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a b s t r a c t

We develop new tests for the coefficient on a time trend in a regression of a variable on
a constant and time trend where there is potentially strong serial correlation. This serial
correlation can also include a unit root. We obtain tests under two different assumptions
on the initial value for the stochastic component of the variable being examined, either
this being zero asymptotically and also allowing the initial condition to be drawn from
its unconditional distribution. We find that statistics perform better under the second
of these assumptions, which is the more natural assumption to make.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction 1

We examine the problem of conducting hypothesis tests on the coefficient on a time trend in a regression of a variable 2

that is serially correlated on a constant and time trend. Consider the model 3

xt = a + bt + wt , (1) 4

wt = rwt−1 + ut , 5

u1 = ξ 6

where {xt}Tt=1 are observed and {a, b, r, ξ} and the variance of ut are unobserved (for now consider ut to be serially 7

uncorrelated, the statistics presented in the Appendix A correct for additional serial correlation using estimators of the 8

spectral density of ut at frequency zero resulting in asymptotically similar tests to tests based on ut serially uncorrelated 9

under standard assumptions of the literature). 10

We are interested in testing the hypothesis 11

H0 : b = 0 (2) 12

Ha : b > 0. 13

The most likely application of these tests is for a pre-test for including a time trend in a regression. For many statistical 14

procedures being able to remove a time trend from consideration helps greatly not only in the precision of estimators but 15

also in the interpretation of results (because spurious correlation between time trends can be ruled out). However there 16

are some instances where theory implies the lack of a time trend in data. In an application of their methods Bunzel and 17

Vogelsang (2005) examine the Prebisch–Singer hypothesis. In hydrology there is a large literature related to testing the 18

potential long run rise or fall of the volume of water in a river despite serially correlated data (see Yue et al. (2002) for 19

an example). 20
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Fig. 1. Solid lines are size for FGLS (lower line is for ξ = 0) and the dotted line is for OLS. The dash–dot line in the second panel is GLS with a
unit root imposed.

The primary complication in deriving tests that control size and have good properties is due to the nuisance parameter r1

that describes the largest root in a model of the serial correlation of the regressor. If this parameter were known then2

xt can be quasi differenced and (at least asymptotically) a UMP test exists for the one sided test and a UMPU test exists3

for the two sided hypothesis. Alternatively if this parameter is bounded in absolute value with a bound that is (given the4

sample size) far enough from one then standard tests discussed below are available and can be employed. These too have5

asymptotic optimality properties. We are primarily concerned with testing situations where such a bound does not exist,6

and we would like to allow for r to be close to or equal to one. When the parameter approaches one or could be one, a7

number of papers have examined the regression coefficient under study (Canjels and Watson (1997) for estimation, and8

Bunzel and Vogelsang (2005), Harvey et al. (2007, 2010) and Perron and Yabu (2009) have each provided tests).9

The following figure (Fig. 1) shows the problem of size control for models where r becomes close to or equal to one10

and also provides a guide to some of the previous solutions to providing tests that can potentially control size uniformly11

over values for r . For the model in (1) with ut ∼ N(0, 1) we examine the size of tests of (2) undertaken in a few different12

ways. The first consideration is to simply construct the usual one sided test on the OLS estimate for b from a regression13

of xt on a constant, time trend and lag of xt using the data from t = 2, . . . , T . The second consideration is to use a t14

test based on the Feasible GLS estimator for b where rather than knowing r we replace it with an estimator based on a15

regression of the residuals from a regression of xt on a constant and time trend on the residuals lagged one period (again16

dropping the first observation because of the lag). The first panel of Fig. 1 shows the size from a Monte Carlo for various17

values for r (the x axis reports this as δ = T (1 − r), anticipating the asymptotic problem that is examined below) where18

T = 500 and results reported are averages over 10000 replications. Two variations on ξ are considered, either setting19

this value to zero or instead allowing ξ to be zero for r = 1 and drawn from a normal distribution with mean zero and20

variance 1/(1−r2) when r < 1. Whilst the numbers are not identical the effect of the different initial conditions on OLS is21

not noticeable in the figure. It is clear that when δ is closer to zero (r closer to one) that standard tests fail to control size.22

As δ becomes larger, standard tests do indeed control size. Hence the difficult part of the testing problem to be solved23

is in the region of r = 1, since any test that has good properties in that region could be mixed or ‘switched’ with the24

standard one when r is small enough.25

The second panel of Fig. 1 reports the same values as in the first panel focussing on values for r closer to one, where26

0 ≤ δ ≤ 20. Added to the figure is the size of tests based on the MLE for b when we assume r = 1. The test imposing27

r = 1 is undersized for r < 1, quickly converging to zero. It is here that one strategy that could be employed becomes28

clear — constructing a test that mixes the GLS test at r = 1, which controls size at the boundary point and is otherwise29

undersized, with the test that works for r sufficiently less than one could, depending on how the tests are mixed control30

size. A test could control size by putting enough weight on the tests at r = 1 when r < 1 but in the region where the31

regular tests are oversized could control size in this region as it is mixed with a severely undersized test, and then for32

values for r further from one place more weight on the usual test. This is precisely the insight of Harvey et al. (2007),33
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who suggest a test statistic of the form z iλ = z0(1−λ(x))+λ(x)Ri(x)z1 where z0 is the test when r is far less than one and 1

z1 is the test based on imposing r = 1. The mixing statistic λ(x) is a random variable depending on the data that has the 2

properties that (pointwise) is such that λ(x) →
p 1 if r = 1 and λ(x) →

p 0 for r < 1. The pointwise properties are not 3

sufficient in themselves to ensure uniform size control, however they show in Monte Carlo results that size does appear 4

to be controlled for values of r near one for many sample sizes. The role of Ri(x) is because when they set Ri(x) = 1 5

(as for the zλ statistic) the test is severely undersized asymptotically for δ near zero, so alternative choices were made to 6

lessen this issue. 7

Perron and Yabu (2009) criticize this formulation of the mixture on a number of grounds. From a practical point of 8

view the strongest criticism is that the mixing coefficient λ(x), although converging to one asymptotically when r = 1, 9

has in finite samples a distribution that places positive weight on smaller values for r which can impact the performance 10

of the test. Indeed, to construct λ(x) Harvey et al. (2007) make a number of ad hoc choices motivated by the need to 11

control size and choose power curves, resulting in three variations of the test (i.e. choices of Ri(x)). The effect of this is 12

that in any sample the test involves both z0 and z1. Instead, Perron and Yabu (2009) alter the strategy in two ways. First, 13

rather than have λ(x) take values between zero or one, they essentially suggest a statistic that chooses either the values 14

of zero and one, essentially choosing the statistic z1 whenever r is close enough to one (based on the data) and choosing 15

a version of the standard test otherwise. This has the virtue of essentially always choosing z1 when r is close to one. The 16

second innovation is to improve the statistic chosen when r < 1. This essentially involves using a different estimator for 17

r in the feasible GLS regression (Harvey et al. (2007) use OLS)1 in order to have better properties for r large but not equal 18

to one. 19

Each of the above mentioned approaches are designed for the testing problem under the assumption that the nuisance 20

parameter ξ is either zero or asymptotically negligible (T−1/2ξ → 0 either directly or in probability). Since all tests 21

considered either in this paper or above are invariant to translations of the form {xt}Tt=1 ↦→ {xt + ã}Tt=1, ã ∈ R the choice 22

of ξ when r = 1 is immaterial (see Müller and Elliott (2003)), so this is not an issue when r = 1. However when r < 1, it 23

perhaps makes more sense to assume that ξ is drawn from the stationary distribution of wt , which we refer to below as 24

ξ drawn from its unconditional distribution. We can speculate that this will matter in the construction of critical values 25

since tests here have limit distributions as functions of Brownian motions driven by partial sums of the shocks to wt , and 26

the form of these functions are different for different assumptions on the initial value. Under a very different assumption 27

on the initial value than drawing this value from the stationary distribution, namely that ξ is fixed in repeated samples 28

but dependent on r so that it is larger the closer r is to one, Harvey et al. (2010) show that the test statistics considered 29

above are oversized. This occurs when T−1/2ξ converges to a constant and the authors construct a trimmed version of 30

the above statistics to minimize this effect. Note that this assumption is not the same as considering ξ to be a random 31

variable as in the analysis below. 32

Regardless of the assumption on ξ , for problems where r ∈ [0, 1], no tests will be optimal uniformly in r . From a 33

hypothesis testing problem we have a nuisance parameter r that renders the null and alternative hypotheses non simple. 34

As is seen in Fig. 1, use of a (pointwise) consistent estimator such as OLS for r will not result in size control. Hence previous 35

approaches, although ad hoc, make sense since constructing tests that control size uniformly for these problems is difficult. 36

For any classical test, choosing a test to use amongst tests that control size is essentially the choice over power functions 37

of the tests. Here, because of the nuisance parameter, we have a surface of power functions from which to choose (or 38

alternatively, asymptotically a power function for each choice of δ). Indeed, examining the power functions presented in 39

either Harvey et al. (2007) (which were compared with the method of Bunzel and Vogelsang (2005)) or Perron and Yabu 40

(2009) (which compared with both the previous approaches) there is no uniformly dominant method. Each paper argued 41

that despite this their approach was preferred over their predecessor based on having better power properties over the 42

majority of parameterizations considered. 43

We take the same approach here, constructing new tests that pay close attention to the properties of the test when 44

r is large or potentially one, and switching to standard tests for values of r further from one. At issue statistically here 45

is that there is a nuisance parameter, the local size of the largest root of wt , that complicates the testing. By utilizing 46

the methods2 of Elliott et al. (2015), denoted below as EMW, we are able to construct tests that (asymptotically) control 47

size directly for a large region for δ including zero rather than rely on a test that has very small size (z1) in this region. 48

Because we can control size for a large region of r near one we switch to standard methods for values of r much further 49

from 1 than previous tests. Our approach, by virtue of the explicit dependence on how power is directed towards the 50

alternative hypothesis, results not in a single test but a family of tests dependent on these choices. In addition to providing 51

results when ξ is asymptotically irrelevant, the situation assumed in most previous work, we also provide tests that are 52

constructed for the case where ξ is drawn from the unconditional distribution for wt when r < 1. This is a more natural 53

assumption to make in practice and we will show that tests derived under this assumption have better properties. 54

We develop these tests in the next section, and in Section 3 examine this test along with those discussed above. The 55

actual construction of the tests allowing for serial correlation is presented in a self contained section in the Appendix A. 56

1 This alternative estimator is sufficiently complicated that rather than repeating the method here, we refer readers to the original paper.
2 Other methods are possible, for example King (1996).
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2. Constructing the test1

The form of the family of tests we propose is a test that has the same switching approach as discussed above, namely2

TR = ϕ0(x)(1 − χ (x)) + χ (x)ϕ1(x)3

where ϕ0 is a test function (so takes a value zero for failure to reject and one for rejection) for the hypothesis in (2)4

when r is far less than one (this is the ‘simple’ test in the jargon of EMW), χ (x) is a switching rule that, as in Perron and5

Yabu (2009), takes values of zero or one depending on whether the data indicates we are in the simple region or not, and6

finally ϕ1(x) is a new test function derived in this paper for testing (2) when r is in the neighborhood of one. So for any7

sample {xt}Tt=1 the test function TR as a function of the sample takes on a value of one if the hypothesis is rejected and8

zero otherwise. A primary difference here as opposed to previous tests is that our test switches to the standard test for9

alternatives much further from one than earlier tests. We are able to do this and still control size as a result of the test10

when r is near one being constructed to control size not just when r = 1 but also for local alternatives as well. Hence11

rather than relying on the test assuming a unit root in the neighborhood of a unit root being conservative to keep the12

mixture test size controlled, we rely on the construction of the test function ϕ1(x) having good size properties over a wide13

range of models.14

2.1. The test when r is near one15

We turn to the construction of ϕ1(x), which provides a test of the hypothesis when r is near one. The test statistics16

we propose have the form17

WLR =

1
Jm

∑m
i=1

∑J
j=1 L(x, δi, βij)∑m

i=1 piL(x, δi)
(3)18

where δi = T (1 − ri), βij are chosen points under the alternative hypothesis local to zero, pi are a set of weights (that19

do not sum to one generally for reasons discussed below), L(x, δi, βij) is an approximation to the likelihood local both to20

r = 1 and b = 0 and L(x, δi) = L(x, δi, 0), the approximation to the likelihood when b = 0 (i.e. under the null hypothesis).21

The statistic rejects when log(WLR) is greater than zero, i.e. when the weighted average likelihood under the alternative22

is large relative to the weighted average likelihood under the alternative. The critical value here is subsumed into the23

weights under the null, which explains why these weights do not sum to one. To see this, define p̃i as a set of weights24

that sum to one, and notice that we could write the test function as rejecting for x when25

1
Jm

∑m
i=1

∑J
i=j L(x, δi, βi)∑m

i=1 p̃iL(x, δi)
> cv26

but this is equivalent to rejecting for x when27

1
Jm

∑m
i=1

∑J
i=j L(x, δi, βi)∑m

i=1(cv ∗ p̃i)L(x, δi)
> 128

so we directly construct the test with pi = cv ∗ p̃i and so the sum of the weights is the critical value in the standard set29

up of a likelihood ratio testing problem.30

The form of the suggested statistic is a likelihood ratio test for (2) where we deal with the nuisance parameter31

δ describing the serial correlation by taking weighted averages over this nuisance parameter. Under the alternative32

hypothesis (the numerator of the statistic) the statistic then weights different models, with the choice of weights directing33

power to the alternatives. This is a standard approach to constructing tests that have optimality properties against the34

chosen weighted alternative, see Andrews and Ploberger (1994). Under the null hypothesis the weights p̃i are an estimate35

of the least favorable distribution for the testing problem given the choice of the alternative. Tests constructed in this way36

have, by virtue of their form as a Neyman Pearson statistic, optimality properties. See EMW for an extensive discussion37

with relation to the approach used here.38

A competing and similar approach to the one conducted here is available in Sriananthakumar and King (2006). In this39

paper rather than choose point masses for the models to sum over they suggest using distributions over the parameters.40

They find for some applications (they did not consider the application of this paper) that mixing three distributions can41

provide a test that controls size. In previous work (for other applications) we have found that choosing a reasonably42

large number of point models provides better approximations for the problems we have examined, however we did not43

examine their method for this problem. Our method then differs in the choice of mixture distributions, but also in terms44

of the algorithm used to determine the weights. The test we construct also has very straightforward asymptotic theory45

results and is simple to adjust for additional serial correlation in ut .46

To construct the test then we need to define the form of the approximate likelihood L(x, δi, βij) and then estimate47

the critical value adjusted weights pi using the methods in EMW. We first consider L(x, δi, βij). For the testing problem48

addressed here, the form of the likelihood even asymptotically depends on the assumption on the initial condition, in much49
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the same way that it does for testing in the unit root literature. We will consider two assumptions, the first allowing ξ to 1

be fixed so that it is asymptotically irrelevant and can be set to zero in the approximation, and second drawing the initial 2

value w1 from the unconditional distribution for wt when r < 1. Note that because under both assumptions we remove 3

the nuisance parameter a from the likelihood through invariance to translations of the form {xt}Tt=1 ↦→ {xt + ã}Tt=1, ã ∈ R, 4

then this also removes the initial value at r = 1. 5

2.1.1. The likelihood when ξ = 0 6

Consider the model in (1) with ξ = 0 and additionally assume that ut are serially uncorrelated and have N(0, σ 2) 7

marginal distributions. In this case the log of the likelihood for the statistic invariant to the translation discussed in the 8

previous paragraph is approximately (ignoring the determinant component, which converges to one for r local to one3) 9

proportional to 10

σ−2(x − x1ι − bz)′(A(r)′A(r) − A(r)′A(r)ι(ι′A(r)′A(r)ι)−1ι′A(r)′A(r))(x − x1ι − bz) 11

where x = (x1, x2, . . . , xT )′, z = (1, 2, . . . , T )′, ι is a Tx1 vector of ones and A(r) is a TxT differencing matrix with ones on 12

the diagonal, −r on the diagonal immediately below the main diagonal and zeros everywhere else (so A(r)y for any vector 13

y is (y1, y2 − ry1, . . . , yT − ryT−1)′). See Müller and Elliott (2003) for a derivation of this likelihood. Let bij = βij/
√
Tσ and 14

δi = T (1 − ri) then we can rewrite this for choices (δi, βij) as 15

h(x) + δ2i σ
−2T−2x̃′

−1x̃−1 + 2δiσ−2T−1x̃′

−1(x̃ − x̃−1) (4) 16

−

(
δiσ

−1/2T−1/2x̃T + δ2i σ
−1T−3/2 ∑T

t=2 x̃t−1

)2

T (1 + (T − 1)(1 − r)2)
17

+ β2
ij

[
T−1

+ δ2i s2 + r2
(
T − 1
T

)
+ 2riδis1 −

T−1
(
1 + riδi( T−1

T ) + δ2i s1
)2

(1 + (T − 1)(1 − ri)2)

]
18

− 2βij

⎡⎣ (ri + δi)σ−1T−1/2x̃T + δ2i σ
−1T−5/2z ′x̃−1 − δ2i σ

−1T−5/2x̃′

−1ι

−
T−1

(
1+riδi(

T−1
T )+δ2i s1

)
1+(T−1)(1−ri)2

(
δiσ

−1/2T−1/2x̃T + δ2i σ
−1T−3/2 ∑T

t=2 x̃t−1

)⎤⎦ . 19

where x̃ = x − x1ι and x̃−1 = (0, x̃1, . . . , x̃T−1)′, s1 = T−2 ∑T
t=2 t and s2 = T−3 ∑T

t=2 t
2. Since h(x) is not a function 20

of the nuisance parameters (apart from the scale parameter which is consistently estimable) we can ignore this as it 21

cancels in the numerator and denominator for the test statistic WLR. The remaining terms are either Op(1) or disappear 22

asymptotically. After subtracting h(x) then the exponent of the remainder of the terms in (4) multiplied by minus one 23

half is defined as L0(x, δ, β) where the zero subscript denotes computation under the assumption that ξ = 0. Then using 24

standard FCLT and CMT results in 25

−2 ln L0(x, δi, βij) ⇒ δ2i

∫
Wδ,β (s)2ds + 2δi

∫
Wδ,β (s)dWδ,β (s) + β2

ij

(
1 +

δ2i

3
+ δi

)
26

− 2βij

(
(1 + δi)Wδ(1) + δ2i

∫
sW (s)ds

)
27

= H(δi, βij) 28

where Wδ,β (s) =
∫ s
0 e−δ(s−λ)dW (λ) + βs and W (λ) is a standard Brownian Motion. The notation suppresses dependence 29

on the true values for (δ, β) that arise through Wδ,β (s). 30

The limit distribution of the test statistics are then equal to 31

WLR ⇒

1
Jm

∑m
i=1

∑J
i=j exp(−0.5H(δi, βij))∑m

i=1 wi exp(−0.5H(δi, 0))
32

for various choices over δi and bij. Each of these choice variables indicate the choice of the alternative in the weighted 33

average under the alternative. 34

Our actual statistic, i.e. the construction of L(x, δi, βi), is based on the term (4) after removing h(x) but has the same lim- 35

iting distribution as stated immediately above. Exact calculation details are given in the Appendix A. For the null likelihood 36

we set β = 0 so the second two terms do not appear. For the tests below we set δi = (0, .0.12, 0.22, . . . , 22, 2.52, . . . , 112) 37

so m = 39. 38

3 The determinant term is equal to
⏐⏐A(r)′A(r)⏐⏐−1/2 ⏐⏐ι′A(r)′A(r)ι⏐⏐−1/2 which equals (1 + (T − 1)(1 − r)2)−1/2

→ 1 for T (1 − r) being O(1).
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2.1.2. The likelihood when ξ comes from the unconditional distribution1

Consider now the same model from the previous subsection, however now ξ ∼ N(0, σ 2/(1 − r2)) and independent of2

{ut}
T
t=2 for r < 1. Note that the statistic invariant to translations of the form {xt}Tt=1 ↦→ {xt + ã}Tt=1, ã ∈ R is invariant to3

the value of ξ at r = 1. In this case different values for r < 1 impact the likelihood in an additional way. For this case4

the component inside the exponent of the likelihood is proportional to5

σ−2(x − x1ι − bz)′(A(r)′V−1A(r) − A(r)′V−1A(r)ι(ι′A(r)′V−1A(r)ι)−1ι′A(r)′V−1A(r))(x − x1ι − bz) (5)6

where V−1 is the identity matrix except that it has (1 − r2) in the (1,1) element if r < 1, and is the identity matrix7

otherwise.8

The determinant term is now
⏐⏐A(r)′V−1A(r)

⏐⏐−1/2 ⏐⏐ι′A(r)′V−1A(r)ι
⏐⏐−1/2 which after some algebra yields9 (

1 +
(1−r)(T−1)

1+r

)−1/2
. Note that this term is continuous in r at r = 1 from below.10

Expanding as above for choices (δi, βij) we obtain that (5) can be rewritten for ri < 1 as411

h̃(x) + δ2i σ
−2T−2x̃′

−1x̃−1 + 2δiσ−2T−1x̃′

−1(x̃ − x̃−1) (6)12

−

(
δiσ

−1/2T−1/2x̃T + δ2i σ
−1T−3/2 ∑T

t=2 x̃t−1

)2

T (1 − r2i + (T − 1)(1 − r)2)
13

+ β2
ij

[
(1 − ri)T−1

+ δ2i s2 + r2
(
T − 1
T

)
+ 2riδis1 −

(
δiT−1

+ riδi + δ2i s1
)2

T (1 − r2i + (T − 1)(1 − ri)2)

]
14

− 2βij

⎡⎣ (ri + δi)σ−1T−1/2x̃T + δ2i σ
−1T−5/2z ′x̃−1 − δ2i σ

−1T−5/2x̃′

−1ι

−

(
δiT−1

+riδi+δ2i s1
)

T (1−r2i +(T−1)(1−ri)2)

(
δiσ

−1/2T−1/2x̃T + δ2i σ
−1T−3/2 ∑T

t=2 x̃t−1

)⎤⎦ .15

Again h̃(x) does not depend on nuisance parameters and so it will cancel from the numerator and denominator in WLR.16

Ignoring this term, multiplying by minus one half and taking limits using standard FCLT and CMT results yields a limit17

distribution of18

− 2 ln L1(x, δi, βij) ⇒ δ2i

∫
Mδ,β (s)2ds + 2δi

∫
Mδ,β (s)dMδ,β (s) −

(
δiMδ,β (1) + δ2i

∫
Mδ,β (s)ds

)2
2δi + δ2i

19

+ β2
ij

(
1 +

δ2i

12
+

δi

2

)
(7)20

−2βij

(
(1 −

δi

2
)Mδ,β (1) + δ2i

∫
sMδ,β (s)ds −

δ2i

2

∫
Mδ,β (s)ds

)
21

− ln
(
1 +

δi

2

)
(8)22

= H1(δi, βij)23

where Mδ,β (s) is defined as24

Mδ,β (s) =

{
W (s) + βs for δ = 0
(e−δs

− 1)(2δ)−1/2
+

∫ s
0 e−δ(s−λ)dW (λ) + βs else. (9)25

As in the previous case this establishes the limit distributions for the test statistics. The choice of δi over which to construct26

the statistics we again set δi = (0, .0.12, 0.22, . . . , 22, 2.52, . . . , 112).27

2.1.3. Weights for the likelihood under Ha28

The choice of the weights for the likelihood under the alternative in each case involves choosing βij. This choice impacts29

the statistics in a number of ways. In terms of the approximate optimality properties of the statistics the tests have such30

properties against the alternatives chosen. More practically we can consider the choice as one that generates useful power31

properties of the tests. Finally, for the methods of EMW to work well the choices can result in better or poorer estimation32

of the least favorable weights.33

In practice some searching over choices was undertaken to product tests with good asymptotic properties. Since this34

(and the finite sample performance of the tests) is what we are ultimately interested in then it seems reasonable to35

make a number of choices that have explicit trade-offs. We experimented with different choices, and report one for each36

initial condition assumption. The actual choices are available in the description of the test statistic construction in the37

4 The expression for ri = 1 is as for the zero initial condition case.
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Appendix A. For βij, we choose bij = cj/
√
1 − δ2i /d for some value d which is in the spirit of point optimal test choices 1

(see King (1988) and King and Sriananthkumar (2017)). These contributions by King and later coauthors suggest choosing 2

point alternatives (here we mix two point alternatives) to ‘pin’ power curves somewhere in the middle of the power curve 3

in order to construct a statistic that has good power properties at least at the chosen point and hopefully elsewhere as 4

well. Our particular choice here achieves a number of objectives. First, βij becomes smaller as δi increases because the 5

power of tests for a trend increase quickly as the data becomes more stationary. This is the primary reason for focussing 6

on power when δ is small, because this is the region where power is low for the tests (this is evident in the large sample 7

figures below, where as δ becomes larger the scale of the alternatives for which power is below one becomes smaller). The 8

rate of decline is increased by choosing a larger value for d. Second, the entire function is shifted up through choices of cj. 9

For the best results it was found that choosing two values for cj improved the shape of the asymptotic power functions. 10

Because we can make a number of choices for both the values for δi and also the values under the alternative 11

hypothesis (βij) we essentially derive a family of tests here indexed by these choices. For both of the tests below we 12

set δi = (0, .0.12, 0.22, . . . , 22, 2.52, . . . , 112) so m = 39. For the zero initial value assumption we choose J = 2 setting 13

βi1 = 1/
√
1 − δ2i /30 and βi2 = 3/

√
1 − δ2i /30. In the case of the initial value being chosen from its unconditional 14

distribution we again set J = 2 with βi1 = 1/
√
1 − δ2i /50 and βi2 = 3/

√
1 − δ2i /50. These values were chosen based 15

on the asymptotic power curves they generate after some experimentation. 16

2.1.4. Switching 17

For the tests we need to define χ (x), which will equal one when we employ the WLR statistic and zero when the 18

standard test controls size. We do so effectively through a pre-test for r = 1 but one which only rejects for values for δ 19

very far from zero (so a test with almost zero size for a wide range of δ). The idea is to only switch when the standard 20

test is in a range for δ that controls size well. From Fig. 1 we see that this is in the range for δ beyond 80 or so. Consider 21

the regression 22

∆xt = a + bt + p0xt−1 +

L∑
l=1

pl∆xt−1 + vt (10) 23

where if L = 0 no additional lagged changes are included and L is chosen by the BIC criterion (one could also choose the 24

MAIC criterion of Perron and Ng (1996)). If L = 0 is imposed (because we know there is no serial correlation in ut ) then 25

we construct the statistic χ (x) = 1(−T p̂0 < 100). The choice of 100 as a cutoff is made because at this point both the 26

WLR test and the test above have essentially maximal power for testing the hypothesis under consideration (indeed, as 27

shown below maximal power is almost attained around δ = 30 for the tests we construct) and so this choice results in 28

effectively only switching for situations where it is extremely obvious from the data that we are not near a unit root in 29

wt . For situations where there is some potential serial correlation in ut the statistic needs to be adjusted to account for 30

this. So for L > 0 we construct χ (x) = 1(−T p̂0
√

ω̂2
u/σ̂

2
v < 100) where σ̂ 2

v = (T − L − 3)−1 ∑T
L+1 v̂2

t where v̂t are the OLS 31

residuals from (10) and ω̂2
u is an estimate of the spectral density of ût where ût are the OLS residuals of (10) with L set 32

to zero. This approach to switching is employed for both assumptions on the initial condition. 33

2.1.5. The test when r is far below one 34

There are two issues in choosing the test function ϕ0(x) for use when r is far below one. The first is size control, the 35

second is the properties under more general serial correlation. Whilst use of the feasible GLS estimator may allow some 36

power advantages over using least squares when r is far from one, our (unpresented) Monte Carlo evaluation found that 37

using the t test from the regression (10) with L chosen using the BIC criterion had the advantages that it accounts fairly 38

well for serial correlation of various types and it simplifies construction of the test statistic since we require estimation 39

of the same regression as for constructing the switching statistic. 40

2.1.6. The test statistics TR0 and TR1 41

In each of the assumptions for the initial condition, we effectively construct a family of tests indexed by choices over 42

δi and the alternative models, as well as the choices in switching. As we have motivated above, the choices for δi and the 43

point at which we switch are less ad hoc than they appear — they are chosen to provide tests that do not switch (and so 44

are based on the WLR statistics) over the range of models for which the size of standard tests does not match nominal 45

size. The choices for the local alternatives are more ad hoc but have clear theoretical and practical implications. From the 46

theoretical perspective the tests have optimality properties against the choice of the alternative via the Neyman Pearson 47

lemma. From a practical perspective the alternatives are chosen to have local power functions that provide a reasonable 48

trade-off across values for δ. 49

Once the choices for the alternative distribution are made, tests are defined. Here we have defined two tests, one for 50

each assumption on the initial condition. These tests are referred to as TR0 and TR1 for the test with a zero initial condition 51

and the test assuming the initial value arises from its unconditional distribution respectively. They differ from each other 52

in three ways. First, they are based on different likelihoods as noted in Sections 2.1.1 and 2.1.2. Second, they differ in the 53

choices for βij, as detailed in Section 2.1.3. Finally, the weights constructed from the EMW method differ between the 54

tests. A full step by step construction of the tests including a detailing of the weights is given in Appendix A. 55
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Fig. 2. Solid lines indicate size for TR0 and dashed lines are size for TR1 . The first panel is for a dgp with ξ = 0 and the second panel for
ξ ∼ N(0, (1 − r2)−1).

3. Evaluation of the methods1

We first evaluate approximations to asymptotic size and power, then turn to a small sample Monte Carlo evaluation2

of the methods.3

The size properties of the two proposed statistics are examined in Fig. 2. Approximations to the asymptotic distribution4

are constructed by setting the sample size to 1000 and use a known variance (set to one), estimates are over 10000 Monte5

Carlo simulations. The first panel of Fig. 2 shows the size of TR0 and TR1 for various values of the nuisance parameter δ6

setting the initial value ξ = 0. The solid line shows results for TR0 and the dashed line for TR1. Firstly, in the first panel7

we see that the tests optimized for either initial value assumption control size for this model. This is not surprising since8

the assumptions underlying the construction of TR1 include a large mass at zero. Secondly, we note that size is below9

nominal size for δ near zero, but quickly moves close to nominal size. Compared to the other statistics suggested in the10

literature, the tests here have size near nominal size for a much greater range of δ. This is in part because the test statistic11

is essentially completely based on the WLR component of the tests for δ under 80 or so, and by the EMW approach these12

methods control size by construction.13

The second panel reports results for ξ ∼ N(0, (1 − r2)−1) for each of the statistics. Clearly TR0 no longer controls size,14

this is typical of tests for this hypothesis constructed under the assumption of a zero null when the initial value is drawn15

from its unconditional distribution. However TR1 does control size, with again some undersized behavior for δ close to16

zero. For larger values of δ in both panels there is some slight oversized behavior — this is because the tests switch around17

δ = 100 (around rather than at because δ has to be estimated) and this reflects properties not of the tests based on EMW18

but the standard least squares regression test which is now mixed into the results. Other methods that switch to either19

OLS or the feasible MLE have similar properties (see Fig. 1). Overall, that TR1 is able to control size for both assumptions20

on the initial value is suggestive of this assumption being a better one in the construction of the tests, so long as its use21

does not come at the cost of a lot of power.22

We now turn to large sample power properties of the statistics suggested in this paper and earlier work. We compare23

them to the zm1
λ statistic of Harvey et al. (2009) and the MU statistic in Perron and Yabu (2009). A more detailed24

examination of other statistics from these two papers is available in a supplemental appendix. Fig. 3 reports results from25

a Monte Carlo exercise with the sample size set to 1000 and 20 000 Monte Carlo draws. Each panel shows power as a26

function of β = b/
√
T where the data is drawn from (1) with ξ = 0. Different panels accord with different choices of the27

nuisance parameter δ, which takes the values 0, 5, 10, 15, 20, and 30.28

At δ = 0, we note first that the only statistic that is (essentially) equivalent to the infeasible MLE power bound is the29

(Perron and Yabu, 2009) MU statistic, which comes about by virtue of that statistic forcing itself to be equal to the MLE30

with a unit root and for roots near one (Harvey et al., 2007) also have a statistic (they denote as zλ) that achieves this31

bound however the one reported here has much better power than this statistic for other alternatives). This comes at a32

cost in power as δ gets larger, for example for δ = 10 through 20 the power of the MU statistic (the dotted line with the33

flat part) is far below all other statistics for most of the local alternatives. The zm1
λ statistic (the dash–dot line) has lower34

power at δ = 0 and, because of poor asymptotic size properties for δ > 0 low power for near alternatives. Despite this, at35

δ = 15 this statistic has a power function that is not dominated by other methods (but does not dominate other methods36

either), however at other values for δ (larger and smaller) other statistics have better local power.37

Similar to the comparison between the MU and zm1
λ statistics, the TR0 test has power that does not dominate each other38

across all values for δ. Different choices for the weighted averaging (not reported here) allow construction of tests that,39

like zm1
λ , have poor size properties for δ greater than but near zero but steep power curves. However the power function40

for TR0 compares very favorably. At δ = 0 there is only a very small drop-off in power relative to MU , but for more41
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Fig. 3. The upper solid lines show power for the infeasible MLE, dash–dot lines indicate power for the zm1
λ statistics, dotted lines show results for

MU , and the lower solid line shows power for TR0 .

distant alternatives, especially for moderate δ of 15 or 20, there is a vast gap between the methods. Similarly, comparing 1

to zm1
λ , especially for moderate β and intermediate values for δ, there is a sizeable vertical distance between the power 2

functions. Overall TR0 strongly dominates MU for smaller values of β and converges faster to the infeasible MLE power as 3

δ becomes larger. At δ = 30, where the statistic is basically WLR0 since switching is rare for this region of δ, the power 4

of TR0 is approximately equal to the power of the infeasible MLE test. The main reason for these power gains is that size 5

is better controlled for moderate δ. 6

Whilst the argument above suggests that TR0 is a good choice for the zero initial condition problem, the second 7

assumption on the initial condition makes more sense intuitively because models are stationary when wt has a root 8

greater than one. When for |r| < 1 our model assumes ξ ∼ N(0, σ 2/(1−r2)), as shown in Section 2 the limit distributions 9

under both the null and alternative hypothesis differ from those when we assume ξ = 0. And, as we noted above, the 10

optimal statistics generated in this paper will have different weights for the same chosen alternative distributions. So 11

now we turn to large sample results for TR1 under this assumption. 12

As in the previous case, we evaluate power for various values for δ. As before, the infeasible MLE (under the new 13

assumption on the initial condition) is provided as a benchmark even though for most δ the power of this statistic cannot 14

be matched as it ‘knows’ r and the feasible version does not control size, as indicated in Fig. 1. Fig. 4 shows the results 15

for this statistic (solid lines) and TR1 (dashed lines). TR1 does not suffer as much from being undersized for small but non 16

zero δ, compared to TR0 in the case where ξ = 0. As in the ξ = 0 case the cost of controlling size is lower power than 17

the infeasible bound for small δ, although again in comparison to the ξ = 0 case the impact here seems to be smaller. 18

The statistic TR1 has power close to the infeasible bound at δ = 0 and at δ = 30. It is useful to note that at δ = 30 there 19

is virtually no switching to the feasible MLE test, so this power is all from using WLR1 as calculated above. 20

Finally for the large sample results, we turn to comparing the impacts of the tests for each initial condition assumption 21

on power. In the size results reported in Fig. 2 earlier, we saw that using TR0 when ξ is drawn from its unconditional 22

distribution resulted in size distortions, whereas TR1 controlled size under both assumptions on ξ . Each panel in Fig. 5 23

shows power against alternatives β nonzero for the same choices of δ as in the previous power figures. When ξ = 0, the 24

solid line shows the power of TR0 and the dots show power of TR1. The results show that there is some loss in not using 25

the test statistic designed for ξ = 0 here, especially at smaller β , although power for TR1 in these cases for moderate 26

δ exceed that of TR0. This implies that it would be difficult to pick between the two tests. This contrasts strongly with 27

the impact on power (and size) when ξ is drawn from its unconditional distribution. The solid line with dots shows the 28

power of TR0 and the dashed line shows the power of TR1. Here, as noted in Fig. 2, TR0 does not control size for moderate 29

δ, it is oversized and the power curves are shifted up due to this effect. However power advantages from being oversized 30
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Fig. 4. The solid line indicates power from the infeasible MLE, the dashed line is power for TR1 .

are not really apparent except at very small values for β . For δ = 10 and above the (non sized adjusted) power for TR01

is only just above the power for TR1 even though TR1 controls size, for larger values of β TR1 outperforms even when2

controlling size. Choosing TR1 then is a strong choice given that we cannot tell in practice what the correct assumption3

on ξ is, it controls size for both assumptions and use of TR1 does not involve significant size losses.4

We now turn to small sample evaluation of the methods. We extend the model in (1) to allow for serial correlation in5

ut , we consider data generating processes of the form6

(1 − θ1L)ut = (1 + θ2L)εt7

where εt are serially independent N(0, 1) random variables and we consider various values for θ1 and θ2. For the test8

to control size asymptotically we require that the test be adjusted to allow for serial correlation — this is accomplished9

through using an estimator of the spectral density at frequency zero of ut in place of the variance as well as (for one of10

the terms) adopting the correction in Phillips (1987) for one of the terms. The details are in the Appendix A where the11

construction of the statistics are presented in their full generality. We report results in columns of the table for both the12

TR0 and TR1 statistics for both initial condition assumptions. We approximate the unconditional case by allowing for 50013

’burn in’ observations prior to the sample that is employed for the tests. In each case we allow up to four lags in estimating14

robust statistics. The size results reported are averages across the outcomes from 10,000 Monte Carlo simulations. We15

report values for δ equal to {0, 5, 10, 15, 20, 30} with the first three values in Table 1 and the second three in Table 2.16

Note that because these values for δ are far below the switching level of δ = 100, the results shown essentially have very17

little switching and so generally reflect the use of the WLR component of the statistic in (3).18

Many of the standard results from time series methods when corrections for serial correlation are apparent in the19

results. In particular there is some oversizedness when there is a large MA component, despite our use of the Ng and20

Perron (2001) MAIC lag length selector. This is a well known issue in scaling partial sums, see Ng and Perron (2001) for21

details. Also, when one allows for lags when there is no serial correlation there is a small effect where size is larger than22

if no lags were allowed for. Finally, differences between the empirical size and nominal size are smaller as the sample23

is increased (for tests that asymptotically control size, which excludes here TR0 when the initial value is drawn from its24

unconditional distribution).25

Following from the asymptotic results, empirical size of the tests is smaller than nominal size for values of δ near but26

not equal to zero, with this effect diminishing as δ gets larger. The same phenomenon appeared5 in previous tests for27

this hypothesis. The tests are somewhat undersized relative to the asymptotic results, however this effect is smaller for28

larger sample sizes. The oversizedness of TR0 when the initial value is drawn from the unconditional distribution is also29

5 This is true of previously suggested tests, see Table 2 of Harvey et al. (2007) for example.
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Fig. 5. For ξ = 0, the solid line indicates power for TR1 and dots indicate power for TR0 . For ξ drawn from the unconditional distribution, the dotted
solid line indicates power for TR1 and dashes indicate power for TR0 .

clearly apparent in the simulation results, especially for the larger values for δ. That the TR1 test controls size for both 1

assumptions on the initial value, expected from the asymptotic results, is also apparent in the small sample results. This 2

provides a strong motivation for using this statistic unless the researcher is sure that the initial value of zero makes sense 3

when r|< 1. 4

4. Conclusion 5

We considered here the problem of testing for the value of a coefficient on a time trend in a linear model of a variable 6

with a mean and time trend. Testing for this coefficient being zero then tests for the presence of the time trend. To test 7

other null values for b simply subtract b0t from the variable to be tested and one can use the tests described in this paper. 8

Multiplying the variable to be tested by minus one yields a test that the coefficient is less than zero instead of greater 9

than zero as in the paper. This test is non trivial because the nuisance parameter describing the largest root in a linear 10

model of the serial correlation is a nuisance parameter under both the null and alternative hypotheses and hence any test 11

must control size over all values of this nuisance parameter. With sufficiently mean reverting serial correlation, this is not 12

much of an issue however when this root is near the unit circle then the value of this coefficient impacts tests greatly. 13

Standard methods do not control size in these cases. 14

For this problem, power is much higher the more mean reverting the data, and so it makes sense in developing new 15

tests to concentrate on the power properties of the tests for models where the serial correlation has a unit root or near 16

unit root. This is the focus of this paper. 17

In previous work, authors have constructed tests that appear to control size but at unknown costs to power. These 18

methods exploit the fact that when the residuals of the regression are very serially correlated standard tests are oversized, 19

in this region imposing a unit root results in tests that are heavily undersized. By mixing the two tests that approximately 20

control size can be computed. In this paper we use the methods of Elliott et al. (2015) to construct tests paying attention 21

to the size for these difficult values of the nuisance parameter, where serial correlation is large. Although our tests share 22

the switching behavior of previous tests, our tests only switch for models where roots are far from the unit circle. In the 23

case where the initial condition of the stochastic component of the variable being examined is assumed asymptotically 24

irrelevant – which is the assumption of almost all of the previous literature – we are able to construct a family of tests 25

for the hypothesis. The test we detail (TR0) has attractive asymptotic power properties relative to previously constructed 26

tests. 27
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Table 1
Presented are small sample sizes for various models. The second row and first column define the model for the pseudo data generation, the third
column indicates the statistic for which results are reported. ξ UC refers to drawing the initial value from its unconditional distribution. Monte Carlo
standard errors are 0.002.

θ1 θ2 T = 100 T = 250

ξ = 0 ξ UC ξ = 0 ξ UC

TR0 TR1 TR0 TR1 TR0 TR1 TR0 TR1

δ = 0 0 0 0.047 0.048 0.048 0.047 0.047 0.048 0.048 0.047
0.3 0 0.055 0.055 0.049 0.047 0.055 0.055 0.049 0.047
0.5 0 0.063 0.065 0.050 0.049 0.063 0.065 0.050 0.049
−0.3 0 0.051 0.054 0.053 0.055 0.054 0.054 0.053 0.055
−0.5 0 0.079 0.076 0.072 0.070 0.079 0.076 0.072 0.070
0 0.3 0.054 0.053 0.051 0.050 0.054 0.053 0.051 0.050
0 0.5 0.060 0.058 0.059 0.058 0.060 0.058 0.059 0.058
0 −0.3 0.062 0.059 0.066 0.063 0.062 0.059 0.066 0.063
0 −0.5 0.146 0.132 0.159 0.146 0.146 0.132 0.159 0.146

δ = 5 0 0 0.015 0.009 0.021 0.012 0.017 0.012 0.025 0.016
0.3 0 0.011 0.007 0.018 0.010 0.015 0.009 0.021 0.014
0.5 0 0.012 0.008 0.017 0.010 0.015 0.011 0.022 0.014
−0.3 0 0.030 0.023 0.031 0.022 0.033 0.025 0.037 0.027
−0.5 0 0.054 0.046 0.053 0.044 0.059 0.049 0.061 0.050
0 0.3 0.018 0.012 0.026 0.016 0.022 0.015 0.032 0.022
0 0.5 0.027 0.021 0.036 0.026 0.036 0.026 0.051 0.035
0 −0.3 0.044 0.032 0.052 0.039 0.052 0.037 0.064 0.047
0 −0.5 0.102 0.081 0.130 0.119 0.125 0.095 0.161 0.134

δ = 10 0 0 0.020 0.013 0.029 0.019 0.029 0.018 0.044 0.027
0.3 0 0.016 0.011 0.024 0.016 0.025 0.015 0.040 0.023
0.5 0 0.017 0.012 0.024 0.015 0.027 0.016 0.040 0.021
−0.3 0 0.038 0.026 0.046 0.033 0.048 0.032 0.062 0.039
−0.5 0 0.062 0.046 0.071 0.057 0.074 0.053 0.087 0.063
0 0.3 0.024 0.017 0.034 0.024 0.037 0.024 0.057 0.034
0 0.5 0.035 0.027 0.045 0.037 0.055 0.036 0.076 0.050
0 −0.3 0.051 0.034 0.066 0.051 0.066 0.041 0.094 0.061
0 −0.5 0.093 0.064 0.140 0.118 0.110 0.073 0.174 0.130

However rather than constructing tests under the assumption of an asymptotically irrelevant initial condition for1

the data even when serial correlation is such that we expect the data to mean revert (around the potential trend), we2

recommend the tests of this paper (TR1) derived under the alternative assumption that the initial value is drawn from3

its unconditional distribution in practice. These tests, unlike those derived for the zero initial condition case, control size4

under both assumptions on the initial condition. Power considerations also suggest use of TR1, very little power is given up5

if the assumption on the initial condition is wrong. Assuming the initial condition arises from its unconditional distribution6

also makes more intuitive sense for this problem since for less serially correlated models the assumption results in the7

data being covariance stationary.8

Appendix A9

10 We detail construction of the tests11

A.1. Construction of the tests12

For the two versions of the TR statistics, we employ the following steps;13

(1) Choose the lag length for constructing robust tests by using the BIC or MAIC with a maximum of pmax lags of x(t)14

in a regression of x(t) that includes a constant and time trend. Call the chosen lag length p.15

(2) From regressions in (10) both including and excluding p lags of ∆xt construct an estimate δ̂ as16

δ̂ = −T p̂0

√
ω̂2

σ̂ 2
v

17

where p̂0 is an estimate from the regression including the lags, ω̂2 is an estimate of the spectral density at frequency zero18

using the residuals when the lagged changes of xt are excluded and σ̂ 2
v is an estimate of the variance of the residuals from19

the regression with the lagged changes of xt included.20

(3) If δ̂ > 100, the test for b = 0 is the usual t-test of the hypothesis in (2) in the regression in step 2 where the lagged21

changes of xt have been included in the regression.22
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Table 2
Presented are small sample sizes for various models. The second row and first column define the model for the pseudo data generation, the third
column indicates the statistic for which results are reported. ξ UC refers to drawing the initial value from its unconditional distribution. Monte Carlo
standard errors are 0.002.

θ1 θ2 T = 100 T = 250

ξ = 0 ξ UC ξ = 0 ξ UC

TR0 TR1 TR0 TR1 TR0 TR1 TR0 TR1

δ = 15 0 0 0.029 0.017 0.039 0.026 0.042 0.022 0.070 0.036
0.3 0 0.023 0.015 0.029 0.023 0.038 0.020 0.062 0.031
0.5 0 0.021 0.015 0.028 0.023 0.036 0.022 0.060 0.031
−0.3 0 0.047 0.030 0.057 0.039 0.061 0.034 0.086 0.046
−0.5 0 0.067 0.045 0.087 0.063 0.080 0.049 0.113 0.069
0 0.3 0.031 0.021 0.040 0.033 0.050 0.027 0.081 0.041
0 0.5 0.044 0.032 0.050 0.045 0.068 0.039 0.102 0.055
0 −0.3 0.058 0.035 0.078 0.058 0.072 0.040 0.116 0.065
0 −0.5 0.079 0.048 0.132 0.109 0.086 0.047 0.161 0.114

δ = 20 0 0 0.035 0.020 0.044 0.030 0.052 0.023 0.091 0.039
0.3 0 0.028 0.016 0.035 0.027 0.046 0.022 0.085 0.034
0.5 0 0.026 0.017 0.031 0.026 0.045 0.023 0.079 0.034
−0.3 0 0.049 0.028 0.066 0.042 0.063 0.031 0.103 0.047
−0.5 0 0.065 0.039 0.095 0.065 0.073 0.041 0.124 0.069
0 0.3 0.037 0.022 0.044 0.036 0.057 0.027 0.100 0.045
0 0.5 0.047 0.031 0.054 0.048 0.071 0.037 0.118 0.056
0 −0.3 0.055 0.031 0.084 0.056 0.069 0.033 0.125 0.063
0 −0.5 0.060 0.031 0.119 0.098 0.059 0.030 0.138 0.101

δ = 30 0 0 0.037 0.015 0.052 0.032 0.052 0.017 0.107 0.035
0.3 0 0.032 0.017 0.040 0.030 0.051 0.020 0.102 0.033
0.5 0 0.032 0.019 0.037 0.030 0.052 0.023 0.100 0.035
−0.3 0 0.044 0.018 0.070 0.043 0.051 0.021 0.113 0.044
−0.5 0 0.048 0.026 0.089 0.059 0.049 0.026 0.112 0.059
0 0.3 0.039 0.019 0.048 0.037 0.055 0.022 0.112 0.041
0 0.5 0.045 0.025 0.055 0.047 0.063 0.029 0.118 0.052
0 −0.3 0.042 0.016 0.078 0.054 0.046 0.019 0.111 0.055
0 −0.5 0.033 0.017 0.099 0.085 0.029 0.017 0.100 0.083

(4) If δ̂ ≤ 100, we construct the WLR test. For this test we construct x̃t = xt − x1. We construct from the data the 1

following statistics: 2

y1 = T−2ω̂−2
T∑

t=2

x̃2t−1 3

y2 = T−2ω̂−2
T∑

t=2

x̃t−1∆x̃t +
1
2

(
σ̂ 2

∆w

ω̂2 − 1
)

4

y3 = T−1/2ω̂−1x̃T 5

y4 = T−5/2ω̂−1
T∑

t=2

tx̃t−1 6

y5 = T−3/2ω̂−1
T∑

t=2

x̃t−1 7

where σ̂ 2
∆w is an estimator of the variance of the first difference of residuals from a regression of xt on a constant and 8

time trend and ω̂2 is as in step 2. 9

For the case where ξ = 0 is assumed we have 10

Ĥ0(δi, βij) = δ2i y1 + 2δiy2 −
T−1

(
δiy3 + δ2i y5

)2
(1 + (T − 1)(1 − ri)2)

(11) 11

+ β2
ij

[
T−1

+ δ2i s2 + r2
(
T − 1
T

)
+ 2riδis1 −

T−1
(
1 + riδi( T−1

T ) + δ2i s1
)2

(1 + (T − 1)(1 − ri)2)

]
12

− 2βij

[
(ri + δi)y3 + δ2i y4 − δ2i T

−1y5 −

(
1 + riδi( T−1

T ) + δ2i s1
)

T (1 + (T − 1)(1 − ri)2)

(
δiy3 + δ2i y5

)]
13

+ log
(
1 + (1 − ri)2(T − 1)

)
. 14
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Table 3
Weights for WLR test construction. p0 refers to weights for TR0 and p1 weights for TR1 .
Delta p0 p1
0.000 1.3553 1.1186
0.010 0.6316 0.7397
0.040 0.0687 0.2181
0.090 0.0021 0.0304
0.160 0.0000 0.0022
0.250 0.0000 0.0001
0.360 0.0000 0.0000
0.490 0.0000 0.0000
0.640 0.0000 0.0000
0.810 0.0000 0.0000
1.000 0.0000 0.0000
1.210 0.0000 0.0000
1.440 0.0000 0.0000
1.690 0.0000 0.0000
1.960 0.0000 0.0000
2.250 0.0000 0.0000
2.560 0.0000 0.0000
2.890 0.0000 0.0000
3.240 0.0000 0.0000
3.610 0.0000 0.0000
4.000 0.0000 0.0000
6.250 0.0000 0.0000
9.000 0.0000 0.0000
12.250 0.0004 0.0000
16.000 0.0244 0.0013
20.250 0.0587 0.0808
25.000 0.0329 0.0893
30.250 0.0243 0.0375
36.000 0.0335 0.0363
42.250 0.0473 0.0515
49.000 0.0485 0.0513
56.250 0.0425 0.0469
64.000 0.0411 0.0489
72.250 0.0501 0.0485
81.000 0.0558 0.0442
90.250 0.0523 0.0448
100.000 0.0559 0.0552
110.250 0.0529 0.0532
121.000 0.0254 0.0156

where s1 = T−2 ∑T
t=2 t and s2 = T−3 ∑T

t=2 t
2. For the case where the initial observation is drawn from its unconditional1

distribution we have2

Ĥ1(δi, βij) = δ2i y1 + 2δiy2 −

(
δiy3 + δ2i y5

)2
T (1 − r2i 1(δi > 0) + (T − 1)(1 − ri)2)

(12)3

+ β2
ij

[
(1 − ri1(δi > 0))T−1

+ δ2i s2 + r2
(
T − 1
T

)
+ 2riδis1 −

(
1 − r2i 1(δi > 0) + riδi( T−1

T ) + δ2i s1
)2

T (1 − r2i 1(δi > 0) + (T − 1)(1 − ri)2)

]
4

− 2βij

[
(ri + δi)y3 + δ2i y4 − δ2i T

−1y5 −

(
1 − r2i 1(δi > 0) + riδi( T−1

T ) + δ2i s1
)

T (1 − r2i 1(δi > 0) + (T − 1)(1 − ri)2)

(
δiy3 + δ2i y5

)]
5

+ log
(
1 +

(1 − ri)(T − 1)
1 + ri

)
.6

These forms allow vectorization of the programming of the test statistic which increases speed of computation (which7

is close to instantaneous on a standard personal computer) and allows a simpler generalization to serial correlation8

corrections when there is serial correlation in ut .9

The WLR statistic10

WLRk =

1
2m

∑m
i=1

∑2
i=j exp(−0.5Ĥk(x, δi, βij))∑m

i=1 pi exp(−0.5 exp(Ĥk(x, δi, 0)))
11

for either k = 0 or k = 1 is then constructed using the weights p0i from Table 3 for WLR0 using the zero initial12

version (Ĥ0(x, δi, βij)) or weights p1i for the WLR1 statistic using the unconditional distribution version of Ĥ1(x, δi, βij).13
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δi = {0, 0.252, 0.52, . . . , 92
} so m = 39, J = 2 with βij = cj/

√
1 − δ2i /30 with values for cj = {1, 3} for WLR0 and 1

βij = cj/
√
1 − δ2i /50 with values for cj = {1, 3} for WLR1. The test rejects if WLR > 1. 2

(5) The test TR is then the test in step (3) if δ̂ > 100 and the test in step (4) if δ̂ ≤ 100. The test TR0 uses WLR0 in step 3

(4), the test TR1 uses WLR1 in step (4). 4

Appendix B. Supplementary data 5

6Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.03.006. 7
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