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Simple Summary: Pancreatic cancer will soon become the second leading cause of cancer-related
death mainly due to a lack of early diagnosis. Artificial intelligence is being applied in various
aspects of diagnosing medical conditions. In this review, we summarize the current literature on the
application of artificial intelligence in the diagnosis and management of premalignant lesions that
would otherwise progress to pancreatic cancer.

Abstract: Pancreatic cancer is projected to become the second leading cause of cancer-related mor-
tality in the United States by 2030. This is in part due to the paucity of reliable screening and
diagnostic options for early detection. Amongst known pre-malignant pancreatic lesions, pancreatic
intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasms (IPMNs) are the
most prevalent. The current standard of care for the diagnosis and classification of pancreatic cystic
lesions (PCLs) involves cross-sectional imaging studies and endoscopic ultrasound (EUS) and, when
indicated, EUS-guided fine needle aspiration and cyst fluid analysis. However, this is suboptimal for
the identification and risk stratification of PCLs, with accuracy of only 65–75% for detecting mucinous
PCLs. Artificial intelligence (AI) is a promising tool that has been applied to improve accuracy in
screening for solid tumors, including breast, lung, cervical, and colon cancer. More recently, it has
shown promise in diagnosing pancreatic cancer by identifying high-risk populations, risk-stratifying
premalignant lesions, and predicting the progression of IPMNs to adenocarcinoma. This review
summarizes the available literature on artificial intelligence in the screening and prognostication of
precancerous lesions in the pancreas, and streamlining the diagnosis of pancreatic cancer.

Keywords: artificial intelligence; pancreatic ductal adenocarcinoma; pancreatic cysts; endoscopy; IPMN

1. Introduction

While survival rates for lung, breast, and colorectal cancers (the three leading cancers
in the US) have steadily improved over the past two decades, pancreatic cancer continues
to carry a dismal prognosis, with 5-year survival rates of only 10% [1,2]. Due to the absence
of symptoms in early disease, most pancreatic cancers (80–85%) are diagnosed after they
have already metastasized or become unresectable [3].

The main opportunity for improving pancreatic cancer survival lies in its early diag-
nosis and surgical resection, highlighted by the comparatively high 5-year overall survival
rates for those with stage 0 and 1A PDAC (85.8% and 68.7%, respectively) [4]. The most
common pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). The pathways to
PDAC are illustrated in Figure 1. PDACs typically first present as pre-malignant lesions.
The most common precursor lesion is pancreatic intraepithelial neoplasia (PanIN), which
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accounts for 75–80% of PDACs. The progression of PanIN to PDAC has been well char-
acterized; however, this is a pathologic diagnosis and not detectable in current imaging
modalities [5]. Due to diagnostic technology limitations, PanINs do not represent viable
options for pancreatic cancer screening.
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(MCN). Non-mucinous cysts: serous pseudopapillary neoplasms (SPN), lymphoepithelial cysts
(LEC), and cystic neuroendocrine tumors (NET). Pseudocysts, serous cystadenomas, and LEC are
benign lesions.

Other PDACs (15–20%) originate as cystic lesions, most commonly intraductal papil-
lary mucinous neoplasms (IPMNs), which account for half of all pancreatic cystic lesions
(PCLs) [6]. IPMNs are mucin-producing epithelial tumors with papillary architecture
on histology, and may progress to high-grade dysplasia and pancreatic cancer [7]. They
are classified by location. The most common type is branch-duct (BD)-IPMN, a cyst that
communicates with the main pancreatic duct [6]. Main-duct (MD)-IPMNs represent the
main pancreatic duct dilation without other causes of obstruction. Mixed IPMNs display
features of both types. Mucinous cystic neoplasms (MCNs), another type of mucinous cyst,
also carry a risk of malignancy.

Non-mucinous pancreatic cysts include solid pseudopapillary neoplasms (SPNs) and
cystic neuroendocrine tumors, representing less aggressive tumors than PDAC. Benign
non-mucinous cysts include serous cystadenomas and lymphoepithelial cysts. The risk of
malignant transformation in serous cystadenomas is less than 0.1% [8].

1.1. Challenges in Predicting Progression to PDAC

It is not recommended for the general population to undergo screening for PDAC due
to the low overall prevalence and high risk of overdiagnosis and unnecessary interven-
tion. Premalignant lesions are typically discovered incidentally on abdominal imaging for
other clinical indications [6]. Up to 13% of all cross-sectional abdominal imaging studies
in asymptomatic subjects will identify a pancreatic cyst, with higher rates for older pa-
tients. This creates the diagnostic challenge of differentiating benign cysts from those with
malignant potential [9].

Pre-operative histopathologic detection of advanced neoplasia in IPMNs is challeng-
ing [10]. Endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) of PCLs and
cyst fluid analysis are standard-of-care diagnostic modalities. Multiple case series high-
light the inadequacy of these techniques in accurately identifying malignant lesions. A
2014 meta-analysis determined that although EUS FNA-based cytology had a high speci-
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ficity of 90.6% (95% confidence interval 0.81–0.96), it had an intolerably low sensitivity of
68.4% (0.44–0.82) for distinguishing malignant from benign IPMNs [11].

While the goal of surgery is to resect lesions with advanced neoplasia (high-grade
dysplasia and/or adenocarcinoma), approximately 42–63% of resected IPMNs were found
to have only low-grade dysplasia [12–17]. Conversely, a negative biopsy or cytology does
not rule out the presence of a high-risk lesion, and it is estimated that 5% of patients with
IPMNs have concomitant adenocarcinoma elsewhere in the pancreas [18,19]. Considering
the high morbidity of resection techniques (including Whipple procedures, left pancre-
atectomy, or total pancreatectomy) [14], there is a dire need for a reliable, accurate, and
minimally invasive diagnostic tool for risk stratification of precancerous lesions.

1.2. Artificial Intelligence

With the abundance of clinical, radiographic, genomic, and endoscopic information
becoming more readily available, there is a unique role for artificial intelligence (AI) in
integrating and leveraging these data to diagnose pancreatic cancer and risk stratify lesions.
AI is a mathematical application that automates pattern recognition and learning. It can
transform large amounts of data from a reference set into clinically actionable conclusions.

AI techniques range in complexity from machine learning (ML) algorithms to deep
learning (DL). While simple models have been used since the 1960s in the form of logistic
regression, recent decades have seen the development of sophisticated neural network
algorithms to predict risk for breast, lung, and other cancers [20–27]. The area under the
curve (AUC) is a commonly used metric in risk modeling. AUC ranges from 0.50 (random
chance) to 1.0 (perfect prediction).

2. Methods

Primary literature describing novel artificial intelligence algorithms to predict out-
comes relating to PDAC or precancerous pancreatic lesions was evaluated. A literature
search was conducted via PubMed and Embase using the terms “artificial intelligence”,
“machine learning”, “radiomics”, or “deep learning” combined with “PDAC”, “pancreatic
cystic lesions”, or “endoscopic ultrasound”. Articles were included if they described AI or
ML algorithms that predicted clinically significant endpoints such as diagnosis of various
PCL subtypes, diagnosis of PDAC, response to treatment, or overall survival.

We included studies published within the past ten years (2013–2023) that reported
measures of accuracy such as AUC, accuracy, sensitivity, or specificity. Earlier articles
utilized simple machine learning algorithms such as logistic regression; however, there
was a drastic shift toward deep learning and neural networks after 2020. Case reports,
protocols, meta-analyses, and review articles were excluded from our analysis.

3. Results
3.1. Developing a Screening Strategy

Risk factors for pancreatic cancer include cigarette smoking, obesity, chronic pan-
creatitis, advanced age, family history, and hereditary cancer syndromes [28–30]. Other
patient characteristics such as diet, medication use, and infections have been investigated as
possible contributors to PDAC development [31–33]. Despite extensive research into novel
predictors and effect sizes of known risk factors, there is currently no unified recommenda-
tion on a high-risk population (outside of those with hereditary cancer syndromes) that may
benefit from dedicated screening [34]. However, AI models have shown promise in incor-
porating multiple demographic and clinical characteristics to identify such a population.

3.1.1. Models Incorporating Clinical Data

In a European study, Malhotra et al. (2021) used primary care data to train a logistic
regression model to predict pancreatic cancer development in a cohort of patients aged
15–99 years [35]. The algorithm used documented symptoms and medical history to
identify patients at a “high risk” of developing pancreatic cancer. Parameters included
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cardiovascular comorbidities, gastrointestinal disorders, and symptoms. The AUC was
65.6% for those under 60 years and 60.9% for older patients. The authors estimated that
such an algorithm could result in earlier diagnosis for around 60% of pancreatic tumors.
These models could be utilized for identifying an at-risk population.

New-onset diabetes has been suggested as a risk factor or potential early predic-
tor of PDAC in multiple studies [36–39]. The pathophysiology of this link is complex;
longstanding diabetes is a known risk factor for PDAC [30], and new evidence suggests
that pancreatic cancer may also cause diabetes through a paraneoplastic syndrome or
direct effects on islets and insulin secretion [40]. Using a discovery cohort of patients
with new-onset diabetes, Sharma et al. (2018) created the END-PAC model to predict the
development of pancreatic cancer within 3 years of diabetes onset [41]. The AUC of this
logistic regression model was 0.87, and sensitivity and specificity were 80%. Significant
predictors included weight change, change in blood glucose, and age of onset of diabetes.
A newly published 2023 study by Chen et al. used random forest models to predict risk in
patients with elevated glycated hemoglobin (HbA1c) [42]. When age, weight change, and
other clinical variables were included, the sensitivity, specificity, and positive predictive
value for patients in the top 20% of predicted risk were 60%, 80%, and 2.6%, respectively.

3.1.2. Models Incorporating Genomics and Radiomics

Genetic mutations in the adenoma–carcinoma sequence leading to PDAC are well doc-
umented. KRAS and GNAS mutations are known to drive the progression of IPMNs [43].
When combined with the inactivation of tumor suppressor genes such as TP53 and SMAD4,
these mutations cause aggressive tumor growth. Certain single-nucleotide polymorphisms
have also been suggested as being linked to PDAC [44,45].

Klein et al. developed a logistic regression model incorporating genetic data to predict
pancreatic cancer risk in a non-Hispanic population with European ancestry [46]. Patient
and family history were included. The AUC was 58% for predicting cancer development,
which increased to 61% when genetic factors (single-nucleotide polymorphism data) were
included in the model. Building upon these findings, a 2022 Japanese study proposed a
strategy to identify patients who may benefit from screening for early disease [9]. Their
logistic regression model was designed using data from 35 patients with early-stage PDAC,
and incorporated clinical indicators (tumor biomarkers, elevated pancreatic enzymes,
pancreatitis history), risk factors (family history, diabetes, smoking history), and imaging
findings (main pancreatic duct dilation). This model achieved an AUC of 0.67 for detecting
early-stage PDAC in patients for whom imaging was “strongly recommended” based on
the proposed screening strategy. When such patients had notable imaging findings, the
AUC rose to 0.80.

While CT and MRI classically provide qualitative data that are interpreted by radi-
ologists, images can also be considered as a matrix with large amounts of quantitative
data. Qureshi et al. published a novel study in identifying high-risk individuals based
on “pre-diagnostic” CT imaging, acquired 6 months to 3 years before patients were diag-
nosed with PDAC. These imaging studies were performed prior to the development of
qualitative signs of cancer that could be detected by trained radiologists [47]. Textural and
morphological features of the pancreas were analyzed from a set of 66 contrast-enhanced
abdominal CT scans. The naïve Bayes classifier (ML algorithm) was able to classify scans
into pre-diagnostic vs. control (no PDAC diagnosis) groups with 86% accuracy in an
external dataset. The generalizability of this model, however, was limited by its relatively
small dataset.

In summary, existing AI models appear to be of limited immediate clinical utility in
dictating screening guidelines for the general population, with the AUC hovering around
0.60. Their reliability increases in populations already determined to be at higher risk, such
as those with new-onset diabetes, and they do show promise in identifying subsets of these
patients who may benefit from screening. Predictive ability increases with the addition of
genomics and radiomics into ML models.
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3.2. Detection and Risk Stratification of Pancreatic Cystic Lesions

Professional societies provide diverging recommendations for diagnosing and mon-
itoring incidentally discovered PCLs. There is variation in the timing of cross-sectional
imaging for diagnosis and surveillance, indications for EUS and EUS-guided (fine-needle
aspiration), the role of cyst fluid biomarkers and other advanced technology, indications
for surgery, and surveillance intervals. The Fukuoka/International Consensus guidelines
provide a risk stratification structure for IPMNs, stratifying them as “high-risk stigmata”
and “worrisome features”11]. EUS and EUS with FNA are recommended by the Fukuoka
guidelines in the presence of worrisome features. Both the American College of Gas-
troenterology (ACG) and Fukuoka guidelines recommend EUS if there is preceding acute
pancreatitis [11,48]. The American Gastroenterology Association (AGA) recommends EUS-
FNA for cysts with at least two high-risk features (size ≥ 3 cm, dilated main pancreatic
duct, or intracystic solid component) [48]. Conflicting recommendations between the three
societies remain regarding screening intervals and characteristics of “high-risk” lesions.

3.2.1. Cross-Sectional Imaging in IPMNs

One reason for differing guidelines is the availability of vast amounts of clinical,
radiographic, and endosonographic findings of varying clinical significance that could be
taken into account. Table 1 summarizes studies utilizing AI models for the risk stratification
of IPMNs. While the rates of malignancy in IPMNs is well characterized (ranging from 57
to 92% for MD-IPMN and 6 to 46% for BD-IPMNs), few reliable tools exist for predicting
the risk of an individual lesion progressing to carcinoma [49]. Multiple nomograms have
been proposed that incorporate factors ranging from biomarkers and radiologic features to
immunofluorescent images of resected cysts [50–52].

Table 1. Radiomic models for diagnosis and risk stratification of IPMNs.

Study Sample
Size Data Best-Performing Model Task AUC Comparisons

Permuth,
2016 [53] 38 CT texture

analysis + genomics Logistic regression Distinguish malignant
from benign IPMNs 0.92 N/A

Hanania,
2016 [54] 53 CT imaging (texture,

shape, intensity) Logistic regression IPMN high- vs.
low-grade dysplasia 0.96 Lower false positive

rate than Fukuoka

Chakraborty,
2018 [55] 103 CT imaging features Random forest High- vs.

low-risk BD-IPMN 0.77 N/A

Corral,
2019 [56] 139 MRI imaging features CNN

Identify high-grade
dysplasia or cancer

in IPMNs
0.78

Accuracy was
comparable to

AGA/Fukuoka

Chu,
2022 [57] 214 CT radiomics features Random forest Classify mucinous and

non-mucinous cysts 0.94
Accuracy was
comparable

to radiologist

Liang,
2022 [58] 193 CT + clinical data Fused radiomics-DL Differentiate MCN

from IPMN 0.973 N/A

Machine learning algorithms have demonstrated the ability to integrate this multi-
tude of information to more reliably risk-stratify PCLs, particularly IPMNs. In a 2016
proof-of-concept study, Permuth et al. demonstrated the potential of texture analysis of CT
images to identify malignant IPMNs with an AUC of 0.77 [53]. This improved to 0.92 with
the inclusion of microRNA genomic data (sensitivity 83%, specificity 89%). In compari-
son, “worrisome features”, as defined by consensus guidelines (main duct dilation, cyst
size > 3 cm, cyst wall thickening, mural nodules, or acute pancreatitis), yielded an AUC of
only 0.54. Hanania et al. reported similarly promising findings, with a logistic regression
model achieving an AUC of 0.96 (sensitivity 97% and specificity 88%). These models
had false positive rates of 5%, while the Fukouka criteria had a 36% false positive rate in
their cohort [54]. Both studies were limited by small patient populations; only 38 patients
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(20 benign and 18 malignant IPMNs) were included in the first study, and 53 (19 benign
and 34 malignant IPMNs) in the second.

In the past five years, more sophisticated AI algorithms have been leveraged for risk
prediction. A retrospective study by Chakraborty et al. (2018) used CT scan features from
103 patients to predict IPMN dysplasia [55]. All patients underwent resection of BD-IPMNs,
which were confirmed on pathology. Random forest and support vector machine (SVM)
models were developed to categorize cysts into low or high risk (determined by grade of
dysplasia at resection). Using radiographic features along with five clinical variables (age,
gender, cyst size, presence of solid component, and symptoms), the random forest model
yielded an AUC of 0.77 with a sensitivity and specificity of 0.68 and 0.84, respectively.

Corral et al. (2019) used convolutional neural networks (CNNs) to identify normal
pancreas, low-grade dysplasia, and high-grade dysplasia/adenocarcinoma based on MRI
radiomics features of IPMNs prior to pancreatectomy. The deep learning protocol achieved
a sensitivity and specificity of 75% and 78%, respectively, with an AUC of 0.90 (95%
confidence interval 0.71–0.85) for detecting high-grade dysplasia or cancer. In comparison,
the AUC was 0.76 (0.70–0.84) for the AGA and 0.77 (0.70–0.85) for the Fukuoka guidelines in
their cohort [56]. Interestingly, the authors found the Fukuoka criteria to be more sensitive
and AGA to be more specific for detecting high-risk lesions.

3.2.2. Cross-Sectional Imaging in PCLs

In a larger retrospective study including 214 patients who underwent resection for
pancreatic cysts at Johns Hopkins, the radiomics-based random forest model yielded an
AUC of 0.940 for distinguishing between five types of cystic neoplasms (IPMNs, MCNs,
SPNs, SCAs, and cystic NETs) [57]. The radiomics model was compared to radiologists’
diagnostic interpretation; the AUC for academic radiologists reached 0.895. Predictions
were made based on radiomics features from preoperative CTs and demographics (age and
gender). Liang et al. reported similar success for their SVM and logistic regression models
in differentiating between IPMNs, MCNs, and SCAs based on data from CT images. An
SVM algorithm was used to train a fused radiomics–DL model, which yielded an AUC of
0.92 for the diagnosis of SCA and 0.97 for differentiating between MCNs and IPMNs [58].

Artificial intelligence has also been used to optimize images and improve the diag-
nostic accuracy of radiologist interpretation and reading. Matsuyama et al. (2022) applied
deep learning reconstruction (DLR) to improve the quality of MRCP images obtained from
32 patients with IPMNs. The reference standard was determined through EUS, ERCP, or
surgical histopathology. DLR was able to significantly improve the signal-to-noise ratio
and contrast-to-noise ratio. One model improved reader accuracy from 70% to 78% for
classifying IPMN subtypes [59]. Inter-observer agreement was almost perfect after im-
age reconstruction, with a weighted Kappa statistic between 0.97 and 0.98 (p < 0.0001).
Yamashita et al. (2021) took a unique approach to AI-guided diagnosis by using natural
language processing (NLP) to identify patients with PCLs and extract lesion measure-
ments from CT and MRI radiologist reports [60]. The true positive rate was 98.2% with a
false positive rate of 3.0% when the model was compared against the consensus of two
radiologists’ annotations.

3.2.3. EUS-Guided Diagnostics

The morphology of PCLs observed during EUS has been utilized in AI models (Table 2).
Vilas-Boas et al. (2022) developed a CNN algorithm to differentiate mucinous cysts (IPMNs
and MCNs) from non-mucinous cysts (SCAs and pseudocysts) [61]. Cyst type was deter-
mined based on resected specimens, biopsy samples, or cyst fluid studies and cytology. Mu-
cinous cysts were defined as having CEA fluid levels > 192 ng/mL and glucose < 50 mg/dL,
or mucinous epithelial cells on cytology. EUS images from 28 pancreatic cysts were used to
train the model, which achieved an AUC of 1 for identifying mucinous cysts. The overall
accuracy was 98.5%, sensitivity 98.3%, and specificity 98.9%.
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Similarly, EUS-delineated cyst morphology has also been applied to develop AI models
for differentiating dysplasia in IPMNs [23,62,63]. Schultz et al. (2022) developed CNNs to
distinguish between IPMNs with low-grade dysplasia and high-grade dysplasia/carcinoma
(advanced neoplasia) [23]. A training set of EUS images was collected from 43 patients
who underwent pancreatectomy for histologically proven IPMN. Surgical histopathology
served as the reference standard. EUS images containing the lesion of interest were selected
by taking every third or sixth video frame. The manual pre-processing of images included
resizing and normalizing pixel values. The algorithm was able to classify advanced neopla-
sia with an impressive accuracy of 99.6%; this was higher than individual guidelines (AGA,
ACG, and revised Fukuoka and European guidelines), which had accuracies between 51.8%
and 70.3% for this cohort.

The last two decades have seen the development of novel biopsy and visualization
using advanced endoscopy. Confocal laser endomicroscopy (CLE) is a technique where
a mini-probe is advanced through an EUS-FNA needle [64]. Tissue is illuminated with a
low-power laser, and a real-time, gray-scale image of the cyst epithelium at the microscopic
level is created [65–67]. Endoscopists are able to obtain real-time optical biopsies of PCLs
in multiple locations. Over the last decade, major trials (INSPECT, DETECT, CONTACT,
INDEX) have established reference standards and safety profiles for EUS-nCLE in subjects
with PCLs [68–72].

EUS-guided needle-based CLE (nCLE) can accurately diagnose IPMNs and identify
high-grade dysplasia, and has the potential to risk-stratify cystic lesions [67–69,72–74].
This offers a significant benefit over classical pancreatic cyst sampling methods, which
can be unreliable and carry a risk of pancreatitis and bleeding [75]. However, EUS-nCLE
video files are typically large with multiple frames, and there is often interobserver varia-
tion. AI can offer the ability to interpret such large amounts of imaging data and detect
advanced neoplasia.

Our team previously designed a CLE-based convolutional neural network (CNN)-
artificial intelligence (AI) algorithm to risk-stratify BD-IPMNs (predict advanced neoplasia
vs. low-grade dysplasia) [76]. EUS-nCLE video frames from 35 patients with histologically
proven IPMNs were used to design two CNN models to measure papillary epithelial thick-
ness (indicative of advanced neoplasia) and to extract nCLE features for risk stratification.
The AI models had higher accuracy (82%) for the detection of HGD-Ca than the AGA
guidelines (68.6%) and Fukuoka criteria (74.3%).

AI has been applied to histopathologic diagnosis after resection as well. Kriegsmann et al.
developed three CNN algorithms for identifying and quantifying tissue categories such
as PanIN and PDAC in whole-tissue slides from 201 patients who underwent surgical
resection of pancreatic lesions [77]. The models achieved a balanced accuracy of 92.1%.

Table 2. EUS-based models for evaluating PCLs.

Study Sample
Size Model Task Accuracy Comparisons

Schultz, 2022
[23] 43 CNN Low- vs. high-grade

IPMN dysplasia Accuracy 99.6% Higher accuracy than AGA,
ACG, Fukuoka guidelines

Kuwahara,
2019 [62] 50 Deep learning Evaluate malignant

potential in IPMN images
Sensitivity 95.7%, Specificity

96.2%, Accuracy 94.0%
Human interpretation,

56% accuracy

Nguon,
2021 [63] 109 CNN Differentiate between

MCNs and SCAs Accuracy 83%

Machicado,
2021 [76] 35 CNN Low- vs. high-grade

BD-IPMN dysplasia Accuracy 82% Higher accuracy than AGA
and Fukuoka guidelines

3.2.4. Limitations and Future Directions

There are some limitations to imaging-based AI models that must be taken into
account. First, because histopathology of resected lesions acts as the reference standard,
most included patients would have required surgery, and AI models may be biased toward
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higher-risk populations. Second, most studies describe single-center algorithms that were
not externally validated. Generalizability and reproducibility should be demonstrated with
further multi-center analyses. Additionally, studies on AI-based risk stratification of PCLs
have all been retrospective. Prospective validation studies are necessary to demonstrate
their utility in clinical practice.

Multiple studies are also limited by small sample sizes; this may be due to the low
overall number of patients who undergo surgical resection of PCLs within the study periods,
as well as a lack of widespread adoption of EUS and nCLE (with the need for training on
advanced endoscopy and novel nCLE imaging techniques).

AI offers useful guidance for clinical decision-making surrounding PCLs. An AI-based
decision support system (DSS) is a computer program that utilizes artificial intelligence
techniques to assist decision-makers in solving complex problems. It combines machine
learning algorithms, statistical models, and decision analysis tools to provide recommenda-
tions to the user. The system may also provide simulations of different scenarios, predictive
modeling, and visualization tools to help users understand the possible outcomes of their
decisions. AI-based DSS has been utilized for predicting mental health disorders, recom-
mending surgery, and diagnosing COVID-19, among other tasks [78–84]. With increasing
clinical and imaging data on PCL subtypes collected, future studies in this field may
leverage DSS as well.

3.2.5. Radiomics in Detection of PDAC

AI has been applied to imaging analysis of lung, prostate, and breast cancer; however,
the task of diagnosing pancreatic cancer remains particularly challenging [78,85–88]. The
pancreas is highly variable in size, shape, and location. It lies in close proximity to organs
of varying radiographic textures (including the liver, stomach, intestines, and spleen), and
occupies comparatively little space in cross-sectional images. Pancreatic tumors often have
similar characteristics as their background tissue, which impacts diagnostic efficiency [89].
Therefore, while AI algorithms for certain solid tumors are able to analyze minimally
processed images, researchers often need to manually outline or segment the pancreas
(divide it into four segments) prior to applying AI techniques [47,55]. This increases
specialist workload and time to arrive at a diagnosis. A group at Zhejiang University was
able to create a deep learning model that automated image processing and analysis [90].
Using nearly 150,000 abdominal CT images from 319 patients, the model was able to
diagnose pancreatic tumors and propose treatment with an accuracy of 82.7% for all
pancreatic tumor types. The model yielded an AUC of 0.87. Notably, there was higher
accuracy for identifying PDAC (87.6%), and perfect accuracy (100%) for IPMNs.

Chen et al. developed an SVM prediction algorithm to predict PDAC in chronic
pancreatitis patients based on CT images taken prior to cancer diagnosis [91]. The algorithm
outperformed expert image review, achieving 100% accuracy and an AUC of 1.00 in chronic
pancreatitis patients. For patients without pancreatitis, the accuracy was still high at 94–95%
with an AUC of 0.98–0.99.

3.3. AI in Pancreatic Cancer Prognostication
3.3.1. Treatment Selection

For patients with resectable disease, standard-of-care therapy involves surgery and
adjuvant chemotherapy (typically FOLFIRINOX, which comprises fluorouracil, irinotecan,
leucovorin, and oxaliplatin) [92,93]. Locally advanced and unresectable cancers can be
treated through systemic chemotherapy and radiation. With the identification of common
mutations driving PDAC and an increased understanding of the tumor microenvironment,
there has been increased interest in immune checkpoint inhibitors and immunotherapy as
novel treatment options [94].

Proof-of-concept studies have provided promising evidence for AI in predicting
responses to various treatments. Liang et al. (2021) used a multivariate Cox regression
model to identify radiomics features from pre-operative MRIs that could predict individual
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response to a new oral therapy (S-1) as an adjuvant chemotherapy and postoperative
disease-free survival [95]. Tumor location and another imaging feature were significant
predictors of S-1 efficacy, with mass in the pancreatic head being associated with lower
treatment efficacy and survival.

Iwatate et al. (2020) developed random forest models with XGBoost to predict abnor-
mal p53 and PD-L1 expression, as well as survival, based on imaging features from CT
scans [96]. P53 mutations are associated with more aggressive PDAC [97], and PD-L1 is a
target for immunotherapies. Imaging features from CT scans of 107 patients with surgically
resected PDAC were used to train the AI models, which achieved an AUC of 0.795 and
0.683 for predicting the p53 and PD-L1 status, respectively. The authors also confirmed that
these mutations predicted lower overall survival in their population.

3.3.2. Survival Prediction

Although 20% of PDAC patients present with “resectable” lesions at diagnosis, approx-
imately a third of patients who undergo surgery develop recurrence after resection [98–100].
The American Joint Committee on Cancer (AJCC) uses the tumor, node, metastasis (TNM)
staging system to classify PDAC, with each stage carrying a different prognosis [101,102].
Various AI models have been developed to predict prognosis in other solid tumors [103,104].
Despite the multitude of clinical and radiographic data collected during routine care and
cancer treatment, there is currently no individualized, reliable risk score to assess survival
and recurrence.

Lee et al. (2022) developed a random forest model to predict overall survival and
recurrence-free survival for patients who underwent PDAC resection [105]. Using preop-
erative clinical data and CT images, the model yielded an AUC of 0.76 for 2-year overall
survival and 0.74 for 1-year recurrence-free survival. This was comparable to established
guidelines from the AJCC. Another random forest model by Kaissis et al. reported a higher
AUC of 90% with 87% sensitivity and 80% specificity for the prediction of above- versus
below-median overall survival for a similar population of PDAC patients. The model used
radiomics data from MRIs [106].

EUS-FNB data have been used to predict PDAC prognosis more accurately.
Park et al. (2021) obtained frequencies of gene mutations through targeted sequencing of
EUS-FNB specimens from PDAC patients [107]. Their Cox regression model successfully
classified patients into a high-risk group (median overall survival 5.95 months) and a
low-risk group (median survival 15.27 months) based on genetic mutations detected from
cyst fluid and clinical factors such as age, stage, and mass size. The hazard ratio was
6.06 (p < 0.001).

4. Discussion

Multiple retrospective studies have highlighted the potential of machine learning in
advancing pancreatic cancer screening and prognostication and improving the diagno-
sis and risk stratification of PCLs, particularly IPMNs. Some AI algorithms have shown
promise in identifying high-risk patients who may benefit from PDAC screening, while oth-
ers were able to accurately diagnose and risk-stratify pancreatic cysts, anticipate response
to treatment, and predict patient survival (summarized in Figure 2).

Earlier studies were centered around logistic regression models to identify predictive
factors for PDAC, while more complex decision trees and neural networks have demon-
strated greater accuracy in some recent studies. The primary benefit of AI lies in the ability
to predict outcomes based on vast amounts of radiographic, clinical, and endoscopic infor-
mation. Such data can be obtained in an inexpensive and minimally invasive manner as
part of routine care, potentially reducing the need for high-morbidity surgical resections.

Although recent studies continue to provide evidence against population-based screen-
ing for PDAC, AI can help identify subsets of patients at higher risk. Machine learning
application to CT or MRI images has proven to be a helpful adjunct to radiologist reads.
Its predictive ability has sometimes surpassed that of trained specialists or international
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guidelines. AI algorithms applied to advanced techniques such as EUS-nCLE have demon-
strated greater accuracy than the current SOC in diagnosing and risk-stratifying IPMNs.
After the diagnosis of PDAC, AI may play a role in identifying a personalized treatment
plan, as well as predicting prognosis.
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Figure 2. AI developments in PDAC diagnosis and treatment. Machine learning has been leveraged
to identify high-risk populations for PDAC screening, risk-stratify incidentally discovered PCLs, and
assist with PDAC prognostication.

Future Directions

Current challenges to creating accurate, scalable AI models for PDAC include insuffi-
cient data for model training, the subsequent risk of overfitting with prediction models,
and the need for specialized, resource-rich hospitals with large patient populations to
conduct such studies. There remains a need for multi-center studies that include diverse
cohorts to improve the generalizability of these algorithms. Additionally, the majority
of radiomics algorithms in this review required manual preprocessing of images, which
can be time-consuming for specialists. More sophisticated models that can be applied to
unedited images or videos would reduce long-term healthcare utilization.

Existing algorithms that risk-stratify PCLs may also be biased toward higher-risk
lesions; due to the absence of a reference standard other than surgical histopathology,
only patients who eventually required surgical resection were included in these studies.
Radiomics-based models may, therefore, overestimate risk when applied to a newly dis-
covered, undifferentiated lesion. The large proportion of patients in these studies who
were found to have benign PCLs also highlights the inadequacy of standard tools in
predicting malignant potential. Future models need to integrate all SOC variables, cyst
fluid analysis, and nCLE imaging to identify effective combinations of available data for
accurate diagnosis.

5. Conclusions

AI algorithms have been developed to identify high-risk populations who may benefit
from PDAC screening, determine malignant potential of PCLs, and predict treatment
response and cancer survival. Models for PCL risk stratification have demonstrated high
accuracies, while algorithms for predicting an individual’s risk of developing PDAC were
less reliable. There remains a role for more sophisticated algorithms that require minimal
data pre-processing, as well as models developed using diverse, multi-center cohorts.
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