
UC Berkeley
Green Manufacturing and Sustainable Manufacturing
Partnership

Title
Case-Based Reasoning and Object-Oriented Data Structures Exploit Biological Analogs to
Generate Virtual Evolutionary Linkages

Permalink
https://escholarship.org/uc/item/8q94q7hv

Authors
Cobb, Corie L.
Zhang, Ying
Agogino, Alice M.
et al.

Publication Date
2007

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8q94q7hv
https://escholarship.org/uc/item/8q94q7hv#author
https://escholarship.org
http://www.cdlib.org/

Abstract—Multiobjective Genetic Algorithms (MOGA) and
Case-based Reasoning (CBR) have proven successful in the
design of MEMS (Microelectromechanical Systems) suspension
systems. Object-oriented data structures of primitive and
complex genetic algorithm (GA) elements have been developed
to restrict genetic operations to produce feasible design
combinations as required by physical limitations or practical
constraints. Thus, virtual linkage between genes and
chromosomes are coded into the properties of pre-defined GA
objects. A new design problem requires selecting the right
primitive elements, associated data structures, and linkages that
promise to produce the best gene pool for new functional
requirements. In this paper, biomimetics is proposed as a
means to examine and classify functional requirements so that
case-based reasoning algorithms can be used to map design
requirements to promising initial conceptual designs and
appropriate GA primitives. The concept is demonstrated using
micro-mechanical resonators.

I. INTRODUCTION

icroelectromechanical Systems (MEMS) are small
micro-machines or micro-scale electro-mechanical
devices that are fabricated with processes adapted

from Integrated Circuits (ICs). Although still a relatively
new research field, MEMS devices are being developed and
deployed in a broad range of application areas, including
consumer electronics, biotechnology, automotive systems
and aerospace. As these devices grow in complexity, there is
a greater need to reduce the amount of time MEMS
designers spend in the initial conceptual stages of design by
employing efficient computer-aided design (CAD) tools.

Working with a multidisciplinary research team at the
Berkeley Sensor and Actuator Center (BSAC), our work
with Evolutionary Computation (EC) is focused on the
conceptual design of MEMS devices. Zhou et al. [1] were
the first to demonstrate that a multi-objective genetic
algorithm (MOGA) can synthesize MEMS resonators and

Manuscript received March 30, 2007.
This work was supported in part by NSF grant CCR-DES/CC-0306557

and a Bell Labs Graduate Research Fellowship.
Corie L. Cobb is a Ph.D. Candidate in the Mechanical Engineering

Department at the University of California, Berkeley, CA 94720, USA (e-
mail: ccobb@me.berkeley.edu)

Ying Zhang is on the faculty of the School of Electrical and Computer
Engineering at Georgia Institute of Technology, Savannah, GA 31407,
USA (email: yzhang@gatech.edu).

Alice M. Agogino is on the faculty of the Mechanical Engineering
Department at the University of California, Berkeley, CA 94720, USA (e-
mail: agogino@berkeley.edu).

Jennifer Mangold is a graduate student in the Mechanical Engineering
Department at the University of California, Berkeley, CA 94720, USA (e-
mail: jam@me.berkeley.edu)

produce new design structures. SUGAR [2], a MEMS
simulation tool, was used to perform function evaluations on
constraints and fitness values. Kamalian et al. [3] extended
Zhou’s work and explored interactive evolutionary
computation to integrate human design expertise into the
synthesis process. They also fabricated and tested the
emergent designs in order to characterize their mechanical
properties and identify deviations between simulated and
fabricated features [4]. Zhang et al. [5],[6] implemented a
hierarchical MEMS synthesis and optimization architecture,
using a component-based genotype representation and two
levels of optimization: global genetic algorithms (GA) and
local gradient-based refinement. Cobb et al. [7] created a
case-based reasoning (CBR) tool to serve as an automated
knowledge base for the synthesis of MEMS resonant
structures, integrating CBR with MOGA [8] to select
promising initial designs for MOGA and to increase the
number of optimal design concepts presented to MEMS
designers.

In other related research areas, Muhkerjee et al. [9] have
conducted work on MEMS synthesis for accelerometers
using parametric optimization of a pre-defined MEMS
topology. They expanded the design exploration within a
multidimensional grid in order to find the global optimal
solution. Wang's [10] approach to MEMS synthesis utilized
bond graphs and genetic programming with a tree-like
structure of building blocks to incorporate knowledge into
the evolutionary process, similar to work by Zhang [6]. Li et
al. [11] concentrated on developing automatic fabrication
process planning for surface micromachined MEMS devices
that releases the designers from the tedious work of process
planning so that they can concentrate on the design itself.
MEMS CAD has matured to the point that there are now
commercial CAD programs, such as Comsol® and
IntelliSuite®, that offer MEMS designers pre-made modules
and cell libraries, but there is little automatic reasoning in
place for the user on how and when these components should
be used.

Our EC method employs a genetic algorithm as the
evolutionary search and optimization method. GAs were
introduced by John Holland [12] to explain the adaptive
processes of evolving natural systems and for creating new
artificial systems in a similar way, and Goldberg [13] further
demonstrated how to use them in search, optimization, and
machine learning. Chen et al. [14] noted that traditional GAs
require users to possess prior domain knowledge in order for
genes on chromosomes to be correctly arranged with respect
to the chosen operators. The performance of a GA is heavily
dependent upon its encoding scheme. When prior domain

Case-Based Reasoning and Object-Oriented Data Structures Exploit

Biological Analogs to Generate Virtual Evolutionary Linkages

Corie L. Cobb, Ying Zhang, Alice M. Agogino, and Jennifer Mangold

M

334

1-4244-1340-0/07/$25.00 c©2007 IEEE

knowledge is available, the design problem can be solved
using traditional genetic algorithms. However, that is not
always the case, and this is when methods such as linkage
learning are needed. Chen [15] and Harik [16] both focused
research efforts on the linkage learning genetic algorithm
(LLGA) so that a GA, on its own, can detect associations
among genes to form building blocks [15].

Linkage is an important part of GA performance. Tightly
linked genes are synonymous with building blocks, but
higher level linkage amongst building blocks is also
necessary to ensure successful design solutions are reached.
This paper proposes an integrated MEMS design synthesis
system which combines CBR with biologically inspired
classifications and an evolutionary algorithm, MOGA, to
help generate more varied conceptual MEMS design cases
for a designer and her/his current design application. The
concept is explained using mechanical resonators as an
example.

II. MEMS SENSOR DESIGN WITH EVOLUTIONARY

COMPUTATION

To date, our resonator synthesis examples (Fig. 1) have
consisted of a fixed center mass (either with or without
electrostatic comb drives) connected to four ‘legs’, each
made up of multiple beam segments called “meandering
springs.” We have run our MOGA synthesis program for
several sets of performance objectives all calculated using
the SUGAR simulation program.

Fig. 1. Schematic of resonator synthesis example problem. The
geometry of the center mass is fixed, while the number of beam
segments per leg and the size and angle of each segment is variable [3].

SUGAR [2] is an open-source MEMS simulation tool

based on modified nodal analysis (MNA), allowing a
designer to quickly prototype and simulate several complex
MEMS structures for preliminary design applications. Finite
element analysis (FEA) calculations could take hours per
simulation, making them infeasible for iterative design
processes on complex systems. SUGAR and other similar
lumped parameter nodal analysis simulation tools can
perform these functional calculations with reasonable
accuracy at a fraction of the time and can therefore allow the
MEMS designer to explore larger design spaces. FEA and

parametric optimization can then be used to refine the most
promising of the design concepts produced by the MOGA
evolutionary process.

As we are designing resonators, the most significant
performance objective for all structures is the resonant
frequency which is a function of the device’s mass and the
stiffness of the suspensions. Other performance objectives
we have used for synthesis include the stiffness of the
structure in the x or y-direction as well as the device area
(defined by a bounding rectangle around the device). A
schematic of a MEMS resonator and its component
decomposition are shown in Fig. 1.

A. Linkage with Component-based Genotype
Representation

Genetic linkage, in biological terms, refers to the relative
position of two genes on chromosomes. Two genes are
linked if they are on the same chromosome and are tightly
linked if they are physically close to each other on the same
chromosome. Genes that are closely linked are usually
inherited together from parent to offspring [14]. Our MOGA
data structure can be classified as “linkage adaptation” if we
use the same terminology as Chen [14]. Linkage adaptation
refers to specifically designed representations, operators, and
mechanisms for adapting genetic linkage along with the
evolutionary process. Chen states that linkage adaptation
techniques are closer to biological metaphors of evolutionary
computation because of their representations, operators, and
mechanisms.

Our component-based genotype representation for MEMS
design synthesis is supported by a hierarchical extendible
design component library [6]. Each MEMS design
component type is represented by a gene. This gene carries
all salient information about this component: its geometric
layout parameters, as well as constraints on how it can be
modified and what genetic operations can be applied to it.
Each gene has external nodes through which components are
connected and registered to one another. Two genes are on
the same chromosome, which represents a design cluster or a
simple MEMS design, if one of them can be reached from
the other through any linkage path in the chromosome. Two
genes are tightly linked if they share the same external node.
A designer can predefine what gene types are allowed to be
closely linked to a specific gene type and whether a position
on the chromosome is a crossover point during the
evolutionary process by associating special properties to
certain linkage nodes in the chromosome. Based on
predefined rules, the mutation operation can be applied at
either the gene level or the chromosome level that provides a
probability of changing linkage with mutation operation
during the evolutionary process.

III. BIOMIMETICS: THE ROLE OF SYMMETRY AND RESONANCE

IN MEMS STRUCTURES

Applying Manhattan geometries (90 degree angles) and
symmetry constraints greatly reduces the search space and
allows MOGA to optimize its search over a more

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 335

manageable size. However, when MOGA runs unconstrained
or with only symmetry constraints, the results produce
designs that greatly differ from those designed by humans
(see Fig. 2). Upon observation, these designs have an
uncanny appearance to spiders, insects, and other organisms
observed in nature. This prompted us to examine the
biological analogies between our EC generated resonators
and biological organisms to help us understand which
symmetry and geometric constraints might be an
evolutionary advantage of natural life forms that use
vibration or natural frequencies to survive.

no
symmetry

y-axis
symmetry

x-y axis
symmetry

90º angles
& x-y axis
symmetry

Increasing sym
m

etry and angle constraints

no
symmetry

y-axis
symmetry

x-y axis
symmetry

90º angles
& x-y axis
symmetry

Increasing sym
m

etry and angle constraints

Fig. 2. Examples of resonator designs with increasing constraints

A. Symmetry and Geometric Constraints

Symmetry is evident throughout the natural world − a
butterfly’s wings, a spider’s web, and even physicists
observe symmetry in distant galaxies. Symmetry has been
used to try to understand the physical world since ancient
times [17]. In the animal kingdom, bilateral symmetry is
found in more complex species, where different parts of the
animal’s body perform different functions. Radial symmetry
can be found in simpler life forms, such as starfish, where the
entire body performs most of the life functions.

Symmetry has typically been a sign of quality in nature,
and symmetry perception has been demonstrated in humans,
animals, and insects. Many studies have concluded that
humans and other species find symmetrical patterns more
favorable than asymmetrical ones. It has been suggested that
preferences for symmetry adapted for reasons related to mate
choice. For several species, females prefer a mate that has
more symmetrical characteristics [18]; experiments
performed with insects and birds found that females prefer to
mate with males who have the most symmetrical ornaments
[19]. Enquist and Arak [20] suggest that the preference for
symmetry has evolved from the need to recognize objects no
matter what their position or orientation may be. This
preference for symmetry is prominent in the MEMS world
where many designers highly favor symmetrical layouts and
Manhattan style geometry. In previous work, some of our
nontraditional MEMS designs were fabricated and
characterized to help improve EC algorithms, and it was
shown that the fabricated design behaved within reasonable
agreement to simulation results [4].

MEMS designers are tasked with developing physical
forms that satisfy multiple functional requirements. It is
tempting to think that simple designs with 90 degree angles
are better than designs with irregular or nontraditional
layouts. This can be the case in macroscale designs where
non-perpendicular and parallel designs can be time
consuming and expensive from a manufacturing point of
view. But in MEMS fabrication, lithography processes
enable a designer to create almost any geometrical layout
and all are equally easy to fabricate, with the only obstacle
being the resolution capabilities of the lithography process,
impacting the minimum size of features that can be
fabricated.

Kamalian et al. [3] previously noted that optimal MEMS
designs with multiple competing objectives need not have
full symmetry or Manhattan angles. Similar to our EC
generated MEMS resonators, spiders have a large central
mass and a similar number of legs on either side of their
body. Spiders have evolved to have some degree of
symmetry around the longitudinal axis, but none around the
horizontal axis, similar to our y-symmetric resonator designs
shown in Fig. 2. All species of spiders have a broad range of
leg shapes, but none of them have Manhattan geometries and
most exhibit symmetry about only one axis.

B. Purpose of Resonance and Vibration

We can further examine the spider as a biological analog
to a resonator in its ability to detect prey by resonating with
their vibrations. Vibration cues have been used by insects
and spiders to locate and kill their prey. Without the use of
vibration recognition, it may be difficult for insects to find
their prey, because dense vegetation may limit their visual
abilities. Vibration signals are also important, because many
of the insect’s or spider’s prey produce vibrations through
movement or feeding, which enables them to be located
more easily [21].

Bola spiders catch their prey by mimicry, emitting the
pheromones of the prey species. The wing-beat vibrations of

336 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

the moths that fall victim to the bola spiders stimulate the
spider to make a bolas in which to capture the moth [22].
Generally all web-spinning spiders detect and find prey in
their webs through the vibrations generated by their prey.
This is especially important because most species of web
spiders do not have a strong sense of smell or good vision.
Peters (1931) found that the spiders did not respond to a
dead fly placed gently in its web. If, however, the fly arrived
in the web with a jerk or if, once in the web, it was
stimulated in some way, the spider responded [23]. There is
a good deal of evidence that spiders discriminate between
different types of signals. There have been several studies
that demonstrated how spiders move towards vibrations of
various frequencies, similar to the way MEMS resonators
and bandpass filters attempt to hone in on certain frequencies
for communication purposes. Resonators, which are basic
building blocks of MEMS filters, are designed to reject
certain frequencies from a wide range of signals and only
allow a particular frequency band to pass through.

The type of stabilimenta, a structural characteristic of the
web, a spider chooses to spin is also influenced by vibration
characteristics. A spider that is in need of food will spin a
spiral pattern, as oppose to a linear one, because the higher
tension transmits high frequencies better than the linear
pattern. The high frequencies are generally produced by
smaller prey. This would suggest that the spider structures
its web according to its food needs [24], similar to the way
MEMS designers layout a resonant device in order to
achieve high frequencies in the GHz range for
communication devices.

An import aspect of resonance in MEMS and nature is
movement. Blickhan and Full [25] conducted a study of
multi-legged locomotion in animals as diverse as
cockroaches and kangaroos in order to develop a model of
“legged terrestrial locomotion.” They found that the
dynamics of movement depend on the number of legs one
has and the gait or movement pattern. Four- and six-legged
creatures had greater whole body stiffness than two-legged
creatures. The greater whole body stiffness in the four- and
six-legged creatures resulted in higher natural frequencies,
just as a higher overall stiffness results in a higher natural
frequency in MEMS. Spiders generally have eight legs
while insects have six legs. In MEMS, we mostly observe
resonators with four main legs for stability. There are
resonators with only two legs, but these tend to be slightly
unstable with a tendency towards out of plane movement. In
spiders, eight legs can enable them to move faster and give
them the ability to travel in different directions easily. Some
insects with six legs have a tendency to move forward more
and not backwards and sideways as quickly as spiders. In
our MEMS resonator design, we only want to move in one
direction based on the comb drive actuation, hence four legs
provides more balance and stability than two legs.
Additional legs are not needed because in these MEMS
resonator designs, motion in multiple directions is
undesirable. However, if we look more broadly at other
MEMS designs, such as micro-robots, more legs can be

desirable to enable quick and easy movement in multiple
directions.

After 3.8 billion years of “research and development,”
nature has discovered what works, what does not, and what
is life sustaining, essentially perfecting its designs to meet
the necessary functional needs. These “successful designs”
are ever-changing to meet environmental requirements and
are driven by an ultimate challenge: survival. Nature’s
solutions are not perfect; they are solutions that are as good
as they need to be to serve their purpose.

IV. CASE-BASED REASONING FOR MEMS USING BIOMIMETIC

ONTOLOGY

Case-based Reasoning (CBR) is an artificial intelligence
method that utilizes knowledge from a past situation to solve
current problems. Shank’s dynamic memory model [26] is
regarded as the beginnings of CBR. Kolodner used Shank’s
model to create the first CBR system called CYRUS which
was a basic question and answer system [27]. CBR is
analogous to the human cognition and thought process. With
this analogy, cases can be regarded as “memories,” while
retrieval is similar to “reminding” one of a particular
instance, and case representation is the way one’s memories
are organized. CBR involves indexing past knowledge, in
the form of “cases” to enable effective retrieval of solutions
for a current problem. Indexing and case representation are
the two initial and most important stages of CBR,
determining the ultimate performance of a CBR program.

In the context of our work, CBR takes advantage of
previous human knowledge in the form of successful MEMS
design cases to help guide humans and computational design
tools towards more optimal design concepts. Previous work
[8] has shown that the integration of a CBR knowledge base
with a multi-objective genetic algorithm (MOGA) can
increase the number of optimal solutions generated for a
given MEMS design problem. CBR is used to help select
the best candidates to be evolved in an evolutionary process
such as MOGA. In the following sections, we will examine
the biological analogs of case representation and indexing as
well as how they can support linkage in MOGA.

A. Creating Evolutionary Linkage with CBR

In linkage, as defined by Chen [14], by placing related
genes close together on a chromosome, the GA programmer
seeds the GA with initial designs with implicit linkages. The
GA programmer may be adding her/his expertise to the
codification in this process. This may be difficult to do,
however, on new problems in which the programmer has
limited experience.

Applying the aforementioned definition to MEMS
synthesis, we use the concept of linkage to refer to how
closely MEMS building blocks should be linked in an
evolutionary process. With the integration of CBR and
MOGA, CBR defines the linkages for the user with an
automated case-based library of previous MEMS designs.
CBR takes away from the user the burden of defining the
problem by automatically selecting and optimizing design
structures based on a few inputted design specifications.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 337

CBR pulls out the best design cases for a given scenario and
ranks them according to the user’s performance criteria. The
designs are then encoded in the component-based genotype
representation to enable the evolutionary process.
Incorporating other powerful computational tools, such as
CBR, with MOGA can help MOGA converge faster and
more efficiently to optimal design concepts. The linkage
problem is alleviated in our MOGA program because CBR
inherently defines linkage for MOGA with its case examples.
Shown in Fig. 3 and Fig. 4 are examples of tight linkage
generated by our integrated CBR and MOGA program.

CBR assists MOGA by propagating the linkage of
effective building blocks. In one experiment [8], for each
MOGA synthesis run, we used a population of 400 for 50
generations. Each constraint case of (1) no symmetry, (2) y-
symmetry, and (3) xy-symmetry had 5 runs of the MOGA
process in order to see a good spread of designs. We found
that when MOGA is seeded with good starting designs from
CBR, in some instances, y-symmetry and xy-symmetry
constraints generate more pareto optimal designs. A
resonator with an enclosed frame mass and crab-leg
suspensions (two beams with a local 90 degree angle) was
selected as the starting design for a given resonant frequency
(f0), stiffness ratio (Kx/Ky) and area constraint (Table I and
Fig. 3). The aforementioned constraints correspond to the
following design requirements: f0 = 24.7 kHz, Kx/Ky � 47.9,
Area � 1.455e-7 m2. For this scenario, the mass and comb
drives remained fixed while the crab-leg suspensions (which
have the largest impact on the performance objectives) were
allowed to change in width, length, and global orientation,
but the crab-leg suspensions retained their local 90 degree
angle.

As one can see in Fig. 3, the initial design in Fig. 3a
generated an optimal design (Fig. 3b) which had the leg
suspensions rotated outside of the frame mass. One would
assume that if the objective is to minimize area, the
suspensions would remain inside the mass, similar to the
initial design in Fig. 3a. However, because frequency and
stiffness were also part of the optimization problem, MOGA
determined that a design with the suspensions outside of the
mass could produce a better resonant frequency and stiffness
ratio. This design again resembles some of the asymmetrical
spider designs we discussed previously. The resonator
design in Fig. 3b may have not been considered by a human
MEMS designer, but due to the linkage knowledge CBR
gave MOGA, the design is a good candidate for further
analysis and fabrication.

TABLE I: EXAMPLE MOGA REPRESENTATION FOR INITIAL DESIGN IN FIG. 3

MOGA Design Representation

Gene
Type MEMS Component

10 Frame Mass
9 Crab-leg Suspension
5 Comb Drive
1 Anchor

Fig. 3. Resonant frequency = 23.8 kHz for initial MOGA design (a);
Resonant frequency = 24.8 kHz for a pareto optimal y-symmetric design
generated by MOGA (b)

TABLE II: Example MOGA Representation for Initial Design in Fig. 4a

MOGA Design Representation

Gene
Type MEMS Component

15 Hollow Ring Mass
2 Serpentine Suspension
5 Comb Drive
1 Anchor

Fig. 4. Resonant frequency = 6969.3 Hz for initial MOGA design (a);
Resonant frequency = 8299.9 Hz for a pareto optimal y-symmetric design
generated by MOGA (b)

Fig. 4 shows another example of tight linkage in our
MOGA process. The initial design was optimized with
MOGA to meet the following design requirements: f0 =
8.3kHz, Kx/Ky � 29, Area � 3.7e-7 m2. In this particular
case, the initial design selected by CBR consisted of a
hollow squared shaped mass with four serpentine springs.
Again, the mass and comb drives remained fixed while the
serpentine suspension blocks were free to mutate in length,
width, number of loops, and their global angle orientation.
This scenario also generated designs which had a similar
appearance to spiders and insects (aside from the inherent
manhattan geometry in the building blocks). Minimizing
area is our main design objective for all cases, and the y-
symmetry constraint runs had the smallest design area
average (2.608e-7 m2) with a standard deviation of 7.031e-8
m2.

B. Case Representation and Biological Taxonomy

Biological classification or taxonomy is a means by which
biologists group and classify organisms. Taxonomy helps

(b) (a)

(b) (a)

338 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

one identify evolutionary relationships and links between
certain species, and in the case of MEMS, certain design
structures. Taxonomy began with classifying organisms
based on shared physical traits, but these classifications have
been modified over the years to reflect Darwinian
evolutionary relationships. As an example, biologists have
classified over 40,000 species of spiders, but they believe
there are still thousands of species which have not yet been
identified and named. As more species are discovered the
current biological classification system can expand and
change.

The classification of animals and plants is inherently
hierarchical; similar to the way our MEMS case library is
hierarchical to demonstrate the relationships between
designs. The 40,000 species of classified spiders are further
divided into 3 suborders with 38 families and 111
subfamilies. The groups described by taxonomy get more
specific as one goes from the kingdom classification all the
way down to the species group. Kingdom is the largest unit
of classification (with approximately 5 kingdoms), phylum is
the next unit of classification which further divides each
kingdom, and this pattern continues down to the species
level, forming a tree like hierarchy of organism
representation. As an example, shown in Table III is the
classification of the Isopeda insignis spider. No two species
of spiders, or any plant or animal, will have the same
scientific name (defined by the genus and species). The
scientific name is a unique identifier just as each unique
MEMS design component has a distinct identification
number and gene type to distinguish it from other designs
and enable efficient case retrieval.

TABLE III: CLASSIFICATION OF AN ISOPEDA INSIGNIS SPIDER [28]

Kingdom Animalia

Phylum Arthropoda

Class Arachnida

Order Araneae

Family Sparassidae

Genus Isopeda

Species insignis

MEMS is still an exploratory field and new designs and

pieces of the MEMS hierarchy are constantly being added,
similar to the way newly discovered species of organisms are
expanding the biological taxonomy system everyday. Others
[29] have noted that it is still premature today to create a
robust categorization due to the fact that many MEMS
devices are still in the research phases and have not matured
for every application. MEMS categorization has often
focused on fabrication methods and materials selection,
geometry, or application areas [30]. There are a broad array
of MEMS sensors and actuators available today. Bell et al.
[31] categorized MEMS by considering work-producing
actuators, force sensors and displacement sensors fabricated

by surface or bulk micromachining in their work and did an
in depth classification of these devices.

In MEMS, designs are often classified based on their
performance and functional characteristics. Sensors and
actuators are the two most broad and commonly agreed upon
categories of MEMS which can be divided further into
families and classes. Similar to the work of Bell et al. [31],
for our purposes, we will have two kingdoms in our
classification system: sensors and actuators. Sensors and
actuators can each be further divided into phylum or classes
based upon their operating domains. For our purposes, we
will assume six operating domains based upon input and
output signals MEMS devices utilize: (1) Magnetic, (2)
Thermal, (3) Electrical, (4) Mechanical, (5) Chemical, and
(6) Optical.

Imagine the aforementioned domains placed in a 6 by 6
matrix (with all six categories lined up on the rows and
columns) to enable multiple input and out combinations. For
example, a thermal-mechanical sensor might take a thermal
input and have a mechanical deflection as its output. For a
piezoelectric sensor, it will output a voltage in response to an
applied mechanical stress, enabling a further categorization
of the mechanical-electrical class. Because the user of our
CBR program may be searching for designs based on input
and output domains or application areas, it is important to
index cases by both. Our MEMS hierarchy starts with
sensors and actuators, and then branches out to the various
input and output mechanisms, and under each of these are
specific application areas (RF MEMS, Micro-fluidics,
BioMEMS, Optical MEMS, etc.), and then divided further
are whole MEMS devices, which are broken down into their
various components and primitive elements.

Our work focuses currently on resonant structures, such as
resonators, accelerometers and filters, thus traversing the
MEMS hierarchy, our work falls under the electrical (input
and output domain) where electrostatics are primarily used.
Fig. 5 is a condensed graph, and is not inclusive of all
MEMS devices. The portion shown demonstrates how the
classification leads to accelerometers, filters, and resonators
– the focus of our work. Resonators, basic components of
filters, can be further decomposed into masses, springs,
comb drives, and anchors. Each one of the aforementioned
components would have a unique identifier to distinguish
them from others. Nguyen [32] classifies MEMS filters
based on their ability to achieve a certain frequency range,
and import part of being able to develop RF communication
devices.

A hierarchy for biological organisms was created just as a
hierarchy for CBR needs to be created in order to sort
information and efficiently pull the most relevant primitives
and designs for evolutionary computation. Our current CBR
hierarchy classifies designs based on their shared
functionality and performance.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 339

Fig. 5. MEMS hierarchy with biological analogy

Ontology is a way to represent knowledge in a specific

domain, helping an artificial intelligence (AI) program to
define and retrieve objects. A general hierarchy or structure
of ontology is the following [33]: objects, classes of objects,
attributes of objects, and relations between objects. Shown
in Fig. 6 is our current MEMS case library ontology. Using
entity-relationship diagram notation, one can observe how
objects such as MEMS resonators and filters are related
together. In the diagram, ‘d,p’ indicates a disjoint/distinct
and partial relationship between classes, in order to account
for designs that have not yet been created or added to the
library. Attributes of each object include indices for quick
retrieval and overall device performance.

Fig. 6. CBR entity-relationship database schematic for case library with
filters added

The database diagram in Fig. 6 represents how
information is stored in our case-based library. This new
case library will be integrated into our current MEMS design
synthesis program, shown in Fig. 7, to further generate and
optimize new MEMS design structures.

Fig. 7. MEMS design synthesis flowchart

V. CONCLUSIONS AND FUTURE WORK

Our MEMS synthesis architecture with integration of
MOGA and CBR deals with the concept of linkage by using
a component-based genotype representation and a CBR
automated knowledge base. CBR provides MOGA with
good linkage information through past design cases while
MOGA inherits linkage information through our component
based genotype representation.

As part of our future research plan, we will examine how
linkage learning can be integrated with MOGA when CBR
may not be able to select a good initial design. Further
exploring biomimetics and the ties to MEMS synthesis
algorithms is another area to pursue, investigating how
increasing the number of leg components can create optimal
designs in other MEMS areas such as micro-robots.
Currently, we are moving towards creating a broader MEMS
classification scheme and building up a case library of
MEMS filter designs and their accompanying components to
further expand the range of designs covered by our program.

REFERENCES

[1] N. Zhou, B. Zhu, A. M. Agogino, K. S. J. Pister, “Evolutionary
synthesis of MEMS (MicroElectronicMechanical Systems) design,”
In Proc. of the Artificial Neural Networks in Engineering
Conference, 2001, pp.197-202.

[2] http://www-bsac.eecs.berkeley.edu/cadtools/sugar/sugar/

�������	�
������

����������
��

��������������������
�������

�������������������
����
��������
�����������

Case-based Reasoning
Module

MOGA Synthesis
Module

��������
�������

���������
��

�������
�����������
������

�����������	
����

 ������!�����
�����������������

��
�"��

������������

�����
	�	��#�����
�

����
����$���������$���

"���������%����

 ������!���
�������

�#&'��((
������������

Case Library

)�((
�����
�����
��"�������

)�*����
�������������������
�����������
�

+�������
�����
��������������$�

��
��� ��"����!��$������%��

,�
���
�"����!��������
�����������

340 2007 IEEE Congress on Evolutionary Computation (CEC 2007)

[3] R. H. Kamalian, A. M. Agogino, and H. Takagi, “The role of
constraints and human interaction in evolving MEMS designs:
microresonator case study,” In Proc. of 2004 ASME Design
Engineering Technical Conferences and Design Automation
Conference, 2004. #DETC2004-57462.

[4] R. Kamalian, Y. Zhang and A. M. Agogino, “Microfabrication and
characterization of evolutionary MEMS resonators,” In Proc. of the
Symposium of Micro- and Nano-Mechatronics for Information-based
Society, IEEE Robotics & Automation Society (ISBN # 0-7803-9482-
8), Nov. 2005, pp. 109-114.

[5] Y. Zhang, R. Kamalian, A.M. Agogino, C. H. Séquin, “Hierarchical
MEMS synthesis and optimization,” In Proc. Smart Structures and
Materials 2005 Smart Electronics, MEMS, BioMEMS, and
Nanotechnology, SPIE Vol. 5763, pp. 96-106. CD ROM, Paper #
5763_12.

[6] Y. Zhang, R. Kamalian, A. M. Agogino, and C.H. Séquin, “Design
synthesis of Microelectromechanical Systems using genetic
algorithms with component-based genotype representation,” In Proc.
of 2006 Genetic and Evolutionary Computation Conference. Seattle,
July 8-12, 2006. ISBN 1-59593-187-2. Vol. 1, pp.731-738.

[7] C. L. Cobb and A. M. Agogino, “Case-based reasoning for the design
of Micro-Electro-Mechanical Systems,” In Proc. of 2006 ASME
International Design Engineering Technical Conferences & the
Computers and Information in Engineering Conference, September
10-13, 2006, #DETC2006-99120.

[8] C. L. Cobb, Y. Zhang, and A. M. Agogino, “MEMS design synthesis:
integrating case-based reasoning and multi-objective genetic
algorithms,” In the Proc. of 2006 SPIE Smart Materials, Nano- and
Micro-Smart Systems, SPIE Vol. 6414, #641419, ISBN:
9780819465221 (Invited Paper).

[9] T. Mukherjee, Y. Zhou and G. Fedder, “Automated optimal synthesis
of microaccelerometers,” Technical Digest of the 12th IEEE
International Conference on Micro Electro Mechanical Systems
(MEMS '99), pp. 326-331, 1999.

[10] J. Wang, Z. Fan, J. P. Terpenny, and E. D. Goodman, “Knowledge
interaction with genetic programming in mechatronics systems design
using bond graphs,” IEEE Transactions on System, Man, and
Cybernetics−Part C: Applications and Reviews, Vol. 35, No. 2, May
2005.

[11] J. Li, S. Gao and Y. Liu, “Solid-based CAPP for surface
micromachined MEMS devices,” Computer-Aided Design, Vol. 39,
No. 3, pp. 190-201, 2007.

[12] Holland, J.H., Adaptation in Natural and Artificial Systems, Ann
Arbor: The University of Michigan Press, 1975.

[13] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley Longman, Boston, MA, 1989.

[14] Y.-P. Chen and D. E. Goldberg, “Convergence time for the linkage
learning genetic algorithm,” Evolutionary Computation, Vol. 13, No.
3, Pages 279-302, Fall 2005.

[15] Y.-P. Chen and D.E. Goldberg, “Introducing subchromosome
representations to the linkage learning genetic algorithm,” Lecture
Notes in Computer Science (LNCS), Vol. 3102, pp. 971–982, 2004.

[16] G.R. Harik, Learning gene linkage to efficiently solve problems of
bounded difficulty using genetic algorithms, Doctoral Dissertation,
University of Michigan, Ann Arbor, 1997.

[17] I. Stewart, Why Beauty Is Truth: A History of SymmetryBook, Joat
Enterprises: Basic Books, 2007.

[18] R. A. Johnstone, “Female preferences for symmetrical males as a by
product of selection for mate recognition,” Nature 372, pp 172-175 ,
1994.

[19] J. P. Swaddle and I. C. Cuthill, “Preference for symmetric males by
female zebra finches,” Nature 367, 165-166, 1994.

[20] M. Enquist and A. Arak, “Symmetry, beauty, and evolution,” Nature
372, pp. 169- 172, 1994.

[21] R. S. Pfannenstiel, R. E. Hunt, and K.V. Yeargan, “Orientation of a
hemipteran predator vibrations produced by feeding caterpillars,”
Journal of Insect Behavior, Vol. 8, No. 1, 1995.

[22] K. F. Haynes, K. V. Yeargan, and C. Gemenol, “Detection of prey by
a spider that aggressively mimics pheromone blends,” Journal of
Insect Behavior, Vol. 14, No. 4, 2001.

[23] D. A. Parry, “The signal generated by an insect in a spider’s web,”
Journal of Experimental Biology 43, pp. 185-192, 1965.

[24] T. Watanabe, “Web tuning of an orb-web spider, Octonoba sybotides,
regulates prey-catching behavior,” Proceedings of The Royal Society
of London Series B 267, p. 565-569, 2000.

[25] R. Blickhan and R. J. Full, “Similarity in multilegged locomotion:
Bouncing like a monopode,” Journal of Comparative Physiology A.
(1993) 173, pp. 509-517.

[26] R. Shank., Dynamic Memory: A Theory of Reminding and Learning
in Computers and People. Cambridge, 1982.

[27] J. Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers,
Inc., 1993.

[28] T. J. Hawkeswood, Spiders of Australia: An introduction to their
Classification, Biology and Distribution. ISBN 9546421928, Pensoft
Publishers, Sofia-Moscow. 2003.

[29] V.K. Varadan, RF MEMS and Their Applications, John Wiley and
Sons, 2002.

[30] J.A. Walraven, “Introduction to applications and industries for
microelectromechanical systems (MEMS),” In Proc. of 2003
International Test Conference (ITC), Sept. 30-Oct. 2, 2003.
pp. 674- 680.

[31] D.J. Bell, T.J. Lu, N.A. Fleck, and S.M. Spearing, “MEMS actuators
and sensors: observations on their performance and selection for
purpose,” Journal of Micromechanics and Microengineering, Vol.
15, No. 3, July 2005.

[32] C. T. -C. Nguyen, “RF MEMS in wireless architecture,” In Proc. of
the 42nd Design Automation Conference, Anaheim, CA, June 13-17,
2005, pp. 416-420.

[33] N. F. Noy and D. L. McGuinness, “Ontology development 101: a
guide to creating your first ontology,” Stanford Knowledge Systems
Laboratory Technical Report KSL-01-05, March 2001.

2007 IEEE Congress on Evolutionary Computation (CEC 2007) 341

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

