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Abstract

Towards Understanding Human Behavior for Autonomous Driving and Robotics

by

Hengbo Ma

Doctor of Philosophy in Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Understanding human behavior plays a significant role in many industrial applications, such
as autonomous driving and robotics, that entail human participation. Having an efficacious
human behavior model facilitates intelligent agents in arriving at high-quality decisions while
aligning with human values. In the past decades, while we have witnessed the remarkable
progress of human behavior modeling with modern deep learning approaches, it remains
a challenging task due to the inherent stochasticity of human behavior and the intricate
structural design of deep learning models.

This dissertation focuses on learning-based human behavior prediction and generation for au-
tonomous driving and robotics from both the model and learning algorithm design perspective.
In particular, the dissertation is concerned with two manifestations of human behaviors: hu-
man driving behavior and 3D human motion. The dissertation is divided into two parts. Part
I focuses on improving the generalization of human driving behavior prediction problems in
different problem settings. Chapter 2 introduces a transferable human driving behavior pre-
diction model leveraging domain-knowledge-based representation. In Chapter 3, a neural
memory system based on generative models is proposed to enable the capability of continual
learning for multi-agent vehicle trajectory prediction. In Chapter 4, an uncertainty analysis
of trajectory prediction in terms of static and dynamic information is provided, and a static-
information-only-based approach for difficult instance discovery is proposed to improve the
adaptability of the prediction model. Part II focuses on two properties of human behavior
generation: diversity and feasibility. Chapter 5 introduces a novel generative model exploring
diverse 3D human motion behavior and enables testing-time adjustment of prediction and
generation. Chapter 6 introduces a differentiable safety-critical control framework to ensure
the feasibility and generalizability of generated motions, and we demonstrate the efficiency
of the proposed approach in the collision avoidance application.
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Chapter 1

Introduction

1.1 Understanding Human Behavior: An Overview

The present era is witnessing a rapid development of intelligent agents that interact
with humans and there is no doubt that such intelligent agents will become an integral
part of human life. For instance, several companies, such as Waymo, Cruise, etc., have
already deployed autonomous vehicles in local regions; Mobile robots are deployed in hotels
and restaurants; Also, people have recently become enthusiastic about developing humanoid
robots to support human well-being with daily jobs like housework and healthcare. In
all of the aforementioned scenarios, The keyword is “human”. Therefore, understanding
human behaviors is crucial for enabling intelligent agents to provide effective, reliable, and
valuable support. For instance, an autonomous vehicle should be able to perceive and predict
how other traffic participants will behave in order to keep passengers safe and maintain
the efficiency of the autonomous driving system simultaneously; Another example is that
household robots should anticipate the motion and intention of their owners to decide how
they can provide more accurate services accordingly.

In general, human behavior is defined as the potential and expressed capacity to react
to internal or external stimuli in their environment [172]. Human behavior can be observed
and analyzed through various lenses, including verbal communication, body language, facial
expressions, and physical movements. In the context of autonomous driving, human behavior
can also be expressed through the trajectories of vehicles, which is referred to as driving
behavior. In this dissertation, our primary focus is modeling human behavior expressed
through physical movements at the human body level and vehicle maneuvers since they are
the major manifestations of human behavior in autonomous driving and robotics.

Technically, understanding human behavior is an extremely challenging task. In contrast
to mechanical systems, which are typically deterministic and have known models, the mech-
anism underlying human cognitive processes - which drives human behavior - remains largely
a mystery and exhibits a high degree of stochasticity. Hence, one of the suitable formula-
tions is to represent human behavior as a probability distribution. With this formulation,
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Human Behavior Prediction

Human Behavior Generation

Motion Planing

Decision Making

Stress Testing

Animation & Gaming

Robot Learning

Evaluation

Support Coverage

3D Human Motion Vehicle Trajectory

Manifestation of Human Behavior

Figure 1.1: Human behavior prediction and generation. The relation between these two
tasks is illustrated from a learning perspective. Human behavior prediction focuses more on
the accuracy of the probability density estimation. Human behavior generation focuses more
on the coverage of the probability distribution support. The typical applications for each
task are enumerated in the grey box. The images in the block “manifestations of human
behavior” are generated using SMPL-X [124] and CARLA [48].

this dissertation concerns two major tasks, human behavior prediction and human behav-
ior generation, for autonomous driving and robotics. Although these two tasks are highly
correlated and sometimes not clearly distinguished, we would like to differentiate these two
tasks in the following sections to highlight the desirable properties that we focus on in this
dissertation for each task. The relation between human behavior prediction and generation
is illustrated in Figure 1.1.

1.1.1 Human Behavior Prediction

There are several applications of human behavior prediction in autonomous driving and
robotics. For instance, a traffic participant prediction model can provide the future possible
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dangerous spatial-temporal region to one autonomous vehicle in order to enable it to make
correct decisions. Meanwhile, human behavior prediction models can also serve as surrogate
behavior models in a simulation. Such simulation can evaluate the performance of intelli-
gent agents. A good prediction model should have several important properties: accuracy,
generalizability, robustness, trustworthiness, etc. In this dissertation, we will mainly focus
on the first two properties:

• Accuracy The human behavior model’s accuracy significantly impacts downstream
tasks such as decision making or planning, especially in safety-critical scenarios. One
of the challenges of obtaining accurate human behavior distribution estimation is multi-
modality. In particular, given limited observation at an intersection, one vehicle may
have different routing options, such as going straight, turning left, or stopping. More-
over, even under the same route, the vehicle’s speed profile may also vary significantly.
In this situation, having a probabilistic model which can capture the accurate “shape”
of the distribution of human behavior will make the planning of autonomous vehicles
more robust and efficient.

• Generalizability Generalization refers to the ability of the prediction model to have a
good performance on novel and unseen scenarios which are not provided in the training
data. There are serval problem settings to test the generalizability.

– The target domain (evaluation data) and source domain (training data) are from
the same distribution. It is the most common learning setting. In this setting,
the prediction model should not overfit the training data.

– Transfer Learning Transfer learning refers to the learning settings where the
target domain and source domain are significantly different. There are several
types of discrepancies between the target domain and source domain [131]. In the
context of human behavior prediction, we usually focus on one type of transfer
learning problem, which is called domain adaption. Domain adaptation has two
assumptions: i) The relation between input (historical observation) and output
(predicted future human behavior) is determined and invariant to the marginal
distribution of input and output. ii) The input distribution of the target domain
and source domain are different.

– Continual Learning In contrast to the aforementioned learning settings that
deal with static datasets, continual learning investigates the generalization perfor-
mance in dynamic changing environments. In this setting, datasets come sequen-
tially. For instance, human driving datasets can be collected continually across
different locations. Although the power of computation has increased rapidly in
recent years, and the current computation infrastructure can afford large datasets
and models, it is still not the desirable and optimal way to retrain the model
with incremental datasets from the beginning. One of the challenges of continual
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learning is how to mitigate catastrophic forgetting, which means that the perfor-
mance of models degrades on previous tasks when learning a new task. Such a
phenomenon is usually observed in deep-neural-nework-based approaches.

Given that current research on human behavior prediction are still underdeveloped
within both transfer learning and continual learning settings, this dissertation primarily
focuses on these two problems.

1.1.2 Human Behavior Generation

Human behavior generation can be used in stress testing of autonomous vehicles, anima-
tion, and gaming. It can also be transformed into demonstrations for robot (e.g., humanoid
robot) skill learning. Compared with human behavior prediction, which focuses more on
density estimation, human behavior generation primarily focuses on the support coverage
of probability distribution. Besides the aforementioned properties in human behavior pre-
diction, we particularly focus on two properties that are specifically considered in human
behavior generation:

• Diversity Unlike human behavior prediction, human behavior generation focuses on
whether it can generate diverse behavior as many as possible. There needs to be more
than just estimating the probability density estimation to satisfy this requirement.
Meanwhile, even assuming that we have obtained a perfect estimated probability den-
sity of human behavior, generating the minor modes of human behavior within a limited
number of samples remains demanding.

• Feasibility Another favored property of human behavior generation is feasibility. For
instance, only learning human driving behavior directly from data cannot guarantee
that the generated trajectories are feasible in satisfying vehicle kinematics, collision
avoidance, etc. Therefore, how to incorporate such feasibility into a learning-based
system is also an essential question for human behavior generation.

1.2 Dissertation Contributions and Outline

The goal of this dissertation is to “develop learning-based human behavior modeling ap-
proaches for prediction and generation from model and learning algorithm design perspec-
tives”. As illustrated in Figure 1.2, a typical learning agent has two components, namely,
model and learning algorithm. Model design mainly focuses on choosing the proper struc-
ture and inductive bias to improve performance; learning algorithm design pays attention
to selecting learning objectives and optimization strategies. We will interweave these two
design perspectives within several problem settings in this dissertation. In particular, the
dissertation is divided into two parts. Part I focuses on improving the generalizability of
human driving behavior prediction in transfer learning and continual learning settings. In
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Intelligent Agent

Model
Learning 
Strategy

Environment Interaction

Figure 1.2: Typical components of a learning system.

Part II, we shift the focus from behavior prediction to generation. The following subsections
provide a detailed summary of the contribution made by each chapter. In addition, the
outline of this dissertation is summarized in Figure 1.3.

1.2.1 Part I: Improving Generalization for Human Behavior
Prediction

Chapter 2

How to make precise multi-agent trajectory prediction is a crucial problem in the context
of autonomous driving. It is significant to have the ability to predict surrounding road par-
ticipants’ behaviors in many different, seen or unseen scenarios for enhancing autonomous
driving safety and efficiency. Extensive research has been conducted to improve the overall
prediction performance based on one enormous dataset or pay attention to some specified
scenarios. However, how to generalize the prediction to different scenarios is less investi-
gated. In this chapter, we introduce a graph-neural-network-based framework for multi-agent
interaction-aware trajectory prediction. In contrast to recent works which use the Cartesian
coordinate system and global context images directly as input, we propose to leverage hu-
man prior knowledge, such as the comprehension of pairwise relations between agents and
pairwise context information extracted by self-supervised learning approaches to attain an
effective Frenét-based representation. We evaluate our method across different traffic sce-
narios with diverse layouts and compare it with state-of-the-art methods. We demonstrate
that our approach achieves superior performance in terms of overall performance, zero-shot,
and few-shot transferability.

Chapter 3

The current mainstream research of multi-agent trajectory prediction in autonomous driv-
ing focuses on how to achieve accurate prediction on one large dataset. However, whether
the multi-agent trajectory prediction model can be trained with a sequence of datasets, i.e.,
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continual learning settings, remains a question. Can the current prediction methods avoid
catastrophic forgetting? Can we utilize the continual learning strategy in the multi-agent
trajectory prediction application? Motivated by the generative replay methods in contin-
ual learning literature, we propose a multi-agent interaction behavior prediction framework
with a graph-neural-network-based conditional generative memory system to mitigate catas-
trophic forgetting. To the best of our knowledge, this chapter is the first attempt in the
literature to study the continual learning problem in multi-agent interaction behavior pre-
diction problems. We empirically show that several approaches in the literature indeed suffer
from catastrophic forgetting, and our approach succeeds in maintaining a low prediction er-
ror when datasets come in a sequential way. We also conduct an ablation analysis to show
the effectiveness of our proposed approach.

Chapter 4

Besides improving the quality of prediction models, uncertainty estimation is essential to
evaluate the reliability of the models. Having a proper uncertain estimation model can also
be used to determine if the data collected in new scenarios are valuable, and hence it could
be used for improving the data efficiency of transfer learning. However, the current uncertain
estimation approaches for vehicle motion prediction are tightly incorporated with predictors,
thereby it is not desirable for a third-party organization, such as an insurance company
or department of transportation, who wants to evaluate an autonomous driving company’s
predictor’s performance on uncertainty estimation. In this chapter, We first demonstrate that
the proposed predictor-agnostic uncertainty estimation approach for trajectory prediction
can achieve comparable performance with predictor-dependent approaches. Then we provide
an analysis of how different regimes of features, i.e., static information and agent information,
contribute to uncertainty estimation for vehicle trajectory prediction. Finally, we show how
to utilize the conclusion of the analysis to improve the predictor’s training efficiency when
transferring to new scenarios based on the proposed framework.

1.2.2 Part II: From Human Behavior Prediction to Generation

Chapter 5

Obtaining accurate and diverse human motion prediction and generation is essential to
many industrial applications, especially robotics and autonomous driving. Recent research
has explored several techniques to enhance diversity and maintain the accuracy of human
motion prediction at the same time. However, most of them need to define a combined
loss, such as the weighted sum of accuracy loss and diversity loss, and then decide their
weights as hyperparameters before training. In this chapter, we aim to design a prediction
framework that can balance the accuracy sampling and diversity sampling during the testing
phase. In order to achieve this target, we propose a multi-objective conditional variational
inference prediction model. We also propose a short-term oracle to encourage the prediction
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framework to explore more diverse future motions. We evaluate the performance of our
proposed approach on two standard 3D human motion datasets. The experiment results
show that our approach is effective and on par with state-of-the-art performance in terms of
accuracy and diversity.

Chapter 6

In this chapter, we investigate how to ensure the feasibility of the generated human
behavior. In particular, we focus on the trajectory generation problem in collision avoidance
scenarios. Recently one of the optimization-based approaches called control barrier functions
(CBF) has become a popular tool to enforce the safety of a control system. CBFs are
commonly utilized in a quadratic program formulation as safety-critical constraints. A class
K function in CBFs usually needs to be tuned manually to balance the trade-off between
performance and safety for each environment. However, this process is often heuristic and
can become intractable for high relative-degree systems. Moreover, it prevents the CBF-QP
from generalizing to different environments in the real world. By embedding the optimization
procedure of the exponential control barrier function based quadratic program (ECBF-QP)
as a differentiable layer within a deep learning architecture, we propose a differentiable safety-
critical control framework that enables generalization to new environments for high relative-
degree systems with forward invariance guarantees. Finally, we validate the proposed control
design with 2D double and quadruple integrator systems in various environments. The
proposed method can be integrated with the approaches proposed in the previous chapters.
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Chapter 2

Domain-Knowledge-Based
Transferable Behavior Prediction

2.1 Introduction

New ScenariosPrevious Scenarios

Figure 2.1: The illustration of generalization of multi-agent trajectory prediction across
different scenarios. The predictor could be trained on a dataset of several scenarios, then
tested on several new scenarios without new data (zero-shot) or with a small batch of data
(few-shot) for training.

Multi-agent behavior prediction has a pivotal role in many real-world applications, such
as autonomous driving and mobile robot navigation. Making a precise prediction in different
situations gives a promise of safety with proper planning algorithms. Human drivers can
transfer their prediction and driving ability from previous scenarios to new ones only after
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driving in the new scenarios a few times. Imagine that a driver Alice has driven in San
Francisco (SF) for many years. She goes to New York (NY) for business and rents a car.
Although she has never been to NY, where driving behaviors and road layouts are different
from those in SF, she can be familiar with the driving patterns in NY very quickly. Much of
the current literature on behavior prediction pays particular attention to improving overall
prediction performance. However, in this chapter, we focus more on the generalization
problems of multi-agent trajectory prediction in autonomous driving applications as shown
in Figure 2.1.

Recently, several works in machine learning and computer vision indicate that introducing
inductive bias is necessary to improve the generalization of the deep learning framework.
The inductive biases could be specified deep learning model structures, constraints, and
context information, etc. Such inductive bias could be used to extract general representation
of data for future usage. For instance, there exist many works proposing different model
structures such as graph neural network [83, 96], transformers [162] to capture the multi-
agent interaction mechanism. These specified deep learning model structures indeed improve
the generalization, while they still lack the subtle domain knowledge of autonomous driving
to improve the transferability in advance. Although several works are incorporating more
context information such as high-definition maps [54, 189, 98] to improve the prediction
accuracy, most of the methods are trained in an end-to-end style. It is not clear that if such
context representation and training strategy are efficient for generalization.

In this chapter, we propose an approach to more effectively utilize the context infor-
mation, such as the references of agents, via leveraging human’s prior knowledge. First,
we argue that instead of providing the road layout information, i.e., the reference of each
vehicle implicitly, such as given the rasterized images of the high-definition map directly as
input, we can explicitly incorporate the references information to future trajectories pre-
dictions by Frenét transformation. The Frenét transformation can constrain the predicted
trajectories around the references, which improves the zero-shot and few-shot transferability.
Then we design a set of features based on the human understanding of interaction behav-
iors in the Frenét coordinate system serving as the inductive bias. Lastly, in contrast to
using end-to-end supervised learning, we apply the self-supervised learning technique, which
can reduce invariant factors to get a more general representation for the intrinsic relative
geometry information of references of each interaction pair of agents. After obtaining the
feature representation, we use a message-passing graph neural network to capture the inter-
action behaviors. We argue that such representations not only improve the overall prediction
performance but also improve the generalization and transferability significantly.

The main contributions are summarized as follows:

• We demonstrate an effective approach to leverage Frenét-based trajectory prediction
and rule-based interaction-level semantic classification to extract a good feature rep-
resentation, which enhances the transferability across different scenarios.

• We adopt a self-supervised learning technique to extract the context information of
interaction pairs and demonstrate that it can achieve better prediction performance.
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• We evaluate the overall prediction accuracy and transferability of the proposed ap-
proach on a benchmark dataset including various interactive driving scenarios. The
framework achieves significant enhancement compared with state-of-the-art methods.

2.2 Related Works

2.2.1 Behavior and Trajectory Prediction

In recent years, there has been an increasing amount of literature on trajectory prediction
due to the rising of topics including autonomous driving and human-robot interaction. Early
examples of research focus on using model-based or traditional machine learning methods
such as intelligent driving model [161], hidden Markov model [170] to predict the future
trajectories. With the increase of the computational power, deep-learning-based methods
become more available and achieve superior performances compared with the traditional
methods. Furthermore, more particular issues, including how to deal with the different
number of agents, probabilistic prediction and how to incorporate map information, are
investigated. One line of the methods such as [107, 92, 95, 37, 94], etc. propose generative
learning frameworks to obtain the complex, multi-modal future trajectory prediction. The
development of graph neural networks [64, 83, 96, 164, 31] and attention mechanism provided
powerful tools to solve the multi-agent prediction problems. Several works including [100,
59, 137, 44, 108] successfully adopt such ideas into the multi-agent trajectories problems.
Other approaches focus on how to incorporate more information, such as the high-definition
(HD) map and point clouds. Convnet [23] proposes to use the rasterized image of maps
directly as inputs of a convolutional neural network. Vectornet [54] proposes to encode the
vectors of lanes into a graph as the context information. [22] designs a method to utilize
both maps and LiDAR information.

In contrast to these methods extracting the future road information of one agent implicitly
from the contextual inputs such as the image or vectors of roads, we explicitly constrain the
future predicted trajectories by mapping it into the Frenét coordinate system according
to the reference of one agent. The Frenét representation is well-investigated, especially in
motion planning literature [171] while there is little work about how to incorporate it into
trajectory prediction framework. We show that this approach is more effective and enhances
the performance of generalizations to new scenarios.

2.2.2 Self-Supervised Learning

Since the increasing expense of labeling massive data, researchers have shown an increased
interest in learning representations from unlabeled data. Sometimes it is impossible to label
data before knowing the downstream tasks. However, since many data have their own
particular information structures, e.g., the local relation in the image, it becomes possible
to exploit such information to obtain the intrinsic representation for future usage. Self-
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supervised learning is a technique to extract efficient representation before the task (e.g,
classification) is known. Since there is no task information, the auxiliary (pretext) tasks
should be defined in order to discover the similarity between different features. These pretext
tasks provide pseudo labels as supervision. For instance, color transformation and geometric
transformation are usually used in the computer vision area. Some works propose to use the
contrastive loss as the self-supervision [26, 61, 62]. One intuitive explanation of contrastive
learning is to make similar samples closer and make dissimilar samples repulse each other
[74]. Self-supervised learning has been empirically demonstrated to be able to extract better
representation when the labels are limited in many applications such as image classification
[26], natural language processing [41], and reinforcement learning [149, 186]. Recent work
[150] shows that self-supervised learning can also improve the few-shot learning performance
in image classification. We adopt the contrastive learning concepts to extract the relative
geometry information of references.

2.3 Problem Formulation

Without loss of generality, we assume that there are N agents in a case. In different cases,
there may be a varying number of agents. We have the historical observations Oi

t−H+1:t of
each agent i, which includes its trajectory X i

t−H+1:t and the reference information Ri. The
reference Ri represents the vehicle’s routing information. It can be the middle of the lane
which the vehicle is following. Such information can be extracted from the HD map. We
denote the rasterized image of Ri as I i, and the rasterized image of each pair of refer-
ences Ri, Rj as I ij. Given such information, we aim to predict the conditional distribution
P (Xt+1:t+F |Ot−H+1:t). We denote H as the length of the historical horizon and F as the
length of the prediction horizon. The variables without agent index i are denoted as the col-
lections of different agents’ corresponding variables (e.g. X = {X i}i=1:N). For the zero-shot
or few-shot learning setting, we train our model on one dataset mixing several scenarios and
test it on several new scenarios.

2.4 Methodology

2.4.1 Framework Overview

The whole framework is introduced in three parts: feature representation with human’s
prior knowledge, graph neural network design, and the training loss. The section of feature
representation is divided into two parts: Frenét-based trajectory representation and self-
supervised context representation. Section 2.4.3 introduces the graph neural network, which
is divided into the attribute encoding layer, the message passing procedure and multi-modal
decoder module. Section 2.4.4 introduces the training loss we used. A high-level summary
is shown in Figure 2.2.
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ḋ
la

t

ḋ
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2.4.2 Feature Representation

Frenét-based Trajectory Representation

The Frenét coordinate system is used since it can represent arbitrary reference paths
efficiently. In the Frenét representation, the Cartesian coordinate (x, y) is transformed into
longitudinal distance dlon and lateral displacement dlat given the reference R. Since the
Frenét representation has already included the geometry information about each vehicle’s
reference, the final prediction results will incorporate the reference naturally. [185] argues
that the topological relationship between any of two references can be decomposed into
different types, and we adopt these ideas as prior knowledge to define four types of features:
node features and three types of edge features.

For node features, we use the longitudinal speeds ḋilon, lateral speeds ḋilat, and the ras-
terized image I i of the vehicle i’s reference Ri as the features. The image I i use the vehicle
i’s coordinate system, where the Y-axis direction of image is the velocity’s direction. We
denote the node feature selection and extraction as a mapping Γv : X → Sv, where X is the
trajectory space and S is the feature space.

∆ij

(a) Edge 0 (b) Edge 1

(c) Edge 2 (d) No edge

di
lon

dj
lon

di
lat δij

lon

δij
lon

dj
lat

∆ij

Figure 2.3: The illustration of different types of edges. Different colors represent agents with
different references. The dashed lines are the references for agents.
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Table 2.1: The different types of features.

Features Node Edge0 Edge1 Edge2

ḋilon 3

ḋilat 3

Ri 3

di, j
lon 3

di, j
lat 3

∆ij 3 3

Cij 3

δijlon 3 3

For edge features, we illustrate different conditions of interaction pairs in Figure 2.3. In
Figure 2.3 (a), when the references of two vehicles intersect, we set the intersection point
as the origin of the Frenét coordinate system. We denote di, j

lon as the collection of vehicle
i’s and j’s longitudinal distance to the origin point. di, j

lat has the similar definition for the
lateral displacement. We denote ∆ij as the relative position of the vehicle i and j in the
Cartesian coordinate system, where the origin point is the location of the vehicle i and the
Y-axis direction is its velocity direction. We also employ the context information of the
relation between the references of a pair of agents as one of the features Cij. The details of
the feature Cij will be introduced in Section 2.4.2. In Figure 2.3 (b), if two vehicles share
the same reference, we define the relative longitudinal distance δijlon between them. In Figure
2.3 (c), if two vehicles’ references do not intersect while lane changing is feasible, we use δijlon

and ∆ij as features. In Figure 2.3 (d), if two references are mutually exclusive, there will
be no edge. Table 2.1 summaries the feature selections for different types of features. We
denote the edge feature selection and extraction as a mapping Γe : X ×X → Se, where X is
the trajectory space and S is the feature space. We also denote the edge type of one pair of
agents i and j as αij.

In order to generate such trajectory representation, there are two submodules here: ref-
erence path extraction and coordinate transformation.

Reference Path Extraction This module aims to extract each vehicle’s reference. If
a high-definition map is provided and the road layout is very simple, we can directly use
the reference defined in the HD map. However, if the road layout is complicated, such as
roundabouts, using the hand-crafted references is not accurate. One better solution is to use
a few trajectory data with the same starting area and ending area to get the approximate
references. We first collect the trajectories according to the starting and ending areas. Each
starting and ending area is defined as a quadrilateral area indicating an agent coming from
or heading to this path. Then we can select a few data with this reference. For a set of
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Figure 2.4: The contrastive learning framework. Sample s indicates one sample from the
rotation transformation, and s′ indicates one sample from the semantic exchanging trans-
formation. I ij is one example of the rasterized image of two intersected references. The
blue-yellow curve represents one reference and the direction is from blue to yellow. The
red-purple curve represents the other reference and the direction is from red to purple.

trajectories with the same starting and ending area, we use a polynomial function to fit
them. Then we sample points from the fitted curve every 0.05 meter and use them as the
reference path.

Coordinate Transformation To transform coordinates from Cartesian to Frenét, we
can find the nearest point on the references, and then calculate the lateral displacement
dlat to the projection point and the longitudinal distance dlon. Through the inverse process,
we can transform the trajectories in the Frenét coordinate system back to the Cartesian
coordinate system.

Context Representation with Self-Supervised Learning

Despite the Frenét coordinate system is used in the feature representation, it only con-
tains the geometric information of the reference path of each vehicle. When two vehicles are
interacting with each other, their behaviors also depend on the relations between the two
reference paths. The relations between two references have different levels of abstractions
such as topology and geometry [185]. Under the circumstance that the references of two
vehicles i and j intersect, we can rasterize those two references in Image I ij with the inter-
section point as the center point of the image. We use different pairs of colors to indicate
the vehicle’s moving direction in order to distinguish two references. One example is shown
in Figure 2.4.

We suggest that the relation between two references is invariant to different positions
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(views) of vehicles. For instance, the drivers of two different vehicles will have the same un-
derstanding of the relation between the two references. Besides, the orientation information
of reference for each agent has already been provided in the node feature, i.e., the image I i.
We assume that there is an effective abstraction that can represent the relation between two
references and use the self-supervised technique to extract such representation. We utilize
a similar approach in SimCLR [26] to discover the similarities between different objects by
designing some pretext tasks. These pretext tasks serve as data augmentation for generating
positive samples. Considering the property of the context images as we suggest above, we
define the family of tasks T as:

• Rotation: The original image is centered at the intersection point, which is defined
as the first point at which two references intersect. Then the original image is rotated
randomly from 0 to 2π. In Figure 2.4, s shows one sample by rotation.

• Semantic Exchanging: We need to use distinct colors to indicate different references
to avoid vagueness (i.e. which segment belongs to which reference, what is the direction
of one reference). Since the topology and geometry are not related to the semantic
order, we exchange the colors of two different references. In Figure 2.4, s′ shows one
sample by semantic exchanging.

Under those pretext tasks T , the loss function for a positive pair of samples I ijs and I ijs′
is:

l(I ijs , I
ij
s′ ) = − log

eβ cos(zs,zs′ )

∑
k 6=s e

β cos(zs,zk)
, (2.1)

where zs = h(enc(I ijs )), and I ijs , I
ij
s′ ∼ τ(I ij) are the random samples. h is a projection head.

τ(·) : I → I is a random function sampled from the pretext task family T . After training
with the contrastive loss, we set Cij = enc(I ij) as the representation of context information.

2.4.3 Graph Neural Network Design

We can represent the agents in the traffic as a graph and use a graph neural network
to capture the interaction behaviors. The graph can be defined as G = {V , E}, where
V = {vi}, i ∈ {1, . . . , N} and E = {eij}, i, j ∈ {1, . . . , N}. vi, eij denote the node attribute
and the edge attribute, respectively. Specifically, eij denotes the edge attribute from vj to
vi. Given a set of trajectory observations, we can apply the feature selection and extraction
process mentioned in Section 2.4.2 to compute the initial attributes for each node and edge.
We name this layer as the attribute encoding layer:

v0
i = f(RNN(Γv(X

i
t−H+1:t)),ResNet(I it)),

e0
ij = h(RNN(Γe(X

i
t−H+1:t, X

j
t−H+1:t)), C

ij
t ),

(2.2)

where f and h are the node and edge embedding functions. Note that Cij
t is only used with

Edge 0.
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Then we use the message passing mechanism to reason the multi-agent interaction mech-
anisms. For each node and edge, we have:

emij = fme,αij([v
m−1
i , vm−1

j , em−1
ij ]),

vmi = fmv (Φ[j ∈ N(vi)](e
m
ij )),m = 1, . . . , n.

(2.3)

where fe,αij denotes different edge embedding functions for different edge types αij. fv
denotes the embedding function for nodes. The superscripts of vmi , emij , f

m
v , fme,αij denote

the m-th message passing. Φ[j ∈ N(vi)](·) aggregates the information of all the edges eij
between vi and its neighbors N(vi).

In order to output multi-modal trajectory prediction, a Gaussian mixture model is used
as the multi-modal decoder to generate the future velocities in the Frenét coordinate system:

wj = softmax(f jw(vni )), µj = f jµ(vni ),Σj = f jΣ(vni ),

{ḋlon,t+1:t+F , ḋlat,t+1:t+F} ∼
∑

j

wjN (µj,Σj),
(2.4)

where wj, µj, and Σj describe the weight, mean, and variance of the j-th Gaussian function.
After the predicted velocities of each agent are obtained, a first-order integrator is applied

to get the predicted future positions in the Frenét coordinate system. Then the predicted
trajectories would be transformed to the Cartesian coordinate system to evaluate the per-
formance. We illustrate the Frenét-Cartesian transformation in Figure 2.2.

2.4.4 Training Loss

We use the negative log-likelihood L(θ,D) as the objective function during the training
phase:

E(Ot−H+1:t,Xt+1:t+F )∼D[− logPθ(Xt+1:t+F |Ot−H+1:t)], (2.5)

where θ represents all the parameters of our model. Since the direct outputs of our model
are the predicted velocities (ḋlon, ḋlat) based on the Frenét coordinate system, we can also
directly optimize the empirical loss based on the Frenét coordinate system during training.

2.5 Experiment Results

This section introduces the dataset, evaluation metrics and baselines in Section 2.5.1
and Section 2.5.2 firstly. Then the comparisons between our method and other baseline
approaches of the overall prediction performance and transferability are demonstrated in
Section 2.5.3 and Section 2.5.4.
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2.5.1 Dataset

The experiments were conducted on the INTERACTION dataset [184], which contains
naturalistic motions of various traffic participants in a variety of highly interactive driving
scenarios, including roundabouts, unsignalized intersection, and lane merging. In each sce-
nario, the data is sampled from different locations. We chose this dataset for the following
reasons. First, the geometry of road layouts is complicated. Most of the cases in other
datasets are collected with simple road layouts like straight multi-lane and cross-style inter-
sections. In contrast, the INTERACTION dataset contains more curved, challenging road
layouts such as roundabouts. Second, it has a higher detection accuracy than other datasets
and more highly interactive cases. Therefore, it is suitable for testing transferability across
different scenarios and multi-agent interactive behavior prediction. We selected five urban
representative scenarios (MA, FT, SR, EP-T, and EP-R), which have various road layouts
in our experiments. We predicted the future 10 time steps (5.0s) based on the historical 4
time steps (2.0s) in all experiments.

2.5.2 Metrics and Baselines

We adopt two widely used probabilistic prediction metrics. One is the minimum aver-
age displacement error (mADE), which computes the Euclidean distance between the ground
truth positions and the closest trajectory fromK candidates, which are sampled from the pre-
dicted probability distribution. The other is the minimum final displacement error (mFDE)
that evaluates only the displacement error at the last time step. Both metrics are suitable
to measure probabilistic prediction. We compare our method with five baseline approaches
about the overall performance and transferability. We provide the same input information
for all the methods. The following are the algorithms we compare:

• LSTM. Long-short term memory is a kind of recurrent neural networks used widely to
learn the time-series pattern. We use it as a prediction model which does not consider
the interaction explicitly.

• Social LSTM (S-LSTM) [4]. The model designs a social pooling mechanism based on
LSTM.

• Social GAN (S-GAN) [59]. The model employs generative adversarial learning into
S-LSTM.

• Trajectron++ [138]. One of the state-of-the-art approaches employs spatial-temporal
graph with dynamic constraints.

• Graph Neural Network (GNN). The network structure of this method is similar to
our proposed method. The difference is that GNN uses the historical trajectories in
the Cartesian coordinate system as the node features and does not use the routing-
related edge features such as the edge types and the relative positions in the Frenét
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Table 2.2: Comparison of mADE / mFDE (Meters) in All Scenarios

LSTM S-LSTM S-GAN

@3.0s 0.344 / 0.597 0.438 / 0.692 0.400 / 0.652
@4.0s 0.598 / 1.128 0.611 / 1.071 0.599 / 1.042
@5.0s 0.918 / 1.888 0.879 / 1.721 0.845 / 1.528

GNN Trajectron++ Ours

@3.0s 0.271 / 0.534 0.185 / 0.336 0.139 / 0.284
@4.0s 0.469 / 0.969 0.360 / 0.677 0.268 / 0.562
@5.0s 0.695 / 1.457 0.608 / 1.167 0.432 / 0.913

Coordinate system. Also, GNN does not employ our contrastive learning method to
extract context features. Hence, GNN can also serve as an ablation method.

2.5.3 Prediction Performance in All Scenarios

Quantitative Results

First, we show the general prediction performance of our method compared with the
baselines. We test all the models with all the data in different scenarios. The prediction
results on all scenarios are shown in Table 2.2. The units of reported metrics are meters
in the Cartesian coordinate system. We observe that all the methods which model the
interaction explicitly, such as S-LSTM, S-GAN, GNN, Trajectron++, and Ours, are better
than LSTM, which predicts each vehicle independently. Our approach improves about 24.9%
in mADE with 3 seconds prediction horizon and 28.9% in mADE with 5 seconds prediction
horizon compared with the best baseline (Trajectron++). It is also about 15.5% and 21.8%
improvement in mFDE with 3 seconds and 5 seconds prediction horizon, respectively. It
shows that our method has significant improvement compared with baselines.

Qualitative Results

We visualize five typical cases where there are more than two vehicles in Figure 2.5. The
ground truth and predicted trajectories are shown in the same color for each vehicle. We find
that the prediction results in all the scenarios are accurate. Besides, Our method is capable
of capturing subtle behaviors such as yielding or not yielding in complicated scenarios.
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(a) MA (b) FT (c) SR (d) EP-T (e) EP-R

Figure 2.5: The visualization of prediction results. The box markers are the ground truth
trajectories. The solid lines are the sample trajectories with the smallest mADE. The density
maps around the solid lines are generated by using kernel density estimation (KDE) to fit
the sampled trajectories. The grey dash lines are the references (R) of each vehicle. The
star markers are the starting positions of the historical trajectories.

2.5.4 Transferability to Other Scenarios

In this section, we compare the transferability of different methods. All the methods
are trained on the mixed data of two scenarios: a roundabout (FT) and an intersection
(MA). We choose these two scenarios since they can cover most of the different types of road
layouts, including roundabout and intersection so that we can train a good basic predictor at
the beginning. Then we evaluate the zero-shot and few-shot performance of transferring to
another three different scenarios (two of them are different roundabouts, and the other is a
different intersection). The results with 5 seconds prediction horizon are shown in Table 2.3.
The mADE of our approach is 32.4%, 11.0%, and 38.4% better than the baseline methods in
zero-shot transfer to SR, EP-T, and EP-R, respectively. For few-shot learning, we randomly
sample 100 trajectories for each scenario as the training data. We demonstrate that our
method performs better than the others with 40.6%, 30.8%, and 37.4% improvements in
mADE for SR, EP-T, and EP-R. We observe that the improvement of zero-shot / few-shot
learning on EP-T is relatively small compared with the other two scenarios. We suggest that
the reason is that the road layout of EP-T is very similar to the one in MA, since they both
include 90-degree intersections. It also implies that the more similar the scenarios are, the
easier generalization will be. The observation also adheres to our intuition.

2.6 Ablative Analysis

We intend to answer the following questions with the ablation models in Table 2.4.:

• Does the self-supervised learning technique improve the performance, and
is the context image I ij useful? We compare Ours, Ours-E2E, and Ours-no image
in Table 2.4. The difference between them is the way they process the context images.
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Table 2.3: Comparison of mADE / mFDE (meters) in the Different Scenarios

Scenario Task LSTM S-LSTM S-GAN

SR zero-shot 1.849 / 4.470 1.927 / 3.625 1.801 / 3.539
few-shot 1.184 / 2.452 1.458 / 3.010 1.267 / 2.385

EP-T zero-shot 1.278 / 2.824 1.594 / 3.207 1.655 / 3.465
few-shot 0.978 / 1.873 1.037 / 2.071 1.098 / 2.239

EP-R zero-shot 2.268 / 5.306 2.824 / 5.531 2.590 / 5.130
few-shot 1.453 / 2.970 1.520 / 3.281 1.483 / 2.739

Scenario Task GNN Trajectron++ Ours

SR zero-shot 1.977 / 4.714 1.395 / 2.333 0.943 / 2.266
few-shot 1.180 / 2.430 1.043 / 1.816 0.620 / 1.214

EP-T zero-shot 1.587 / 3.607 1.092 / 1.703 0.972 / 2.279
few-shot 1.028 / 2.064 0.838 / 1.528 0.580 / 1.003

EP-R zero-shot 2.388 / 5.514 2.074 / 3.478 1.277 / 2.742
few-shot 1.393 / 2.743 1.328 / 2.376 0.831 / 1.462

Table 2.4: The Models used for Ablation

Frenét-based Representation Contrastive Learning Image of References

Ours 3 3 3

Ours-E2E 3 3

Ours-no image 3

GNN 3
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Ours-no image does not utilize the context image I ij. Ours-E2E uses the context image
but does not use contrastive learning.

• Is the performance of the Frenét-coordinate-based trajectory prediction
better than the Cartesian-coordinate-based one? Here we compare the model
GNN and Ours-E2E in Table 2.4, since the only difference between these two models
is whether the Frenét-based features are used.

2.6.1 Self-Supervised Learning Ablation

Quantitative Analysis

To prove the effectiveness of the self-supervised learning method, we conduct experiments
on the whole dataset, including all the scenarios for the three methods: Ours, Ours-E2E,
and Ours-no image. Ours-E2E trains the whole model in an end-to-end fashion, and Ours-
no image does not utilize the context image I ij as one of the edge features. In Table 2.5,
we find that Ours is about 10.2% better than Ours-E2E and approximately 16.4% better
than Ours-no image with 5.0s prediction horizon. Thus, it illustrates that employing self-
supervised auxiliary tasks to pre-train the feature embedding layers does help to improve
the prediction performance in general. Also, Ours-E2E improves about 7.0% more than
Ours-no image, which shows that the context information is indeed useful.

Qualitative Analysis

In Figure 2.6, we show the feature extraction results of the self-supervised learning
method. We use t-SNE to illustrate the relations between each extracted feature. It shows
that similar pairs of road references are gathered into the same group, and the different ones
are separated. We also find that the self-supervised procedure could also discover the sim-
ilarities between the pictures from new coming scenarios, which means our self-supervised
method has a good transferability.

Table 2.5: Ablation of the Frenét Coordinate System and Self-Supervised Learning (mADE
/ mFDE)

methods @3.0s @4.0s @5.0s

Ours 0.139 / 0.284 0.268 / 0.562 0.432 / 0.913
Ours-E2E 0.151 / 0.318 0.295 / 0.646 0.481 / 1.052

Ours-no image 0.162 / 0.337 0.315 / 0.685 0.517 / 1.124
GNN 0.271 / 0.534 0.469 / 0.969 0.695 / 1.457
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Figure 2.6: The t-SNE illustration of context information. Different colors of scatters rep-
resent different pairs of references in all scenarios. We illustrate several groups of extracted
features here and show their corresponding rasterized images. The red rectangle shows that
the new pairs of references are clustered into the same group. The other rectangles show the
differences between different groups of extracted features.

2.6.2 Frenét-based Trajectory Prediction Ablation

In this analysis, we compare GNN and Ours-E2E. Notice that GNN does not use the
Frenét-based features and the self-supervised learning, so the only difference between GNN
and Ours-E2E is whether the Frenét-based features are used. In Table 2.5, we find that
Ours-E2E improves about 30.8% mADE in the future 5s, which implies that our proposed
Frenét-based trajectory representation improves the prediction performance remarkably.

2.7 Implementation Details

In the attribute encoding layer, we use GRU as the cell of RNN to extract the historical
trajectory information for nodes and edges. We use ResNet18 [60] to encode all the rasterized
images. We concatenate those two features and use a MLP as function f , h in Section 2.4.3.
The ResNet for context images I ij is pretrained by contrastive learning with a batch size
of 1024. The dimensions of the image representation and the latent variables are 32 and
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16. For the message passing procedure, fmv and fme,α are MLPs. We use different MLPs for
different types of edges. The message passing number is 3. For the multi-modal decoder
module, the number of Gaussian kernels is 4, and we sample 20 trajectories to calculate the
mADE and mFDE. fw, fµ, and fΣ are also MLPs. All the MLP modules in our model are
two-layer fully connected networks with an activation function of ReLU and a hidden size
of 256. For the experiments of all scenarios, we mix all the data from five scenarios and
divide it into 5:2:3 for training, validation, and testing. We train the model with a batch
size of 64 for 100 epochs using Adam optimizer with an initial learning rate of 0.001. For
the transferability experiments, the datasets of different scenarios are also divided into 5:2:3
for training, validation, and testing. The initial model is trained on MA+FT using the same
hyperparameters as the all-scenarios experiments. We sample 100 cases from the training
set of the new scenarios for the few-shot adaptation and fine-tune the model with a batch
size of 20 and an initial learning rate of 0.0005. For all experiments, we show the average
results of three random initializations.

2.8 Chapter Summary

In this chapter, a graph-neural-network-based framework with self-supervised domain
knowledge is proposed to solve the multi-agent human driving behavior prediction problem.
We incorporate human’s prior knowledge and self-supervised learning techniques to enhance
the generalizability and transferability across different traffic scenarios. Experiments demon-
strate that our approach achieves significant improvement compared with other state-of-the-
art methods. The ablative analysis demonstrates the effectiveness of the proposed feature
representation technique. There are several future directions to investigate, such as how to
incorporate more domain knowledge into this framework, including traffic rules and related
knowledge about other types of traffic participants. Another interesting topic is how to
design better pretext tasks for self-supervised learning.
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Chapter 3

Continual Multi-agent Driving
Behavior Prediction

3.1 Introduction

Predicting the possible future trajectories of surrounding traffic participants in different
scenarios is essential to achieve the efficiency and safety of an autonomous driving system.
The complicated interaction behaviors are attributed to many aspects, such as various com-
plex road geometries [63, 23, 54] and multiple traffic agents [109, 138]. There are many
existing works devoted to providing practical approaches by considering as many factors as
possible given an enormous dataset [22]. However, there is little work investigating whether
there is a multi-agent prediction approach working on the datasets continuously coming in
a sequential way, and to our best knowledge, there is also no detailed investigation about
the performance of existing multi-agent behavior prediction models in the continual learning
settings.

With the fast development of hardware and autonomous driving infrastructure, the
amount of data increases rapidly every day. It becomes not efficient to retrain a predic-
tion model on the increasing datasets. The ideal way is to update the trained model on the
new datasets without access to the old datasets. Also, those new datasets can be collected
in new scenarios which are unseen before [183, 19, 85]. The current literature studies how to
achieve a good prediction performance based on the datasets with all the scenarios. How-
ever, current methods may not work when the datasets are collected at different scenarios
which are not available simultaneously. Intuitively, since the interaction behaviors at the
new location may differ from the old ones remarkably due to the very different road layouts,
the model may prefer to “fit” more on the current one rather than the old locations if we
continually train our model on the new location without access to the old ones. Then the
model will “forget” what it has learned before and perform worse on the previous locations.
This phenomenon is well known as the “catastrophic forgetting issue” in the continual learn-
ing area [93]. Figure 3.1 is a demonstration of continual learning settings in the multi-agent
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Future

Past

Predictor

Figure 3.1: Multi-agent interaction behavior prediction in the continual learning setting. The
faded scenarios demonstrate the datasets with which the prediction system has been trained
before. The datasets of the faded scenarios are no longer fully accessible. The prediction
system takes the references information and observations as input to predict the distribution
of future trajectories.

interaction prediction. Although several works have investigated the adaptation in behavior
prediction [144], it has significant differences with continual learning. Adaptive or transfer
learning merely cares about whether the model can adapt to new datasets. In contrast,
continual learning concerns the performance on both the new and old datasets [93].

Continual learning has been studied in many different areas, such as computer vision,
machine learning, cognitive science, and neuroscience. Most of the current works focus on
image classification and reinforcement learning tasks [69, 121, 1]. Several approaches have
been developed from different perspectives. For instance, regularization methods [127] were
proposed from the optimization view by constraining the difference between old parameters
and new learned parameters; pseudo-rehearsal methods like generative replay [143] inspired
by neuroscience were proposed to generate the old data from random noises, etc. Though
such works have achieved remarkable results on the image classification task, it does not
imply that those methods could work in high-dimensional regression problems such as multi-
agent interaction behavior prediction. To our knowledge, there is little related research
studying the continual learning problems for trajectory prediction in the autonomous driving
domain, especially for multi-agent trajectory prediction.

In our work, we adopt the concepts of pseudo-rehearsal approaches [143] in the continual
learning literature. We propose a graph-neural-network-based double memory system that
can generate similar interaction behaviors compared with the ground truth data. We up-
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date our multi-agent interaction behavior predictor with the generated dataset and the new
dataset together to reduce the catastrophic forgetting issue. To summarize, our contributions
are three folds:

• To the best of our knowledge, our work is the first to investigate the continual learning
problems in multi-agent interaction behavior prediction. We show that several current
prediction approaches suffer from forgetting problems when data is coming in sequence.

• We propose a graph-neural-network-based continual multi-agent trajectory prediction
framework. In this framework, we propose a conditional generative memory model to
mitigate catastrophic forgetting. We also design an episodic memory to store the initial
graphs of multi-agent trajectories, which are provided to the conditional generative
memory model.

• We validate our approach on two datasets. We show that our method effectively
mitigates the catastrophic forgetting problems. An ablation analysis is provided to
show the necessity and efficiency of the proposed conditional generative memory and
episodic memory buffer, especially compared with the method directly using generative
replay.

3.2 Related Works

3.2.1 Social Interaction Modeling and Prediction

Behavior and trajectory prediction is crucial for autonomous driving, especially when
considering the multi-agent interaction in different scenarios. Several methods have been
developed to predict interactive behaviors among multiple pedestrians [59, 94, 4] and vehicles
[31, 23, 97]. Some of these methods use learning-based approaches such as generative models
[107, 133, 92, 95], probabilistic graphical models [45] and dynamic Bayesian network [152].
In recent years, more sophisticated models such as graph neural network (GNN) and its
variations are proposed [64, 83, 164] and applied to trajectory prediction [109, 100, 106].
In some literature, maps have been widely used to provide context information [63, 23, 54].
[23] proposes to use convolutional neural networks as an encoder. [22] focuses on jointly
detecting vehicles and predicting future trajectories from high-definition maps and LiDAR
information. However, most of these methods are trained and tested on the datasets in which
many vehicles are driving on straight roads or roads with similar layouts [24]. In our work,
we propose the graph-neural-network-based predictor and memory systems to capture the
interaction behaviors. We also leverage the Frenét coordinate system to represent the map
information.
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3.2.2 Continual Learning

Continual learning has been receiving more attention in recent years. There are three
major categories of methods: rehearsal methods [103, 121], regularization methods and
architecture methods [1, 67]. Our proposed approach is inspired by the rehearsal-based
method. The core idea of this kind of approaches is using a memory system to “remember”
the seen data points, and using this memory to reduce catastrophic forgetting problems
when we continually receive new datasets. Gradient episodic memory (GEM) [103] and
its variant dubbed-average GEM (A-GEM) [25] use episodic memory as the constraints
in the optimization. Instead of storing the data into the episodic memory buffer, [143]
used a generative model to generate the seen data, and mixed it with the new dataset
to optimize the current model. Although several works [136] further develop the idea of
generative memory, they are all tested in the image classification or reinforcement learning
tasks. To our knowledge, there are few works to validate whether such ideas can also work
in regression or more complex tasks. The most related work is generative replay (GR) [143]
that uses generative adversarial network (GAN) to generate previous data as memory. This
method can work for image classification. However, we show that it is not enough to generate
realistic trajectories in our application due to the complex spatial-temporal data structures.
From this intuition, we propose a conditional generative model and combine it with a small
episodic memory buffer together to generate better trajectories as memory.

3.3 Problem Formulation

Our goal is to train the multi-agent future trajectories predictor given a stream of datasets
collected at different scenarios. We firstly formulate the domain problem (i.e., multi-agent
trajectory prediction), and then introduce the formulation of the continual learning problem
in our application.

3.3.1 Multi-agent Trajectory Prediction

We assume that there are N agents in each case, and the number of agents for each
case may vary. We denote the observations of N agents as o = {o1,o2,o3, . . . ,oN}, where
oi = [pi−th+1:0, c

i]. pi−th+1:0 ∈ Rth×d is the i-th agent’s history trajectories with th time steps.
d is the dimension of state p. ci represents the waypoints of the i-th agent’s reference in the
Cartesian coordinate system. We define I i as the bird-view rasterized image of ci. ci and
I i come from a provided high-definition (HD) map. Our purpose is to predict the future
trajectories of multiple agents y = {y1,y2,y3, . . . ,yN} given the observations o, i.e., the
distribution P (y|o), where yi is defined as pi1:tf

and tf is the time horizon of the future
trajectory of each agent.
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3.3.2 Continual Learning Problem

Under the problem setting of continual learning, we assume that we cannot store all
previous data. Each experiment is conducted on several datasets collected at different time
and different locations. We denote Di as the i-th dataset we received. We evaluate the
performance of prediction systems given a sequence of datasets {D1,D2, . . . ,DM}, M is the
number of datasets. Notice that if the current dataset is the k-th dataset, we do not store
the past datasets {D1, . . . , Dk−1}.

3.4 Methodology

Our proposed framework is illustrated in Figure 3.2. We firstly introduce the three mod-
ules used in our proposed framework: a graph-neural-network-based predictor, an episodic
memory buffer and a conditional-variational-autoencoder-based generative memory module.
Then we introduce the continual learning strategy, which includes three steps. Our con-
tribution mainly focuses on the framework design and the conditional generative memory
module, and this whole approach has the potential to be incorporated with other suitable
predictors.

3.4.1 Predictor

Graph Representation of Multi-agent Trajectories Our predictor computes a multi-
modal probabilistic multi-agent trajectory distribution using the observation o of all agents.
Given the reference ci of each agent from oi, we transform the trajectory pi of the i-th agent
into the Frenét coordinate system and denote it as X i = {dilon, d

i
lat}, where dilon and dilat

represent the longitudinal position and lateral position in the Frenét coordinate associated
with the reference ci.

To get a feature representation that is invariant to the origin and the direction of the
coordinate system, we use only velocity information δi = {ḋilon, ḋ

i
lat} for each agent i, where

ḋilon and ḋilat represent the longitudinal velocity and lateral velocity w.r.t. the reference ci.
For each edge eij, we define the edge feature as the relative position ∆ij of agent j in the view
of agent i. We use the rasterized image I i to provide the future lane geometry information.
Here we recenter the image at the i-th agent’s current position and set the y-axis direction
of the image as the velocity direction of the i-th agent. We denote the transformed image as
Ĩ i. We use a feature embedding function to process the aforementioned information to form
initial node attributes v0

i and edge attributes e0
ij. Given a set of trajectory observations, we

have:

v0
i = MLP((CNN(Ĩ i)||RNN(δi))),

e0
ij = RNN(∆ij).

(3.1)
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Message Passing Graph Neural Network Following the extracted features {v0
i , e

0
ij}, a

fully-connected graph is constructed to represent the interaction mechanism between different
agents. We denote the graph as G = {V , E}, where V = {vi} denotes the node attributes,
and E = {eij} denotes the edge attributes. At the m-th message passing:

emij = fme ([vm−1
i , vm−1

j ]),

vmi = fmv (Φ[j ∈ N(vi)](e
m
ij )), m = 1, . . . , n.

(3.2)

where fe and fv are the embedding functions for edges and nodes, respectively. The super-
scripts of vmi , emij , f

m
v , fme denote the m-th message passing. Φ[j ∈ N(vi)](·) aggregates the

information of all the edges eij between vi and its neighbors N(vi). For the first message
passing round, we also aggregate the edge information for edge update. Then we use the
attention mechanism similar to Graph Attention Networks (GAT) [164] for the last message
passing:

αmij = softmax(emij ), v
m
i = σ(

∑

j∈N(vi)

αmijWvm−1
j ). (3.3)

Multi-modal Prediction Layer In order to capture the multi-modal interactive behav-
iors, we use a Gaussian mixture model (GMM) to represent the future predicted actions at
different time steps:

wj = softmax(f jw(vni )),

µj = f jµ(vni ),Σj = f jΣ(vni ),

{ḋlon,0:tf−1, ḋlat,0:tf−1} ∼
∑

j

wjN (µj,Σj),
(3.4)

where wj, µj, and Σj denote the weight, mean, and covariance of the j-th Gaussian function,
respectively. Each Gaussian function represents the distribution of the future actions.

After obtaining the action information for each agent i, we use a first-order integrator
to get the position X i in the Frenét coordinate system. Then the predicted trajectories
are transformed back to the Cartesian coordinate system according to ci. This procedure
incorporates the road routing information directly. The loss LP(ψ;D) is the negative log-
likelihood:

− E(X,I)∼D[logPψ(X1:tf |X−th+1:0, I)], (3.5)

where ψ is the parameter of the predictor.

3.4.2 Double Memory System

The traditional pseudo-rehearsal methods such as the generative replay method [143]
generate samples from noises. In our case, it is not enough to generate high-quality full-time-
length multi-agent trajectories purely from high-dimensional noises due to the complicated
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spatial-temporal data structure of multi-agent trajectories. Hence, we propose a graph-
neural-network-based conditional generative replay module, which is conditioned on some
initial information given by the proposed episodic memory buffer.
Episodic Memory Buffer Episodic memory is defined as a kind of memory of everyday
events which could be conjured or explicitly stated. It is the collection of past experiences
that occurred at particular times and places [140]. In our application, one “experience”
should be one case of multi-agent interaction trajectories. Some works in image classification
and reinforcement learning have been proposed to construct the episodic memory by storing
a fixed percentage of original data. We intend to reduce the storage of full-time-length
trajectories data by only storing some initial information of the trajectories. This reduction
is significant, especially when the length of the trajectory is large. We define such initial
information as an initial graph Ginit = {V , E}, where V i = {X i

0, X
i
−th+1, X

i
tf
, I i, ci} and the

edge attribute Eij ∈ E denotes whether there is an edge between node i and node j. There is
no edge between two agents if their references do not have any intersection or the vehicle on
one reference cannot shift to the other reference due to traffic rules. Here X i

0 is the current
state defined in previous section, X i

−th+1 is the state at H time steps before the current state,
and X i

tf
is the goal position. We intend to generate the interaction behaviors conditioned on

this initial information. It is reasonable that the interaction behaviors could be “conjured”
if we know the trajectory tendency (given X−th+1) and goal (given Xtf ) at the current state
X0. We will show in the experiments that the performance of our methods with this episodic
memory buffer is significantly improved compared with directly using the vanilla generative
replay methods.
Conditional Generative Memory The objective of the conditional generative memory
is to solve P (X|Ginit), where X = X−th+1:tf means the whole trajectories of all agents. We
design a graph-neural-network based conditional variational autoencoder (CVAE) to estimate
this distribution. The graph neural networks are used to capture the interaction mechanism
between agents. By leveraging the conditional variational inference, we can generate realistic
trajectories given the initial graph information. The overall conditional generative memory
model structure is illustrated in Figure 3.3.

Encoder The encoder is used to map the trajectories X to the latent variables z, namely
the posterior distribution Q(z|X,Ginit), where z = {zi}i=1:N and zi is the Gaussian random
variable for the i-th agent. For each agent i, the reference image I i and the initial state
information {X i

0, X
i
−th+1, X

i
tf
} are encoded by a convolutional neural network (CNN) and

a multiple-layer perceptron (MLP) respectively. They are served as the conditional inputs.
The trajectories X i

−th+1:tf
are encoded by a recurrent neural network (RNN). We use an

MLP to integrate these three features and construct a graph neural network to process the
interaction behaviors. Each node i of the GNN module outputs the mean and the covariance
of zi.

Decoder The decoder is used to map the latent variables z to the trajectories X, namely
P (X|z,Ginit). Similar to the encoder, we use a CNN and an MLP to process the reference
image I i and the initial state information for each node. Then we use a GNN to capture
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Figure 3.3: The conditional generative memory model. The blue boxes, red boxes and the
purple boxes represent CNN, MLP and RNN respectively. I i demonstrates the rasterized
image of the i-th agent’s reference.

the interaction pattern and use an RNN to output the trajectories X. The input z of the
decoder is sampled from the output of the encoder Q(z|X,Ginit) during training and sampled
from the prior distribution P (z) during testing. P (z) is the standard Gaussian distribution.
The encoder and decoder are trained jointly. The training loss of the CVAE LG(θ, φ;D) is:
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−E(X,Ginit)∼DEQφ(z|X,Ginit)[logPθ(X|z,Ginit)]
+ βE(X,Ginit)∼DKL[Qφ(z|X,Ginit)||P (z)],

(3.6)

where φ and θ are the parameters of the encoderQφ(z|X,Ginit) and the decoder Pθ(X|z,Ginit).
β is a parameter to adjust the importance of the second regularization.

Once we get the initial graph Ginit, we can sample r trajectories from the decoder
Pθ(X|z,Ginit) by sampling r times of different z from the standard Gaussian distribution.
Similar to the predictor, we can transform X i to pi by using the reference ci.

3.4.3 Training Strategy

There are three procedures in total: generate the training batch, train predictor and
generator, and form new episodic memory. The framework is illustrated in Figure 3.2.
Step I: First, we need to construct the mixed training dataset at the k-th scenario. We
uniformly sample |Dk|/r initial graphs Ginit from the episodic memory buffer Bk−1. For each
initial graph Ginit, we randomly sample r times of different z and use the decoder to generate
r multi-agent trajectories. We denote the generated data as D̂k. Hence, D̂k includes the
generated real-like data of the past scenarios D1,D2, . . . ,Dk−1, which serves as the replay
data for the predictor and generator.
Step II: After we get the current new dataset Dk and the generated dataset D̂k from Step
I, we optimize our predictor and generative memory separately.

ψk = min
ψ
γLP(ψ;Dk) + (1− γ)LP(ψ; D̂k),

θk, φk = min
θ,φ

γLG(θ, φ;Dk) + (1− γ)LG(θ, φ; D̂k),
(3.7)

where γ is the hyperparameter to determine the importance of the current scenario. The
current scenario is more important if γ is larger.
Step III: The final step is to construct the new episode memory buffer Bk. We randomly
sample a small portion of the whole number of cases in the new dataset and store their initial
graphs into the episodic memory buffers. In our application, we only allow storing the initial
graphs of ten percent of the cases for each Dk. The three steps above will be repeatedly
executed as long as the new dataset is available.

3.5 Experiments

We conduct our experiments with INTERACTION dataset [183] collected in the USA,
InD dataset [19] and RounD dataset [85] collected in Germany. First, we show that baselines
indeed suffer from catastrophic forgetting and our method can reduce it. Then we conduct
an ablative analysis to show that our method is better than applying the generative replay
method directly and our approach can achieve similar performance with significantly less
memory compared with real data replay.
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3.5.1 Dataset and Preprocessing

To evaluate our approach’s effectiveness, we use INTERACTION dataset, InD and
RounD dataset. The aforementioned datasets include many complicated interaction scenar-
ios like roundabouts and intersections, which is suitable to test the multi-agent interaction
behaviors. Also, the cases of these datasets are divided by their scenarios originally. Since
the driving behaviors are significantly different between different scenarios, these datasets
are suitable to test the continual learning performance. We selected four scenarios for each
dataset, and each scenario has a similar number of cases. Both datasets provide the HD
map from which we can extract the references information. For both datasets, we use four
time steps as observation and predict eight time steps of future trajectories. The interval
between time steps is 0.5s for INTERACTION datasets and 0.4s for RounD/InD datasets.

3.5.2 Metrics

Prediction Metrics To evaluate the probabilistic prediction, we use the similar metrics in
[96], the minimum average displacement error (ADE) and minimum final displacement error
(FDE) over k samples:

ADE =
1

Ntf

N∑

i=1

min
j∈{1,...,k}

{
tf∑

t=1

||pit − p̂it(j)||2},

FDE =
1

N

N∑

i=1

min
j∈{1,...,k}

{||pitf − p̂itf (j)||2}.
(3.8)

Continual Learning Metrics For evaluating the continual learning performance, we adopt
the concepts mentioned in [43] and adapt them to our application. Here we define two
metrics: average error (AER) and average forgetting (FGT). We denote the testing error
(ADE / FDE) at the j-th scenario after training on the i-th scenario as Ri,j. Let M be the
number of scenarios, AER and FGT are defined as:

AER =
1

M(M + 1)/2

M∑

j≤i

Ri,j,

FGT =
1

M(M − 1)/2

M∑

i=2

M∑

j<i

Ri,j −Rj,j.

(3.9)

AER measures the average performance of all scenarios across all training datasets. FGT
measures the average decrease of performance on the old scenarios after seeing the new
scenarios, which can represent the degree of catastrophic forgetting. The greater the value
of FGT is, the more forgetting occurs. Please refer to [43] for more details.
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(a) MA (b) FT (c) SR (d) EP-R (e) EP-T

Figure 3.4: The visualization of multi-agent trajectory prediction results. We represent the
ground truth trajectories as box markers. The star markers represent the starting points
of the historical trajectory. We use kernel density estimation (KDE) to fit the sampled
trajectories, shown as density maps in the pictures. The grey dash lines are the references of
each vehicle. The predicted trajectory with the minimum ADE is illustrated in a solid line.

3.5.3 Overall Performance Evaluation

Experiment Settings For this experiment, we use four different locations from both the
INTERACTION dataset and the RounD/InD dataset. The cases of each location are divided
into three parts equally by time stamps since we intend to simulate that we repeatedly collect
data from different locations. Different parts are regarded as different datasets. The four
scenarios from the INTERACTION dataset are MA, FT, SR, and EP (Including EP-R and
EP-T). The sequence of tasks is DMA0,DFT0,DSR0,DEP0,DMA1, . . . ,DEP2, where under the
same scenario, e.g., DMA0, . . . ,DMA2 means three different datasets collected at different time
at MA. Our framework will be trained in this order. The four scenarios from the RounD/InD
dataset are R, IA, IB, and IC. R indicates Neuweiler of the RounD dataset. IA, IB, and
IC indicate Bendplatz, Frankenburg, and Heckstrasse in the InD dataset. We evaluate the
prediction performance for each scenario after we train the model with the current dataset.
We compare our method with several baselines and recent works including long-short term
memory (LSTM), GNN, S-GAN [59] and Trajectron++ [138]. We provide the same input
information for all the methods. LSTM is equipped with a GMM model in order to generate
the probabilistic prediction. GNN is a simple message passing graph neural network without
any special design. We trained five models randomly to get the means and variances of
performance.
Qualitative Analysis We illustrate the prediction performance of several representative
cases with different numbers of agents at different scenarios of the INTERACTION dataset
in Figure 3.4. We demonstrate that we can get accurate prediction at all the scenarios after
training on a sequence of datasets. Furthermore, we find that if the references are relatively
straight, the variance of predicted trajectories is small.
Quantitative Analysis We calculate the average performance of the testing data across all
scenarios. This value represents the overall performance of the method after training on a
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(a) INTERACTION dataset
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(b) RounD/InD dataset

Figure 3.5: Evaluation of overall performance (tested with a mixed dataset of all scenarios)
in the continual learning setting. The column “All” means that the methods are trained
with the mixed datasets of different scenarios, i.e., the non-continual learning setting.
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Figure 3.6: ADE for selected scenarios, MA and FT in INTERACTION dataset. Models
are tested on a particular scenario to show the catastrophic forgetting issue clearly.

sequence of datasets. We illustrate the ADE error for both INTERACTION and RounD/InD
datasets in Figure 3.5.

In Figure 3.5, the other baseline models have bad performance even they could be trained
on the same scenario again. We observed that baselines have large errors during the whole
testing phase. It implies that it may only have good performance when the training scenario
and testing scenario are the same. This conjecture is validated in Figure 3.6.

Notice that the average error is for the data of all scenarios. The first point at MA0 means
that we train models on MA0 dataset and evaluate on a mixed testing data of all scenarios.
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We observe that our model has better performance at MA0 than the other baselines. This
advantageous performance of our predictor could be attributed to the reason that we directly
use the reference information c (by using Frenét coordinate transformation). It enables our
predictor to have a relatively better performance in the other unseen scenarios. While the
other baseline models incorporate the information of references from rasterized images, they
have to extract the useful information from the image directly. It also can be validated
in Figure 3.6b. For instance, in Figure 3.6b, we find that our approach can have a better
performance on FT than the others even though we only used the first dataset MA0 for
training.

To find out why baseline models have bad performance when the training datasets come
in a sequential way, we investigate the prediction performance on each scenario. We illustrate
the prediction error of two representative scenarios of the INTERACTION dataset in Figure
3.6. We notice that the testing performances of all the models are good when the current
training and the testing scenarios are the same. For instance, the state-of-the-art model, Tra-
jcetron++, can achieve a very low prediction error when testing on the same scenario as the
current training one. It implies that the bad overall performances in Figure 3.6 are not only
caused by the capability of the model itself but also attributed to the catastrophic forgetting
issues. For instance, in Figure 3.6a, when we test our prediction performance on MA, the
errors of baseline models rapidly increase when they are trained on the following scenarios,
which is called the catastrophic forgetting phenomenon. Our model significantly reduces the
catastrophic forgetting problems compared with all the methods without continual learning,
i.e., the fluctuation in Figure 3.6 is significantly smaller than the others.

We also compare the performance of different approaches between the continual learning
setting and non-continual learning setting, i.e., training on the entire dataset of all scenarios.
The non-continual learning setting (column “All” in Figure 3.5) can serve as the lower bound
of the error of the models in the continual learning settings. In Figure 3.5 column “All”, we
see that Trajectron++ and Ours can achieve the similar best performance when training on
the entire datasets. It demonstrates that our predictor module can achieve state-of-the-art
performance. In addition, comparing the testing performance at column EP2 in which the
models have seen all the datasets with the testing performance at column “All” in Figure
3.5 (a), our method can also achieve similar performance in the continual learning setting to
the non-continual learning setting. It shows that our method reduces catastrophic forgetting
remarkably. Meanwhile, we observe large gaps between the continual learning and the non-
continual learning setting for each baseline.

3.5.4 Ablation Analysis

In this section, we demonstrate the effectiveness of our approach by comparing the fol-
lowing ablation models: i) our framework (Ours); ii) our predictor without double memory
system (Ours w/o CL); iii) our predictor with vanilla generative replay (GR), i.e., the full-
length trajectories are generated purely from a Gaussian random variable; iv) our predictor
with elastic weighted consolidation (EWC). In order to show that the comparisons are in-
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variant to the order of scenarios, we randomly sample four different orders. Without loss of
generality, we use the whole dataset for each scenario. We show the results in Table 3.1 and
Table 3.2 for both datasets.

Table 3.1: The Performance of ADE / FDE (meters) in Ablation Analysis for INTERAC-
TION Dataset

Order 1 Order 2

AER FGT AER FGT

Ours 0.441/0.900 0.058/0.189 0.464/0.952 0.045/0.122
Ours w/o CL 0.558/1.247 0.249/0.814 0.603/1.431 0.322/0.952

GR 0.543/1.278 0.270/0.836 0.567/1.263 0.243/0.718
EWC 0.502/1.109 0.198/0.609 0.543/1.235 0.217/0.661

Order 3 Order 4

AER FGT AER FGT

Ours 0.466/0.891 0.060/0.188 0.449/0.956 0.058/0.166
Ours w/o CL 0.577/1.265 0.245/0.755 0.556/1.237 0.265/0.806

GR 0.534/1.198 0.179/0.486 0.537/1.240 0.245/0.731
EWC 0.512/1.115 0.129/0.308 0.489/1.084 0.175/0.506

We demonstrate that the results are consistent under different orders. From Table 3.1
and 3.2, we show that Ours improves at least 19% in ADE for AER and 73% in ADE
for FGT compared with Ours w/o CL. It implies that our conditional generative memory
system is effective, and only using the Frenét-based predictor is not enough to reduce the
catastrophic forgetting. Comparing Ours w/o CL with GR, we find that GR only slightly
improves the performance. It shows that directly using generative replay does not work well
in our application. This comparison illustrates the necessity of the proposed episodic memory
buffer to store the initial graph information. Although GR and EWC do not use replay buffer,
they cannot mitigate catastrophic forgetting effectively in our application. In Figure 3.7, we
compute the average performance across different orders and demonstrate the comparison.
We also include the model (Real), which uses full-length ground truth data replay to serve
as the ideal performance bound of our methods. The difference between Real and Ours
is that Ours only stores initial graph information and generates the whole trajectories by
conditional generative memory, while Real stores the full-length ground truth multi-agent
trajectories. This difference allows Ours reduces about 87% memory usage compared with
Real. Meanwhile, Ours can achieve almost the same performance as Real (shown in Figure
3.7). It demonstrates our method’s effectiveness and shows that utilizing generative models
is possible to reduce catastrophic forgetting in multi-agent trajectory prediction.
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Table 3.2: The Performance of ADE / FDE (meters) in Ablation Analysis for RounD/InD
Dataset

Order 1 Order 2

AER FGT AER FGT

Ours 0.509/0.938 0.112/0.284 0.466/0.832 0.036/0.113
Ours w/o CL 0.669/1.376 0.424/1.083 0.674/1.453 0.442/1.135

GR 0.625/1.310 0.320/0.841 0.568/1.177 0.243/0.674
EWC 0.617/1.236 0.325/0.791 0.548/1.028 0.205/0.464

Order 3 Order 4

AER FGT AER FGT

Ours 0.463/0.846 0.029/0.080 0.484/0.889 0.067/0.203
Ours w/o CL 0.740/1.609 0.559/1.407 0.644/1.337 0.379/0.947

GR 0.576/1.203 0.288/0.786 0.590/1.226 0.286/0.762
EWC 0.558/1.085 0.227/0.579 0.576/1.116 0.278/0.665
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AER (FDE)
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(a) INTERACTION dataset

AER (ADE)

FGT (ADE) FGT (FDE)

AER (FDE)

0.2
0.4

0.6
0.8

1.0
1.2

1.4

Ours
Ours w/o CL
GR
Real
EWC
Mix

(b) RounD/InD dataset

Figure 3.7: Average performances across different orders for both datasets. “Mix” shows
the prediction error of models trained on the whole datasets including all scenarios, i.e. the
common settings without continual learning. Details and memory comparison analysis are
in Section 3.5.4.
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3.6 Implementation Details

Our predictor and conditional generative memory are trained using Adam optimizer
with the batch size 64. We use 0.0005 as the learning rate for each task. The MLP mod-
ules have three fully connected layers with the activation function ReLU. The RNN mod-
ules use the GRU blocks. The CNN modules have five convolution layers with channels
16, 32, 64, 128, 256. The GNN modules have two rounds of message passing. The hidden di-
mension of our models is 256. For the conditional generative memory, the dimension of the
Gaussian random variable zi for each node i is 4 and the hyperparameter β in the VAE loss
is 1.0. For the predictor, the Gaussian mixture model has 4 kernels, and all of the methods
sample 20 trajectories to calculate the metrics. We use γ = 0.5 for training.

3.7 Chapter Summary

How to continually learn a good trajectory predictor is a potential problem in the near
future. In this chapter, we attempt to reduce the catastrophic forgetting in the complicated
multi-agent spatial-temporal prediction. We give an approach based on graph representation
and the conditional generative memory model to show the possibility of realizing continual
learning in the multi-agent trajectory prediction tasks. Such a problem is under-investigated
since most of the existing continual learning works focus on image classification and reinforce-
ment learning while relational reasoning and feature representation appeal more attention in
the trajectory prediction literature. Hence, this work paves the way for both the continual
learning and the trajectory prediction communities. For the continual learning community,
we demonstrate that continual learning can also work in high-dimensional regression tasks.
For the trajectory prediction community, we show that there is an elegant solution to deal
with sequentially increasing data. This work also raises many interesting questions and fu-
ture directions including but not limited to i) Is there any way to completely abandon the
episodic memory buffer? ii) Is it possible to design a predictor which has good zero-shot pre-
diction in new scenarios? We believe that solving such questions can improve performance
in the future.
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Chapter 4

Uncertainty Analysis and Valuable
Scenario Selection for Vehicle
Trajectory Prediction

4.1 Introduction

Vehicle trajectory prediction has a pivotal role in autonomous driving scenarios. The
safety of an autonomous vehicle system should access an accurate trajectory prediction of
the surrounding traffic participants, such that the following decision-making, planning, and
control modules can guarantee safety with a high probability. There is a growing body
of literature investigating how to improve vehicle trajectory prediction from different per-
spectives. Several works focus on directions such as multi-agent interaction [109, 100, 151],
multi-modality [133, 92, 95], and conditioned prediction [159], etc. There are also some works
investigating how to design more efficient representations to capture more information, in-
cluding the high-definition map and traffic rules [54, 58]. Recently, people are getting more
interested in obtaining accurate vehicle trajectory prediction efficiently, especially about
whether the existing approaches can also have good performance when the testing scenarios
are different from the training scenarios, i.e., domain shift problems. Such problems can be
investigated from different application settings such as transfer learning, continual (lifelong)
learning, and active learning. One of the common problems of such application settings is
that we need to know the difference between the source domain (training domain) and the
target domain (testing domain).

Uncertainty estimation [89, 78, 55] has been investigated for decades in different ar-
eas, such as computer vision, natural language processing, etc. There is also some existing
work [29, 112, 154] focusing on how to obtain a confidence score per predicted trajectory
given one case. However, such work can only provide the relative confidence score given
the predicted possible future trajectories. We still do not know how confident the current
predictor has for one case, especially when the case is out of distribution. Thanks to the
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recently released Shifts Dataset [111], which provides an evaluation pipeline for investigating
the uncertainty estimation of domain shift problems, it becomes possible to systematically
investigate the uncertainty estimation of domain shift problems for vehicle trajectory predic-
tion. Although several works have been proposed and evaluated on Shifts Dataset by using
different uncertainty quantification techniques, such as Gaussian process [38, 90], ensemble
models [73, 89, 52], and direct error prediction [72], etc., they do not provide experiment
results about how different features contribute to uncertainty estimation. Also, the uncer-
tainty estimation procedure in the approaches mentioned above is usually incorporated with
the predictors, i.e., we have to know the details of predictors if we want to get access to the
uncertainty score. It may not be legal or possible for a third party, such as an insurance
company or department of transportation, to require detailed information about a commer-
cial product from an autonomous driving company to evaluate. Therefore, in our work, we
propose a predictor-agnostic direct-error-prediction-based uncertainty estimation framework
to provide an analysis of the importance of different features: i) static information (maps,
traffic rules, etc.) and ii) agent information (traffic participants’ positions, velocities, etc.).
We find that only using static information can achieve an acceptable uncertainty estimation
results. Based on this observation, we conduct an experiment to show how the proposed
framework can improve transfer learning training efficiency by only using static information.
The proposed pipelines are shown in Figure 4.1. In summary, we highlight contributions as
follows:

Uncertainty 
Estimator

Trajectory 
Predictor

Static
Information

Dynamic
Information Static

Information

Uncertainty 
Estimator

Collect

Data

Trajectory 
Predictor

Scenarios

Rank

Figure 4.1: The proposed uncertainty estimation pipelines. The left figure illustrates the
predictor-agnostic uncertainty estimation procedure. The details of the predictor (stippled
blue box) are assumed unknown. In the right figure, we show how we finetune the predictor
with the pre-trained uncertainty estimator. The uncertainty estimator only utilizes static
information.

• We propose a predictor-agnostic direct-error-prediction-based uncertainty estimation
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framework for vehicle trajectory prediction. Potentially, The proposed framework can
be utilized with any black-box predictors.

• We conduct the experiments with a vehicle trajectory prediction distribution shift
dataset and compare the importance of static and dynamic features to uncertainty
estimation in the vehicle trajectory prediction application with a transformer-based
predictor.

• Based on the analysis, we propose a simple data selection algorithm that only leverages
the static information and show that our proposed approach can improve the training
efficiency compared with the approach trained with randomly selected data.

4.2 Related Works

4.2.1 Vehicle Trajectory Prediction

Several approaches have been proposed to solve the vehicle trajectory prediction with
different traffic participants, such as vehicles [23] and pedestrians [59, 137, 4, 165]. In the
earlier literature, probabilistic inference approach such as graphical models [45] and dynamic
Bayesian network [77, 152] are proposed. Lately, several learning-based techniques such as
generative models [133, 92, 95] are applied. Recently, some approaches based on graph
neural network (GNN) [64, 83, 164] have been utilized in vehicle trajectory prediction [109,
100, 151]. Such methods can represent the multi-agent interaction efficiently. How to get
good representation is another important direction. For instance, how to use high-definition
maps efficiently is investigated in [63, 23, 54]. The authors introduce a convolutional-neural-
network-based method in [23]. An approach to jointly detecting vehicles and predicting
future trajectories leveraging high-definition maps and LiDAR information is introduced
in [22]. Also, several conditional trajectory prediction methods [159, 117] are proposed.

4.2.2 Uncertainty Estimation

Uncertainty estimation has been widely investigated from both theoretical and applica-
tion perspectives. There are several different approaches to achieving uncertainty estimation.
Ensemble methods [89, 88, 130, 73, 34] are simple and strong techniques. For instance, [89]
introduces a simple deep ensemble framework that currently has become a strong baseline.
Otherwise, the authors in [73] propose to estimate uncertainty by considering diversity in
ensemble predictions. Gaussian process [38, 90] can also be used for uncertainty quantifica-
tion. [90] proposes a distance-preserved Gaussian process for uncertainty estimation. Also,
several Bayesian deep learning methods [78, 116] are proposed to quantify the uncertainty.
For the uncertainty estimation with vehicle trajectory prediction, [52] proposes using ensem-
ble models to get the uncertainty score for prediction or imitative planning. Such methods
are also used in the Shifts dataset. [129] uses spectral normalized Gaussian process [90] to
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obtain uncertainty; [128] directly produces an uncertainty score along with the predicted
trajectories, and using the prediction error supervises the uncertainty score. However, the
methods mentioned above are not designed to analyze what regimes of features have more
influence on the uncertainty estimation. In our work, we adopt the direct-error-prediction
strategy. We propose a framework that can select different types of features. By using this
framework, we provide a detailed analysis of uncertainty estimation in the vehicle trajectory
prediction application.

4.3 Problem Formulation

4.3.1 Vehicle Trajectory Prediction

Vehicle trajectory prediction aims to provide several possible future trajectories of one
target vehicle given historical information, which includes static information and dynamic
agent information. Static information includes high-definition maps, traffic rules, etc. Al-
though certain traffic rule information, such as traffic signals, is not static in general, it
usually has a fixed pattern and can be obtained directly without deploying data collection
devices. Hence, this work will categorize such information without uncertainty as static
non-agent information. The dynamic agent information consists of the motion information
(e.g., position, velocity, acceleration, etc.) of homogeneous and heterogeneous agents (e.g.,
vehicles, pedestrians, cyclists, etc.). Such information usually has high uncertainty and
cannot be obtained without deploying data collection devices. In this chapter, we assume
that we can obtain the historical information X ∈ RdX×H×W in the image format, where
H and W are the height and width, respectively, and dX is the number of features. Also,
we denote X = [Xs ∈ Rds×H×W , Xa ∈ Rda×H×W ], where Xs denotes the static information,
and Xa denotes the agent information. We denote the Tf -time-step future trajectories as
Y = [y1, y2, . . . , yt, . . . , yTf ], where yt ∈ R2 is the position of the target vehicle at time step
t. The objective of vehicle trajectory prediction is to estimate the distribution p(Y |X).

4.3.2 Uncertainty Estimation

We assume that our predictor is trained over a training datasetDtrain collected at locations
A. The objective of uncertainty estimation is to get a score to indicate the confidence of the
prediction given a specific predictor. The performance will be evaluated on a testing dataset
Dtest including the data collected at locations B, which are different from A. We denote the
uncertainty score for each case as u(X), and the performance of uncertainty estimator on
Dtest as s(Dtest). We adopt the error-retention curve (ERC) [111] as the evaluation metric for
uncertainty estimation. Such metric will only depend on the relative value of u(X). Please
see the details of the metric in Section 4.7.1.
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Figure 4.2: Overall framework. The dashed blue and red blocks indicate the predictor module
and uncertainty estimator module, respectively. Input features are divided into two parts:
static information and agent information. Different colors of ResNets represent different
parameters.

4.4 Methodology

The proposed overall framework consists of two components: predictor and uncertainty
estimator. We illustrate the proposed overall framework in Figure 4.2. The details of the
proposed predictor are introduced in Section 4.4.1, and the proposed uncertainty estimator is
introduced in Section 4.4.2. In Section 4.4.3, the training losses and procedure are provided.
Please see the implementation details in Section 4.7.

4.4.1 Predictor

In this chapter, we use an image-based predictor, which can achieve comparable per-
formance with the state-of-the-art approach [128] provided by the Shifts Challenge [111].
Recently, transformers [47, 163] have been proved effective in both natural language pro-
cessing and computer vision. There exists several works [128, 118] using a transformer in
trajectory prediction problems. Similar to [128], we use vision transformer [47] as the en-
coder to get the latent representation z ∈ Rd of historical observations X, i.e., z = ViT(X).
The details of ViT are provided in Section 4.7. After getting the latent representation z, we
intend to use a Gaussian mixture model (GMM) as the decoder. First, we project the latent
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variable z into k different latent variables z̃i=1:k by using a feed-forward neural network Π:

[vec(Z̃)T , vec(W(z))T ]T = Π(z),

Z̃ = [z̃1, z̃2, . . . , z̃k] ∈ Rd×k,

W(z) = [w1(z), w2(z), . . . , wk(z)] ∈ R1×k,

(4.1)

and at the same time, Π also outputs a confidence score wi(z) for each z̃i. Then we use a
GRU-based recurrent neural network to get the mean of predicted trajectories µi(z):

Y ∼ Q =
k∑

i=1

wiN (µi(z),Σj(z)),

hit = GRU([µ(z)it−1, z̃i]),

µ(z)it = MLP (hit),∀t = 1, 2, . . . , Tf ,

(4.2)

where h is the state variable of GRU cell. We set {Σj}j=1,...,k equal to the identity matrix.

4.4.2 Uncertainty Estimator

In this chapter, we focus on the direct-error-prediction-based uncertainty estimator, i.e.,
learning an estimator to forecast the prediction error. Our proposed framework can be
divided into representation module z = enc(x) and uncertainty projection head module u =
h(z). The proposed framework does not require any intermediate information of predictors.
Hence, the proposed uncertainty estimation framework is predictor-agnostic. Due to the
disentanglement of the predictor and uncertainty estimator, our uncertainty estimator can
be used as an analyzer by third-party institutions.

Encoder In order to analyze the importance of different regimes of features for uncertainty
estimation in vehicle trajectory prediction, we propose using a feature extractor to choose
different regimes of latent representations of features. The features from different regimes,
i.e., static features Xs and Xa, are encoded by ResNet [60] with different parameters:

zs = ResNet(Xs;ψs), za = ResNet(Xa;ψa),

enc(X) = S(zs, za),
(4.3)

where ψs ans ψa are the parameters of ResNet, respectively. S is defined as a function of zs
and za. It can be S(zs, za) = zs or S(zs, za) = za, which represents static-information-based
uncertainty estimation and agent-information-based uncertainty estimation. It can also be a
combination of different information such as S(zs, za) = zs + za. Since we intend to analyze
the different influence of Xs and Xa, we use the selector S(zs, za) = zs and S(zs, za) = za.
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Decoder After we get the latent embedding enc(X), in order to get a stable and robust
results, we use an ensemble of feed-forward neural networks as the uncertainty projection
module:

êi(X) = h(z, θi), i = 1, . . . ,M ;u(X) =
1

M

M∑

i=1

êi(X), (4.4)

where θi represents i-th MLP’s parameter. M is the number of ensembles. After we get the
uncertainty estimator, we use the mean of the ensembles as the final uncertainty score u(X).

4.4.3 Training Process

We use a two-stage training strategy. First, we train the predictor introduced in Sec-
tion 4.4.1. After the optimized predictor is obtained, we evaluate the predictor on the
training data and get the produced uncertainty dataset Dunc = {Xi, ei}i=1:n. Then we train
our proposed uncertainty estimator on Dunc. The prediction loss and uncertainty estimation
loss are introduced in the following paragraphs.

Prediction loss function We adopt the corrected negative loglikelihood (cNLL) which is
used in [111] as the prediction loss function:

LcNLL(x, y;Q) =

− log
k∑

i=1

wi(x)
T∏

t=1

N (yt|µit(x),Σt(x))−
T∑

t=1

1

2
log |2πΣt(x)|

= − log
k∑

i=1

wi(x)e−
1
2

∑T
t=1(yt−µit(x))TΣ−1

t (x)(yt−µit(x)),

(4.5)

where Q represents the learned GMM. As mentioned in [111], such prediction loss function
can capture multi-modality compared with weighted average displacement error (wADE).
The cNLL metric will be used in both the training and testing procedure. For the variance,
Σ, we set it as an identical matrix, which is also suggested in the Shifts Dataset.

Uncertainty loss function Directly predicting the error as uncertainty estimation has
been mentioned in [72, 128]. It is reasonable to use the corrected negative log-likelihood as
the supervised signal for uncertainty estimation. Considering the optimal solution ê? of the
following optimization:

min
ê
EX∼PXEY |X∼PY |X [(cNLL(Y |X)− ê(X))2],

ê?(x) = EY |x∼PY |X [cNLL(Y |x)]

= H(PY |x) +DKL[PY |x‖Q] + C,

(4.6)
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where C is a constant. P represents the ground truth distribution. Q is the learned Gaussian
mixture model. When the learned distributionQ is the same as the ground truth distribution,
then the optimal total uncertainty estimator ê? will be the entropy of P added a constant,
i.e., H(P )+C. In the other word, if there is no distributional shift and Q = P , then ê∗(x)−C
will represent the aleatoric uncertainty. The divergence between P and Q can represent the
model uncertainty. Please see the details of such decomposition in [72]. In this chapter, we
focus on total uncertainty estimation and we utilize a normalized version of MSE loss for
cNLL:

Lunc(e, ê) = (s · clip(e, 0, eupp)− ê)2, (4.7)

where s is the scale of error and eupp is the upper bound of clip value. We notice that the
training will be more stable by using such a normalization procedure.

4.5 Experiments

In this section, we first introduce the dataset and metrics in Section 4.5.1. Then we
show the performance of the proposed predictor in Section 4.5.2 to confirm that the trained
predictor is good enough compared with the existing state-of-the-art baselines. After that, we
show the empirical analysis of the proposed uncertainty estimator in Section 4.5.3. Finally,
we show the transfer learning results based on the uncertainty estimator in Section 4.5.4.
The detailed experiment settings are in Section 4.7.

4.5.1 Dataset and Metrics

We use the vehicle motion dataset in Shifts Dataset [111], which is a large-scale public
dataset providing distributional shift partition. The dataset was collected by a fleet and is
currently the largest vehicle motion prediction dataset. The dataset was collected across
different scenarios in terms of space, time, and weather conditions. For instance, the dataset
was collected across six different cities from different countries, three different seasons, and
four weather conditions. The state of traffic participants and a high-definition map are pro-
vided. The sampling frequency is 50 Hz. The historical horizon and future horizon are both
5 seconds. The original dataset is partitioned into training, development (dev), and evalua-
tion (eval) sets. The static information includes crosswalk occupancy, crosswalk availability,
lane availability, lane occupancy, lane priority, lane speed limit, and road polygons. Each
feature occupies one channel. The agent information includes the occupancy, velocity, accel-
eration, and yaw angle of vehicles, and the occupancy and velocity for pedestrians. Hence,
the total number of static features is 8, and the total number of agent features is 9. We use
the pre-rendered images with size 17× 128× 128, which are provided by the dataset, as the
features. We use the official canonical version of the dataset, which provides the training and
evaluation splits. Please see the details in [111]. For the transfer learning experiments, we
include the training dataset collected in Ann Arbor and Tel Aviv with the weather condition
“no participation”, which is a similar setting to the official canonical dataset for the training
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Table 4.1: Prediction Evaluation Results, (mean/standard deviation/median)

Partition cNLL mADE mFDE

Evaluation 19.42/190.50/1.94 0.56/0.85/0.28 1.07/1.85/0.39
ID 17.75/182.73/1.94 0.54/0.81/0.28 1.02/1.74/0.39

OOD 26.05/218.68/1.98 0.65/0.99/0.29 1.27/2.21/0.41

dataset collected in Moscow. The intentions of target vehicles are provided as trajectory tags
in the dataset. The evaluation dataset is same as the one in the official canonical dataset.

For the prediction metric, we use the three metrics in [111], i.e., cNLL, minimum average
displacement error (mADE), and minimum final displacement error (mFDE).

4.5.2 Predictor Performance

Since this chapter focuses on the uncertainty analysis and how to use the uncertainty
estimator for transfer learning, we assume that a comparable predictor is sufficient to be
used in our experiments. From Table 4.1, we show that the proposed predictor can achieve
similar performance to the best one [128] (15.68 for cNLL, 0.53 for mADE, and 1.02 for
mFDE) in the challenge [111]. It also shows that the mean, standard deviation, and median
of the prediction errors in OOD (out-of-distriubtion) cases are larger than the corresponding
statistics in ID (in-distribution) cases.

4.5.3 Importance of Features for Uncertainty Estimation

In this section, we show the quantitive results and analysis by using the proposed un-
certainty estimator. The evaluation dataset is divided into different groups: Group A and
Group B. The groups are separated by the intention of the target vehicle, including moving
forward, moving right, moving left, moving back, stationary, starting, and stopping. Group
A represents the set of intentions, including moving forward, moving right, moving left, mov-
ing backward, and stationary. Group B consists of the intention of starting and stopping.
The elements in each group are exclusive, e.g., if a case is labeled by “Left”, then it cannot be
labeled by “Right”. However, A case can be labeled as both “Left” and “Starting”. First, we
analyze the overall performance of the whole evaluation dataset. Then we provide the eval-
uation conditioned on different intentions. We also show the evaluation results on the data
partition within different speed ranges. We compare four methods: i) agent-information-only
uncertainty estimator (agent); ii) static-information-only uncertainty estimator (static); iii)
full-information-based uncertianty estimator (full), which use both agent and static informa-
tion for uncertainty estimation; iv) predictor-dependent uncertainty estimator (pred-latent),
the output of the predictor’s encoder is used as input of the uncertainty head.
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Overall Performance

Error-Retention Curve Results The ERC of overall performance is shown in Figure
4.3. We notice that both agent-information-based and static-information-based approaches
are much better than the random uncertainty estimator baseline and close to the optimal
lower bound. The agent-information-based approach is better than the static-information-
based one in general. It is reasonable to see that agent-only or static-only uncertainty
estimator performance is worse than full-info uncertainty estimator. We also illustrate that
the predictor-agnostic uncertainty estimator can achieve almost same performance as the
predictor-dependent one. It shows that our proposed framework is effective. The observation
is also consistent with the OOD partition of the evaluation dataset and the whole evaluation
dataset. However, we cannot conclude that the comparison results are similar with different
intentions of the target vehicle’s driver. Hence, in the next section, we provide the results
conditioned on different intentions.

Evaluation Conditioned on Human Driver Intention

Stationary Performance The ERC performance evaluated on “stationary” is illustrated
in Figure 4.3. We can observe that the agent-information-based approach is much better than
the static-information-based approach. There are two potential explainations: i) The agent
information is more important than static information in this scenario. For instance, when
the traffic is heavy, and thus the target vehicle is surrounded by many vehicles, only observing
the agent occupancy information is enough to determine the future trajectories. ii) If the
vehicle’s current velocity and acceleration are zero, the average speed of future trajectories
will be low. In such cases, the scale of the total uncertainty of future trajectories can be small.
In the aforementioned cases, agent information is enough to get an accurate uncertainty
estimation, and the information gain from adding static information is not very significant.
There are illustrations of prediction results conditioned on “stationary” in Figure 4.5a and
Figure 4.5b.

Turning Performance We illustrate the ERC performance conditioned on “Turing left”
and “Turning right” in Figure 4.4. We notice that static-information-based uncertainty esti-
mation has a similar performance to the agent-information-based one. From the illustration,
we would like to give some intuitive explanations of the empirical results:

Why does the static-information-only uncertainty estimator work? In order
to predict the future trajectory of a target vehicle that has the intention of “Turning left”
and “Turning right” accurately, the information of the lane is significant since the future
trajectories of vehicles turning left or right highly depend on the available routes. Also, it is
difficult to predict the future trajectories in the turning left and turning right scenarios due
to the multi-modality. The uncertainty estimator can identify such difficulty of scenarios
by providing static information. Hence, the static-information-only uncertainty estimator
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(a) Overall performance.
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(b) OOD part performance.
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(d) Stationary, OOD part.

Figure 4.3: ERC results on the whole evaluation dataset and the part with intention “Sta-
tionary”.
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(a) Turing left.
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(d) Turing right, OOD part.

Figure 4.4: ERC results on the parts of evaluation dataset with intention “Turning left and
right”.



CHAPTER 4. UNCERTAINTY ANALYSIS AND VALUABLE SCENARIO
SELECTION FOR VEHICLE TRAJECTORY PREDICTION 57

ground_truth
w=1.00
w=0.00
w=0.00
w=0.00
w=0.00

(a) Stationary, parking.

ground_truth
w=1.00
w=0.00
w=0.00
w=0.00
w=0.00

(b) Stationary, jammed.

ground_truth
w=0.36
w=0.13
w=0.13
w=0.27
w=0.11

(c) Turning right.

ground_truth
w=0.29
w=0.27
w=0.09
w=0.26
w=0.09

(d) Turing left.

Figure 4.5: Visualization of prediction results. Curves with different colors represent the
predicted possible future trajectories with different confidence score w. The ground truth
trajectory is shown as a blue dashed line with star markers.
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indeed works in both scenarios. We illustrate a prediction result in Figure 4.5c, where it is
impossible to predict the future trajectories without the lane information.

Why does the agent-information-only uncertainty estimator work, too? As
we mentioned above, the static information may provide useful insight into where the target
vehicle will go ahead. However, we find that the agent-information-based uncertainty esti-
mator can also achieve comparable or better performance. We suggest that the correlation
between the static information and the agent information will also help. For instance, when
there are many agents in one case, the position of agents will imply the lane information.
Besides, if the traffic is jammed, the agent’s behavior will heavily depend on the other agents,
too. We illustrate an example in Figure 4.5d. From Figure 4.5d, we can see that the position
of agents can basically reflect the lane information.

Starting and Stopping Performance

We illustrate the uncertainty estimators’ performance on the datasets with the inten-
tion “starting” and “stopping” in Figure 4.6. We find that static-information-based and
agent-information-based estimators can achieve similar performance on the dataset with the
intention of “starting”, while the agent-information-based estimator is much better than the
static-information-based one on the dataset with intention of “stopping”. One of reasonable
explainations is that, some of the scenarios where the target vehicles were stopping are highly
depended on the other agents’ behavior. For instance, the deceleration of the target vehicle
depends on the speed profile of the leading vehicle in Figure 4.7a and Figure 4.7b. Without
the agent information, we cannot anticipate the future stopping of the target vehicle. The
performance of the prediction and uncertainty estimation will be largely improved by giving
the other vehicles information in such scenarios. For the scenarios of “starting”, the influence
of the other agents will be smaller. For instance, in Figure 4.7c and Figure 4.7d, we note
that the target vehicles just start moving, and the front vehicles may also just start moving.
The distribution of future trajectories may be similiar across different scenarios and thus the
difficulty and uncertainty of prediction is reduced. Please note that it is different from the
moving forward, where the speed at the first time step or the last time step is not necessary
to be zero.

Forward and Backward Performance

The evaluation results of the dataset with intention “forward” and “backward” are shown
in Figure 4.8. We observe that the agent-information-based estimator is better than the
static-information-based one in both forward and backward scenarios. It is reasonable since
if the target vehicle’s intention is just moving along one lane, the most important factor that
the human driver should consider is the other traffic participants’ behaviors. We observe
that there is a mismatch between the performance of ERC on the evaluation dataset and the
OOD part of the evaluation dataset in Figure 4.8c and 4.8d. The main reason is that the
number of cases with “backward” intention is significantly smaller than the number of cases
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(d) Starting, OOD part.

Figure 4.6: ERC results evaluated on testing dataset with intention “starting” and “stop-
ping”.
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Figure 4.7: Visualization of prediction results with intention “starting” and “stopping”.
Curves with different colors represent the predicted possible future trajectories with different
confidence score w. The ground truth trajectory is shown as a blue dashed line with star
markers.
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Figure 4.8: ERC results evaluated on testing dataset with intention “forward” and “back-
ward”.
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Figure 4.9: Visualization of prediction results with intention “moving forward” and “moving
backward”. Curves with different colors represent the predicted possible future trajectories
with different confidence score w. The ground truth trajectory is shown as a blue dashed
line with star markers.
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Figure 4.10: The relative performance between agent-information-based and static-
information-based uncertainty estimator conditioned on different speed ranges.

with the other intentions. Hence the results shown in Figure 4.8c and Figure 4.8d may have
less statistical significance. We illustrate the prediction results in Figure 4.9. In Figure 4.9c
and Figure 4.9d, the predictor cannot learn the correct future trajectories as we suggest.

Performance in Different Average Speed Ranges

We also compare the performance of static-information-based and agent-information-
based uncertainty estimation with the data associated with different average speed ranges.
The data are filtered by the average speed range [v −∆, v + ∆], where the anchor v is the
average speed of the future trajectory of the target vehicle. ∆ is set as 5 mph. We use the
relative improvement δAUC(v) which is defined as:

δAUC(v) =
AUCstatic(v)− AUCagent(v)

AUCagent(v)− AUCoptimal(v)
. (4.8)

Such value reflects how much the agent-information-based uncertainty estimator is better
than the static-information-based one. The value is normalized by the difference of AUC
between agent-information one and the optimal solution. The results are visualized in Fig-
ure 4.10. From Figure 4.10a, we observe that when v is smaller than 10 mph, The agent-
information-based uncertainty estimation is better than the static-information-based one.
For instance, when the average speed of future trajectories belongs to [0, 10], the agent-
information-based one is about 70% better than the static-information-based one. However,
the agent-information-based one seems not to improve so much when v is larger than 10
mph. Especially when v belongs to [15, 20], the agent-information-based uncertainty esti-
mator only improves less than 10%. We also illustrate the amount of data with respect to v
in Figure 4.10b. The relative AUC has large fluctuation when the average velocity is larger
than 40 mph. It may attribute to the number of data decreases rapidly when v > 40 mph
as shown in Figure 4.10b.
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Algorithm 1: The algorithm for adaptation to new environments

Input: r: The proportion of dataset. predictor P . Static-infomation-based
uncertainty estimator.

1 Collect the static information Ds = {Xs,i}i=1:n in new environments.
2 Get the uncertainty score ui by the static-information uncertainty estimator for each

Xs,i.
3 Get the sorted Esorted = {(Xs,[i], u[i])}i=1:n, where u[i] ≥ u[i+1],∀i = 1, . . . , n− 1.
4 Select the top-k data points in Esorted, where k = brnc.
5 According the selected Xs, collect data Dadapt = {(Xi, yi)}i=1:k.
6 Finetune the decoder of P with Dadapt.
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Figure 4.11: Adaptation to new environments.
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Figure 4.12: Visualization of prediction results with intention “turning left” for transfer
learning experiments. Curves with different colors represent the predicted possible future
trajectories with different confidence score w. The ground truth trajectory is shown as a
blue dashed line with star markers.
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4.5.4 Adaptation to New Environments

From the analysis in Section 4.5.3, we notice that the static-information-only uncertainty
estimator can also have a good performance. Since the static information can be obtained
directly without the deployment of data collection fleets, it is efficient and budget-friendly
for transfer learning, continual learning, or active learning. In this section, we investigate
whether using the static-information-based uncertainty estimator indeed helps improve the
transfer learning efficiency. In this setting, we try to finetune the predictor trained with the
training dataset (collected in Moscow) in order to adapt to the new environments Ann Arbor
and Tel Aviv, which are used in the evaluation dataset.

We use a simple algorithm listed in Algorithm 1. We assume that we first collect the
static information Xs at some locations. Then we select some important locations according
to the static-information-based uncertainty estimator. Then we collect the agent information
Xa. We finetune the decoder of the predictor based on the selected data via th early stopping
technique. We compare our proposed method (static-UE) with the predictor finetuned with
randomly selected data (random-UE). The result is shown in Figure 4.11. In Figure 4.11, the
heights of bars represent the mean of cNLL. The errorbars represent the standard deviation.
Meanwhile, the dashed lines indicate the worst performances of both methods. We notice
that the performance of our proposed approach is better than the method with randomly
selected data in terms of mean, variance and worst-performance. When only using 10% of
data, static-UE achieves worse performance. One of the explainations is that the 10% of
the data only represents the most worst cases according to the uncertainty esitmator, and
only using the static-information-selected data is not good enough for predictor to attain
new knowledge of the majority of new scenarios. We observe that static-UE can reduce the
prediction error gradually compared with random-UE. When the number of selected data is
larger than 20%, static-UE can achieve smaller error in terms of both mean and variance.
However, random-UE does not improve so much from 20% to 40%, and the variance of
random-UE keeps large. One of the reason why the variance of static-UE is smaller is that
we choose the training data according to the uncertainty score, there is almost no randomness
from the data. When the number of data increases to 50%, we find that both approaches
achieve similar performance. It means that 50% data may be enough to represent the whole
data distribution.

Prediction Visualization for Transfer Learning Experiments We provide several
typical prediction visualizations generated by our proposed approach with 30% training data
selected by the static-information-based uncertainty estimator. In Figure 4.12a, Figure 4.12b
and Figure 4.12c, 4.12d, we illustrate the cases where future trajectories of vehicles have the
turning left intentions. We notice that the fine-tuned model is indeed better than the original
model. In Case 1, we can see that the fine-tuned model adjust each mode of possible future
trajectories to align the lanes compared with the ones provided by the original model, i.e.,
the light orange ones, which are the predicted trajectories with small confidence scores. In
Case 2, we can observe that the predicted trajectories with high confidence scores provided
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by the fine-tuned model are more accurate than the ones provided by the original model. In
Figure 4.13a, 4.13b and Figure 4.13c, 4.13d, we illustrate the cases when future trajectories
of vehicles have the turning right intentions. In Case 1, we notice that the fine-tuned
model can adapt to the new scenarios and find the correct future lanes, while the original
model cannot capture the new static information correctly. In our experiment, we freeze the
encoder in order to maintain the knowledge learned before, however this strategy reduces the
transferability at the same time. In the future, more advanced techniques can be applied.

4.6 Discussion

In this section, we discuss the limitation of our proposed framework. The major limi-
tation of our work is that for transferring to the new environment, we assume that we can
directly get the static information. However, the current input feature Xs is centered at
the target vehicle position due to the dataset format. It is easily solved in future work
by randomly sampling possible current locations of target vehicles instead of assuming we
know the ground truth locations. Also, we only use a simple sampling strategy to show that
static-information-only uncertainty estimator can improve the transfer learning strategy. Al-
though Algorithm 1 is enough to support our argument, more advanced sampling techniques
are desired to improve the performance further. In the future, we will also include the anal-
ysis for the other state-of-the-art predictors, such as [54, 22], etc. It will also be interesting
to expand our analysis on the different large-scale datasets such as Argoverse 2 [173] and
Waymo Dataset [153].

4.7 Implementation Details

4.7.1 Error-Retention Curve

In order to make the paper consistently and clearly, we re-elaborate and formulate the
definition of the error-retention curve as follows:

Definition 1 (Error-retention curve [111]). Given a predictor P, uncertainty estimator
U and dataset Dtest with size n, the error-retention curve (ERC) is defined as a map s :
{ i
n
}i=0:n → [0,∞], which is obtained by the following procedures:

1. Given a testing dataset Dtest = {(Xi, Yi)}i=1:n, calculate the error-uncertainty set
Etest = {(ui, ei)}i=1:n from P and U .

2. Sort Etest according to u, we have Ẽtest = {(u[i], e[i])}i=1:n, where u[i] ≤ u[i+1],∀i =
1, . . . , n− 1.
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Figure 4.13: Visualization of prediction results with intention “turning right” for transfer
learning experiments. Curves with different colors represent the predicted possible future
trajectories with different confidence score w. The ground truth trajectory is shown as a
blue dashed line with star markers.
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3. s and AUC(s) =
∫
s(r)dµ(r) is calculated as

s(
i

n
) =

1

n

i∑

j=1

e[j], ∀i = 1, . . . , n, s(0) = 0,

AUC(s) =
1

n

n∑

i=1

i∑

j=1

e[j] =
n∑

i=1

(n− i+ 1)

n
e[i].

(4.9)

As mentioned in [111], the minimum of AUC is obtained whenever u and e has a monotonic
non-decreasing relation. We denote the minimal curve as “optimal” in the figures. The
expected value of AUC will be 1

2n

∑n
i=1 ei, and s will be a linear function if the permutation of

e is sampled uniformly. The curve is denoted as “random” in the figures, which is served as a
“worst-case” indication. Notice that it is possible that the ERC is above the “random” curve,
which means that the corresponding uncertainty estimator is even worse than a random
estimator.

4.7.2 Predictor Implementation

For the encoder (ViT) in the proposed predictor, the patch size is 16, and the depth is
12. We use 8 multi-attention heads. The size of the feed-forward neural network in ViT is
768. The pooling strategy is “mean”. The output size of ViT is 128. For the decoder of
the predictor, we use GRU [28] as the recurrent neural network cell. The hidden layer sizes
of the projection neural network Π is [300, 300], and the activation is ReLU. The number
of GMM’s kernels k is 5. During the predictor training phase, we use AdamW [104] as the
optimizer. The learning rate is 1e-4, and the decay rate is 1e-3. We train the predictor with
21 epochs and the batch size is 1024. We notice that after 21 epochs, the training loss is
stable. In order to reduce the influence of sub-optimality of the predictor, we choose the
best model of three trained predictors for the following uncertainty estimators.

4.7.3 Uncertainty Estimator Implementation

For the uncertainty estimators, we use ResNet34 [60] as the encoder. We modify the first
convolutional layer in order to fit the input image size: c × 128 × 128, where c = 8 for the
static-information uncertainty estimator, and c = 9 for the agent-information uncertainty
estimator. The number of ensembles M = 3. For each uncertainty head, we use a feed-
forward network with hidden sizes: [512, 256, 128]. The activation is ReLU. The latent
variable’s dimension for the uncertainty estimator is 128. For the uncertainty estimation loss,
we use the scale s = 1/300, and the eupp = 10000. For the uncertainty estimator training, we
use AdamW as the optimizer and the learning rate is 1e-4, too. The decay rate is 1e−3. We
train both the static-information-based and agent-information-based uncertainty estimators
for 15 epochs and the batch size is 1024. We observe that the standard deviation of the
ensemble models are very small and not influence the conclusion in the analysis.
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4.7.4 Transfer Learning Settings

For the transfer learning experiment, we freeze the encoder of the predictor, i.e., ViT,
and fine-tune the decoder part with 40 epochs. The batch size is 1024. We use the same
optimizer and configurations of the trained predictor. For the transfer learning experiments,
we train 3 different models for each approach to get the statistics. For 10% data, we observe
that the variance of random-UE is remarkably large and hence we use three more random
experiments to calcuate the statistics.

4.8 Chapter Summary

In this chapter, we introduce a generic direct error-prediction-based uncertainty esti-
mation framework for vehicle trajectory prediction. The proposed error-prediction-based
uncertainty estimation framework does not require the detail of predictors design, enabling
the third party, such as a regular department or insurance company, to evaluate autonomous
driving companies’ prediction products. Meanwhile, in order to investigate how the different
feature attributes influence the uncertainty estimation, we specifically design a pipeline to
analyze it in an ablative way. We validate our proposed framework and conduct a thor-
ough analysis of the Shifts Dataset. In the analysis, we design several experiments to show
the uncertainty performance in different types of data, e.g., the dataset separated by the
target vehicle intention, the average future speed, etc. We conclude that only using static
information to estimate uncertainty can also achieve a good result through the analysis.
The conclusion is meaningful for several downstream tasks, such as transfer learning, active
learning, and continual learning, since the static information can be obtained with much
less budget than collecting dynamic agent information. We conduct an experiment with the
transfer learning setting to support our argument that the static-information uncertainty es-
timator can also improve the training efficiency. In the future, We intend to use the proposed
framework on the other state-of-the-art predictors and compare it with the other uncertainty
estimation techniques.
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Part II

From Human Behavior Prediction to
Generation
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Chapter 5

Diverse Human Motion Prediction via
Knowledge Distillation

5.1 Introduction

Human motion prediction plays a significant role in several applications such as human-
robot interaction [11, 12], autonomous driving [30, 31, 94, 107], and animation [122]. For
instance, an autonomous driving system can make a safe planning strategy given an accurate
motion prediction of pedestrians. Moreover, robots can cooperate reasonably with people
when they have a good understanding of human beings’ future plans. However, since diver-
sity and uncertainty are human future motion’s intrinsic properties, it becomes a challenging
problem in the computer science community. Unlike the vehicle trajectory prediction scenar-
ios where we can get prior knowledge such as the traffic rules and routing information [106,
105] to constrain the different modes of trajectories, we can hardly get any prior knowledge
about what humans will do in the future. Thus, we can only leverage the information from
the given dataset, which increases the difficulty of diverse human motion prediction.

There are two lines of research in this area. First, several works attempt to get an ac-
curate human motion prediction without considering the diversity, such as [99] based on
graph neural network and [166] based on recurrent neural network. On the other line, some
research investigates how to increase the diversity of human motion prediction based on deep
generative models [5, 177, 180, 132] or diverse sampling techniques [178]. Deep generative
models such as variational autoencoder and generative adversarial network naturally capture
the stochastic behaviors, while they may suffer from the posterior collapse or mode collapse
problems. Otherwise, even if we assume that the generative models can capture the ac-
tual data distribution, the data distribution can still be very imbalanced and skewed, which
makes that sampling the minor modes is challenging within a limited number of samples.
Several works [178, 179, 113] propose new losses to increase diversity while keeping the pre-
diction natural and accurate. In [179], a multiple sampling function is designed to explicitly
capture the different modes of the distribution based on a pre-trained conditional variational
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1st time group similar poses

2nd time group similar poses

Figure 5.1: Illustration of obtaining multi-modal pseudo future motions in a dataset. We
can cluster the similar initial poses (purple dashed circle) and share their future poses as the
common ground truth. The solid poses are the ground truth and the transparent ones are
the augmented poses. We argue that such an approach can be applied recursively (orange
dashed circle), which will lead to discovering more different and realistic modes of motion in
the data.

autoencoder. By using this pre-trained variational autoencoder, such methods can control
the likelihood of predicted motion with a training hyperparameter. In [15, 113, 87], they
proposed generative models to learn the distribution implicitly. However, these works still
have to choose hyperparameters before training to balance the likelihood and diversity sam-
pling. It implies that such approaches cannot be adjusted and controlled during the testing
phase. Considering the real-world application such as pedestrian motion prediction in au-
tonomous driving, we not only need to know most of the different possible modes of motion
but also need to know which modes will most likely happen. It will be more practical if we
can decide the balance of accuracy sampling and diversity sampling during the testing phase
for the purpose of designing the risk-averse or risk-seeking planner of autonomous vehicles.
Hence, we introduce a multi-objective variational inference framework with two different
priors. The proposed structure makes it possible to adjust the ratio between accuracy and
diversity sampling during the testing time.
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Meanwhile, since there is only one ground-truth future motion poses given a historical
observation, several works [142, 176] propose to use a similarity cluster-based technique to
get the multi-modal pseudo-ground-truth future motions. Similar initial poses are grouped,
and their corresponding future poses can be viewed as the pseudo possible future motions for
each initial pose in the group. We argue that such logic can also be applied recursively. We
can group similar poses again at certain steps and get the shared futures. A demonstration
is shown in Figure 5.1. This strategy can boost the diversity of future motions. However,
the sampling number will exponentially increase due to the recursive queries during training
and make such direct implementation intractable. In order to solve this issue, we introduce
an oracle that provides several possible future motions with a short-term horizon to instruct
the predictor repeatedly. To summarize, our contributions are three folds:

• We propose a unified multi-objective conditional variational autoencoder based human
motion prediction framework, which can adjust the ratio of sample numbers of accuracy
and diversity sampling during testing.

• We propose to learn a short-term oracle system and distill the oracle’s knowledge into
the prediction framework to increase the diversity of human future motions. In order
to achieve this goal, we propose a novel sample-based loss to supervise the predictor
during the training phase.

• We evaluate the performance of our proposed approach on two human motion datasets.
The experiments results show that our methods can achieve state-of-the-art perfor-
mance.

5.2 Related Works

5.2.1 Human Motion Prediction

Human motion prediction has been investigated with many different approaches in the
computer vision community. At the early stage, several methods [20, 145, 156, 167, 114, 3,
101] without deep learning techniques are proposed such as Gaussian process [168], hidden
Markov model [20], and latent variable models [156]. Such methods can achieve good per-
formance for recurrent human motion data. However, they may not be suitable for more
complicated irregular human motions. As several promising deep learning models such as
recurrent neural network (RNN) [42, 27, 16] and graph neural network (GNN) [139, 21,
84, 96, 97] are proposed recently, there are several research focusing on how to incorporate
the models above to enhance the deterministic human motion prediction accuracy. Several
works such as [53, 71, 115, 125, 188] are based on RNN, and [99, 113] utilize graph neural
network (GNN) to capture both the temporal and spatial information. In order to get more
diverse human motion prediction, several probabilistic models [17, 81, 82, 5, 87, 15, 102, 180,
132] are applied to capture the uncertainty of human motion. Deep generative models can
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be used to estimate the data distribution. There are several approaches based on variational
autoencoders [17, 81, 82, 5], generative adversarial networks[87, 15, 102, 36] and normalizing
flows[180, 132, 50].

5.2.2 Diverse Forecasting

In [177], the authors propose an approach that can learn a representation for motion
reconstruction and transformation together. Also, GAN-like models are utilized in [15, 87] to
capture the diverse human motion prediction. There are also some research using a different
representation to improve the diversity [188]. In [178], a diversity sampling function which
is formulated as a determinantal point process [56, 57, 86] is proposed. Especially in [179],
the authors argue that even though the existed likelihood-based methods can have a good
estimation of the data, they can still be challenging to sample some minor modes given a
fixed number of samples. Hence, they propose to learn another diversity sampling function
that can generate diverse motions based on one pre-trained variational autoencoder model.
However, the proposed model needs to choose hyperparameters to balance the likelihood
and diversity before training. We investigate the diverse human motion prediction in an
orthogonal direction with the related work. We aim to get a unified model that can adjust
the sample number ratio between accuracy and diversity samples during the testing phase.
Besides, we attempt to explore more diverse and natural modes by utilizing pseudo future
motions with a short-term oracle, and any models mentioned above can be integrated.

5.3 Problem Formulation

Our goal is to predict the possible future human motions given a dataset D. We denote
the human motion with time horizon T = Th + Tf as Xt−Th+1:t+Tf = [Xt−Th+1, . . . ,Xt+Tf ],
where Xt ∈ Rd is the human joints Cartesian coordinates at time step t. Th and Tf are
the historical horizon and future horizon respectively. Given an observation C = Xt−Th+1:t,
we intend to get the future motion distribution P (Xt+1:t+Tf |C, ρ). Since such conditional
probabilistic distribution may have several dominant modes, it is difficult to sample the other
modes given a fixed sampling number. In contrast, if we focus on increasing the diversity
of the samples, the prediction accuracy will be undermined. In this chapter, we introduce
a variable ρ ∈ [0, 1] to control the degree of diversity of prediction, i.e., we intend to get
M samples X i

t+1:t+Tf
∼ P (Xt+1:t+Tf |C, ρ), i = 1, . . . ,M . The larger ρ is, the more diverse

samples will be generated and focuses on the rare cases, and the smaller ρ is, the prediction
will focus more on the most likely modes. For simplicity, we use X represent Xt+1:t+Tf in
the case that the time step index is not necessary.
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5.4 Methodology

We first introduce the multi-objective generative prediction framework based on con-
ditional variational inference. Then we introduce the proposed short-term oracle, which
provides multi-modal supervision to the prediction framework. Finally, we introduce our
proposed approach’s training strategy and testing procedure. The overall framework is il-
lustrated in Figure 5.2.

5.4.1 Multi-Objective Predictor

In general, we can represent a probabilistic distribution via a latent variable model:

P (X|C;Q) = EZ∼Q(Z|C)[P (X|C,Z)], (5.1)

where Q(Z|C) is the conditional prior distribution of latent variable Z ∈ Rdz whose di-
mension is dz. P (X|C,Z) is defined as the conditional likelihood given the observation
information C and latent variable Z. We can vary the prior distribution Q to achieve
different distributions of X given the same observation C. In our proposed approach, we
introduce two different prior distributions Qacc(Z|C) and Qdiv(Z|C). We intend to esti-
mate the data distribution PD using P (X|C;Q) with prior Qacc(Z|C), and get the most
diverse distribution which mainly focuses on the minor modes by sampling from Qdiv(Z|C).
The overall framework is illustrated in Figure 5.2. Similar to [179], we define the historical
observation encoder eh(C) and future information encoder ef (X) as

eh(C) = [MLP ◦ RNN](C)

ef (X) = [MLP ◦ RNN](X),
(5.2)

where we first encode the temporal information of trajectories by using a recurrent neural
network (RNN) and then use a forward neural network to map the states of RNN to the
feature embedding space. Based on the historical embedding eh(C) and latent variable Z,
We denote the decoder function dθ(X|C,Z) as:

dθ(X|C,Z) = [MLP ◦ RNN](eh(C)||Z), (5.3)

where θ is the parameter of the decoder. In general, the outputs of the decoder are the
parameters of a probabilistic distribution, e.g., the mean and variance of a Gaussian distri-
bution. In this work, we use a deterministic decoder, and the output of the decoder is the
predicted poses. For convenience, the output of the decoder is also denoted by Equation
5.3. The randomness of the decoder is only dependent on Z. “||” represents the concatenate
operator of two vectors. We use a similar neural network structure for the decoder with the
encoders. The details of the operator ◦ are in Section 5.8.
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Accuracy Sampler

The first objective is to infer the accuracy prior distribution Qacc(Z|C). We intend to
approximate the data distribution by sampling from the accuracy prior distribution. Hence,
we apply the variational inference to maximize the evidence lower bound (ELBO) of the
log-likelihood:

LELBO = EQψ(Z|X,C)[logPθ(X|Z,C)]

−DKL[Qψ(Z|X,C)||Qacc(Z|C)],
(5.4)

where Qψ(Z|X,C) is the posterior distribution of latent variable Z given the historical
observation and future information. There are some works [18, 147, 160, 191] investigating
the collapse problems for conditional variational inference. Those works argue that using
a universal prior distribution, i.e., an independent isotropic Gaussian distribution, may not
be a good choice for conditional distribution estimation [18, 147]. It is difficult to capture
complex conditional multi-modal data and introduce strong model bias resulting in missing
modes [160, 191]. Hence, instead of using an isotropic Gaussian distribution N (0, I) which
is independent of C, we model Qacc(Z|C) as a Gaussian distribution N (µφacc(C),Σφacc(C)).
The DKL[Qψ||Qacc] is:

1

2
[log
|Σφacc|
|Σψ|

− nz + Tr(Σ−1
φacc

Σψ) + ||µφacc − µψ||2Σ−1
φacc

], (5.5)

which can be calculated analytically. Since we have no control of the distribution Qacc(Z|C),
it could be arbitrarily distribution and it will increase the difficulty of training. In order to
constrain the prior distribution, we use the best-of-many loss as the regularization of the
prior model:

Racc = min
i
‖X̂ i −X‖2

zi ∼ Q(Z|C)

X̂ i = dθ(X|C, zi), i = 1, . . . , nacc,

(5.6)

where nacc is the number of samples. Then the overall loss for the accuracy sampler is:

LA(θ, ψ) = −λELBOLELBO + λaccRacc, (5.7)

where λelbo and λacc are used to balance two losses.

Diversity Sampler

In order to explore the different modes of possible future poses, we propose to learn
another prior distribution Qdiv(Z|C) with parameter φdiv. We utilize a common diversity
loss definition:
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DIV(X ,Y) =
1

NxNy

∑

i,j

e−d(Xi,Y j)

X i,Y j ∈ X ,Y , i = 1, . . . , Nx, j = 1, . . . , Ny,

(5.8)

where X and Y represent two sets of samples with size Nx and Ny. d(·, ·) is a metric defined
in the Euclidean space. We define the metric as d(x, y) = η||x− y||2, where η is a parameter
to determine the sensitivity of the distance between two samples. We denote the set of
the samples which are generated by the accuracy sampler as Xacc and the set of samples
generated by the diversity sampler as Xdiv. Then we define the diversity loss as:

Ldiv = αdivDIV(Xdiv,Xdiv) + (1− αdiv)DIV(Xdiv,Xacc), (5.9)

where DIV(Xdiv,Xdiv) represents the diversity of samples generated by the diversity sampler.
DIV(Xdiv,Xacc) represents the average pairwise distance between the samples from accuracy
and diversity sampler. In the previous works, when the weight of diversity loss is large, it
will have a negative influence on the accuracy sampler to approximate the data distribution.
Since we intend to disentangle the accuracy objective and diversity objective, we only increase
the pairwise distances between samples from the diversity sampler by using the first term in
Equation 5.9 , and we make the samples from the diversity sampler dissimilar to the samples
from the accuracy sampler by using the second term in Equation 5.9. We can determine the
relative importance of the two items in 5.9 by a weight αdiv. A larger αdiv means that we
focus on making the samples from Qdiv more different.

Only using the diversity loss is not enough to get a realistic prediction since it is possible
to increase diversity in the wrong way. For instance, one model can generate random noises
or arbitrary invalid poses. Hence, we need to use human motion in the data to constrain
the prediction. In order to constrain each generated poses from the diversity sampler, we
assume that there exists an oracle:

X̃t+1:t+τ ∼ O(Xt, τ), (5.10)

where O(Xt, τ) is the probabilistic distribution of future poses with horizon τ given the
current initial pose Xt. The oracle O can be seen as a teacher to distill the “knowledge” of
the future poses into the predictor. Based on the oracle, we define a sample-based loss:

Lref(τ) =
1

ndiv

∑

i,s

min
j
‖X̂ i

sτ+1:(s+1)τ − X̃j
sτ+1:(s+1)τ)‖2,

s.t.zi ∼ Qdiv(Z|C), X̂ i
1:T = dθ(X|C, zi),

X̃j
sτ+1:(s+1)τ ∼ O(X̂sτ , τ),

i = 1, . . . , ndiv, j = 1, . . . , no, s = 0, . . . , T/τ − 1,

(5.11)

where τ represents the time interval of predicted poses from the oracle. ndiv is the number
of samples generated from diversity prior, and no is the number of samples which the oracle
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provides. W.l.o.g, we assume that the current time step is 0, and the prediction horizon is T .
Given one sample X̂ i

1:T , the oracle provides several possible short-term futures X̃j
sτ+1:(s+1)τ

given the current predicted pose X̂ i
sτ recursively. We enforce the short-term predicted se-

quence X̂ i
sτ+1:(s+1)τ to be similar with one of the provided futures X̃j

sτ+1:(s+1)τ . Notice that
the diversity loss Ldiv defined in Equation 5.9 will encourage the predictor to choose one of
the provided future human motions which is useful to increase the diversity. The illustration
of the oracle supervision procedure is shown in Figure 5.3.

We also adopt several widely-used physical feasibility losses [179, 113, 180] such as the
limbs’ constraint Llimb and the velocity constraint Lvel as Lphy:

Lphy = λvelLvel + Llimb. (5.12)

The details of each item in Equation 5.12 are provided in Section 5.8. Therefore, the
overall loss for the diversity sampler is:

LD = λrefLref + λdivLdiv + Lphy, (5.13)

where λref and λdiv decide the importance of losses. Besides, we use a low-pass filter to
smooth the predicted poses generated by the diversity sampler after training. Please see the
details in Section 5.8.

5.4.2 Short-term Oracle Design

We introduce an oracle to supervise the predictor in Section 5.4.1. In this section, we
discuss how to obtain the oracle. We propose to learn a short-term oracle O(X, τ) by
using another conditional variational autoencoder to capture the pseudo-ground-truth multi-
modality. In order to achieve such goal, several works utilize the similarity search techniques
[176]. This method is also used in [178, 179] as the multi-modality evaluation metrics. In
our work, we define:

Ω(Xt) = S(Xo; τ,K)

Xo = {X1
t+1:t+τ . . .X

|Xo|
t+1:t+τ}

d(Xj
t ,Xt) ≤ δ, ∀j = 1, . . . , |Xo|,

(5.14)

where Xo represents the set of all the future poses whose corresponding initial poses Xj
t are

in a ball with radius δ which centered at the given initial pose Xt. The ball is defined by
metric d(·, ·). Ω(Xt) represents the set of K selected future poses which has time horizon τ
given the initial pose Xt. Since there can be many similar poses to the given initial poses
and most of the corresponding future poses are very similar, we need to select a proper
fixed number of future poses in Xo in order to capture the different modes. Here we use
the k-determinantal point process (k-DPP) as the selection strategy S to choose the future
poses.
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k-Determinantal Point Process

k-determinantal point process [86] is widely used to sample the diverse points given a
fixed number of samples. Given a set X = {X1, X2, . . . , Xn}, a k-determinantal point process
defined on X is a probability measure on 2X :

Pr(S) =
det(LS)1(|S| = k)∑
S⊂[n],|S|=k det(LS)

, (5.15)

where we denote S as a subset of X and LS ∈ R|S|×|S| as the similarity matrix:

{LS}ij = e−d(Xi
t+1:t+τ ,X

j
t+1:t+τ ). (5.16)

We preprocess the training data to augment each case with K futures poses. Several
sampling algorithms [40, 65] for the determinantal point process can be used directly.

Short-term Oracle Model

The short-term oracle can be trained with any approach proposed in Section 5.2. In
our experiments, we use a conditional variational autoencoder similar to the likelihood sam-
pler defined above after getting the augmented data with the prediction horizon τ . Now,
we can provide more diverse futures given the exact same historical observation. Since the
augmented data is balanced by the k-determinantal point process, there will be fewer ex-
tremely minor modes and hence mitigate the trouble of rare-case sampling. The details of
the short-term oracle neural network structure are provided in Section 5.8.

5.5 Training and Testing Process

The training procedure is summarized in Algorithm 2. We generate the same number of
samples from both accuracy prior and diversity prior for training. Notice that the diversity
loss Ldiv does not backpropagate to the accuracy prior Qacc(Z|C) since we do not want the
diversity loss influence the accuracy prior.

After we get the optimized model, we can decide the ratio of diverse samples, which
mainly focus on the most different modes compared with the major modes by adjusting the
ratio number ρ. The testing procedure is summarized in Algorithm 3.

5.6 Experiments

In this section, we introduce the datasets and evaluation metrics first. Then the quan-
titative, qualitative analysis, and ablation analysis are provided. Implementation details,
additional results, limitations, and future work are provided in Section 5.8.
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Algorithm 2: Training Procedure

Input: N : number of epoches. nacc: number of samples for accuracy sampler Qacc.
ndiv: number of samples for diversity sampler Qdiv. no: number of samples
generated from oracle O.

Output: θ, φacc, φdiv

Data: Training dataset Dtrain
1 while epoch ≤ N do
2 Sample B = {X i,Ci}i ∼ Dtrain
3 foreach X,C ∈ B do
4 Generate nacc samples:

5 X̂ i
acc = d(X|C, zi), zi ∼ Qacc(Z|C)

6 Generate ndiv samples:

7 X̂ i
div = d(X|C, zi), zi ∼ Qdiv(Z|C)

8 for s = 0, . . . , Tf/τ − 1 do
9 Generate no samples:

10 X̃j
t+sτ+1:t+(s+1)τ ∼ O(X̂div,t+sτ , τ)

11 Update θ, ψ, φacc with LA

12 Update θ, φdiv with LD

Algorithm 3: Testing Procedure

Input: ρ: The proportion of samples from Qdiv in the total samples , M : the total
number of samples

Output: X̂, The predicted poses
Data: Testing Dataset Dtest

1 foreach X,C ∈ Dtest do
2 Generate (1− ρ)M samples from Qacc

3 Generate ρM samples from Qdiv
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5.6.1 Datasets

We evaluate our method on Human3.6M [68] and HumanEva-I dataset [146] and use
identical settings with the other baselines. Human3.6M dataset consists of 11 subjects and
3.6 million video frames. There are 15 actions for each subject. The human motion is
recorded at 50Hz. We adopt a 17-joint skeleton representation in our work. We use five
subjects (S1, S5, S6, S7, S8) for training and testing with the other two subjects (S9 and S11).
The predicted future motion horizon is 2 seconds (100 time steps), and the historical motion
horizon is 0.5 seconds (25 time steps). HumanEva-I dataset includes three subjects. The
record rate of human motion is 60Hz. We choose to use the 15-joint skeleton representation.
We use the same training and testing datasets which are provided by the official website.
We predict future motion for 1 second (60 time steps) with 0.25 seconds (15 time steps)
observation.

5.6.2 Evaluation Metrics

The following metrics are used to evaluate the performance of methods. For accuracy, we
use Average Displacement Error (ADE) which is defined as the average Euclidean distance
over the prediction time steps between the ground truth motion Xt+1:t+Tf and the closest
sample [179], and Final Displacement Error (FDE), which is the Euclidean distance between
the final ground truth pose and the final predicted pose, i.e., mini ‖X̂ i

t+Tf
−Xt+Tf‖. For

diversity, we use Average Pairwise Distance (APD), which is the L2 distance between all
pairs of motion samples, which is computed as 1

K(K−1)

∑
i 6=j ‖X̂ i

t+1:t+Tf
− X̂j

t+1:t+Tf
‖.

5.6.3 Quantitative Analysis

We compare our approach with several baselines in Table 5.1. The baselines include
deterministic methods such as acLSTM [101] and ERD [53], probabilistic approaches such as
MT-VAE [177] and Dlow [179], etc. We use 50 samples to evaluate the prediction performance
for all methods. We directly use the results of baselines from [179] and [188].

In Table 5.1 we can conclude that our method with ρ = 0.46 can achieve a better
performance compared with the other baselines in terms of all the metrics. In general,
probabilistic methods such as Best-of-Many and GMVAE can achieve better accuracy and
diversity than deterministic ones such as acLSTM and ERD. We can observe that most of
the methods will have worse ADE and FDE if the APD is larger in general. It is because
there exists a trade-off between diversity and accuracy. Compared with DLow, our approach
improve the performance on both Human3.6M and HumanEva-I datasets. We also compare
our results with DCT5 and DCT20 in [188], which use the frequency representation with the
CVAE framework. Our results are on par with their performance on both datasets.
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Table 5.1: Quantitative results on Human3.6M and HumanEva-I dataset. Our results and
the best results of baselines are highlighted.

Human3.6M

ERD acLSTM Pose-Knows MT-VAE HP-GAN BoM

APD ↑ 0 0 6.723 0.403 7.214 6.265

ADE ↓ 0.722 0.789 0.461 0.457 0.858 0.448

FDE ↓ 0.969 1.126 0.560 0.595 0.867 0.533

Human3.6M

GMVAE DeLiGAN DSF Dlow DCT5/DCT20 Ours

APD ↑ 6.769 6.509 9.330 11.74 12.579/15.920 14.24

ADE ↓ 0.461 0.483 0.493 0.425 0.412/0.416 0.414

FDE ↓ 0.555 0.534 0.592 0.518 0.514/0.522 0.516

HumanEva-I

ERD acLSTM Pose-Knows MT-VAE HP-GAN BoM

APD ↑ 0 0 2.308 0.021 1.139 2.846

ADE ↓ 0.382 0.429 0.269 0.345 0.772 0.271

FDE ↓ 0.461 0.541 0.296 0.403 0.749 0.279

HumanEva-I

GMVAE DeLiGAN DSF Dlow DCT5/DCT20 Ours

APD ↑ 2.443 2.177 4.538 4.855 4.181/6.266 5.786

ADE ↓ 0.305 0.306 0.273 0.251 0.234/0.239 0.228

FDE ↓ 0.345 0.322 0.290 0.268 0.244/0.253 0.236

5.6.4 Qualitative Analysis

We illustrate 10 end poses of random samples generated from both accuracy prior function
and diversity function in Figure 5.4a and 5.5a. The first row shows the samples from the
accuracy prior function. We notice that most samples are similar to the ground truth, which
represents that the accuracy sampler can generate the predicted future human motions with
high accuracy. The second row shows the samples from the diversity sampler. We notice
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(a) Predicted end poses on Human3.6M dataset.
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(b) Predicted human motion on Human3.6M dataset.

Figure 5.4: Visualization of prediction results on Human3.6M dataset. Figure 5.4a illustrates
ten predicted end poses generated from both accuracy prior (first row) and diversity prior
(second row). Figure 5.4b shows the predicted time sequences. The sequence in the first row
is the ground truth motion. The sequence in the second row is one of the samples generated
from accuracy prior and the sequence in the third row is one of the samples generated from
diversity prior.

that the predicted poses from the diversity sampler have more different modes and are not
similar to the samples generated from the accuracy sampler. It can be attributed to the
second item in the diversity loss Ldiv in Equation 5.9, where we encourage our diversity
prior to generating dissimilar samples to the ones generated from the accuracy sampler. We
also illustrate two samples of predicted human motion from both accuracy and diversity
sampler for both datasets in Figure 5.4b and Figure 5.5b. We notice that the predicted
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(a) Predicted end poses on HumanEva-I dataset.
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(b) Predicted human motion on HumanEva-I dataset.

Figure 5.5: Visualization of prediction results on HumanEva-I dataset. Figure 5.5a illustrates
ten predicted end poses generated from both accuracy prior (first row) and diversity prior
(second row). Figure 5.5b shows the predicted time sequences. The sequence in the first row
is the ground truth motion. The sequence in the second row is one of the samples generated
from accuracy prior and the sequence in the third row is one of the samples generated from
diversity prior.

time sequences are smooth. The samples from the accuracy sampler can be very accurate
compared with the ground truth. More visualization results are provided in Section 5.8.
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5.6.5 Different Sampling Ratio

In Figure 5.6, we illustrate the different metrics values with respect to the number of
samples nacc generated from the accuracy sampler during testing. When nacc equals 0, it
means that we only sample from the diversity prior distribution. We can see that ADE and
FDE increase since the diversity sampler is designed to focus on exploring more different
possible modes instead of matching the likelihood of data. Hence, we observe that APD
can achieve around 18 when nacc = 0. When nacc increases, we observe that both the
accuracy metrics (ADE and FDE) and diversity metric (APD) decrease. The accuracy
metrics decrease slowly when the nacc is large enough. When nacc = 50, which means that
all the samples are generated from the accuracy sampler, we observe that APD decreases to
around 6 and the accuracy metrics achieve the best performance.
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Figure 5.6: APD, ADE and FDE with respect to nacc on Human3.6M dataset. Red and
brown bars indicate the accuracy metrics ADE and FDE. The blue bar indicates the APD.
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(a) Samples from the predictor with τ = 25.
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(b) Samples from the predictor with τ = 100.

Figure 5.7: Visualization of predicted end poses of motions on Human3.6M dataset with
different oracles. Figure 5.7a illustrates the performance of the predictor with oracle (τ = 25).
Figure 5.7b illustrates the performance of the predictor with oracle (τ = 100). In each figure,
the first row are the samples generated from accuracy prior function. The second row are
the samples generated from the diversity prior function.

5.6.6 Ablation Analysis

Using Short-term Oracle Prediction Horizon τ In order to investigate whether di-
viding the prediction horizon into several short-term ones can help the predictor discover
more possible modes, we evaluate our models with the oracles which have different prediction
horizon length τ . We compare our framework supervised by a short-term oracle with τ = 25
and our framework supervised by the one with the full-length of prediction horizon, i.e., the
prediction is not divided into short-term subsequences. We show the results of Human3.6M
dataset in Figure 5.7. We can see that when using the oracle with τ = 100, i.e., the prediction
horizon of the oracle is not short-term and the horizon is the same as the target prediction
horizon, and the diversity is lower than the one which has τ = 25. It shows that the oracle
with a short prediction horizon indeed increases the diversity. We also compare the different
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Table 5.2: The comparison with different τ on Human3.6M dataset.

τ = 25, short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.941 0.459 0.433 0.421 0.413 0.411 0.407 0.404
FDE ↓ 1.170 0.598 0.551 0.529 0.515 0.510 0.504 0.501
APD ↑ 18.79 18.16 17.14 15.73 14.04 12.02 9.265 5.927

τ = 100, non-short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.504 0.431 0.417 0.409 0.406 0.402 0.401 0.402
FDE ↓ 0.580 0.523 0.505 0.495 0.491 0.486 0.488 0.497
APD ↑ 7.346 7.397 7.360 7.234 6.997 6.683 6.255 5.651

metrics of two models with different τ , and the results are summarized in Table 5.2. We
notice that ADE and FDE with nacc = 50 of both models with τ = 100 and τ = 25 are
similar since all the samples are from the accuracy samplers. However, when nacc decreases,
we observe that the diversity of the model supervised by the oracle with τ = 100 does not
increase so much. We also observed that ADE and FDE of the model supervised with oracle
(τ=100) does not change too much when nacc is greater than 28 and APD does not change
too much when nacc is smaller than 14. It is reasonable since the model supervised by the
oracle with τ = 100 only explores limited and less possible diverse modes than the one super-
vised by the oracle with τ = 25. It also supports our suggestion that the short-term oracle
indeed helps the predictor discover more possible future motions meanwhile the accuracy of
prediction is maintained.

The following context is the additional ablation analysis results which are corresponding
to the experiments on HumanEva-I dataset. We visualize the predicted future motions in
Figure 5.8 and show the quantitative comparison in Table 5.3.

The experiment results are consistent with the ones on Human3.6M dataset. Similarly,
we observe that the diversity of our proposed framework with short-term oracle (τ = 15) is
significantly improved compared with the one with non-short-term oracle (τ = 100). Since
HumanEva-I is a small dataset and evaluated with a short prediction horizon, the number
of different modes is intrinsically limited. We can also observe that the predicted end poses
in Figure 5.8 are not diverse as the ones in Human3.6M dataset. Also, we observe that
the model with a non-short-term oracle doesn’t increase the diversity so much. This is also
reasonable since all the modes provided by grouping the similar initial poses once can still
be similar. These results also imply that using short-term oracle, i.e., grouping similar poses
several times every τ = 15 discover more modes.
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(a) Samples from the predictor with τ = 15.
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(b) Samples from the predictor with τ = 60.

Figure 5.8: Visualization of predicted end poses on HumanEva-I dataset with different ora-
cles. Figure 5.8a and 5.8b illustrate the performance of the predictor with oracle (τ = 15)
and the predictor with oracle (τ = 60) respectively. In each figure, the first and second row
are the samples generated from accuracy and diversity prior function respectively.

Ablation of Oracle In order to show that the short-term oracle loss in Equation 5.11 is
necessary, we provide the qualitative results of the model without short-term oracle super-
vision in Figure 5.9. The diversity prior w/o oracle supervision indeed produces infeasible
motions.

5.7 Additional Visualization Results

We illustrate more prediction cases on Human3.6M dataset in Figure 5.10 and Figure
5.11. In Figure (a), the first and second rows show the samples from the accuracy and
diversity sampler, respectively. In Figure (b), the first row shows the ground truth human
motion, and the second and third rows show the samples from accuracy and diversity sampler
respectively. We also illustrate two more prediction cases on HumanEva-I dataset in Figure
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Table 5.3: The comparison with different τ on HumanEva-I dataset.

τ = 15, short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.561 0.241 0.231 0.227 0.228 0.227 0.228 0.229
FDE ↓ 0.623 0.249 0.243 0.236 0.235 0.235 0.236 0.244
APD ↑ 6.966 6.943 6.943 6.139 5.354 4.441 3.217 1.619

τ = 60, non-short-term

nacc 0 7 14 21 28 35 42 50

ADE ↓ 0.345 0.236 0.229 0.227 0.226 0.226 0.226 0.233
FDE ↓ 0.346 0.243 0.234 0.232 0.228 0.227 0.229 0.237
APD ↑ 2.120 2.330 2.449 2.476 2.429 2.309 2.059 1.706
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(a) Samples from the predictor with τ = 15.

Figure 5.9: Predicted end poses of Ours w/o oracle. The 1st row shows samples from the
accuracy prior. The 2nd row shows samples from the diversity prior trained without oracle’s
supervision.

5.12 and Figure 5.13. In Figure (a), the first and second rows show the samples from the
accuracy and diversity sampler respectively. In Figure (b), the first row shows the ground
truth human motion, and the second and third rows show the samples from accuracy and
diversity sampler respectively.
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(a) 10 predicted end poses.
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(b) Predicted human motion.

Figure 5.10: Additional Prediction Case 1 on Human3.6M dataset.

5.8 Implementation Details

5.8.1 Physical Feasibility Loss

In this section we provide the details of the physical feasibility loss used in Equation 5.12.
The velocity loss Lvel defined as the average difference between each two successive poses:

Lvel(X) =
1

T

T−1∑

t=0

‖Xt+1 −Xt‖2, (5.17)
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(a) 10 predicted end poses.
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(b) Predicted human motion.

Figure 5.11: Additional Prediction Case 2 on Human3.6M dataset.

We also constraint limbs by using the following loss:

Llimb(X) = −λdir logP (n) +
λlen

nlT

∑

i

∑

t

(‖l̂i(t)‖ − ‖li‖)2, (5.18)

where the likelihood logP (n) is approximated by a neural spline normalizing flow [50,
113, 180]. n = [n1,n2, . . . ,nm], where ni is the normalized direction of the i-th limb.
Meanwhile, we also enforce the predicted limbs’ length ‖l̂i(t)‖ should be same as the ground
truth ‖li‖. where l̂i(t) is the length of the i-th predicted limb at time step t. Besides, we
use a low-pass filter to smooth the predicted poses generated by the diversity sampler after
training. We use the first 4 lowest frequencies calculated by the real Fourier transform. The
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(a) 10 predicted end poses.
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(b) Predicted human motion.

Figure 5.12: Additional Prediction Case 2 on HumanEva-I dataset.

parameters (λvel, λdir, λlimb) is set as (800, 0.01, 100) for both Human3.6M and HumanEva-I
dataset.

5.8.2 Short-term Oracle Details

We select K = 10 as the number of augmented future motions for k-determinantal point
process. We use the same structure and loss as the accuracy sampler. The only different is
the training process. Since we have multiple future motions given an observation, the loss
Lo = −LELBO + λaccRacc becomes:
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(a) 10 predicted end poses.
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(b) Predicted human motion.

Figure 5.13: Additional Prediction Case 2 on HumanEva-I dataset.

LELBO =
1

K

K∑

j=1

EQψ(Z|Xj ,C)[logPθ(Xj|Z,C)]

−DKL[Qψ(Z|Xj,C)||Qacc(Z|C)],

(5.19)

where, K is the number of augmented pseudo future motions. Similarly, the regularization
becomes:
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Racc =
1

K

K∑

j=1

min
i
‖X̂ i −Xj‖2

zi ∼ Q(Z|C), X̂ i = dθ(X|C, zi), i = 1, . . . , K.

(5.20)

Notice that we set the sample number of the decoder as K, too. Hence, every predic-
tion sample will be supervised by the augmented pseudo future motions. We use one time
step observation as C to predict τ time steps future motions for both Human3.6M and
HumanEva-I datasets.

5.8.3 Training Parameters

The dimension nz of latent variable Z is 128. The diversity prior function is a multiple
layer neutron with two hidden layers and each layer has 512 neurons. For the accuracy
prior function, we use the same historical embedding and MLP. We only use the diagonal
of the covariance matrix. The dimension of the hidden state of RNN is 128. We use Adam
optimizer with an exponential decay learning rate. The training batch size is 64, and the
total number of epochs is 300 for Human3.6M dataset and 100 for HumanEva-I dataset.
The hyperparameters for the accuracy sampler are (λelbo, λacc) = (1.0, 2.0). λdiv, λref for the
diversity sampler are set as 15, 0.3 for Human3.6M dataset with τ = 25 and 10, 0.3 for
HumanEva-I dataset with τ = 15. For the grouping threshold, we use the same number
in [179, 178]. We set the diversity sensitivity η = 15 for both datasets. For HumanEva-I
dataset, we augment the dataset first for all the experiments by grouping the similar last
historical pose first since the dataset is small. We use the same decoder and encoder structure
as the ones in [179], and MLP◦RNN represents that we use an MLP after the RNN outputs,
please see details in [179].

5.9 Chapter Summary

In this chapter, we propose a multi-objective diverse human motion prediction framework,
which can enable adjustable sampling during the testing time. In order to enhance the
diversity of predicted poses, we introduce a short-term oracle to instruct the predictor to
discover more diverse possible modes of future poses. Such a framework overcomes the
trade-off between likelihood sampling and diversity sampling. Thanks to both the multi-
objective structure and short-term oracle, Our proposed approach achieves state-of-the-art
performance in terms of accuracy and diversity. The experiments results and ablation studies
demonstrate the effectiveness of the proposed method. Several future directions could be
investigated. First, since our proposed approach is a general framework, more complicated
structures such as graph neural network and transformer can be incorporated. Second, we
currently assume that the horizon of short-term oracle is fixed. How to dynamically decide
the short-term horizon will be the future work.
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Chapter 6

Differentiable Safety-Critical Control
for Motion Generation

6.1 Introduction

Safety plays a critical role in autonomous systems that interact with people, such as
autonomous driving and robotics. There are several approaches to developing a safe control
strategy, e.g., Hamilton-Jacobi reachability analysis [13] and model predictive control [79].
However, such methods may have high computational costs in real-time applications. Control
barrier functions (CBFs) [7] have gained more attention recently since these methods only
depend on the current state and do not require heavy computation. CBFs are usually
encoded as constraints in a quadratic program (CBF-QP) for safety-critical tasks [6]. With
a properly chosen class K function in CBFs, a system can avoid unsafe sets. Meanwhile, it
does not reduce the stabilizing performance from a high-level controller [7]. However, the
performance of the overall controller, which consists of a high-level controller and CBF-QP,
can be easily undermined if the environment changes. In other words, each safe set in CBFs
necessitates a unique class K function that maximizes the overall control performance for
a specific environment. In the real world, the environment information for safety-critical
tasks is usually not fully known a priori, and a system might also face different environments
during its deployment. Thus, it is hard to tune a class K function for each environment
beforehand to reconcile performance and safety. Moreover, the tuning process for choosing a
class K function becomes tedious when there are multiple control barrier function constraints
in the CBF-QP [169], or some are with high relative-degree in the ECBF-QP [119]. This
challenge impedes the progress towards deploying CBF-based safety-critical controllers in
the real world.

To address this challenge, we investigate how to model the relation between environment
information and safety-critical control. We propose a learning safety-critical control frame-
work using an environment-dependent neural network which satisfies the forward invariance
condition. Thanks to the development of differentiable convex optimization [2], we can en-
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able the learning procedure in an end-to-end style. After offline training, we can directly
deploy the proposed safety-critical control framework in different environments without any
adaption.

6.1.1 Related Works

Safe environment generalization

Cluttered environments have been considered in the safe control literature. A provably
approximately correct-bayes framework is proposed to synthesize controllers that provably
generalize to novel environments in [110]. A control Lyapunov function and control barrier
function based quadratic program (CLF-CBF-QP) is utilized with a high-level path plan to
navigate through obstacle-scattered environments in [14]. Moreover, for hostile environments
with adversarial agents, a probabilistic tree logic method is proposed in [35] to assure safety.
Safe generalization problem with control barrier functions is considered with a weighted
mixture of existing controllers in [148]. Yet the generalization ability is largely limited by
the number of existing controllers. With the help of reinforcement learning, safe environment
adaptation is studied through a risk-averse approach in [187]. However, this approach can
only provide relative safety instead of safety guarantee. For robotic applications, bipedal
robot walking on stepping stones is addressed in [120] using a robust control barrier function
method, where the distances between adjacent stones are different at each step. Predictive
control with CBFs tackles the safe car overtaking problems in [181], where different leading
cars serve as novel environments. Our approach adopts a different way using class K function
to generalize a controller to enforce safety under different environments.

Safe learning control

A safe reinforcement learning (RL) framework under constrained Markov decision pro-
cess is proposed in [33] using a Lyapunov based method. A learning-based control barrier
function from expert demonstration is proposed in [134] to ensure safety. In [141], a CBF
is created using RL for risk mitigation in adversarial environments. In [32] and [155], they
address the model uncertainty problem by learning CBF constraints. In [39], the authors
design a learning robust control Lyapunov barrier function that can generalize despite model
uncertainty. A model-free safe reinforcement learning is studied by synthesizing a barrier
certificate and querying a black-box dynamic function in [190]. A game theoretic approach
is adopted in [158] to reduce conservatism while maintaining robustness during human robot
interaction. Differentiable optimization layers have emerged as a new approach for safe
learning control recently. In [123], a differentiable layer is applied to control barrier function
based quadratic program in order to enhance the recursive feasibility, where the parameters
are adapted online. In [51], safety is framed as a differentiable robust CBF layer in model-
based RL. We also utilize the differentiable optimization layer as a tool. However, we focus
on generalizing the safety-critical control to novel environments.
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6.1.2 Contributions

The contribution of this paper is as follows:

• We present an approach to generalizing safety-critical control to novel environments
by integrating control barrier functions and differentiable optimization.

• We introduce a neural network based ECBF-QP and formulate the safety-critical con-
trol as a differentiable optimization layer.

• We show that the proposed neural network module based on the exponential control
barrier function assures the forward invariance of a safe set.

• We numerically validate the proposed learning control design using systems with dif-
ferent relative-degrees and novel environments with randomly generated obstacles.

6.1.3 Organization

This paper is organized as follows: in Sec. 6.2, we introduce the background of control
barrier functions and differentiable optimization. The problem formulation is illustrated in
Sec. 6.3, where we motivate the formulation with a simple case study. Then, in Sec. 6.4,
we present the methodology of learning differentiable safety-critical control using control
barrier functions. In Sec. 6.5, we test the proposed control logic on 2D double and quadruple
integrator systems with different environment settings. Secs. 6.6 and 6.7 provides discussion
and concluding remarks.

6.2 Background

Throughout this paper, we will consider a nonlinear control affine system:

ẋ = f(x) + g(x)u, (6.1)

where x ∈ X ⊂ Rn represents the state of the system, u ∈ Rm is the control input, and
f : X → Rn and g : X → Rm are locally Lipschitz continuous.

6.2.1 Control Barrier Functions

Definition 2. [80] A Lipschitz continuous function α : [0, a) → [0,∞), a > 0 is said to
belong to class K if it is strictly increasing and α(0) = 0. Moreover, α is said to belong to
class K∞ if it belongs to class K, a =∞, and limr→∞ α(r) =∞.

Definition 3. [8, Def. 2] Consider a continuously differentiable function h : X ⊂ Rn → R
and a set C defined as the superlevel set of h, C = {x ∈ X : h(x) ≥ 0}, then h is a control
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barrier function (CBF) if there exists an extended class K∞ function α such that for the
control system (6.1):

sup
u∈Rm

[Lfh(x) + Lgh(x)u] ≥ −α(h(x)). (6.2)

If h is a control barrier function on X and ∂h
∂x
6= 0 for all x ∈ ∂C, any Lipschitz continuous

controller satisfying (6.2) renders the set C forward invariant [8, Thm.2]. By incorporating
(6.2) as a constraint, a quadratic program based safety-critical controller is proposed in [6]:

CBF-QP:

u∗(x) = arg min
u∈Rm

‖u− uperf‖2 (6.3a)

s.t. Lfh(x) + Lgh(x)u ≥ −α(h(x)), (6.3b)

where uperf is the reference control input that can be from a high-level performance controller,
which is expected to achieve the control objective. For instance, model predictive control is
a popular choice as a high-level performance controller [135]. In the context of safety-critical
control, a control Lyapunov function is often used in a quadratic program formulation (CLF-
QP) to realize stability.

Remark 1. In Definition 3, an extended class K∞ function is required for CBF. Here, we
restrict ourselves to a subclass: class K function, which can facilitate our learning algorithm.
Typically, α(x) is simplified as αx, with α being a positive constant, which we term as a linear
class K function. Previous work [123, 175, 182] have investigated how to adjust the class K
function in order to improve the feasibility. In this chapter, we focus on learning a neural
network based class K function to safely generalize to different environments.

The CBF constraint in (6.3b) has been so far assumed to be relative-degree one, which
typically does not held for most safety-critical constraints in robotic systems [66]. A special
type of CBFs called exponential control barrier functions (ECBFs) has been introduced to
enforce arbitrarily high relative-degree CBF constraints in [119].

Definition 4. [119, Def. 1] Consider a r-times continuously differentiable function h : X ⊂
Rn → R and a set C defined as the superlevel set of h, C = {x ∈ X : h(x) ≥ 0}, then h is an
exponential control barrier function (ECBF) if there exists a row vector Kα ∈ Rr such that
for the system (6.1):

sup
u∈Rm

[Lrfh(x) + LgL
r−1
f h(x)u] ≥ −Kαηb(x), (6.4)
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for ∀x ∈ {x ∈ Rn|h(x) ≥ 0}, with

ηb(x) =




h(x)

ḣ(x)

ḧ(x)
...

h(r−1)(x)




=




h(x)
Lfh(x)
L2
fh(x)

...
Lr−1
f h(x)



. (6.5)

We define µ = Lrfh(x) + LgL
r−1
f h(x)u, then the above dynamics of h(x) can be written

as the linear system
η̇b(x) = Fηb(x) +Gµ,

h(x) = Cηb(x),
(6.6)

where

F =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0



, G =




0
0
...
0
1



,

C =
[
1 0 . . . 0

]
.

(6.7)

If µ ≥ −Kαηb(x), with (F −GKα) being Hurwitz and total negative, then we can guarantee
that h(x0) ≥ 0 =⇒ h(x(t)) ≥ 0,∀t ≥ 0 where x0 is the initial condition.

Let −pi be the negative real eigenvalues of (F − GKα). We can then define a family of
functions vi : X ⊂ Rn → R with corresponding superlevel sets Ci,

v0(x) = h(x), C0 = {x : v0(x) ≥ 0},
v1(x) = v̇0 + p1v0(x), C1 = {x : v1(x) ≥ 0},

...
...

vr(x) = v̇r−1 + prvr−1(x), Cr = {x : vr(x) ≥ 0},

(6.8)

where C0 plays the role of the safe set C as defined in Definition 3 for a relative-degree one
CBF. Then, we have:

Theorem 1. [119, Thm.2] A valid exponential CBF should satisfy two conditions: suppose

Kα is chosen such that pi > 0 and the eigenvalues −pi satisfy pi ≥ − v̇i−1(x0)
vi−1(x0)

, then (6.9b)

guarantees h(x) is an exponential control barrier function.

Given an ECBF, we can extend the CBF-QP in (6.3) to enforce high relative-degree
safety-critical constraints:
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ECBF-QP:

u∗(x) = arg min
u∈Rm

‖u− uperf‖2 (6.9a)

s.t. Lrfh(x) + LgL
r−1
f h(x)u ≥ −Kαηb(x), (6.9b)

where uperf is the reference control input. Note that the control barrier function constraint
(6.9b) can be extended to multiple constraints in order to account for different safety criteria.
Furthermore, a general formulation of high order control barrier functions can be seen in
[174].

Remark 2. In ECBF-QP (6.9b), due to the relation between the coeeficients in Kα and the
eigenvalues −pi, Kαηb can be reformulated as Πr

i=1[Lf +pi]◦h(x)−Lrfh(x). This will be used
to develop our differentiable safety-critical control formulation. Note that Lf here is the Lie
derivative operator s.t. Lf ◦ h(x) = Lfh(x) = ∂

∂x
h(x)f(x).

6.2.2 Differentiable Optimization

A differentiable optimization problem is a class of optimization problems whose solutions
can be backpropagated through. This functionality enables an optimization problem to serve
as layers within deep learning architectures, which can encode constraints and complex de-
pendencies through optimization that traditional convolutional and fully-connected layers
usually cannot capture [9]. Some successful differentiable layer examples include differen-
tiable model predictive control [10, 49], Pontryagin’s maximum principle [75], robust control
[46], and meta learning [91], etc. In this chapter, we utilize the differentiable optimization
layer presented in [2] for the ECBF-QP.

Remark 3. While CBFs are continuously differentiable functions [8], here a differentiable
safety-critical control using CBF does not mean the CBF itself is differentiable but rather
that the backpropagation can go through the CBF-QP differentiable optimization layer.

6.3 Problem Statement

Having established the background of CBFs and differentiable optimizations, we now
present our problem formulation for generalizing to novel environments.

6.3.1 Motivating Example

Using a 2D double integrator as an illustrative example, we design a linear quadratic
regulator (LQR) to drive the system to a goal location while avoiding different obstacles using
the ECBF-QP in (6.9). The LQR controller serves as the reference performance controller
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(a) Environment 1 (b) Environment 2

Figure 6.1: Motivating example for safety-critical control for generalization to novel envi-
ronments using a 2D double integrator. A hand-tuned Kα for Environment 1 in (a) is used
in the novel Environment 2 in (b). As can be seen, this results in a trajectory with a larger
deviation from the obstacle in Environment 2. Thus, a well-tuned Kα for one environment
does not necessarily generalize to a different environment.

uperf. The simulation results are demonstrated in Figure 6.1. Note that the Kα for ECBF-
QP is tuned manually in Figure 6.1(a), which leads to a short and smooth trajectory, i.e.,
a smooth trajectory that goes around the obstacle with minimal detour from a straight-line
trajectory from start to goal. However, the ECBF-QP with the same Kα results in a large
detour in Figure 6.1 (b) in a different environment. While larger detours are conservative,
they potentially require more control effort, and result in energy inefficient motions. The
motion in Environment 2 could be shorter by getting closer to the obstacle. This example
demonstrates that the Kα plays an important role in generating desirable trajectories in
different environments.

Remark 4. In order to get a trajectory with desired properties, e.g., smoothness and min-
imum distance, it is necessary to choose a proper Kα using ECBF-QP. Moreover, certain
fixed Kα that works in a particular environment could actually fail in a different environment,
resulting in violation of the safety constraint h(x) ≥ 0.

6.3.2 Problem Formulation

Building upon the motivating example, we are motivated to optimize the class K function
in CBF-QP or Kα in ECBF-QP with respect to different environments, which can result in
a safe trajectory satisfying a user-defined metric.
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Figure 6.2: The overall framework of the proposed approach, which includes two main
components: a performance controller and a differentiable CBF-QP. The novel environment
information, e, is an input to the performance controller and α net. The performance loss
computed along a trajectory will be backpropagated through the α net, then the α net
outputs the parameters to construct the class K function.

To this end, we represent the Kαηb(x) in (6.4) with a neural network parameterized with
θ. Πθ(uperf, e, x0) represents the solution of ECBF-QP mentioned in (6.9b). Such an ECBF-
QP can be embedded as a layer in a deep learning pipeline by using differentiable convex
optimization technique. Then we minimize a performance cost L in an episodic setting. The
formulation is given as follows:

arg min
θ

Ex0∼P0,e∼Pe [L(τ, e, x0)]

s.t. u = Πθ(uperf(x), e, x0),

ẋ = f(x) + g(x)u,

(6.10)

where e is an environment sampled from a distribution of environments Pe, e.g., e consists
of center and radius of the obstacle. x is the state where we evaluate cost at each time step,
and x0 is the initial state which is sampled from a distribution P0. Note that L is the cost
along a trajectory instead of the cost at each time step, and τ represents the trajectory with
time horizon T . uperf is the performance control input provided by a high-level performance
controller. Once the training procedure is done offline, we can deploy the neural network
based controller Πθ to novel environments.

6.4 Methodology

Having seen the problem formulation, we will next introduce how to enable the general-
ization to novel environments via learning differentiable ECBF-QP.

The overall control architecture is shown in Figure 6.2, which basically includes two
parts: a performance controller and a differentiable ECBF-QP safety filter. The performance
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controller is mainly responsible for achieving the control objective, and the differentiable
ECBF-QP serves as a safety filter, which will be explained in detail in this section.

6.4.1 Differentiable Safety-Critical Control using CBFs

We formulate our differentiable safety-critical control based on exponential control barrier
functions in (6.9). Differentiable CBFs have been used in [123] and [51]. However, they used
systems with relative-degree one or solved a relative-degree two system using a cascaded
approach. Here, we extend it to a general formulation as follows:

Differentiable ECBF-QP:

Πθ(uperf, e, x0) = arg min
u∈Rm,δ∈R

‖u− uperf‖2 + ζδ2

s.t. Lrfh(x) + LgL
r−1
f h(x)u ≥ −αθ(e, x0, ηb(x))− δ2,

(6.11)

where, Πθ(uperf, e, x0) is the safe policy filtered by the ECBF-QP and conditioned on the high-
level performance control input uperf and the environment information e. αθ(e, x0, ηb(x)) is
denoted by α-net, where θ represents parameters of the network.

As we will see next, the α function is a linear function (of ηb) that encodes an ECBF
constraint within the differentiable ECBF-QP so as to deal with high relative-degree safety
constraints, which are common in many robotic applications. We include a slack variable δ
which guarantees that such an optimization is feasible during the training procedure, and ζ
is a hyperparameter. Note that we do not use δ as in (6.11) during the test time.

6.4.2 The Structure of α-net

Exponential control barrier function provides a formal structure to guarantee safety with
a vector parameter Kα. In general, it is not easy and probably time-consuming to find the
best Kα directly in order to generalize to novel environments. We thus encode the structure
of exponential CBF into our neural network. As noted in Remark 2, our formulation is
shown as follows

αθ(e, x0, ηb(x)) =
r∏

i=1

[Lf + pi(e, x0; θ)] ◦ h(x)− Lrfh(x), (6.12)

where Lf is the lie derivative operator as mentioned in Remark 2. Notice that for the ECBF,
the right side of (6.9b) only includes the lie derivative with respect to f . The function
p(e, x0; θ) ∈ Rr outputs [p1, p2, . . . , pr], and pi(e, x0; θ) represents pi as defined in (6.8). We
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use the following neural network structure:

p(e, x0; θ) = ReLU(
m∏

k=0

σ(Wklk)− b(x0)) + b(x0),

bi(x0) = ReLU(− v̇
i−1(x0)

vi−1(x0)
− ε) + ε, i = 1, . . . , r,

l0 = [e, x0],

(6.13)

where bi(x0) is the i-th element of b(x0) ∈ Rr, and it represents the bounds of pi=1...r in Thm.1.
The parameter θ represents the weights {W0,W1, . . . ,Wm}. lk represents the outputs of the
k-th layer of the neural network. We concatenate the environment information e and initial
state x0 together as the input l0 and choose the ReLU function as the activation, with σ(·)
being any activation function. Then, we randomly initialize the neural network parameters
with positive numbers.

Theorem 2. Given the function p(e, x0; θ) defined in (6.13), pi satisfies the conditions in
Thm.1. Thus, h(x) is an exponential CBF and C0 in (6.8) is forward invariant.

Proof. Since bi(x) = max{− v̇i−1(x0)
vi−1(x0)

, ε} and pi(e, x0, θ) ≥ bi(x0), we have pi(e, x0, θ) ≥
max{− v̇i−1(x0)

vi−1(x0)
, ε}. It follows that pi(e, x0, θ) satisfies i) pi(e, x0, θ) ≥ − v̇i−1(x0)

vi−1(x0)
and ii) pi(e, x0, θ) ≥

ε > 0, which are the conditions in Thm.1. From [119, Thm.1], the set C0 is forward invariant
given h(x) is a valid exponential CBF.

6.4.3 Loss Function

In general, the loss function L(τ, e, x0) can be designed with any performance evaluation
metric Lperf. In our work, we propose a loss function which includes two components:

L(τ, e, x0) = Lperf(τ, e, x0) + λδ

T∑

t=1

δ2
t , (6.14)

where T is the number of simulation time steps with a fixed simulation interval ∆t, τ is the
simulated trajectory represented by [x0, x1, . . . , xT ]. The coefficient λδ is for slack variable
penalty. Notice that we use a slack variable δ in (6.11) to make sure that the optimization
program will not be interrupted by the infeasibility issue of solving the ECBF-QP. Here, δt
represents the value of the slack variable δ at each time step. However, the gradient descent
of the neural network αθ may lead to a solution such that δt is large. Hence, we include the
penalty of δt in the loss function. The ideal situation is that δt is zero.

6.4.4 Algorithm

The training algorithm is shown in Algorithm 4. The input is a distribution of envi-
ronments Pe, and the output is the network weights θ of the α-net. For each iteration, we
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sample n environments and rollout trajectories τ , then the weights of the neural network are
updated after each iteration.

Algorithm 4: Training algorithm

Input: Environment distribution Pe, initial state distribution P0, simulation time
interval ∆t, simulation time horizon T .

Output: The network weights θ.
1 while t ≤ number of iteration do
2 for i=1:n do
3 Sample ei ∼ Pe, x0,i ∼ P0

4 Collect the trajectory τi by using the designed controller.

5 Update θt → θt−1 − λ 1
n
∇θ

∑
ei
Lθ(τi, ei, x0,i)

When the task is obstacle avoidance, we can iteratively use the learned policy for m obstacles
during the test time. The differentiable ECBF-QP in (6.11) becomes

Πθ(uperf, e, x0) = arg min
u∈Rm

‖u− uperf‖2

s.t. Lrfhj(x) + LgL
r−1
f hj(x)u ≥ −αθ(ej, x0, ηb,j(x)),

j = 1, . . . ,m,

(6.15)

where hj represents the j-th exponential CBF. The environment e can have multiple obstacles
and each of them ej can be captured by an ECBF constraint.

6.5 Experiment Results

After developing our methodology for learning differentiable safety-critical control using
CBFs, we now present the simulation results of our proposed framework using 2D double
and quadruple integrator systems.

6.5.1 Simulation Setup

We focus on the collision avoidance problem. We set up different environments with
different obstacles, which are represented by ellipses:

h(y) = (y − yc)>Q(y − yc)− 1,

y = Cx,Q = R(θ)>ΛR(θ),
(6.16)

where y is the measurement variable, i.e., the position in Cartesian space. R(θ) is the
rotation matrix defined by the orientation θ of the ellipse. yc is the center of the obstacle.
Λ is a diagonal matrix which represents the size of the obstacle. We define the environment
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(a) Environment 1: Trajectory (b) Environment 1: Control input

(c) Environment 2: Trajectory (d) Environment 2: Control input

Figure 6.3: 2D double integrator (n=4, r=2) avoids a randomly generated obstacle in two
different environments. The blue trajectory uses the proposed method, and the orange
trajectory is the optimal performance reference that was generated by learning specifically
for that environment. The corresponding control inputs are shown on the right side.
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information as e = [yc, diag(Λ)>, θ]> ∈ R5. For different environments, we randomly sample
e from a Gaussian distribution Pe.

We use a linear quadratic regulator as the performance controller and a differentiable
ECBF-QP as the safety filter. For the α-net in the differentiable ECBF-QP, we use a
feedforward neural network with two hidden layers. Each hidden layer size is 100. Based
on Algorithm 4, we train each system with 100 iterations. In each iteration, we sample
30 environments, and for each rollout, the simulation time is 8s. Futhermore, the initial
condition of each system is selected randomly within a predefined region. We use the same
loss function for both systems, which is the sum of the distance between each point and the
goal location.

Lperf(τ, e, x0) =
T∑

t=0

‖xt − xgoal‖2. (6.17)

The numerical values of this loss will serve as means to compare performance of different
controllers. Moreover, we train a α-net only conditioned on a specific environment to serve
as the optimal solution for that specific environment.

6.5.2 Double Integrator Experiment

Two representative validation results for 2D double integrator avoiding an obstacle with
the proposed approach are shown in Figure 6.3, including trajectory and control input.
The start point is chosen randomly, the goal location is at (1.0, 0.0), and the obstacle is
colored as blue. Moreover, the proposed method is compared with the optimal performance
solution, which is obtained by finding the best Kα based on the current environment, i.e., the
environment in Figure 6.3. In Environment 1, the losses defined in (6.17) for our method and
optimal performance solution are 26.88 and 26.41. In Environment 2, the losses are 25.88 and
25.86 for ours and optimal performance solution, respectively. The simulation result shows
that the performance of our proposed method is close to the optimal performance solution
in terms of the loss function in (6.17). Also, our control inputs (solid lines) is similar to the
optimal ones (dashed lines) as shown in Figure 6.3 (b) and (d).

6.5.3 Quadruple Integrator Experiment

In Figure 6.4, we show that our approach can cope with a system with relative-degree four
for generalization to novel environments. In both environments, the losses for the optimal
performance solution is 26.71 and 35.03, whereas the losses for our method is 28.35 and 35.36,
respectively. We also observe that the control inputs of the proposed method is similar to
the optimal performance solution as shown in Figure 6.4 (b) and (d). The results imply that
our approach can determine a proper Kα given the environment information without any
manually tuning process for high relative-degree systems.
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(a) Experiment 1: Trajectory (b) Experiment 1: Control input

(c) Experiment 2: Trajectory (d) Experiment 2: Control input

Figure 6.4: 2D quadruple integrator (n=8, r=4) avoids a randomly generated obstacle in
two different environments. The blue trajectory uses the proposed method, and the orange
trajectory is the optimal performance reference that was generated by learning specifically
for that environment. The corresponding control inputs are shown on the right side.

6.5.4 Multiple Obstacles Experiment

To further validate the generalization ability, we extend the simulation setup of 2D double
integrator from one obstacle to multiple obstacles. We randomly generate two obstacles and
formulate one ECBF constraint for each object accordingly in (6.15). For each constraint,
we use the same learned α-net. In this scenario, the proposed method needs to be able
to generalize to more complex environments. The simulation results of two examples are
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(a) Experiment 1 (b) Experiment 2

Figure 6.5: 2D double integrator is able to generalize to novel environments with two ran-
domly generated obstacles, which are not experienced during training. The blue trajectory
utilizes the proposed framework, and the orange trajectory uses a random valid Kα.

shown in Figure 6.5. In Experiment 1, the losses for our method and random valid Kα are
28.11 and 32.50, respectively, and in Experiment 2, the corresponding losses are 23.96 and
35.51. It shows that our approach successfully generalizes to multiple obstacle scenarios and
outperforms the baseline by a large margin.

6.5.5 Ablation Study

We conduct two ablation studies using the 2D quadruple integrator to validate that our
proposed design is necessary for generalizing to novel environments.

Is the obstacle information indeed useful?

The first ablation study is to evaluate whether the obstacle information is necessary. We
train an α-net with only one fixed obstacle during training as a baseline and then test it with
novel environments. The resulting trajectories are shown in Figure 6.6(a). Our proposed
method has a loss of 30.26, while the loss for baseline is 36.79. This indicates that the
obstacle information is necessary as an input to our neural network.

Is a larger or smaller valid Kα better?

In Figure 6.6(b), we investigate whether a larger or smaller valid Kα can achieve a better
performance with respect to our loss function. We scale Kα by multiplying the learned
eigenvalues {pi}i=1,...,r with coefficients 3.0 and 0.5. The losses for our method, 3.0 scale, and
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(a) Ablation study 1 (b) Ablation study 2

Figure 6.6: Ablation study: (a) obstacle information is necessary for environment generation.
The blue curve uses the proposed method, and the orange curve is the baseline with fixed
obstacle information; (b) a larger or smaller valid Kα does not lead to a better performance.
Different colors represent different scales.

Table 6.1: Benchmark of our proposed framework in three different scenarios: double inte-
grator, quadruple integrator, and double integrator with two obstacles.

Scenario Random Ours

Double Integrator 26.8832±0.7259 26.6774±0.5998
Quadruple Integrator 34.2979±1.1136 32.2187±0.8840

Multiple Obstacles 62.2640±2.2653 40.6258±3.6791

0.5 scale are 33.90, 65.90, and 37.85, respectively. The resulting trajectories demonstrate
that the proposed method outperforms the cases with the scales.

6.6 Discussion

We next provide the analysis of the proposed framework and a discussion on the limits
and thoughts on future work.

We carry out a performance benchmark in three different scenarios: 2D double inte-
grator with one obstacle (Double Integrator), 2D quadruple integrator with one obstacle
(Quadruple Integrator), and 2D double integrator with two obstacles (Multiple Obstacles).
We compare our method with random valid Kα using 200 experiments for each scenario. The
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mean and standard deviation of the losses are summarized in Table 6.1. We first conduct 4
subtasks, and each of them consists of 50 experiments. The mean and standard deviation
are computed based on these subtasks. The benchmark for Double Integrator and Quadru-
ple Integrator further validates that the proposed framework is useful for generalization to
novel environments. Moreover, when we extend the learned α-net to multiple obstacles, our
method shows better results.

In terms of the overall controller design, we assume that a high-level controller is given
and fixed, which could be a valid assumption in many applications. Note that the overall
performance is determined by both the high-level performance controller and the CBF-QP
safety filter.

6.7 Chapter Summary

In this chapter, we presented a learning differentiable safety-critical-control framework us-
ing control barrier functions for generalization to novel environments, which uses a learning-
based method to choose an environment-dependent Kα in exponential control barrier func-
tion. Moreover, based on the ECBF formulation, the proposed method ensures the forward
invariance of the safe set. We numerically verified the proposed method with 2D double and
quadruple integrator systems in novel environments. Our framework can be easily general-
ized to different shapes of obstacles and nonlinear dynamics. Also, different representation
of environment information such as images and point cloud can be used. There are sev-
eral interesting future directions. For instance, an integrated end-to-end framework can be
designed for training the performance controller and ECBF-QP. Another promising future
direction is to test our approach in more general scenarios.
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Chapter 7

Final Words

In this dissertation, we proposed several approaches to predict and generate human be-
havior for autonomous driving and robotics within multiple problem settings. Part I pre-
sented how to improve the generalizability of human driving behavior prediction in transfer
learning and continual learning scenarios. In Chapter 2, we investigated how to obtain a
good representation of observation to improve the transferability of trajectory prediction.
We leveraged the structured environment information and self-supervised learning technique
to capture the multi-agent interaction. The proposed approach demonstrated superior per-
formance, especially in the zero-shot and few-shot learning settings. Furthermore, Chapter 3
introduced a neural memory system to enable continual learning of human driving behavior
prediction. We showed that the proposed method has less forgetting with less memory usage
than other baselines. In Chapter 4, we first analyzed uncertainty estimation for trajectory
prediction under the assumption that the prediction model is private. The proposed method
showed that static-only information is also efficient in deciding which cases may have higher
uncertainty than others. Then we utilized only the static-information-based uncertainty es-
timator to improve the data efficiency of transfer learning. The results validated that the
proposed pipeline can be more effective than using randomly collected data to finetune pre-
dictors in unseen scenarios. Part II shifted from behavior prediction to generation. In this
part, we focused on two essential properties of human behavior generation: diversity and fea-
sibility. In Chapter 5, we developed a deep generative model to blur the boundary between
prediction and generation. The proposed approach enabled testing-time adjustment between
prediction and generation. Meanwhile, a teach-student system was proposed to improve the
diversity of 3D human motion generation. Chapter 6 investigated how to incorporate deep
learning and safety-critical control to generate feasible trajectories in different environments.

There are several promising future directions:

• Evaluation of Human Behavior Models Lord Kelvin said: “If you cannot mea-
sure it, you cannot improve it.” Although there are many evaluation measurements of
human behavior, such as geometric metric and probabilistic measurements, in the lit-
erature, researchers’ consensus is that none of the existing measurements can perfectly
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reflect whether one model is good enough. For instance, distance-based metrics such
as ADE or minADE can only evaluate the average performance of a prediction model;
APD (Average Pairwise Distance) can only show how diverse the predicted behavior
is among the generated samples. The difficulty of human behavior evaluation can be
attributed to its inherent stochastic and high dimensionality nature. In particular, we
usually cannot get enough data to represent the ground truth distribution of human
driving trajectories conditioned on one observation, since it is almost impossible to
find the same observation that includes different traffic participants, map information,
etc. It brings difficulty to evaluate the multi-modality of human behavior. Moreover,
even if one model could generate diverse human behavior, it is challenging to examine
whether the estimated likelihood of each mode is correct without enough ground truth
data. Meanwhile, considering the influence of downstream tasks for human behavior
models is also a challenging and open problem. For instance, evaluating the human
driving behavior prediction model and motion planning algorithm is not independent
in autonomous driving scenarios. One of the cases is shown in [70], where a task-related
evaluation metric is proposed. Meanwhile, a differentiable framework [76] is proposed
to improve the prediction performance with the proposed task-related metric in the
open-loop setting. In the future, investigating more complicated and realistic settings,
such as closed-loop multi-agent settings, can remarkably enhance performance.

• Human Behavior Foundation Models Recently, we have witnessed the success of
foundation models in different domains: conversational AI, text-to-image generation,
etc. It is shown that using a large enough dataset and models could achieve superior
performance and remarkable generalizability. However, we have yet to see a compa-
rable foundation model proposed for human behavior modeling. Although there are
some initial attempts, such as text-to-motion models [157, 126] for 3D human motion
generation, we still need to scale the dataset size and the model to improve the gener-
alizability. Moreover, improving the efficiency of data collection, including annotation
and preprocessing, is one of the most challenging problems. It is interesting to see
whether a human behavior foundation model also has zero-shot transferability. It is
also vital to develop continual learning algorithms for foundation models.

With the ongoing advancement of technology, we will witness the coexistence of intelligent
robots and humans and experience unprecedented levels of efficiency, safety, and high quality
of life in the future.
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