	37 (234)

Table 3

Association of hypospadias with selected SNPs.*

0.350 0.114 0.016 0.258 0.232 0.004 0.528 0.763 0.178 0.634 0.422 0.037 0.201 0.011 0.541 0.9 (0.5 - 1.4) 2.9 (0.6 - 14.1) 0.9 (0.5 - 1.5) OR (95% CI) Severe Cases 0.7 (0.5 - 1.1) 4.0 (1.1 - 14.4) 0.9 (0.6 - 1.3) 2.2 (1.2 - 4.2) 0.7(0.3 - 1.3)0.7 (0.3 - 1.3) 2.2 (0.7 - 7.7) 0.8(0.6 - 1.2)2.2 (1.2 - 4.0) 2.6 (1.4 - 5.1) 0.9(0.4 - 1.9)0.7 (0.4 - 1.5) Reference Reference Reference Reference Reference Reference Reference Reference Sev | 129 18 129 9 20 136 54 61 17 40 39 12 36 15 59 47 15 17 2 31 0.002 0.467 0.217 0.870 0.213 0.272 0.227 0.368 0.856 0.913 0.6690.794 0.623 0.012 0.00 3.7 (1.3 - 10.1) 1.1 (0.8 - 1.5) 1.0(0.8 - 1.4)0.8 (0.5 - 1.3) 1.0 (0.6 - 1.5) 5.2 (1.7 - 16.0) 0.9(0.5 - 1.5)0.9 (0.5 - 1.8) 0.9(0.6 - 1.4)4.2 (1.7 - 10.5) 1.6(0.8 - 3.3)1.2 (0.9 - 1.6) 1.5 (0.8 - 2.9) 0.9 (0.4 - 1.9) 1.5(0.8 - 2.8)Reference Reference Reference Reference Reference Reference \mathbf{z} 192 109 100 112 105 13 13 13 206 13 192 15 12 50 16 55 17 4 38 30 47 66 0 0.844 0.109 0.014 0.784 0.860 0.6610.157 0.353 0.362 0.175 0.95 0.07 3.1 (0.6 - 14.9) 3.8 (1.3 - 11.2) 0.8 (0.4 - 1.8) 0.7 (0.3 - 1.5) 1.1 (0.6 - 1.8) 1.6 (0.6 - 4.7) 2.5 (0.7 - 9.7) 1.0(0.6 - 1.8)1.1 (0.6 - 1.9) 2.6 (0.9 - 7.2) 1.1 (0.4 - 2.6) OR (95% CI) 2.3 (0.8 - 6.3) Mild Cases Reference Reference Reference Reference Reference Reference Reference NCNCNo. Mild Cases 30 13 18 4 51 24 9 54 9 51 54 9 4 α 28 0 6 2 0.895 0.166 0.00 0.584 0.003 0.588 0.00 0.433 0.593 0.383 0.007 0.799 0.334 0.008 0.041 4.1 (1.5 - 11.4) 0.8 (0.5 - 1.1) 0.9 (0.6 - 1.2) 1.0 (0.6 - 1.4) 2.4 (1.0 - 5.4) 1.0(0.8 - 1.3)2.2 (1.3 - 3.8) 0.8(0.6 - 1.2)3.3 (1.4 - 8.2) 1.9 (1.2 - 3.0) 0.9 (0.7 - 1.2) 1.1 (0.8 - 1.3) 1.9 (1.2 - 3.2) 0.9 (0.5 - 1.5) 0.8 (0.5 - 1.3) Reference Reference Reference Reference Reference Reference Reference Reference 198 202 115 380 405 180 380 175 S S 17 45 38 95 4 26 79 99 33 162 87 23 Sont Sont 833 10 517 283 37 539 277 28 528 280 34 165 214 9 164 88 115 236 83 147 102 Geno-type ACΑĄ AAAG GG GG AA GG AG ΑA GG ΑĄ AACCAG Ε Ţ Ε JG gg AC \mathcal{C} AC \mathcal{C} MAF (Con-trols) 0.380 0.4630.007 0.213 0.197 0.288 0.397 0.227 0.207 0.191 FGF10 rs16901816 (T:G) **BMP7** rs6070007 (C:A) rs6127980 (G:A) rs6892212 (A:C) rs6127978 (A:G) rs6127985 (G:A) Gene, SNP (Alleles) Hispanic Hispanic White White

Gene, SNP (Alleles)	MAF (Controls)	Geno	No. Cont	S S	OR (95% CI) All Cases	ď	No. Mild Cases	OR (95% CI) Mild Cases	ď	No. Mod erate	OR (95% CI) Moderate Cases	ď	No. Sev Cas	OR (95% CI) Severe Cases	Ā
rs2973644 (T:C)	0.331														
Hispanic	0.427	II	138	80	Reference		7	Reference		37	Reference		34	Reference	
		TC	227	106	0.9 (0.6 - 1.3)	0.625	16	1.3 (0.5 - 3.4)	0.565	43	0.8 (0.5 - 1.4)	0.533	4	0.9 (0.5 - 1.4)	0.563
		CC	74	28	0.8 (0.4 - 1.3)	0.326	1	NC		14	0.9 (0.5 - 1.9)	0.833	12	0.7 (0.3 - 1.5)	0.354
White	0.200	H	160	172	Reference		29	Reference		103	Reference		36	Reference	
		TC	93	78	0.8 (0.5 - 1.1)	0.182	13	0.7 (0.4 - 1.6)	0.447	51	0.9 (0.6 - 1.5)	0.728	13	0.5 (0.2 - 1.1)	0.073
		SS	S	21	4.4 (1.6 - 12.1)	0.005	4	4.1 (1.0 - 17.7)	0.058	12	5.0 (1.6 - 15.6)	0.005	4	3.6 (0.8 - 15.5)	0.084
rs1482679 (A:G)	0.453	AA	258	244	Reference		33	Reference		120	Reference		87	Reference	
		AG	399	253	0.8 (0.6 - 1.0)	0.029	34	0.9 (0.5 - 1.5)	0.681	135	0.8 (0.6 - 1.2)	0.311	9/	0.6 (0.4 - 0.9)	0.005
		gg	180	124	0.9 (0.7 - 1.2)	0.469	41	1.0 (0.5 - 2.1)	0.979	62	1.0 (0.7 - 1.5)	0.976	45	0.8 (0.5 - 1.2)	0.217
rs2973646 (C:A)	0.326														
Hispanic	0.425														
		9	138	80	Reference		7	Reference		37	Reference		34	Reference	
		AC	228	106	0.9 (0.6 - 1.3)	0.623	16	1.3 (0.5 - 3.4)	0.560	43	0.8 (0.5 - 1.4)	0.532	4	0.9 (0.5 - 1.4)	0.563
		AA	72	28	0.8 (0.5 - 1.3)	0.384	-	NC		41	1.0 (0.5 - 2.0)	0.895	12	0.7 (0.3 - 1.5)	0.401
White	0.198	9	161	173	Reference		29	Reference		104	Reference		36	Reference	
		AC	92	78	0.8 (0.5 - 1.2)	0.241	13	0.8 (0.4 - 1.7)	0.548	51	1.0 (0.6 - 1.5)	0.850	13	0.5 (0.3 - 1.1)	0.082
		AA	5	22	4.5 (1.6 - 12.4)	0.004	4	4.2 (1.0 - 18.1)	0.055	13	5.2 (1.7 - 16.0)	0.004	4	3.6 (0.8 - 15.6)	0.082
GLII rs10783827 (T:G)	0.496	Ħ	229	193	Reference		33	Reference		93	Reference		59	Reference	
		JG	385	269	1.0 (0.8 - 1.3)	0.925	37	0.7 (0.4 - 1.2)	0.227	143	1.3 (0.9 - 1.8)	0.123	98	1.0 (0.6 - 1.4)	0.802
		gg	223	152	1.2 (0.9 - 1.6)	0.254	Ξ	0.5 (0.2 - 1.1)	0.084	78	1.9 (1.3 - 2.9)	0.002	09	1.1 (0.7 - 1.7)	0.740
rs3825077 (G:A)	0.434														
Hispanic	0.355	99	176	82	Reference		7	Reference		42	Reference		31	Reference	
		AG	212	86	1.0 (0.7 - 1.4)	0.846	14	1.3 (0.5 - 3.4)	0.584	37	0.7 (0.4 - 1.2)	0.217	43	1.2 (0.7 - 2.0)	0.447
		AA	46	29	1.1 (0.7 - 1.9)	0.657	3	1.4 (0.3 - 6.2)	0.623	10	0.7 (0.3 - 1.6)	0.417	16	1.7 (0.8 - 3.3)	0.162
White	0.372	99	31	53	Reference		∞	Reference		34	Reference		10	Reference	
		AG	126	142	0.7 (0.4 - 1.2)	0.159	24	0.7 (0.3 - 1.7)	0.429	84	0.6 (0.4 - 1.2)	0.162	32	0.8 (0.3 - 2.0)	0.670
		AA	96	77	0.4 (0.2 - 0.7)	0.003	13	0.6 (0.2 - 1.8)	0.397	49	0.4 (0.2 - 0.8)	0.005	12	0.3 (0.1 - 0.8)	0.023
rs3782126 (G:A)	0.471	99	250	171	Reference		16	Reference		87	Reference		99	Reference	

rs2292657 (C:T) 0.	(Con-	Geno -type	Cont rols	es Cas	OR (95% CI) All Cases	Ы	No. Mild Cases	OR (95% CI) Mild Cases	4	Mod erate	$\frac{\text{OR (95\% CI)}}{\text{Moderate}}$ $\frac{\text{Cases}}{\text{Cases}}$	L i		OR (95% CI) Severe Cases	<u>a</u> i
		AG	393	288	0.9 (0.7 - 1.2)	0.456	33	0.9 (0.4 - 1.7)	0.672	148	0.8 (0.6 - 1.1)	0.169	86	1.0 (0.7 - 1.4)	0.925
		AA	200	152	0.7 (0.5 - 1.0)	0.083	31	1.3 (0.7 - 2.8)	0.42	75	0.5 (0.3 - 0.8)	0.002	42	0.8 (0.5 - 1.3)	0.351
	0.45	CC	268	184	Reference		16	Reference		76	Reference		69	Reference	
		TC	390	294	0.9 (0.7 - 1.2)	0.628	41	1.1 (0.6 - 2.2)	0.675	152	0.8 (0.6 - 1.1)	0.246	93	0.9 (0.6 - 1.4)	0.747
		H	183	140	0.8 (0.5 - 1.0)	0.086	23	1.2 (0.6 - 2.5)	0.641	69	0.5 (0.3 - 0.8)	0.004	43	0.8 (0.5 - 1.3)	0.333
rs4760259 (C:T) 0.	0.49	CC	242	199	Reference		32	Reference		104	Reference		55	Reference	
		TC	355	264	1.1 (0.8 - 1.4)	0.568	38	0.9 (0.5 - 1.5)	0.621	131	1.2 (0.9 - 1.7)	0.206	06	1.2 (0.8 - 1.7)	0.460
		H	228	151	1.2 (0.9 - 1.7)	0.244	11	0.5 (0.2 - 1.2)	0.123	78	1.8 (1.2 - 2.8)	0.004	09	1.2 (0.7 - 1.9)	0.498
rs2228226 (C:G) 0.4	0.469	CC	256	203	Reference		33	Reference		103	Reference		59	Reference	
		CC	379	284	1.1 (0.9 - 1.4)	0.392	38	0.8 (0.5 - 1.4)	0.484	145	1.4 (1.0 - 1.9)	0.059	96	1.1 (0.8 - 1.7)	0.499
		99	205	132	1.2 (0.9 - 1.6)	0.282	10	0.6 (0.3 - 1.3)	0.178	<i>L</i> 9	1.8 (1.1 - 2.7)	0.009	53	1.1 (0.7 - 1.8)	0.577
GL12 rs4848125 (A:G) 0.3	0.356														
Hispanic 0.3	0.355	AA	173	96	Reference		∞	Reference		45	Reference		42	Reference	
		AG	192	84	0.8 (0.6 - 1.1)	0.221	10	1.1 (0.4 - 3.0)	0.808	35	0.7 (0.4 - 1.1)	0.135	34	0.8 (0.5 - 1.2)	0.271
		99	52	28	0.9 (0.5 - 1.6)	0.748	4	1.9 (0.5 - 6.7)	0.349	11	0.7 (0.3 - 1.6)	0.417	13	1.0 (0.5 - 2.0)	0.915
White 0.4	0.402	AA	85	73	Reference		17	Reference		38	Reference		17	Reference	
		AG	1117	117	1.2 (0.8 - 1.8)	0.516	15	0.6 (0.3 - 1.4)	0.23	77	1.5 (0.9 - 2.6)	0.109	22	1.0 (0.5 - 2.0)	0.952
		99	38	89	2.3 (1.4 - 3.9)	0.002	13	1.5 (0.6 - 3.5)	0.361	40	2.8 (1.5 - 5.4)	0.001	13	2.1 (0.9 - 5.0)	0.104
rs4143116 (G:A) 0.3	0.317	99	389	293	Reference		4	Reference		150	Reference		68	Reference	
		AG	345	236	1.0 (0.8 - 1.3)	0.833	27	0.8 (0.5 - 1.4)	0.456	118	1.1 (0.8 - 1.5)	0.466	87	1.1 (0.7 - 1.5)	0.740
		ΑA	68	82	1.4 (1.0 - 2.1)	0.056	7	1.1 (0.5 - 2.9)	0.765	42	2.1 (1.3 - 3.3)	0.004	32	1.1 (0.6 - 1.9)	0.725
rs4848126 (G:A) 0.4	0.413														
Hispanic 0.3	0.399	99	156	91	Reference		6	Reference		40	Reference		41	Reference	
		AG	210	68	0.7 (0.5 - 1.0)	0.074	10	0.8 (0.3 - 2.2)	0.732	40	0.7 (0.4 - 1.2)	0.159	34	0.6 (0.4 - 1.0)	0.072
		AA	89	34	0.8 (0.5 - 1.3)	0.309	5	1.7 (0.5 - 5.6)	0.385	13	0.6 (0.3 - 1.1)	0.110	16	0.8 (0.4 - 1.6)	0.569
White 0.4	0.428	99	98	89	Reference		15	Reference		39	Reference		13	Reference	
		AG	122	131	1.4 (0.9 - 2.1)	0.11	16	0.7 (0.3 - 1.5)	0.369	98	1.7 (1.0 - 2.7)	0.047	27	1.7 (0.8 - 3.6)	0.162
		AA	49	73	2.0 (1.2 - 3.3)	0.007	14	1.4 (0.6 - 3.2)	0.483	42	2.1 (1.2 - 3.8)	0.015	14	2.2 (0.9 - 5.3)	0.071
GLI3 rs6974655 (G:T) 0.2	0.234	gg	498	361	Reference		39	Reference		184	Reference		126	Reference	

Gene, SNP (Alleles)	MAF (Con- trols)	Geno-type	No. Cont	Se S	OR (95% CI) All Cases	<u>a</u> i	No. Mild Cases	OR (95% CI) Mild Cases	<u>a</u> i	No. Mod erate	OR (95% CI) Moderate Cases	Q	No. Sev Cas	OR (95% CI) Severe Cases	잌
		TG	295	212	0.9 (0.7 - 1.2)	0.619	29	1.1 (0.6 - 1.8)	0.775	115	1.0 (0.8 - 1.4)	0.871	99	0.9 (0.6 - 1.3)	0.595
		II	50	47	1.2 (0.8 - 1.8)	0.475	12	3.3 (1.5 - 7.6)	0.004	18	0.7 (0.4 - 1.3)	0.294	16	1.2 (0.6 - 2.2)	0.595
rs9886211 (A:G)	0.221														
Hispanic	0.205	AA	280	148	Reference		12	Reference		70	Reference		64	Reference	
		AG	138	59	0.8 (0.6 - 1.2)	0.275	11	2.0 (0.8 - 5.0)	0.112	19	0.5 (0.3 - 0.9)	0.02	25	0.8 (0.5 - 1.3)	0.389
		99	21	7	0.7 (0.3 - 1.6)	0.387	-	0.9 (0.1 - 7.6)	0.917	4	0.8 (0.3 - 2.5)	0.726	2	0.5 (0.1 - 2.1)	0.326
White	0.282	AA	139	130	Reference		24	Reference		85	Reference		19	Reference	
		AG	91	120	1.5 (1.0 - 2.2)	0.035	17	1.1 (0.5 - 2.2)	0.837	72	1.4 (0.9 - 2.2)	0.105	27	2.4 (1.2 - 4.8)	0.009
		99	27	22	0.9 (0.5 - 1.7)	0.815	4	0.9 (0.3 - 3.0)	0.883	10	0.7 (0.3 - 1.5)	0.313	∞	2.4 (0.9 - 6.3)	0.081
rs3801223 (C:T)	0.447	SS	273	189	Reference		29	Reference		86	Reference		58	Reference	
		TC	381	280	1.2 (0.9 - 1.5)	0.196	38	0.9 (0.5 - 1.6)	0.734	137	1.2 (0.9 - 1.7)	0.226	76	1.2 (0.8 - 1.8)	0.261
		H	183	152	1.3 (1.0 - 1.8)	0.056	41	0.7 (0.3 - 1.4)	0.279	82	1.7 (1.2 - 2.5)	0.007	53	1.2 (0.8 - 2.0)	0.329
SHH rs9333613 (A:G)	0.026	AA	787	574	Reference		62	Reference		291	Reference		189	Reference	
		AG	37	37	1.4 (0.8 - 2.4)	0.209	-	NC		20	2.4 (1.2 - 4.7)	0.009	16	1.4 (0.7 - 2.7)	0.385
		gg	33	_	NC		0	NC		0	NC		П	NC	
WT1 rs1799937 (T:C)	0.387	H	323	242	Reference		31	Reference		140	Reference		63	Reference	
		TC	388	267	1.1 (0.8 - 1.3)	0.654	43	1.6 (0.9 - 2.7)	0.079	131	0.9 (0.7 - 1.2)	0.570	87	1.1 (0.8 - 1.6)	0.547
		CC	133	113	1.4 (1.0 - 1.9)	0.077	7	1.2 (0.5 - 2.9)	92.0	46	1.1 (0.7 - 1.7)	0.739	59	1.9 (1.2 - 3.0)	9000
rs5030277 (T:A)	0.268	H	462	363	Reference		46	Reference		210	Reference		86	Reference	
		TA	296	185	1.0 (0.8 - 1.3)	0.856	28	1.5 (0.8 - 2.5)	0.189	83	0.9 (0.6 - 1.2)	0.520	70	1.1 (0.7 - 1.6)	0.758
		AA	75	49	1.5 (1.0 - 2.3)	0.035	4	1.1 (0.4 - 3.6)	0.842	20	1.1 (0.6 - 1.9)	0.845	40	2.3 (1.4 - 3.9)	0.001
rs16754 (A:G)	0.289	AA	440	332	Reference		42	Reference		198	Reference		83	Reference	
		AG	310	217	1.2 (0.9 - 1.5)	0.215	34	1.8 (1.1 - 3.2)	0.026	94	0.9 (0.7 - 1.3)	0.596	83	1.4 (0.9 - 2.0)	860.0
		99	88	72	1.5 (1.0 - 2.3)	0.03	5	1.3 (0.5 - 3.8)	0.619	25	1.1 (0.7 - 2.0)	0.642	42	2.3 (1.4 - 3.9)	0.001
rs5030234 (C:A)	0.286	22	436	342	Reference		4	Reference		196	Reference		93	Reference	
		AC	320	209	1.0 (0.8 - 1.3)	0.866	32	1.4 (0.8 - 2.4)	0.18	96	0.9 (0.7 - 1.2)	0.504	75	1.0 (0.7 - 1.5)	0.912
		AA	62	70	1.5 (1.0 - 2.3)	0.034	5	1.2 (0.4 - 3.5)	0.7	24	1.1 (0.7 - 2.0)	0.632	41	2.1 (1.3 - 3.5)	0.003
rs12293750 (C:A)	0.026	CC	962	580	Reference		71	Reference		300	Reference		195	Reference	
		AC	36	40	1.5 (0.9 - 2.4)	0.126	10	3.9 (1.6 - 9.3)	0.002	16	0.9 (0.5 - 1.8)	0.794	13	1.5 (0.8 - 3.0)	0.252

0.765	- 4	86 76 45	86 0.608 76 0.862 45	Reference 0.9 (0.7 - 1.3) 1.0 (0.6 - 1.6)	185 103 26	0.524	\sim \sim	45 27 8	0.939	Reference 45 1.0 (0.8 - 1.3) 0.939 27 1.4 (1.0 - 2.1) 0.063 8	324 213 79	414 325 96	GG AG	0.309	G:A)
	Reference	98		Reference	185		Reference	54		Reference	324	t 414	99	0.309	858449 (G:A)
	NC	1		NC	0		NC	0		NC	1	4	AA		
ď	OR (95% CI) Severe Cases	Sev Cas Cas	۵۱	OR (95% CI) Moderate Cases	No. Mod erate	ها	OR (95% CI) Mild Cases	No. Mild Cases	۵۱	OR (95% CI) All Cases	Cas es	No. Cont	Geno -type	MAE (Controls)	Gene, SNP (Alleles)

*
Results for SNPs with p-value <0.01 overall or within a specific phenotype are shown (ORs with p<0.01 are in bold). ORs are presented if all cells in the comparison had at least 3 observations; separate results for whites and Hispanics are shown if the p-value for interaction was <0.10. All odds ratios were adjusted for the two ancestral proportion variables, maternal residence in the Central Valley (yes/no), and maternal race-ethnicity (Hispanic, non-Hispanic white, or other) if the results were not already stratified.

 $MAF = minor \ allele \ frequency, \ NC = not \ calculated$

Table 4
Association of risk scores overall and within specific phenotypes.*

	Score	No. Cases	No. Controls	OR (95% CI)
All Cases	0	453	726	Reference
	1	144	106	2.0 (1.5, 2.7)
	2	23	12	2.5 (1.2, 5.4)
	3	4	0	undefined
Mild Cases	0	61	764	Reference
	1	18	74	3.5 (1.8, 7.0)
	2	2	6	6.0 (0.9, 41.8)
Moderate Cases	0	104	339	Reference
	1	130	367	1.5 (1.1, 2.2)
	2	59	112	2.8 (1.8, 4.3)
	3	22	24	8.1 (3.8, 17.0)
	4	4	2	32.6 (5.0, 211.4)
Severe Cases	0	66	404	Reference
	1	93	352	1.6 (1.1, 2.3)
	2	47	82	3.4 (2.1, 5.6)
	3	3	6	3.7 (0.8, 16.2)

Risk scores reflect the number of genes for which an individual had a variant genotype that had a p-value <0.01 (see Table 3 for variants that met this criterion). The maximum possible scores were 4, 2, 6, and 4 for all, mild, moderate and severe cases, respectively. All odds ratios were adjusted for the two ancestral proportion variables, maternal residence in the Central Valley (yes/no), and maternal race-ethnicity (Hispanic, non-Hispanic white, or other) if the results were not already stratified.