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Abstract—Multiobjective Genetic Algorithms (MOGA) and 
Case-based Reasoning (CBR) have proven successful in the 
design of MEMS (Microelectromechanical Systems) suspension 
systems. Object-oriented data structures of primitive and 
complex genetic algorithm (GA) elements have been developed 
to restrict genetic operations to produce feasible design 
combinations as required by physical limitations or practical 
constraints. Thus, virtual linkage between genes and 
chromosomes are coded into the properties of pre-defined GA 
objects. A new design problem requires selecting the right 
primitive elements, associated data structures, and linkages that 
promise to produce the best gene pool for new functional 
requirements.  In this paper, biomimetics is proposed as a 
means to examine and classify functional requirements so that 
case-based reasoning algorithms can be used to map design 
requirements to promising initial conceptual designs and 
appropriate GA primitives. The concept is demonstrated using 
micro-mechanical resonators.  

I. INTRODUCTION 

icroelectromechanical Systems (MEMS) are small 
micro-machines or micro-scale electro-mechanical 
devices that are fabricated with processes adapted 

from Integrated Circuits (ICs).  Although still a relatively 
new research field, MEMS devices are being developed and 
deployed in a broad range of application areas, including 
consumer electronics, biotechnology, automotive systems 
and aerospace.  As these devices grow in complexity, there is 
a greater need to reduce the amount of time MEMS 
designers spend in the initial conceptual stages of design by 
employing efficient computer-aided design (CAD) tools.  

Working with a multidisciplinary research team at the 
Berkeley Sensor and Actuator Center (BSAC), our work 
with Evolutionary Computation (EC) is focused on the 
conceptual design of MEMS devices.  Zhou et al. [1] were 
the first to demonstrate that a multi-objective genetic 
algorithm (MOGA) can synthesize MEMS resonators and 
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produce new design structures. SUGAR [2], a MEMS 
simulation tool, was used to perform function evaluations on 
constraints and fitness values.  Kamalian et al. [3] extended 
Zhou’s work and explored interactive evolutionary 
computation to integrate human design expertise into the 
synthesis process.  They also fabricated and tested the 
emergent designs in order to characterize their mechanical 
properties and identify deviations between simulated and 
fabricated features [4].  Zhang et al. [5],[6] implemented a 
hierarchical MEMS synthesis and optimization architecture, 
using a component-based genotype representation and two 
levels of optimization: global genetic algorithms (GA) and 
local gradient-based refinement.  Cobb et al. [7] created a 
case-based reasoning (CBR) tool to serve as an automated 
knowledge base for the synthesis of MEMS resonant 
structures, integrating CBR with MOGA [8] to select 
promising initial designs for MOGA and to increase the 
number of optimal design concepts presented to MEMS 
designers.  

In other related research areas, Muhkerjee et al. [9] have 
conducted work on MEMS synthesis for accelerometers 
using parametric optimization of a pre-defined MEMS 
topology. They expanded the design exploration within a 
multidimensional grid in order to find the global optimal 
solution.  Wang's [10] approach to MEMS synthesis utilized 
bond graphs and genetic programming with a tree-like 
structure of building blocks to incorporate knowledge into 
the evolutionary process, similar to work by Zhang [6].  Li et 
al. [11] concentrated on developing automatic fabrication 
process planning for surface micromachined MEMS devices 
that releases the designers from the tedious work of process 
planning so that they can concentrate on the design itself. 
MEMS CAD has matured to the point that there are now 
commercial CAD programs, such as Comsol® and 
IntelliSuite®, that offer MEMS designers pre-made modules 
and cell libraries, but there is little automatic reasoning in 
place for the user on how and when these components should 
be used. 

Our EC method employs a genetic algorithm as the 
evolutionary search and optimization method. GAs were 
introduced by John Holland [12] to explain the adaptive 
processes of evolving natural systems and for creating new 
artificial systems in a similar way, and Goldberg [13] further 
demonstrated how to use them in search, optimization, and 
machine learning. Chen et al. [14] noted that traditional GAs 
require users to possess prior domain knowledge in order for 
genes on chromosomes to be correctly arranged with respect 
to the chosen operators. The performance of a GA is heavily 
dependent upon its encoding scheme.  When prior domain 
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knowledge is available, the design problem can be solved 
using traditional genetic algorithms. However, that is not 
always the case, and this is when methods such as linkage 
learning are needed.  Chen [15] and Harik [16] both focused 
research efforts on the linkage learning genetic algorithm 
(LLGA) so that a GA, on its own, can detect associations 
among genes to form building blocks [15].  

Linkage is an important part of GA performance.  Tightly 
linked genes are synonymous with building blocks, but 
higher level linkage amongst building blocks is also 
necessary to ensure successful design solutions are reached.  
This paper proposes an integrated MEMS design synthesis 
system which combines CBR with biologically inspired 
classifications and an evolutionary algorithm, MOGA, to 
help generate more varied conceptual MEMS design cases 
for a designer and her/his current design application.  The 
concept is explained using mechanical resonators as an 
example.  

II. MEMS SENSOR DESIGN WITH EVOLUTIONARY 

COMPUTATION 

To date, our resonator synthesis examples (Fig. 1) have 
consisted of a fixed center mass  (either with or without 
electrostatic comb drives) connected to four ‘legs’, each 
made up of multiple beam segments called “meandering 
springs.”  We have run our MOGA synthesis program for 
several sets of performance objectives all calculated using 
the SUGAR simulation program.   

 
 

Fig. 1. Schematic of resonator synthesis example problem.  The 
geometry of the center mass is fixed, while the number of beam 
segments per leg and the size and angle of each segment is variable [3]. 

 
SUGAR [2] is an open-source MEMS simulation tool 

based on modified nodal analysis (MNA), allowing a 
designer to quickly prototype and simulate several complex 
MEMS structures for preliminary design applications.  Finite 
element analysis (FEA) calculations could take hours per 
simulation, making them infeasible for iterative design 
processes on complex systems. SUGAR and other similar 
lumped parameter nodal analysis simulation tools can 
perform these functional calculations with reasonable 
accuracy at a fraction of the time and can therefore allow the 
MEMS designer to explore larger design spaces.  FEA and 

parametric optimization can then be used to refine the most 
promising of the design concepts produced by the MOGA 
evolutionary process. 

As we are designing resonators, the most significant 
performance objective for all structures is the resonant 
frequency which is a function of the device’s mass and the 
stiffness of the suspensions.  Other performance objectives 
we have used for synthesis include the stiffness of the 
structure in the x or y-direction as well as the device area 
(defined by a bounding rectangle around the device).  A 
schematic of a MEMS resonator and its component 
decomposition are shown in Fig. 1. 
 

A. Linkage with Component-based Genotype 
Representation 

Genetic linkage, in biological terms, refers to the relative 
position of two genes on chromosomes. Two genes are 
linked if they are on the same chromosome and are tightly 
linked if they are physically close to each other on the same 
chromosome. Genes that are closely linked are usually 
inherited together from parent to offspring [14].  Our MOGA 
data structure can be classified as “linkage adaptation” if we 
use the same terminology as Chen [14].  Linkage adaptation 
refers to specifically designed representations, operators, and 
mechanisms for adapting genetic linkage along with the 
evolutionary process.   Chen states that linkage adaptation 
techniques are closer to biological metaphors of evolutionary 
computation because of their representations, operators, and 
mechanisms. 

Our component-based genotype representation for MEMS 
design synthesis is supported by a hierarchical extendible 
design component library [6]. Each MEMS design 
component type is represented by a gene. This gene carries 
all salient information about this component: its geometric 
layout parameters, as well as constraints on how it can be 
modified and what genetic operations can be applied to it. 
Each gene has external nodes through which components are 
connected and registered to one another. Two genes are on 
the same chromosome, which represents a design cluster or a 
simple MEMS design, if one of them can be reached from 
the other through any linkage path in the chromosome. Two 
genes are tightly linked if they share the same external node.  
A designer can predefine what gene types are allowed to be 
closely linked to a specific gene type and whether a position 
on the chromosome is a crossover point during the 
evolutionary process by associating special properties to 
certain linkage nodes in the chromosome. Based on 
predefined rules, the mutation operation can be applied at 
either the gene level or the chromosome level that provides a 
probability of changing linkage with mutation operation 
during the evolutionary process. 

III. BIOMIMETICS: THE ROLE OF SYMMETRY AND RESONANCE 

IN MEMS STRUCTURES 

Applying Manhattan geometries (90 degree angles) and 
symmetry constraints greatly reduces the search space and 
allows MOGA to optimize its search over a more 
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manageable size. However, when MOGA runs unconstrained 
or with only symmetry constraints, the results produce 
designs that greatly differ from those designed by humans 
(see Fig. 2).  Upon observation, these designs have an 
uncanny appearance to spiders, insects, and other organisms 
observed in nature.  This prompted us to examine the 
biological analogies between our EC generated resonators 
and biological organisms to help us understand which 
symmetry and geometric constraints might be an 
evolutionary advantage of natural life forms that use 
vibration or natural frequencies to survive. 
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Fig. 2. Examples of resonator designs with increasing constraints 

 

A. Symmetry and Geometric Constraints 

Symmetry is evident throughout the natural world − a 
butterfly’s wings, a spider’s web, and even physicists 
observe symmetry in distant galaxies.  Symmetry has been 
used to try to understand the physical world since ancient 
times [17].  In the animal kingdom, bilateral symmetry is 
found in more complex species, where different parts of the 
animal’s body perform different functions.  Radial symmetry 
can be found in simpler life forms, such as starfish, where the 
entire body performs most of the life functions. 

Symmetry has typically been a sign of quality in nature, 
and symmetry perception has been demonstrated in humans, 
animals, and insects.  Many studies have concluded that 
humans and other species find symmetrical patterns more 
favorable than asymmetrical ones.  It has been suggested that 
preferences for symmetry adapted for reasons related to mate 
choice.  For several species, females prefer a mate that has 
more symmetrical characteristics [18]; experiments 
performed with insects and birds found that females prefer to 
mate with males who have the most symmetrical ornaments 
[19].  Enquist and Arak [20] suggest that the preference for 
symmetry has evolved from the need to recognize objects no 
matter what their position or orientation may be.  This 
preference for symmetry is prominent in the MEMS world 
where many designers highly favor symmetrical layouts and 
Manhattan style geometry.  In previous work, some of our 
nontraditional MEMS designs were fabricated and 
characterized to help improve EC algorithms, and it was 
shown that the fabricated design behaved within reasonable 
agreement to simulation results [4]. 

MEMS designers are tasked with developing physical 
forms that satisfy multiple functional requirements.  It is 
tempting to think that simple designs with 90 degree angles 
are better than designs with irregular or nontraditional 
layouts. This can be the case in macroscale designs where 
non-perpendicular and parallel designs can be time 
consuming and expensive from a manufacturing point of 
view.  But in MEMS fabrication, lithography processes 
enable a designer to create almost any geometrical layout 
and all are equally easy to fabricate, with the only obstacle 
being the resolution capabilities of the lithography process, 
impacting the minimum size of features that can be 
fabricated. 

Kamalian et al. [3] previously noted that optimal MEMS 
designs with multiple competing objectives need not have 
full symmetry or Manhattan angles. Similar to our EC 
generated MEMS resonators, spiders have a large central 
mass and a similar number of legs on either side of their 
body. Spiders have evolved to have some degree of 
symmetry around the longitudinal axis, but none around the 
horizontal axis, similar to our y-symmetric resonator designs 
shown in Fig. 2.  All species of spiders have a broad range of 
leg shapes, but none of them have Manhattan geometries and 
most exhibit symmetry about only one axis.  

B. Purpose of Resonance and Vibration 

We can further examine the spider as a biological analog 
to a resonator in its ability to detect prey by resonating with 
their vibrations.  Vibration cues have been used by insects 
and spiders to locate and kill their prey.  Without the use of 
vibration recognition, it may be difficult for insects to find 
their prey, because dense vegetation may limit their visual 
abilities.  Vibration signals are also important, because many 
of the insect’s or spider’s prey produce vibrations through 
movement or feeding, which enables them to be located 
more easily [21]. 

Bola spiders catch their prey by mimicry, emitting the 
pheromones of the prey species.  The wing-beat vibrations of 
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the moths that fall victim to the bola spiders stimulate the 
spider to make a bolas in which to capture the moth [22].  
Generally all web-spinning spiders detect and find prey in 
their webs through the vibrations generated by their prey.  
This is especially important because most species of web 
spiders do not have a strong sense of smell or good vision.  
Peters (1931) found that the spiders did not respond to a 
dead fly placed gently in its web.  If, however, the fly arrived 
in the web with a jerk or if, once in the web, it was 
stimulated in some way, the spider responded [23].  There is 
a good deal of evidence that spiders discriminate between 
different types of signals. There have been several studies 
that demonstrated how spiders move towards vibrations of 
various frequencies, similar to the way MEMS resonators 
and bandpass filters attempt to hone in on certain frequencies 
for communication purposes.  Resonators, which are basic 
building blocks of MEMS filters, are designed to reject 
certain frequencies from a wide range of signals and only 
allow a particular frequency band to pass through.   

The type of stabilimenta, a structural characteristic of the 
web, a spider chooses to spin is also influenced by vibration 
characteristics.  A spider that is in need of food will spin a 
spiral pattern, as oppose to a linear one, because the higher 
tension transmits high frequencies better than the linear 
pattern.  The high frequencies are generally produced by 
smaller prey.  This would suggest that the spider structures 
its web according to its food needs [24], similar to the way 
MEMS designers layout a resonant device in order to 
achieve high frequencies in the GHz range for 
communication devices.   

An import aspect of resonance in MEMS and nature is 
movement.  Blickhan and Full [25] conducted a study of 
multi-legged locomotion in animals as diverse as 
cockroaches and kangaroos in order to develop a model of 
“legged terrestrial locomotion.”  They found that the 
dynamics of movement depend on the number of legs one 
has and the gait or movement pattern.  Four- and six-legged 
creatures had greater whole body stiffness than two-legged 
creatures.  The greater whole body stiffness in the four- and 
six-legged creatures resulted in higher natural frequencies, 
just as a higher overall stiffness results in a higher natural 
frequency in MEMS.  Spiders generally have eight legs 
while insects have six legs.  In MEMS, we mostly observe 
resonators with four main legs for stability.  There are 
resonators with only two legs, but these tend to be slightly 
unstable with a tendency towards out of plane movement.  In 
spiders, eight legs can enable them to move faster and give 
them the ability to travel in different directions easily.  Some 
insects with six legs have a tendency to move forward more 
and not backwards and sideways as quickly as spiders.  In 
our MEMS resonator design, we only want to move in one 
direction based on the comb drive actuation, hence four legs 
provides more balance and stability than two legs.  
Additional legs are not needed because in these MEMS 
resonator designs, motion in multiple directions is 
undesirable.  However, if we look more broadly at other 
MEMS designs, such as micro-robots, more legs can be 

desirable to enable quick and easy movement in multiple 
directions. 

After 3.8 billion years of “research and development,” 
nature has discovered what works, what does not, and what 
is life sustaining, essentially perfecting its designs to meet 
the necessary functional needs.  These “successful designs” 
are ever-changing to meet environmental requirements and 
are driven by an ultimate challenge: survival.  Nature’s 
solutions are not perfect; they are solutions that are as good 
as they need to be to serve their purpose.   

IV. CASE-BASED REASONING FOR MEMS USING BIOMIMETIC 

ONTOLOGY 

Case-based Reasoning (CBR) is an artificial intelligence 
method that utilizes knowledge from a past situation to solve 
current problems.  Shank’s dynamic memory model [26] is 
regarded as the beginnings of CBR.  Kolodner used Shank’s 
model to create the first CBR system called CYRUS which 
was a basic question and answer system [27].  CBR is 
analogous to the human cognition and thought process.  With 
this analogy, cases can be regarded as “memories,” while 
retrieval is similar to “reminding” one of a particular 
instance, and case representation is the way one’s memories 
are organized.  CBR involves indexing past knowledge, in 
the form of “cases” to enable effective retrieval of solutions 
for a current problem. Indexing and case representation are 
the two initial and most important stages of CBR, 
determining the ultimate performance of a CBR program.   

In the context of our work, CBR takes advantage of 
previous human knowledge in the form of successful MEMS 
design cases to help guide humans and computational design 
tools towards more optimal design concepts.  Previous work 
[8] has shown that the integration of a CBR knowledge base 
with a multi-objective genetic algorithm (MOGA) can 
increase the number of optimal solutions generated for a 
given MEMS design problem.  CBR is used to help select 
the best candidates to be evolved in an evolutionary process 
such as MOGA.  In the following sections, we will examine 
the biological analogs of case representation and indexing as 
well as how they can support linkage in MOGA. 

A. Creating Evolutionary Linkage with CBR 

In linkage, as defined by Chen [14], by placing related 
genes close together on a chromosome, the GA programmer 
seeds the GA with initial designs with implicit linkages. The 
GA programmer may be adding her/his expertise to the 
codification in this process. This may be difficult to do, 
however, on new problems in which the programmer has 
limited experience.  

Applying the aforementioned definition to MEMS 
synthesis, we use the concept of linkage to refer to how 
closely MEMS building blocks should be linked in an 
evolutionary process.  With the integration of CBR and 
MOGA, CBR defines the linkages for the user with an 
automated case-based library of previous MEMS designs.  
CBR takes away from the user the burden of defining the 
problem by automatically selecting and optimizing design 
structures based on a few inputted design specifications. 
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CBR pulls out the best design cases for a given scenario and 
ranks them according to the user’s performance criteria.  The 
designs are then encoded in the component-based genotype 
representation to enable the evolutionary process. 
Incorporating other powerful computational tools, such as 
CBR, with MOGA can help MOGA converge faster and 
more efficiently to optimal design concepts. The linkage 
problem is alleviated in our MOGA program because CBR 
inherently defines linkage for MOGA with its case examples.  
Shown in Fig. 3 and Fig. 4 are examples of tight linkage 
generated by our integrated CBR and MOGA program. 

CBR assists MOGA by propagating the linkage of 
effective building blocks.  In one experiment [8], for each 
MOGA synthesis run, we used a population of 400 for 50 
generations.  Each constraint case of (1) no symmetry, (2) y-
symmetry, and (3) xy-symmetry had 5 runs of the MOGA 
process in order to see a good spread of designs.  We found 
that when MOGA is seeded with good starting designs from 
CBR, in some instances, y-symmetry and xy-symmetry 
constraints generate more pareto optimal designs.  A 
resonator with an enclosed frame mass and crab-leg 
suspensions (two beams with a local 90 degree angle) was 
selected as the starting design for a given resonant frequency 
(f0), stiffness ratio (Kx/Ky) and area constraint (Table I and 
Fig. 3). The aforementioned constraints correspond to the 
following design requirements:  f0 = 24.7 kHz, Kx/Ky � 47.9, 
Area � 1.455e-7 m2.  For this scenario, the mass and comb 
drives remained fixed while the crab-leg suspensions (which 
have the largest impact on the performance objectives) were 
allowed to change in width, length, and global orientation, 
but the crab-leg suspensions retained their local 90 degree 
angle.  

As one can see in Fig. 3, the initial design in Fig. 3a 
generated an optimal design (Fig. 3b) which had the leg 
suspensions rotated outside of the frame mass.  One would 
assume that if the objective is to minimize area, the 
suspensions would remain inside the mass, similar to the 
initial design in Fig. 3a.  However, because frequency and 
stiffness were also part of the optimization problem, MOGA 
determined that a design with the suspensions outside of the 
mass could produce a better resonant frequency and stiffness 
ratio.  This design again resembles some of the asymmetrical 
spider designs we discussed previously.  The resonator 
design in Fig. 3b may have not been considered by a human 
MEMS designer, but due to the linkage knowledge CBR 
gave MOGA, the design is a good candidate for further 
analysis and fabrication. 

 
TABLE I: EXAMPLE MOGA REPRESENTATION FOR INITIAL DESIGN IN FIG. 3 

MOGA Design Representation 

Gene 
Type MEMS Component 

10 Frame Mass 
9 Crab-leg Suspension 
5 Comb Drive 
1 Anchor  

 
Fig. 3. Resonant frequency = 23.8 kHz for initial MOGA design (a); 
Resonant frequency = 24.8 kHz for a pareto optimal y-symmetric design 
generated by MOGA (b) 

 
 

TABLE II: Example MOGA Representation for Initial Design in Fig. 4a 

MOGA Design Representation 

Gene 
Type MEMS Component 

15 Hollow Ring Mass 
2 Serpentine Suspension 
5 Comb Drive 
1 Anchor  

 

Fig. 4. Resonant frequency = 6969.3 Hz for initial MOGA design (a); 
Resonant frequency =  8299.9 Hz for a pareto optimal y-symmetric design 
generated by MOGA (b) 

Fig. 4 shows another example of tight linkage in our 
MOGA process.  The initial design was optimized with 
MOGA to meet the following design requirements:  f0 = 
8.3kHz, Kx/Ky �  29, Area � 3.7e-7 m2.  In this particular 
case, the initial design selected by CBR consisted of a 
hollow squared shaped mass with four serpentine springs.  
Again, the mass and comb drives remained fixed while the 
serpentine suspension blocks were free to mutate in length, 
width, number of loops, and their global angle orientation.  
This scenario also generated designs which had a similar 
appearance to spiders and insects (aside from the inherent 
manhattan geometry in the building blocks).  Minimizing 
area is our main design objective for all cases, and the y-
symmetry constraint runs had the smallest design area 
average (2.608e-7 m2) with a standard deviation of 7.031e-8 
m2. 
 

B. Case Representation and Biological Taxonomy 

Biological classification or taxonomy is a means by which 
biologists group and classify organisms.  Taxonomy helps 

(b) (a) 

(b) (a) 
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one identify evolutionary relationships and links between 
certain species, and in the case of MEMS, certain design 
structures.  Taxonomy began with classifying organisms 
based on shared physical traits, but these classifications have 
been modified over the years to reflect Darwinian 
evolutionary relationships.  As an example, biologists have 
classified over 40,000 species of spiders, but they believe 
there are still thousands of species which have not yet been 
identified and named.  As more species are discovered the 
current biological classification system can expand and 
change. 

The classification of animals and plants is inherently 
hierarchical; similar to the way our MEMS case library is 
hierarchical to demonstrate the relationships between 
designs. The 40,000 species of classified spiders are further 
divided into 3 suborders with 38 families and 111 
subfamilies.  The groups described by taxonomy get more 
specific as one goes from the kingdom classification all the 
way down to the species group.  Kingdom is the largest unit 
of classification (with approximately 5 kingdoms), phylum is 
the next unit of classification which further divides each 
kingdom, and this pattern continues down to the species 
level, forming a tree like hierarchy of organism 
representation.  As an example, shown in Table III is the 
classification of the Isopeda insignis spider.  No two species 
of spiders, or any plant or animal, will have the same 
scientific name (defined by the genus and species). The 
scientific name is a unique identifier just as each unique 
MEMS design component has a distinct identification 
number and gene type to distinguish it from other designs 
and enable efficient case retrieval. 
 

TABLE III: CLASSIFICATION OF AN ISOPEDA INSIGNIS SPIDER [28] 

Kingdom Animalia 

Phylum Arthropoda 

Class Arachnida 

Order Araneae 

Family Sparassidae 

Genus Isopeda 

Species insignis 

 

 
 
MEMS is still an exploratory field and new designs and 

pieces of the MEMS hierarchy are constantly being added, 
similar to the way newly discovered species of organisms are 
expanding the biological taxonomy system everyday.  Others 
[29] have noted that it is still premature today to create a 
robust categorization due to the fact that many MEMS 
devices are still in the research phases and have not matured 
for every application.  MEMS categorization has often 
focused on fabrication methods and materials selection, 
geometry, or application areas [30]. There are a broad array 
of MEMS sensors and actuators available today.  Bell et al. 
[31] categorized MEMS by considering work-producing 
actuators, force sensors and displacement sensors fabricated 

by surface or bulk micromachining in their work and did an 
in depth classification of these devices.   

In MEMS, designs are often classified based on their 
performance and functional characteristics.  Sensors and 
actuators are the two most broad and commonly agreed upon 
categories of MEMS which can be divided further into 
families and classes.  Similar to the work of Bell et al. [31], 
for our purposes, we will have two kingdoms in our 
classification system: sensors and actuators.  Sensors and 
actuators can each be further divided into phylum or classes 
based upon their operating domains.  For our purposes, we 
will assume six operating domains based upon input and 
output signals MEMS devices utilize: (1) Magnetic, (2) 
Thermal, (3) Electrical, (4) Mechanical, (5) Chemical, and 
(6) Optical. 

Imagine the aforementioned domains placed in a 6 by 6 
matrix (with all six categories lined up on the rows and 
columns) to enable multiple input and out combinations.  For 
example, a thermal-mechanical sensor might take a thermal 
input and have a mechanical deflection as its output. For a 
piezoelectric sensor, it will output a voltage in response to an 
applied mechanical stress, enabling a further categorization 
of the mechanical-electrical class.  Because the user of our 
CBR program may be searching for designs based on input 
and output domains or application areas, it is important to 
index cases by both.  Our MEMS hierarchy starts with 
sensors and actuators, and then branches out to the various 
input and output mechanisms, and under each of these are 
specific application areas (RF MEMS, Micro-fluidics, 
BioMEMS, Optical MEMS, etc.), and then divided further 
are whole MEMS devices, which are broken down into their 
various components and primitive elements.   

Our work focuses currently on resonant structures, such as 
resonators, accelerometers and filters, thus traversing the 
MEMS hierarchy, our work falls under the electrical (input 
and output domain) where electrostatics are primarily used.  
Fig. 5 is a condensed graph, and is not inclusive of all 
MEMS devices.  The portion shown demonstrates how the 
classification leads to accelerometers, filters, and resonators 
– the focus of our work.  Resonators, basic components of 
filters, can be further decomposed into masses, springs, 
comb drives, and anchors.  Each one of the aforementioned 
components would have a unique identifier to distinguish 
them from others.  Nguyen [32] classifies MEMS filters 
based on their ability to achieve a certain frequency range, 
and import part of being able to develop RF communication 
devices.   

A hierarchy for biological organisms was created just as a 
hierarchy for CBR needs to be created in order to sort 
information and efficiently pull the most relevant primitives 
and designs for evolutionary computation.  Our current CBR 
hierarchy classifies designs based on their shared 
functionality and performance. 
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Fig. 5. MEMS hierarchy with biological analogy 

 
Ontology is a way to represent knowledge in a specific 

domain, helping an artificial intelligence (AI) program to 
define and retrieve objects.  A general hierarchy or structure 
of ontology is the following [33]: objects, classes of objects, 
attributes of objects, and relations between objects.  Shown 
in Fig. 6 is our current MEMS case library ontology.  Using 
entity-relationship diagram notation, one can observe how 
objects such as MEMS resonators and filters are related 
together.  In the diagram, ‘d,p’ indicates a disjoint/distinct 
and partial relationship between classes, in order to account 
for designs that have not yet been created or added to the 
library. Attributes of each object include indices for quick 
retrieval and overall device performance. 

 

 
 

Fig. 6. CBR entity-relationship database schematic for case library with 
filters added 

 

The database diagram in Fig. 6 represents how 
information is stored in our case-based library.  This new 
case library will be integrated into our current MEMS design 
synthesis program, shown in Fig. 7, to further generate and 
optimize new MEMS design structures. 

 
 

 
Fig. 7. MEMS design synthesis flowchart 

 

V. CONCLUSIONS AND FUTURE WORK 

Our MEMS synthesis architecture with integration of 
MOGA and CBR deals with the concept of linkage by using 
a component-based genotype representation and a CBR 
automated knowledge base.  CBR provides MOGA with 
good linkage information through past design cases while 
MOGA inherits linkage information through our component 
based genotype representation. 

As part of our future research plan, we will examine how 
linkage learning can be integrated with MOGA when CBR 
may not be able to select a good initial design.  Further 
exploring biomimetics and the ties to MEMS synthesis 
algorithms is another area to pursue, investigating how 
increasing the number of leg components can create optimal 
designs in other MEMS areas such as micro-robots.  
Currently, we are moving towards creating a broader MEMS 
classification scheme and building up a case library of 
MEMS filter designs and their accompanying components to 
further expand the range of designs covered by our program. 
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