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ABSTRACT OF THE DISSERTATION

Private Graph Statistics and Algorithms in Modern Applications

by

Jacob John Imola

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Kamalika Chaudhuri, Chair

In many modern machine learning applications, users hold data on a local device and

communicate with an untrusted central analyst. Local differential privacy (local DP) is the

state-of-the art way to ensure that all data sent by a user will be protected regardless of who

eventually sees the data. In this dissertation, I will focus on collecting certain graph statistics,

such as the degree vector and number of triangles in the graph, under local DP. I will obtain

formal performance guarantees in the presence of different real-world constraints.

First, I will detail a one-round triangle counting algorithm which is simple, but not

guaranteed to work well on sparse graphs. To improve these matters, I will propose a two-round

algorithm with improved performance for sparse graphs. Unfortunately, it may have prohibitively
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large per-user download cost. Second, I will show how one can use edge sampling to reduce

download cost, and exhibit another two-round algorithm which trades off between the download

cost and error.

Third, given that it requires significant synchronization overhead to implement multiple

rounds, I will focus on improved one-round algorithms for triangle counting. I propose such an

algorithm which satisfies a slightly weaker notion of DP, the shuffled model. This algorithm

uses a novel wedge-shuffling approach to count wedges, and gives rise to an accurate algorithm

for counting 4-cycles as well. Fourth, I will shift gears to computing the degree vector in

the presence of malicious users who do not follow the local DP protocol. I will detail robust

algorithms, leveraging the fact that every edge in a graph is shared between two users, which use

edge consistency checks to catch malicious users.

Fifth, I will highlight my work on private hierarchical clustering, a common clustering

algorithm used for graphs and other data. I propose two algorithms and a lower bound in the

general setting of the problem, and a near-optimal algorithm in the stochastic block model of

graphs. The algorithm design and lower bound are of interest to designing future local DP

protocols on graphs.
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Introduction

In our data-driven world, an increasing amount of data is collected by personal devices

surrounding us, such as personal phones and home assistants. This data contains valuable

information, but it is usually sensitive, opening the door for privacy attacks. With increased

pressure from users and policy-makers to provide better privacy [198], it is becoming standard to

not let the sensitive data leave the devices, and to protect users with privacy-preserving schemes.

The state-of-the-art way of protecting user privacy is through local differential privacy

(DP), which stipulates that each part of a user’s data will not affect the outcome of the server’s

analysis, regardless of what the analysis is and of any side-information about the user. A large

body of work beginning with [121] exists on local differential privacy for tabular data, in which

users hold i.i.d. samples from some distribution. We will explore local DP in the much less

well-studied area of graph data, which is a common data type used in various types of networks.

For example, we might consider a dataset which consists of recent calls made between

users, where phone numbers are public and the calls are private. Local DP is capable of collecting

call information present on the phones while ensuring a notion of privacy to the calls themselves.

Similarly, the recent rise of decentralized social media networks such as Mastodon [140] and

Diaspora [60] is a good candidate for local DP, since there is no trusted central authority to

conduct analysis.

In this dissertation, I advance the study of data analysis of graphs under local DP,

considering additional constraints imposed in modern applications such as download cost,

number of rounds of interaction, and data poisoning.

In Chapters 1, to 3, I will focus on algorithms for subgraph counting. In Chapter 1, I
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will detail a one-round triangle counting algorithm which is simple, but not guaranteed to work

well on sparse graphs. To improve these matters, I then propose a two-round algorithm with

better performance for sparse graphs which uses a second round counting query to reduce the

noise introduced by privacy. Then, I empirically validate the performance of both algorithms. I

conclude this chapter by proving a lower bound for any one-round algorithm for triangle counting.

This lower bound was subsequently improved by [77] to show that the one-round algorithm is

tight for some graphs.

In Chapter 2, I will show how to reduce the download cost of the two-round algorithm,

which can often be prohibitively high, using edge sampling techniques. Using the sampling

factor, one can trade off between the error of the algorithm and the download cost. The end result

is an algorithm for counting triangles accurately in which users download just a tiny portion

of the graph—in our experiments on graphs with millions of nodes, users merely needed to

download data on the order of 100MB.

In Chapter 3, given that it requires significant synchronization overhead to implement

multiple rounds which is not always possible in practice, I revisit one-round triangle counting

algorithms. I propose an improved one-round algorithm which satisfies a slightly weaker notion

of DP, the shuffle model. This algorithm uses a novel wedge-shuffling approach to count wedges,

and gives rise to an accurate algorithm for counting 4-cycles as well. In experiments, these

algorithms outperform the existing one-round, local DP algorithms.

In Chapter 4, I will shift gears to data poisoning in which malicious users who do not

follow the local DP protocol send poisoned responses. I will demonstrate that some ubiquitous

local DP mechanisms are susceptible to such users. Then, I will detail robust algorithms,

leveraging the fact that every edge in a graph is shared between two users, which use edge

consistency checks to catch malicious users. Experimentally, I validate the improved robustness

of these algorithms.

In Chapter 5, I will describe my work on private hierarchical clustering, a common

clustering algorithm used for graphs and other data. I propose two algorithms and a lower bound
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in the general setting of the problem, and a further algorithm in the stochastic block model of

graphs. Though the results are in the central, not local, model of DP, the algorithm design and

lower bounds are of interest to designing future local DP protocols on graphs.
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Chapter 1

Locally Differentially Private Analysis of
Graph Statistics

1.1 Introduction

Analysis of network statistics is a useful tool for finding meaningful patterns in graph

data, such as social, e-mail, citation and epidemiological networks. For example, the average

degree (i.e., number of edges connected to a node) in a social graph can reveal the average

connectivity. Subgraph counts (e.g., the number of triangles, stars, or cliques) can be used to

measure centrality properties such as the clustering coefficient, which represents the probability

that two friends of an individual will also be friends of one another [158]. However, the vast

majority of graph analytics is carried out on sensitive data, which could be leaked through the

results of graph analysis. Thus, there is a need to develop solutions that can analyze these graph

properties while still preserving the privacy of individuals in the network.

The standard way to analyze graphs with privacy is through differentially private graph

analysis [168, 73, 70]. Differential privacy provides individual privacy against adversaries with

arbitrary background knowledge, and has currently emerged as the gold standard for private

analytics. However, a vast majority of differentially private graph analysis algorithms are in the

centralized (or global) model [31, 43, 58, 98, 120, 122, 160, 167, 168, 184, 205, 203], where a

single trusted data curator holds the entire graph and releases sanitized versions of the statistics.

By assuming a trusted party that can access the entire graph, it is possible to release accurate
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graph statistics (e.g., subgraph counts [120, 122, 184], degree distribution [58, 98, 167], spectra

[205]) and synthetic graphs [43, 203].

In many applications however, a single trusted curator may not be practicable due to

security or logistical reasons. A centralized data holder is amenable to security issues such as

data breaches and leaks – a growing threat in recent years [153, 178]. Additionally, decentralized

social networks [161, 176] (e.g., Diaspora [60]) have no central server that contains an entire

social graph, and use instead many servers all over the world, each containing the data of users

who have chosen to register there. Finally, a centralized solution is also not applicable to fully

decentralized applications, where the server does not automatically hold information connecting

users. An example of this is a mobile application that asks each user how many of her friends she

has seen today, and sends noisy counts to a central server. In this application, the server does not

hold any individual edge, but can still aggregate the responses to determine the average mobility

in an area.

The standard privacy solution that does not assume a trusted third party is LDP (Local

Differential Privacy) [67, 121]. This is a special case of DP (Differential Privacy) in the local

model, where each user obfuscates her personal data by herself and sends the obfuscated data

to a (possibly malicious) data collector. Since the data collector does not hold the original

personal data, it does not suffer from data leakage issues. Therefore, LDP has recently attracted

attention from both academia [3, 19, 18, 86, 114, 117, 155, 164, 201, 217] as well as industry

[196, 62, 189]. However, the use of LDP has mostly been in the context of tabular data where

each row corresponds to an individual, and little attention has been paid to LDP for more complex

data such as graphs (see Section 1.2 for details).

In this paper, we consider LDP for graph data, and provide algorithms and theoretical

performance guarantees for calculating graph statistics in this model. In particular, we focus on

counting triangles and k-stars – the most basic and useful subgraphs. A triangle is a set of three

nodes with three edges (we exclude automorphisms; i.e., #closed triplets = 3× #triangles). A

k-star consists of a central node connected to k other nodes. Figure 1.1 shows an example of
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Figure 1.1. Example of subgraph counts.

triangles and k-stars. Counting them is a fundamental task of analyzing the connection patterns

in a graph, as the clustering coefficient can be calculated from triangle and 2-star counts as:

3×#triangles
#2-stars (in Figure 1.1, 3×5

20 = 0.75).

When we look to protect privacy of relationship information modeled by edges in a

graph, we need to pay attention to the fact that some relationship information could be leaked

from subgraph counts. For example, suppose that user (node) v2 in Figure 1.1 knows all edges

connected to v2 and all edges between v3, . . . ,v7 as background knowledge, and that v2 wants to

know who are friends with v1. Then “#2-stars = 20” reveals the fact that v1 has three friends,

and “#triangles = 5” reveals the fact that the three friends of v1 are v3, v4, and v6. Moreover, a

central server that holds all friendship information (i.e., all edges) may face data breaches, as

explained above. Therefore, a private algorithm for counting subgraphs in the local model is

highly beneficial to individual privacy.

The main challenge in counting subgraphs in the local model is that existing techniques

and their analysis do not directly apply. The existing work on LDP for tabular data assumes

that each person’s data is independently and identically drawn from an underlying distribution.

In graphs, this is no longer the case; e.g., each triangle is not independent, because multiple

triangles can involve the same edge; each k-star is not independent for the same reason. Moreover,

complex inter-dependencies involving multiple people are possible in graphs. For example, each

user cannot count triangles involving herself, because she cannot see edges between other users;
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e.g., user v1 cannot see an edge between v3 and v4 in Figure 1.1.

We show that although these complex dependency among users introduces challenges,

it also presents opportunities. Specifically, this kind of interdependency also implies that extra

interaction between users and a data collector may be helpful depending on the prior responses.

In this work, we investigate this issue and provide algorithms for accurately calculating subgraph

counts under LDP.

Our contributions. In this paper, we provide algorithms and corresponding performance

guarantees for counting triangles and k-stars in graphs under edge Local Differential Privacy.

Specifically, our contributions are as follows:

• For triangles, we present two algorithms. The first is based on Warner’s RR (Randomized

Response) [208] and empirical estimation [114, 155, 201]. We then present a more

sophisticated algorithm that uses an additional round of interaction between users and data

collector. We provide upper-bounds on the estimation error for each algorithm, and show

that the latter can significantly reduce the estimation error.

• For k-stars, we present a simple algorithm using the Laplacian mechanism. We analyze the

upper-bound on the estimation error for this algorithm, and show that it is order optimal

in terms of the number of users among all LDP mechanisms that do not use additional

interaction.

• We provide lower-bounds on the estimation error for general graph functions including

triangle counts and k-star counts in the local model. These are stronger than known upper

bounds in the centralized model, and illustrate the limitations of the local model over the

central.

• Finally, we evaluate our algorithms on two real datasets, and show that it is indeed possible

to accurately estimate subgraph counts in the local model. In particular, we show that

the interactive algorithm for triangle counts and the Laplacian algorithm for the k-stars
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provide small estimation errors when the number of users is large.

We implemented our algorithms with C/C++, and published them as open-source software

[190].

1.2 Related Work

Graph DP. DP on graphs has been widely studied, with most prior work being in the centralized

model [31, 43, 58, 98, 120, 122, 160, 167, 168, 184, 205, 203]. In this model, a number of

algorithms have been proposed for releasing subgraph counts [120, 122, 184], degree distributions

[58, 98, 167], eigenvalues and eigenvectors [205], and synthetic graphs [43, 203].

There has also been a handful of work on graph algorithms in the local DP model [165,

186, 218, 219, 221]. For example, Qin et al. [165] propose an algorithm for generating synthetic

graphs. Zhang et al. [221] propose an algorithm for software usage analysis under LDP, where

a node represents a software component (e.g., function in a code) and an edge represents a

control-flow between components. Neither of these works focus on subgraph counts.

Sun et al. [186] propose an algorithm for counting subgraphs in the local model under the

assumption that each user allows her friends to see all her connections. However, this assumption

does not hold in many practical scenarios; e.g., a Facebook user can change her setting so that

friends cannot see her connections. Therefore, we assume that each user knows only her friends

rather than all of her friends’ friends. The algorithms in [186] cannot be applied to this setting.

Ye et al. [218] propose a one-round algorithm for estimating graph metrics including the

clustering coefficient. Here they apply Warner’s RR (Randomized Response) to an adjacency

matrix. However, it introduces a very large bias for triangle counts. In [219], they propose

a method for reducing the bias in the estimate of triangle counts. However, the method in

[219] introduces some approximation, and it is unclear whether their estimate is unbiased. In

this paper, we propose a one-round algorithm for triangles that uses empirical estimation as a

post-processing step, and prove that our estimate is unbiased. We also show in Appendix A.1 that
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our one-round algorithm significantly outperforms the one-round algorithm in [218]. Moreover,

we show in Section 1.5 that our two-rounds algorithm significantly outperforms our one-round

algorithm.

Our work also differs from [186, 218, 219] in that we provide lower-bounds on the

estimation error.

LDP. Apart from graphs, a number of works have looked at analyzing statistics (e.g., discrete

distribution estimation[3, 86, 114, 117, 155, 201, 217], heavy hitters [19, 18, 164]) under LDP.

However, they use LDP in the context of tabular data, and do not consider the kind of

complex interdependency in graph data (as described in Section 1.1). For example, the RR with

empirical estimation is optimal in the low privacy regimes for estimating a distribution for tabular

data [114, 117]. We apply the RR and empirical estimation to counting triangles, and show that

it is suboptimal and significantly outperformed by a more sophisticated two-rounds algorithm.

Upper/lower-bounds. Finally, we note that existing work on upper-bounds and lower-bounds

cannot be directly applied to our setting. For example, there are upper-bounds [3, 114, 117, 217,

111, 110] and lower-bounds [2, 68, 66, 111, 65, 110, 112] on the estimation error (or sample

complexity) in distribution estimation of tabular data. However, they assume that each original

data value is independently sampled from an underlying distribution. They cannot be directly

applied to our graph setting, because each triangle and each k-star involve multiple edges and

are not independent (as described in Section 1.1). Rashtchian et al. [166] provide lower-bounds

on communication complexity (i.e., number of queries) of vector-matrix-vector queries for

estimating subgraph counts. However, their lower-bounds are not on the estimation error, and

cannot be applied to our problem.
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1.3 Preliminaries

1.3.1 Graphs and Differential Privacy

Graphs. Let N, Z≥0, R, and R≥0 be the sets of natural numbers, non-negative integers, real

numbers, and non-negative real numbers, respectively. For a ∈ N, let [a] = {1,2, . . . ,a}.

We consider an undirected graph G = (V,E), where V is a set of nodes (i.e., users) and

E is a set of edges. Let n ∈ N be the number of users in V , and let vi ∈ V the i-th user; i.e.,

V = {v1, . . . ,vn}. An edge (vi,v j) ∈ E represents a relationship between users vi ∈V and v j ∈V .

The number of edges connected to a single node is called the degree of the node. Let dmax ∈ N

be the maximum degree (i.e., maximum number of edges connected to a node) in graph G. Let G

be the set of possible graphs G on n users. A graph G ∈ G can be represented as a symmetric

adjacency matrix A = (ai, j) ∈ {0,1}n×n, where ai, j = 1 if (vi,v j) ∈ E and ai, j = 0 otherwise.

Types of DP. DP (Differential Privacy) [73, 70] is known as a gold standard for data privacy.

According to the underlying architecture, DP can be divided into two types: centralized DP and

LDP (Local DP). Centralized DP assumes the centralized model, where a “trusted” data collector

collects the original personal data from all users and obfuscates a query (e.g., counting query,

histogram query) on the set of personal data. LDP assumes the local model, where each user

does not trust even the data collector. In this model, each user obfuscates a query on her personal

data by herself and sends the obfuscated data to the data collector.

If the data are represented as a graph, we can consider two types of DP: edge DP and

node DP [98, 168]. Edge DP considers two neighboring graphs G,G′ ∈ G that differ in one edge.

In contrast, node DP considers two neighboring graphs G,G′ ∈ G in which G′ is obtained from

G by adding or removing one node along with its adjacent edges.

Although Zhang et al. [221] consider node DP in the local model where each node

represents a software component, we consider a totally different problem where each node

represents a user. In the latter case, node DP requires us to hide the existence of each user along

with her all edges. However, many applications in the local model send the identity of each user
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to a server. For example, we can consider a mobile application that sends to a server how many

friends a user met today along with her user ID. In this case, the user may not mind sending

her user ID, but may want to hide her edge information (i.e., who she met today). Although we

cannot use node DP in such applications, we can use edge DP to deny the presence/absence of

each edge (friend). Thus we focus on edge DP in the same way as [165, 186, 218, 219].

Below we explain edge DP in the centralized model.

Centralized DP. We call edge DP in the centralized model edge centralized DP. Formally, it is

defined as follows:

Definition 1 (ε-edge centralized DP). Let ε ∈ R≥0. A randomized algorithm M with domain G

provides ε-edge centralized DP if for any two neighboring graphs G,G′ ∈ G that differ in one

edge and any S⊆ Range(M ),

Pr[M (G) ∈ S]≤ eε Pr[M (G′) ∈ S]. (1.1)

Edge centralized DP guarantees that an adversary who has observed the output of M

cannot determine whether it is come from G or G′ with a certain degree of confidence. The

parameter ε is called the privacy budget. If ε is close to zero, then G and G′ are almost equally

likely, which means that an edge in G is strongly protected.

We also note that edge DP can be used to protect k ∈N edges by using the notion of group

privacy [73]. Specifically, if M provides ε-edge centralized DP, then for any two graphs G,G′ ∈

G that differ in k edges and any S⊆Range(M ), we obtain: Pr[M (G)∈ S]≤ ekε Pr[M (G′)∈ S];

i.e., k edges are protected with privacy budget kε .

1.3.2 Local Differential Privacy

LDP (Local Differential Privacy) [121, 67] is a privacy metric to protect personal data

of each user in the local model. LDP has been originally introduced to protect each user’s data

record that is independent from the other records. However, in a graph, each edge is connected
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to two users. Thus, when we define edge DP in the local model, we should consider what we

want to protect. In this paper, we consider two definitions of edge DP in the local model: edge

LDP in [165] and relationship DP introduced in this paper. Below, we will explain these two

definitions in detail.

Edge LDP. Qin et al. [165] defined edge LDP based on a user’s neighbor list. Specifically,

let ai = (ai,1, . . . ,ai,n) ∈ {0,1}n be a neighbor list of user vi. Note that ai is the i-th row of the

adjacency matrix A of graph G. In other words, graph G can be represented as neighbor lists

a1, . . . ,an.

Then edge LDP is defined as follows:

Definition 2 (ε-edge LDP [165]). Let ε ∈ R≥0. For any i ∈ [n], let Ri with domain {0,1}n

be a randomized algorithm of user vi. Ri provides ε-edge LDP if for any two neighbor lists

ai,a′i ∈ {0,1}n that differ in one bit and any S⊆ Range(Ri),

Pr[Ri(ai) ∈ S]≤ eε Pr[Ri(a′i) ∈ S]. (1.2)

Edge LDP in Definition 2 protects a single bit in a neighbor list with privacy budget ε .

As with edge centralized DP, edge LDP can also be used to protect k ∈ N bits in a neighbor list

by using group privacy; i.e., k bits in a neighbor list are protected with privacy budget kε .

RR (Randomized Response). As a simple example of a randomized algorithm Ri providing

ε-edge LDP, we explain Warner’s RR (Randomized Response) [208] applied to a neighbor list,

which is called the randomized neighbor list in [165].

Given a neighbor list ai ∈ {0,1}n, this algorithm outputs a noisy neighbor lists b =

(b1, . . . ,bn) ∈ {0,1}n by flipping each bit in ai with probability p = 1
eε+1 ; i.e., for each j ∈ [n],

b j ̸= ai, j with probability p and b j = ai, j with probability 1− p. Since Pr[R(ai) ∈ S] and

Pr[R(a′i) ∈ S] in (1.2) differ by eε for ai and a′i that differ in one bit, this algorithm provides

ε-edge LDP.
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Relationship DP. In graphs such as social networks, it is usually the case that two users share

knowledge of the presence of an edge between them. To hide their mutual edge, we must consider

that both user’s outputs can leak information. We introduce a DP definition called relationship

DP that hides one entire edge in graph G during the whole process:

Definition 3 (ε-relationship DP). Let ε ∈ R≥0. A tuple of randomized algorithms (R1, . . . ,Rn),

each of which is with domain {0,1}n, provides ε-relationship DP if for any two neighboring

graphs G,G′ ∈ G that differ in one edge and any S⊆ Range(R1)× . . .×Range(Rn),

Pr[(R1(a1), . . . ,Rn(an)) ∈ S]

≤ eε Pr[(R1(a′1), . . . ,Rn(a′n)) ∈ S], (1.3)

where ai (resp. a′i) ∈ {0,1}n is the i-th row of the adjacency matrix of graph G (resp. G′).

Relationship DP is the same as decentralized DP in [186] except that the former (resp. lat-

ter) assumes that each user knows only her friends (resp. all of her friends’ friends).

Edge LDP assumes that user vi’s edge connected to user v j and user v j’s edge connected

to user vi are different secrets, with user vi knowing the former and user v j knowing the latter.

Relationship DP assumes that the two secrets are the same.

Note that the threat model of relationship DP is different from that of LDP – some

amount of trust must be given to the other users in relationship DP. Specifically, user vi must

trust user v j to not leak information about their shared edge. If k ∈ N users decide not to follow

their protocols, then up to k edges incident to user vi may be compromised. This trust model is

stronger than LDP, which assumes nothing about what other users do, but is much weaker than

centralized DP in which all edges are in the hands of the central party.

Other than the differing threat models, relationship DP and edge LDP are quite closely

related:
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Proposition 1. If randomized algorithms R1, . . . ,Rn provide ε-edge LDP, then (R1, . . . ,Rn)

provides 2ε-relationship DP.

Proof. The existence of edge (vi,v j) ∈ E affects two elements ai, j,a j,i ∈ {0,1} in the adjacency

matrix A. Then by group privacy [73], Proposition 1 holds.

Proposition 1 states that when we want to protect one edge as a whole, the privacy budget

is at most doubled. Note, however, that some randomized algorithms do not have this doubling

issue. For example, we can apply the RR to the i-th neighbor list ai so that Ri outputs noisy

bits (b1, . . . ,bi−1) ∈ {0,1}i−1 for only users v1, . . . ,vi−1 with smaller user IDs; i.e., for each

j ∈ {1, . . . , i−1}, b j ̸= ai, j with probability p = 1
eε+1 and b j = ai, j with probability 1− p. In

other words, we can extend the RR for a neighbor list so that (R1, . . . ,Rn) outputs only the

lower triangular part of the noisy adjacency matrix. Then all of R1, . . . ,Rn provide ε-edge LDP.

In addition, the existence of edge (vi,v j) ∈ E (i > j) affects only one element ai, j in the lower

triangular part of A. Thus, (R1, . . . ,Rn) provides ε-relationship DP (not 2ε).

Our proposed algorithm in Section 1.4.3 also has this property; i.e., it provides both

ε-edge LDP and ε-relationship DP.

1.3.3 Global Sensitivity

In this paper, we use the notion of global sensitivity [73] to provide edge centralized DP

or edge LDP.

Let D be the set of possible input data of a randomized algorithm. In edge centralized

DP, D = G . In edge LDP, D = {0,1}n. Let f : D → R be a function that takes data D ∈D as

input and outputs some statistics f (D) ∈ R about the data. The most basic method for providing

DP is to add the Laplacian noise proportional to the global sensitivity [73].

Definition 4 (Global sensitivity). The global sensitivity of a function f : D → R is given by:

GS f = max
D,D′∈D :D∼D′

| f (D)− f (D′)|,
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where D ∼ D′ represents that D and D′ are neighbors; i.e., they differ in one edge in edge

centralized DP, and differ in one bit in edge LDP.

In graphs, the global sensitivity GS f can be very large. For example, adding one edge

may result in the increase of triangle (resp. k-star) counts by n−2 (resp.
( n

k−1

)
).

One way to significantly reduce the global sensitivity is to use graph projection [58,

122, 167], which removes some neighbors from a neighbor list so that the maximum degree

dmax is upper-bounded by a predetermined value d̃max ∈ Z≥0. By using the graph projection

with d̃max≪ n, we can enforce small global sensitivity; e.g., the global sensitivity of triangle

(resp. k-star) counts is at most d̃max (resp.
(d̃max

k−1

)
) after the projection.

Ideally, we would like to set d̃max = dmax to avoid removing neighbors from a neighbor list

(i.e., to avoid the loss of utility). However, the maximum degree dmax can leak some information

about the original graph G. In this paper, we address this issue by privately estimating dmax with

edge LDP and then using the private estimate of dmax as d̃max. This technique is also known as

adaptive clipping in differentially private stochastic gradient descent (SGD) [162, 188].

1.3.4 Graph Statistics and Utility Metrics

Graph statistics. We consider a graph function that takes a graph G ∈ G as input and outputs

some graph statistics. Specifically, let f△ : G → Z≥0 be a graph function that outputs the number

of triangles in G. For k ∈ N, let fk⋆ : G → Z≥0 be a graph function that outputs the number of

k-stars in G. For example, if a graph G is as shown in Figure 1.1, then f△(G) = 5, f2⋆(G) = 20,

and f3⋆(G) = 8. The clustering coefficient can also be calculated from f△(G) and f2⋆(G) as:
3 f△(G)

f2⋆(G) = 0.75.

Table 1.1 shows the basic notations used in this paper.

Utility metrics. We use the l2 loss (i.e., squared error) [114, 201, 155] and the relative error

[29, 41, 215] as utility metrics.

Specifically, let f̂ (G) ∈ R be an estimate of graph statistics f (G) ∈ R. Here f can

be instantiated by f△ or fk⋆; i.e., f̂△(G) and f̂k⋆(G) are the estimates of f△(G) and fk⋆(G),
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Table 1.1. Basic notations in this paper.

Symbol Description
n Number of users.
G = (V,E) Graph with n nodes (users) V and edges E.
vi i-th user in V .
dmax Maximum degree of G.
d̃max Upper-bound on dmax (used for projection).
G Set of possible graphs on n users.
A = (ai, j) Adjacency matrix.
ai i-th row of A (i.e., neighbor list of vi).
Ri Randomized algorithm on ai.
f△(G) Number of triangles in G.
fk⋆(G) Number of k-stars in G.

respectively. Let l2
2 be the l2 loss function, which maps the estimate f̂ (G) and the true value

f (G) to the l2 loss; i.e., l2
2( f̂ (G), f (G)) = ( f̂ (G)− f (G))2. Note that when we use a randomized

algorithm providing edge LDP (or edge centralized DP), f̂ (G) depends on the randomness in

the algorithm. In our theoretical analysis, we analyze the expectation of the l2 loss over the

randomness, as with [114, 201, 155].

When f (G) is large, the l2 loss can also be large. Thus in our experiments, we also

evaluate the relative error, along with the l2 loss. The relative error is defined as: | f̂ (G)− f (G)|
max{ f (G),η} ,

where η ∈ R≥0 is a very small positive value. Following the convention [29, 41, 215], we set

η = 0.001n for f△ and fk⋆.

1.4 Algorithms

In the local model, there are several ways to model how the data collector interacts with

the users [67, 112, 165]. The simplest model would be to assume that the data collector sends a

query Ri to each user vi once, and then each user vi independently sends an answer Ri(ai) to

the data collector. In this model, there is one-round interaction between each user and the data

collector. We call this the one-round LDP model. For example, the RR for a neighbor list in

Section 1.3.2 assumes this model.
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However, in certain cases it may be possible for the data collector to send a query to each

user multiple times. This could allow for more powerful queries that result in more accurate

subgraph counts [186] or more accurate synthetic graphs [165]. We call this the multiple-rounds

LDP model.

In Sections 1.4.1 and 1.4.2, we consider the problems of computing fk⋆(G) and f△(G)

for a graph G ∈ G in the one-round LDP model. Our algorithms and bounds highlight limitations

of the one-round LDP model. Compared to the centralized graph DP model, the one-round LDP

model cannot compute fk⋆(G) as accurately. Furthermore, the algorithm for f△(G) does not

perform well. In Section 1.4.3, we propose a more sophisticated algorithm for computing f△(G)

in the two-rounds LDP model, and show that it provides much smaller expected l2 loss than

the algorithm in the one-round LDP model. In Section 1.4.4, we show a general result about

lower bounds on the expected l2 loss of graph statistics in LDP. The proofs of all statements in

Section 1.4 are given in Appendix A.4.

1.4.1 One-Round Algorithms for k-Stars

Algorithm. We begin with the problem of computing fk⋆(G) in the one-round LDP model. For

this model, we introduce a simple algorithm using the Laplacian mechanism, and prove that this

algorithm can achieve order optimal expected l2 loss among all one-round LDP algorithms.

Algorithm 1 shows the one-round algorithm for k-stars. It takes as input a graph G

(represented as neighbor lists a1, . . . ,an ∈ {0,1}n), the privacy budget ε , and a non-negative

integer d̃max ∈ Z≥0.

The parameter d̃max plays a role as an upper-bound on the maximum degree dmax of G.

Specifically, let di ∈ Z≥0 be the degree of user vi; i.e., the number of “1”s in her neighbor list ai.

In line 3, user vi uses a function (denoted by GraphProjection) that performs graph projection

[58, 122, 167] for ai as follows. If di exceeds d̃max, it randomly selects d̃max neighbors out of di

neighbors; otherwise, it uses ai as it is. This guarantees that each user’s degree never exceeds

d̃max; i.e., di ≤ d̃max after line 4.

17



Data: Graph G represented as neighbor lists a1, . . . ,an ∈ {0,1}n, privacy budget ε ∈ R≥0,
d̃max ∈ Z≥0.

Result: Private estimate of fk⋆(G).
1 ∆←

(d̃max
k−1

)
;

2 for i = 1 to n do
3 ai← GraphProjection(ai, d̃max);

/* di is a degree of user vi. */

4 di← ∑
n
j=1 ai, j;

5 ri←
(di

k

)
;

6 r̂i← ri +Lap
(

∆

ε

)
;

7 release(r̂i);
8 end
9 return ∑

n
i=1 r̂i

Algorithm 1: LocalLapk⋆

After the graph projection, user vi counts the number of k-stars ri ∈ Z≥0 of which she

is a center (line 5), and adds the Laplacian noise to ri (line 6). Here, since adding one edge

results in the increase of at most
(d̃max

k−1

)
k-stars, the sensitivity of k-star counts for user vi is at

most
(d̃max

k−1

)
(after graph projection). Therefore, we add Lap(∆

ε
) to ri, where ∆ =

(d̃max
k−1

)
and for

b ∈ R≥0 Lap(b) is a random variable that represents the Laplacian noise with mean 0 and scale

b. The final answer of Algorithm 1 is simply the sum of all the noisy k-star counts. We denote

this algorithm by LocalLapk⋆.

The value of d̃max greatly affects the utility. If d̃max is too large, a large amount of

the Laplacian noise would be added. If d̃max is too small, a great number of neighbors would

be reduced by graph projection. When we have some prior knowledge about the maximum

degree dmax, we can set d̃max to an appropriate value. For example, the maximum number of

connections allowed on Facebook is 5000 [210]. In this case, we can set d̃max = 5000, and then

graph projection does nothing. Given that the number of Facebook monthly active users is over

2.7 billion [84], d̃max = 5000 is much smaller than n. For another example, if we know that

the degree is smaller than 1000 for most users, then we can set d̃max = 1000 and perform graph

projection for users whose degrees exceed d̃max.
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In some applications, the data collector may not have such prior knowledge about d̃max.

In this case, we can privately estimate dmax by allowing an additional round between each user

and the data collector, and use the private estimate of dmax as d̃max. We describe how to privately

estimate dmax with edge LDP at the end of Section 1.4.1.

Theoretical properties. LocalLapk⋆ has the following guarantees:

Theorem 1. LocalLapk⋆ provides ε-edge LDP.

Theorem 2. Let f̂k⋆(G,ε, d̃max) be the output of LocalLapk⋆. Then, for all k ∈N,ε ∈R≥0, d̃max ∈

Z≥0, and G ∈ G such that the maximum degree dmax of G is at most d̃max, we have

E[l2
2( f̂k⋆(G,ε, d̃max), fk⋆(G))] = O

(
nd̃2k−2

max
ε2

)
.

The factor of n in the expected l2 loss of LocalLapk⋆ comes from the fact that we are

adding the Laplacian noise n times. In the centralized model, this factor of n is not there, because

the central data collector sees all k-stars; i.e., the data collector knows fk⋆(G). The sensitivity

of fk⋆ is at most 2
(d̃max

k−1

)
(after graph projection) under edge centralized DP. Therefore, we

can consider an algorithm that simply adds the Laplacian noise Lap(2
(d̃max

k−1

)
/ε) to fk⋆(G), and

outputs

fk⋆(G)+Lap(2
(

d̃max

k−1

)
/ε).

We denote this algorithm by CentralLapk⋆. Since the bias of the Laplacian noise is 0, CentralLapk⋆

attains the expected l2 loss (= variance) of O
(

d̃2k−2
max
ε2

)
.

It seems impossible to avoid this factor of n in the one-round LDP model, as the data

collector will be dealing with n independent answers to queries. Indeed, this is the case—

we prove that the expected l2 error of LocalLapk⋆ is order optimal among all one-round LDP

algorithms, and the one-round LDP model cannot improve the factor of n.

Corollary 1. Let f̂k⋆(G, d̃max,ε) be any one-round LDP algorithm that computes fk⋆(G) satisfy-

ing ε-edge LDP. Then, for all k,n, d̃max ∈ N and ε ∈ R≥0 such that n is even, there exists a set of

19



graphs A ⊆ G on n nodes such that the maximum degree of each G ∈A is at most d̃max, and

1
|A |∑G∈A E[l2

2( f̂k⋆(G, d̃max,ε), fk⋆(G))]≥Ω

(
e2ε

(e2ε+1)2 d̃2k−2
max n

)
.

This is a corollary of a more general result of Section 1.4.4. Thus, any algorithm

computing k-stars cannot avoid the factor of n in its l2
2 loss. k-stars is an example where the

non-interactive graph LDP model is strictly weaker than the centralized DP model.

Nevertheless, we note that LocalLapk⋆ can accurately calculate fk⋆(G) for a large number

of users n. Specifically, the relative error decreases with increase in n because LocalLapk⋆ has

a factor of n (not n2) in the expected l2 error, i.e., E[( f̂k⋆(G,ε, d̃max)− fk⋆(G))2] = O(n) and

fk⋆(G)2 ≥ Ω(n2) (when we ignore d̃max and ε). In our experiments, we show that the relative

error of LocalLapk⋆ is small when n is large.

Private calculation of dmax. By allowing an additional round between each user and the data

collector, we can privately estimate dmax and use the private estimate of dmax as d̃max. Specifically,

we divide the privacy budget ε into ε0 ∈ R≥0 and ε1 ∈ R≥0; i.e., ε = ε0 + ε1. We first estimate

dmax with ε0-edge LDP and then run LocalLapk⋆ with the remaining privacy budget ε1. Note that

LocalLapk⋆ with the private calculation of dmax results in a two-rounds LDP algorithm.

We consider the following simple algorithm. At the first round, each user vi adds the

Laplacian noise Lap( 1
ε0
) to her degree di. Let d̂i ∈ R be the noisy degree of vi; i.e., d̂i =

di +Lap( 1
ε0
). Then user vi sends d̂i to the data collector. Let d̂max ∈ R be the maximum value

of the noisy degree; i.e., d̂max = max{d̂1, . . . , d̂n}. We call d̂max the noisy max degree. The data

collector calculates the noisy max degree d̂max as an estimate of dmax, and sends d̂max back to all

users. At the second round, we run LocalLapk⋆ with input G, ε , and ⌊d̂max⌋.

At the first round, the calculation of d̂max provides ε0-edge LDP because each user’s

degree has the sensitivity 1 under edge LDP. At the second round, Theorem 1 guarantees that

LocalLapk⋆ provides ε1-edge LDP. Then by the composition theorem [73], this two-rounds

algorithm provides ε-edge LDP in total (ε = ε0 + ε1).

In our experiments, we show that this algorithm provides the utility close to LocalLapk⋆
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Figure 1.2. Four types of subgraphs with three nodes.

with the true max degree dmax.

1.4.2 One-Round Algorithms for Triangles.

Algorithm. Now, we focus our attention on the more challenging f△ query. This query is more

challenging in the graph LDP model because no user is aware of any triangle; i.e., user vi is not

aware of any triangle formed by (vi,v j,vk), because vi cannot see any edge (v j,vk) ∈ E in graph

G.

One way to count f△(G) with edge LDP is to apply the RR (Randomized Response)

to a neighbor list. For example, user vi applies the RR to ai,1, . . . ,ai,i−1 (which corresponds to

users v1, . . . ,vi−1 with smaller user IDs) in her neighbor list ai; i.e., we apply the RR to the lower

triangular part of adjacency matrix A, as described in Section 1.3.2. Then the data collector

constructs a noisy graph G′ = (V,E ′) ∈ G from the lower triangular part of the noisy adjacency

matrix, and estimates the number of triangles from G′. However, simply counting the triangles

in G′ can introduce a significant bias because G′ is denser than G especially when ε is small.

Through clever post-processing known as empirical estimation [114, 155, 201], we are

able to obtain an unbiased estimate of f△(G) from G′. Specifically, a subgraph with three nodes

can be divided into four types depending on the number of edges. Three nodes with three edges

form a triangle. We refer to three nodes with two edges, one edge, and no edges as 2-edges,

1-edge, and no-edges, respectively. Figure 1.2 shows their shapes. f△(G) can be expressed using
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m3, m2, m1, and m0 as follows:

Proposition 2. Let G′ = (V,E ′) be a noisy graph generated by applying the RR to the lower

triangular part of A. Let m3,m2,m1,m0 ∈ Z≥0 be respectively the number of triangles, 2-edges,

1-edge, and no-edges in G′. Then

E
[

e3ε

(eε−1)3 m3− e2ε

(eε−1)3 m2+
eε

(eε−1)3 m1− 1
(eε−1)3 m0

]
= f△(G). (1.4)

Therefore, the data collector can count m3, m2, m1, and m0 from G′, and calculate an

unbiased estimate of f△(G) by (1.4). In Appendix A.1, we show that the l2 loss is significantly

reduced by this empirical estimation.

Data: Graph G represented as neighbor lists a1, . . . ,an ∈ {0,1}n, privacy budget ε ∈ R≥0.
Result: Private estimate of f△(G).

1 for i = 1 to n do
2 Ri← (RRε(ai,1), . . . ,RRε(ai,i−1));
3 release(Ri);
4 end
5 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Rn);
/* Counts m3,m2,m1,m0 in G′. */

6 (m3,m2,m1,m0)← Count(G′);
7 return 1

(eε−1)3 (e3εm3− e2εm2 + eεm1−m0)

Algorithm 2: LocalRR△

Algorithm 2 shows this algorithm. In line 2, user vi applies the RR with privacy budget ε

(denoted by RRε ) to ai,1, . . . ,ai,i−1 in her neighbor list ai, and outputs

Ri = (RRε(ai,1), . . . ,RRε(ai,i−1)).

In other words, we apply the RR to the lower triangular part of A and there is no overlap between

edges sent by users. In line 5, the data collector uses a function (denoted by UndirectedGraph)

that converts the bits of (R1, . . . ,Rn) into an undirected graph G′ = (V,E ′) by adding edge (vi,v j)

with i > j to E ′ if and only if the j-th bit of Ri is 1. Note that G′ is biased, as explained above.

22



In line 6, the data collector uses a function (denoted by Count) that calculates m3, m2, m1, and

m0 from G′. Finally, the data collector outputs the expression inside the expectation on the

left-hand side of (1.4), which is an unbiased estimator for f△(G) by Proposition 2. We denote

this algorithm by LocalRR△.

Theoretical properties. LocalRR△ provides the following guarantee.

Theorem 3. LocalRR△ provides ε-edge LDP and ε-relationship DP.

LocalRR△ does not have the doubling issue (i.e., it provides not 2ε but ε-relationship

DP), because we apply the RR to the lower triangular part of A, as explained in Section 1.3.2.

Unlike the RR and empirical estimation for tabular data [114], the expected l2 loss of

LocalRR△ is complicated. To simplify the utility analysis, we assume that G is generated from

the Erdös-Rényi graph distribution G(n,α) with edge existence probability α ; i.e., each edge in

G with n nodes is independently generated with probability α ∈ [0,1].

Theorem 4. Let G(n,α) be the Erdös-Rényi graph distribution with edge existence probability

α ∈ [0,1]. Let p = 1
eε+1 and β = α(1− p)+(1−α)p. Let f̂△(G,ε) be the output of LocalRR△.

If G∼G(n,α), then for all ε ∈ R≥0, E[l2
2( f̂△(G,ε), f△(G))] = O

(
e6ε

(eε−1)6 βn4
)

.

Note that we assume the Erdös-Rényi model only for the utility analysis of LocalRR△,

and do not assume this model for the other algorithms. The upper-bound of LocalRR△ in

Theorem 4 is less ideal than the upper-bounds of the other algorithms in that it does not consider

all possible graphs G ∈ G . Nevertheless, we also show that the l2 loss of LocalRR△ is roughly

consistent with Theorem 4 in our experiments using two real datasets (Section 1.5) and the

Barabási-Albert graphs [16], which have power-law degree distribution (Appendix A.2).

The parameters α and β are edge existence probabilities in the original graph G and

noisy graph G′, respectively. Although α is very small in a sparse graph, β can be large for small

ε . For example, if α ≈ 0 and ε = 1, then β ≈ 1
e+1 = 0.27.

Theorem 4 states that for large n, the l2 loss of LocalRR△ (= O(n4)) is much larger than
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the l2 loss of LocalRRk⋆ (= O(n)). This follows from the fact that user vi is not aware of any

triangle formed by (vi,v j,vk), as explained above.

In contrast, counting f△(G) in the centralized model is much easier because the data

collector sees all triangles in G; i.e., the data collector knows f△(G). The sensitivity of f△ is

at most d̃max (after graph projection). Thus, we can consider a simple algorithm that outputs

f△(G)+Lap(d̃max/ε). We denote this algorithm by CentralLap△. CentralLap△ attains the

expected l2 loss (= variance) of O
(

d̃2
max
ε2

)
.

The large l2 loss of LocalRR△ is caused by the fact that each edge is released inde-

pendently with some probability of being flipped. In other words, there are three independent

random variables that influence any triangle in G′. The next algorithm, using interaction, reduces

this influencing number from three to one by using the fact that a user knows the existence of

two edges for any triangle that involves the user.

1.4.3 Two-Rounds Algorithms for Triangles

Algorithm. Allowing for two-rounds interaction, we are able to compute f△ with a significantly

improved l2 loss, albeit with a higher per-user communication overhead. As described in

Section 1.4.2, it is impossible for user vi to see edge (v j,vk) ∈ E in graph G = (V,E) at the

first round. However, if the data collector publishes a noisy graph G′ = (V,E ′) calculated by

LocalRR△ at the first round, then user vi can see a noisy edge (v j,vk) ∈ E ′ in the noisy graph G′

at the second round. Then user vi can count the number of noisy triangles formed by (vi,v j,vk)

such that (vi,v j) ∈ E, (vi,vk) ∈ E, and (v j,vk) ∈ E ′, and send the noisy triangle counts with the

Laplacian noise to the data collector in an analogous way to LocalLapk⋆. Since user vi always

knows that two edges (vi,v j) and (vi,vk) exist in G, there is only one noisy edge in any noisy

triangle (whereas all edges are noisy in LocalRR△). This is an intuition behind our proposed

two-rounds algorithm.

As with the RR in Section 1.4.2, simply counting the noisy triangles can introduce a

bias. Therefore, we calculate an empirical estimate of f△(G) from the noisy triangle counts.
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Specifically, the following is the empirical estimate of f△(G):

Proposition 3. Let G′ = (V,E ′) be a noisy graph generated by applying the RR with privacy

budget ε1 ∈ R≥0 to the lower triangular part of A. Let p1 =
1

eε1+1 . Let ti ∈ Z≥0 be the number

of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E, (vi,vk) ∈ E, and (v j,vk) ∈ E ′. Let si ∈ Z≥0

be the number of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E, and (vi,vk) ∈ E. Let

wi = ti− p1si. Then

E
[

1
1−2p1

∑
n
i=1 wi

]
= f△(G). (1.5)

Note that in Proposition 3, we count only triplets (vi,v j,vk) with j < k < i to use only the

lower triangular part of A. ti is the number of noisy triangles user vi can see at the second round.

si is the number of 2-stars of which user vi is a center. Since ti and si can reveal information

about an edge in G, user vi adds the Laplacian noise to wi (= ti− p1si) in (1.5), and sends it to

the data collector. Then the data collector calculates an unbiased estimate of f△(G) by (1.5).

Algorithm 3 contains the formal description of this process. It takes as input a graph G,

the privacy budgets ε1,ε2 ∈ R≥0 at the first and second rounds, respectively, and a non-negative

integer d̃max ∈ Z≥0. At the first round, we apply the RR to the lower triangular part of A (i.e.,

there is no overlap between edges sent by users) and use the UndirectedGraph function to

obtain a noisy graph G′ = (V,E ′) by the RR in the same way as Algorithm 2. Note that G′ is

biased. We calculate an unbiased estimate of f△(G) from G′ at the second round.

At the second round, each user vi calculates ŵi = wi+Lap( d̃max
ε2

) by adding the Laplacian

noise to wi in Proposition 3 whose sensitivity is at most d̃max (as we will prove in Theorem 5).

Finally, we output 1
1−2p1

∑
n
i=1 ŵi, which is an unbiased estimate of f△(G) by Proposition 3. We

call this algorithm Local2Rounds△.

Theoretical properties. Local2Rounds△ has the following guarantee.

Theorem 5. Local2Rounds△ provides (ε1 + ε2)-edge LDP and (ε1 + ε2)-relationship DP.
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Data: Graph G represented as neighbor lists a1, . . . ,an ∈ {0,1}n, two privacy budgets
ε1,ε2 > 0, d̃max ∈ Z≥0.

Result: Private estimate of f△(G).
1 p1← 1

eε1+1 ;
/* First round. */

2 for i = 1 to n do
3 Ri← (RRε1(ai,1), . . . ,RRε1(ai,i−1));
4 release(Ri);
5 end
6 G′ = (V,E ′)← UndirectedGraph(R1, . . . ,Ri−1);
/* Second round. */

7 for i = 1 to n do
8 ai← GraphProjection(ai, d̃max);
9 ti← |{(vi,v j,vk) : j < k < i,ai, j = ai,k = 1,(v j,vk) ∈ E ′}|;

10 si← |{(vi,v j,vk) : j < k < i,ai, j = ai,k = 1}|;
11 wi← ti− p1si;

12 ŵi← wi +Lap( d̃max
ε2

);
13 release(ŵi);
14 end
15 return 1

1−2p1
∑

n
i=1 ŵi

Algorithm 3: Local2Rounds△
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As with LocalRR△, Local2Rounds△ does not have the doubling issue; i.e., it provides

ε-relationship DP (not 2ε). This follows from the fact that we use only the lower triangular part

of A; i.e., we assume j < k < i in counting ti and si.

Theorem 6. Let f̂△(G,ε1,ε2, d̃max) be the output of Local2Rounds△. Then, for all ε1,ε2 ∈

R≥0, d̃max ∈ Z≥0, and G ∈ G such that the maximum degree dmax of G is at most d̃max,

E[l2
2( f̂△(G,ε1,ε2, d̃max), f△(G))]≤ O

(
eε1

(1−eε1)2

(
d̃3

maxn+ eε1

ε2
2

d̃2
maxn

))
.

Theorem 6 means that for triangles, the l2 loss is reduced from O(n4) to O(d̃3
maxn) by

introducing an additional round.

Private calculation of dmax. As with k-stars, we can privately calculate dmax by using the

method described in Section 1.4.1. Furthermore, the private calculation of dmax does not increase

the number of rounds; i.e., we can run Local2Rounds△ with the private calculation of dmax in

two rounds.

Specifically, let ε0 ∈ R≥0 be the privacy budget for the private calculation of dmax.

At the first round, each user vi adds Lap( 1
ε0
) to her degree di, and sends the noisy degree d̂i

(= di +Lap( 1
ε0
)) to the data collector, along with the outputs Ri = (RRε(ai,1), . . . ,RRε(ai,i−1))

of the RR. The data collector calculates the noisy max degree d̂max (= max{d̂1, . . . , d̂n}) as an

estimate of dmax, and sends it back to all users. At the second round, we run Local2Rounds△

with input G (represented as a1, . . . ,an), ε1, ε2, and ⌊d̂max⌋.

At the first round, the calculation of d̂max provides ε0-edge LDP. Note that it provides

2ε0-relationship DP (i.e., it has the doubling issue) because one edge (vi,v j) ∈ E affects both of

the degrees di and d j by 1. At the second round, LocalLapk⋆ provides (ε1 + ε2)-edge LDP and

(ε1 + ε2)-relationship DP (Theorem 5). Then by the composition theorem [73], this two-rounds

algorithm provides (ε0 + ε1 + ε2)-edge LDP and (2ε0 + ε1 + ε2)-relationship DP. Although the

total privacy budget is larger for relationship DP, the difference (= ε0) can be very small. In fact,

we set (ε0,ε1,ε2) = (0.1,0.45,0.45) or (0.2,0.9,0.9) in our experiments (i.e., the difference is

0.1 or 0.2), and show that this algorithm provides almost the same utility as Local2Rounds△
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with the true max degree dmax.

Time complexity. We also note that Local2Rounds△ has an advantage over LocalRR△ in terms

of the time complexity.

Specifically, LocalRR△ is inefficient because the data collector has to count the number

of triangles m3 in the noisy graph G′. Since the noisy graph G′ is dense (especially when ε is

small) and there are
(n

3

)
subgraphs with three nodes in G′, the number of triangles is m3 = O(n3).

Then, the time complexity of LocalRR△ is also O(n3), which is not practical for a graph with a

large number of users n. In fact, we implemented LocalRR△ (ε = 1) with C/C++ and measured

its running time using one node of a supercomputer (ABCI: AI Bridging Cloud Infrastructure

[5]). When n = 5000, 10000, 20000, and 40000, the running time was 138, 1107, 9345, and

99561 seconds, respectively; i.e., the running time was almost cubic in n. We can also estimate

the running time for larger n. For example, when n = 1000000, LocalRR△ (ε = 1) would require

about 35 years (= 1107×1003/(3600×24×365)).

In contrast, the time complexity of Local2Rounds△ is O(n2 + nd2
max)

1. The factor of

n2 comes from the fact that the size of the noisy graph G′ is O(n2). This also causes a large

communication overhead, as explained below.

Communication overhead. In Local2Rounds△, each user need to see the noisy graph G′ of size

O(n2) to count ti and si. This results in a per-user communication overhead of O(n2). Although

we do not simulate the communication overhead in our experiments that use Local2Rounds△,

the O(n2) overhead might limit its application in very large graphs. An interesting avenue of

future work is how to compress the graph size (e.g., via graph projection or random projection)

to reduce both the time complexity and the communication overhead.

1When we evaluate Local2Rounds△ in our experiments, we can apply the RR to only edges that are required
at the second round; i.e., (v j,vk) ∈ G′ in line 8 of Algorithm 3. Then the time complexity of Local2Rounds△ can
be reduced to O(nd2

max) in total. We also confirmed that when n = 1000000, the running time of Local2Rounds△
was 311 seconds on one node of the ABCI. Note, however, that this does not protect individual privacy, because it
reveals the fact that users v j and vk are friends with ui to the data collector.

28



C
en

tr
al

iz
ed

O
ne

-r
ou

nd
lo

ca
l

Tw
o-

ro
un

ds
lo

ca
l

U
pp

er
B

ou
nd

L
ow

er
B

ou
nd

U
pp

er
B

ou
nd

U
pp

er
B

ou
nd

f k
⋆

O
( d2k

−
2

m
ax

ε
2

)
Ω

( e2ε

(e
2ε
+

1)
2
d2k
−

2
m

ax
n)

O
( d2k

−
2

m
ax

ε
2

n)
O
( d2k

−
2

m
ax

ε
2

n)
f △

O
( d2 m

ax
ε

2

)
Ω

( e2ε

(e
2ε
+

1)
2
d2 m

ax
n)

O
( e6ε

(e
ε
−

1)
6
n4)

(w
he

n
G
∼

G
(n
,α

))

O
( eε

(e
ε
−

1)
2
(d

3 m
ax

n
+

eε

ε
2
d2 m

ax
n)
)

Table 1.2. Bounds on l2 losses for privately estimating fk⋆ and f△ with ε-edge LDP. For upper-
bounds, we assume that d̃max = dmax. For the centralized model, we use the Laplace mechanism.
For the one-round f△ algorithm, we apply Theorem 4 with constant α . For the two-round
protocol f△ algorithm, we apply Theorem 6 with ε1 = ε2 =

ε

2 .
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1.4.4 Lower Bounds

We show a general lower bound on the l2 loss of private estimators f̂ of real-valued

functions f in the one-round LDP model. Treating ε as a constant, we have shown that when

d̃max = dmax, the expected l2 loss of LocalLaplacek⋆ is O(nd2k−2
max ) (Theorem 2). However, in the

centralized model, we can use the Laplace mechanism with sensitivity 2
(dmax

k−1

)
to obtain l2

2 errors

of O(d2k−2
max ) for fk⋆. Thus, we ask if the factor of n is necessary in the one-round LDP model.

We answer this question affirmatively. We show for many types of queries f , there is a

lower bound on l2
2( f (G), f̂ (G)) for any private estimator f̂ of the form

f̂ (G) = f̃ (R1(a1), . . . ,Rn(an)), (1.6)

where R1, . . . ,Rn satisfy ε-edge LDP or ε-relationship DP and f̃ is an aggregate function

that takes R1(a1), . . . ,Rn(an) as input and outputs f̂ (G). Here we assume that R1, . . . ,Rn are

independently run, meaning that they are in the one-round setting. For our lower bound, we

require that input edges to f be “independent” in the sense that adding an edge to an input graph

G independently change f by at least D ∈ R. The specific structure of input graphs we require is

as follows:

Definition 5. [(n,D)-independent cube for f ] Let D ∈ R≥0. For κ ∈ N, let G = (V,E) ∈ G be a

graph on n = 2κ nodes, and let M = {(vi1,vi2),(vi3,vi4), . . . ,(vi2k−1,vi2κ
)} for integers i j ∈ [n] be

a set of edges such that each of i1, . . . , i2κ is distinct (i.e., perfect matching on the nodes). Suppose

that M is disjoint from E; i.e., (vi2 j−1,vi2 j) /∈ E for any j ∈ [κ]. Let A = {(V,E ∪N) : N ⊆M}.

Note that A is a set of 2κ graphs. We say A is an (n,D)-independent cube for f if for all

G′ = (V,E ′) ∈A , we have

f (G′) = f (G)+ ∑
e∈E ′∩M

Ce,

where Ce ∈ R satisfies |Ce| ≥ D for any e ∈M.
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𝑣3 𝑣4

𝑣1 𝑣2

𝐺1

𝑓 𝐺1 = 0

4,2 -independent cube 𝒜

Figure 1.3. (4,2)-independent cube A for given function f . In this example, M =
{(v1,v2),(v3,v4)}, G1 =(V,E), A = {(V,E∪N) : N⊆M}, C(v1,v2)= 2, and C(v3,v4)= 3. Adding
(v1,v2) and (v3,v4) increase f by 2 and 3, respectively.

Such a set of inputs has an “independence” property because, regardless of which edges

from M has been added before, adding edge e ∈M always changes f by Ce. Figure 1.3 shows an

example of a (4,2)-independent cube for f .

We can also construct a independent cube for a k-star function as follows. Assume

that n is even. It is well known in graph theory that if n is even, then for any d ∈ [n− 1],

there exists a d-regular graph where every node has degree d [89]. Therefore, there exists a

(dmax−1)-regular graph G = (V,E) of size n. Pick an arbitrary perfect matching M on the nodes.

Now, let G′ = (V,E ′) such that E ′ = E \M. Every node in G′ has degree between dmax− 2

and dmax− 1. Adding an edge in M to G′ will produce at least 2
(dmax−2

k−1

)
new k-stars. Thus,
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…

Figure 1.4. Construction of an independent cube for a k-star function (n = 6, dmax = 4). From a
3-regular graph G = (V,E) and M = {(v1,v3),(v2,v6),(v4,v5)}, we make a graph G′ = (V,E ′)
such that E ′ = E \M. Then A = {(V,E ′∪N) : N ⊆M} forms an (n,2

(dmax−2
k−1

)
)-independent

cube for fk⋆.

A = {(V,E ′ ∪N) : N ⊆ M} forms an (n,2
(dmax−2

k−1

)
)-independent cube for fk⋆. Note that the

maximum degree of each graph in A is at most dmax. Figure 1.4 shows how to construct an

independent cube for a k-star function when n = 6 and dmax = 4.

Using the structure that the (n,D)-independent cube imposes on f , we can prove a lower

bound:

Theorem 7. Let f̂ (G) have the form of (1.6), where R1, . . . ,Rn are independently run. Let A

be an (n,D)-independent cube for f . If (R1, . . . ,Rn) provides ε-relationship DP, then we have

1
A ∑

G∈A
E[l2

2( f (G), f̂ (G))] = Ω

(
eε

(eε +1)2 nD2
)
.
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A corollary of Theorem 7 is that if R1, . . . ,Rn satisfy ε-edge LDP, then they satisfy 2ε

-relationship DP and thus for edge LDP we have a lower bound of Ω

(
e2ε

(e2ε+1)2 nD2
)

.

Theorem 7, combined with the fact that there exists an (n,2
(dmax−2

k−1

)
)-independent cube

for a k-star function implies Corollary 1. In Appendix A.3, we also construct an (n, dmax
2 −2)

independent cube for f△ and establish a lower bound of Ω( e2ε

(e2ε+1)2 nd2
max) for f△.

The upper and lower bounds on the l2 losses shown in this section appear in Table 1.2.

1.5 Experiments

Based on our theoretical results in Section 1.4, we would like to pose the following

questions:

• For triangle counts, how much does the two-rounds interaction help over a single round in

practice?

• What is the privacy-utility trade-off of our LDP algorithms (i.e., how beneficial are our

LDP algorithms)?

We conducted experiments to answer to these questions.

1.5.1 Experimental Set-up

We used the following two large-scale datasets:

IMDB. The Internet Movie Database (denoted by IMDB) [1] includes a bipartite graph between

896308 actors and 428440 movies. We assumed actors as users. From the bipartite graph, we

extracted a graph G∗ with 896308 nodes (actors), where an edge between two actors represents

that they have played in the same movie. There are 57064358 edges in G∗, and the average

degree in G∗ is 63.7 (= 57064358
896308 ).

Orkut. The Orkut online social network dataset (denoted by Orkut) [129] includes a graph

G∗ with 3072441 users and 117185083 edges. The average degree in G∗ is 38.1 (= 117185083
3072441 ).

Therefore, Orkut is more sparse than IMDB (whose average degree in G∗ is 63.7).
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For each dataset, we randomly selected n users from the whole graph G∗, and extracted a

graph G = (V,E) with n users. Then we estimated the number of triangles f△(G), the number of

k-stars fk⋆(G), and the clustering coefficient (= 3 f△(G)

f2⋆(G) ) using ε-edge LDP (or ε-edge centralized

DP) algorithms in Section 1.4. Specifically, we used the following algorithms:

Algorithms for triangles. For algorithms for estimating f△(G), we used the following three

algorithms: (1) the RR (Randomized Response) with the empirical estimation method in the

local model (i.e., LocalRR△ in Section 1.4.2), (2) the two-rounds algorithm in the local model

(i.e., Local2Rounds△ in Section 1.4.3), and (3) the Laplacian mechanism in the centralized model

(i.e., CentralLap△ in Section 1.4.2).

Algorithms for k-stars. For algorithms for estimating fk⋆(G), we used the following two

algorithms: (1) the Laplacian mechanism in the local model (i.e., LocalLapk⋆ in Section 1.4.1)

and (2) the Laplacian mechanism in the centralized model (i.e., CentralLapk⋆ in Section 1.4.1).

For each algorithm, we evaluated the l2 loss and the relative error (as described in

Section 1.3.4), while changing the values of n and ε . To stabilize the performance, we attempted

γ ∈N ways to randomly select n users from G∗, and averaged the utility value over all the γ ways

to randomly select n users. When we changed n from 1000 to 10000, we set γ = 100 because

the variance was large. For other cases, we set γ = 10.

In Appendix A.2, we also report experimental results using artificial graphs based on the

Barabási-Albert model [16].

1.5.2 Experimental Results

Relation between n and the l2 loss. We first evaluated the l2 loss of the estimates of f△(G),

f2⋆(G), and f3⋆(G) while changing the number of users n. Figures 1.5 and 1.6 shows the results

(ε = 1). Here we did not evaluate LocalRR△ when n was larger than 10000, because LocalRR△

was inefficient (as described in Section 1.4.3 “Time complexity”). In Local2Rounds△, we set

ε1 = ε2 =
1
2 . As for d̃max, we set d̃max = dmax (i.e., we assumed that dmax is publicly available

and did not perform graph projection) because we want to examine how well our theoretical
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results hold in our experiments. We also evaluate the effectiveness of the private calculation of

dmax at the end of Section 1.5.2.

Figure 1.5 shows that Local2Rounds△ significantly outperforms LocalRR△. Specifically,

the l2 loss of Local2Rounds△ is smaller than that of LocalRR△ by a factor of about 102. The

difference between Local2Rounds△ and LocalRR△ is larger in Orkut. This is because Orkut

is more sparse, as described in Section 1.5.1. For example, when n = 10000, the maximum

degree dmax in G was 73.5 and 27.8 on average in IMDB and Orkut, respectively. Recall that for

a fixed ε , the expected l2 loss of Local2Rounds△ and LocalRR△ can be expressed as O(nd3
max)

and O(n4), respectively. Thus Local2Rounds△ significantly outperforms LocalRR△, especially

in sparse graphs.

Figures 1.5 and 1.6 show that the l2 loss is roughly consistent with our upper-bounds in

terms of n. Specifically, LocalRR△, Local2Rounds△, CentralLap△, LocalLapk⋆, and CentralLapk⋆

achieve the expected l2 loss of O(n4), O(nd3
max), O(d2

max), O(nd2k−2
max ), and O(d2k−2

max ), respectively.

Here note that each user’s degree increases roughly in proportion to n (though the degree is

much smaller than n), as we randomly select n users from the whole graph G∗. Assuming that

dmax = O(n), Figures 1.5 and 1.6 are roughly consistent with the upper-bounds. The figures also

show the limitations of the local model in terms of the utility when compared to the centralized

model.

Relation between ε and the l2 loss. Next we evaluated the l2 loss when we changed the privacy

budget ε in edge LDP. Figure 1.7 shows the results for triangles and 2-stars (n = 10000). Here

we omit the result of 3-stars because it is similar to that of 2-stars. In Local2Rounds△, we set

ε1 = ε2 =
ε

2 .

Figure 1.7 shows that the l2 loss is roughly consistent with our upper-bounds in terms of ε .

For example, when we decrease ε from 0.4 to 0.1, the l2 loss increases by a factor of about 5000,

200, and 16 for both the datasets in LocalRR△, Local2Rounds△, and CentralLap△, respectively.

They are roughly consistent with our theoretical results that for small ε , the expected l2 loss of
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LocalRR△, Local2Rounds△, and CentralLap△ is O(ε−6)2, O(ε−4), and O(ε−2), respectively.

Figure 1.7 also shows that Local2Rounds△ significantly outperforms LocalRR△ especially

when ε is small, which is also consistent with our theoretical results. Conversely, the difference

between LocalRR△ and Local2Rounds△ is small when ε is large. This is because when ε is

large, the RR outputs the true value with high probability. For example, when ε ≥ 5, the RR

outputs the true value with eε

eε+1 > 0.993. However, LocalRR△ with such a large value of ε does

not guarantee strong privacy, because it outputs the true value in most cases. Local2Rounds△

significantly outperforms LocalRR△ when we want to estimate f△(G) or fk⋆(G) with a strong

privacy guarantee; e.g., ε ≤ 1 [131].

Relative error. As the number of users n increases, the numbers of triangles f△(G) and k-stars

fk⋆(G) increase. This causes the increase of the l2 loss. Therefore, we also evaluated the relative

error, as described in Section 1.3.4.

Figure 1.8 shows the relation between n and the relative error (we omit the result of

3-stars because it is similar to that of 2-stars). In the local model, we used Local2Rounds△

and LocalLapk⋆ for estimating f△(G) and fk⋆(G), respectively (we did not use Local2RR△,

because it is both inaccurate and inefficient). For both algorithms, we set ε = 1 or 2 (ε1 =

ε2 =
ε

2 in Local2Rounds△) and d̃max = dmax. Then we estimated the clustering coefficient as:
3 f̂△(G,ε1,ε2,dmax)

f̂k⋆(G,ε,dmax)
, where f̂△(G,ε1,ε2,dmax) and f̂k⋆(G,ε,dmax) are the estimates of f△(G) and

fk⋆(G), respectively. If the estimate of the clustering coefficient is smaller than 0 (resp. larger

than 1), we set the estimate to 0 (resp. 1) because the clustering coefficient is always between 0

and 1. In the centralized model, we used CentralLap△ and CentralLapk⋆ (ε = 1 or 2, d̃max = dmax)

and calculated the clustering coefficient in the same way.

Figure 1.8 shows that for all cases, the relative error decreases with increase in n.

This is because both f△(G) and fk⋆(G) significantly increase with increase in n. Specifically,

let f△,vi(G) ∈ Z≥0 the number of triangles that involve user vi, and fk⋆,vi(G) ∈ Z≥0 be the

number of k-stars of which user vi is a center. Then f△(G) = 1
3 ∑

n
i=1 f△,vi(G) and fk⋆,vi(G) =

2We used eε ≈ ε +1 to derive the upper-bound of LocalRR△ for small ε .

36



∑
n
i=1 fk⋆,vi(G). Since both f△,vi(G) and fk⋆,vi(G) increase with increase in n, both f△(G) and

fk⋆(G) increase at least in proportion to n. Thus f△(G)2 ≥ Ω(n2) and fk⋆(G)2 ≥ Ω(n2). In

contrast, Local2Rounds△, LocalLapk⋆, CentralLap△, and CentralLapk⋆ achieve the expected l2

loss of O(n), O(n), O(1), and O(1), respectively (when we ignore dmax and ε), all of which are

smaller than O(n2). Therefore, the relative error decreases with increase in n.

This result demonstrates that we can accurately estimate graph statistics for large n in

the local model. In particular, the relative error is smaller in IMDB because IMDB is denser

and includes a larger number of triangles and k-stars; i.e., the denominator of the relative error

is large. For example, when n = 200000 and ε = 1, the relative error is 0.30 and 0.0028 for

triangles and 2-stars, respectively. Note that the clustering coefficient requires 2ε because we

need to estimate both f△(G) and fk⋆(G). Yet, we can still accurately calculate the clustering

coefficient with a moderate privacy budget; e.g., the relative error of the clustering coefficient is

0.30 when the privacy budget is 2 (i.e., ε = 1). If n is larger, then ε would be smaller at the same

value of the relative error.

Private calculation of dmax. We have so far assumed that d̃max = dmax (i.e., dmax is publicly

available) in our experiments. We finally evaluate the methods to privately calculate dmax with

ε0-edge LDP (described in Sections 1.4.1 and 1.4.3).

Specifically, we used Local2Rounds△ and LocalLapk⋆ for estimating f△(G) and fk⋆(G),

respectively, and evaluated the following three methods for setting d̃max: (i) d̃max = n; (ii)

d̃max = dmax; (iii) d̃max = d̂max, where d̂max is the private estimate of dmax (noisy max degree) in

Sections 1.4.1 and 1.4.3.

We set n = 200000 in IMDB and n = 1600000 in Orkut. Regarding the total privacy

budget ε in edge LDP for estimating f△(G) or fk⋆(G), we set ε = 1 or 2. We used ε

10 for privately

calculating dmax (i.e., ε0 =
ε

10 ), and the remaining privacy budget 9ε

10 as input to Local2Rounds△

or LocalLapk⋆. In Local2Rounds△, we set ε1 = ε2; i.e., we set (ε0,ε1,ε2) = (0.1,0.45,0.45) or

(0.2,0.9,0.9). Then we estimated the clustering coefficient in the same way as Figure 1.8.
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Figure 1.9 shows the results. Figure 1.9 shows that the algorithms with d̃max = d̂max

(noisy max degree) achieves the relative error close to (sometimes almost the same as) the

algorithms with d̃max = dmax and significantly outperforms the algorithms with d̃max = n. This

means that we can privately estimate dmax without a significant loss of utility.

Summary of results. In summary, our experimental results showed that the estimation error of

triangle counts is significantly reduced by introducing the interaction between users and a data

collector. The results also showed that we can achieve small relative errors (much smaller than

1) for subgraph counts with privacy budget ε = 1 or 2 in edge LDP.

As described in Section 1.1, non-private subgraph counts may reveal some friendship

information, and a central server may face data breaches. Our LDP algorithms are highly

beneficial because they enable us to analyze the connection patterns in a graph (i.e., subgraph

counts) or to understand how likely two friends of an individual will also be a friend (i.e.,

clustering coefficient) while strongly protecting individual privacy.

1.6 Conclusions

We presented a series of algorithms for counting triangles and k-stars under LDP. We

showed that an additional round can significantly reduce the estimation error in triangles, and

the algorithm based on the Laplacian mechanism provides an order optimal error in the non-

interactive local model. We also showed lower-bounds for general functions including triangles

and k-stars. We conducted experiments using two real datasets, and showed that our algorithms

achieve small relative errors, especially when the number of users is large.

As future work, we would like to develop algorithms for other subgraph counts such as

cliques and k-triangles [120].

Chapter 1, in full, is a reprint of the material as it appears in Jacob Imola, Takao Murakami,

and Kamalika Chaudhuri, USENIX Security Symposium, 2021. “Locally Differentially Private

Analysis of Graph Statistics.” The dissertation author was a joint first author of this paper.
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Figure 1.5. Relation between the number of users n and the l2 loss in triangle counts when ε = 1
(ε1 = ε2 =

1
2 , d̃max = dmax). Here we do not evaluate LocalRR△ when n > 10000, because it is

inefficient (see Section 1.4.3 “Time complexity”).
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Figure 1.7. Relation between ε in edge LDP and the l2 loss when n = 10000 (ε1 = ε2 = ε

2 ,
d̃max = dmax).

41



��

� � � �� �� ��

� ������

�

����

����

����

�����
�
��
��
�
�
	

��
�
�

��������	
������������������
����������

����

���	
������ ���	
�����

�����	
������ �����	
�����

� � � �� �� ��

� ������

�����������	
����������	�����������������
����������
��

�

����

����

�����
�
��
��
�
�
	

��
�
�

����

����

��

� � � �� ��

� ������

�

����

����

����

����

�
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

��

�

����

����

����

�
�
��
��
�
�
	

��
�
�

����

����

���

���

� � � �� �� ��

� ������

�������������������������
����������
����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

� � � �� ��

� ������

����

����

����

����

�����
�
��
��
�
�
	

��
�
�

����

Figure 1.8. Relation between n and the relative error. In the local model, we used Local2Rounds△
(ε = 1 or 2) and LocalLapk⋆ (ε = 1 or 2) for estimating triangle counts f△(G) and k-star counts
fk⋆(G), respectively (d̃max = dmax).
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Figure 1.9. Relative error when d̃max = n (#users), dmax (max degree), or d̂max (noisy max
degree). We used Local2Rounds△ (ε = 1 or 2) and LocalLapk⋆ (ε = 1 or 2) for estimating
triangle counts f△(G) and k-star counts fk⋆(G), respectively.
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Chapter 2

Communication-Efficient Triangle Count-
ing under Local Differential Privacy

2.1 Introduction

Counting subgraphs (e.g., triangles, stars, cycles) is one of the most basic tasks for ana-

lyzing connection patterns in various graph data, e.g., social, communication, and collaboration

networks. For example, a triangle is given by a set of three nodes with three edges, whereas a

k-star is given by a central node connected to k other nodes. These subgraphs play a crucial role

in calculating a clustering coefficient (= 3×#triangles
#2-stars ) (see Figure 2.1). The clustering coefficient

measures the average probability that two friends of a user will also be a friend in a social graph

[158]. Therefore, it is useful for measuring the effectiveness of friend suggestions. In addition,

the clustering coefficient represents the degree to which users tend to cluster together. Thus,

if it is large in some services/communities, we can effectively apply social recommendations

[125] to the users. Triangles and k-stars are also useful for constructing graph models [170, 109];

see also [194] for other applications of triangle counting. However, graph data often involve

sensitive data such as sensitive edges (friendships), and they can be leaked from exact numbers

of triangles and k-stars [102].

To analyze subgraphs while protecting user privacy, DP (Differential Privacy) [73] has

been widely adopted as a privacy metric [64, 102, 120, 186, 218, 219, 223]. DP protects user

privacy against adversaries with arbitrary background knowledge and is known as a gold standard
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for data privacy. According to the underlying model, DP can be categorized into central (or

global) DP and LDP (Local DP). Central DP assumes a scenario where a central server has

personal data of all users. Although accurate analysis of subgraphs is possible under this model

[64, 120, 223], there is a risk that the entire graph is leaked from the server by illegal access

or internal fraud [152, 35]. In addition, central DP cannot be applied to decentralized social

networks [60, 140, 148, 161] where the entire graph is distributed across many servers. We can

even consider fully decentralized applications where a server does not have any original edge,

e.g., a mobile app that sends a noisy degree (noisy number of friends) to the server, which then

estimates a degree distribution. Central DP cannot be used in such applications.

In contrast, LDP assumes a scenario where each user obfuscates her personal data (friends

list in the case of graphs) by herself and sends the obfuscated data to a possibly malicious server;

i.e., it does not assume trusted servers. Thus, it does not suffer from a data breach and can

also be applied to the decentralized applications. LDP has been widely studied in tabular data

where each row corresponds to a user’s personal data (e.g., age, browser setting, location)

[3, 18, 196, 114, 155, 201] and also in graph data [102, 165, 218, 219]. For example, k-star

counts can be very accurately estimated under LDP because each user can count k-stars of which

she is a center and sends a noisy version of her k-star count to the server [102].

However, more complex subgraphs such as triangles are much harder to count under

LDP because each user cannot see edges between other users. For example, in Figure 2.1, user v1

cannot see edges between v2, v3, and v6 and therefore cannot count triangles involving v1. Thus,

existing algorithms [102, 218, 219] obfuscate each user’s edges (rather than her triangle count)

by RR (Randomized Response) [208] and send noisy edges to a server. Consequently, the server

suffers from a prohibitively large estimation error (e.g., relative error > 102 in large graphs, as

shown in Appendix B.2) because all three edges are noisy in any noisy triangle the server sees.

A recent study [102] shows that the estimation error in locally private triangle counting

is significantly reduced by introducing an additional round of interaction between users and the

server. Specifically, if the server publishes the noisy graph (all noisy edges) sent by users at the
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Figure 2.1. Triangles, 2-stars, and clustering coefficient.

first round, then each user can count her noisy triangles such that only one edge is noisy (as she

knows two edges connected to her). Thus, the algorithm in [102] sends each user’s noisy triangle

count (with additional noise) to the server at the second round. Then the server can accurately

estimate the triangle count. This algorithm also requires a much smaller number of interactions

(i.e., only two) than collaborative approaches [113, 182] that generally require many interactions.

Unfortunately, the algorithm in [102] is still impractical for a large-scale graph. Specifi-

cally, the noisy graph sent by users is dense, hence extremely large for a large-scale graph, e.g.,

500 Gbits for a graph of a million users. The problem is that every user needs to download

such huge data; e.g., when the download speed is 20 Mbps (which is a recommended speed

in YouTube [220]), every user needs about 7 hours to download the noisy graph. Since the

communication ability might be limited for some users, the algorithm in [102] cannot be used

for applications with large and diverse users.

In summary, existing triangle algorithms under LDP suffer from either a prohibitively

large estimation error or a prohibitively high communication cost. They also suffer from the

same issues when calculating the clustering coefficient.

Our Contributions. We propose locally private triangle counting algorithms with a small

estimation error and small communication cost. Our contributions are as follows:

• We propose two-rounds triangle algorithms consisting of edge sampling after RR and

selecting edges each user downloads. In particular, we show that a simple extension of

[102] with edge sampling suffers from a large estimation error for a large or dense graph

where the number of 4-cycles (such as v1-v2-v3-v6-v1 in Figure 2.1) is large. To address
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this issue, we propose some strategies for selecting edges to download to reduce the error

caused by the 4-cycles, which we call the 4-cycle trick.

• We show that the algorithms with the 4-cycle trick still suffer from a large estimation error

due to large Laplacian noise for each user. To significantly reduce the Laplacian noise, we

propose a double clipping technique, which clips a degree (the number of edges) of each

user with LDP and then clips the number of noisy triangles.

• We evaluate our algorithms using two real datasets. We show that our entire algorithms

with the 4-cycle trick and double clipping dramatically reduce the communication cost of

[102]. For example, for a graph with about 900000 users, we reduce the download cost

from 400 Gbits (6 hours when 20 Mbps) to 160 Mbits (8 seconds) or less while keeping

the relative error much smaller than 1.

Thus, locally private triangle counting is now much more practical. In Appendix B.3, we also

show that we can estimate the clustering coefficient with a small estimation error and download

cost. For example, our algorithms are useful for measuring the effectiveness of friend suggestions

or social recommendations in decentralized social networks, e.g., Diaspora [60], Mastodon [140].

Our source code is available at [192].

All the proofs of our privacy and utility analysis are given in Appendices B.6, B.7, and

B.8.

Technical Novelty. Below we explain more about the technical novelty of this paper. Although

we focus on two-rounds local algorithms in the same way as [102], we introduce several new

algorithmic ideas previously unknown in the literature.

First, our 4-cycle trick is totally new. Although some studies focus on 4-cycle counting

[23, 118, 138, 143], this work is the first to use 4-cycles to improve communication efficiency.

Second, selective download of parts of a centrally computed quantity is also new. This is not

limited to graphs – even in machine learning, there are no such strategic download techniques
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previously, to our knowledge. Third, our utility analysis of our triangle algorithms (Theorem 9) is

different from [102] in that ours introduces subgraphs such as 4-cycles and k-stars. This leads us

to our 4-cycle trick. Fourth, we propose two triangle algorithms that introduce the 4-cycle trick

and show that the more tricky one provides the best performance because of its low sensitivity in

DP.

Finally, our double clipping is new. Andrew et al. [9] propose an adaptive clipping

technique, which applies clipping twice. However, they focus on federated averaging, and their

problem setting is different from our graph setting. In particular, they require a private quantile

of the norm distribution. In contrast, we need only a much simpler estimate: a private degree.

Here, we use the fact that the degree has a small sensitivity (sensitivity = 1) in DP for edges.

We also provide a new, reasonably tight bound on the probability that the noisy triangle count

exceeds a clipping threshold (Theorem 11). Thanks to the two differences, we obtain a significant

communication improvement: two or three orders of magnitude.

2.2 Related Work

Triangle Counting. Triangle counting has been extensively studied in a non-private setting

[25, 24, 49, 76, 180, 187, 193, 211] (it is almost a sub-field in itself) because it requires high

time complexity for large graphs.

Edge sampling [24, 76, 193, 211] is one of the most basic techniques to improve scala-

bility. Although edge sampling is simple, it is quite effective – it is reported in [211] that edge

sampling outperforms other sampling techniques such as node sampling and triangle sampling.

Based on this, we adopt edge sampling after RR1 with new techniques such as the 4-cycle trick

and double clipping. Our entire algorithms significantly improve the communication cost, as

well as the space and time complexity, under LDP (see Sections 2.5.3 and 2.6).
1We also note that a study in [159] proposes a graph publishing algorithm in the central model that independently

changes 1-cells (edges) to 0-cells (no edges) with some probability and then changes a fixed number of 0-cells to
1-cells without replacement. However, each 0-cell is not independently sampled in this case, and consequently, their
proof that relies on the independence of the noise to each 0-cell is incorrect. In contrast, our algorithms provide DP
because we apply sampling after RR, i.e., post-processing.
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DP on Graphs. For private graph analysis, DP has been widely adopted as a privacy metric.

Most of them adopt central (or global) DP [58, 64, 98, 120, 122, 167, 223], which suffers from

the data breach issue.

LDP on graphs has recently studied in some studies, e.g., synthetic data generation [165],

subgraph counting [102, 186, 218, 219]. A study in [186] proposes subgraph counting algorithms

in a setting where each user allows her friends to see all her connections. However, this setting is

unsuitable for many applications; e.g., in Facebook, a user can easily change her setting so that

her friends cannot see her connections.

Thus, we consider a model where each user can see only her friends. In this model, some

one-round algorithms [218, 219] and two-rounds algorithms[102] have been proposed. However,

they suffer from a prohibitively large estimation error or high communication cost, as explained

in Section 2.1.

Recently proposed network LDP protocols [56] consider, instead of a central server,

collecting private data with user-to-user communication protocols along a graph. They focus on

sums, histograms, and SGD (Stochastic Gradient Descent) and do not provide subgraph counting

algorithms. Moreover, they focus on hiding each user’s private dataset rather than hiding an

edge in a graph. Thus, their approach cannot be applied to our task of subgraph counting under

LDP for edges. The same applies to another work [174] that improves the utility of an averaging

query by correlating the noise of users according to a graph.

LDP. RR [114, 208] and RAPPOR [196] have been widely used for tabular data in LDP. Our

work uses RR in part of our algorithm but builds off of it significantly. One noteworthy result in

this area is HR (Hadamard Response) [3], which is state-of-the-art for tabular data and requires

low communication. However, this result is not applied to graph data and does not address

the communication issues considered in this paper. Specifically, applying HR to each bit in a

neighbor list will result in O(n2) (n: #users) download cost in the same way as the previous work

[102] that uses RR. Applying HR to an entire neighbor list (which has 2n possible values) will
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similarly result in O(n log2n) = O(n2) download cost.

Previous work on distribution estimation [114, 155, 201] or heavy hitters [18] addresses a

different problem than ours, as they assume that every user has i.i.d. (independent and identically

distributed) samples. In our setting, a user’s neighbor list is non-i.i.d. (as one edge is shared by

two users), which does not fit into their statistical framework.

2.3 Preliminaries

2.3.1 Notations

We begin with basic notations. Let N, R, Z≥0, and R≥0 be the sets of natural numbers,

real numbers, non-negative integers, and non-negative real numbers, respectively. For z ∈ N, let

[z] a set of natural numbers from 1 to z; i.e., [z] = {1,2, . . . ,z}.

Let G = (V,E) be an undirected graph, where V is a set of nodes and E ⊆V ×V is a set of

edges. Let n ∈ N be the number of nodes in V . Let vi ∈V be the i-th node; i.e., V = {v1, . . . ,vn}.

We consider a social graph where each node in V represents a user and an edge (vi,v j) ∈ E

represents that vi is a friend with v j. Let dmax ∈ N be the maximum degree of G. Let G be a set

of graphs with n nodes. Let f△ : G → Z≥0 be a triangle count query that takes G ∈ G as input

and outputs a triangle count f△(G) (i.e., number of triangles) in G.

Let A = (ai, j) ∈ {0,1}n×n be a symmetric adjacency matrix corresponding to G; i.e.,

ai, j = 1 if and only if (vi,v j) ∈ E. We consider a local privacy model [165, 102], where each

user obfuscates her neighbor list ai = (ai,1, . . . ,ai,n) ∈ {0,1}n (i.e., the i-th row of A) using a

local randomizer Ri with domain {0,1}n and sends obfuscated data Ri(ai) to a server. We also

assume a two-rounds algorithm in which user vi downloads a message Mi from the server at the

second round.

We also show the basic notations in Table B.1 of Appendix B.1.
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2.3.2 Local Differential Privacy on Graphs

LDP on Graphs. When we apply LDP (Local DP) to graphs, we follow the direction of edge

DP [160, 168] that has been developed for the central DP model. In edge DP, the existence of an

edge between any two users is protected; i.e., two computations, one using a graph with the edge

and one using the graph without the edge, are indistinguishable. There is also another privacy

notion called node DP [98, 221], which hides the existence of one user along with all her edges.

However, in the local model, many applications send a user ID to a server; e.g., each user sends

the number of her friends along with her user ID. For such applications, we cannot use node

DP but can use edge DP to hide her edges, i.e., friends. Thus, we focus on edge DP in the local

model in the same way as [102, 165, 186, 218, 219].

Specifically, assume that user vi uses her local randomizer Ri. We assume that the server

and other users can be honest-but-curious adversaries and that they can obtain all edges except

for user vi’s edges as prior knowledge. Then we use the following definition for Ri:

Definition 6 (ε-edge LDP [165]). Let ε ∈ R≥0. For i ∈ [n], let Ri be a local randomizer of

user vi that takes ai as input. We say Ri provides ε-edge LDP if for any two neighbor lists

ai,a′i ∈ {0,1}n that differ in one bit and any s ∈ Range(Ri),

Pr[Ri(ai) = s]≤ eε Pr[Ri(a′i) = s]. (2.1)

For example, a local randomizer Ri that applies Warner’s RR (Randomized Response)

[208], which flips 0/1 with probability 1
eε+1 , to each bit of ai provides ε-edge LDP.

The parameter ε is called the privacy budget. When ε is small (e.g., ε ≤ 1 [131]), each bit

is strongly protected by edge LDP. Edge LDP can also be used to hide multiple bits – by group

privacy [73], two neighbor lists ai,a′i ∈ {0,1}n that differ in k ∈ N bits are indistinguishable up

to the factor kε .

Edge LDP is useful for protecting a neighbor list ai of each user vi. For example, a user
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in Facebook can change her setting so that anyone (except for the central server) cannot see her

friend list ai. Edge LDP hides ai even from the server.

As with regular LDP, the guarantee of edge LDP does not break even if the server or

other users act maliciously. However, adding or removing an edge affects the neighbor list of

two users. This means that each user needs to trust her friend to not reveal an edge between them.

This also applies to Facebook – even if vi keeps ai secret, her edge with v j can be disclosed if v j

reveals a j. To protect each edge during the whole process, we use another privacy notion called

relationship DP [102]:

Definition 7 (ε-relationship DP [102]). Let ε ∈ R≥0. For i ∈ [n], let Ri be a local randomizer

of user vi that takes ai as input. We say (R1, . . . ,Rn) provides ε-relationship DP if for any two

neighboring graphs G,G′ ∈ G that differ in one edge and any (s1, . . . ,sn) ∈ Range(R1)× . . .×

Range(Rn),

Pr[(R1(a1), . . . ,Rn(an)) = (s1, . . . ,sn)]

≤ eε Pr[(R1(a′1), . . . ,Rn(a′n)) = (s1, . . . ,sn)], (2.2)

where ai (resp. a′i) ∈ {0,1}n is the i-th row of the adjacency matrix of graph G (resp. G′).

If users vi and v j follow the protocol, (2.2) holds for graphs G,G′ that differ in (vi,v j).

Thus, relationship DP applies to all edges of a user whose neighbors are trustworthy.

While users need to trust other friends to maintain a relationship DP guarantee, only

one edge per user is at risk for each malicious friend that does not follow the protocol. This

is because only one edge can exist between two users. Thus, although the trust assumption in

relationship DP is stronger than that of LDP, it is much weaker than that of central DP in which

all edges can be revealed by the server.

It is possible to use a tuple of local randomizers with edge LDP to obtain a relationship

DP guarantee:
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Proposition 4 (Edge LDP and relationship DP [102]). If each of local randomizers R1, . . . ,Rn

provides ε-edge LDP, then (R1, . . . ,Rn) provides 2ε-relationship DP. Additionally, if each Ri

uses only bits ai,1, . . . ,ai,i−1 for users with smaller IDs (i.e., only the lower triangular part of A),

then (R1, . . . ,Rn) provides ε-relationship DP.

The doubling factor in ε comes from the fact that (2.2) applies to an entire edge, whereas

(2.1) applies to just one neighbor list, and adding an entire edge may cause changes to two

neighbor lists. However, if each Ri ignores bits ai,i, . . . ,ai,n for users with larger IDs, then this

doubling factor can be avoided. Our algorithms also use only the lower triangular part of A to

avoid this doubling issue.

Interaction among Users and Multiple Rounds. While interaction in LDP has been studied

before [112], neither of Definitions 6 and 7 allows the interaction among users in a one-round

protocol where user vi sends Ri(ai) to the server.

However, the interaction among users is possible in a multi-round protocol. Specifically,

at the first round, user vi applies a randomizer R1
i and sends R1

i (ai) to the server. At the second

round, the server calculates a message Mi for vi by performing some post-processing on R1
i (ai),

possibly with the private outputs by other users. Let λi be the post-processing algorithm on

R1
i (ai); i.e., Mi = λi(R1

i (ai)). The server sends Mi to vi. Then, vi uses a randomizer R2
i (Mi)

that depends on Mi and sends R2
i (Mi)(ai) back to the server. This entire computation provides

DP by a (general) sequential composition [131]:

Proposition 5 (Sequential composition of edge LDP). For i ∈ [n], let R1
i be a local randomizer

of user vi that takes ai as input. Let λi be a post-processing algorithm on R1
i (ai), and Mi =

λi(R1
i (ai)) be its output. Let R2

i (Mi) be a local randomizer of vi that depends on Mi. If R1
i

provides ε1-edge LDP and for any Mi ∈ Range(λi), R2
i (Mi) provides ε2-edge LDP, then the

sequential composition (R1
i (ai),R2

i (Mi)(ai)) provides (ε1 + ε2)-edge LDP.

We provide a proof of Proposition 5 in Appendix B.6.

Global Sensitivity. We use the notion of global sensitivity [73] to provide edge LDP:
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Definition 8. In edge LDP (Definition 6), the global sensitivity of a function f : {0,1}n→ R is

given by:

GS f = max
ai,a′i∈{0,1}n,ai∼a′i

| f (ai)− f (a′i)|,

where ai ∼ a′i represents that ai and a′i differ in one bit.

For example, adding the Laplacian noise with mean 0 scale GS f
ε

(denoted by Lap(GS f
ε
))

to f (ai) provides ε-edge LDP.

2.3.3 Utility and Communication-Efficiency

Utility. We consider a private estimate of f△(G). Our private estimator f̂△ : G → R is a post-

processing of local randomizers (R1, . . . ,Rn) that satisfy ε-edge LDP. Following previous work,

we use the l2 loss (i.e., squared error) [114, 201, 155] and the relative error [29, 41, 215] as

utility metrics.

Specifically, let l2
2 be the expected l2 loss function on a graph G, which maps the

estimate f̂△(G) and the true value f△(G) to the expected l2 loss; i.e., l2
2( f△(G), f̂△(G)) =

E[( f̂△(G)− f△(G))2]. The expectation is taken over the randomness in the estimator f̂ , which

is necessarily a randomized algorithm since it satisfies edge LDP. In our theoretical analysis, we

analyze the expected l2 loss, as with [114, 201, 155].

Note that the l2 loss is large when f△(G) is large. Therefore, in our experiments, we use

the relative error given by | f̂△(G)− f△(G)|
max{ f△(G),η} , where η ∈ R≥0 is a small value. Following convention

[29, 41, 215], we set η to 0.001n. The estimate is very accurate when the relative error is much

smaller than 1.

Communication-Efficiency. A prominent concern when performing local computations is

that the computing power of individual users is often limited. Of particular concern to our

private estimators, and a bottleneck of previous work in locally private triangle counting [102],

is the communication overhead between users and the server. This communication takes the
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form of users downloading any necessary data required to compute their local randomizers and

uploading the output of their local randomizers. We distinguish the two quantities because often

downloading is cheaper than uploading.

Consider a τ-round protocol, where τ ∈ N. At round j ∈ [τ], user vi applies a local

randomizer R j
i (M

j
i ) to her neighbor list ai, where M j

i is a message sent from the server to user

vi during round j. We define the download cost as the number of bits required to describe M j
i

and the upload cost as the number of bits required to describe R j
i (M

j
i )(ai). Over all rounds and

all users, we evaluate the maximum per-user download/upload cost, which is given by:

CostDL = maxn
i=1 ∑

τ
j=1E[|M

j
i |] (bits) (2.3)

CostUL = maxn
i=1 ∑

τ
j=1E[|R

j
i (M

j
i )(ai)|] (bits). (2.4)

The above expectations go over the probability distributions of computing the local

randomizers and any post-processing done by the server. We evaluate the maximum of the

expected download/upload cost over users.

2.4 Communication-Efficient Triangle Counting Algorithms

The current state-of-the-art triangle counting algorithm [102] under edge LDP suffers

from an extremely large per-user download cost; e.g., every user has to download a message of

400 Gbits or more when n = 900000. Therefore, it is impractical for a large graph. To address

this issue, we propose three communication-efficient triangle algorithms under edge LDP.

We explain the overview and details of our proposed algorithms in Sections 2.4.1 and

2.4.2, respectively. Then we analyze the theoretical properties of our algorithms in Section 2.4.3.

2.4.1 Overview

Motivation. The drawback of the triangle algorithm in [102] is a prohibitively high download

cost at the second round. This comes from the fact that in their algorithm, each user vi applies

55



Warner’s RR (Randomized Response) [208] to bits for smaller user IDs in her neighbor list ai

(i.e., lower triangular part of A) and then downloads the whole noisy graph. Since Warner’s RR

outputs 1 (edge) with high probability (e.g., about 0.5 when ε is close to 0), the number of edges

in the noisy graph is extremely large—about half of the
(n

2

)
possible edges will be edges.

In this paper, we address this issue by introducing two strategies: sampling edges and

selecting edges each user downloads. First, each user vi samples each 1 (edge) after applying

Warner’s RR. Edge sampling has been widely studied in a non-private triangle counting problem

[24, 76, 193, 211]. In particular, Wu et al. [211] compare various non-private triangle algorithms

(e.g., edge sampling, node sampling, triangle sampling) and show that edge sampling provides

almost the lowest estimation error. They also formally prove that edge sampling outperforms

node sampling. Thus, sampling edges after Warner’s RR is a natural choice for our private

setting.

Second, we propose three strategies for selecting edges each user downloads. The first

strategy is to simply select all noisy edges; i.e., each user downloads the whole noisy graph in

the same way as [102]. The second and third strategies select some edges (rather than all edges)

in a more clever manner so that the estimation error is significantly reduced. We provide a more

detailed explanation in Section 2.4.2.

Algorithm Overview. Figure 2.2 shows the overview of our proposed algorithms.

At the first round, each user vi obfuscates bits for smaller user IDs in her neighbor list ai

by an LDP mechanism which we call the ARR (Asymmetric Randomized Response) and sends the

obfuscated bits to a server. The ARR is a combination of Warner’s RR and edge sampling; i.e.,

we apply Warner’s RR that outputs 1 or 0 as it is with probability p1 (= eε

eε+1) and then sample

each 1 with probability p2 ∈ [0,1]. Unlike Warner’s RR, the ARR is asymmetric in that the flip

probability in the whole process is different depending on the input value. As with Warner’s

RR, the ARR provides edge LDP. We can also significantly reduce the number of 1s (hence the

communication cost) by setting p2 small.
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Figure 2.2. Overview of our communication-efficient triangle counting algorithms (p1 =
eε

eε+1 ,
p2 ∈ [0,1]).

At the second round, the server calculates a message Mi for user vi consisting of some or

all noisy edges between others. We propose three strategies for calculating Mi. User vi downloads

Mi from the server. Then, since user vi knows her edges, vi can count noisy triangles (vi, v j, vk)

such that j < k < i and only one edge (v j, vk) is noisy, as shown in Figure 2.2. The condition

j < k < i is imposed to use only the lower triangular part of A, i.e., to avoid the doubling issue in

Section 2.3.2. User vi adds a corrective term and the Laplacian noise to the noisy triangle count

and sends it to a server. The corrective term is added to enable the server to obtain an unbiased

estimate of f△(G). The Laplacian noise provides edge LDP. Finally, the server calculates an

unbiased estimate of f△(G) from the noisy data sent by users. By composition (Proposition 5),

our algorithms provide edge LDP in total.

Remark. Note that it is also possible for the server to calculate an unbiased estimate of f△(G)

at the first round. However, this results in a prohibitively large estimation error because all edges

sent by users are noisy; i.e., three edges are noisy in any triangle. In contrast, only one edge is

noisy in each noisy triangle at the second round because each user vi knows two original edges

connected to vi. Consequently, we can obtain an unbiased estimate with a much smaller variance.

See Appendix B.2 for a detailed comparison.
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2.4.2 Algorithms

ARR. First, we formally define the ARR. The ARR has two parameters: ε ∈ R≥0 and µ ∈

[0, eε

eε+1 ]. The parameter ε is the privacy budget, and µ controls the communication cost.

Let ARRε,µ be the ARR with parameters ε and µ . It takes 0/1 as input and outputs 0/1

with the following probability:

Pr[ARRε,µ(1) = b] =


µ (b = 1)

1−µ (b = 0)
(2.5)

Pr[ARRε,µ(0) = b] =


µρ (b = 1)

1−µρ (b = 0),
(2.6)

where ρ = e−ε . By Figure 2.2, we can view this randomizer as a combination of Warner’s

RR [208] and edge sampling, where µ = p1 p2. In fact, the ARR with µ = p1 = eε

eε+1 (i.e.,

p2 = 1) is equivalent to Warner’s RR.

Each user vi applies the ARR to bits for smaller user IDs in her neighbor list ai; i.e.,

Ri(ai) = (ARRε,µ(ai,1), . . . ,ARRε,µ(ai,i−1)). Then vi sends Ri(ai) to the server. Since applying

Warner’s RR to ai provides ε-edge LDP (as described in Section 2.3.2) and the sampling is a

post-processing process, applying the ARR to ai also provides ε-edge LDP by the immunity to

post-processing [73].

Let E ′ ⊆V ×V be a set of noisy edges sent by users.

Which Noisy Edges to Download? Now, the main question tackled in this paper is: Which

noisy edges should each user vi download at the second round? Note that user vi is not allowed

to download only a set of noisy edges that form noisy triangles (i.e., {(v j,vk) ∈ E ′|(vi,v j) ∈

E,(vi,vk) ∈ E}), because it tells the server who are friends with vi. In other words, user vi cannot

leak her original edges to the server when she downloads noisy edges; the server must choose

which part of E ′ to include in the message Mi it sends her.
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Thus, a natural solution would be to download all noisy edges between others (with

smaller user IDs); i.e., Mi = {(v j,vk) ∈ E ′| j < k < i}. We denote our algorithm with this full

download strategy by ARRFull△. The (inefficient) two-rounds algorithm in [102] is a special

case of ARRFull△ without sampling (µ = p1). In other words, ARRFull△ is a generalization of

the two-rounds algorithm in [102] using the ARR.

In this paper, we show that we can do much better than ARRFull△. Specifically, we prove

in Section 2.4.3 that ARRFull△ results in a high estimation error when the number of 4-cycles

(cycles of length 4) in G is large. Intuitively, this can be explained as follows. Suppose that vi,

v j, vi′ , and vk ( j < k < i, j < k < i′) form a 4-cycle. There is no triangle in this graph. However,

if there is a noisy edge between v j and vk, then two (incorrect) noisy triangles appear: (vi, v j,

vk) counted by vi and (vi′ , v j, vk) counted by vi′ . More generally, let Ei jk (resp. Ei′ jk) ∈ {0,1}

be a random variable that takes 1 if (vi, v j, vk) (resp. (vi′ , v j, vk)) forms a noisy triangle and

0 otherwise. Then, the covariance Cov(Ei jk,Ei′ jk) between Ei jk and Ei′ jk is large because the

presence/absence of a single noisy edge (v j, vk) affects the two noisy triangles.

To address this issue, we introduce a trick that makes the two noisy triangles less

correlated with each other. We call this the 4-cycle trick. Specifically, we propose two algorithms

in which the server uses noisy edges connected to vi when it calculates a message Mi for vi. In the

first algorithm, the server selects noisy edges (v j,vk) such that one noisy edge is connected from

vk to vi; i.e., Mi = {(v j,vk) ∈ E ′|(vi,vk) ∈ E ′, j < k < i}. We call this algorithm ARROneNS△,

as one noisy edge is connected to vi. In the second algorithm, the server selects noisy edges

(v j,vk) such that two noisy edges are connected from these nodes to vi; i.e., Mi = {(v j,vk) ∈

E ′|(vi,v j)∈ E ′,(vi,vk)∈ E ′, j < k < i}. We call this algorithm ARRTwoNS△, as two noisy edges

are connected to vi. Note that user vi does not leak her original edges to the server at the time

of download in these algorithms, because the server uses only noisy edges E ′ sent by users to

calculate Mi.

Figure 2.3 shows our three algorithms. The download cost CostDL in (2.3) is O(µn2 logn),

O(µ2n2 logn), and O(µ3n2 logn), respectively, when we regard ε as a constant. In our experi-
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Figure 2.4. 4-cycle trick. ARRFull△ counts two (incorrect) noisy triangles when one noisy edge
appears. ARROneNS△ and ARRTwoNS△ avoid this by increasing independent noise.

ments, we set the parameter µ in the ARR so that µ in ARRFull△ is equal to µ2 in ARROneNS△

and also equal to µ3 in ARRTwoNS△; e.g., µ = 10−6, 10−3, and 10−2 in ARRFull△, ARRO-

neNS△, and ARRTwoNS△, respectively. Then the download cost is the same between the three

algorithms.

Figure 2.4 shows our 4-cycle trick. ARRFull△ counts two (incorrect) noisy triangles

when a noisy edge (v j, vk) appears. In contrast, ARROneNS△ (resp. ARRTwoNS△) counts both

the two noisy triangles only when three (resp. five) independent noisy edges appear, as shown

in Figure 2.4. Thus, this bad event happens with a much smaller probability. For example,

ARRFull△ (µ = 10−6), ARROneNS△ (µ = 10−3), and ARRTwoNS△ (µ = 10−2) count both

the two noisy triangles with probability 10−6, 10−9, and 10−10, respectively. The covariance

Cov(Ei jk,Ei′ jk) of ARROneNS△ and ARRTwoNS△ is also much smaller than that of ARRFull△.

In our experiments, we show that ARROneNS△ and ARRTwoNS△ significantly outper-
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forms ARRFull△ for a large-scale graph or dense graph, in both of which the number of 4-cycles

in G is large.

ARROneNS△ vs. ARRTwoNS△. One might expect that ARRTwoNS△ outperforms ARRO-

neNS△ because ARRTwoNS△ addresses the 4-cycle issue more aggressively; i.e., the number of

independent noisy edges in a 4-cycle is larger in ARRTwoNS△, as shown in Figure 2.4. However,

ARROneNS△ can reduce the global sensitivity of the Laplacian noise at the second round more

effectively than ARRTwoNS△, as explained in Section 2.5. Consequently, ARROneNS△, which

is the most tricky algorithm, achieves the smallest estimation error in our experiments. See

Sections 2.5 and 2.6 for details of the global sensitivity and experiments, respectively.

Three Algorithms. Below we explain the details of our three algorithms. For ease of explanation,

we assume that the maximum degree dmax is public in Section 2.4.22. Note, however, that our

double clipping (which is proposed to significantly reduce the global sensitivity) in Section 2.5

does not assume that dmax is public. Consequently, our entire algorithms do not require the

assumption that dmax is public.

Recall that the server calculates a message Mi for vi as:

Mi={(v j,vk) ∈ E ′| j < k < i} (2.7)

Mi={(v j,vk) ∈ E ′|(vi,vk) ∈ E ′, j < k < i} (2.8)

Mi={(v j,vk) ∈ E ′|(vi,v j) ∈ E ′,(vi,vk) ∈ E ′, j < k < i} (2.9)

in ARRFull△, ARROneNS△, ARRTwoNS△, respectively.

Algorithm 4 shows our three algorithms. These algorithms are processed differently in

lines 2 and 9; “F”, “O”, “T” are shorthands for ARRFull△, ARROneNS△, and ARRTwoNS△,

respectively. The privacy budgets for the first and second rounds are ε1,ε2 ∈ R≥0, respectively.

2For example, dmax is public in Facebook: dmax = 5000 [210]. If the server does not have prior knowledge about
dmax, she can privately estimate dmax and use graph projection to guarantee that each user’s degree never exceeds
the private estimate of dmax [102]. In any case, the assumption in Section 2.4.2 does not undermine our algorithms,
because our entire algorithms with double clipping in Section 2.5 does not assume that dmax is public.
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Data: Graph G ∈ G represented as neighbor lists a1, . . . ,an ∈ {0,1}n, privacy budgets
ε1,ε2 ∈ R≥0, dmax ∈ Z≥0, µ ∈ [0, eε1

eε1+1 ].
Result: Private estimate f̂△(G) of f△(G).

1 [s] ρ ← e−ε1;
2 [vi, s] µ∗← µ , µ2, and µ3 in F, O, and T, respectively;
/* First round. */

3 for i = 1 to n do
4 [vi] ri← (ARRε1,µ(ai,1), . . . ,ARRε1,µ(ai,i−1));
5 [vi] Upload ri = (ri,1, . . . ,ri,i−1) to the server;
6 end
7 [s] E ′ = {(v j,vk) : rk, j = 1, j < k};
/* Second round. */

8 for i = 1 to n do
9 [s] Compute Mi by (2.7), (2.8), and (2.9) in F, O, and T, respectively;

10 [vi] Download Mi from the server;
11 [vi] ti← |{(vi,v j,vk) : ai, j = ai,k = 1,(v j,vk) ∈Mi, j < k < i}|;
12 [vi] si← |{(vi,v j,vk) : ai, j = ai,k = 1, j < k < i}|;
13 [vi] wi← ti−µ∗ρsi;
14 [vi] ŵi← wi +Lap(dmax

ε2
);

15 [vi] Upload ŵi to the server;
16 end
17 [s] f̂△(G)← 1

µ∗(1−ρ) ∑
n
i=1 ŵi;

18 return f̂△(G)

Algorithm 4: Our three algorithms. “F”, “O”, “T” are shorthands for ARRFull△, ARRO-
neNS△, and ARRTwoNS△, respectively. [vi] and [s] represent that the process is run by vi
and the server, respectively.

The first round appears in lines 3-7 of Algorithm 4. In this round, each user applies

ARRε1,µ defined by (2.5) and (2.6) to bits ai,1, . . . ,ai,i−1 for smaller user IDs in her neighbor list

ai, i.e., lower triangular part of A. Let ri = (ri,1, . . . ,ri,i−1) ∈ {0,1}i−1 be the obfuscated bits of

vi. User vi uploads ri to the server. Then the server combines the noisy edges together, forming

E ′ = {(v j,vk) : rk, j = 1, j < k}.

The second round appears in lines 8-17 of Algorithm 4. In this round, the server computes

a message Mi by (2.7), (2.8), or (2.9), and user vi downloads it. Then user vi calculates the

number ti ∈ Z≥0 of noisy triangles (vi, v j, vk) such that only one edge (v j, vk) is noisy, as shown

in Figure 2.2. User vi also calculate a corrective term si ∈ Z≥0. The corrective term si is the
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number of possible triangles involving vi and is computed to obtain an unbiased estimate of

f△(G). User vi calculates wi = ti− µ∗ρsi, where ρ = e−ε1 and µ∗ = µ , µ2, and µ3 in “F”,

“O”, and “T”, respectively. Then vi adds the Laplacian noise Lap(dmax
ε2

) to wi to provide ε2-edge

LDP and sends the noisy value ŵi (= wi +Lap(dmax
ε2

)) to the server. Note that adding one edge

increases both ti and si by at most dmax. Thus, the global sensitivity of wi is at most dmax. Finally,

the server calculates an estimate of f△(G) as: f̂△(G) = 1
µ∗(1−ρ) ∑

n
i=1 ŵi. As we prove later,

f̂△(G) is an unbiased estimate of f△(G).

2.4.3 Theoretical Analysis

We now introduce the theoretical guarantees on the privacy, communication, and utility

of our algorithms.

Privacy. We first show the privacy guarantees:

Theorem 8. For i ∈ [n], let R1
i ,R

2
i (Mi) be the randomizers used by user vi in rounds 1 and 2

of Algorithm 4. Let Ri(ai) = (R1
i (ai),R2

i (Mi)(ai)) be the composition of the two randomizers.

Then, Ri satisfies (ε1 + ε2)-edge LDP and (R1, . . . ,Rn) satisfies (ε1 + ε2)-relationship DP.

Note that the doubling issue in Section 2.3.2 does not occur, because we use only the

lower triangular part of A. By the immunity to post-processing, the estimate f̂△(G) also satisfies

(ε1 + ε2)-edge LDP and (ε1 + ε2)-relationship DP.

Communication. Recall that we evaluate the algorithms based on their download cost (2.3) and

upload cost (2.4).

Download Cost: The download cost is the number of bits required to download Mi. Mi

can be represented as a list of edges between others, and each edge can be identified with two

indices (user IDs), i.e., 2 logn bits. There are (n−1)(n−2)
2 ≈ n2

2 edges between others. ARRε1,µ

outputs 1 with probability at most µ . In addition, each noisy triangle must have 1, 2, and 3 noisy

edges in ARRFull△, ARROneNS△, and ARRTwoNS△, respectively, as shown in Figure 2.3.
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Thus, the download cost in Algorithm 4 can be written as:

CostDL ≤ µ
∗n2 logn, (2.10)

where µ∗ = µ , µ2, and µ3 in ARRFull△, ARROneNS△, and ARRTwoNS△, respectively. In

(2.10), we upper-bounded CostDL by using the fact that ARRε1,µ outputs 1 with probability at

most µ . However, when dmax≪ n, ARRε1,µ outputs 1 with probability µe−ε1 in most cases. In

that case, we can roughly approximate CostDL by replacing µ with µe−ε1 in (2.10).

Upload Cost: The upload cost comes from the number of bits required to upload R1
i (ai)

and R2
i (Mi)(ai). Uploading R1

i (ai) involves uploading ri (line 5), which is a list of up to n noisy

neighbors. By sending just the indices (user IDs) of the 1s in ri, each user sends ∥ri∥1 logn bits,

where ∥ri∥1 is the number of 1s in ri. When we use ARRε1,µ , we have E[∥ri∥1]≤ µn. Uploading

R2
i (Mi) involves uploading a single real number ŵi (line 15), which is negligibly small (e.g., 64

bits when we use a double-precision floating-point).

Thus, the upload cost in Algorithm 4 can be written as:

CostUL ≤ µn logn. (2.11)

Clearly, CostUL is much smaller than CostDL for large n.

Utility. Analyzing the expected l2 loss l2
2( f△(G), f̂△(G)) of the algorithms involves first proving

that the estimator f̂△ is unbiased and then analyzing the variance V[ f̂△(G)] to obtain an upper-

bound on l2
2( f△(G), f̂△(G)). This is given in the following:

Theorem 9. Let G ∈ G , ε1,ε2 ∈ R≥0, and µ ∈ [0, eε1
eε1+1 ]. Let f̂ F

△(G), f̂ O
△(G), and f̂ T

△(G) be the

estimates output respectively by ARRFull△, ARROneNS△, and ARRTwoNS△ in Algorithm 4.
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Then, E[ f̂ F
△(G)] = E[ f̂ O

△(G)] = E[ f̂ T
△(G)] = f△(G) (i.e., estimates are unbiased) and

l2
2( f△(G), f̂ F

△(G))≤ 2C4(G)+S2(G)
µ(1−eε1)2 +

2nd2
max

µ2(1−eε1)2ε2
2

l2
2( f△(G), f̂ O

△(G))≤ µ(2C4(G)+6S3(G))+S2(G)
µ2(1−eε1)2 +

2nd2
max

µ4(1−eε1)2ε2
2

l2
2( f△(G), f̂ T

△(G))≤ µ2(2C4(G)+6S3(G))+S2(G)
µ3(1−eε1)2 +

2nd2
max

µ6(1−eε1)2ε2
2
,

where C4(G) is the number of 4-cycles in G and Sk(G) is the number of k-stars in G.

For each of the three upper-bounds in Theorem 9, the first and second terms are the

estimation errors caused by empirical estimation and the Laplacian noise, respectively. We

also note that C4(G) = S3(G) = O(nd3
max) and S2(G) = O(nd2

max). Thus, for small µ , the l2 loss

of empirical estimation can be expressed as O(nd3
max), O(nd2

max), and O(nd2
max) in ARRFull△,

ARROneNS△, ARRTwoNS△, respectively (as the factors of C4(G) and S3(G) diminish for small

µ).

This highlights our 4-cycle trick. The large l2 loss of ARRFull△ is caused by the

number C4(G) = O(nd3
max) of 4-cycles. ARROneNS△ and ARRTwoNS△ addresses this issue by

increasing independent noise, as shown in Figure 2.4.

2.5 Double Clipping

In Section 2.4, we showed that the estimation error caused by empirical estimation (i.e.,

the first term in Theorem 9) is significantly reduced by the 4-cycle trick. However, the estimation

error is still very large in our algorithms presented in Section 2.4, as shown in our experiments.

This is because the estimation error by the Laplacian noise (i.e., the second term in Theorem 9)

is very large, especially for small ε2 or µ . This error term is tight and unavoidable as long as we

use dmax as a global sensitivity, which suggests that we need a better global sensitivity analysis.

To significantly reduce the global sensitivity, we propose a novel double clipping technique.

We describe the overview and details of our double clipping in Sections 2.5.1 and 2.5.2,
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respectively. Then we perform theoretical analysis in Section 2.5.3.

2.5.1 Overview

Motivation. Figure 2.5 shows noisy triangles involving edge (vi,v j) counted by user vi in our

three algorithms. Our algorithms in Section 2.4 use the fact that the number of such noisy

triangles (hence the global sensitivity) is upper-bounded by the maximum degree dmax because

adding one edge increases the triangle count by at most dmax. Unfortunately, this upper-bound is

too large, as shown in our experiments.

In this paper, we significantly reduce this upper-bound by using the parameter µ in the

ARR and user vi’s degree di ∈ Z≥0 for users with smaller IDs. For example, the number of noisy

triangles involving (vi,v j) in ARRFull△is expected to be around µdi because one noisy edge is

included in each noisy triangle (as shown in Figure 2.5) and all noisy edges are independent. µdi

is very small, especially when we set µ ≪ 1 to reduce the communication cost.

However, we cannot directly use µdi as an upper-bound of the global sensitivity in

ARRFull△for two reasons. First, µdi leaks the exact value of user vi’s degree di and violates edge

LDP. Second, the number of noisy triangles involving (vi,v j) exceeds µdi with high probability

(about 0.5). Thus, the noisy triangle count cannot be upper-bounded by µdi.

To address these two issues, we propose a double clipping technique, which is explained

below.

Algorithm Overview. Figure 2.6 shows the overview of our double clipping, which consists

of an edge clipping and noisy triangle clipping. The edge clipping addresses the first issue

(i.e., leakage of di) as follows. It privately computes a noisy version of di (denoted by d̃i) with

edge LDP. Then it removes some neighbors from a neighbor list ai so that the degree of vi

never exceeds the noisy degree d̃i. This removal process is also known as graph projection

[58, 64, 122, 167]. Edge clipping is used in [102] to obtain a noisy version of dmax.

The main novelty in our double clipping lies at the noisy triangle clipping to address the

second issue (i.e., excess of the noisy triangle count). This issue appears when we attempt to
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noisy edgesoriginal edges

Figure 2.5. Noisy triangles involving edge (vi,v j) counted by user vi ( j < k, l,m < i).

(1) (2)

(1) edge clipping ( ) (2) noisy triangle clipping ( )

Figure 2.6. Overview of double clipping applied to edge (v1,v7).

reduce the global sensitivity by using a very small sampling probability for each edge. Therefore,

the noisy triangle clipping has not been studied in the existing works on private triangle counting

[64, 102, 120, 122, 186, 218, 219, 223], because they do not apply a sampling technique.

Our noisy triangle clipping reduces the noisy triangle count so that it never exceeds a

user-dependent clipping threshold κi ∈ R≥0. Then a crucial issue is how to set an appropriate

threshold κi. We theoretically analyze the probability that the noisy triangle count exceeds κi

(referred to as the triangle excess probability) as a function of the ARR parameter µ and the

noisy degree d̃i. Then we set κi so that the triangle excess probability is very small (= 10−6 in

our experiments).

We use the clipping threshold κi as a global sensitivity. Note that κi provides edge LDP

because d̃i provides edge LDP, i.e., immunity to post-processing [73]. κi is also very small when
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Data: Neighbor list ai ∈ {0,1}n, privacy budget ε0 ∈ R≥0 µ ∈ [0, eε1
eε1+1 ], α ∈ R≥0,

β ∈ R≥0.
Result: ŵi.

1 µ∗← µ , µ2, and µ3 in F, O, and T, respectively;
/* Edge clipping. */

2 d̃i = max{di +Lap( 1
ε0
)+α , 0};

/* Remove di−⌊d̃i⌋ neighbors if di > d̃i. */

3 ai← GraphProjection(ai, d̃i);
/* Noisy triangle clipping. */

4 for j such that ai, j = 1 and j < i do
5 ti, j← |{(vi,v j,vk) : ai,k = 1,(v j,vk) ∈Mi, j < k < i}|;
6 end
/* Calculate κi ∈ [µ∗d̃i, d̃i] s.t. the triangle excess probability is β

or less. */

7 κi← ClippingThreshold(µ, d̃i,β );
8 ti← ∑ai, j=1, j<i min{ti, j,κi};
9 si← |{(vi,v j,vk) : ai, j = ai,k = 1, j < k < i}|;

10 wi← ti−µ∗ρsi;
11 ŵi← wi +Lap(κi

ε2
);

12 return ŵi

Algorithm 5: Our double clipping algorithm. “F”, “O”, “T” are shorthands for ARRFull△,
ARROneNS△, and ARRTwoNS△, respectively. All the processes are run by user vi.

µ ≪ 1, as it is determined based on µ .

2.5.2 Algorithms

Algorithm 5 shows our double clipping algorithm. All the processes are run by user vi at

the second round. Thus, there is no interaction with the server in Algorithm 5.

Edge Clipping. The edge clipping appears in lines 2-3 of Algorithm 5. It uses a privacy budget

ε0 ∈ R≥0.

In line 2, user vi adds the Laplacian noise Lap( 1
ε0
) to her degree di. Since adding/removing

one edge changes di by at most 1, this process provides ε0-edge LDP. vi also adds some non-

negative constant α ∈ R≥0 to di. We add this value so that edge removal (in line 3) occurs with

a very small probability; e.g., in our experiments, we set α = 150, where edge removal occurs
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with probability 1.5×10−7 when ε0 = 0.1. A similar technique is introduced in [186] to provide

(ε,δ )-DP [73] with small δ . The difference between ours and [186] is that we perform edge

clipping to always provide ε-DP; i.e., δ = 0. Let d̃i ∈ R≥0 be the noisy degree of vi.

In line 3, user vi calls the function GraphProjection, which performs graph projection

as follows; if di > d̃i, randomly remove di−⌊d̃i⌋ neighbors from ai; otherwise, do nothing.

Consequently, the degree of vi never exceeds d̃i.

Noisy Triangle Clipping. The noisy triangle clipping appears in lines 4-11 of Algorithm 5.

In lines 4-6, user vi calculates the number ti, j ∈Z≥0 of noisy triangles (vi,v j,vk) ( j < k< i)

involving (vi,v j) (as shown in Figure 2.5). Note that the total number ti of noisy triangles of

vi can be expressed as: ti = ∑ai, j=1, j<i ti, j. In line 7, vi calls the function ClippingThreshold,

which calculates a clipping threshold κi ∈ [µ∗d̃i, d̃i] (µ∗ = µ , µ2, and µ3 in “F”, “O”, and “T”,

respectively) based on the ARR parameter µ and the noisy degree d̃i so that the triangle excess

probability does not exceed some constant β ∈ R≥0. We explain how to calculate the triangle

excess probability in Section 2.5.3. In line 8, vi calculates the total number ti of noisy triangles

by summing up ti, j, with the exception that vi adds κi if ti, j > κi. In other words, triangle removal

occurs if ti, j > κi. Then, the number of noisy triangles involving (vi,v j) never exceeds κi.

Lines 9-11 in Algorithm 5 are the same as lines 12-14 in Algorithm 4, except that the

global sensitivity in the former (resp. latter) is κi (resp. dmax). Line 11 in Algorithm 5 provides

ε2-edge LDP because the number of triangles involving (vi,v j) is now upper-bounded by κi.

Our Entire Algorithms with Double Clipping. We can run our algorithms ARRFull△, AR-

ROneNS△, ARRTwoNS△ with double clipping just by replacing lines 11-14 in Algorithm 4

with lines 2-11 in Algorithm 5. That is, after calculating ŵi by Algorithm 5, vi uploads ŵi to the

server. Then the server calculates an estimate of f△(G) as f̂△(G) = 1
µ∗(1−ρ) ∑

n
i=1 ŵi.

We also note that the input dmax in Algorithm 4 is no longer necessary thanks to the edge

clipping; i.e., our entire algorithms with double clipping do not assume that dmax is public.
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2.5.3 Theoretical Analysis

We now perform a theoretical analysis on the privacy and utility of our double clipping.

Privacy. We begin with the privacy guarantees:

Theorem 10. For i ∈ [n], let R1
i ,R

2
i (Mi) be the randomizers used by user vi in rounds 1 and 2

of our algorithms with double clipping (Algorithms 4 and 5). Let Ri(ai) = (R1
i (ai),R2

i (Mi)(ai))

be the composition of the two randomizers. Then, Ri satisfies (ε0 + ε1 + ε2)-edge LDP, and

(R1, . . . ,Rn) satisfies (ε0 + ε1 + ε2)-relationship DP.

Utility. Next, we show the triangle excess probability:

Theorem 11. In Algorithm 5, the triangle excess probability (i.e., probability that the number of

noisy triangles ti, j involving edge (vi,v j) exceeds a clipping threshold κi) is:

Pr(ti, j > κi)≤ exp
[
−d̃iD

(
κi
d̃i
∥ µ

)]
(2.12)

Pr(ti, j > κi)≤ exp
[
−d̃iD

(
κi
d̃i
∥ µ2

)]
(2.13)

Pr(ti, j > κi)≤ µ exp
[
−d̃iD

(
max{κi,µ

2d̃i}
d̃i

∥ µ2
)]

(2.14)

in ARRFull△, ARROneNS△, and ARRTwoNS△, respectively, where D(p1 ∥ p2) is the Kullback-

Leibler divergence between two Bernoulli distributions; i.e.,

D(p1 ∥ p2) = p1 log p1
p2
+(1− p1) log 1−p1

1−p2
.

In all of (2.12), (2.13), and (2.14), we use the Chernoff bound, which is known to be

reasonably tight [12].

Setting κi. The function ClippingThreshold in Algorithm 5 sets a clipping threshold κi of

user vi based on Theorem 11. Specifically, we set κi = λiµ
∗d̃i, where λi ∈ N, and calculate λi as

follows. We initially set λi = 1 and keep increasing λi by 1 until the upper-bound (i.e., right-hand
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side of (2.12), (2.13), or (2.14)) is smaller than or equal to the triangle excess probability β . In

our experiments, we set β = 10−6.

Large κi of ARRTwoNS△. By (2.12) and (2.13), the upper-bound on the triangle excess

probability is the same between ARRFull△ and ARROneNS△. In contrast, ARRTwoNS△ has a

larger upper-bound. For example, when κi = 15µ∗d̃i, µ∗ = 10−3, and d̃i = 1000, the right-hand

sides of (2.12), (2.13), and (2.14) are 2.5× 10−12, 2.5× 10−12, and 3.3× 10−2, respectively.

Consequently, ARRTwoNS△ has a larger global sensitivity κi for the same value of β .

We can explain a large global sensitivity κi of ARRTwoNS△ as follows. The number ti, j

of noisy triangles involving (vi,v j) in ARRFull△ is expected to be around µdi because one noisy

edge is in each noisy triangle (as in Figure 2.5) and all noisy edges are independent. For the same

reason, ti, j in ARROneNS△ is expected to be around µ2di. However, ti, j in ARRTwoNS△ is not

expected to be around µ3di, because all the noisy triangles have noisy edge (vi,v j) in common

(as in Figure 2.5). Then, the expectation of ti, j largely depends on the presence/absence of the

noisy edge (vi,v j); i.e., if noisy edge (vi,v j) exists, it is µ2di; otherwise, 0. Thus, κi cannot be

effectively reduced by double clipping.

Summary. The performance guarantees of our three algorithms with double clipping can be

summarized in Table 2.1.

The first and second terms of the expected l2 loss are the l2 loss of empirical estimation

and that of the Laplacian noise, respectively. For small µ , the l2 loss of empirical estimation can

be expressed as O(nd3
max), O(nd2

max), and O(nd2
max) in ARRFull△, ARROneNS△, ARRTwoNS△,

respectively, as explained in Section 2.4.3. The l2 loss of the Laplacian noise is O(∑n
i=1 κ2

i ),

which is much smaller than O(nd2
max). Thus, our ARROneNS△ that effectively reduces κi

provides the smallest error, as shown in our experiments.

We also note that both the space and the time complexity to compute and send Mi in our

algorithms are O(µ∗n2) (as |E ′|= O(µ∗n2)), which is much smaller than [102] (= O(n2)).
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2.6 Experiments

To evaluate each component of our algorithms in Sections 2.4 and 2.5 as well as our

entire algorithms (i.e., ARRFull△, ARROneNS△, ARRTwoNS△with double clipping), we pose

the following three research questions:

RQ1. How do our three triangle counting algorithms (i.e., ARRFull△, ARROneNS△, ARRT-

woNS△) in Section 2.4 compare with each other in terms of accuracy?

RQ2. How much does our double clipping technique in Section 2.5 decrease the estimation

error?

RQ3. How much do our entire algorithms reduce the communication cost, compared to the

existing algorithm [102], while keeping high utility (e.g., relative error≪ 1)?

In Appendix B.2, we also compare our entire algorithms with one-round algorithms.

2.6.1 Experimental Set-up

In our experiments, we used two real graph datasets:

Gplus. The Google+ dataset [142] (denoted by Gplus) was collected from users who had shared

circles. From the dataset, we constructed a social graph G = (V,E) with 107614 nodes (users)

and 12238285 edges, where edge (vi,v j) ∈ E represents that vi follows or is followed by v j. The

average (resp. maximum) degree in G is 113.7 (resp. 20127).

IMDB. The IMDB (Internet Movie Database) [1] (denoted by IMDB) includes a bipartite graph

between 896308 actors and 428440 movies. From this, we constructed a graph G = (V,E) with

896308 nodes (actors) and 57064358 edges, where edge (vi,v j) ∈ E represents that vi and v j

have played in the same movie. The average (resp. maximum) degree in G is 63.7 (resp. 15451).

Thus, IMDB is more sparse than Gplus.

In Appendix B.4, we also evaluate our algorithms using a synthetic graph based on the

Barabási-Albert model [16], which has a power-law degree distribution.
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We evaluated our algorithms while changing µ∗, where µ∗ = µ , µ2, and µ3 in ARRFull△,

ARROneNS△, and ARRTwoNS△, respectively. CostDL is the same between the three algorithms.

We typically set the total privacy budget ε to ε = 1 (at most 2) because it is acceptable in many

practical scenarios [131].

In our double clipping, we set α = 150 and β = 10−6 so that both edge removal and

triangle removal occur with a very small probability (≤ 10−6 when ε0 = 0.1). Then for each

algorithm, we evaluated the relative error between the true triangle count f△(G) and its estimate

f̂△(G). Since the estimate f̂△(G) varies depending on the randomness of LDP mechanisms, we

ran each algorithm τ ∈ N times (τ = 20 and 10 for Gplus and IMDB, respectively) and averaged

the relative error over the τ cases.

2.6.2 Experimental Results

Performance Comparison. First, we evaluated our algorithms with the Laplacian noise. Specif-

ically, we evaluated all possible combinations of our three algorithms with and without our

double clipping (six combinations in total) and compared them with the existing two-rounds

algorithm in [102]. For algorithms with double clipping, we divided the total privacy budget ε as:

ε0 =
ε

10 and ε1 = ε2 =
9ε

20 . Here, we set a very small budget (ε0 =
ε

10 ) for edge clipping because

the degree has a small sensitivity (sensitivity= 1). For algorithms without double clipping, we

divided ε as ε1 = ε2 =
ε

2 and used the maximum degree dmax as the global sensitivity.

Figures 2.7 and 2.8 show the results. Figure 2.7 highlights the relative error of our three

algorithms with double clipping when ε = 1 or 2 and µ∗ = 10−3. “DC” (resp. “dmax”) represents

algorithms with (resp. without) double clipping. RRFull△(dmax) (marked with purple square) in

Figure 2.8 (c) and (d) represents the two-rounds algorithm in [102]. Note that this is a special

case of our ARRFull△ without sampling (µ = eε1
eε1+1 = 0.62). Figure 2.8 (c) and (d) also show

the download cost CostDL calculated by (2.10). Note that when µ∗ ≥ 0.1 (marked with squares),

CostDL can be 6Gbits and 400Gbits in Gplus and IMDB, respectively, by downloading only 0/1

for each pair of users (v j,vk); CostDL = (n−1)(n−2)
2 in this case.
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Figure 2.7. Relative error of our three algorithms with double clipping (“DC”) when ε = 1 or 2
and µ∗ = 10−3 (n = 107614 in Gplus, n = 896308 in IMDB).

Figures 2.7 and 2.8 show that our ARROneNS△ (DC) provides the best (or almost the

best) performance in all cases. This is because ARROneNS△ (DC) introduces the 4-cycle trick

and effectively reduces the global sensitivity of the Laplacian noise by double clipping. Later,

we will investigate the effectiveness of the 4-cycle trick in detail by not adding the Laplacian

noise. We will also investigate the impact of the Laplacian noise while changing n.

Figure 2.8 also shows that the relative error is almost the same between our three

algorithms without double clipping (“dmax”) and that it is too large. This is because Lap(dmax
ε2

) is

too large and dominant. The relative error is significantly reduced by introducing our double

clipping in all cases. For example, when µ∗ = 10−3, our double clipping reduces the relative

error of ARROneNS△ by two or three orders of magnitude. The improvement is larger for

smaller µ∗.

In Appendix B.5, we also evaluate the effect of edge clipping and noisy triangle clipping

independently and show that each component significantly reduces the relative error.

Communication Cost. From Figure 2.8 (c) and (d), we can explain how much our algorithms

can reduce the download cost while keeping high utility, e.g., relative error≪ 1.

For example, when we use the algorithm in [102], the download cost is CostDL = 400

Gbits in IMDB. Thus, when the download speed is 20 Mbps (recommended speed in YouTube

[220]), every user vi needs 6 hours to download the message Mi, which is far from practical. In
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contrast, our ARROneNS△ (DC) can reduce it to 160 Mbits (8 seconds when 20 Mbps download

rate) or less while keeping relative error = 0.21, which is practical and a dramatic improvement

over [102].

We also note that since dmax≪ n in IMDB, CostDL of our ARROneNS△ (DC) can also

be roughly approximated by 60 Mbits (3 seconds) by replacing µ with µe−ε1 in (2.10).

4-Cycle Trick. We also investigated the effectiveness of our 4-cycle trick in ARROneNS△ and

ARRTwoNS△ in detail. To this end, we evaluated our three algorithms when we did not add

the Laplacian noise at the second round. Note that they do not provide edge LDP, as ε2 = ∞.

The purpose here is to purely investigate the effectiveness of the 4-cycle trick related to our first

research question RQ1.

Figure 2.9 shows the results, where ε1 and µ∗ are changed to various values. Figure 2.9

shows that ARROneNS△ and ARRTwoNS△ significantly outperform ARRFull△ when µ∗ is

small. This is because in both ARROneNS△ and ARRTwoNS△, the factors of C4 (#4-cycles) and

S3 (#3-stars) in the expected l2 loss diminish for small µ , as explained in Section 2.4.3. In other

words, ARROneNS△ and ARRTwoNS△ effectively address the 4-cycle issue. Figure 2.9 also

shows that ARRTwoNS△ slightly outperforms ARROneNS△ when µ∗ is small. This is because

the factors of C4 and S3 diminish more rapidly; i.e., ARRTwoNS△ addresses the 4-cycle issue

more aggressively.

However, when we add the Laplacian noise, ARRTwoNS△ (DC) is outperformed by

ARROneNS△ (DC), as shown in Figure 2.8. This is because ARRTwoNS△ cannot effectively

reduce the global sensitivity by double clipping. In Figure 2.8, the difference between ARRO-

neNS△ (DC) and ARRFull△ (DC) is also small for very small ε or µ∗ (e.g., ε = 0.1, µ∗ = 10−6)

because the Laplacian noise is dominant in this case.

Changing n. We finally evaluated our three algorithms with double clipping while changing the

number n of users. In both Gplus and IMDB, we randomly selected n users from all users and

extracted a graph with n users. Then we evaluated the relative error while changing n to various
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values.

Figure 2.10 shows the results, where ε = 1 (ε0 = 0.1, ε1 = ε2 = 0.45) and µ∗ = 10−3. In

all three algorithms, the relative error decreases with increase in n. This is because the expected

l2 loss can be expressed as O(nd3
max) or O(nd2

max) in these algorithms as shown in Section 2.5.3

and the square of the true triangle count can be expressed as Ω(n2). In other words, when

dmax≪ n, the relative error becomes smaller for larger n. Figure 2.10 also shows that for small

n, ARRTwoNS△ provides the worst performance and ARROneNS△ performs almost the same as

ARRFull△. For large n, ARRFull△ performs the worst and ARROneNS△ performs the best.

To investigate the reason for this, we decomposed the estimation error into two com-

ponents – the first error caused by empirical estimation and the second error caused by the

Laplacian noise. Specifically, for each algorithm, we evaluated the first error by calculating

the relative error when we did not add the Laplacian noise (ε1 = 0.45). Then we evaluated the

second error by subtracting the first error from the relative error when we used double clipping

(ε0 = 0.1, ε1 = ε2 = 0.45).

Figure 2.11 shows the results for some values of n, where “emp” represents the first

error by empirical estimation and “Lap” represents the second error by the Laplacian noise. We

observe that the second error rapidly decreases with increase in n. In addition, the first error of

ARRFull△ is much larger than those of ARROneNS△ and ARRTwoNS△ when n is large.

We also examined the number C4 of 4-cycles as a function of n. Figure 2.12 shows the

results. We observe that C4 (which is O(nd3
max)) is quartic in n; e.g., C4 is increased by 24 ≈ 10

and 64 ≈ 103 when n is multiplied by 2 and 6, respectively. This is because we randomly selected

n users from all users and dmax is almost proportional to n (though dmax≪ n).

Based on Figures 2.11 and 2.12, we can explain Figure 2.10 as follows. As shown

in Section 2.5.3, the l2 loss of empirical estimation can be expressed as O(nd3
max), O(nd2

max),

and O(nd2
max) in ARRFull△, ARROneNS△, and ARRTwoNS△, respectively. The large l2 loss

of ARRFull△ is caused by a large value of C4. The expected l2 loss of the Laplacian noise is

O(∑n
i=1 κ2

i ), which is much smaller than O(nd2
max). Thus, as n increases, the Laplacian noise
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becomes relatively very small, as shown in Figure 2.11. Consequently, ARROneNS△ provides

the best performance for large n because it addresses the 4-cycle issue and effectively reduces

the global sensitivity. This explains the results in Figure 2.10. It is also interesting that when

n≈ 105, ARRFull△ performs the worst in Gplus and almost the same as ARROneNS△ in IMDB

(see Figure 2.10). This is because Gplus is more dense than IMDB and C4 is much larger in Gplus

when n≈ 105, as in Figure 2.12.

In other words, Figures 2.10, 2.11, and 2.12 are consistent with our theoretical results in

Section 2.5.3. From these results, we conclude that ARROneNS△ is effective especially for a

large graph (e.g., n≈ 106) or dense graph (e.g., Gplus) where the number C4 of 4-cycles is large.

Summary. In summary, our answers to our three research questions RQ1-3 are as follows. [RQ1]:

Our ARROneNS△ achieves almost the smallest estimation error in all cases and outperforms the

other two, especially for a large graph or dense graph where C4 is large. [RQ2]: Our double

clipping reduces the estimation error by two or three orders of magnitude. [RQ3]: Our entire

algorithm (ARROneNS△ with double clipping) dramatically reduces the communication cost,

e.g., from 6 hours to 8 seconds or less (relative error = 0.21) in IMDB at a 20 Mbps download

rate [220].

Thus, triangle counting under edge LDP is now much more practical. In Appendix B.3,

we show that the clustering coefficient can also be accurately estimated using our algorithms.

2.7 Conclusions

We proposed triangle counting algorithms under edge LDP with a small estimation error

and small communication cost. We showed that our entire algorithms with the 4-cycle trick and

double clipping dramatically reduce the download cost of [102], e.g., from 6 hours to 8 seconds

or less.

We assumed that each user vi honestly inputs her neighbor list ai, as in most previous

work on LDP. However, recent studies [34, 46] show that the estimate in LDP can be skewed by
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data poisoning attacks. As future work, we would like to analyze the impact of data poisoning

on our algorithms and develop defenses (e.g., detection) against it.

Chapter 2, in full, is a reprint of the material as it appears in Jacob Imola, Takao Murakami,

and Kamalika Chaudhuri, 31st USENIX Security Symposium, 2022. “Communication-Efficient

Triangle Counting under Local Differential Privacy.” The dissertation author was a joint first

author of this paper.
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Table 2.1. Performance guarantees of our three algorithms with double clipping when the edge
removal and triangle removal do not occur. The expected l2 loss assumes that µ is small. The
download (resp. upload) cost is an upper-bound in (2.10) (resp. (2.11)).
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Chapter 3

Differentially Private Triangle and 4-Cycle
Counting in the Shuffle Model

3.1 Introduction

Graph statistics is useful for finding meaningful connection patterns in network data,

and subgraph counting is known as a fundamental task in graph analysis. For example, a

triangle is a cycle of size three, and a k-star consists of a central node connected to k other

nodes. These subgraphs can be used to calculate a clustering coefficient (= 3×#triangles
#2-stars ). In a

social graph, the clustering coefficient measures the tendency of nodes (users) to form a cluster

with each other. It also represents the average probability that a friend’s friend is also a friend

[158]. Therefore, the clustering coefficient is useful for analyzing the effectiveness of friend

suggestions. Another example of the subgraph is a 4-cycle, a cycle of size four. The 4-cycle count

is useful for measuring the clustering ability in bipartite graphs (e.g., online dating networks,

mentor-student networks [127]) where a triangle never appears [134, 171, 177]. Figure 3.1

shows examples of triangles, 2-stars, and 4-cycles. Although these subgraphs are important for

analyzing the connection patterns or clustering tendencies, their exact numbers can leak sensitive

edges (friendships) [102].

DP (Differential Privacy) [70, 73] – the gold standard of privacy notions – has been widely

used to strongly protect edges in graph data [58, 64, 98, 102, 104, 120, 122, 165, 186, 218, 219].

In particular, recent studies [102, 104, 165, 218, 219] have applied LDP (Local DP) [121] to
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#triangles = 5

#2-stars = 28

#4-cycles = 3

Figure 3.1. Examples of subgraph counts.

graph data. In the graph LDP model, each user obfuscates her neighbor list (friends list) by

herself and sends the obfuscated neighbor list to a data collector. Then, the data collector

estimates graph statistics, such as subgraph counts. Compared to central DP where a central

server has personal data of all users (i.e., the entire graph), LDP does not have a risk that all

personal data are leaked from the server by cyberattacks [100] or insider attacks [124]. Moreover,

LDP can be applied to decentralized social networks [161, 176] (e.g., diaspora* [60], Mastodon

[140]) where no server can access the entire graph; e.g., the entire graph is distributed across

many servers, or no server has any original edges. It is reported in [102] that k-star counts can be

accurately estimated in this model.

However, it is much more challenging to accurately count more complicated subgraphs

such as triangles and 4-cycles under LDP. The root cause of this is its local property – a user

cannot see edges between others. For example, user v1 cannot count triangles or 4-cycles includ-

ing v1, as she cannot see edges between others, e.g., (v2,v3), (v2,v4), and (v3,v4). Therefore,

the existing algorithms [102, 104, 218, 219] obfuscate each bit of the neighbor list rather than

the subgraph count by the RR (Randomized Response) [208], which randomly flips 0/1. As a

result, their algorithms suffer from extremely large estimation errors because it makes all edges

noisy. Some studies [102, 104] significantly improve the accuracy by introducing an additional

round of interaction between users and the data collector. However, multi-round interaction may

be impractical in many applications, as it requires a lot of user effort and synchronization; in

[102, 104], every user must respond twice, and the data collector must wait for responses from

all users in each round.
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In this work, we focus on a one-round of interaction between users and the data collector

and propose accurate subgraph counting algorithms by introducing a recently studied privacy

model: the shuffle model [82, 88]. In the shuffle model, each user sends her (encrypted)

obfuscated data to an intermediate server called the shuffler. Then, the shuffler randomly shuffles

the obfuscated data of all users and sends the shuffled data to the data collector (who decrypts

them). The shuffling amplifies DP guarantees of the obfuscated data under the assumption that

the shuffler and the data collector do not collude with each other. Specifically, it is known that

DP strongly protects user privacy when a parameter (a.k.a. privacy budget) ε is small, e.g.,

ε ≤ 1 [131]. The shuffling significantly reduces ε and therefore significantly improves utility

at the same value of ε . To date, the shuffle model has been successfully applied to tabular data

[146, 202] and gradients [92, 136] in federated learning. We apply the shuffle model to graph

data to accurately count subgraphs within one round.

The main challenge in subgraph counting in the shuffle model is that each user’s

neighbor list is high-dimensional data, i.e., n-dim binary string where n is the number of

users. Consequently, applying the RR to each bit of the neighbor list, as in the existing work

[102, 104, 218, 219], results in an extremely large privacy budget ε even after applying the

shuffling (see Section 3.4.1 for more details).

We address this issue by introducing a new, basic technique called wedge shuffling. In

graphs, a wedge between vi and v j is defined by a 2-hop path with endpoints vi and v j. For

example, in Figure 3.1, there are two wedges between v2 and v3: v2-v1-v3 and v2-v4-v3. In

other words, users v1 and v4 have a wedge between v2 and v3, whereas v5, . . . ,v8 do not. Each

user obfuscates such wedge information by the RR, and the shuffler randomly shuffles them.

Because the wedge information (i.e., whether there is a wedge between a specific user-pair)

is one-dimensional binary data, it can be sent with small noise and small ε . In addition, the

wedge is the main component of several subgraphs, such as triangles, 4-cycles, and 3-hop paths

[186]. Since the wedge has little noise, we can accurately count these subgraphs based on wedge

shuffling.
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We apply wedge shuffling to triangle and 4-cycle counting tasks with several additional

techniques. For triangles, we first propose an algorithm that counts triangles involving the

user-pair at the endpoints of the wedges by locally sending an edge between the user-pair to the

data collector. Then we propose an algorithm to count triangles in the entire graph by sampling

disjoint user-pairs, which share no common users (i.e., no user falls in two pairs). We also

propose a technique to reduce the variance of the estimate by ignoring sparse user-pairs, where

either of the two users has a very small degree. For 4-cycles, we propose an algorithm to calculate

an unbiased estimate of the 4-cycle count from that of the wedge count via bias correction.

We provide upper bounds on the estimation error for our triangle and 4-cycles counting

algorithms. Through comprehensive evaluation, we show that our algorithms accurately estimate

these subgraph counts within one round under the shuffle model.

Our Contributions. Our contributions are as follows:

• We propose a wedge shuffle technique to enable privacy amplification of graph data. To

our knowledge, we are the first to shuffle graph data (see Section 3.2 for more details).

• We propose one-round triangle and 4-cycle counting algorithms based on our wedge shuffle

technique. For triangles, we propose three additional techniques: sending local edges,

sampling disjoint user-pairs, and variance reduction by ignoring sparse user-pairs. For

4-cycles, we propose a bias correction technique. We show upper bounds on the estimation

error for each algorithm.

• We evaluate our algorithms using two real graph datasets. Our experimental results show

that our one-round shuffle algorithms significantly outperform one-round local algorithms

in terms of accuracy and achieve a small estimation error (relative error ≪ 1) with a

reasonable privacy budget, e.g., smaller than 1 in edge DP.

In Appendix C.1, we show that our triangle algorithm is also useful for accurately estimating the

clustering coefficient within one round. We can use our algorithms to analyze the clustering ten-
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dency or the effectiveness of friend suggestions in decentralized social networks by introducing

a shuffler. We implemented our algorithms in C/C++. Our code is available on GitHub [191].

The proofs of all statements in the main body are given in Appendices C.8 and C.9.

3.2 Related Work

Non-private Subgraph Counting. Subgraph counting has been extensively studied in a non-

private setting (see [169] for a recent survey). Examples of subgraphs include triangles [24, 76,

126, 211], 4-cycles [23, 118, 138, 143], k-stars [6, 94], and k-hop paths [30, 119].

Here, the main challenge is to reduce the computational time of counting these subgraphs

in large-scale graph data. One of the simplest approaches is edge sampling [24, 76, 211], which

randomly samples edges in a graph. Edge sampling outperforms other sampling methods (e.g.,

node sampling, triangle sampling) [211] and is also adopted in [104] for private triangle counting.

Although our triangle algorithm also samples user-pairs, ours is different from edge

sampling in two ways. First, our algorithm does not sample an edge but samples a pair of users

who may or may not be a friend. Second, our algorithm samples user-pairs that share no common

users to avoid the increase of the privacy budget ε as well as to reduce the time complexity (see

Section 3.5 for details).

Private Subgraph Counting. Differentially private subgraph counting has been widely studied,

and the previous work assumes either the central [64, 120, 122] or local [102, 104, 186, 218, 219]

models. The central model assumes a centralized social network and has a data breach issue, as

explained in Section 3.1.

Subgraph counting in the local model has recently attracted attention. Sun et al. [186]

propose subgraph counting algorithms assuming that each user knows all friends’ friends.

However, this assumption does not hold in many social networks; e.g., Facebook users can

change their settings so that anyone cannot see their friend lists. Therefore, we make a minimal

assumption – each user knows only her friends.
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In this setting, recent studies propose triangle [102, 104, 218, 219] and k-star [102]

counting algorithms. For k-stars, Imola et al. [102] propose a one-round algorithm that is order

optimal and show that it provides a very small estimation error. For triangles, they propose

a one-round algorithm that applies the RR to each bit of the neighbor list and then calculates

an unbiased estimate of triangles from the noisy graph. We call this algorithm RR△. Imola et

al. [104] show that RR△ provides a much smaller estimation error than the one-round triangle

algorithms in [218, 219]. In [104], they also reduce the time complexity of RR△ by using

the ARR (Asymmetric RR), which samples each 1 (edge) after applying the RR. We call this

algorithm ARR△. In this paper, we use RR△ and ARR△ as baselines in triangle counting. For

4-cycles, there is no existing algorithm under LDP, to our knowledge. Thus, we compare our

shuffle algorithm with its local version, which does not shuffle the obfuscated data.

For triangles, Imola et al. also propose a two-round local algorithm in [102] and sig-

nificantly reduce its download cost in [104]. Although we focus on one-round algorithms, we

show in Appendix C.2 that our one-round algorithm is comparable to the two-round algorithm in

[104], which requires a lot of user effort and synchronization, in terms of accuracy.

Shuffle Model. The privacy amplification by shuffling has been recently studied in [15, 47, 82,

88]. Among them, the privacy amplification bound by Feldman et al. [88] is the state-of-the-art

– it provides a smaller ε than other bounds, such as [15, 47, 82]. Girgis et al. [93] consider

multiple interactions between users and the data collector and show a better bound than the

bound in [88] when used with composition. However, the bound in [88] outperforms the bound

in [93] when used without composition. Because our work focuses on a single interaction and

does not use the composition, we use the bound in [88].

The shuffle model has been applied to tabular data [146, 202] and gradients [92, 136]

in federated learning. Meehan et al. [146] construct a graph from public auxiliary information

and determine a permutation of obfuscated data using the graph to reduce re-identification risks.

Liew et al. [133] propose network shuffling, which shuffles obfuscated data via random walks
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on a graph. Note that both [146] and [133] use graph data to shuffle another type of data. To our

knowledge, our work is the first to shuffle graph data itself.

3.3 Preliminaries

In this section, we describe some preliminaries for our work. Section 3.3.1 defines the

basic notation used in this paper. Sections 3.3.2 and 3.3.3 introduce DP on graphs and the shuffle

model, respectively. Section 3.3.4 explains utility metrics.

3.3.1 Notation

Let R, R≥0, N, and Z≥0 be the sets of real numbers, non-negative real numbers, natural

numbers, and non-negative integers, respectively. For a ∈ N, let [a] be the set of natural numbers

that do not exceed a, i.e., [a] = {1,2, . . . ,a}.

We consider an undirected social graph G = (V,E), where V represents a set of nodes

(users) and E ⊆ V ×V represents a set of edges (friendships). Let n ∈ N be the number of

nodes in V , and vi ∈V be the i-th node, i.e., V = {v1, . . . ,vn}. Let I−(i, j) be the set of indices of

users other than vi and v j, i.e., I−(i, j) = [n]\{i, j}. Let di ∈ Z≥0 be a degree of vi, davg ∈ R≥0

be the average degree of G, and dmax ∈ N be the maximum degree of G. In most real graphs,

davg≪ dmax≪ n holds. We denote a set of graphs with n nodes by G . Let f△ : G → Z≥0 and

f□ : G → Z≥0 be triangle and 4-cycle count functions, respectively. The triangle count function

takes G ∈ G as input and outputs the number f△(G) of triangles in G, whereas the 4-cycle count

function takes G as input and outputs the number f□(G) of 4-cycles.

Let A = (ai, j) ∈ {0,1}n×n be an adjacency matrix corresponding to G. If (vi,v j) ∈ E,

then ai, j = 1; otherwise, ai, j = 0. We call ai, j an edge indicator. Let ai ∈ {0,1}n be a neighbor

list of user vi, i.e., the i-th row of A. Table 3.1 shows the basic notation in this paper.
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Table 3.1. Basic notation in this paper.

Symbol Description
G = (V,E) Undirected social graph.
n Number of nodes (users).
vi i-th user in V , i.e., V = {v1, . . . ,vn}.
I−(i, j) = [n]\{i, j}.
di Degree of vi.
davg Average degree in G.
dmax Maximum degree in G.
G Set of possible graphs with n nodes.
f△(G) Triangle count in graph G.
f□(G) 4-cycle count in graph G.
A = (ai, j) Adjacency matrix.
ai Neighbor list of vi, i.e., the i-th row of A.

3.3.2 Differential Privacy

DP and LDP. We use differential privacy, and more specifically (ε,δ )-DP [73], as a privacy

metric:

Definition 9 ((ε,δ )-DP [73]). Let n ∈N be the number of users. Let ε ∈R≥0 and δ ∈ [0,1]. Let

X be the set of input data for each user. A randomized algorithm M with domain X n provides

(ε,δ )-DP if for any neighboring databases D,D′ ∈X n that differ in a single user’s data and

any S⊆ Range(M ),

Pr[M (D) ∈ S]≤ eε Pr[M (D′) ∈ S]+δ .

(ε,δ )-DP guarantees that two neighboring datasets D and D′ are almost equally likely

when ε and δ are close to 0. The parameter ε is called the privacy budget. It is well known that

ε ≤ 1 is acceptable and ε ≥ 5 is unsuitable in many practical scenarios [131]. In addition, the

parameter δ needs to be much smaller than 1
n [17, 73].

LDP [121] is a special case of DP where n = 1. In this case, a randomized algorithm

is called a local randomizer. We denote the local randomizer by R to distinguish it from the

randomized algorithm M in the central model. Formally, LDP is defined as follows:
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Definition 10 (ε-LDP [121]). Let ε ∈R≥0. Let X be the set of input data for each user. A local

randomizer R with domain X provides ε-LDP if for any x,x′ ∈X and any S⊆ Range(R),

Pr[R(x) ∈ S]≤ eε Pr[R(x′) ∈ S]. (3.1)

Randomized Response. We use Warner’s RR (Randomized Response) [208] to provide LDP.

Given ε ∈ R≥0, Warner’s RR RW
ε : {0,1} → {0,1} maps x ∈ {0,1} to y ∈ {0,1} with the

probability:

Pr[RW
ε (x) = y] =


eε

eε+1 (if x = y)

1
eε+1 (otherwise).

RW
ε provides ε-LDP in Definition 10, where X = {0,1}. We refer to Warner’s RR RW

ε with

parameter ε as ε-RR.

DP on Graphs. For graphs, we can consider two types of DP: edge DP and node DP [98, 168].

Edge DP hides the existence of one edge, whereas node DP hides the existence of one node

along with its adjacent edges. In this paper, we focus on edge DP because existing one-round

local triangle counting algorithms [102, 104, 218, 219] use edge DP. In other words, we are

interested in how much the estimation error is reduced at the same value of ε in edge DP by

shuffling. Although node DP is much stronger than edge DP, it is much harder to attain and often

results in a much larger ε [42, 175]. Thus, we leave an algorithm for shuffle node DP with small

ε (e.g., ε ≤ 1) for future work. Another interesting avenue of future work is establishing a lower

bound on the estimation error for node DP.

Edge DP assumes that anyone (except for user vi) can be an adversary who infers edges

of user vi and that the adversary can obtain all edges except for edges of vi as background

knowledge. Note that the central and local models have different definitions of neighboring data

in edge DP. Specifically, edge DP in the central model [168] considers two graphs that differ in
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one edge. In contrast, edge LDP [165] considers two neighbor lists that differ in one bit:

Definition 11 ((ε,δ )-edge DP [168]). Let n ∈ N, ε ∈ R≥0, and δ ∈ [0,1]. A randomized

algorithm M with domain G provides (ε,δ )-edge DP if for any two neighboring graphs G,G′ ∈

G that differ in one edge and any S⊆ Range(M ),

Pr[M (G) ∈ S]≤ eε Pr[M (G′) ∈ S]+δ .

Definition 12 (ε-edge LDP [165]). Let ε ∈ R≥0. A local randomizer R with domain {0,1}

provides ε-edge LDP if for any two neighbor lists ai,a′i ∈ {0,1}n that differ in one bit and any

S⊆ Range(R),

Pr[R(ai) ∈ S]≤ eε Pr[R(a′i) ∈ S].

As with edge LDP, we define element DP, which considers two adjacency matrices that

differ in one bit, in the central model:

Definition 13 ((ε,δ )-element DP). Let n ∈ N, ε ∈ R≥0, and δ ∈ [0,1]. A randomized algorithm

M with domain G provides (ε,δ )-element DP if for any two neighboring graphs G,G′ ∈ G

that differ in one bit in the corresponding adjacency matrices A,A′ ∈ {0,1}n×n and any S ⊆

Range(M ),

Pr[M (G) ∈ S]≤ eε Pr[M (G′) ∈ S]+δ .

Although element DP and edge DP have different definitions of neighboring data, they

are closely related to each other:

Proposition 6. If a randomized algorithm M provides (ε,δ )-element DP, it also provides

(2ε,2δ )-edge DP.
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Proof. Adding or removing one edge affects two bits in an adjacency matrix. Thus, by group

privacy [73], any (ε,δ )-element DP algorithm M provides (2ε,2δ )-edge DP.

Similarly, if a randomized algorithm M in the central model applies a local randomizer

R providing ε-edge LDP to each neighbor list ai (1≤ i≤ n), it provides 2ε-edge DP [102].

In this work, we use the shuffling technique to provide (ε,δ )-element DP and then

Proposition 6 to provide (2ε,2δ )-edge DP. We also compare our shuffle algorithms providing

(ε,δ )-element DP and (2ε,2δ )-edge DP with local algorithms providing ε-edge LDP and 2ε-

edge DP to see how much the estimation error is reduced by introducing the shuffle model and a

very small δ (≪ 1
n ).

3.3.3 Shuffle Model

We consider the following shuffle model. Each user vi ∈V obfuscates her personal data

using a local randomizer R providing εL-LDP for εL ∈ R≥0. Note that R is common to all

users. User vi encrypts the obfuscated data and sends it to a shuffler. Then, the shuffler randomly

shuffles the encrypted data and sends the results to a data collector. Finally, the data collector

decrypts them. The common assumption in the shuffle model is that the shuffler and the data

collector do not collude with each other. Under this assumption, the shuffler cannot access the

obfuscated data, and the data collector cannot link the obfuscated data to the users. Hereinafter,

we omit the encryption/decryption process because it is clear from the context.

We use the privacy amplification result by Feldman et al. [88]:

Theorem 12 (Privacy amplification by shuffling [88]). Let n∈N and εL ∈R≥0. Let X be the set

of input data for each user. Let xi ∈X be input data of the i-th user, and x1:n = (x1, · · · ,xn)∈X n.

Let R : X → Y be a local randomizer providing εL-LDP. Let MS : X n→ Y n be an algorithm

that given a dataset x1:n, computes yi =R(xi) for i ∈ [n], samples a uniform random permutation

π over [n], and outputs yπ(1), . . . ,yπ(n). Then for any δ ∈ [0,1] such that εL ≤ log( n
16log(2/δ )),
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MS provides (ε,δ )-DP, where

ε = f (n,εL,δ ) (3.2)

and

f (n,εL,δ ) = log

(
1+

eεL−1
eεL +1

(
8
√

eεL log(4/δ )√
n

+
8eεL

n

))
. (3.3)

Thanks to the shuffling, the shuffled data yπ(1), . . . ,yπ(n) available to the data collector

provides (ε,δ )-DP, where ε ≪ εL.

Feldman et al. [88] also propose an efficient method to numerically compute a tighter

upper bound than the closed-form upper bound in Theorem 12. We use both the closed-form and

numerical upper bounds in our experiments. Specifically, we use the numerical upper bounds in

Section 3.7 and compare the numerical bound with the closed-form bound in Appendix C.3.

Assume that ε and δ in (3.3) are constants. Then, by solving for εL and changing to big O

notation, we obtain εL = log(n)+O(1). This is consistent with the upper bound ε =O(eεL/2/
√

n)

in [88], from which we obtain εL = log(n)+O(1). Similarly, the privacy amplification bound

in [47] can also be expressed as εL = log(n)+O(1). We use the bound in [88] because it is the

state-of-the-art, as described in Section 3.2.

3.3.4 Utility Metrics

We use the MSE (Mean Squared Error) in our theoretical analysis and the relative

error in our experiments. The MSE is the expectation of the squared error between a true

value and its estimate. Let f : G → Z≥0 be a subgraph count function that can be instantiated

by f△ or f□. Let f̂ : G → R be the corresponding estimator. Let MSE : R→ R≥0 be the

MSE function, which maps the estimate f̂ (G) to the MSE. Then the MSE can be expressed as

MSE( f̂ (G)) = E[( f (G)− f̂ (G))2], where the expectation is taken over the randomness in the
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estimator f̂ . By the bias-variance decomposition [156], the MSE can be expressed as a summation

of the squared bias (E[ f̂ (G)]− f (G))2 and the variance V[ f̂ (G)] = E[( f̂ (G)−E[ f̂ (G)])]2. Thus,

for an unbiased estimator f̂ satisfying E[ f̂ (G)] = f (G), the MSE is equal to the variance, i.e.,

MSE( f̂ (G)) = V[ f̂ (G)].

Although the MSE is suitable for theoretical analysis, it tends to be large when the

number n of users is large. This is because the true triangle and 4-cycle counts are very large

when n is large – f△(G) = O(nd2
max) and f□(G) = O(nd3

max). Therefore, we use the relative

error in our experiments. The relative error is an absolute error divided by the true value and

is given by | f
△(G)− f̂△(G)|

min{ f△(G),η} , where η ∈ R≥0 is a small positive value. Following the convention

[29, 41, 215], we set η = n
1000 .

When the relative error is well below 1, the estimate is accurate. Note that the absolute

error smaller than 1 would be impossible under DP with meaningful ε (e.g., ε ≤ 1), as we

consider counting queries. However, the relative error (= absolute error / true count) much

smaller than 1 is possible under DP with meaningful ε .

3.4 Shuffle Model for Graphs

In this work, we apply the shuffle model to graph data to accurately estimate subgraph

counts, such as triangles and 4-cycles. Section 3.4.1 explains our technical motivation. In

particular, we explain why it is challenging to apply the shuffle model to graph data. Section 3.4.2

proposes a wedge shuffle technique to overcome the technical challenge.

3.4.1 Our Technical Motivation

The shuffle model has been introduced to dramatically reduce the privacy budget ε (hence

the estimation error at the same ε) in tabular data [146, 202] or gradients [92, 136]. However, it

is very challenging to apply the shuffle model to graph data, as explained below.

Figure 3.2 shows the shuffle model for graph data, where each user vi has her neighbor

list ai ∈ {0,1}n. The main challenge here is that the shuffle model uses a standard definition
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Figure 3.2. Shuffle model for graphs.

of LDP for the local randomizer and that a neighbor list is high-dimensional data, i.e., n-dim

binary string. Specifically, LDP in Definition 10 requires any pair of inputs x and x′ to be

indistinguishable; i.e., the inequality (3.1) must hold for all pairs of possible inputs. Thus, if we

use the entire neighbor list as input data (i.e., ai = xi in Theorem 12), either privacy or utility is

destroyed for large n.

To illustrate this, consider the following example. Assume that n = 105 and δ = 10−8.

Each user vi applies ε0-RR with ε0 = 1 to each bit of her neighbor list ai. This mechanism is

called the randomized neighbor list [165] and provides ε0-edge LDP. However, the privacy budget

εL in the standard LDP (Definition 10) is extremely large – by group privacy [73], εL = nε0 = 105.

Because εL is much larger than log( n
16log(2/δ )) = 8.09, we cannot use the privacy amplification

result in Theorem 12. This is evident from the fact that the shuffled data yπ(1), . . . ,yπ(n) are easily

re-identified when n is large. If we use ε0-RR with ε0 =
1
n , we can use the amplification result

(as εL = nε0 = 1). However, it makes obfuscated data almost a random string and destroys the

utility because ε0 is too small.

In this work, we address this issue by introducing a basic technique, which we call wedge

shuffling.
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Figure 3.3. Overview of wedge shuffling with inputs vi and v j.

3.4.2 Our Approach: Wedge Shuffling

Figure 3.3 shows the overview of our wedge shuffle technique. This technique calculates

the number of wedges (2-hop paths) between a specific pair of users vi and v j.

Algorithm 6 shows our wedge shuffle algorithm, which we call WS. Given users vi and

v j, each of the remaining users vk (k ̸= i, j) calculates a wedge indicator wi−k− j = ak,iak, j, which

takes 1 if a wedge vi-vk-v j exists and 0 otherwise (line 2). Then, vk obfuscates wi−k− j using

εL-RR and sends it to the shuffler (line 3). The shuffler randomly shuffles the noisy wedges using

a random permutation π over I−(i, j) (= [n] \ {i, j}) to provide (ε,δ )-DP with ε ≪ εL (line 5).

Finally, the shuffler sends the shuffled wedges to the data collector (line 6). The only information

available to the data collector is the number of wedges from vi to v j, i.e., common friends of vi

and v j.

Our wedge shuffling has two main features. First, the wedge indicator wi−k− j is one-

dimensional binary data. Therefore, it can be sent with small noise and small ε , unlike the

n-dimensional neighbor list. For example, when n = 105, δ = 10−8, and ε = 1, the value of εL

in (3.2) and (3.3) is εL = 5.44. In this case, εL-RR rarely flips wi−k− j – the flip probability is

0.0043. In other words, the shuffled wedges are almost free of noise.

Second, the wedge is the main component of many subgraphs such as triangles, k-

triangles [120], 3-hop paths [186], and 4-cycles. For example, a triangle consists of one wedge
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Data: Adjacency matrix A ∈ {0,1}n×n, εL ∈ R≥0, user-pair (vi,v j).
Result: Shuffled wedges {yπ(k)|k ∈ I−(i, j)}.

1 foreach k ∈ I−(i, j) do
2 [vk] wi−k− j← ak,iak, j;
3 [vk] yk←RW

εL
(x)(wi−k− j); Send yk to the shuffler;

4 end
5 [s] Sample a random permutation π over I−(i, j);
6 [s] Send {yπ(k)|k ∈ I−(i, j)} to the data collector;
7 [d] return {yπ(k)|k ∈ I−(i, j)}
Algorithm 6: Our wedge shuffle algorithm WS. [vk], [s], and [d] represent that the process
is run by user vi, the shuffler, and the data collector, respectively.

and one edge, e.g., vi−vπ(3)−v j and (vi,v j) in Figure 3.3. More generally, a k-triangle consists

of k triangles sharing one edge. Thus, it can be decomposed into k wedges and one edge. A 3-hop

path consists of one wedge and one edge. A 4-cycle consists of two wedges, e.g., vi− vπ(1)− v j

and vi−vπ(3)−v j in Figure 3.3. Because the shuffled wedges have little noise, we can accurately

count these subgraphs based on wedge shuffling, compared to local algorithms in which all edges

are noisy.

In this work, we focus on triangles and 4-cycles and present algorithms with upper

bounds on the estimation error based on our wedge shuffle technique.

3.5 Triangle Counting Based on Wedge Shuffling

Based on our wedge shuffle technique, we first propose a one-round triangle counting

algorithm. Section 3.5.1 describes the overview of our algorithms. Section 3.5.2 proposes an

algorithm for counting triangles involving a specific user-pair as a building block of our triangle

counting algorithm. Section 3.5.3 proposes our triangle counting algorithm. Section 3.5.4

proposes a technique to significantly reduce the variance in our triangle counting algorithm.

Section 3.5.5 summarizes the performance guarantees of our triangle algorithms.
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Figure 3.4. Overview of our WSLE (Wedge Shuffling with Local Edges) algorithm with inputs
vi and v j.
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(e.g., )
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Figure 3.5. Overview of our triangle counting algorithm. We use our WSLE algorithm with each
user-pair.

3.5.1 Overview

Our wedge shuffle technique tells the data collector the number of common friends of

vi and v j. However, this information is not sufficient to count triangles in the entire graph.

Therefore, we introduce three additional techniques: (i) sending local edges, (ii) sampling

disjoint user-pairs, and (iii) variance reduction by ignoring sparse user-pairs. Below, we briefly

explain each technique.

Sending Local Edges. First, we consider the problem of counting triangles involving a specific

user-pair (vi,v j) and propose an algorithm to send local edges between vi and v j, along with

shuffled wedges, to the data collector. We call this the WSLE (Wedge Shuffling with Local
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Edges) algorithm.

Figure 3.4 shows the overview of WSLE. In this algorithm, users vi and v j obfuscate edge

indicators ai, j and a j,i, respectively, using ε-RR and send them to the data collector directly (or

through the shuffler without shuffling). Then, the data collector calculates an unbiased estimate

of the triangle count from the shuffled wedges and the noisy edges. Because ε is small, a large

amount of noise is added to the edge indicators. However, only one edge is noisy (the other two

have little noise) in any triangle the data collector sees. This brings us an advantage over the

one-round local algorithms in which all three edges are noisy.

Sampling Disjoint User-Pairs. Next, we consider the problem of counting triangles in the

entire graph G. A naive solution to this problem is to use our WSLE algorithm with all
(n

2

)
user-pairs as input. However, it results in very large ε and δ because it uses each element of the

adjacency matrix A many times. To address this issue, we propose a triangle counting algorithm

that samples disjoint user-pairs, ensuring that no user falls in two pairs.

Figure 3.5 shows the overview of our triangle algorithm. The data collector sends the

sampled user-pairs to users. Then, users apply WSLE with each user-pair and send the results to

the data collector. Finally, the data collector calculates an unbiased estimate of the triangle count

from the results. Because our triangle algorithm uses each element of A at most once, it provides

(ε,δ )-element DP hence (2ε,2δ )-edge DP. In addition, our triangle algorithm reduces the time

complexity from O(n3) to O(n2) by sampling user-pairs rather than using all user-pairs.

We prove that the MSE of our triangle counting algorithm is O(n3) when we ignore the

factor of dmax. When we do not shuffle wedges, the MSE is O(n4). In addition, the MSE of the

existing one-round local algorithm [104] with the same time complexity is O(n6), as proved in

Appendix C.7. Thus, our algorithm provides a dramatic improvement over the local algorithms.

Variance Reduction. Although our algorithm dramatically improves the MSE, the factor of

n3 may still be large. Therefore, we propose a variance reduction technique that ignores sparse

user-pairs, where either of the two users has a very small degree. Our basic idea is that the
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Data: Adjacency matrix A ∈ {0,1}n×n, ε ∈ R≥0, δ ∈ [0,1], user-pair (vi,v j).
Result: Estimate f̂△i, j(G) of the number f△i, j(G) of triangles involving (vi,v j).

1 εL← LocalPrivacyBudget(n,ε,δ );
/* Wedge shuffling */

2 {yπ(k)|k ∈ I−(i, j)}←WS(A,εL,(vi,v j));
/* Send local edges */

3 [vi] zi←RW
ε (x)(ai, j); Send zi to the data collector;

4 [v j] z j←RW
ε (x)(a j,i); Send z j to the data collector;

/* Calculate an unbiased estimate */

5 [d] qL← 1
eεL+1 ; q← 1

eε+1 ;

6 [d] f̂△i, j(G)←
(zi+z j−2q)∑k∈I−(i, j)(yk−qL)

2(1−2q)(1−2qL)
;

7 [d] return f̂△i, j(G)

Algorithm 7: WSLE (Wedge Shuffling with Local Edges). WS is shown in Algorithm 6.

number of triangles involving such a user-pair is very small and can be approximated by 0. By

ignoring the sparse user-pairs, we can significantly reduce the variance at the cost of introducing

a small bias. We prove that our variance reduction technique reduces the MSE from O(n3) to

O(nγ) where γ ∈ [2,3) and makes one-round triangle counting more accurate.

3.5.2 WSLE (Wedge Shuffling with Local Edges)

Algorithm. We first propose the WSLE algorithm as a building block of our triangle counting

algorithm. WSLE counts triangles involving a specific user-pair (vi,v j).

Algorithm 7 shows WSLE. Let f△i, j : G →Z≥0 be a function that takes G∈ G as input and

outputs the number f△i, j(G) of triangles involving (vi,v j) in G. Let f̂△i, j(G) ∈ R be an estimate of

f△i, j(G).

We first call the function LocalPrivacyBudget, which calculates a local privacy budget

εL from n, ε , and δ (line 1). Specifically, this function calculates εL such that ε is a closed-form

upper bound (i.e., ε = f (n−2,εL,δ ) in (3.2)) or numerical upper bound in the shuffle model

with n−2 users. Given εL, we can easily calculate the closed-form or numerical upper bound ε

by (3.3) and the open source code in [88]1, respectively. Thus, we can also easily calculate εL

1https://github.com/apple/ml-shuffling-amplification.
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from ε by calculating a lookup table for pairs (ε,εL) in advance.

Then, we run our wedge shuffle algorithm WS in Algorithm 6 (line 2); i.e., each user

vk ∈ I−(i, j) sends her obfuscated wedge indicator yk = RW
εL
(wi−k− j) to the shuffler, and the

shuffler sends shuffled wedge indicators {yπ(k)|k ∈ I−(i, j)} to the data collector. Meanwhile, user

vi obfuscates her edge indicator ai, j using ε-RR RW
ε and sends the result zi = RW

ε (ai, j) to the

data collector (line 3). Similarly, v j sends z j = RW
ε (a j,i) to the data collector (line 4).

Finally, the data collector estimates f△i, j(G) from {yπ(k)|k∈ I−(i, j)}, zi, and z j. Specifically,

the data collector calculates the estimate f̂△i, j(G) as follows:

f̂△i, j(G) =
(zi+z j−2q)∑k∈I−(i, j)(yk−qL)

2(1−2q)(1−2qL)
, (3.4)

where qL = 1
eεL+1 and q = 1

eε+1 (lines 5-6). Note that this estimate involves simply summing

over the set {yπ(k)} and does not require knowing the value of π . This is consistent with the

shuffle model. As we prove later, f̂△i, j(G) in (3.4) is an unbiased estimate of f△i, j(G).

Theoretical Properties. Below, we show some theoretical properties of WSLE. First, we prove

that the estimate f̂△i, j(G) is unbiased:

Theorem 13. For any indices i, j ∈ [n], the estimate produced by WSLE satisfies E[ f̂△i, j(G)] =

f△i, j(G).

Next, we show the MSE (= variance). Recall that in the shuffle model, εL = logn+O(1)

when ε and δ are constants. We show the MSE for a general case and for the shuffle model:

Theorem 14. For any indices i, j ∈ [n], the estimate produced by WSLE provides the following

utility guarantee:

MSE( f̂△i, j(G)) = V[ f̂△i, j(G)]

≤ nqL +q(1−2qL)
2d2

max
(1−2q)2(1−2qL)2 ≜ errWSLE(n,dmax,q,qL). (3.5)
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When ε and δ are constants and εL = logn+O(1), we have

errWSLE(n,dmax,q,qL) = O(d2
max). (3.6)

The equation (3.6) follows from (3.5) because qL = 1
eεL+1 = 1

neO(1)+1
. Because WSLE is

a building block for our triangle counting algorithms, we introduce the notation

errWSLE(n,dmax,q,qL)

for our upper bound in (3.5). Observing (3.5), if we do not use the shuffling technique (i.e.,

εL = ε), then errWSLE(n,dmax,q,qL) = O(n+ d2
max) when we treat ε and δ as constants. In

contrast, in the shuffle model where we have εL = logn+O(1), then errWSLE(n,dmax,q,qL) =

O(d2
max). This means that wedge shuffling reduces the MSE from O(n+d2

max) to O(d2
max), which

is significant when dmax≪ n.

3.5.3 Triangle Counting

Algorithm. Based on WSLE, we propose an algorithm that counts triangles in the entire graph

G. We denote this algorithm by WShuffle△, as it applies wedge shuffling to triangle counting.

Algorithm 8 shows WShuffle△. First, the data collector samples disjoint user-pairs,

ensuring that no user falls in two pairs. Specifically, it calls the function RandomPermutation,

which samples a uniform random permutation σ over [n] (line 1). Then, it samples disjoint

user-pairs as (vσ(1),vσ(2)),(vσ(3),vσ(4)), . . . ,(vσ(2t−1),vσ(2t)), where t ∈ [⌊n
2⌋]. The parameter t

represents the number of user-pairs and controls the trade-off between the MSE and the time

complexity; when t = ⌊n
2⌋, the MSE is minimized and the time complexity is maximized. The

data collector sends the sampled user-pairs to users (line 2).

Then, we run our wedge algorithm WSLE in Algorithm 7 with each sampled user-pair as
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Data: Adjacency matrix A ∈ {0,1}n×n, ε ∈ R≥0, δ ∈ [0,1], t ∈ [⌊n
2⌋].

Result: Estimate f̂△(G) of f△(G).
/* Sample disjoint user-pairs */

1 [d] σ ←RandomPermutation(n);
2 [d] Send (vσ(1),vσ(2)), . . . ,(vσ(2t−1),vσ(2t)) to users;
3 foreach i ∈ {1,3, . . . ,2t−1} do
4 f̂△

σ(i),σ(i+1)(G)←WSLE(A,ε,δ ,(vσ(i),vσ(i+1)));
5 end
/* Calculate an unbiased estimate */

6 [d] f̂△(G)← n(n−1)
6t ∑i=1,3,...,2t−1 f̂△

σ(i),σ(i+1)(G);

7 [d] return f̂△(G)

Algorithm 8: Our triangle counting algorithm WShuffle△. WSLE is shown in Algorithm 7.

input (lines 3-5). Finally, the data collector estimates the triangle count f△(G) as follows:

f̂△(G) = n(n−1)
6t ∑i=1,3,...,2t−1 f̂△

σ(i),σ(i+1)(G) (3.7)

(line 6). Note that a single triangle is never counted by more than one user-pair, as the user-pairs

never overlap. Later, we prove that f̂△(G) in (3.7) is unbiased.

Theoretical Properties. We prove that WShuffle△ provides DP:

Theorem 15. WShuffle△ provides (ε,δ )-element DP and (2ε,2δ )-edge DP.

Theorem 15 comes from the fact that WSLE with a user-pair (vi,v j) provides (ε,δ )-DP

for each element in the i-th and j-th columns of the adjacency matrix A and that WShuffle△

samples disjoint user-pairs, i.e., it uses each element of A at most once.

Note that running WSLE with all
(n

2

)
user-pairs provides ((n− 2)ε,(n− 2)δ )-DP, as

it uses each element of A at most n− 2 times. The privacy budget is very large, even using

the advanced composition [73, 116]. We avoid this issue by sampling user-pairs that share no

common users.

We also prove that WShuffle△ provides an unbiased estimate:

Theorem 16. The estimate produced by WShuffle△ satisfies E[ f̂△(G)] = f△(G).
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Next, we analyze the MSE (= variance) of WShuffle△. This analysis is non-trivial

because WShuffle△ samples each user-pair without replacement. In this case, the sampled

user-pairs are not independent. However, we can prove that t estimates in (3.7) are negatively

correlated with each other (Lemma 5 in Appendix C.8.5). Thus, the variance of the sum of t

estimates in (3.7) is upper bounded by the sum of their variances, each of which is given by

Theorem 14. This brings us to the following result:

Theorem 17. The estimate produced by WShuffle△ provides the following utility guarantee:

MSE( f̂△(G)) = V[ f̂△(G)]

≤ n4

36t
errWSLE(n,dmax,q,qL)+

n3

36t
d3

max, (3.8)

where errWSLE(n,dmax,q,qL) is given by (3.5). When ε and δ are constants, εL = log(n)+O(1),

and t = ⌊n
2⌋, we have

MSE( f̂△(G))≤ O(n3d2
max). (3.9)

The inequality (3.9) follows from (3.6) and (3.8). The first and second terms in (3.8) are

caused by Warner’s RR and the sampling of disjoint user-pairs, respectively. In other words, the

MSE of WShuffle△ can be decomposed into two factors: the RR and user-pair sampling.

For example, assume that t = ⌊n
2⌋. When we do not shuffle wedges (i.e., εL = ε), then

errWSLE(n,dmax,q,qL) = O(n+ d2
max), and MSE in (3.8) is O(n4 + n3d2

max). When we shuffle

wedges, the MSE is O(n3d2
max). Thus, when we ignore the factor of dmax, our wedge shuffle

technique reduces the MSE from O(n4) to O(n3) in triangle counting. The factor of n3 is caused

by the RR for local edges. This is intuitive because a large amount of noise is added to the local

edges.

Finally, we analyze the time complexity of WShuffle△. The time complexity of running

WSLE with all
(n

2

)
user-pairs is O(n3), as there are O(n2) user-pairs in total and WSLE requires
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the time complexity of O(n). In contrast, the time complexity of WShuffle△ with t = ⌊n
2⌋ is

O(n2) because it samples O(n) user-pairs. Thus, WShuffle△ reduces the time complexity from

O(n3) to O(n2) by user-pair sampling. We can further reduce the time complexity at the cost of

increasing the MSE by setting t small, i.e., t≪ ⌊n
2⌋.

3.5.4 Variance Reduction

Algorithm. WShuffle△ achieves the MSE of O(n3) when we ignore the factor of dmax. To

provide a smaller estimation error, we propose a variance reduction technique that ignores sparse

user-pairs. We denote our triangle counting algorithm with the variance reduction technique by

WShuffle∗△.

As explained in Section 3.5.3, the factor of n3 is caused by the RR for local edges.

However, most user-pairs vi and v j have a very small minimum degree min{di,d j}≪ dmax, and

there is no edge (vi,v j) between them in almost all cases. In addition, even if there is an edge

(vi,v j), the number of triangles involving the sparse user-pair is very small (at most min{di,d j})

and can be approximated by 0. By ignoring such sparse user-pairs, we can dramatically reduce

the variance of the RR for local edges at the cost of a small bias. This is an intuition behind our

variance reduction technique.

Algorithm 9 shows WShuffle∗△. This algorithm detects sparse user-pairs based on the

degree information. However, user vi’s degree di can leak the information about edges of vi.

Thus, WShuffle∗△ calculates a differentially private estimate of di within one round.

Specifically, WShuffle∗△ uses two privacy budgets: ε1,ε2 ∈R≥0. The first budget ε1 is for

privately estimating di, whereas the second budget ε2 is for WSLE. Lines 1 to 5 in Algorithm 9

are the same as those in Algorithm 8, except that Algorithm 9 uses ε2 to provide (ε2,δ )-element

DP. After these processes, each user vi adds the Laplacian noise Lap( 1
ε1
) with mean 0 and scale

1
ε1

to her degree di and sends the noisy degree d̃i (= di +Lap( 1
ε1
)) to the data collector (lines

6-8). Because the sensitivity [73] of di (the maximum distance of di between two neighbor lists

that differ in one bit) is 1, adding Lap( 1
ε1
) to di provides ε1-element DP.
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Data: Adjacency matrix A ∈ {0,1}n×n, ε1,ε2 ∈ R≥0, δ ∈ [0,1], t ∈ [⌊n
2⌋], c ∈ R≥0.

Result: Estimate f̂△(G) of f△(G).
/* Sample disjoint user-pairs */

1 [d] σ ←RandomPermutation(n);
2 [d] Send (vσ(1),vσ(2)), . . . ,(vσ(2t−1),vσ(2t)) to users;
3 foreach i ∈ {1,3, . . . ,2t−1} do
4 f̂△

σ(i),σ(i+1)(G)←WSLE(A,ε2,δ ,(vσ(i),vσ(i+1)));
5 end
/* Send noisy degrees */

6 for i = 1 to n do
7 [vi] d̃i← di +Lap( 1

ε1
); Send d̃i to the data collector;

8 end
/* Calculate a variance-reduced estimate */

9 [d] d̃avg← 1
n ∑

n
i=1 d̃i; dth← cd̃avg;

10 [d] D←{i|i = 1,3, . . . ,2t−1,min{d̃σ(i), d̃σ(i+1)}> dth};
11 [d] f̂△(G)← n(n−1)

6t ∑i∈D f̂△
σ(i),σ(i+1)(G);

12 [d] return f̂△(G)

Algorithm 9: Our triangle counting algorithm with variance reduction WShuffle∗△. WSLE
is shown in Algorithm 7.

Then, the data collector estimates the average degree davg as d̃avg =
1
n ∑

n
i=1 d̃i and sets a

threshold dth of the minimum degree to dth = cd̃avg, where c ∈ R≥0 is a small positive number,

e.g., c ∈ [1,10] (line 9). Finally, the data collector estimates f△(G) as

f̂△(G) = n(n−1)
6t ∑i∈D f̂△

σ(i),σ(i+1)(G), (3.10)

where

D = {i|i = 1,3, . . . ,2t−1,min{d̃σ(i), d̃σ(i+1)}> dth}

(lines 10-11). The difference between (3.7) and (3.10) is that (3.10) ignores sparse user-pairs

vσ(i) and vσ(i+1) such that min{d̃σ(i), d̃σ(i+1)} ≤ dth. Since davg≪ dmax in practice, dth≪ dmax

holds for small c.

The parameter c controls the trade-off between the bias and variance of the estimate
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f̂△(G). The larger c is, the more user-pairs are ignored. Thus, as c increases, the bias is increased,

and the variance is reduced. In practice, a small c not less than 1 results in a small MSE because

most real graphs are scale-free networks that have a power-law degree distribution [16]. In the

scale-free networks, most users’ degrees are smaller than the average degree davg. For example,

in the BA (Barabási-Albert) graph model [16, 96], most users’ degrees are davg
2 . Thus, if we

set c ∈ [1,10], for example, then most user-pairs are ignored (i.e., |D| ≪ t), which leads to a

significant reduction of the variance at the cost of a small bias.

Recall that the parameter t in WShuffle∗△ controls the trade-off between the MSE and

the time complexity. Although WShuffle∗△ always samples t disjoint user-pairs, we can modify

WShuffle∗△ so that it stops sampling user-pairs right after the estimate f̂△(G) in (3.10) is

converged. We can also sample dense user-pairs (vi,v j) with large noisy degrees d̃i and d̃ j at the

beginning (e.g., by sorting users in descending order of noisy degrees) to improve the MSE for

small t. Evaluating such improved algorithms is left for future work.

Theoretical Properties. As with WShuffle△, WShuffle∗△ provides the following privacy guaran-

tee:

Theorem 18. WShuffle∗△ provides (ε1 + ε2,δ )-element DP and (2(ε1 + ε2),2δ )-edge DP.

Next, we analyze the bias of WShuffle∗△. Here, we assume most users have a small degree

using parameters λ ∈ R≥0 and α ∈ [0,1):

Theorem 19. Suppose that in G, there exist λ ∈ R≥0 and α ∈ [0,1) such that at most nα users

have a degree larger than λdavg. Suppose WShuffle∗△ is run with c ≥ λ . Then, the estimator

produced by WShuffle∗△ provides the following bias guarantee:

Bias[ f̂△(G)] = |E[ f̂△(G)]− f△(G)| ≤
nc2d2

avg

3
+

4nα

3ε2
1
. (3.11)

The values of λ and α depend on the original graph G. In the scale-free networks, α is

small for a moderate value of λ . For example, in the BA graph with n = 107614 and davg = 200
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used in Appendix C.4, α = 0.5, 0.6, 0.8, and 0.9 when λ = 10.1, 5.4, 1.6, and 0.9, respectively.

When c and ε1 are constants, the bias can be expressed as O(nd2
avg).

Finally, we show the variance of WShuffle∗△. This result assumes that c is bigger

(= (1−α) logn
ε1davg

) than λ . We assume this because otherwise, many sparse users (with di ≤ λdavg)

have a noisy degree d̃i ≥ cd̃avg, causing the set D to be noisy. In practice, the gap between c and

λ is small because logn is much smaller than davg.

Theorem 20. Suppose that in G, there exist λ ∈ R≥0 and α ∈ [0,1) such that at most nα users

have a degree larger than λdavg. Suppose WShuffle∗△ is run with c≥ λ + (1−α) logn
ε1davg

. Then, the

estimator produced by WShuffle∗△ provides the following variance guarantee:

V[ f̂△(G)]≤
n2d4

max
9

+
2n2+2α

9t
errWSLE(n,dmax,q,qL)+

n2+αd3
max

36t
. (3.12)

When ε1, ε2, and δ are constants, εL = logn+O(1), and t = ⌊n
2⌋,

V[ f̂△(G)]≤ O(n2d4
max +n1+2αd2

max). (3.13)

The first2, second, and third terms in (3.12) are caused by the randomness in the choice

of D, the RR, and user-pair sampling, respectively. By (3.13), our variance reduction technique

reduces the variance from O(n3) to O(nγ) where γ ∈ [2,3) when we ignore the factor of dmax.

Because the MSE is the sum of the squared bias and the variance, it is also O(nγ).

The value of γ in our bound O(nγ) depends on the parameter c in WShuffle∗△. For

example, in the BA graph (n = 107614, davg = 200), γ = 2, 2.2, 2.6, and 2.8 (α = 0.5, 0.6,

0.8, and 0.9) when c = 10.4, 5.6, 1.7, and 1.0, respectively, and ε1 = 0.1. Thus, the variance

decreases with increase in c. However, by (3.11), a larger c results in a larger bias. In our

2The first term in (3.12) is actually (∑n
i=1 d2

i )
2

9 and is much smaller than n2d4
max

9 . We express it as O(n2d4
max) in

(3.13) for simplicity. See Appendix C.8.8 for details.
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Table 3.2. Performance guarantees of one-round triangle counting algorithms providing edge
DP. α ∈ [0,1). See also footnote 2 for the variance of WShuffle∗△.

Algorithm Model Variance Bias Time
WShuffle∗△ shuffle O(n2d4

max+n1+2αd2
max) O(nd2

avg) O(n2)

WShuffle△ shuffle O(n3d2
max) 0 O(n2)

WLocal△ local O(n4 +n3d2
max) 0 O(n2)

ARR△ [104] local O(n6) 0 O(n2)

RR△ [102] local O(n4) 0 O(n3)

experiments, we show that WShuffle∗△ provides a small estimation error when c = 1 to 4. When

c = 1, WShuffle∗△ empirically works well despite a large γ because most users’ degrees are

smaller than davg in practice, as explained above. This indicates that our upper bound in (3.13)

might not be tight when c is around 1. Improving the bound is left for future work.

3.5.5 Summary

Table 3.2 summarizes the performance guarantees of one-round triangle algorithms

providing edge DP. Here, we consider a variant of WShuffle△ that does not shuffle wedges (i.e.,

εL = ε) as a one-round local algorithm. We call this variant WLocal△ (Wedge Local). We also

show the variance of ARR△ [104] and RR△ [102]. The time complexity of RR△ is O(n3)3,

and that of ARR△ is O(n2) when we set the sampling probability p0 ∈ [0,1] of the ARR to

p0 = O(n−1/3). We prove the variance of ARR△ in this case and RR△ in Appendix C.7. We do

not show the other one-round local algorithms [218, 219] in Table 3.2 for two reasons: (i) they

have the time complexity of O(n3) and suffer from a larger estimation error than RR△ [104]; (ii)

their upper-bounds on the variance and bias are unclear.

Table 3.2 shows that our WShuffle∗△ dramatically outperforms the three local algorithms –

when we ignore dmax, the MSE of WShuffle∗△ is O(nγ) where γ ∈ [2,3), whereas that of the local

algorithms is O(n4) or O(n6). We also show this through experiments.

3Technically speaking, the algorithms of RR△ and the one-round local algorithms in [218, 219] involve counting
the number of triangles in a dense graph. This can be done in time O(nω), where ω ∈ [2,3) and O(nω) is the time
required for matrix multiplication. However, these algorithms are of theoretical interest, and they do not outperform
naive matrix multiplication except for very large matrices [7]. Thus, we assume implementations that use naive
matrix multiplication in O(n3) time.
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Note that both ARR△ and RR△ provide pure DP (δ = 0), whereas our shuffle algorithms

provide approximate DP (δ > 0). However, it would not make a noticeable difference, as δ is

sufficiently small (e.g., δ = 10−8≪ 1
n in our experiments).

Comparison with the Central Model. Finally, we note that our WShuffle∗△ is worse than

algorithms in the central model in terms of the estimation error.

Specifically, Imola et al. [102] consider a central algorithm that adds the Laplacian noise

Lap(dmax
ε
) to the true count f△(G) and outputs f△(G)+Lap(dmax

ε
)4. This central algorithm

provides (ε,0)-edge DP. In addition, the estimate is unbiased, and the variance is 2d2
max

ε2 =O(d2
max).

Thus, the central algorithm provides a much smaller MSE (= variance) than WShuffle∗△.

However, our WShuffle∗△ is preferable to central algorithms in terms of the trust model –

the central model assumes that a single party accesses personal data of all users and therefore

has a risk that the entire graph is leaked from the party. WShuffle∗△ can also be applied to

decentralized social networks, as described in Section 3.1.

3.6 4-Cycle Counting Based on Wedge Shuffling

Next, we propose a one-round 4-cycle counting algorithm in the shuffle model. Sec-

tion 3.6.1 explains its overview. Section 3.6.2 proposes our 4-cycle counting algorithm and

shows its theoretical properties. Section 3.6.3 summarizes the performance guarantees of our

4-cycle algorithms.

3.6.1 Overview

We apply our wedge shuffling technique to 4-cycle counting with two additional tech-

niques: (i) bias correction and (ii) sampling disjoint user-pairs. Below, we briefly explain each

of them.

Bias Correction. As with triangles, we begin with the problem of counting 4-cycles involving

4Here, we assume that dmax is publicly available; e.g., dmax = 5000 in Facebook [210]. When dmax is not public,
the algorithm in [102] outputs f (G)+Lap( d̃max

ε
), where d̃max = maxi=1,...,n d̃i, i.e., the maximum of noisy degrees.
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specific users vi and v j. We can leverage the noisy wedges output by our wedge shuffle algorithm

WS to estimate such a 4-cycle count. Specifically, let f□i, j : G → Z≥0 be a function that, given

G ∈ G , outputs the number f□i, j(G) of 4-cycles for which users vi and v j are opposite nodes, i.e.

the number of unordered pairs (k,k′) such that vi− vk− v j− vk′− vi is a path in G. Each pair

(k,k′) satisfies the above requirement if and only if vi− vk− v j and vi− vk′− v j are wedges in G.

Thus, we have f□i, j(G) =
( f∧i, j

2

)
, where f∧i, j is the number of wedges between vi and v j. Based on

this, we calculate an unbiased estimate f̂∧i, j of the wedge count using WS. Then, we calculate an

estimate of the 4-cycle count as
( f̂∧i, j

2

)
. Here, it should be noted that the estimate

( f̂∧i, j
2

)
is biased,

as proved later. Therefore, we perform bias correction – we subtract a positive value from the

estimate to obtain an unbiased estimate f̂□i, j(G) of the 4-cycle count.

Note that unlike WSLE, no edge between (vi,v j) needs to be sent. In addition, thanks to

the privacy amplification by shuffling, all wedges can be sent with small noise.

Sampling Disjoint User-Pairs. Having an estimate f̂□i, j(G), we turn our attention to estimating

4-cycle count f□(G) in the entire graph G. As with triangles, a naive solution using estimates

f̂□i, j(G) for all
(n

2

)
user-pairs (vi,v j) results in very large ε and δ . To avoid this, we sample

disjoint user-pairs and obtain an unbiased estimate of f□(G) from them.

3.6.2 4-Cycle Counting

Algorithm. Algorithm 10 shows our 4-cycle counting algorithm. We denote it by WShuffle□.

First, we set a local privacy budget εL from n, ε , and δ in the same way as WSLE (line 1). Then,

we sample t disjoint pairs of users using the permutation σ (lines 3-4). Each pair is given by

(vσ(i),σ(i+1)) for i ∈ {1,3, . . . ,2t−1}.

For each i ∈ {1,3, . . . ,2t−1}, we compute an unbiased estimate f̂□
σ(i),σ(i+1)(G) of the

4-cycle count involving vσ(i) and vσ(i+1) (lines 5-9). To do this, we call WS on (vσ(i)vσ(i+1))

to obtain an unbiased estimate f̂∧
σ(i),σ(i+1)(G) of the wedge count (lines 6-7). We calculate an
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Data: Adjacency matrix A ∈ {0,1}n×n, ε ∈ R≥0, δ ∈ [0,1], t ∈ [⌊n
2⌋].

Result: Estimate f̂□(G) of f□(G).
1 εL← LocalPrivacyBudget(n,ε,δ );
2 [d] qL← 1

eεL+1 ;
/* Sample disjoint user-pairs */

3 [d] σ ←RandomPermutation(n);
4 [d] Send (vσ(1),vσ(2)), . . . ,(vσ(2t−1),vσ(2t)) to users;
5 foreach i ∈ {1,3, . . . ,2t−1} do
6 {yπi(k)|k∈ I−(σ(i),σ(i+1))}←WS(A,εL,(vσ(i),vσ(i+1)));
7 [d] f̂∧

σ(i),σ(i+1)(G)← ∑k∈I−(σ(i),σ(i+1))
yk−qL
1−2qL

;

8 [d] f̂□
σ(i),σ(i+1)(G)← f̂∧

σ(i),σ(i+1)(G)( f̂∧
σ(i),σ(i+1)(G)−1)
2 − n−2

2
qL(1−qL)
(1−2qL)2 ;

9 end
/* Calculate an unbiased estimate */

10 [d] f̂□(G)← n(n−1)
4t ∑i=1,3,...,2t−1 f̂□

σ(i),σ(i+1)(G);

11 [d] return f̂□(G)

Algorithm 10: Our 4-cycle counting algorithm WShuffle□. WS is shown in Algorithm 6.

estimate f̂∧i, j(G) of the number f∧i, j(G) of wedges between vi and v j in G as follows:

f̂∧i, j(G) = ∑k∈I−(i, j)
yk−qL
1−2qL

. (3.14)

Later, we will prove that f̂∧i, j(G) is an unbiased estimator. As with (3.4), this estimate involves

the sum over the set {yπ(k)} and does not require knowing the permutation π produced by the

shuffler. Then, we obtain an unbiased estimator of f□
σ(i),σ(i+1) as follows:

f̂□i, j(G) =
f̂∧i, j(G)( f̂∧i, j(G)−1)

2 − n−2
2

qL(1−qL)
(1−2qL)2 (3.15)

(line 8). Note that there is a quadratic relationship between f□i, j(G) and f∧i, j(G), i.e., f□i, j(G) =( f∧i, j(G)

2

)
. Thus, even though f̂∧i, j(G) is unbiased, we must subtract a term from

( f̂∧i, j(G)

2

)
(i.e., bias

correction) to obtain an unbiased estimator f̂□i, j(G). This forms the righthand side of (3.15) and

ensures that f̂□i, j(G) is unbiased.

Finally, we sum and scale f̂□
σ(i),σ(i+1)(G) for each i to obtain an estimate f̂□(G) of the
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4-cycle count f□(G) in the entire graph G:

f̂□(G) = n(n−1)
4t ∑i=1,3,...,2t−1 f̂□

σ(i),σ(i+1)(G) (3.16)

(line 10). Note that it is possible that a single 4-cycle is counted twice; e.g., a 4-cycle vi-v j-vk-vl-

vi is possibly counted by (vi,vk) and (v j,vl) if these user-pairs are selected. However, this is not

an issue, because all 4-cycles are equally likely to be counted zero times, once, or twice. We also

prove later that f̂□(G) in (3.16) is an unbiased estimate of f□(G).

Theoretical Properties. First, WShuffle□ guarantees DP:

Theorem 21. WShuffle□ provides (ε,δ )-element DP and (2ε,2δ )-edge DP.

In addition, thanks to the design of (3.15), we can show that WShuffle□ produces an

unbiased estimate of f□(G):

Theorem 22. The estimate produced by WShuffle□ satisfies E[ f̂□(G)] = f□(G).

Finally, we show the MSE (= variance) of f□(G):

Theorem 23. The estimate produced by WShuffle□ satisfies

MSE( f̂□(G)) = V[ f̂□(G)]

≤ 9n5qL(dmax +nqL)
2

16t(1−2qL)4 +
n3d6

max
64t

. (3.17)

When ε and δ are constants, εL = logn+O(1), and t = ⌊n
2⌋, we have

MSE( f̂□(G)) = V[ f̂□(G)] = O
(

n3d2
max +n2d6

max

)
. (3.18)

The first and second terms in (3.17) are caused by the RR and the sampling of disjoint

user-pairs, respectively.
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Table 3.3. Performance guarantees of one-round 4-cycle counting algorithms providing edge DP.

Algorithm Model Variance Bias Time
WShuffle□ shuffle O(n3d2

max +n2d6
max) 0 O(n2)

WLocal□ local O(n6 +n2d6
max) 0 O(n2)

3.6.3 Summary

Table 3.3 summarizes the performance guarantees of the 4-cycle counting algorithms.

As a one-round local algorithm, we consider a local model version of WShuffle□ that does not

shuffle wedges (i.e., εL = ε). We denote it by WLocal□. To our knowledge, WLocal□ is the first

local 4-cycle counting algorithm.

By (3.17), when t = ⌊n
2⌋, the MSE of WLocal□ can be expressed as O(n6 + n2d6

max).

Thus, our wedge shuffle technique dramatically reduces the MSE from O(n6 + n2d6
max) to

O(n3d2
max +n2d6

max). Note that the square of the true count f□(G) is O(n2d6
max). This indicates

that our WShuffle□ may not work well in an extremely sparse graph where dmax < n
1
4 . However,

dmax≫ n
1
4 holds in most social graphs; e.g., the maximum number dmax of friends is much larger

than 100 when n = 108. In this case, WShuffle□ can accurately estimate the 4-cycle count, as

shown in our experiments.

Comparison with the Central Model. As with triangles, our WShuffle□ is worse than algo-

rithms in the central model in terms of the estimation error.

Specifically, analogously to the central algorithm for triangles [102], we can consider a

central algorithm that outputs f□(G)+Lap(d2
max
ε
). This algorithm provides (ε,0)-edge DP and

the variance of 2d4
max

ε2 = O(d4
max). Because dmax is much smaller than n, this central algorithm

provides a much smaller MSE (= variance) than WShuffle□. This indicates that there is a

trade-off between the trust model and the estimation error.
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3.7 Experimental Evaluation

Based on the performance guarantees summarized in Tables 3.2 and 3.3, we pose the

following research questions:

RQ1. How much do our entire algorithms (WShuffle∗△ and WShuffle□) outperform the local

algorithms?

RQ2. For triangles, how much does our variance reduction technique decrease the relative error?

RQ3. How small relative errors do our entire algorithms achieve with a small privacy budget?

We designed experiments to answer these questions.

3.7.1 Experimental Set-up

We used the following two real graph datasets:

• Gplus: The first dataset is the Google+ dataset [142] denoted by Gplus. This dataset

includes a social graph G = (V,E) with n = 107614 users and 12238285 edges, where an

edge (vi,v j) ∈ E represents that a user vi follows or is followed by v j. The average and

maximum degrees are davg = 227.4 and dmax = 20127, respectively.

• IMDB: The second dataset is the IMDB (Internet Movie Database) [1] denoted by IMDB.

This dataset includes a bipartite graph between 896308 actors and 428440 movies. From

this, we extracted a graph G = (V,E) with n = 896308 actors and 57064358 edges, where

an edge represents that two actors have played in the same movie. The average and

maximum degrees are davg = 127.3 and dmax = 15451, respectively; i.e., IMDB is more

sparse than Gplus.

In Appendix C.4, we also evaluate our algorithms using the Barabási-Albert graphs [16, 96],

which have a power-law degree distribution. Moreover, in Appendix C.5, we evaluate our 4-cycle

algorithms using bipartite graphs generated from Gplus and IMDB.
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For triangle counting, we evaluated the following four one-round algorithms: WShuffle∗△,

WShuffle△, WLocal△, and ARR△ [104]. We did not evaluate RR△ [102], because it was too

inefficient – it was reported in [102] that when n = 106, RR△ would require over 30 years even

on a supercomputer. The same applies to the one-round local algorithms in [218, 219] with the

same time complexity (= O(n3)).

For 4-cycle counting, we compared WShuffle□ with WLocal□. Because WLocal□ is the

first local 4-cycle counting algorithm (to our knowledge), we did not evaluate other algorithms.

In our shuffle algorithms WShuffle∗△, WShuffle△, and WShuffle□, we set δ = 10−8 (≪ 1
n )

and t = n
2 . We used the numerical upper bound in [88] for calculating ε in the shuffle model.

In WShuffle∗△, we set c ∈ [0.1,4] and divided the total privacy budget ε as ε1 =
ε

10 and ε2 =
9ε

10 .

Here, we assigned a small budget to ε1 because a degree di has a very small sensitivity (= 1) and

Lap( 1
ε1
) is very small. In ARR△, we set the sampling probability p0 to p0 = n−1/3 or 0.1n−1/3

so that the time complexity is O(n2).

We ran each algorithm 20 times and evaluated the average relative error over the 20 runs.

In Appendix C.6, we show that the standard error of the average relative error is small.

3.7.2 Experimental Results

Relative Error vs. ε . We first evaluated the relation between the relative error and ε in element

DP or edge LDP, i.e., 2ε in edge DP. We also measured the time to estimate the triangle/4-cycle

count from the adjacency matrix A using a supercomputer [5] with two Intel Xeon Gold 6148

processors (2.40 GHz, 20 Cores) and 412 GB main memory.

Figure 3.6 shows the relative error (c = 1). Here, we show the performance of WShuffle△

when we do not add the Laplacian noise (denoted by WShuffle△ (w/o Lap)). In IMDB, we do not

show ARR△ with p0 = n−1/3, because it takes too much time (longer than one day). Table 3.4

highlights the relative error when ε = 0.5 or 1. It also shows the running time of counting

triangles or 4-cycles when ε = 1 (we verified that the running time had little dependence on ε).

Figure 3.6 and Table 3.4 show that our shuffle algorithms dramatically improve the local
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Figure 3.6. Relative error vs. ε (n = 107614 in Gplus, n = 896308 in IMDB, c = 1). p0 is the
sampling probability in the ARR.

algorithms. In triangle counting, WShuffle∗△ outperforms WLocal△ by one or two orders of

magnitude and ARR△ by even more5. WShuffle∗△ also requires less running time than ARR△

with p0 = n−1/3. Although the running time of ARR△ can be improved by using a smaller p0,

it results in a higher relative error. In 4-cycle counting, WShuffle□ significantly outperforms

WLocal□. The difference between our shuffle algorithms and the local algorithms is larger in

IMDB because it is more sparse; i.e., the difference between dmax and n is larger in IMDB. This

is consistent with our theoretical results in Tables 3.2 and 3.3.
5Note that ARR△ uses only the lower-triangular part of the adjacency matrix A and therefore provides ε-edge

DP (rather than 2ε-edge DP); i.e., it does not suffer from the doubling issue explained in Section 3.3.2. However,
Figure 3.6 shows that WShuffle∗△ significantly outperforms ARR△ even if we double ε for only WShuffle∗△.
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Table 3.4. Relative error (RE) when ε = 0.5 or 1 and computational time (n = 107614 in Gplus,
n = 896308 in IMDB, c = 1). The lowest relative error is highlighted in bold.

(a) Gplus
RE (ε = 0.5) RE (ε = 1) Time (sec)

WShuffle∗△ 2.98×10−1 2.77×10−1 3.60×101

WShuffle△ 3.12×10−1 2.79×10−1 3.62×101

WLocal△ 6.10×100 1.14×100 5.83×101

ARR△ (p0 = n−1/3) 4.90×101 4.93×100 7.15×102

ARR△ (p0 = 0.1n−1/3) 1.88×103 1.97×102 3.48×101

WShuffle□ 1.45×10−1 1.47×10−1 3.47×101

WLocal□ 2.08×100 5.96×10−1 5.70×101

(b) IMDB
RE (ε = 0.5) RE (ε = 1) Time (sec)

WShuffle∗△ 4.88×10−1 3.08×10−1 2.39×103

WShuffle△ 1.41×100 5.22×10−1 2.40×103

WLocal△ 7.46×101 2.63×101 3.96×103

ARR△ (p0 = 0.1n−1/3) 2.98×104 3.27×103 2.81×103

WShuffle□ 3.03×10−1 3.08×10−1 2.29×103

WLocal□ 2.82×102 5.91×101 3.91×103

Figure 3.6 and Table 3.4 also show that WShuffle∗△ outperforms WShuffle△, especially

when ε is small. This is because the variance is large when ε is small. In addition, WShuffle∗△

significantly outperforms WShuffle△ in IMDB because WShuffle∗△ significantly reduces the

variance when dmax≪ n, as shown in Table 3.2. In other words, this is also consistent with our

theoretical results. For example, when ε = 0.5, our variance reduction technique reduces the

relative error from 1.41 to 0.488 (about one-third) in IMDB.

Furthermore, Figure 3.6 shows that the relative error of WShuffle∗△ is hardly changed by

adding the Laplacian noise. This is because the sensitivity of each user’s degree di is very small

(= 1). In this case, the Laplacian noise is also very small.

Our WShuffle∗△ achieves a relative error of 0.3 (≪ 1) when the privacy budget is ε = 0.5

or 1 in element DP (2ε = 1 or 2 in edge DP). WShuffle□ achieve a relative error of 0.15 to 0.3

with a smaller privacy budget (e.g., ε = 0.2) because it does not send local edges – the error of

WShuffle□ is mainly caused by user-pair sampling that is independent of ε .
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Figure 3.7. Relative error vs. n (ε = 1, c = 1).

In summary, our WShuffle∗△ and WShuffle□ significantly outperform the local algorithms

and achieve a relative error much smaller than 1 with a reasonable privacy budget, i.e., ε ≤ 1.

Relative Error vs. n. Next, we evaluated the relation between the relative error and n. Specifi-

cally, we randomly selected n users from all users and extracted a graph with n users. Then we

set ε = 1 and changed n to various values starting from 2000.

Figure 3.7 shows the results (c = 1). When n = 2000, WShuffle△ and WShuffle□

provide relative errors close to WLocal△ and WLocal□, respectively. This is because the privacy

amplification effect is limited when n is small. For example, when n = 2000 and ε = 1, the

numerical bound is εL = 1.88. The value of εL increases with increase in n; e.g., when n= 107614
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and 896308, the numerical bound is εL = 5.86 and 7.98, respectively. This explains the reason

that our shuffle algorithms significantly outperform the local algorithms when n is large in

Figure 3.7.

Parameter c in WShuffle∗△. Finally, we evaluated our WShuffle∗△ while changing the parameter

c that controls the bias and variance. Recall that as c increases, the bias is increased, and the

variance is reduced. We set ε = 0.1 or 1 and changed c from 0.1 to 4.

Figure 3.8 shows the results. Here, we also show the relative error of WShuffle△. We

observe that the optimal c is different for ε = 0.1 and ε = 1. The optimal c is around 3 to 4

for ε = 0.1, whereas the optimal c is around 0.5 to 1 for ε = 1. This is because the variance of

WShuffle△ is large (resp. small) when ε is small (resp. large). For a small ε , a large c is effective

in significantly reducing the variance. For a large ε , a small c is effective in keeping a small bias.

We also observe that WShuffle∗△ is always better than (or almost the same as) WShuffle△

when c = 1 or 2. This is because most users’ degrees are smaller than the average degree davg,

as described in Section 3.5.4. When c = 1 or 2, most user-pairs are ignored. Therefore, we can

significantly reduce the variance at the cost of a small bias.

Summary. In summary, our answers to the three questions at the beginning of Section 3.7 are

as follows. RQ1: Our WShuffle∗△ and WShuffle□ outperform the one-round local algorithms

by one or two orders of magnitude (or even more). RQ2: Our variance reduction technique

significantly reduces the relative error (e.g., by about one-third) for a small ε in a sparse dataset.

RQ3: WShuffle∗△ achieves a relative error of 0.3 (≪ 1) when ε = 0.5 or 1 in element DP (2ε = 1

or 2 in edge DP). WShuffle□ achieves a relative error of 0.15 to 0.3 with a smaller privacy budget:

ε = 0.2.

3.8 Conclusion

In this paper, we made the first attempt (to our knowledge) to shuffle graph data for

privacy amplification. We proposed wedge shuffling as a basic technique and then applied it to
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Figure 3.8. Relative error vs. parameter c in WShuffle∗△ (n = 107614 in Gplus, n = 896308 in
IMDB).

one-round triangle and 4-cycle counting with several additional techniques. We showed upper

bounds on the MSE for each algorithm. We also showed through comprehensive experiments

that our one-round shuffle algorithms significantly outperform the one-round local algorithms

and achieve a small relative error with a reasonable privacy budget, e.g., smaller than 1 in edge

DP.

For future work, we would like to apply wedge shuffling to other subgraphs such as

3-hop paths [186] and k-triangles [120].

Chapter 3, in full, is a reprint of the material as it appears in Jacob Imola, Takao Murakami,

and Kamalika Chaudhuri, Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, 2022. “Differentially Private Triangle and 4-Cycle Counting in the

Shuffle Model.” The dissertation author was a joint first author of this paper.
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Chapter 4

Robustness of Locally Differentially Pri-
vate Graph Analysis Against Poisoning

4.1 Introduction

Federated analytics enable a data analyst to gather useful information from data dis-

tributed across multiple users without centrally pooling the data. An important class of tasks in

federated analytics is computing statistics over graph data, which has wide-spread applications

ranging from market value prediction [141], fake news detection [22] to drug development [90].

Usually, the graph encodes sensitive user information, such as social network data, which raises

privacy concerns. For instance, a mobile phone company might be interested in calculating

statistics over the graph of call history which reveals an user’s social interactions. To this end,

local differential privacy (LDP) is currently the most popular model for achieving data privacy

for federated analytics.

The distributed nature of LDP, however, leaves the door open for poisoning attacks. For

example, an adversary can inject fake users into the system or compromise the accounts of real

users to run untrusted applications on user devices. Consequently, there is no guarantee that these

users will comply with the LDP protocols. The adversary can send carefully crafted malformed

data from these non-compliant users and skew statistical estimates, including those involving

only honest users.

Prior work, which focuses on tabular data [46, 34, 132], finds that poisoning attacks can
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Figure 4.1. Graph analysis in the LDP setting.

be carried out against naive LDP protocols. However, the impact of poisoning under LDP for

graph analysis is largely unexplored. In this paper, we initiate a formal study on the impact of

such poisoning attacks on LDP protocols for graph statistics. We focus on the task of degree

estimation, one of the most fundamental tasks in graph analysis.

A real-world use-case for a poisoning attack is as follows. Suppose a data analyst is

interested in hiring the most influential nodes (users) of a graph for marketing and uses a node’s

degree as its measure of influence. Here, an adversary might want to promote a specific malicious

node (user) to be selected as an influencer or prevent an honest node from being selected as an

influencer. Concretely, suppose a single malicious user wants to (falsely) get themselves selected

as the most influential node. If the LDP protocol used is the Laplace mechanism, where each

user directly submits their (noisy) degree to the analyst (Fig. 4.1), then the malicious user can

lie flagrantly and report their degree to be n−1. This can skew the response by as much as the

number of users!

We address this challenge and design degree estimation protocols that are robust to

poisoning attacks. Our algorithms are based on the key observation that graph data is naturally

redundant – the information about an edge ei j is shared by both users Ui and U j. Leveraging

this observation, we propose robust protocols based on two new ideas. First, we use distributed
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information – we collect the information about each edge from both users. The second idea is to

verify – the data analyst can verify the consistency of the collected information by leveraging its

redundancy. Specifically, as long as at least one of Ui or U j is honest, the analyst can check for

consistency1 between the two bits obtained from Ui and U j and detect malicious behavior.

If there are at most m malicious users, then with no privacy, the data analyst could flag

malicious users as those with more than m edge inconsistencies in their reported edges since

this is beyond a tolerable number of inconsistencies for an honest user. However, LDP requires

randomization which makes the user’s reports probabilistic. Consequently, the aforementioned

simple consistency check cannot be applied directly to LDP protocols. We mitigate this challenge

by proposing edge inconsistency confidence bounds under LDP which guarantees detection of

malicious users without misclassifying the honest ones. Using our edge consistency checks we

design novel degree estimation protocols under LDP which are robust to poisoning attacks.

In summary, we are the first to study the impact of poisoning on LDP degree estimation

for graphs. Our main contributions are:

• We propose a formal framework for analyzing the robustness of a protocol. Specifically, we

measure the robustness along two dimensions, correctness (for honest users) and soundness

(for malicious users). Intuitively, good correctness means that the protocol is accurate for

honest users, and good soundness means that it can detect/restrict malicious users.

• Based on the proposed framework, we study the impact of poisoning attacks on private

degree estimation in the LDP setting. The attacks can be classified into two types: (1)

input poisoning attacks where the adversary does not have access to implementation of the

LDP protocol and can only falsify their input data (Fig. 4.2), and (2) response poisoning

attacks where the adversary can tamper with the LDP implementation and directly manipulate

the (noisy) responses of the LDP protocol (Fig. 4.3). The former is independent of LDP while

the latter utilizes the characteristics of LDP. We observe that LDP makes a degree estimation

1For the ease of exposition, we disregard errors due to machine failures.
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Table 4.1. Summary of correctness and soundness results in the paper. The Õ notation asymptoti-
cally holds for ε < 1, and hides factors of log 1

δ
. n−1-tight indicates that there exists a worst-case

attack that can skew the degree estimates by n−1. All the above results are attack-agnostic.

Protocol
Response Poisoning

Privacy Guarantee
Correctness Soundness

RLap (Õ(1
ε
),δ ) (n−1)-tight Thm. 1 ε-Edge LDP

SimpleRR (Õ(m+ m
ε
+
√

n
ε
),δ ) (n−1)-tight Thm. 2 ε-Edge LDP

RRCheck (Õ(m+ m
ε
+
√

n
ε
),δ ) (Õ(m+ m

ε
+
√

n
ε
),δ ) Thm. 3 ε-Edge LDP

Hybrid (Õ(1
ε
),δ ) (Õ(m+ m

ε
+
√

n
ε
),δ ) Thm. 5 ε-Edge LDP

Protocol
Input Poisoning

Correctness Soundness
RLap (Õ(1

ε
),δ ) (n−1, 1

2) Thm. 6
SimpleRR (Õ(m+

√
n

ε
),δ ) (n−1, 1

2) Thm. 7
RRCheck (Õ(m+

√
n

ε
),δ ) (Õ(m+

√
n

ε
),δ ) Thm. 8

Hybrid (Õ(1
ε
),δ ) (Õ(m+

√
n

ε
),δ ) Thm. 9

protocol more vulnerable to poisoning – the impact of a response poisoning attack can be

worse than that of any input poisoning attack.

• Leveraging the natural redundancy in graph data, we design robust degree estimation proto-

cols under LDP that significantly reduce the impact of adversarial poisoning and compute

degree estimates with high accuracy (Table 4.1).

• We evaluate our proposed robust degree estimation protocols under poisoning attacks on

real-world datasets to demonstrate their efficacy in practice. We observe that even a relatively

small number of malicious parties (m = 1%) can stage significantly damaging poisoning

attacks. This demonstrates the practical threat of such attacks. Nevertheless, our empirical

results show that our proposed protocols are able to thwart poisoning attacks even with a

large number of malicious users (m = 37.5%).

4.2 Preliminaries

Notation. Throughout this paper, let G = (V,E) be an undirected graph with V and E

representing the set of nodes (vertices) and edges, respectively. We assume a graph with n ∈ N
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nodes, i.e., V = [n] where [n] denotes the set {1,2, · · · ,n}. Let G denote the domain of all graphs

with n nodes. Each node i ∈V corresponds to a user Ui. Let li ∈ {0,1}n be the adjacency list

for Ui, i ∈ [n] where bit li[ j], j ∈ [n] encodes the edge ei j between a pair of users Ui and U j.

Specifically, li[ j] = 1 if ei j ∈ E and ei j = 0 otherwise. Let d = ⟨d1, . . . ,dn⟩ ∈ Rn denote the

vector of degrees in G. m denotes the number of malicious users.

4.2.1 Local Differential Privacy for Graphs

Our paper focuses on the local model of DP, one of the most popular models. The local

model consists of a set of individual users (U) and an untrusted data aggregator (analyst); each

user perturbs their data using a (local) DP algorithm and sends it to the aggregator which uses

these noisy data to estimate certain statistics of the entire dataset.

The most popular privacy guarantee for graphs in the local setting is known as edge

LDP [160, 168] which protects the existence of an edge between any two users. In other words,

on observing the output, an adversary cannot distinguish between two graphs that differ in a

single edge. Formally, we have:

Definition 1 (ε-Edge LDP[165]). Let R : {0,1}n 7→X be a randomized algorithm that takes an

adajcency list l ∈ {0,1}n as input. We say R(·) provides ε-edge LDP if for any two neighboring

lists l, l′ ∈ {0,1}n that differ in one bit (i.e., one edge) and any output s ∈X ,

Pr[R(l) = s]≤ eεPr[R(l′) = s] (4.1)

Randomized Response. Randomized Response (RRρ(·)) [209] releases a bit b ∈ {0,1} by

flipping it with probability ρ = 1
1+eε . We extend the mechanism to inputs in {0,1}n by flipping

each bit independently with probability ρ (Alg. 18 in App. D.1) which satisfies ε-edge DP.

Laplace Mechanism. The Laplace mechanism(RLap) is a standard algorithm to achieve DP [74].

For degree estimation, each user Ui simply reports d̃i = di + η ,η ∼ Lap(1
ε
) where Lap(b)

represents the Laplace distribution with scale parameter b. This mechanism satisfies ε-edge DP.
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Every protocol used in this paper is based on randomized response, the Laplace mecha-

nism, or a composition thereof, and it is easy to show each one satisfies ε-edge LDP.

4.2.2 Protocol Setup

Problem Statement. We consider single round, non-interactive protocols in which each user

Ui, i ∈ [n] runs the local randomizer Ri : {0,1}n→X for some output space X on their adja-

cency lists li (Fig. 4.1). The data aggregator collects the noisy responses and applies a function

D : X n→ (N∪{⊥})d to produce final degree estimates d̂ = ⟨d̂1, . . . , d̂n⟩). Here, d̂i is the aggre-

gator’s estimate for di for user Ui. Note that the aggregator is allowed to output a special symbol

⊥ for a user Ui if they believe the estimate d̂i to be invalid (i.e., Ui is malicious).

Threat Model. In the execution of a protocol P , a subset of users M ∈ [n] may be mali-

cious. The malicious users may return arbitrary output with the goal of carrying out a poisoning

attack on P . Let m = |M | denote the number of malicious users. We refer to H = [n]\M

as the set of honest users. We do not make any assumptions on how the malicious users are

instantiated in practice – they could correspond to either fake accounts created by the adversary

or a set of real accounts which have been compromised or a combination of both.

Based on the specifications of the practical implementation of the LDP, there is an

important distinction between the way in which the malicious users may carry out their poisoning

attacks. We outline them as follows:

• Input Poisoning. In this threat model, the users do not have access to the implementation of

the LDP randomizer. For instance, mobile applications might run proprietary code which the

users do not have permission to tamper with. Consequently, the only thing a malicious user

can do is falsify their underlying input data, i.e., change their input from li to an arbitrary l′i ,

and then report qi = Ri(l′i) (Fig. 4.2).

• Response Poisoning. This is a stronger threat model where a malicious user has direct
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<latexit sha1_base64="mg4fwP97CEvNcQA/nhbSuN0ApAQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87447xdLbsWdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtasWrVap3F6X6dRZHHk7gFMrgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AwHaOlg==</latexit>

ln
<latexit sha1_base64="0Hy/XpvHXA+f7+UFXWowhanbZu8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9lX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1cqjdU=</latexit>
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<latexit sha1_base64="el+ant67oFU9GIKpYdQ05/L4FLQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpse+V+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8NqfCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPHzdljbE=</latexit>

q2
<latexit sha1_base64="F1SLfhxyjKG+7GV4ARO6+vL7XGk=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsV8r9csVt+rOQVaJl5MK5Gj0y1+9QcQSxTUySa3tem6M/pQaFEzyWamXWB5TNqZD3k2ppopbfzq/dUbOUmVAwsikpZHM1d8TU6qsnagg7VQUR3bZy8T/vG6C4bU/FTpOkGu2WBQmkmBEssfJQBjOUE5SQpkR6a2EjaihDNN4shC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAYjeIZXeHOU8+K8Ox+L1oKTzxzDHzifPzjqjbI=</latexit>

qn
<latexit sha1_base64="M2vvY5tdvNAOpgsSxu0oqpxgX/k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsa9L/XLFrbpzkFXi5aQCORr98ldvELFEcY1MUmu7nhujP6UGBZN8VuollseUjemQd1OqqeLWn85vnZGzVBmQMDJpaSRz9ffElCprJypIOxXFkV32MvE/r5tgeO1PhY4T5JotFoWJJBiR7HEyEIYzlJOUUGZEeithI2oowzSeLARv+eVV0qpVvYtq7f6yUr/J4yjCCZzCOXhwBXW4gwY0gcEInuEV3hzlvDjvzseiteDkM8fwB87nD5QWje4=</latexit>

𝑙2 𝑅(𝑙2)Poisoning

.

.

.

Figure 4.2. Illustration of an input poisoning attack.

control over the implementation of the LDP randomizer. For instance, the user could hack

into the mobile application collecting their data. Consequently, the user can completely

bypass the randomizer and submit an arbitrary response qi (Fig. 4.3) to the aggregator.

Note that input poisoning attack applies to any protocol, private or not, because a user is

free to change their input anytime. However, response poisoning attacks are unique to LDP –

the distinction between an user’s input and their response is a characteristic of LDP which we

results in a separation in the efficacy of the two types of attacks (see Sec. 4.7 for details).

4.2.3 Motivating Attacks

For the Laplace mechanism, RLap, and randomized response mechanism, RRρ , outlined

in Sec. 4.2.1, we present two concrete motivating attacks. We consider the attacks in the context

of the task of influential node identification, where the goal of the data aggregator is to identify

certain nodes with a high measure of “influence”. This is useful for various applications where

the influential nodes are selected for disseminating information/advertisement. Here, we consider

the simplest measure of influence – degree; nodes with the top-k degrees are selected as the

influencers. With the goal of modifying the influence of different users, a malicious user may
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R(l1)
<latexit sha1_base64="Pa3beMgPzbtSwGlSJdkptk2uGU8=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87533i+W3Io7B1olXkZKkKHRL371BpIkERWGcKx113Nj46dYGUY4nRZ6iaYxJmM8pF1LBY6o9tP5tVN0ZpUBCqWyJQyaq78nUhxpPYkC2xlhM9LL3kz8z+smJrzyUybixFBBFovChCMj0ex1NGCKEsMnlmCimL0VkRFWmBgbUMGG4C2/vEpa1YpXq1TvLkr16yyOPJzAKZTBg0uowy00oAkEHuEZXuHNkc6L8+58LFpzTjZzDH/gfP4AY8WOWQ==</latexit>

R(ln)
<latexit sha1_base64="mg4fwP97CEvNcQA/nhbSuN0ApAQ=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuK+ix6MVjFfsB7VKyabaNzSZLkhXK0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfDPz209UaSbFg5nE1I/wULCQEWys1Lov87447xdLbsWdA60SLyMlyNDoF796A0mSiApDONa667mx8VOsDCOcTgu9RNMYkzEe0q6lAkdU++n82ik6s8oAhVLZEgbN1d8TKY60nkSB7YywGellbyb+53UTE175KRNxYqggi0VhwpGRaPY6GjBFieETSzBRzN6KyAgrTIwNqGBD8JZfXiWtasWrVap3F6X6dRZHHk7gFMrgwSXU4RYa0AQCj/AMr/DmSOfFeXc+Fq05J5s5hj9wPn8AwHaOlg==</latexit>

l2
<latexit sha1_base64="cGrDOFyL5pGKO3TAZPX9es7d10c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1buo1u4vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gD8K42Z</latexit>

ln
<latexit sha1_base64="0Hy/XpvHXA+f7+UFXWowhanbZu8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9lX/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSatW9S6qtfvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1cqjdU=</latexit>
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<latexit sha1_base64="el+ant67oFU9GIKpYdQ05/L4FLQ=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpse+V+uWKW3XnIKvEy0kFcjT65a/eIGKJ4hqZpNZ2PTdGf0oNCib5rNRLLI8pG9Mh76ZUU8WtP53fOiNnqTIgYWTS0kjm6u+JKVXWTlSQdiqKI7vsZeJ/XjfB8NqfCh0nyDVbLAoTSTAi2eNkIAxnKCcpocyI9FbCRtRQhmk8WQje8surpFWrehfV2v1lpX6Tx1GEEziFc/DgCupwBw1oAoMRPMMrvDnKeXHenY9Fa8HJZ47hD5zPHzdljbE=</latexit>

qn
<latexit sha1_base64="M2vvY5tdvNAOpgsSxu0oqpxgX/k=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ae0oWy2m3bp7ibuToRS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ncLa+sbmVnG7tLO7t39QPjxq2SgxjDdZJCPTCajlUmjeRIGSd2LDqQokbwfj28xvP3FjRaQfcBJzX9GhFqFgFDPpsa9L/XLFrbpzkFXi5aQCORr98ldvELFEcY1MUmu7nhujP6UGBZN8VuollseUjemQd1OqqeLWn85vnZGzVBmQMDJpaSRz9ffElCprJypIOxXFkV32MvE/r5tgeO1PhY4T5JotFoWJJBiR7HEyEIYzlJOUUGZEeithI2oowzSeLARv+eVV0qpVvYtq7f6yUr/J4yjCCZzCOXhwBXW4gwY0gcEInuEV3hzlvDjvzseiteDkM8fwB87nD5QWje4=</latexit>

l1
<latexit sha1_base64="vHJlzNlNbmXQOyxFuDi0QsChg1Q=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPpev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vklat6l1Ua/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwD6p42Y</latexit>
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Figure 4.3. Illustration of a response poisoning attack.

choose to carry out the following attacks:

Degree Inflation Attack. In this attack, a target malicious user Ut wants to get themselves

selected as an influential node. For RLap, since each user sends their degree di plus Laplace noise,

the target user maximizes their degree estimate by simply sending n−1.

For RRρ , the target malicious user Ut colludes with a set of other users (for instance, by

injecting fake users) as follows. All the non-target malicious users Ui, i ∈M \ t report 1 for the

edges corresponding to Ut . Additionally, Ut reports an all-one list.

Degree Deflation Attack. In this attack, the target is an honest user Ut ∈ H who is be-

ing victimized by a set of malicious users (for instance, the adversary compromises a set of real

accounts with an edge to Ut) – M wants to ensure that Ut is not selected as an influential node.

The attack strategy is to decrease the aggregator’s degree estimate d̂t for Ut . For RLap, there is

no way for the malicious party to influence d̂t . However, for randomized response, the malicious

users may report 0 for each edge in M connected to Ut , reducing their degree by this amount.
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4.3 Quantifying Robustness

In this section, we present our formal framework for analyzing the robustness of a

protocol for degree estimation. Specifically, we measure the robustness along two dimensions,

correctness (for honest users) and soundness (for malicious users). Intuitively, good correctness

means that the protocol is accurate for honest users, and good soundness means that it can

detect/restrict malicious users. Hence, a protocol which has both properties is robust to poisoning

attacks.

4.3.1 Metrics

Our notion of correctness guarantees that the protocol will produce an accurate degree

estimate d̂i for an honest user Ui ∈H even under poisoning. On the other hand, good soundness

prevents a malicious user Ui ∈M from manipulating their degree estimate by too much without

detection. We describe them in details as follows.

Correctness (For Honest Users). The correctness of a protocol assesses its resilience to

manipulation of an honest user’s estimator. Specifically, malicious users can adversely affect an

honest user Ui ∈H by

• tampering with the value of Ui’s degree estimate d̂i (by introducing additional error), or

• attempting to mislabel Ui as malicious (by influencing the aggregator to report d̂i =⊥)

Correctness protects the honest user Ui along the above dimensions and is formally defined as

follows:

Definition 2. (Correctness) Let ⟨R1, . . . ,Rn⟩ be a non-interactive, LDP protocol for degree

estimation producing estimates ⟨d̂1, . . . , d̂n⟩. Let M be a set of malicious users with |M |= m

and H be the set of honest users. Then, the protocol is defined to be (α1,δ1)-correct w.r.t. an
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attack from M if for all input graphs G ∈ G we have:

∀Ui ∈H ,Pr
[
d̂i =⊥ ∨|d̂i−di| ≥ α1

]
≤ δ1, (4.2)

where the above probability is taken w.r.t the randomness in the protocol and the attack.

The parameter α1 dictates the accuracy of the estimate d̂i, and the parameter δ1 dictates

the chance of failure—that either of the aforementioned conditions fail to hold. Thus, if a

protocol is (α1,δ1)-correct, it means that with probability at least (1−δ1), the degree estimate

d̂i for any honest user Ui ∈H has error at most α1, and Ui is guaranteed to be not mislabeled

as malicious.

Complementary to the above definition, we introduce the notion of α1-tight correctness.

A protocol is defined to be α1-tight correct w.r.t an attack, if there exists a graph such that the

attack is guaranteed to either skew the the degree estimate of at least one honest user by exactly

α1. We use this definition to show the existence of strong attacks that are guaranteed to be

very successful in manipulating the data of an honest user, which motivates the need for robust

solutions.

Lower the value of α1 and δ1, better is the robustness of the protocol for honest users.

Soundness (For Malicious Users). The soundness of a protocol assesses its ability to re-

strict adversarial manipulations of a malicious user’s estimator. In particular, the protocol either

returns an accurate estimate or returns d̂i =⊥ for these malicious users, regardless of the poison-

ing attack used. Formally, we use the following definition (which uses the complement event

d̂i ̸=⊥ ∧|d̂i−di| ≥ α2):

Definition 3. (Soundness) Let ⟨R1, . . . ,Rn⟩ be a non-interactive, LDP protocol for degree

estimation producing estimates d̂1, . . . , d̂n. Let M be a set of malicious users with |M |= m and

H be the complement set of honest users. Then, the protocol is defined to be (α2,δ2)-sound w.r.t
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an attack from M if, for all input graphs G ∈ G we have

∀Ui ∈M ,Pr
[
d̂i ̸=⊥ ∧|d̂i−di| ≥ α2

]
≤ δ2, (4.3)

where the above probability is taken w.r.t randomness in the protocol and attack.

Like with correctness, the parameter α2 dictates the accuracy of the estimate d̂i, and δ2

dictates the chance of failure. As an important distinction, note that the failure event is when d̂i

is both ̸=⊥ and is inaccurate, as stated above. Thus, the ∨ used in the definition of correctness is

replaced by a ∧. In other words, a protocol is (α2,δ2)-sound if for any malicious user Ui, i ∈M ,

the protocol

• fails to identify Ui as malicious, and

• reports its degree estimate d̂i with error greater than α2

with probability at most δ2.

Complementary to the above definition, we introduce the notion of α1-tight soundness.

A protocol is defined to be α1-tight sound w.r.t an attack if there exists a graph G ∈ G such that

at least one malicious user is guaranteed to have their degree estimate misestimated by exactly

α1 without getting detected. In other words, an (n−1)-tight sound/correct attack represents the

strongest possible attack2 – an user’s estimate can always be skewed by the worst-case amount.

We use this definition to motivate the need for more robust protocols.

Lower the value of α2 and lower the value of δ2, better is the robustness of the protocol

for malicious users.

Note. Our proposed framework strives to provide a strong notion of robustness – not only

are we able to guarantee accurate estimates, but also detect and flag individual malicious users

(by reporting ⊥).

2We do not consider self-edges or loops in the graph.
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4.4 Impact of Poisoning on Baseline Protocols

Within our robustness framework, we analyze the two naive private mechanisms outlined

in Sec. 4.2.1 – the Laplace mechanism and randomized response. The shortcomings of these

mechanisms motivate the design of our robust protocols discussed later in the paper. We present

all our results for the stronger threat model of response poisoning attacks first. We defer all our

discussion for the input poisoning attack to Sec. 4.7.

4.4.1 Laplace Mechanism

The simplest mechanism for estimating an user’s degree is the Laplace mechanism, RLap.

Recall here, each user directly reports their noisy estimates. Consequently, the degree estimate

of an honest user cannot be tampered with at all – the Õ(1
ε
)3 term is due to the error of the added

Laplace noise. This error is in fact optimal (matches that of central DP) for degree estimation. On

the flip side, a malicious user can flagrantly lie about their estimate without detection resulting in

the the worst-case soundness guarantee. Specifically, there exists a graph and an attack against

RLap in which a malicious user is guaranteed to manipulate their true degree by n−1 – this holds

for the case where the malicious user is an isolated node but lies that their degree is n−1. The

robustness of RLap against response poisoning attacks is formalized as follows:

Theorem 1. Let M be a set of malicious users with |M |= m. The RLap protocol is (1
ε

log n
δ
),δ )-

correct with respect to any response poisoning attack from M . However, there is a response

poisoning attack A such that RLap is (n−1)-tight sound with respect to A .

The proof of the above theorem is in App. D.2.3. Thus according to our robustness

framework, RLap has good correctness but not soundness. Intuitively, RLap fails to provide good

soundness because there is no way to verify the malicious users’ reports. It is important to note

that RLap has good correctness guarantee even with n−1 malicious users while the worst-case

soundness is inevitable even with a single malicious user.

3Õ hides factors of log 1
δ

134



Data: {l1, · · · , ln} where li ∈ {0,1}n is the adjacency list of user Ui
Result: (d̂1, · · · , d̂n) where d̂i is the degree estimate for user Ui

1 Users;
2 foreach i ∈ [n] do
3 qi = RRρ(li);
4 end
5 Data Aggregator: foreach i ∈ [n] do
6 count1

i = ∑ j<i q j[i]+∑i< j qi[ j];
7 d̂i =

1
1−2ρ

(count1
i −ρ(n−1));

8 end
9 return (d̂1, d̂2, . . . , d̂n)

Algorithm 11: Naive degree counting algorithm based on randomized response. Sim-
pleRR: {0,1}n×n 7→ {N∪{⊥}}n

4.4.2 Randomized Response

In this section, we look at an alternative mechanism where the users release their edges

via randomized response. Recall that the information about an edge is shared between two

users – the idea here is to leverage this distributed information. For our baseline algorithm,

SimpleRR (described in Alg. 11), the data aggregator collects information about an edge from

a single user. Specifically, for edge (i, j) with i < j, it simply uses the response from user

Ui to decide if the edge exists. To estimate the degree, it counts the total number of edges to

user Ui with the random variable count1
i and then computes a debiased estimate of the degree.

Note that this naive approach is used by many prior works in local graph algorithms, such

as [204, 165, 103, 105].

Formally for response poisoning attacks, we have:

Theorem 2. Let M be a set of malicious users with |M | = m. Then, the SimpleRR protocol

is (m eε+1
eε−1 +

√
n

√
(eε+1) ln 2n

δ

eε−1 ,δ )-correct with respect to any response poisoning attack from M .

However, there is a response poisoning attack A such that SimpleRR is (n−1)-tight sound with

respect to A .

The above theorem is proved in App. D.2.4. For ε < 1, the correctness guarantee is

≈ m(1+ 1
ε
)+

√
n

ε
. Intuitively, the

√
n

ε
term comes from the error introduced by randomized
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response. The m(1+ 1
ε
) term comes from the adversarial behavior of the malicious users – m

term is inevitable and accounts for the worst case scenario where all m malicious users are

colluding (see Sec. 4.8 for more details), while the 1
ε

factor corresponds to the scaling factor

required for de-biasing. This observation is in line with prior work [46] that assesses the impact

of poisoning attacks on tabular data. Clearly, smaller the value of ε , worse is the impact of the

attack.

Similar to the Laplace mechanism, SimpleRR is (n−1)-tight sound, i.e., a malicious user

can always get away with the worst-case n−1 error. This happens when Un is an isolated node

who acts maliciously and reports an all-one list. Thus, once again this worst-case soundness is

inevitable even with a single malicious user. In the next section, we discuss how to leverage the

data redundancy in graphs and verify the data collected via randomized response to improve the

soundness.

4.5 Improving Soundness with Verification

In this section, we present our proposed protocol for robust degree estimation. As

discussed in the previous section, the naive SimpleRR protocol offers poor soundness. To tackle

this, we propose a new protocol, RRCheck, that enhances SimpleRR with a consistency check

based on the redundancy in graph data and flags users if they fail the check. Consequently,

SimpleRR improves the soundness guarantee significantly. We observe that with higher privacy

(lower ε), the protocol is less robust. We conclude this section by analyzing RRCheck under no

privacy constraint—the difference between the correctness and soundness guarantees are the

price of privacy.

4.5.1 RRCheck Protocol

The RRCheck protocol is described in Alg. 12 and works as follows. RRCheck enhances

the data collected by SimpleRR with verification – for edge ei j ∈ E, instead of collecting a noisy

response from just one of the users Ui or U j, RRCheck collects a noisy response from both
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users. This creates data redundancy which can then be checked for consistency. Specifically, the

estimator counts only those edges ei j for which both Ui and U j are consistent and report a 1. The

count of noisy edges involving user Ui is then given by:

count11
i = ∑

j∈[n]\i
qi[ j]q j[i].

The unbiased degree estimate of Ui is computed as follows:

d̂i =
count11

i −ρ2(n−1)
1−2ρ

. (4.4)

For robustness, RRCheck imposes a check on the number of instances of inconsistent

reporting (Ui and U j differ in their respective bits reported for their mutual edge ei j). For every

user Ui, the protocol has an additional capability of returning ⊥ whenever the consistency check

fails, indicating that the aggregator believes that user Ui is malicious. The intuition is that if the

user Ui is malicious and attempts to poison a lot of the edges, then there would be a large number

of inconsistent reports corresponding to the edges to honest users. RRCheck counts the number

of inconsistent reports for user Ui as:

count01
i =

n

∑
j=1

(1−qi[ j])q j[i],

i.e., the number of edges connected to user Ui
4 for which they reported 0 and user U j reported 1.

Intuitively, the check computes the expected number of inconsistent reports assuming user Ui to

be honest and flags Ui in case the reported number is outside a confidence interval. Formally, if

|count01
i −ρ(1−ρ)(n−1)| ≤ τ, (4.5)

4It is symmetric (and doesn’t give additional information) to count edges for which user Ui reports 1 and U j
reports 0.
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Data: Adjacency lists {l1, · · · , ln}; τ , threshold for consistency check
Result: (d̂1, · · · , d̂n) where d̂i is the degree estimate for user Ui

1 ρ = 1
1+eε ;

2 Users;
3 foreach i ∈ [n] do
4 qi = RRρ(li)
5 end
6 Data Aggregator;
7 foreach i ∈ [n] do
8 count11

i = ∑ j∈[n]\i qi[ j]q j[i];
9 count01

i = ∑ j∈[n]\i(1−qi[ j])q j[i];
10 if |count01

i −ρ(1−ρ)(n−1)| ≤ τ then
11 d̂i =

1
1−2ρ

(count11
i −ρ2(n−1));

12 else
13 d̂i =⊥
14 end
15 return (d̂1, d̂2, . . . , d̂n)

Algorithm 12: Degree estimation algorithm with checks, RRCheck: {0,1}n×n 7→ {N∪
{⊥}}n.

then set d̂i =⊥, where τ = m+
√

3nρ ln 2
δ

is a threshold. This check forces a malicious user to

send a response with only a small number of poisoned edges (as allowed by the threshold τ),

thereby significantly restricting the impact of adversarial manipulations. For example, they are

not able to indicate they are connected to all users in the graph, as this would produce a large

number of inconsistent edges.

Note that due to the randomization required for LDP, some honest users might also

fail the check. However, we observe that for two honest users Ui and U j, the product term

(1− qi[ j])q j[i] follows the Bernoulli(ρ(1−ρ)) distribution, irrespective of whether the edge

ei j exists. Consequently count01
i is tightly concentrated around its mean. This ensures that the

probability of mislabeling an honest user (by returning ⊥) is low.

Formally, we are able to show the following correctness and soundness guarantees for

RRCheck.

Theorem 3. Let M be a set of malicious users with |M | = m. Then, the RRCheck protocol
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run with threshold τ = m+
√

2ρn ln 4n
δ

is

(
2m(eε+1

eε−1)+4
√

n

√
(eε+1) ln 4n

δ

eε−1 ,δ

)
-correct and sound

with respect to any response poisoning attack from M .

This theorem is proved in App. D.2.5. The additional verification of RRCheck results in a

clear improvement — the malicious users can now skew their degree estimates only by a limited

amount (as determined by the threshold τ) or risk getting detected, which results in a better

soundness guarantee. Specifically, a malicious user can now only skew their degree estimate by

at most Õ
(
m(1+ 1

ε
)+

√
n

ε

)
for response poisoning attacks, respectively (as compared to n−1 in

Thm. 2). It is important to note that the above results are completely attack-agnostic – they hold

for any attack, for any number of malicious users, and all graphs.

Note that the correctness and soundness guarantees in the above theorem worsen with

smaller ε . This is because at lower privacy, the collected responses are more noisy thereby

making it harder to distinguish honest users from malicious ones. In particular, a protocol should

not return ⊥ for honest users (i.e., mislabel them) to ensure good correctness. Consequently,

more malicious error is tolerated before a ⊥ is returned for a malicious user. This is evident in

Eq. 4.5–observe the threshold τ grows with smaller ε . We expand on this price of privacy in the

next section.

It is interesting to note that for response poisoning, the degree deflation attack (Sec. 4.2.3)

represents a worst-case attack for correctness – the attack can skew an honest user’s degree

estimate by Ω
(
m(1+ 1

ε
)+

√
n

ε

)
. Similarly, the degree inflation attack (Sec. 4.2.3) can skew a

malicious user’s degree estimate by Ω
(
m(1+ 1

ε
)+

√
n

ε

)
) resulting in the worst-case soundness.

4.5.2 Price of Privacy

The randomization required to achieve privacy adversely impacts a protocol’s robustness

to poisoning. Here, we perform an ablation study and formalize the price of privacy by comparing

to the correctness and soundness of non-private protocols. For this, we adapt our consistency

check to the non-private setting via the DegCheck protocol (Alg. 13) as described below. First,
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Data: {l1, · · · , ln} where li ∈ {0,1}n is the adjacency list of user Ui
Result: (d̂1, · · · , d̂n) where d̂i is the degree estimate for user Ui

1 Users;
2 foreach i ∈ [n] do
3 qi = li;
4 end
5 Data Aggregator;
6 foreach i ∈ [n] do
7 count11

i = ∑ j∈[n]\i qi[ j]q j[i];
8 count01

i = ∑ j∈[n]\i(1−qi[ j])q j[i];
9 count10

i = ∑ j∈[n]\i qi[ j](1−q j[i]);
10 if (count01

i + count10
i )≤ m then

11 d̂i = count11
i ;

12 else
13 d̂i =⊥;
14 end
15 return (d̂1, d̂2, . . . , d̂n)

Algorithm 13: Degree checking algorithm without privacy, DegCheck: {0,1}n×n 7→
{N∪{⊥}}n.

every user reports their true adjacency list to the data aggregator. The data aggregator then

employs a consistency check to identify the malicious users. Due to the absence of randomization,

the check is much simpler here and involves just ensuring that the number of inconsistent reports

for user Ui is bounded by m, i.e., count01
i + count10

i ≤ m. In case the check goes through, the

aggregator can directly use count11
i , the count of the edges where both users have reported 1s

consistently, as the degree estimate d̂i.

We quantify the impact of the poisoning attacks on DegCheck as follows.

Theorem 4. Let M be a set of malicious users with |M | = m. Then, there are poisoning

attacks A1 and A2 such that the DegCheck protocol is m-tight correct with respect to A1 and

(min{2m−1,n−1})-tight sound with respect to A2.

The proof of the above theorem is in App. D.2.6. Note that the robustness guarantees

are tight in that there are attacks which always successfully attain m error for an honest user

and min{2m−1,n−1} for a malicious user. Thus, the low-order manipulation term of O(m) is

inevitable even for non-private protocols based on consistency checks.
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Comparing Thm. 4 to Thm. 3, we see an improvement in both correctness and soundness

guarantees over the private protocols – the malicious users can skew the degree estimates by

only O(m), and the Õ(m
ε
+
√

n
ε
) terms have disappeared. This highlights the price of privacy –

the private protocols incur additional error due to the inherent randomization of LDP.

Thus, our proposed RRCheck protocol shows that the soundness of a degree estimation

protocol can be significantly improved by leveraging the redundancy in graph data. Additionally,

we observe the robustness of the protocol worsens with higher privacy and we explicitly formalize

price of privacy.

4.6 Improving Correctness with A Hybrid Protocol

The robustness guarantees for RRCheck contain a Õ(
√

n
ε
) term coming from the error in

randomized response. This is inherent in any randomized response based mechanism [21, 36, 67]

since each of the n bits of the adjacency list need to be independently randomized. Unfortunately,

this dependence on n has an adverse effect on the utility of the degree estimates. Typically,

real-world graphs are sparse in nature with maximum degree dmax≪ n. Hence, the Õ(
√

n
ε
) noise

term completely dominates the degree estimates resulting in poor accuracy for the honest users

(i.e. poor correctness). On the other hand, RLap provides a more accurate degree estimate for

the honest users but has the worst-case (n−1)-tight soundness (see Thm. 1). In this section, we

present a mitigation strategy. The key idea is to combine the two approaches and use a hybrid

protocol, Hybrid, that achieves the best of both worlds:

• correctness guarantee of RLap, and

• soundness guarantee of RRCheck.

The Hybrid protocol is outlined in Alg. 14 and described as follows. Each user Ui

prepares two responses – the noisy adjacency list, qi, randomized via RRρ , and a noisy degree

estimate, d̃lap
i , perturbed via RLap, and sends them to the data aggregator. Ui divides the privacy
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budget between the two responses according to some constant c∈ (0,1). The data aggregator first

processes each list qi to employ the same consistency check on count01
i as that of the RRCheck

protocol (Step 9). In case the check passes, the aggregator computes the unbiased degree

estimate d̃rr
i from count11

i , in the exact same way as RRCheck. Note that d̃rr
i and d̃lap

i are the

noisy estimates of the same ground truth degree, di, computed via two different randomization

mechanisms. To this end, the aggregator employs a second check (Step 10) to verify the

consistency of the two estimates as follows:

|d̃rr
i − d̃lap

i | ≤
2τ

1−2ρ
+

1
(1− c)ε

ln 2n
δ
,

where ρ in this case is equal to 1
1+ecε . This check accounts for the error from d̃rr

i (the 2τ

1−2ρ
) term,

and the error from d̃lap
i (the 1

(1−c)ε ln 2n
δ

term). Finally, the protocol returns ⊥ if either of the

checks fail. In the event that both the checks pass, the aggregator uses d̃lap
i (obtained via RLap)

as the final degree estimate d̂i for Ui.

Each d̂rr
i estimate is computed identically to that of RRCheck. Hybrid allows a user to

send an even more accurate estimate of their degree – to prevent malicious users from outright

lying about this value, d̂lap
i is compared to d̂rr

i . This allows Hybrid to enjoy the correctness

guarantee of RLap and the soundness guarantee of RRCheck. Formally,

Theorem 5. Let M be a set of malicious users with |M | = m. Then, for all c ∈ (0,1), the

Hybrid protocol run with τ = m+
√

2ρn ln 8n
δ

is

(
ln 2n

δ

(1− c)ε
,δ )− correct and4m(

ecε +1
ecε −1

)+8
√

n

√
(ecε +1) ln 8n

δ

ecε −1
+

ln 2n
δ

(1− c)ε
,δ

 -sound

with respect to any response poisoning attack.

The proof is in App. D.2.7. We remark that Hybrid achieves the optimal correctness of
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Data: Adjacency lists {l1, · · · , ln}; τ , threshold for consistency check
Result: (d̂1, · · · , d̂n) where d̂i is the degree estimate for user Ui

1 ρ = 1
1+ecε ;

2 Users;
3 Select c ∈ (0,1);
4 foreach i ∈ [n] do
5 qi = RRρ(li);
6 d̃lap

i = ∥li∥1 +Lap( 1
(1−c)ε );

7 end
8 Data Aggregator;
9 foreach i ∈ [n] do

10 count11
i = ∑ j∈[n]\i qi[ j]q j[i];

11 count01
i = ∑ j∈[n]\i(1−qi[ j])q j[i];

12 if |count01
i −ρ(1−ρ)(n−1)| ≤ τ then

13 d̃rr
i = 1

1−2ρ
(count11

i −ρ2(n−1));

14 if |d̃rr
i − d̃lap

i | ≤ 2τ

1−2ρ
+ 1

(1−c)ε ln 2n
δ

then
15 d̂i = d̃lap

i ;
16 else
17 d̂i =⊥;
18 else
19 d̂i =⊥;
20 end
21 return (d̂1, d̂2, . . . , d̂n)

Algorithm 14: Hybrid algorithm Hybrid: {0,1}n×n 7→ {N∪{⊥}}n

Õ(1
ε
) that is achievable under LDP. This is due to the fact that the data aggregator uses d̃lap

i as

its final degree estimate. The soundness guarantee can be written as Õ(m(1+ 1
ε
)+

√
n

ε
) which is

the same as that of RRCheck. This is enforced by the two consistency checks. Hence, the hybrid

mechanism achieves the best of both worlds.

4.7 Results for Input Poisoning Attacks

So far we have only considered response poisoning attacks where the malicious users are

free to report arbitrary responses to the data aggregator. However, to carry out such an attack

in practice, a user would have to bypass the LDP data collection mechanism. Concretely, if a

mobile application were used to collect a user’s data, a malicious user would have to hack into the
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software and directly report their poisoned response. On the other hand, for input poisoning the

malicious user needs to just lie about their input to the application (for instance, by misreporting

their list of friends) which is always possible. Hence clearly, input poisoning attacks are more

easily realizable in practice. In fact, in certain cases the malicious users might be restricted to

just input poisoning attacks due to the implementation of the LDP mechanism. For instance,

mobile applications might have strict security features in place preventing unauthorized code

tampering. Another possibility is cryptographically verifying the randomizers [123] to ensure

that all the steps of the privacy protocol (such as, noise generation) is followed correctly. Given

its very realistic practical threat, in this section we study the impact of input poisoning attacks.

Note that input poisoning attacks are strictly weaker than response poisoning attacks.

This is because the poisoned input is randomized to satisfy LDP in the former which introduces

noise in the final output, thereby weakening the adversary’s signal. Hence intuitively, we hope to

obtain better robustness against input poisoning attacks. In what follows, we formalize the above

intuition for degree estimation. We first investigate the baseline protocols RLap and SimpleRR

and show that while input poisoning attacks are less damaging than response poisoning attacks,

the protocols still suffer from poor robustness guarantees. Next, we show that our proposed

protocols, RRCheck and Hybrid, offer improved robustness against input poisoning attacks.

These results demonstrate a separation between the efficacy of response and input poisoning

attacks.

Recall in the Laplace mechanism, each user simply reports a private estimate of their

degree. Under input poisoning attacks, Laplace noise is added to the poisoned input before

it is reported to the data aggregator. Consequently, the response poisoning attack in which a

malicious user could deterministically report their degree as n−1 (Thm. 1) is no longer possible

– in order to manipulate their degree by n−1, the malicious user needs to get lucky with the

sampled Laplace noise, resulting in the following theorem:

Theorem 6. Let M be a set of malicious users with |M |= m. The RLap protocol is (1
ε

ln n
δ
,δ )

144



correct and (n−1, 1
2)-sound with respect to any input poisoning attack from M .

The proof of the above theorem is in App. D.2.8. Unsurprisingly, compared to Thm. 1

for response poisoning attacks, the correctness guarantee is unchanged because no attack is

possible for honest users. However, the soundness guarantee is different. Thm. 1 delineates

an (n− 1)-tight soundness guarantee, demonstrating the feasibility of the worst-case attack

in which a malicious user can always manipulate their degree by n− 1. In contrast, RLap is

(n−1, 1
2)-sound with respect to any input poisoning attack. This is because the sampled Laplace

noise is negative with probability 1
2 . Hence, even a worst-case malicious user who sends the

maximum degree estimate of n−1 will only get assigned a final estimate this high if the sampled

noise is non-negative. Thus, the noise from the Laplace mechanism prevents the adversary from

carrying out the deterministic worst-case attack.

Next, we show the result for SimpleRR, our second baseline protocol. There is an

improvement in both correctness and soundness, because the adversary’s signals in the poisoned

data (such as, a malicious user indicating they share an edge with every other user, or m malicious

users intentionally deleting their edges to an honest user), are noised via randomized response

which weakens them.

Theorem 7. Let M be a set of malicious users with |M | = m. The SimpleRR protocol is

(m+
√

n

√
2(eε+1) ln 4n

δ

eε−1 ,δ )-correct and (n−1, 1
2)-sound with respect to any input poisoning attack

from M .

The above theorem is proved in App. D.2.9. Written asymptotically, the correctness

guarantee of Thm. 7 is Õ(m+
√

n
ε
), which improves the guarantee over response poisoning

attacks (Thm. 2) by a factor of m
ε

. This shows a separation between input and response poisoning

attacks. A similar case holds for soundness – while SimpleRR is (n− 1)-tight sound under

response poisoning attacks, for input poisoning attacks, it is (n−1, 1
2)-sound. The implications

of this observation are similar to those of Thm. 6 as discussed above.
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Despite exhibiting improvement over response poisoning attacks, both naive protocols

still fall short of providing acceptable soundness guarantees. Here, we analyze the robustness

of our proposed protocols, SimpleRR and Hybrid, under input poisoning attacks. For both the

mechanisms here, we are able to a set a smaller value for τ , the threshold for checking the number

of inconsistent edges. This is because the number of inconsistent edges is more concentrated

around its means, and hence, a tighter confidence interval with a smaller τ suffices. Thus, both

the correctness and soundness of the protocols are improved. Formally for SimpleRR, we have:

Theorem 8. Let M be a set of malicious users with |M |= m. The protocol RRCheck run with

τ = m(1−2ρ)+
√

8max{ρn,m} ln 8n
δ

is (2m+4
√

max{n,m(eε +1)}
√

2(eε+1) ln 8n
δ

eε−1 ,δ )-correct

and sound with respect to any input poisoning attack from M .

The proof is in App. D.2.10. For typical values of ε , the correctness and soundness

guarantees can be written as (Õ(m+
√

n
ε
),δ ) (because

√
m(eε +1)≤√n). Compared to Thm. 3

for response poisoning attacks, there is an improvement of m
ε

which is a direct consequence of a

smaller τ .

For Hybrid, we have:

Theorem 9. Let M be a set of malicious users with |M |= m. For any c ∈ (0,1), the Hybrid

protocol run with threshold τ = m(1− 2ρ)+
√

8max{ρn,m} ln 8n
δ

is ( 1
(1−c)ε ln 4n

δ
,δ )-correct

and (4m+8
√

max{n,m(ecε +1)}
√

2(ecε−1) ln 8n
δ

ecε+1 ,δ )-sound with respect to any input poisoning

attack from M .

This theorem is proved in App. D.2.11. Written asymptotically, the correctness guarantee

of Hybrid is (Õ(1
ε
),δ ), and its soundness is (Õ(m+

√
n

ε
),δ ). Compared with Thm. 5 for response

poisoning attacks, Hybrid offers similar correctness since the data aggregator uses the degree

estimate collected via RLap as its final estimate as before. However, the soundness guarantee is

improved by an additive factor of O(m
ε
), which comes from the smaller threshold τ .

In conclusion, we observe that response poisoning attacks are more damaging than
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input poisoning attacks. In other words, our proposed degree estimation protocols offer better

robustness against input poisoning attacks.

4.8 Discussion

Adversary Collusion. It is important to note that all our results (Thms. 1 to 9) are completely

attack-agnostic in their respective classes (response or input poisoning). In other words, our

robustness guarantees hold against any attack with the malicious users free to follow arbitrary

collusion strategies. A direct consequence of the above statement is that our results must hold

against the worst-case scenario where all m malicious users are colluding with each other. Note

that our consistency checks work for the case where an edge is shared with at least one honest

user. Detecting malicious behavior for subgraphs controlled completely by the malicious users is

beyond the scope of our robustness results since the malicious users can consistently lie about

their common edges. For instance, in the degree inflation attack, the target malicious user can

always expect its degree to be inflated by at least m−1 when all the malicious users are colluding.

Formally, this is reflected by the Ω(m) term in all of our results including the non-private base

case (Thm. 4).

One strategy to deal with this worst-case collusion is as follows. In addition to using

our proposed protocols for collecting the data, the aggregator could perform some analysis

on the graph structure to detect possible collusion patterns. Some collusion patterns to detect

could be star-graphs where the non-center nodes have very low degree and disconnected cliques.

For this we can borrow techniques from the rich body of work in social network collusion

analysis [222, 181, 11, 69].

Auxiliary Information About Attacks. As mentioned above, our results do not make any

assumptions on the data distribution or adversary. Hence, our results hold for the worst-case

attacks. However, in case the data aggregator has some auxiliary information about the problem
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setup, one can expect to get even better robustness guarantees. For instance, our discussion in

Sec. 4.7 shows that restricting the attacks to just input manipulation leads to improvement in the

robustness guarantees.

Difference From Tabular Data. Recall, that the key observation behind our robustness protocols

is that graph data is naturally redundant. Collecting this distributed information and verifying its

consistency forms the crux of our technical idea. However, one of the key differences between

graph data and tabular data is that the later has no natural redundancy. As a result, we cannot

propose robust protocols for analyzing tabular data without making assumptions on the problem

setting. This is corroborated by the ad-hoc defense strategies proposed in prior work (see Sec.

4.10) – they are tailored to specific attacks, make strong assumptions about the data distribution

and/or require access to prior knowledge.

4.9 Evaluation

In this section, we present our evaluation results. Our evaluation seeks to empirically

answer the following questions:

• Q1. How do the different protocols perform in terms of correctness and soundness?

• Q2. How do the efficacies of input and response poisoning attacks compare?

• Q3. What is the impact of the privacy parameter ε on the poisoning attacks?

4.9.1 Experimental Setup

Datasets. We evaluate our protocols on two graphs – a real-world sparse graph and a synthetically

generated dense graph.

• FB. This graph corresponds to data from Facebook [142] representing the friendships of

4082 Facebook users. The graph has 88K edges.

• Syn. To test a more dense regime, we evaluate our protocols on a synthetic graph generated
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using the Erdos-Renyi model [81] with parameters G(n = 4000, p = 0.5) (n is the number of

edges; p is the probability of including any edge in the graph). The graph has ≈ 8 million

edges.
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(a) FB: Degree Inflation Attack
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(b) Syn: Degree Inflation Attack

Figure 4.4. Robustness Analysis for Degree Inflation Attack: We plot the empirical correctness
(error of honest user) and soundness (error of malicious user). d95 denotes the 95-th percentile
of the degree distribution.

Protocols. We evaluate our proposed RRCheck and Hybrid protocols and use SimpleRR as a

baseline protocol with poor robustness.

Attacks. For each protocol, we evaluate two types of attacks – degree inflation and degree

deflation where the goal of the malicious users is to increase (resp. decrease) the degree estimate

of a target malicious (resp. honest) user by as much as possible. We choose these attacks

because firstly, they can meet the asymptotic theoretical error bounds. Secondly, these attacks

are grounded in real-world motivations and represent practical threats (see Sec. 4.2.3). For each
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(a) FB: Degree Deflation Attack
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(b) Syn: Degree Deflation Attack

Figure 4.5. Robustness Analysis for Degree Deflation Attack: We plot the empirical correctness
(error of honest user) and soundness (error of malicious user). dk denotes the degree of the k
percentile node.

attack type, we consider both input and response poisoning versions. In the following, let Ut

represent the target user.

RRCheck. For the degree inflation attack, the non-target malicious users always report a 1

for the malicious user Ut (i.e. that they are connected to Ut) in the hopes of increasing Ut’s

degree estimate. Likewise, Ut reports 1s for all other malicious users. For the honest users, Ut

reports extra 1s (for non-neighbors) in the hopes of further increasing their degree estimate. The

exact mechanism depends on whether it is response poisoning or input poisoning and is detailed

in App. D.3.

For degree deflation, we consider the worst-case scenario where m of the neighbors of

the honest user Ut act maliciously. The malicious neighbors always report 0 for their edges to Ut

(see App. D.3).
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Figure 4.6. Robustness analysis with varying ε .

Hybrid. For degree inflation, the non-target malicious users report their edges using the same

strategy as in RRCheck. For d̃lap
i , they send their true degree estimates since their degrees are

not the targets. Similarly, Ut uses the same strategy as in RRCheck for reporting their edges. For

d̃lap
t , Ut reports an inflated value based on the reported edges and the threshold τ (see App. D.3).

For degree deflation, we consider the worst-case scenario where m of the neighbors of Ut

act maliciously. The malicious users behave as they did in RRCheck and report their true degrees

for d̃lap
i , as these are not the targeted degrees.

SimpleRR. For degree inflation, we consider the worst-case scenario where the target mali-

cious user Ut is responsible reporting all their edges, and chooses to reports all 1s.

For degree deflation, we again consider the worst case scenario where the malicious users

are responsible for reporting the edges to Ut , and they report 0s.

Configuration. For degree inflation, we report the maximum error over all honest users (cor-

rectness, α1) and the error of the malicious target (soundness, α2). For degree deflation, we
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report the error of the honest target (correctness) and the maximum error over all the malicious

users (soundness). We run each experiment 50 times and report the mean. We use δ = 10−6 and

c = 0.9 for Hybrid. Additional details are in App. D.3.

4.9.2 Results

We consider two values of m (number of malicious users): m = 40 and m = 1500. The

former corresponds to = 1% malicious users which represents a realistic threat model. We

also consider m = 1500 to showcase the efficacy of our protocols even with a large number of

malicious users (= 37.5%).

Degree Inflation. We report our results for degree inflation in Figs. 4.4a and 4.4b. In terms

of correctness, we observe that Hybrid performs the best — this is expected since the error

introduced by the Laplace mechanism of Õ(1
ε
) is the lowest. Both RRCheck and SimpleRR have

higher honest error of Õ(
√

n
ε
) due to the underlying randomized response mechanisms. RRCheck

has better correctness than SimpleRR, particularly for FB with low privacy (ε = 3). This is

because the degree estimator for SimpleRR is based on the random variable count1 (Sec. 4.4.2)

which has a variance nρ(1−ρ). However, the degree estimator for RRCheck is based on the

random variable count11 (Sec. 4.5.1). The variance of count11 is a function of the graph degree

distribution and is lower than that of count1 for sparse graphs and high ε . In terms of soundness,

both our proposed protocols perform better than the baseline – SimpleRR has 43× and 60×

higher malicious error than Hybrid and RRCheck, respectively, for FB for ε = 3,m = 40 for input

poisoning. Note that RRCheck performs slightly better than Hybrid. This is because, although

both the protocols have the same asymptotic soundness guarantee, the constants are higher for

Hybrid(see Sec. 4.6). Finally, we observe that response poisoning is worse than input poisoning

for all the protocols for soundness, which is to be expected and is consistent with the theory

(response poisoning has an extra O(m
ε

) term). For instance, for RRCheck, response poisoning is

4.2× worse than input poisoning for Syn with m = 1500,ε = 0.7. As expected, the separation
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becomes less prominent with higher privacy and lower m, as it is harder to pull off strong attacks

for these regimes.

Figs. 4.4a and 4.4b also mark the degree of 95th percentile node (d95) for the respective

graphs. The way to interpret this is as follows. If an error of a protocol falls outside the box,

then any malicious user can inflate their degree estimate to be in the > d95 percentile by staging

a poisoning attack. Our protocols are better performant for the dense graph Syn (attacks are

prevented for both values of ε). This is because of the Õ(
√

n
ε
) term in the soundness guarantee –

this term dominates the malicious error for sparse graphs.

Finally, for both datasets for m = 40 and ε = 0.7, our protocols flag the malicious target

user (returning ⊥) for 30%−70% of the trials. We indicate this with an “X” in the figures. This

indicates that our proposed protocols are able to detect malicious users, thereby disincentivizing

malicious activity.

Degree Deflation. Figs. 4.5a and 4.5b show the results for the degree deflation attacks on

FB and Syn, respectively. We observe that Hybrid performs the best in terms of both correct-

ness and soundness. For instance, it has 58× and 20× better correctness than SimpleRR and

RRCheck, respectively, for FB and response poisoning with ε = 0.7,m = 1500. RRCheck and

SimpleRR have similar correctness. This is because the correctness guarantees for both protocols

are asymptotically the same. The soundness error for these two protocols are from just the

underlying randomized response mechanisms. We observe that RRCheck has better soundness

than SimpleRR for FB for ε = 3 because of a better degree estimator as described previously.

Finally, we observe that the response poisoning is more damaging than input poisoning for

SimpleRR and RRCheck. For instance, response poisoning has 2× worse correctness than input

poisoning for RRCheck for Syn with ε = 0.7,m = 1500. However, the two types of poisoning

have a similar impact on the correctness of Hybrid, as the final degree estimate sent by the target

user via the estimate from the Laplace mechanism is not poisoned.

We note that none of the degree deflation attacks resulted in the honest user being falsely

153



flagged, demonstrating empirically that our protocols do not have false positives.

We plot the measure d95−d80 in Figs. 4.5a and 4.5b where dk denotes the degree of the

k percentile node. The way to interpret this is as follows. If an error falls outside the box, then

malicious users can successfully deflate the degree of an honest target from > 95 percentile to

< 80 percentile. Based on our results, we observe that Hybrid is mostly effective in protecting

against this attack even with a large number of malicious users of m = 1500.

The effect of ε . Figs. 4.6b and 4.6a show the impact of the attacks with varying privacy

parameter ε . We observe that, increasing privacy (lower ε) leads to more skew for all attacks on

all three protocols. For instance, the response poisoning version of the degree deflation attack

for FB is 74× worse for ε = 0.1 than that for ε = 3 for RRCheck. Additionally, we observe that

malicious users get flagged only for input poisoning for larger ε . This is because for small values

of ε , the thresholds are large due to more noise introduced by privacy which makes it harder to

detect malicious users.

Another interesting observation is that even a relatively small number of malicious parties

(m = 1%) can stage significantly damaging poisoning attacks. This demonstrates the practical

threat of such poisoning attacks. As expected, the impact of the poisoning attacks worsens with

increasing m. Nevertheless, our results show that our proposed protocols are able to significantly

reduce the impact of poisoning attacks even with a large number of malicious users (m = 37.5%).

4.9.3 Discussion

Here, we discuss our empirical results in the context of our three evaluation questions.

First, we observe that the baseline protocol SimpleRR performs worse than both our proposed

protocols. Hybrid offers the best correctness guarantee and its soundness is at least comparable

to that of RRCheck for all the attacks. Concretely, Hybrid can improve the correctness and

soundness by up to 25× and 58×, respectively, as compared to that for SimpleRR. Second, we

observe that the response poisoning is stronger than input poisoning for all four attacks and
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all three protocols. Concretely, the response poisoning can be up to 4.2× worse than input

poisoning. Finally, we see that the privacy exacerbates the impact of the poisoning attacks – both

correctness and soundness gets worse with lower values of ε for all attacks on all three protocols.

Concretely, poisoning can worsen by up to 74× for a drop in privacy from ε = 3 to ε = 0.7.

4.10 Related Work

Data Poisoning for LDP. A recent line of work [46, 34, 212, 132] has explored the impact of

poisoning attacks in the LDP setting. However, these works focused either on tabular data or

key-value data. Additionally, prior work mostly focuses on the task of frequency estimation

which is different from our problem of degree estimation. For the former, each user has some

item from an input domain and the data aggregator wants to compute the histogram over all the

users’ items. Whereas, we compute the degree vector ⟨d̂1, . . . , d̂n⟩ – each user directly reports

their degree di (a count or via an adjacency list). More specifically, Cao et al. [34] proposed

attacks where an adversary could increase the estimated frequencies for adversary-chosen target

items or promote them to be identified as heavy hitters. Wu et al. [212] extended the attacks for

key-value data where an adversary aims to simultaneously promote the estimated frequencies

and mean values for some adversary-chosen target keys. Both the works also presented some

ad-hoc defenses against the proposed attacks. However, their efficacy is heavily dependent

on instantiation specific factors such as the data distribution or the percentage of fake users.

Cheu et al. [46] formally analyzed the poisoning attacks on categorical data and showed that

local algorithms are highly vulnerable to adversarial manipulation – when the privacy level is

high or the input domain is large, an adversary who controls a small fraction of the users in

the protocol can completely obscure the distribution of the users’ inputs. This is essentially an

impossibility result for robust estimation of categorical data via non-interactive LDP protocols.

Additionally, they showed that poisoning the noisy messages can be far more damaging than

poisoning the data itself. A recent work [132] studies the impact of data poisoning for mean
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and variance estimation for tabular data. In the shuffle DP model, Cheu et al.[48] have studied

the impact of poisoning on histogram estimation. In terms of general purpose defenses, prior

work has explored strategies strategy based on cryptographically verifying implementations

of LDP randomizers [123, 8, 151] – this would restrict the class of poisoning attacks to input

poisoning only.

A slew of poisoning attacks [28, 147, 85, 26, 45, 13, 216] on machine learning (ML) models have

been proposed in the federated learning setting [115]. A recent line of work [172, 33] explores

defense strategies based on zero-knowledge proofs that aim to detect the poisoned inputs. Note

that the aforementioned poisoning attacks on ML models are fundamentally different from the

ones in our setting. For ML, the users send parameter gradient updates (multi-dimensional

real-valued vector) and the attack objective is to misclassify data. On the other hand, our input

here is a binary vector/single integral value with an underlying graphical structure and the attack

objective is to perturb the degree estimates. Hence, none of the techniques from this literature

are directly applicable to our setting.

LDP on Graphs. DP on graphs has been widely studied, with most prior work being in

the centralized model [31, 44, 98, 58, 122, 160, 120, 184, 206]. In the local model, there exists

work exploring the release of data about graphs in various settings [204, 165, 55, 221, 213, 224].

Recent work exploring private subgraph counting [103, 105] is the most relevant to our setting,

as the degree information is the count of an edge, the simplest subgraph. However, no previous

work explores poisoning LDP protocols in the graph setting.

4.11 Conclusion

In this paper, we have investigated the impact of poisoning attacks on degree estimation

for graphs under LDP. We have presented a formal framework for analyzing the robustness of

a protocol against poisoning. Our framework can quantify the impact of a poisoning attack on
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both honest and malicious users. Additionally, we have proposed novel robust degree estimation

protocols under LDP by leveraging the natural data redundancy in graphs, that can significantly

reduce the impact of poisoning attacks. Chapter 4, in full, is currently being prepared for

submission for publication of the material. Jacob Imola, Amrita Roy Chowdhury, and Kamalika

Chaudhuri. “Robustness of Locally Differentially Private Graph Analysis Under Data Poisoning

Attacks.” The dissertation author was the first author of this paper.
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Chapter 5

Differentially Private Hierarchical Cluster-
ing with Provable Approximation Guaran-
tees

5.1 Introduction

Hierarchical Clustering is a staple of unsupervised machine learning with more than

60 years of history [207]. Contrary to flat clustering methods (such as k-means, [106]), which

provide a single partitioning of the data, hierarchical clustering algorithms produce a recursive

refining of the partitions into increasingly fine-grained clusters. The clustering process can be

described by a tree (or dendrogram), and the objective of the tree is to cluster the most similar

items in the lowest possible clusters, while separating dissimilar items as high as possible.

The versatility of such methods is apparent from the widespread use of hierarchical

clustering in disparate areas of science, such as social networks analysis [130, 139], bioinformat-

ics [61], phylogenetics [183, 107], gene expression analysis [78], text classification [185] and

finance [195]. Popular hierarchical clustering methods (such as linkage [106]) are commonly

available in standard scientific computing packages [197] as well as large-scale production

systems [20, 59].

Despite the fact that many of these applications involve private and sensitive user data,

all research on hierarchical clustering (with few exceptions [125, 214] discussed later) has
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ignored the problem of defining privacy-preserving algorithms. In particular, to the best of our

knowledge, no work has provided differentially-private (DP) [73] algorithms for hierarchical

clustering with provable approximation guarantees.

In this work, we seek to address this limitation by advancing the study of differentially-

private approximation algorithms for hierarchical clustering under the rigorous optimization

framework introduced by [57]. This celebrated framework introduces an objective function for

hierarchical clustering (see Section 5.3 for a formal definition) formalizing the goal of clustering

similar items lower in the tree.

Our algorithms are edge-level Differentially Private (DP) on an input similarity graph,

which is relevant when edges of the input graph represents sensitive user information. Designing

an edge-level DP algorithm requires proving that the algorithm is insensitive to changes to a

single edge of the similarity graph. As we shall see, this is especially challenging for hierarchical

clustering. In fact, commonly-used hierarchical clustering algorithms (such as linkage-based

ones [106]) are deterministically sensitive to a single edge, thus leaking directly the input edges.

Moreover, as we show, strong inapproximability bounds exist for Dasgupta’s objective under

differential privacy, highlighting the technical difficulty of the problem.

Main contributions

First, we show in Section 5.4 that no edge-level ε-DP algorithm (even with exponential

time) exists for Dasgupta’s objective with less than O(|V |2/ε) additive error. This prevents

defining private algorithms with meaningful approximation guarantees for arbitrary sparse

graphs.

Second, on the positive side, we provide the first polynomial time, edge-level approx-

imation algorithm for Dasguta’s objective with O(|V |2.5/ε) additive error and multiplicative

error matching that of the best non-private algorithm [4]. This algorithm is based on recent

advances in private cut sparsifiers [79]. Moreover, we show an (exponential time) algorithm with

O(|V |2 logn/ε) additive error, almost matching the lower bound.
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Third, given the strong lower bounds, in Section 5.6 we focus on a popular model of

graphs with a planted hierarchical clustering based on the Stochastic Block Model (SBM) [53].

For such graphs, we present a private 1+o(1) approximation algorithm recovering almost exactly

the hierarchy on the blocks. Our algorithm uses, as a black-box, any reconstruction algorithm for

the stochastic block model.

Fourth, we introduce a practical and efficient DP SBM community reconstruction algo-

rithm (Section 5.6). This algorithm is based on perturbation theory of graph spectra combined

with dimensionality reduction to avoid adding high noise in the Gaussian mechanism. Com-

bined with our clustering algorithm, this results in the first private approximation algorithm for

hierarchical clustering in the hierarchical SBM.

Finally, we show in Section 5.7 that this algorithm can be efficiently implemented and

works well in practice.

5.2 Related Work

Our work spans the areas of differential privacy, hierarchical clustering and community

detection in stochastic block model. For a complete discussion, see Appendix E.1.

Graph algorithms under DP

Differential privacy [72] has recently the gold standard of privacy. We refer to [73] for a

survey. Relevant to this work is the area of differential privacy in graphs. Definitions based on

edge-level [80, 79] and node-level [122] privacy have been proposed. The most related work is

that on graph cut approximation [79, 10], as well as that of private correlation clustering [32, 52].

Hierarchical Clustering

Until recently, most work on hierarchical clustering were heuristic in nature, with the

most well-known being the linkage-based ones [106, 20]. [57] introduced a combinatorial

objective for hierarchical clustering which we study in this paper. Since this work, many authors

have designed algorithms for variants of the problem with no privacy [53, 54, 37, 154, 4, 38].
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Limited work has been devoted to DP hierarchical clustering algorithms. One paper [214]

initiates private clustering via MCMC methods, which are not guaranteed to be polynomial time.

Follow-up work [125] shows that sampling from the Boltzmann distribution (essentially the

exponential mechanism [145] in DP) produces an approximation to the maximization version

of Dasgupta’s function, which is a different problem formulation. Again, this algorithm is not

provably polynomial time.

Private flat clustering

Contrary to hierarchical clustering, the area of private flat clustering on metric spaces

has received large attention. Most work in this area has focused on improving the privacy-

approximation trade-off [91, 14] and on efficiency [99, 51, 50].

Stochastic block models

The Stochastic Block Model (SBM) is a classic model for random graphs with planted

partitions which has received a significant attention in the literature [95, 150, 149, 87, 63, 135].

For our work, we focus on a variant which has nested ground-truth communities arranged in

hierarchical fashion. This model has received attention for hierarchical clustering [53].

The study of private algorithms for SBMs is instead very recent. One of the only results

known for private (non-hierarchical) SBMs is the work of [179] which provides quasi-polynomial

time community detection algorithms for some regimes of the model. Finally, concurrently to

our work, the manuscript of [40] provides strong approximation guarantees using semi-definite

programming for recovering SBM communities. Community detection is a distinct problem

from hierarchical clustering, and this work is independent of ours.

The connection between existing work in the SBM and ours is that, in Section 5.6, we

design a hierarchical clustering algorithm (Algorithm 15) which uses community detection as a

black-box. Moreover, we show a novel algorithm for hierarchical SBM community detection

(Algorithm 16), independent of [40], which is of practical interest because it uses SVDs, instead

of semidefinite programming, and thus does not have a large polynomial run-time.
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5.3 Preliminaries

Our results involve the key concepts of hierarchical clustering and differential privacy.

We define these two concepts in the next sections.

5.3.1 Hierarchical Clustering

Hierarchical clustering seeks to produce a tree clustering a set V of n items by their

similarity. It takes as input an undirected graph G = (V,E,w), where E ⊆ V ×V is the set

of edges and w : V ×V → R+ is a weight function indicating similarity; i.e. a higher w(u,v)

indicates u,v are more similar. We extend the weight function w and say that w(u,v) = 0 if

w(u,v) /∈ E.

A hierarchical clustering (HC) of G is a tree T whose leaves are V . The tree can be

viewed as a sequence of merges of subtrees of T , with the final merge being the root node. A

good hierarchical clustering merges more similar items closer to the bottom of the tree. The cost

function ωG(T ) of Dasgupta [57], captures this intuition. We have

ωG(T ) = ∑
(u,v)∈V 2

w(u,v)|leaves(T [u∧ v])|, (5.1)

where T [u∧ v] indicates the smallest subtree containing u,v in T and |leaves(T [u∧ v])| indicates

the number of leaves in this subtree. This cost function charges a tree T for each edge based on

the similarity w(u,v) and how many leaves are in the subtree in which it is merged.

Additional Notation

We let ω∗G = minT ωG(T ) denote the best possible cost attained by any tree T . We write

w(A,B) = ∑a∈A,b∈B w(a,b) and we say w(G) = w(G,G). Let A (G) be a hierarchical clustering

algorithm. We say A is an (an,bn)-approximation if

E[ωG(A (G))]≤ anω
∗
G +bn, (5.2)
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where the expectation is over the random coins of A . If an algorithm is a (an,0)-approximation

algorithm, we often refer to it as simply an an-approximation.

5.3.2 Differential Privacy

For hierarchical clustering we use the notion of graph privacy known as edge differential

privacy. Intuitively, our private algorithm behaves similarly whether or not the adjacency matrix

of G is altered in L1 distance by up to 1. Specifically, we say G = (V,E,w) and G′ = (V,E ′,w′)

are adjacent graphs if ∑u,v∈V |w(u,v)−w′(u,v)| ≤ 1, meaning that the adjacency matrices have

L1 distance at most one 1. This notion has been used before by [79, 31] and it has many real-

world applications, such as when the graph is a social network and the edges between users

encode relationships between them [80]. The definition of edge-DP is as follows:

Definition 4. An algorithm A : G → Y satisfies (ε,δ )-edge DP if, for any G = (V,E,w),G′ =

(V,E ′,w′) that are adjacent, and any set of trees T ,

Pr[A (G′) ∈T ]≤ eε Pr[A (G) ∈T ]+δ .

Edge DP states that given any output T of A , it is provably hard to tell whether an

adjacent G or G′ was used. For 0/1 weighted graphs, Definition 4 is equivalent to standard edge

DP for unweighted graphs (c.f. Definition 2.2.1 in [163]).

5.4 Lower Bounds

We show that for the both objective functions considered, there are unavoidable lower

bounds on the objective function for any differentially private algorithm. Our theorem applies

a packing-style argument [97], in which we construct a large family F of graphs such that no

tree can cluster more than one graph in F well. However, a DP algorithm A is forced to place

1the constant one may be changed to any constant to match the application, and our results carry over easily.
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mass on all trees. This limits its utility as significant mass must be placed on trees which do not

cluster the input graphs well. Formally, we prove the following theorem:

Theorem 10. For any ε ≤ 1
20 and n sufficiently large, let A (G) be a hierarchical clustering

algorithm which satisfies ε-edge differential privacy. Then, there is a weighted graph G with

ω∗G ≤ O(n
ε
) such that

E[ωG(A (G))]≥Ω(n2

ε
).

We prove this theorem in Section 5.4.1; we discuss the implications of the theorem

here. Since there exists a graph such that ω∗G ≤ O(n
ε
), yet ωG(A (G))≥Ω(n2

ε
), this means that

no differentially private algorithm A can be a (O(nα),O(n2α

ε
)) approximation to hierarchical

clustering for any α < 1. It is possible for A to be a (1,O(n2

ε
))-approximation— in this case,

for graphs with W total weight, it easy to see that ω∗G ≤ O(nW ) and can be as small as O(W ).

Thus, it is necessary for W to be much bigger than n
ε
, meaning that G cannot be too sparse.

5.4.1 Proof of Theorem 10

To construct our lower bound, we consider the family of graphs P(n,5) consisting of n
5

cycles of size 5. We observe the following facts:

• Each G ∈P(n,5) has n edges. Thus, any G1,G2 ∈P(n,5) differ in at most 2n edges.

• For any G ∈P(n,5), any binary tree which splits the graph into its cycles before splitting

any edges in the cycles incurs a cost of at most n
5W5, where W5 = ω∗C5

≤ 18.

It will be convenient to use the following definition:

Definition 5. For a graph G, a balanced cut is partition (A,B) of V such that n
3 ≤ |A|, |B| ≤ 2n

3 .

Any hierarchical clustering T can be mapped to a balanced cut on G in the following

way:

164



Definition 6. For a binary tree T whose leaves are V , let the sequence N0,N1, . . . ,Nr denote

a recursive sequence of internal nodes such that N0 is the root node, and Ni is child of Ni−1

with more leaves in its subtree. Finally, Nr is the first node in the sequence with fewer than 2n
3

leaves in its subtree. Then, the balanced cut (A,B) induced by T is the partition (leaves(Nr),V \

leaves(Nr)).

It is easy to see that (A,B) in the above definition is indeed a balanced cut of G, and for

any edge (u,v) crossing (A,B), we have |leaves(T [u∧ v])| ≥ 2n
3 .

Our class C of graphs is a subset of P(n,5) for which no tree clusters more than one

element of C well. We characterize a condition for which a tree T definitely does not cluster

G ∈P(n,5) well:

Definition 7. For a binary tree T , let (A,B) be its balanced cut. We say (A,B) misses a cycle

C ⊆ G if at least one vertex of C lies in A and at least one vertex lies in B.

Now, we show that if T misses many cycles in its balanced cut, it must incur high cost.

Lemma 1. For a graph G ∈P(n,5), let T be a HC with balanced cut (A,B), and suppose that

B misses at least α
n
5 of the cycles in G, for 0 < α ≤ 1. Then,

ωG(T )≥
4α

15
n2.

Proof: From the given information, we have that w(A,B)≥ 2α
n
5 , as a missed cycle implies at

least two edges are cut. Thus,

ωG(T )≥ ∑
u∈A,v∈B

w(u,v)|leaves(T [u∧ v])|

≥ 2n
3 w(A,B)≥ 4α

15 n2.

We generate graphs from P(n,5) at random, showing that the probability that there

exists a balanced cut (A,B) which misses few cycles in both G1,G2 is exponentially small.
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This will allow us to generate a large family of graphs such that no balanced cut misses few

cycles in more than one graph. This results in the following lemma—in the following, let

B(G,r) = {T ∈Tn : ωG(T )< r}.

Lemma 2. For n sufficiently large, there exists a family F ⊆P(n,5) of size 20.2n such that

B(G,r)∩B(G′,r) = /0 for any G,G′ ∈F with r = n2

400 .

The proof of this lemma appears in Appendix E.2. Thus, no tree can cluster more than

one of our random graphs well, and we can apply the packing argument to obtain Theorem 10.

We prove it as follows.

Proof of Theorem 10: Let F be the set of graphs guaranteed by Lemma 2. We have |F |= 20.2n.

Let FW contain the same graphs of F , but with each edge weighted by a positive integer W

satisfying 0.02 ≤ εW < 0.07. Each G,G′ ∈F differs by up to 2n edges, and applying group

privacy W times, we have that an algorithm A which satisfies ε-DP satisfies 2nWε-DP on the

graphs in FW .

Now, suppose A satisfies E[costG(A(G))] < W
800n2 for any G ∈ FW . This implies

Pr[costG(A(G)) ∈B(G, W
400n2)]≥ 1

2 for all G ∈FW . However, we know these balls are disjoint

because of the disjointness property on F . Furthermore, we have that Pr[A(G)∈B(G′, W
400n2)]≥

e−2nWε 1
2 > 2−0.2n for all G′ ∈FW .

1≥ ∑
G′∈FW

Pr[A(G) ∈B(G′, W
400n2)]

> 20.2n2−0.2n = 1.

This is a contradiction, and thus the algorithm A must have error higher than W
800n2 ≥Ω(n2

ε
) on

some graph.
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5.5 Algorithms for Private Hierarchical Clustering

In this section, we design private algorithms for hierarchical clustering which work on

any input graph. In Section 5.5.1, we propose a polynomial time (α,O(n2.5

ε
)) approximation

algorithm, where α is the best approximation ratio of a black-box, non-private hierarchical

clustering algorithm. Then, in Section 5.5.2, we show that the exponential mechanism is a

(1,O(n2 logn
ε

))-approximation algorithm, implying our lower bound is tight. The proofs of the

results in this section appear in Appendix E.3.2

5.5.1 Polynomial-Time Algorithm

Our algorithm makes use of a recent algorithm which releases a sanitized, synthetic graph

G′ that approximates the cuts in the private graph G [79, 10]. Via post-processing, it is then

possible to run a non-private, black-box clustering algorithm. We are able to relate the cost in G′

to that of G by reducing the cost ωG(T ) to a sum of cuts. We start by defining the notion of G′

approximating the cuts in G.

Definition 8. For a given graph G = (V,E,w), we say G′ = (V,E ′,w′) is an (αn,βn)-approx-

imation to cut queries in G if for all S⊆V , we have

(1−αn)w(S,S)−βn min{|S|,n−|S|}

≤ w′(S,S)≤ (1+αn)w(S,S)+βn min{|S|,n−|S|}.

As we alluded, earlier work shows that it is possible to release an (Õ( 1
ε
√

n), Õ(
√

n
ε
))-

approximation to cut queries while satisfying differential privacy. Using this result, we are able

to run any blackbox hierarchical clustering algorithm, and by post-processing, the final clustering

T ′ will still satisfy privacy. Even though T ′ is computed only viewing G′, we are able to relate

ωG(T ′) to ω∗G using the fact that G′ approximates the cuts in G, and a decomposition of ωG′(T ′)
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into a sum of cuts. This idea recently appeared in [4], and is a critical component of our theorem.

In the end, we obtain the following:

Theorem 11. Given an (an,0)-approximation to the cost objective of hierarchical clustering,

there exists an (ε,δ )-DP algorithm which, with probability at least 0.8, is a

((1+o(1))an,O(n2.5 log2 n log2 1
δ

ε
))

approximation algorithm to the cost objective.

Plugging in a state-of-the-art,
√

logn hierarchical clustering algorithm of [37], we obtain

a ((1+ o(1))
√

logn, Õ(n2.5

ε
))-approximation. In a graph with total edge weight W , we have

W ≤ ωG(T )≤ nW , and thus an approximation is possible if W > n1.5

ε
. This means the graph can

have an average degree of
√

n
ε

.

5.5.2 Exponential Mechanism

We consider an algorithm based on the well-known exponential mechanism [145].

This algorithm takes exponential time, but achieves greater performance that is nearly tight

with our lower bound (showing that the lower bound can’t be improved significantly from an

information-theoretic point of view).

The exponential mechanism M : X → Y releases an element from Y with probability

proportional to

Pr[M(X) = Y ] ∝ eεuX (Y )/(2S),

where uX(Y ) is a utility function, and S = maxX ,X ′,Y |uX(Y )− uX ′(Y )| is the sensitivity of the

utility function in X . This ubiquitous mechanism satisfies (ε,0)-DP.

In our setting, we use the utility function uG(T ) =−ωG(T ). The sensitivity is bounded

in the following fact.
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Fact 1. For two adjacent input graphs G = (V,E,w) and G′ = (V,E,w′), we have for all trees T

that |ωG(T )−ωG′(T )| ≤ n.

Proof: We can write the difference as as

|ωG(T )−ωG′(T )|

=
∣∣∑u,v∈V 2(w(u,v)−w′(u,v))|leaves(T [u∧ v])|

∣∣
≤ ∑u,v∈V 2 |w(u,v)−w′(u,v))| · |leaves(T [u∧ v])|

≤ n∑u,v∈V 2 |w(u,v)−w′(u,v)| ≤ n.

Having controlled the sensitivity, we can apply utility results for the exponential mechanism.

Lemma 3. There exists an (ε,0)-DP, (1,O(n2 logn
ε

))-approximation algorithm for hierarchical

clustering.

Thus, the exponential mechanism improves on the cost, and shows that private hierarchi-

cal clustering can be done on graphs with average degree O(n
ε
).

5.6 Private Hierarchical Clustering in the Stochastic Block
Model

In this section, we propose a hierarchical clustering algorithm designed for input graph

generated from the hierarchical stochastic block model (HSBM), a graph model with planted

communities arranged in a hierarchical structure. We define this model in Section 5.6.1. Next, in

Section 5.6.2, we outline DPHCBlocks, a lightweight private hierarchical clustering algorithm

in the HSBM, which uses community detection as a black box. This approach enables any DP

community detection algorithm to be used as a sub-routine. Finally, in Section 5.6.3, we propose

a practical, private community detection algorithm which is the first to work in the general HSBM.

Combining the results in Sections 5.6.2 and 5.6.3, we obtain a private, 1+o(1)-approximation

algorithm to the Dasgupta cost function.

169



5.6.1 Hierarchical Stochastic Block Model of Graphs

In this section, we consider unweighted graphs (V,E) where each edge has weight 1.

Observe that differential privacy (Definition 4) corresponds to adding or removing an edge from

G. In the HSBM [53], there is a partition of V into blocks (communities) B1,B2, . . . ,Bk of V

with the properties that two items in the same block have the same set of edge probabilities, and

that items in different blocks are less likely to be connected with these probabilities following a

hierarchical structure.

The probabilities of the edges in B are specified by a tree P with leaves B = B1, . . . ,Bk,

internal nodes N, and a function f : N∪B→ [0,1]. To capture the decreasing probability of edges,

f must satisfy f (n1)< f (n2) whenever n1 is an ancestor of n2 in P. Formally, we have [53]:

Definition 9. Let B = B1, . . . ,Bk; P be a tree with leaves in B and internal nodes N; and

f : N∪B→ [0,1] be a function satisfying that f (n1)< f (n2) whenever n1 is an ancestor of n2 in

P. We refer to the triplet (B,P, f ) as a ground-truth tree. Then, HSBM(B,P, f ) is a distribution

over graphs G whose edges are drawn independently, such that for u,v ∈ P, we have

Pr[(u,v) ∈ G] = f (LCAP(Bu,Bv)),

where LCAP denotes the least common ancestor of the blocks Bu,Bv containing u,v in P.

Due to the randomness of the graph G, it would be unreasonable to expect to be able to

recover the exact (B,P, f ) from G. Our algorithms will recover an approximate ground-truth tree,

according to the following definition:

Definition 10. (From [53]): Let (B,P, f ) be a ground-truth tree, and let (B,T, f ′) be another

ground-truth tree with the same set of blocks. We say (B,T, f ′) is a γ approximate ground-truth

tree if for all u,v ∈ B, γ−1 f (LCAP(u,v))≤ f ′(LCAP′(u,v))≤ γ f (LCAP(u,v)).

For γ ≈ 1, an approximate ground-truth tree means that essentially, HSBM(B,P, f ) and

HSBM(B,P′, f ′) are the same distribution.
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5.6.2 Producing a DP Hierarchical Clustering Given Communities

Given the blocks (communities) of an HSBM, we now propose DPHCBlocks, a

lightweight, private algorithm for returning a 1+o(1)-approximation to the Dasgupta cost. Our

algorithm uses some ideas from the non-private algorithm proposed in [53, 54].

DPHCBlocks takes in G generated from HSBM(B,P, f ), as well as the blocks B. To

produce an approximate ground-truth tree, it considers similarities sim(Bi,B j) =
wG(Bi,B j)
|Bi||B j| for

every pair of blocks. It then performs a process similar to single linkage: until all blocks are

merged, it greedily merges the groups with the highest similarity, and considers the similarity

between this new group and any other groups to be the maximum similarity of any pair of

blocks between the groups. Privacy comes from addition of Laplace noise in the similarity

calculation, which is the only place in which the private graph G is used. DPHCBlocks appears

as Algorithm 15.

DPHCBlocks accesses the graph via the initial similarities sim(Bi,B j). By observing the

sensitivity maxBi,B j |wG′(Bi,B j)−wG(Bi,B j)| is at most 1, we are able to prove its privacy. We

also use the fact that adding an edge can only affect sim(Bi,B j) for just one choice of Bi,B j.

Theorem 12. DPHCBlocks satisfies ε-edge DP in the parameter G.

Proof. Observe the algorithm can be viewed as a post-processing of the set B = {sim(Bi,B j)+

Li j : i, j ∈ k} where Li j ∼ Lap(1
ε
) i.i.d. Suppose an edge is added between Bi,B j. Then,

sim(Bi,B j)+Li j is protected by ε-edge DP by the Laplace mechanism, observing the sensitivity

of wG(Bi,B j) is 1. The other quantities in B follow the same distribution, so B itself satisfies

ε-edge DP.

We stress that, crucially, Algorithm 15 and all our algorithms are DP for any input graph

G, even if the graphs do not come from the HSBM model. We will use the input distribution

assumptions only in the utility proofs.

We are also able to show a utility guarantee that DPHCBlocks is a

(1+o(1),0)-approximation to the cost objective. In order to prove this, we need to assume that
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the blocks in the HSBM are sufficiently large (at least n2/3) and that the edge probabilities are at

least logn√
n . These assumptions are necessary to ensure concentration of the graph cuts between

blocks, so that an accurate approximate tree may be formed. Also, it requires that ε ≥ 1√
n—this

is an extremely light assumption, and it still permits us to use a small, constant value of ε to

guarantee strong privacy. Formally,

Theorem 13. For ε ≥ 1√
n and a graph G drawn from HSBM(B,P, f ) such that |Bi| ≥ n2/3

and f ≥ logn√
n , with probability 1− 2

n , the tree T outputted by DPHCBlocks satisfies ωG(T ) ≤

(1+o(1))ωG(T ′).

In fact, we show a stronger result that the tuple (B,T, f ′) returned by DPHCBlocks is a

1+o(1)-approximate ground-truth tree for HSBM(B,P, f ). By a result from [54], this implies it

achieves the approximation guarantee. We defer the proof to Appendix E.4.1.

Data: G = (V,E) drawn from the HSBM; blocks B1, . . .Bk partitioning V , privacy
parameter ε

Result: Tree T .
1 for i = 1 to k do
2 Ti is a random HC with leaves Bi;
3 end
4 sim(Bi,B j)← wG(Bi,B j)+Li j

|Bi||B j| , where Li j ∼ Lap(1
ε
);

5 C = {B1, . . . ,Bk};
6 T = f orest(T1, . . . ,Tk);
7 while |C | ≥ 1 do
8 A1,A2 = argmaxA1,A2∈C sim(A1,A2);
9 Merge A1,A2 in T ; C = A1∪A2;

10 f ′(C) = sim(A1,A2);
11 C = (C \{A1,A2})∪{C};
12 for S ∈ C \{C} do
13 sim(S,C)←maxBi∈S,B j∈C sim(Bi,B j);
14 end
15 end
16 return (B,T, f ′)

Algorithm 15: DPHCBlocks, a hierarchical clustering algorithm in the HSBM given the
blocks.
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5.6.3 DP Community Detection in the HSBM

We now develop a DP method of identifying the blocks B of graph drawn from the HSBM.

Combined with our clustering algorithm DPHCBlocks, this forms an end-to-end algorithm for

hierarchical clustering in the HSBM in which the communities are not known.

In order to describe our algorithm, DPCommunity, we introduce some notation. For a

model HSBM(B,P, f ), we associate an n×n expectation matrix A given by the probabilities that

edge (i, j) appears in G. We then let Â be a randomized rounding of A to {0,1} which is simply

the adjacency matrix of G. DPCommunity recovers communities when they are separated in the

sense defined by

∆ = min
u∈Bi,v∈B j:i ̸= j

∥Au−Av∥2,

where Au is the uth column of A. Next, we let σ1(A), . . . ,σn(A) denote the singular values of A

in order of decreasing magnitude. Finally, we let Π
(k)
A denote the projection onto the top k left

singular values of A—formally, if Uk consists of the top k singular values of A, then Π
(k)
A =UkUT

k .

DPCommunity is given the adjacency matrix Â of a graph drawn from HSBM(B,P, f ),

as well as k, the number of blocks. In practice, k may be treated as a hyperparameter to be

optimized. DPCommunity uses the spectral method [144, 199] to cluster the columns of Â. These

results show that the columns in F = Π
(k)
Â
(Â) forms a clustering of the points into their original

blocks. To make this private, we use stability results of the SVD to compute (an upper bound of)

the sensitivity Γ of F , and add noise N via the Gaussian mechanism. Since N,F are both n×n

matrices, the l2 error introduced by N grows with
√

n, which is large. Our final observation is

that, since the distances in F are all that matter, we may project F to log(n)-dimensional space

using Johnson-Lindenstrauss [108], and then add Gaussian noise whose error grows with
√

logn.

DPCommunity is shown in Algorithm 16.

There are two important remarks about DPCommunity. First, to ensure an accurate,

private upper bound on Γ, we need the mild assumption that the spectral gap σk(Â)−σk+1(Â) is

not too small, and if it is, the algorithm returns ⊥. For most choices of parameters in the SBM,
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the spectral gap is always much larger than needed—the check is only to ensure privacy even

for input graphs not from the SBM. Second, due to ease of theoretical analysis, Â is split into

two parts, and one part is projected onto the top k singular vectors of the other. This removes

probabilistic dependence between variables, but the high level ideas are the same.

Data: Â, adjacency matrix generated from HSBM(B,P, f ), privacy parameter ε .
Result: fz, an estimate of blocks on a set Z2 ⊆V .

1 Compute a random partition Y ⊔Z1⊔Z2 of V such that |Y |= n
2 , |Z1|= |Z2|= n

4 ;
2 Ã1← ÃY Z1 (submatrix of Â with rows Y , cols. Z1);
3 Ã2← ÃY Z2 ;
4 d̃k← σk(Â1)−σk+1(Â1)− 8

ε
ln 4

δ
+Lap(8

ε
);

5 σ̃1← σ1(Â2)+
4
ε

ln 4
δ
+Lap(4

ε
);

6 if d̂k ≤ 10(8
ε

ln 4
δ
) then

7 return ⊥
8 else
9 Γ̃← σ̃1

d̂k
,m← 64ln 2n

δ
.

10 F ← PΠ
(k)
Â1
(Â2), where P∼N (0, 1√

m)
m×n/2;

11 F̃ ← F +N, where N ∼ 3kΓ̃

ε

√
2ln 5

δ
N (0,1)m×n/4;

12 return F̂
Algorithm 16: DPCommunity, a community recovery algorithm.

We now analyze privacy and utility. Full proofs of the results in this section appear

in Appendix 5.6. Our privacy analysis involves analyzing the release of the singular values

σ1,σk,σk+1, and F̃ . The bulk of this analysis comes from analyzing the sensitivity of F̃ , which

uses the accuracy of the Johnson-Lindenstrauss transform and spectral perturbation bounds.

Theorem 14. (Privacy): For ε < 1, Algorithm 16 satisfies (ε,δ )-DP with respect to a change of

one edge in Â.

To prove the utility of DPCommunity, we prove that recovery is possible provided that

∆ is larger than some threshold depending on ε , the singular values of A, the minimum edge

probability, and the minimum block size, along with other mild assumptions on k and the block

sizes. These assumptions are necessary, as there will be too little data for concentration otherwise.

Formally,
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Theorem 15. (Utility): Let Â be drawn from HSBM(B,P, f ), τ = max f (x), and s = mink
i=1 |Bi|.

There is a universal constant C such that if τ ≥C logn
n , s≥C

√
n logn, k < n1/4, δ < 1

n , σk(A)≥

C max{√nτ, 1
ε

ln 4
δ
}, and

∆ >C max
{

k(ln 1
δ
)3/2

ε

σ1(A)
σk(A)

,
√

nτ

s +
√

kτ logn+
√

nkτ

σk

}
,

then with probability at least 1−3n−1, DPCommunity returns a set of points F̃ = { fi : i ∈ Z2}

such that

∥ fi− f j∥2 ≤ 2∆

5 if ∃u. i, j ∈ Bu

∥ fi− f j∥2 ≥ 4∆

5 otherwise.

Thus, if the assumptions are met, then F̃ consists of k well-separated clusters which

indicate the communities of each point in the sampled set Z2 ⊂V . These communities can be

found using a simple routine such as k-centers. In order to cluster all of V , we can simply divide

the privacy budget into logn parts, run DPCommunity logn times, and merge the clusters.

To illustrate our theorem in a simple example, consider the HSBM with k equal-sized

blocks, and let fP(n) = p when n is a parent of a leaf in P, and fP(n) = q otherwise, with p≥ q.

This corresponds to probability p of an edge within a block and probability q of an edge between

any two blocks. In this case, we obtain the following.

Corollary 1. In the above HSBM, DPCommunity recovers the exact communities when δ ≤ 1
n ,

k < n1/4, and
√

p−√q≥Ω(
k ln 1

δ√
εn1/4 ).

Compared to previous work in the SBM with privacy, our algorithm requires a larger

assumption on
√

p−√q ([179, 40] require
√

p−√q≥
√

k
εn). However, previous work either

uses semi-definite programming or does not run in polynomial time, whereas DPCommunity is a

practical use of the significantly more efficient Singular Vector Decomposition. Furthermore,

our algorithm works in the fully-general HSBM, whereas previous work has no analogue of
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Theorem 15.

Data: Â, adjacency matrix generated from HSBM(B,P, f ), number of blocks k, privacy
parameter ε .

Result: An hierarchical clustering T of Â.
1 for i ∈ {1, . . . , logn} do
2 F̂ ← DPCommunity(Â, ε

2logn);
3 Bi

1, . . . ,B
i
k← k-centers(F̂ ,k);

4 end
5 B1, . . . ,Bk← Union-Find(B1

1, . . . ,B
1
k , . . . ,B

logn
k );

6 T ← DPHCBlocks(Â,{B1, . . . ,Bk}, ε

2);
7 return T

Algorithm 17: DPClusterHSBM a hierarchical clustering algorithm in the HSBM.

Combining Theorems 13 and 15, we are able to obtain DPClusterHSBM, an end-to-end hi-

erarchical clustering algorithm in the HSBM (Algorithm 17). This algorithm runs DPCommunity

logn times, using k-centers each run to find the well-separated communities in the subset Z2 ⊆V

returned by DPCommunity. Running logn times ensures that with high probability, each point

in V will participate in at least one Z2; these clusters may then be merged using a union-find data

structure.

Corollary 2. Let Â be drawn from HSBM(B,P, f ), and let τ = max f (x) and s = mink
i=1 |Bi|.

Then, if ε > 1√
n , δ < 1

n , s≥ n3/4, f ≥ logn√
n , and the parameters s,τ,A,∆ satisfy the conditions of

Theorem 15, then DPClusterHSBM satisfies (ε,δ )-edge DP and is a 1+o(1) approximation to

the Dasgupta cost.

Corollary 2 gives a 1+o(1) multiplicative approximation the the Dasgupta cost for the

given parameter regimes of the HSBM. This is a nearly-optimal cost that avoids the additive

error of the algorithms in Section 5.5.

5.7 Experiments

The purpose of this section is evaluate Algorithm 15 designed for the HSBM model.

First, we outline our methods and then we discuss our results.
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Experimental Setup

We tested our clustering algorithms on a real-world graph and generated synthetic graphs

from the HSBM model. We compared the performance of DPClusterHSBM to several baseline

algorithms. We ran algorithms at ε ∈ {0.5,1.0,2.0}, as well as with no privacy.

To enable the replication of our work, we make the code available open-source 2.

Datasets

Our real-world graph was generated from the MNIST digits dataset [128] (with 1797

digits) by, for each digit, adding an undirected edge corresponding to one of its 120 nearest

neighbors in pixel space. We generated graphs from HSBM(B,P, f ) with n = 2048 nodes,

k = {4,8} blocks, with block sizes chosen proportional to {1,γ, . . . ,γk−1}, where γk−1 = 3. This

has the effect of creating differently-sized blocks. We selected P to be a balanced tree over the

blocks, and f that increases uniformly in the interval [0.1,0.9] as the tree is descended.

Algorithms

We ran DPClusterHSBM and several baseline algorithms. In the implementation of

DPClusterHSBM, we used a modified version of DPCommunity for practical considerations.

This does not affect the privacy guarantees but it simplifies the algorithm. In particular, we

privately release Ã1 using the Laplace mechanism, and compute ΠÃ1
(Â2) without projection.

We are then able to add Gaussian noise tailored to the sensitivity of ΠÃ1
, rather than to Γ which

proved to be a rough upper bound in practice.

For our baselines, we considered a naive private approach in which we release A using the

Laplace mechanism and truncate these values to be non-negative to form a sanitized, weighted

graph. Then, we ran single, complete, and average linkage, and recorded the best of these

methods. We refer collectively to these baselines as Linkage. Second, we formed a tree by

recursively partitioning the graph into its (approximately) sparsest cut. As shown in [37], this is

an O(
√

logn,0)-approximation in the sanitized graph. We refer to this baseline as SparseCut.

2https://bitbucket.org/jjimola/dphc/src/master/
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Metrics

For each graph and clustering algorithm, and the value of ε , we computed ωG(T ),

averaged over 5 runs.

5.7.1 Results

Our results appear in Figure 5.1. In addition to the cost for each algorithm, we included

the cost of a random tree. The data had low variance: for each of the 5 runs used to compute

each bar, the values were within 0.5% of each other.

For all trials, the cost of Linkage was much higher than the other two algorithms; even

with ε = 2, Linkage did not offer improvement of more than 10% reduction in cost over the

random tree. Thus, the rest of our discussion focuses on DPClusterHSBM and SparseCut.

For the synthetic graphs, the cost of DPClusterHSBM is lower than SparseCut, particularly

when ε = 0.5. In this case, when k = 4 (resp. 8), DPClusterHSBM offered a 14.4% (resp. 14.2%)

reduction in cost over the random tree, whereas SparseCut offered an 11.5% (resp. 10.3%)

reduction. Thus, DPClusterHSBM offers up to 38% more reduction in cost than SparseCut, over

the cost of a random tree. Even when ε = 0.5, the cost of DPClusterHSBM is just 5.8% (resp.

9.6%) higher than the cost of the best tree with no privacy.

For ε = 1,2 on HSBM graphs, the costs of SparseCut and DPClusterHSBM fall to within

1% of each other, though DPClusterHSBM consistently outperforms the former for all values of

ε . Moreover, notice that for ε = 2, the costs of both algorithms are within 1% of the non-private

tree, indicating that for higher ε the cost of privacy becomes negligible.

For the graph generated from MNIST, all algorithms perform as poorly as a random tree

for ε = 0.5. This indicates that the noise introduced by the high privacy constraint destroys the

clusters, which are less-well structured than those of the HSBM graphs. At ε = 1, the error of

SparseCut is 10% higher than DPClusterHSBM. For ε = 2, the cost of SparseCut is 5% higher

than that of DPClusterHSBM, and DPClusterHSBM attains error within 3% of the best tree

with no privacy. This is consistent with our previous observation that DPClusterHSBM offers
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Figure 5.1. Cost for HSBM graphs with 2048 nodes and k clusters and MNIST graph with 1797
nodes.
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improvement over the baselines, particularly when ε is not too high.

5.8 Conclusion

We have considered hierarchical clustering under differential privacy in Dasgupta’s cost

framework. While strong lower bounds exist for the problem, we have proposed algorithms with

nearly matching approximation guarantees. Furthermore, we showed the lower bounds can be

overcome in the HSBM, and nearly optimal trees can be found in this setting using efficient

methods. For future work, one could consider private hierarchical clustering in a less structured

model than the HSBM in hopes of overcoming the lower bound here as well.

Chapter 5, in full, is currently being prepared for submission for publication of the

material. Jacob Imola, Alessandro Epasto, Mohammad Mahdian, Vincent Cohen-Addad, and

Vahab Mirrokni. “Differentially Private Hierarchical Clustering with Provable Approximation

Guarantees.” The dissertation author was the first author of this paper.
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Appendix A

A.1 Effectiveness of empirical estimation in LocalRR△

In Section 1.4.2, we presented LocalRR△, which uses the empirical estimation method

after the RR. Here we show the effectiveness of empirical estimation by comparing LocalRR△

with the RR without empirical estimation [165, 218].

As the RR without empirical estimation, we applied the RR to the lower triangular part

of the adjacency matrix A; i.e., we ran lines 1 to 6 in Algorithm 2. Then we output the number

of noisy triangles m3. We denote this algorithm by RR w/o emp.

Figure A.1 shows the l2 loss of LocalRR△ and RR w/o emp when we changed n from 1000

to 10000 or ε in edge LDP from 0.1 to 2. The experimental set-up is the same as Section 1.5.1.

Figure A.1 shows that LocalRR△ significantly outperforms RR w/o emp, which means that the

l2 loss is significantly reduced by empirical estimation. As shown in Section 1.5, the l2 loss of

LocalRR△ is also significantly reduced by an additional round of interaction.

A.2 Experiments on Barabási-Albert Graphs

Experimental set-up. In Section 1.5, we evaluated our algorithms using two real datasets:

IMDB and Orkut. We also evaluated our algorithms using artificial graphs that have power-law

degree distributions. We used the BA (Barabási-Albert) model [16] to generate such graphs.

In the BA model, an artificial graph (referred to as a BA graph) is grown by adding new
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nodes one at a time. Each new node is connected to λ ∈ N existing nodes with probability

proportional to the degree of the existing node. In our experiments, we used NetworkX [96], a

Python package for graph analysis, to generate BA graphs.

We generated a BA graph G∗ with 1000000 nodes using NetworkX. For the attachment

parameter λ , we set λ = 10 or 50. When λ = 10 (resp. 50), the average degree of G∗ was

10.0 (resp. 50.0). For each case, we randomly generated n users from the whole graph G∗, and

extracted a graph G = (V,E) with the n users. Then we estimated the number of triangles f△(G)

and the number of 2-stars f2⋆(G). For triangles, we evaluated LocalRR△, Local2Rounds△, and

CentralLap△. For 2-stars, we evaluated LocalLap2⋆ and CentralLap2⋆. In Local2Rounds△, we

set ε1 = ε2. For d̃max, we set d̃max = dmax.

We evaluated the l2 loss while changing n and ε . We attempted γ ∈ N ways to randomly

select n users from G∗, and averaged the l2 loss over all the γ ways to randomly select n users.

As with Section 1.5, we set γ = 100 and changed n from 1000 to 10000 while fixing ε = 1. Then

we set γ = 10 and changed ε from 0.1 to 2 while fixing n = 10000.

Experimental results. Figure A.2 shows the results. Overall, Figure A.2 has a similar tendency

to Figures 1.5, 1.6, and 1.7. For example, Local2Rounds△ significantly outperforms LocalRR△,

especially when the graph G is sparse; i.e., λ = 10. In Local2Rounds△, CentralLap△, LocalLap2⋆,

and CentralLap2⋆, the l2 loss increases with increase in λ . This is because the maximum degree

dmax (= d̃max) increases with increase in λ .

Figure A.2 also shows that the l2 loss is roughly consistent with our upper-bounds in

Section 1.4. For example, recall that LocalRR△, Local2Rounds△, CentralLap△, LocalLap2⋆, and

CentralLap2⋆ achieve the expected l2 loss of O(n4), O(nd3
max), O(d2

max), O(nd2
max), and O(d2

max),

respectively. Assuming that dmax = O(n), the left panels of Figure A.2 are roughly consistent

with these upper-bounds. In addition, the right panels of Figure A.2 show that when we set

λ = 10 and decrease ε from 0.4 to 0.1, the l2 loss increases by a factor of about 3800, 250, and

16 in LocalRR△, Local2Rounds△, and CentralLap△, respectively. They are roughly consistent
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with our upper-bounds – for small ε , the expected l2 loss of LocalRR△, Local2Rounds△, and

CentralLap△ is O(ε−6), O(ε−4), and O(ε−2), respectively.

In summary, for both the two real datasets and the BA graphs, our experimental results

showed the following findings: (1) Local2Rounds△ significantly outperforms LocalRR△, espe-

cially when the graph G is sparse; (2) our experimental results are roughly consistent with our

upper-bounds.

A.3 Construction of an (n, dmax
2 −2) independent cube for f△

Suppose that n is even and dmax is divisible by 4. Since dmax < n, it is possible to write

n = η1
dmax

2 +η2 for integers η1,η2 such that η1 ≥ 1 and 1≤ η2 <
dmax

2 . Because η1
dmax

2 and n

are even, we must have η2 is even. Now, we can write n = (η1−1)dmax
2 +(η2 +

dmax
2 ). Thus, we

can define a graph G = (V,E) on n nodes consisting of (η1−1) cliques of even size dmax
2 and

one final clique of an even size η2 +
dmax

2 ∈ (dmax
2 ,dmax) with all cliques disjoint.

Since G = (V,E) consists of even-sized cliques, it contains a perfect matching M. Fig-

ure A.3 shows examples of G and M, where n = 14, dmax = 8, η1 = 3, and η2 = 2. Let

G′ = (V,E ′) such that E ′ = E \M. Let A = {(V,E ′∪N : N ⊆M}. Each edge in G is part of at

least dmax
2 −2 triangles. For each pair of edges in M, the triangles of G of which they are part are

disjoint. Thus, for any edge e ∈M, removing e from a graph in A will remove at least dmax
2 −2

triangles. This implies that A is an (n, dmax
2 −2) independent cube for f△.

A.4 Proof of Statements in Section 1.4

Here we prove the statements in Section 1.4. Our proofs will repeatedly use the well-

known bias-variance decomposition [156], which we briefly explain below. We denote the

variance of the random variable X by V[X ]. If we are producing a private, randomized estimate

f̂ (G) of the graph function f (G), then the expected l2 loss (over the randomness in the algorithm)
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can be written as:

E[l2
2( f̂ (G), f (G))] =

(
E[ f̂ (G)]− f (G)

)2
+V[ f̂ (G)]. (A.1)

The first term is the bias, and the second term is the variance. If the estimate is unbiased (i.e.,

E[ f̂ (G)] = f (G)), then the expected l2 loss is equal to the variance.

A.4.1 Proof of Theorem 1

Let Ri be LocalLapk⋆. Let di,d′i ∈ Z≥0 be the number of “1”s in two neighbor lists

ai,a′i ∈ {0,1}n that differ in one bit. Let ri =
(di

k

)
and r′i =

(d′i
k

)
. Below we consider two cases

about di: when di < d̃max and when di ≥ d̃max.

Case 1: di < d̃max. In this case, both ai and a′i do not change after graph projection, as

d′i ≤ di +1≤ d̃max. Then we obtain:

Pr[Ri(ai) = r̂i] = exp
(
−ε|r̂i− ri|

∆

)
Pr[Ri(a′i) = r̂i] = exp

(
−ε|r̂i− r′i|

∆

)
,

where ∆ =
(d̃max

k−1

)
. Therefore,

Pr[Ri(ai) = r̂i]

Pr[Ri(a′i) = r̂i]
= exp

(
ε|r̂i− r′i|

∆
− ε|r̂i− ri|

∆

)
≤ exp

(
ε|r′i− ri|

∆

)
(A.2)

(by the triangle inequality).

If d′i = di +1, then |r′i− ri| in (A.2) can be written as follows:

|r′i− ri|=
(

di +1
k

)
−
(

di

k

)
=

(
di

k−1

)
<

(
d̃max

k−1

)
= ∆,
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Since we add Lap(∆

ε
) to ri, we obtain:

Pr[Ri(ai) = r̂i]≤ eε Pr[Ri(a′i) = r̂i]. (A.3)

If d′i = di−1, then |r′i− ri|=
(di

k

)
−
(di−1

k

)
=
(di−1

k−1

)
< ∆ and (A.3) holds. Therefore, LocalLapk⋆

provides ε-edge LDP.

Case 2: di ≥ d̃max. Assume that d′i = di +1. In this case, d′i > d̃max. Therefore, d′i becomes d̃max

after graph projection. In addition, di also becomes d̃max after graph projection. Therefore, we

obtain di = d′i = d̃max after graph projection. Thus Pr[Ri(ai) = r̂i] = Pr[Ri(a′i) = r̂i].

Assume that d′i = di−1. If di > d̃max, then di = d′i = d̃max after graph projection. Thus

Pr[Ri(ai) = r̂i] = Pr[Ri(a′i) = r̂i]. If di = d̃max, then (A.3) holds. Therefore, LocalLapk⋆ provides

ε-edge LDP.

A.4.2 Proof of Theorem 2

Assuming the maximum degree dmax of G is at most d̃max, the only randomness in the

algorithm will be the Laplace noise since graph projection will not occur. Since the Laplacian

noise Lap(∆

ε
) has mean 0, the estimate f̂k⋆(G,ε, d̃max) is unbiased. Then by the bias-variance

decomposition [156], the expected l2 loss E[l2
2( f̂k⋆(G,ε, d̃max), fk⋆(G))] is equal to the variance

of f̂k⋆(G,ε, d̃max). The variance of f̂k⋆(G,ε, d̃max) can be written as follows:

V[ f̂k⋆(G,ε, d̃max)] = V

[
n

∑
i=1

Lap
(

∆

ε

)]

=
n∆2

ε2 .
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Since ∆ =
(d̃max

k−1

)
= O(d̃k−1

max ), we obtain:

E[l2
2( f̂k⋆(G,ε, d̃max), fk⋆(G))] = V[ f̂k⋆(G,ε, d̃max)]

= O
(

nd̃2k−2
max
ε2

)
.

A.4.3 Proof of Proposition 2

Let µ = eε and Q ∈ [0,1]4×4 be a 4×4 matrix such that:

Q =
1

(µ +1)3



µ3 3µ2 3µ 1

µ2 µ3 +2µ 2µ2 +1 µ

µ 2µ2 +1 µ3 +2µ µ2

1 3µ 3µ2 µ3


. (A.4)

Let c3,c2,c1,c0 ∈ Z≥0 be respectively the number of triangles, 2-edges, 1-edge, and no-edges in

G. Then we obtain:

(E[m3],E[m2],E[m1],E[m0]) = (c3,c2,c1,c0)Q. (A.5)

In other words, Q is a transition matrix from a type of subgraph (i.e., triangle, 2-edges, 1-edge,

or no-edge) in G to a type of subgraph in G′.

Let ĉ3, ĉ2, ĉ1, ĉ0 ∈ R be the empirical estimate of (c3,c2,c1,c0). By (A.5), they can be

written as follows:

(ĉ3, ĉ2, ĉ1, ĉ0) = (m3,m2,m1,m0)Q−1. (A.6)
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Let Q−1
i, j be the (i, j)-th element of Q−1. By using Cramer’s rule, we obtain:

Q−1
1,1 =

µ3

(µ−1)3 , Q−1
2,1 =−

µ2

(µ−1)3 , (A.7)

Q−1
3,1 =

µ

(µ−1)3 , Q−1
4,1 =− 1

(µ−1)3 . (A.8)

By (A.6), (A.7), and (A.8), we obtain:

ĉ3 =
µ3

(µ−1)3 m3− µ2

(µ−1)3 m2 +
µ

(µ−1)3 m1− 1
(µ−1)3 m0.

Since µ = eε and the empirical estimate is unbiased [114, 201], we obtain (1.4) in Proposition 2.

A.4.4 Proof of Theorem 3

Since LocalRR△ applies the RR to the lower triangular part of the adjacency matrix A,

it provides ε-edge LDP for (R1, . . . ,Rn). Lines 5 to 8 in Algorithm 2 are post-processing of

(R1, . . . ,Rn). Thus, by the immunity to post-processing [73], LocalRR△ provides ε-edge LDP

for the output 1
(µ−1)3 (µ

3m3−µ2m2 +µm1−m0).

In addition, the existence of edge (vi,v j) ∈ E (i > j) affects only one element ai, j in the

lower triangular part of A. Therefore, LocalRR△ provides ε-relationship DP.

A.4.5 Proof of Theorem 4

By Proposition 2, the estimate f̂△(G,ε) by LocalRR△ is unbiased. Then by the bias-

variance decomposition [156], the expected l2 loss E[l2
2( f̂△(G,ε), f△(G))] is equal to the vari-

ance of f̂△(G,ε). Let a3 =
µ3

(µ−1)3 , a2 = − µ2

(µ−1)3 , a1 =
µ

(µ−1)3 , and a0 = − 1
(µ−1)3 . Then the
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variance of f̂△(G,ε) can be written as follows:

V[ f̂△(G,ε)] = V[a3m3 +a2m2 +a1m1 +a0m0]

= a2
3V[m3]+a2

2VRR[m2]+a2
1V[m1]+a2

0V[m0]

+
3

∑
i=0

3

∑
j=0, j ̸=i

2aia jcov(mi,m j), (A.9)

where cov(mi,m j) represents the covariance of mi and m j. The covariance cov(mi,m j) can be

written as follows:

cov(mi,m j)≤
√

V[mi]V[m j]

(by Cauchy-Schwarz inequality)

≤max{V[mi],V[m j]}

≤ V[mi]+V[m j]. (A.10)

By (A.9) and (A.10), we obtain:

V[ f̂△(G,ε)]

≤ (a2
3 +4a3(a2 +a1 +a0))V[m3]

+ (a2
2 +4a2(a3 +a1 +a0))V[m2]

+ (a2
1 +4a1(a3 +a2 +a0))V[m1]

+ (a2
0 +4a0(a3 +a2 +a1))V[m0]

= O
(

e6ε

(eε −1)6 (V[m3]+V[m2]+V[m1]+V[m0])

)
. (A.11)

Below we calculate V[m3], V[m2], V[m1], and V[m0] by assuming the Erdös-Rényi model

G(n,α) for G:

Lemma 1. Let G ∼ G(n,α). Let p = 1
eε+1 and β = α(1− p) + (1−α)p. Then V[m3] =

188



O(β 5n4 +β 3n3), V[m2] = O(β 3n4 +β 2n3), and V[m1] = V[m0] = O(βn4).

Before going into the proof of Lemma 1, we prove Theorem 4 using Lemma 1. By (A.11)

and Lemma 1, we obtain:

V[ f̂△(G,ε)] = O
(

e6ε

(eε −1)6 βn4
)
,

which proves Theorem 4.

We now prove Lemma 1:

Proof of Lemma 1. Fist we show the variance of m3 and m0. Then we show the variance of m2

and m1.

Variance of m3 and m0. Since each edge in the original graph G is independently generated with

probability α ∈ [0,1], each edge in the noisy graph G′ is independently generated with probability

β = α(1− p)+(1−α)p ∈ [0,1], where p = 1
eε+1 . Thus m3 is the number of triangles in graph

G′ ∼G(n,β ).

For i, j,k ∈ [n], let yi, j,k ∈ {0,1} be a variable that takes 1 if and only if (vi,v j,vk) forms

a triangle. Then E[m2
3] can be written as follows:

E[m2
3] = ∑

i< j<k
∑

i′< j′<k′
E[yi, j,kyi′, j′,k′] (A.12)

E[yi, j,kyi′, j′,k′] in (A.12) is the probability that both (vi,v j,vk) and (vi′,v j′,vk′) form a triangle.

This event can be divided into the following four types:

1. (i, j,k) = (i′, j′,k′). There are
(n

3

)
such terms in (A.12). For each term, E[yi, j,kyi′, j′,k′] = β 3.

2. (i, j,k) and (i′, j′,k′) have two elements in common. There are
(n

2

)
(n−2)(n−3) = 12

(n
4

)
such terms in (A.12). For each term, E[yi, j,kyi′, j′,k′] = β 5.

3. (i, j,k) and (i′, j′,k′) have one element in common. There are n
(n−1

2

)(n−3
2

)
= 30

(n
5

)
such

terms in (A.12). For each term, E[yi, j,kyi′, j′,k′] = β 6.
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4. (i, j,k) and (i′, j′,k′) have no common elements. There are
(n

3

)(n−3
3

)
= 20

(n
6

)
such terms

in in (A.12). For each term, E[yi, j,kyi′, j′,k′] = β 6.

Moreover, E[m3]
2 =

(n
3

)2
β 6. Therefore, the variance of m3 can be written as follows:

V[m3] =
(n

3

)
β 3 +12

(n
4

)
β 5 +30

(n
5

)
β 6 +20

(n
6

)
β 6−

(n
3

)2
β 6

=
(n

3

)
β 3(1−β 3)+12

(n
4

)
β 5(1−β )

= O(β 5n4 +β
3n3).

By changing β to 1−β and counting triangles, we get a random variable with the same

distribution as m0. Thus,

V[m0] =
(n

3

)
(1−β )3(1− (1−β )3)+12

(n
4

)
(1−β )5β

= O(βn4).

Variance of m2 and m1. For i, j,k ∈ [n], let zi, j,k ∈ {0,1} be a variable that takes 1 if and only if

(vi,v j,vk) forms 2-edges (i.e., exactly one edge is missing in the three nodes). Then E[m2
2] can

be written as follows:

E[m2
2] = ∑

i< j<k
∑

i′< j′<k′
E[zi, j,kzi′, j′,k′] (A.13)

E[zi, j,kzi′, j′,k′] in (A.13) is the probability that both (vi,v j,vk) and (vi′,v j′,vk′) form 2-edges. This

event can be divided into the following four types:

1. (i, j,k) = (i′, j′,k′). There are
(n

3

)
such terms in (A.13). For each term, E[zi, j,kzi′, j′,k′] =

3β 2(1−β ).

2. (i, j,k) and (i′, j′,k′) have two elements in common. There are
(n

2

)
(n−2)(n−3) = 12

(n
4

)
such terms in (A.13). For example, consider a term in which i = i′ = 1, j = j′ = 2, k = 3,
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and k′ = 4. Both (v1,v2,v3) and (v1,v2,v4) form 2-edges if:

(a) (v1,v2),(v1,v3),(v1,v4) ∈ E ′, (v2,v3),(v2,v4) /∈ E ′,

(b) (v1,v2),(v1,v3),(v2,v4) ∈ E ′, (v2,v3),(v1,v4) /∈ E ′,

(c) (v1,v2),(v2,v3),(v1,v4) ∈ E ′, (v1,v3),(v2,v4) /∈ E ′,

(d) (v1,v2),(v2,v3),(v2,v4) ∈ E ′, (v1,v3),(v1,v4) /∈ E ′, or

(e) (v1,v3),(v1,v4),(v2,v3),(v2,v4) ∈ E ′, (v1,v2) /∈ E ′.

Thus, E[zi, j,kzi′, j′,k′] = 4β 3(1−β )2 +β 4(1−β ) for this term. Similarly, E[zi, j,kzi′, j′,k′] =

4β 3(1−β )2 +β 4(1−β ) for the other terms.

3. (i, j,k) and (i′, j′,k′) have one element in common. There are n
(n−1

2

)(n−3
2

)
= 30

(n
5

)
such

terms in (A.13). For each term, E[zi, j,kzi′, j′,k′] = (3β 2(1−β ))2 = 9β 4(1−β )2.

4. (i, j,k) and (i′, j′,k′) have no common elements. There are
(n

3

)(n−3
3

)
= 20

(n
6

)
such terms

in (A.13). For each term, E[zi, j,kzi′, j′,k′] = (3β 2(1−β ))2 = 9β 4(1−β )2.

Moreover, E[m2]
2 = (3

(n
3

)
β 2(1−β ))2 = 9

(n
3

)2
β 4(1−β )2. Therefore, the variance of m2 can

be written as follows:

V[m2] = E[m2
2]−E[m2]

2

= 3
(n

3

)
β 2(1−β )+12

(n
4

)(
4β 3(1−β )2 +β 4(1−β )

)
+270

(n
5

)
β 4(1−β )2 +180

(n
6

)
β 4(1−β )2

−9
(n

3

)2
β 4(1−β )2.

By simple calculations,

270
(n

5

)
+180

(n
6

)
−9
(n

3

)2
=−108

(n
4

)
−9
(n

3

)
.
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Thus we obtain:

V[m2] = 3
(n

3

)
β 2(1−β )

(
1−3β 2(1−β )

)
+12

(n
4

)
β 3(1−β )(4(1−β )+β −9β (1−β ))

= O(β 3n4 +β
2n3).

Similarly, the variance of m1 can be written as follows:

V[m1] = 3
(n

3

)
β (1−β )2 (1−3β (1−β )2)

+12
(n

4

)
β (1−β )3 (4β +(1−β )−9β (1−β ))

= O(βn4).

A.4.6 Proof of Proposition 3

Let t∗ = ∑
n
i=1 ti and s∗ = ∑

n
i=1 si. Let s∧∗ be the number of triplets (vi,v j,vk) such that

j < k < i, ai, j = ai,k = 1, and a j,k = 0. Let s△∗ be the number of triplets (vi,v j,vk) such that

j < k < i, ai, j = ai,k = a j,k = 1. Note that s∗ = s∧∗ + s△∗ and s△∗ = f△(G).

Consider a triangle (vi,v j,vk) ∈ G. This triangle is counted 1− p1 (= eε1
eε1+1) times in

expectation in t∗. Consider 2-edges (vi,v j,vk) ∈ G (i.e., exactly one edge is missing in the three

nodes). This is counted p1 (= 1
eε1+1) times in expectation in t∗. No other events can change t∗.

Therefore, we obtain:

E[t∗] = (1− p1)s△∗ + p1s∧∗ .
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By s∗ = s∧∗ + s△∗ and s△∗ = f△(G), we obtain:

E

[
n

∑
i=1

wi

]
= E

[
n

∑
i=1

(ti− p1si)

]

= E[t∗− p1s∗]

= E[t∗]− p1E[s∧∗ + s△∗ ]

= (1− p1)s△∗ + p1s∧∗ − p1(s∧∗ + s△∗ )

= (1−2p1) f△(G),

hence

E
[

1
1−2p1

∑
n
i=1 wi

]
= f△(G).

A.4.7 Proof of Theorem 5

Let Ri be Local2Rounds△. Consider two neighbor lists ai,a′i ∈ {0,1}n that differ in one

bit. Let di (resp. d′i) ∈ Z≥0 be the number of “1”s in ai (resp. a′i). Let āi (resp. ā′i) ∈ {0,1}n be

neighbor lists obtained by setting all of the i-th to the n-th elements in ai (resp. a′i) to 0. Let d̄i

(resp. d̄′i) ∈Z≥0 be the number of “1”s in āi (resp. ā′i). For example, if n = 6, a4 = (1,0,1,0,1,1),

and a′4 = (1,1,1,0,1,1), then d4 = 4, d′4 = 5, ā4 = (1,0,1,0,0,0), ā′4 = (1,1,1,0,0,0), d̄4 = 2,

and d̄′4 = 3.

Furthermore, let ti (resp. t ′i ) ∈Z≥0 be the number of triplets (vi,v j,vk) such that j < k < i,

(vi,v j) ∈ E, (vi,vk) ∈ E, and (v j,vk) ∈ E ′ in ai (resp. a′i). Let si (resp. s′i) ∈ Z≥0 be the number

of triplets (vi,v j,vk) such that j < k < i, (vi,v j) ∈ E, and (vi,vk) ∈ E in ai (resp. a′i). Let

wi = ti− p1si and w′i = t ′i − p1s′i. Below we consider two cases about di: when di < d̃max and

when di ≥ d̃max.
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Case 1: di < d̃max. Assume that d′i = di+1. In this case, we have either ā′i = āi or d̄′i = d̄i+1. If

ā′i = āi, then si = s′i, ti = t ′i , and wi = w′i, hence Pr[Ri(ai) = ŵi] = Pr[Ri(a′i) = ŵi]. If d̄′i = d̄i+1,

then si and s′i can be expressed as si =
(d̄i

2

)
and s′i =

(d̄′i
2

)
=
(d̄i+1

2

)
, respectively. Then we obtain:

s′i− si =

(
d̄i +1

2

)
−
(

d̄i

2

)
= d̄i.

In addition, since we consider an additional constraint “(v j,vk) ∈ E ′” in counting ti and t ′i , we

have t ′i − ti ≤ s′i− si. Therefore,

|w′i−wi|= |t ′i − ti− p1(s′i− si)|

≤ (1− p1)d̄i

≤ (1− p1)di

< d̃max (by p1 > 0 and di < d̃max).

Since we add Lap( d̃max
ε2

) to wi, we obtain:

Pr[Ri(ai) = ŵi]≤ eε2 Pr[Ri(a′i) = ŵi]. (A.14)

Assume that d′i = di−1. In this case, we have either ā′i = āi or d̄′i = d̄i−1. If ā′i = āi, then

Pr[Ri(ai)= ŵi] = Pr[Ri(a′i)= ŵi]. If d̄′i = d̄i−1, then we obtain si−s′i = d̄i−1 and ti−t ′i ≤ si−s′i.

Thus |w′i−wi| ≤ (1− p1)(d̃i−1)< d̃max and (A.14) holds. Therefore, Local2Rounds△ provides

ε2-edge LDP at the second round. Since Local2Rounds△ provides ε1-edge LDP at the first round

(by Theorem 3), it provides (ε1 + ε2)-edge LDP in total by the composition theorem [73].

Case 2: di ≥ d̃max. Assume that d′i = di +1. In this case, we obtain di = d′i = d̃max after graph

projection.

Note that ai and a′i can differ in zero or two bits after graph projection. For example,

consider the case where n = 8, a5 = (1,1,0,1,0,1,1,1), a′5 = (1,1,1,1,0,1,1,1), and d̃max = 4.
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If the permutation is 1,4,6,8,2,7,5,3, then a5 = a′5 = (1,0,0,1,0,1,0,1) after graph projection.

However, if the permutation is 3,1,4,6,8,2,7,5, then a5 and a′5 become a5 = (1,0,0,1,0,1,0,1)

and a′5 = (1,0,1,1,0,1,0,0), respectively; i.e., they differ in the third and eighth elements.

If ai = a′i, then Pr[Ri(ai) = ŵi] = Pr[Ri(a′i) = ŵi]. If ai and a′i differ in two bits, āi and

ā′i differ in at most two bits (because we set all of the i-th to the n-th elements in ai and a′i to 0).

For example, we can consider the following three cases:

• If a5 = (1,0,0,1,0,1,0,1) and a′5 = (1,0,0,1,0,1,1,0),

then ā5 = ā′5 = (1,0,0,1,0,0,0,0).

• If a5 = (1,0,0,1,0,1,0,1) and a′5 = (1,0,1,1,0,1,0,0), then ā5 = (1,0,0,1,0,0,0,0) and

ā′5 = (1,0,1,1,0,0,0,0); i.e., they differ in one bit.

• If a5 = (1,1,0,1,0,1,0,0) and a′5 = (1,0,1,1,0,1,0,0), then ā5 = (1,1,0,1,0,0,0,0) and

ā′5 = (1,0,1,1,0,0,0,0); i.e., they differ in two bits.

If āi = ā′i, then Pr[Ri(ai) = ŵi] = Pr[Ri(a′i) = ŵi]. If āi and ā′i differ in one bit, then d̄′i = d̄i +1.

In this case, we obtain (A.14) in the same way as Case 1.

We need to be careful when āi and ā′i differ in two bits. In this case, d̄′i = d̄i (because

di = d′i = d̃max after graph projection). Then we obtain si = s′i =
(d̃max

2

)
. Since the number of

2-stars that involve a particular user in āi is d̄i−1, we obtain t ′i − ti ≤ d̄i−1. Therefore,

|w′i−wi|= |t ′i − ti| ≤ d̄i−1 < d̃max,

and (A.14) holds. Therefore, if d′i = di +1, then Local2Rounds△ provides (ε1 + ε2)-edge LDP

in total.

Assume that d′i = di−1. If di > d̃max, then di = d′i = d̃max after graph projection. Thus

Local2Rounds△ provides (ε1+ε2)-edge LDP in total in the same as above. If di = d̃max, then we

obtain (A.14) in the same way as Case 1, and therefore Local2Rounds△ provides (ε1 + ε2)-edge

LDP in total.
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In summary, Local2Rounds△ provides (ε1 + ε2)-edge LDP in both Case 1 and Case 2.

Local2Rounds△ also provides (ε1 + ε2)-relationship DP because it uses only the lower triangular

part of the adjacency matrix A.

A.4.8 Proof of Theorem 6

When the maximum degree dmax of G is at most d̃max, no graph projection will occur. By

Proposition 3, the estimate f△(G,ε) by Local2Rounds△ is unbiased.

By bias-variance decomposition (A.1), the expected l2 loss E[l2
2( f̂△(G,ε), f△(G))] is

equal to V[ f̂△(G,ε)]. Recall that p1 =
1

1+eε1 . V[ f̂△(G,ε)] can be written as follows:

V[ f̂△(G,ε)] (A.15)

= 1
(1−2p1)2V [∑n

i=1 ŵi]

= 1
(1−2p1)2V

[
∑

n
i=1 ti− p1si +Lap( d̃max(1−p1)

ε2
)
]

= 1
(1−2p1)2

(
V [∑n

i=1 ti− p1si]+V
[
∑

n
i=1 Lap( d̃max(1−p1)

ε2
)
])

= 1
(1−2p1)2V [∑n

i=1 ti]+ n
(1−2p1)2 2 d̃2

max(1−p1)
2

ε2
2

. (A.16)

In the last line, we are able to get rid of the si’s because they are deterministic. We are

also able to sum the variances of the Lap random variables since they are independent; we are

not able to do the same with the sum of the tis.

Recall the definition of E ′ computed by the first round of Local2Rounds△—the noisy

edges released by randomized response. Now,

ti = ∑
ai, j=ai,k=1, j<k<i

1((v j,vk) ∈ E ′).
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This gives

n

∑
i=1

ti =
n

∑
i=1

∑
ai, j=ai,k=1

j<k<i

1((v j,vk) ∈ E ′)

= ∑
1≤ j<k≤n

∑
i>k

ai, j=ai,k=1

1((v j,vk) ∈ E ′)

= ∑
1≤ j<k≤n

|{i : i > k,ai, j = ai,k = 1}|1((v j,vk) ∈ E ′|.

Let c jk = |{i : i > k,ai, j = ai,k = 1}|. Notice that 1((v j,vk) ∈ E ′) are independent events. Thus,

the variance of the above expression is

V

[
n

∑
i=1

ti

]
= V

[
∑

1≤ j<k≤n
c jk1((v j,vk) ∈ E ′)

]

= ∑
1≤ j<k≤n

c2
jkV[1((v j,vk ∈ E ′))]

= p1(1− p1) ∑
1≤ j<k≤n

c2
jk. (A.17)

c jk is the number of ordered 2-paths from j to k in G. Because the degree of user v j is at most

d̃max, 0 ≤ c jk ≤ d̃max. There are at most nd̃2
max ordered 2-paths in G, since there are only d̃max

nodes to go to once a first is picked. Thus, ∑1≤ j<k≤n c jk ≤ nd̃2
max. Using a Jensen’s inequality

style argument, the best way to maximize (A.17) is to have all c jk be 0 or d̃max. At most nd̃max

of the c jk can be d̃max, and the rest are zero. Thus,

V

[
n

∑
i=1

ti

]
= p1(1− p1) ∑

1≤ j<k≤n
c2

i j

≤ p1(1− p1)nd̃max× d̃2
max.
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Plugging this into (A.16)

V[ f̂△(G,ε)]≤ p1(1− p1)nd̃3
max

(1−2p1)2 +
2nd̃2

max(1− p1)
2

(1−2p1)2ε2
2

≤ O
(

p1nd̃3
max +nd̃2

max/ε2
2

(1−2p1)2

)
≤ O

(
eε1

(1− eε1)2

(
nd̃3

max +
eε1

ε2
2

nd̃2
max

))
.

A.4.9 Proof of Theorem 7

Preliminaries.

We begin by defining a Boolean version of the independent cube in Definition 5, which

we call the Boolean independent cube. The Boolean independent cube works for functions

g : {0,1}κ →R in the local DP model, where each of κ ∈N users has a single bit and obfuscates

the bit to provide ε-DP. As shown later, there is a one-to-one correspondence between the

independent cube in Definition 5 and the Boolean independent cube. Based on this, we show a

lower-bound for the Boolean independent cube, and use the lower-bound to prove Theorem 7.

Below we define the Boolean independent cube. For i∈ [κ], let xi ∈ {0,1} be a bit of user

vi. Let X = (x1, . . . ,xκ). We assume user vi obfuscates xi using a randomizer Si : {0,1}→Zi,

where Si satisfies ε-DP and Zi is a range of Si. Examples of Si include Warner’s RR.

Furthermore, we assume the one-round setting, where each Si is independent, and where the

estimator ĝ for g has the form

ĝ(X) = g̃(S1(x1), . . . ,Sκ(xκ)). (A.18)

g̃ is an aggregate function that takes S1(x1), . . . ,Sκ(xκ) as input and outputs ĝ(X).

We will prove a lower bound which uses the following stripped-down form of an inde-

pendent cube (Definition 5).
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Definition 14. [Boolean (κ,D)-independent cube] Let g : {0,1}κ → R, and D ∈ R. We say g

has a Boolean (κ,D)-independent cube if for all (x1, . . . ,xκ) ∈ {0,1}κ we have

g(x1, . . . ,xκ) = g(0,0, . . . ,0)+
κ

∑
i=1

xiCi,

where Ci ∈ R satisfies |Ci| ≥ D for any i ∈ [κ].

The following theorem applies to the Boolean independent cube and will help us establish

Theorem 7. We prove this theorem in Section A.4.10.

Theorem 24. Let g : X κ → R be a function that has a Boolean (κ,D)-independent cube. Let

ĝ(X) be an estimator having the form of (A.18), where each Si provides ε-DP and is mutually

independent. Let X be drawn uniformly from {0,1}κ . Over the randomness both in selecting X

and in S1, . . . ,Sκ , EX ,S1,...,Sκ
[l2

2(g(X), ĝ(X))] = Ω

(
eε

(eε+1)2 κD2
)

.

Proof of Theorem 7 using Theorem 24.

To prove Theorem 7, let A be the (n,D)-independent cube (Definition 5) for f given

in the statement of Theorem 7. Let G be the graph, and A be the corresponding symmetric

adjacency matrix. Below we sometimes write f as a function on neighbor lists a1, . . . ,an (rather

than G) because there is a one-to-one correspondence between G and a1, . . . ,an. Let M be the

perfect matching that defines A . Let n = 2κ .

The idea is to pair up users that M matches to make a new function g that has a Boolean

(κ,D)-independent cube and new randomizers S1, . . . ,Sκ that satisfy ε-DP. In other words, we

regard a pair of users in M as a virtual user (since n = 2κ , there are κ virtual users in total). Then

we apply Theorem 24.

Assume that M = {(v1,v2),(v3,v4), . . . ,(v2κ−1,v2κ)} without loss of generality (we can
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construct g and S1, . . . ,Sκ for arbitrary M in the same way). For x1, . . . ,xκ ∈ {0,1}, define

g(x1, . . . ,xκ) = f (a1 + x1e2, a2 + x1e1, . . . ,

a2κ−1 + xκe2κ , a2κ + xκe2κ−1),

where ei ∈ {0,1}n is the i-th standard basis vector that has 1 in the i-th coordinate and 0 elsewhere.

In other words, xi ∈ {0,1} indicates whether the i-th edge in M should be added to G. Thus,

g has a Boolean (κ,D)-independent cube, and there is a one-to-one correspondence between

an (n,D)-independent cube A in Definition 5 and (κ,D)-Boolean independent cube {0,1}κ in

Definition 14. Figure A.4 shows a (2,2)-Boolean independent cube for g corresponding to the

(4,2)-independent cube for f in Figure 1.3.

Now, for i ∈ [κ], define Si(xi) for xi ∈ {0,1} by

Si(xi) = (R2i−1(a2i−1 + xie2i),R2i(a2i + xie2i−1)). (A.19)

In other words, Si(xi) is simply the product of the outputs of users (v2i−1,v2i), with xi indicating

whether to add the edge in M between them.

Assume that each Ri is mutually independent and that (R1, . . . ,Rn) provides

ε-relationship DP in Definition 3. Then by (1.3) and (A.19), each Si provides ε-DP and is

mutually independent.

Define the estimator ĝ by

ĝ(x1, . . . ,xκ) = f̃ (S1(x1), . . . ,Sκ(xκ)).

Then by Theorem 24, for X = (x1, . . . ,xκ),

EX ,S1,...,Sκ
[l2

2(g(X), ĝ(X))]≥Ω

(
eε

(eε +1)2 κD2
)
.
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Since there is a one-to-one correspondence between the (n,D)-independent cube A and

the (κ,D)-Boolean independent cube {0,1}κ , we also have

EG,R1,...,Rn[l
2
2( f (G), f̂ (G))]≥Ω

(
eε

(eε +1)2 nD2
)
,

where G is drawn uniformly from A , which proves Theorem 7.

A.4.10 Proof of Theorem 24

Assume that Si : {0,1}→Zi. For X = (x1, . . . ,xκ) ∈ {0,1}κ ,

let S(X) = (S1(x1), · · ·Sκ(xκ)) and Z = (z1, . . . ,zκ) with zi ∈Zi. We rewrite the quantity of

interest as

EX ,S(X)[l
2
2(g(X), ĝ(X))] = EX ,S(X)[(g(X)− g̃(S(X)))2].

By the law of total expectation, this quantity is the same as the expected value of the

conditional expected value of (g(X)− g̃(S(X)))2 given S(X) = Z:

EX ,S(X)[(g(X)− g̃(S(X)))2]

= ES(X)EX [(g(X)− g̃(Z))2|S(X) = Z]. (A.20)
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Let µZ = EX [g(X)|S(X) = Z]. Then the inner expectation in (A.20) can be written as follows:

EX [(g(X)− g̃(Z))2|S(X) = Z]

= EX [((g(X)−µZ)+(µZ− g̃(Z)))2|S(X) = Z]

= EX [(g(X)−µZ)
2|S(X) = Z]

+2(µZ− g̃(Z))EX [(g(X)−µZ)|S(X) = Z]

+ (µZ− g̃(Z))2

= EX [(g(X)−µZ)
2|S(X) = Z]+ (µZ− g̃(Z))2

= VX [g(X)|S(X) = Z]+ (µZ− g̃(Z))2.

Thus, it suffices to show that VX [g(X)|S(X) = Z] ≥ Ω

(
eε

(1+eε )2 κD2
)

. For B = (b1, . . . ,bκ) ∈

{0,1}κ , we have

Pr[X = B|S(X) = Z] =
Pr[X = B]Pr[S(X) = Z|X = B]

Pr[S(X) = Z]
.

Since Pr[S(X) = Z] does not depend on B and Pr[X = B] = 1
2κ , Pr[X = B|S(X) = Z] can also be

expressed as

Pr[X = B|S(X) = Z] ∝ Pr[S(X) = Z|X = B]. (A.21)

Since S1, . . . ,Sκ are independently run, we have

Pr[S(X) = Z|X = B] = Pr[S1(b1) = z1, . . . ,Sκ(bκ) = zκ ]

=
κ

∏
i=1

Pr[Si(bi) = zi].
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Define

pi =
Pr[Si(1) = zi]

Pr[Si(0) = zi]+Pr[Si(1) = zi]
.

Because each Si satisfies ε-DP, we have 1
1+eε ≤ pi ≤ eε

1+eε . By (A.21) and ∑B∈{0,1}κ Pr[X =

B|S(X) = Z] = 1, we have

Pr[X = B|S(X) = Z] =
κ

∏
i=1

(pi)
bi(1− pi)

1−bi. (A.22)

This means that Pr[X = B|S(X) = Z] is distributed according to the independent product of

Bernoulli(pi) for i ∈ [κ].

Now, because g has a Boolean (κ,D)-independent cube, there are C1, . . . ,Cκ ∈S with

|Ci| ≥ D such that

g(X) = g(0, . . . ,0)+
κ

∑
i=1

xiCi.

By (A.22), xi is an independent draw from Bernoulli(pi) given S(X) = Z. Thus, the variance of

g(X) given S(X) = Z is

VX [g(X)|S(X) = Z] =
κ

∑
i=1

V[xi|S(X) = Z]C2
i

≥
κ

∑
i=1

pi(1− pi)D2

≥
κ

∑
i=1

eε

(1+ eε)2 D2

≥ κ
eε

(1+ eε)2 D2.
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Figure A.1. l2 loss of LocalRR△ and RR without empirical estimation (RR w/o emp).
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Figure A.2. l2 loss in the Barabási-Albert graph datasets (left: ε = 1, right: n = 10000). We set
the attachment parameter λ in the BA model to λ = 10 or 50, and d̃max to d̃max = dmax.
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𝐺 = (𝑉,𝐸) 𝑀

Figure A.3. Examples of G and M for constructing an independent cube for f△ (n= 14, dmax = 8,
η1 = 3, η2 = 2).

𝑣3 𝑣4

𝑣1 𝑣2

𝑀

𝑣3 𝑣4

𝑣1 𝑣2

𝐺4

𝑔 1,1 = 5

𝑣3 𝑣4

𝑣1 𝑣2

𝐺2

𝑔 0,1 = 3

𝑣3 𝑣4

𝑣1 𝑣2

𝐺3

𝑔 1,0 = 2

𝑣3 𝑣4

𝑣1 𝑣2

𝐺1

𝑔 0,0 = 0

2,2 -Boolean independent cube

Figure A.4. (2,2)-Boolean independent cube for g corresponding to the (4,2)-independent cube
for f in Figure 1.3.
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Appendix B

B.1 Basic Notations

Table B.1 shows the basic notations used in this paper.

B.2 Comparison with One-Round Algorithms

Below we show that one-round triangle counting algorithms suffer from a prohibitively

large estimation error.

First, we note that all of the existing one-round triangle algorithms in [102, 218, 219]

are inefficient and cannot be directly applied to a large-scale graph such as Gplus and IMDB

in Section 2.6. Specifically, in their algorithms, each user vi applies Warner’s RR to each bit of

her neighbor list ai and sends the noisy neighbor list to the server. Then the server counts the

number of noisy triangles, each of which has three noisy edges, and estimates f△(G) based on

the noisy triangle count. The noisy graph G′ in the server is dense, and there are O(n3) noisy

triangles in G′. Thus, the time complexity of the existing one-round algorithms [102, 218, 219]

is O(n3). It is also reported in [102] that when n = 106, the one-round algorithms would require

about 35 years even using a supercomputer, due to the enormous number of noisy triangles.

Therefore, we evaluated the existing one-round algorithms by taking the following two

steps. First, we evaluate all the existing algorithms in [102, 218, 219] using small graph datasets

(n = 10000) and show that the algorithm in [102] achieves the lowest estimation error. Second,
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Table B.1. Basic notations.

Symbol Description
G = (V,E) Graph with n users V and edges E.
vi i-th user in V (i.e., V = {v1, . . . ,vn}).
dmax Maximum degree of G.
G Set of possible graphs with n users.
f△(G) Triangle count in G.
A = (ai, j) Adjacency matrix.
ai Neighbor list of vi (i.e., i-th row of A).
Ri Local randomizer of vi.
Mi Message sent from the server to user vi.
µ Parameter in the ARR.
µ∗ = µ,µ2,µ3 in ARRFull△, ARROneNS△,

and ARRTwoNS△, respectively.
d̃i Noisy degree of user vi.
κi Clipping threshold of user vi.
ε0 Privacy budget for edge clipping.
ε1 Privacy budget for the ARR.
ε2 Privacy budget for the Laplacian noise.
ε Total privacy budget.

we improve the time complexity of the algorithm in [102] using the ARR (i.e., edge sampling

after Warner’s RR) and compare it with our two-rounds algorithms using large graph datasets in

Section 2.6.

Small Datasets. We first evaluated the existing algorithms in [102, 218, 219] using small

datasets. For both Gplus and IMDB in Section 2.6, we first randomly selected n = 10000 users

from all users and extracted a graph with n users. Then we evaluated the relative error of the

following three algorithms: (i) RR (biased) [102, 218], (ii) RR (bias-reduced) [219], and (iii) RR

(unbiased) [102]. All of them provide ε-edge LDP.

RR (biased) simply uses the number of noisy triangles in the noisy graph G′ obtained

by Warner’s RR as an estimate of f△(G). Clearly, it suffers from a very large bias, as G′ is

dense. RR (bias-reduced) reduces this bias by using a noisy degree sent by each user. However,

it introduces some approximation to estimate f△(G), and consequently, it is not clear whether

the estimate is unbiased. We used the mean of the noisy degrees as a representative degree to

obtain the optimal privacy budget allocation (see [219] for details). RR (unbiased) calculates an
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Figure B.1. Relative error of one-round algorithms for small datasets (n = 10000).

unbiased estimate of f△(G) via empirical estimation. It is proved that the estimate is unbiased

[102].

In all of the three algorithms, each user vi obfuscates bits for smaller user IDs in her

neighbor list ai. We averaged the relative error over 10 runs.

Figure B.1 shows the results. RR (bias-reduced) significantly outperforms RR (biased)

and is significantly outperformed by RR (unbiased). We believe this is caused by the fact that

RR (bias-reduced) introduces some approximation and does not calculate an unbiased estimate

of f△(G).

Large Datasets. Based on Figure B.1, we improve the time complexity of RR (unbiased) using

the ARR and compare it with our two-rounds algorithms in large datasets.

Specifically, RR (unbiased) counts triangles, 2-edges (three nodes with two edges),

1-edges (three nodes with one edge), and no-edges (three nodes with no edges) in G′ obtained by

Warner’s RR. Let m3,m2,m1,m0 ∈ Z≥0 be the numbers of triangles, 2-edges, 1-edges, and no-

edges, respectively, after applying Warner’s RR. RR (unbiased) calculates an unbiased estimate

of f△(G) from these four values. Thus, we improve RR (unbiased) by using the ARR, which

samples each edge with probability p2 after Warner’s RR, and then calculating unbiased estimates
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of m3, m2, m1, and m0.

Let m̂3, m̂2, m̂1, m̂0 ∈ R be the unbiased estimates of m3, m2, m1, and m0, respectively.

Let m∗3,m
∗
2,m

∗
1,m

∗
0 ∈ Z≥0 be the number of triangles, 2-edges, 1-edges, no-edges, respectively,

after applying the ARR. Since the ARR samples each edge with probability p2, we obtain:

m∗3 = p3
2m̂3

m∗2 = 3p2
2(1− p2)m̂3 + p2

2m̂2

m∗1 = 3p2(1− p2)
2m̂3 +2p2(1− p2)m̂2 + p2m̂1.

By these equations, we obtain:

m̂3 =
m∗3
p3

2
(B.1)

m̂2 =
m∗2
p2

2
−3(1− p2)m̂3 (B.2)

m̂1 =
m∗1
p2
−3(1− p2)

2m̂3−2(1− p2)m̂2 (B.3)

m̂0 =
n(n−1)(n−2)

6 − m̂3− m̂2− m̂1. (B.4)

Therefore, after applying the ARR to the lower triangular part of A, the server counts m∗3, m∗2,

m∗1, and m∗0 in G′, and then calculates the unbiased estimates m̂3, m̂2, m̂1, and m̂0 by (B.1), (B.2),

(B.3), and (B.4), respectively. Finally, the server estimates f△(G) from m̂3, m̂2, m̂1, and m̂0 in the

same way as RR (unbiased). We denote this algorithm by ARR (unbiased). The time complexity

of ARR (unbiased) is O(µ3n3), where µ is the ARR parameter.

We compared ARR (unbiased) with our three algorithms with double clipping using

Gplus (n = 107614) and IMDB (n = 896308). For the sampling probability p2, we set p2 = 10−3

or 10−6. We averaged the relative error over 10 runs.

Figure B.2 shows the results, where we set µ∗ = 10−6 or 10−3. In ARR (unbiased), we

used µ∗ as the ARR parameter µ . Thus, we can see how much the relative error is reduced by
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Figure B.2. Relative error of the one-round algorithm ARR (unbiased) and our three two-rounds
algorithms with double clipping for large datasets (n = 107614 in Gplus, n = 896308 in IMDB).

introducing an additional round with ARRFull△. Figure B.2 shows that the relative error of ARR

(unbiased) is prohibitively large; i.e., relative error≫ 1. This is because three edges are noisy in

any noisy triangle. The relative error is significantly reduced by introducing an additional round

because only one edge is noisy in each noisy triangle at the second round.

In summary, one-round algorithms are far from acceptable in terms of the estimation

error for large graphs, and two-round algorithms such as ours are necessary.

B.3 Clustering Coefficient

Here we evaluate the estimation error of the clustering coefficient using our algorithms.

We first estimated a triangle count by using our ARROneNS△ with double clipping

(ε0 =
ε

10 and ε1 = ε2 =
9ε

20 ) because it provides the best performance in Figures 2.7, 2.8, and 2.10.

Then we estimated a 2-star count by using the one-round 2-star algorithm in [102] with the edge

clipping in Section 2.5.

Specifically, we calculated a noisy degree d̃i of each user vi by using the edge clipping

with the privacy budget ε0. Then we calculated the number ri ∈ Z≥0 of 2-stars of which user vi is

a center, and added Lap( ∆

ε1
) to ri, where ∆ =

(d̃i
2

)
. Let r̂i = ri +Lap( ∆

ε1
) be the noisy 2-star of vi.
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Finally, we calculated the sum ∑
n
i=1 r̂i as an estimate of the 2-star count. This 2-star algorithm

provides (ε0 + ε1)-edge privacy (see [102] for details). For the privacy budgets ε0 and ε1, we set

ε0 =
ε

10 and ε1 =
9ε

10 .

Based on the triangle and 2-star counts, we estimated the clustering coefficient as 3× f̂△(G)

f̂2⋆(G)
,

where f̂△(G) (resp. f̂2⋆(G)) is the estimate of the triangle (resp. 2-star) count.

Figure B.3 shows the relative errors of the triangle count, 2-star count, and clustering

coefficient. Note that the relative error of the 2-star count is not changed by changing µ∗ because

the 2-star algorithm does not use the ARR. Figure B.3 shows that the relative error of the 2-star

count is much smaller than that of the triangle count. This is because each user can count her 2-

stars locally (whereas she cannot count her triangles), as described in Section 2.1. Consequently,

the relative error of the clustering coefficient is almost the same as that of the triangle count, as

the denominator f̂2⋆(G) in the clustering coefficient is very accurate.

Note that the clustering coefficient requires the privacy budgets for calculating both

f̂△(G) and f̂2⋆(G) (in Figure B.3, 2ε in total). However, we can accurately calculate f̂2⋆(G)

with a very small privacy budget, as shown in Figure B.3. Thus, we can accurately estimate the

clustering coefficient with almost the same privacy budget as the triangle count by assigning a

very small privacy budget (e.g., ε = 0.1 or 0.2) for f̂2⋆(G).

In summary, we can accurately estimate the clustering coefficient as well as the triangle

count under edge LDP by using our ARROneNS△ with double clipping.

B.4 Experiments Using the Barabási-Albert Graph Datasets

In Section 2.6, we evaluated our algorithms using two real datasets. Below we also

evaluate our algorithms using a synthetic graph based on the BA (Barabási-Albert) graph

model [16], which has a power-law degree distribution.

In the BA graph model, a graph of n nodes is generated by attaching new nodes one by

one. Each new node is connected to m ∈ Z≥0 existing nodes, and each edge is connected to an
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existing node with probability proportional to its degree. We used NetworkX [96], a Python

package for complex networks, to generate synthetic graphs based on the BA graph model.

We generated a graph G = (V,E) with the same number of nodes as Gplus; i.e., n =

107614 nodes. For the number m of edges per node, we set m = 50, 114, or 500. Using these

graphs, we evaluated our three algorithms with double clipping. We set parameters in the same

as Section 2.6; i.e., α = 150, β = 10−6, ε0 =
ε

10 , and ε1 = ε2 =
9ε

20 . For each algorithm, we

averaged the relative error over 10 runs.

Figure B.4 shows the results, where ε = 1 and µ∗ = 10−3. We observe that ARROneNS△

significantly outperforms ARRFull△ and ARRTwoNS△ when m = 500, and that ARROneNS△

performs almost the same as ARRFull△ when m = 50 or 114.

To examine the reason for this, we also decomposed the estimation error into two

components (the first error by empirical estimation and the second error by the Laplacian noise)

in the same way as Figure 2.11. Figure B.5 shows the results. We also show in Table B.2 the

number C4 of 4-cycles in each BA graph (m = 50, 114, or 500) and Gplus.

From Figure B.5 and Table B.2, we can explain Figure B.4 as follows. The BA graphs

with m = 50 and 114 have a much smaller number C4 of 4-cycles than Gplus, as shown in

Table B.2. Consequently, the Laplacian noise is relatively large and dominant for these two

graphs, as shown in Figure B.5. In particular, the Laplacian noise is the largest in ARRTwoNS△

because it cannot effectively reduce the global sensitivity by double clipping, as explained

in Section 2.5. In contrast, the BA graph with m = 500 has a larger number C4 of 4-cycles

than Gplus, and therefore the Laplacian noise is not dominant (except for ARRTwoNS△). This

explains the results in Figure B.4.

These results show that ARROneNS△ outperforms ARRFull△ especially when the number

C4 of 4-cycles is large. As we have shown in Section 2.6 and Appendix B.4, C4 is large in a large

graph (e.g., n≈ 106) or dense graph (e.g., Gplus, BA graph with m = 500).
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Table B.2. #4-cycles C4 in each graph dataset.

m = 50 m = 114 m = 500 Gplus
C4 8.8×108 1.7×1010 3.1×1012 2.8×1012

B.5 Edge Clipping and Noisy Triangle Clipping

In Section 2.6, we showed that our double clipping significantly reduces the estimation

error. To investigate the effect of edge clipping and noisy triangle clipping independently, we

also performed the following ablation study.

We evaluated our three algorithms with only edge clipping; i.e., each user calculates a

noisy degree d̃i (possibly with edge clipping) and then adds Lap( d̃i
ε2

) to her noisy triangle count.

Then we compared them with our algorithms with double clipping and without clipping.

Figure B.6 shows the results, where ε = 1, µ∗ = 10−6 or 10−3, and “EC” represents our

algorithms with only edge clipping. We observe that “EC” outperforms “dmax” (w/o clipping)

and is outperformed by “DC” (double clipping). The difference between “EC” and “DC” is

significant especially when µ∗ = 10−6 (“DC” is smaller than 1
100 of “EC”). This is because

our noisy triangle clipping reduces the global sensitivity by using a small value of µ∗. From

Figure B.6, we conclude that each component (i.e., edge clipping, noisy triangle clipping) is

essential in our double clipping.

B.6 Proof of Proposition 5

Let Ri(ai) = (R1
i (ai),R2

i (Mi)(ai)) be the randomizer used by user vi in the composition.

To establish that Ri(ai) satisfies ε-edge LDP for every vi ∈V , we will prove that (2.1) holds for

Ri(ai). To do this, first write

Pr[(R1
i (ai),R

2
i (Mi)(ai)) = (r1

i ,r
2
i )] =

Pr[R1
i (ai) = r1

i ]Pr[R2
i (Mi)(ai) = r2

i |R1
i (ai) = r1

i ]

Pr[R1
i (ai) = r1

i ]Pr[R2
i (Mi)(ai) = r2

i |Mi = λi(r1
i )],
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where the last equality follows because Mi = λi(R1
i (ai)) for a post-processing algorithm λi.

Notice that the same equalities are true when we replace ai with a′i. Because R1
i and R2

i (Mi)

(for any Mi) satisfy ε1,ε2-edge LDP, respectively, we have

Pr[R1
i (ai) = r1

i ]Pr[R2
i (Mi)(ai) = r2

i |Mi = λi(r1
i )]

≤ eε1 Pr[R1
i (a
′
i) = r1

i ]e
ε2 Pr[R2

i (a
′
i) = r2

i |Mi = λi(r1
i )]

= eε1+ε2 Pr[(R1
i (a
′
i),R

2
i (Mi)(a′i)) = (r1

i ,r
2
i )].

This establishes the result.

B.7 Proof of Statements in Section 2.4

B.7.1 Proof of Theorem 8

Let ai,a′i ∈ {0,1}n be two neighbor lists that differ in one bit. Let t ′i , s′i, and w′i be

respectively the values of ti (line 11 of Algorithm 4), si (line 12), and wi (line 13) when

the neighbor list of user vi is a′i. Let ∆wi = |w′i−wi|. Then we have t ′i − ti ∈ [0,dmax] and

s′i− si ∈ [0,dmax], and therefore ∆wi = |(t ′i − ti)−µ∗ρ(s′i− si)| ≤ dmax.

Since we add Lap
(

dmax
ε2

)
to wi, the second round provides ε2-edge LDP. The first round

uses ARRε1,µ and provides ε1-edge LDP. Thus, by sequential composition (Proposition 5),

Algorithm 4 provides (ε1 + ε2)-edge LDP in total. It also provides (ε1 + ε2)-relationship DP

because it uses only the lower-triangular part of A (Proposition 4).
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B.7.2 Proof of Theorem 9

Unbiased Estimators. First, we will show that f̂△(G) satisfies E[ f̂△(G)] = f△(G) for all G∈ G ,

in ARRFull△, ARROneNS△, ARRTwoNS△. Regardless of algorithm, we have

E[ f̂△(G)]

=
1

µ∗(1−ρ)

n

∑
i=1

E[wi]

=
1

µ∗(1−ρ)

n

∑
i=1

E[ti−µ
∗
ρsi]

=
1

µ∗(1−ρ)

n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=ai,k=1

E[1(v j,vk)∈Mi−µ
∗
ρ], (B.5)

where ρ = e−ε1 , and the quantites µ∗, ti,si are defined in Algorithm 4. Given that ai, j = ai,k =

1, we have that Pr[(vi,v j) ∈ E ′] = Pr[(vi,vk) ∈ E ′] = µ by definition of ARR. Furthermore,

Pr[(v j,vk) ∈ E ′] = µ if a j,k = 1, and Pr[(v j,vk) ∈ E ′] = µρ otherwise. Examining (2.7), (2.8),

and (2.9), we have

Pr[(v j,vk) ∈Mi] =


µ∗ a j,k = 1

µ∗ρ a j,k = 0

for all the three algorithms (note that µ∗ = µ , µ2, and µ3 in ARRFull△, ARROneNS△, ARRT-

woNS△, respectively). Thus, E[1(v j,vk)∈Mi] = µ∗(ρ +(1−ρ)a j,k) (= µ∗ if ai, j = 1 and µ∗ρ if
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ai, j = 0). Plugging into (B.5), we have

E[ f̂△(G)]

=
1

µ∗(1−ρ)

n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=ai,k=1

µ
∗(ρ +(1−ρ)a j,k)−µ

∗
ρ

=
1

µ∗(1−ρ)

n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=ai,k=1

µ
∗(1−ρ)a j,k

=
n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=ai,k=1

a j,k

= f△(G).

Thus, f̂△(G) is unbiased.

l2 Loss of Estimators. Using bias-variance decomposition, we have for any graph G,

l2
2( f△(G), f̂△(G)) = E[( f̂△(G)− f△(G))2]

= E[( f△(G)−E[ f̂△(G)])2]+V[ f̂△(G)]

= V[ f̂△(G)],
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where the last step follows because f̂ is unbiased. Since f̂△(G) = 1
µ∗(1−ρ) ∑

n
i=1 ŵi, we have

V[ f̂△(G)]

=
1

(µ∗)2(1−ρ)2V

[
n

∑
i=1

ŵi

]

=
1

(µ∗)2(1−ρ)2V

[
n

∑
i=1

wi +Lap
(

dmax

ε2

)]

=
1

(µ∗)2(1−ρ)2

(
V

[
n

∑
i=1

wi

]
+nV

[
Lap

(
dmax

ε2

)])

=
1

(µ∗)2(1−ρ)2

(
V

[
n

∑
i=1

wi

]
+2n

d2
max

ε2
2

)
, (B.6)

where the fourth line follows from independence of the added of Laplace noise. Now, we will

prove bounds on V[∑n
i=1 wi] for ARRFull△, ARROneNS△, and ARRTwoNS△. In the following,

we let Sk(G) be the number of k-stars in G and C4(G) be the number of 4-cycles in G

Bounding the Variance in ARRFull△. In ARRFull△, Mi is defined by (2.7). Thus we have

n

∑
i=1

wi =
n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=1,ai,k=1

1(v j,vk)∈Mi

= ∑
1≤ j<k≤n

∑
k<i≤n

ai, jai,k1(v j,vk)∈E ′

= ∑
1≤ j<k≤n

1(v j,vk)∈E ′ ∑
k<i≤n

ai, jai,k

For j < k, we introduce the constant c jk = ∑k<i≤n ai, jai,k. Notice that for any choice of j and

k, 1(v j,vk)∈E ′ for 1 ≤ j ≤ k are mutually independent, because all edges in E ′ are mutually

independent. Furthermore, the indicator 1(v j,vk)∈E ′ is a Bernoulli random variable with parameter
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either µ or µρ , and in either case, V[1(v j,vk)∈E ′]≤ µ . We have

V

[
n

∑
i=1

wi

]
= V

[
∑

1≤ j<k≤n
1(v j,vk)∈E ′c jk

]

= ∑
1≤ j<k≤n

V[1(v j,vk)∈E ′c jk]

= ∑
1≤ j<k≤n

µc2
jk.

By Lemma 2 (which is shown at the end of Appendix B.7.2), we have ∑1≤ j<k≤n c2
jk ≤ 2C4(G)+

S2(G). Plugging into (B.6) (and substituting µ∗ = µ), we obtain

V[ f̂△(G)] =
1

(1−ρ)2

(
1
µ
(2C4(G)+S2(G))+2n

d2
max

µ2ε2
2

)
.

This establishes the result.

Bounding the Variance in ARROneNS△. In ARROneNS△, for a fixed vi ∈ V , we have

(v j,vk) ∈Mi if and only if j < k < i, (v j,vk) ∈ E ′, and (vi,vk) ∈ E ′ from (2.8). Thus,

n

∑
i=1

wi =
n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=1,ai,k=1

1(v j,vk)∈Mi

= ∑
1≤ j<k<i≤n

1(v j,vk)∈E ′ai, jai,k1(vi,vk)∈E ′

Define the random variable Fi jk = 1(v j,vk)∈E ′1(vi,vk)∈E ′ . Substituting, we have

n

∑
i=1

wi = ∑
1≤ j<k<i≤n

ai, jai,kFi jk

V

[
n

∑
i=1

wi

]
= ∑

1≤ j<k<i≤n
1≤ j′<k′<i′≤n

ai, jai,kai′, j′ai′,k′Cov(Fi jk,Fi′ j′k′).
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The set {i, i′, j, j′,k,k′} when j < k < i and j′ < k′ < i′ can take between three and six

distinct values. If {i, i′, j, j′,k,k′} takes five or more distinct values, then Fi jk and Fi′ j′k′ involve

distinct edges and are independent random variables. Thus, Cov(Fi jk,Fi′ j′k′) = 0. Otherwise, the

events are not independent, and we will use the upper bound Cov(Fi jk,Fi′ j′k′)≤ E[Fi jkFi′ j′k′] =

Pr[Fi jk = Fi′ j′k′ = 1], which holds because the Fi jk have domain {0,1}. Thus,

V

[
n

∑
i=1

wi

]

≤ ∑
1≤ j<k<i≤n

1≤ j′<k′<i′≤n
|{i, j,k,i′, j′,k′}|=3 or 4

ai, jai,kai′, j′ai′,k′ Pr[Fi jk = Fi′ j′k′ = 1].

Define a choice of (i, j,k, i′, j′,k′)∈ [n]6 to be a valid choice if j < k < i, j′< k′< i′ (order-

ing requirement), ai,k = ai, j = ai′, j′ = ai′,k′ = 1 (edge requirement), and 3≤ {i, i′, j, j′,k,k′} ≤ 4

(size requirement). We can write the above sum as

V

[
n

∑
i=1

wi

]
≤ ∑

i,i′, j, j′,k,k′ valid
Pr[Fi jk = Fi′ j′k′ = 1].

In the above sum, each valid choice implies there exists a subgraph of G that associates

each of {vi,vi′,v j,v j′,vk,vk′} with one node in the subgraph and contains edges

(vi,v j),(vi,vk),(vi′,v j′),(vi′,vk′). Conversely, each subgraph of G of three or four nodes can have

a certain number of valid choices mapped to it. For each subgraph, we now go over the number

of possible valid choices that can map to it:

1. 4-cycle: By ordering, either i or i′ is mapped to the node of the 4-cycle with maximal index.

WLOG, suppose i is mapped to this node. By edge requirements, i′ has an index equal

to the opposite node in the 4-cycle. By ordering, there is now one way to map j, j′,k,k′.

Thus, each 4-cycle can be associated with 2 valid choices.

2. 3-path: Consider the middle node vℓ in the 3-path (path graph on 4 nodes) that has the
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second-largest index. By ordering, either i = ℓ or i′ = ℓ. WLOG, suppose i = ℓ. Then,

by the edge requirement ai′, j′ = ai′,k′ = 1, the middle node other than vℓ is i′. However,

this means either i = j′ or i = k′, and we have j′ > i′ or k′ > i′. This violates the order

requirement, and therefore there are 0 valid choices.

3. 3-star: By edge requirement, both i, i′ map to the central node in the 3-star. j, j′,k,k′ can

map to the other three nodes in any way that satisfies ordering. Suppose the three nodes

are va,vb,vc with a < b < c. Only one of the three nodes can be duplicated in this mapping.

For example, if a is duplicated, then both j and j′ map to va, and there are two remaining

choices for how to map k and k′. Thus, each S3 can be associated with 6 valid choices.

4. Triangle: Either i or i′ maps to the maximal node in the triangle by ordering. WLOG,

suppose i does. By the edge requirement, i′ maps to a different node. However, this means

i = k′ or i = j′, so k′ > i′, contradicting ordering. Thus, there are 0 valid choices.

5. 2-star: By edge requirements, both i and i′ map to the central node in the 2-star. We then

have just one mapping for the remaining indices. Thus, there is 1 valid choice.

Figure B.7 shows an example of two 4-cycles, six 3-stars, and one 2-stars. We can see that the

other possible subgraphs on 3 or 4 nodes are immediately ruled out because they have too many

or too few edges, violating edge requirements.

In the following, let P(i, j,k) be the event that Fi jk = Fi′ j′k′ = 1. Observing Figure 2.4,

we can see that in both possible ways in which a valid choice maps to a 4-cycle, then P(i, j,k)

holds when at least 3 edges in E ′ are present. Each edge in E ′ is independent, and is present

with probability at most µ . Thus, Pr[P(i, j,k)] ≤ µ3. Next, if a valid choice maps to a 3-star,

then P(i, j,k) implies at least 3 edges in E ′ are present. Thus, Pr[P(i, j,k) = 1]≤ µ3. Finally, if

a valid choice maps to a 2-star, then P(i, j,k) = 1 if and only if 2 edges in E ′ are present. Thus,

Pr[P(i, j,k) = 1]≤ µ2.

221



Putting this together,

V

[
n

∑
i=1

wi

]
≤ 2C4(G)µ3 +6S3(G)µ3 +S2(G)µ2.

Plugging into (B.6), we get

V[ f̂△(G)]

≤ 1
(1−ρ)2

(
1
µ
(2C4(G)+6S3(G))+

1
µ2 S2(G)+2n

d2
max

µ4ε2
2

)
.

This establishes the result.

Bounding the Variance in ARRTwoNS△. In ARRTwoNS△, for a fixed vi ∈ V , we have

(v j,vk) ∈ Mi if and only if j < k < i, (v j,vk) ∈ E ′, (vi,vk) ∈ E ′, and (vi,vk) ∈ E ′ from (2.9).

Thus,

n

∑
i=1

wi =
n

∑
i=1

∑
1≤ j<k<i≤n
ai, j=1,ai,k=1

1(v j,vk)∈Mi

= ∑
1≤ j<k<i≤n

ai, jai,k1(v j,vk)∈E ′1(vi,vk)∈E ′1(v j,vk)∈E ′ .

Define the random variable Fi jk = 1(v jvk)∈E ′1(vi,vk)∈E ′1(v j,vk)∈E ′ . Following the same steps

as those in the proof of ARROneNS△, we have

V

[
n

∑
i=1

wi

]
= ∑

1≤ j<k<i≤n
1≤ j′<k′<i′≤n

ai, jai,kai′, j′ai′,k′Cov(Fi jk,Fi′ j′k′)

≤ ∑
i,i′, j, j′,k,k′ valid

Pr[Fi jk = Fi′ j′k′ = 1].

As we showed in the proof for ARROneNS△, each 4-cycle of G has at most 2 valid

choices mapped to it, each 3-star of G has at most 6 valid choices mapped to it, and each 2-star

of G has at most one valid choice mapped to it.
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In the following, let P(i, j,k) be the event that Fi jk = Fi′ j′k′ = 1. Observing Figure 2.4,

we can see that for each possible mapping of a valid choice to a 4-cycle, five edges must be

present in G′ in order for P(i, j,k) = 1. Thus, Pr[P(i, j,k) = 1]≤ µ5. For each possible mapping

of a valid choice to a 3-star, five edges must be present in G′ in order for P(i, j,k) = 1. Thus,

Pr[P(i, j,k) = 1]≤ µ5. For each possible mapping of a valid choice to a 2-star, three edges must

be present in G′ in order for P(i, j,k) = 1. Thus, Pr[P(i, j,k) = 1]≤ µ3.

Plugging into (B.6), we get

V[ f̂△(G)]

≤ 1
(1−ρ)2

(
1
µ
(2C4(G)+6S3(G))+

1
µ3 S2(G)+2n

d2
max

µ6ε2
2

)
.

This establishes the result.

Lemma 2. Let ci j = ∑l<i≤n al,ial, j. Then,

n

∑
i, j=1,i< j

c2
i j ≤ 2C4(G)+S2(G).

Proof.

n

∑
i, j=1,i< j

c2
i j =

n

∑
i, j=1,i< j

ci j +
n

∑
i, j=1,i< j

ci j(ci j−1)

= S2(G)+
n

∑
i, j=1,i< j

ci j(ci j−1).

Let Ci−∗− j−∗−i(G) be the number of 4-cycles in G such that the first and third nodes are vi and

v j, respectively (i < j), and the remaining two nodes have smaller indices than i. From middle

nodes in 2-paths starting at vi and ending at v j, we can choose two nodes as the second and

fourth nodes in the 4-cycles. ci j is the number of nodes that have smaller IDs than vi and are
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connected to vi and v j. Thus, Ci−∗− j−∗−i(G) =
(ci j

2

)
. Therefore, we have

n

∑
i, j=1,i< j

c2
i j = S2(G)+

n

∑
i, j=1,i< j

2Ci−∗− j−∗−i(G)

≤ S2(G)+2C4(G).

The last inequality comes from the fact that two nodes with the largest indices may not be

opposite to each other in some 4-cycles in G.

B.8 Proof of Statements in Section 2.5

B.8.1 Proof of Theorem 10

Let ai,a′i ∈ {0,1}n be two neighbor lists that differ in one bit. Let ti′, s′i, and wi
′ be

respectively the values of ti (in line 8 of Algorithm 5), si (in line 9), and wi (in line 10) when the

neighbor list of user vi is a′i. Let ∆wi = |wi
′−wi|.

We assume that |a′i|= |ai|+1 without loss of generality. Let āi, ā′i ∈ {0,1}n be neighbor

lists corresponding to ai and a′i, respectively, after edge clipping. Note that |āi|= |ā′i| ≤ d̃i. There

are three cases for āi and ā′i:

1. āi is identical to ā′i and |āi|= |ā′i|= d̃i.

2. āi and ā′i differ in one bit and |ā′i|= |āi|+1.

3. āi and ā′i differ in two bits and |āi|= |ā′i|= d̃i.

Note that the third case can happen when |a′i| ≥ d̃i. For example, assume that n = 8, d̃i = 4,

ai = (1,1,0,1,0,1,1,1) and a′i = (1,1,1,1,0,1,1,1). If we select four “1”s in the order of 3,

1, 4, 6, 8, 2, 7, and 5-th bit in the neighbor list, āi and ā′i will be: āi = (1,0,0,1,0,1,0,1) and

ā′i = (1,0,1,1,0,1,0,0), which differ in two bits.
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If āi and ā′i differ in one bit (|ā′i|= |āi|+1), then ti′− ti ∈ [0,κi] and s′i− si ∈ [0, d̃i], hence

∆wi = |(ti′− ti)− µ∗ρ(s′i− si)| ≤ κi. If āi and ā′i differ in two bits (|āi| = |ā′i| = dmax), then

ti′− ti ∈ [−κi,κi] and si = s′i =
(d̃i

2

)
, hence ∆wi ≤ κi.

Therefore, we always have ∆wi ≤ κi (if āi is identical to ā′i, ∆wi = 0). Since we add

Lap( 1
ε0
) to di and Lap(κi

ε2
) to w∗i , the second round provides (ε0 + ε2)-edge LDP. The first round

provides ε1-edge LDP and we use only the lower-triangular part of A. Thus, by sequential compo-

sition (Proposition 5) and Proposition 4, Ri satisfies (ε0 + ε1 + ε2)-edge LDP, and (R1, . . . ,Rn)

satisfies (ε0 + ε1 + ε2)-relationship DP.

B.8.2 Proof of Theorem 11

Recall that ti, j = |{(vi,v j,vk) : ai,k = 1,(v j,vk) ∈Mi, j < k < i}|. Let t ′i, j = |{(vi,v j,vk) :

ai,k = 1,(v j,vk) ∈Mi}|. Then ti, j ≤ t ′i, j. Thus we have

Pr(ti, j > κi)≤ Pr(ti, j ≥ κi)≤ Pr(t ′i, j ≥ κi).

Below we first prove (2.12) and (2.13). Then we prove (2.14).

Proof of (2.12) and (2.13). For each edge (vi,v j), we have ∑k ̸=i, j 1(vi,vk)∈E ≤ d̃i. In ARRFull△,

each edge (v j,vk) is included in E ′ with probability at most µ , and all the events are independent.

In ARROneNS△, each of the edges (vi,vk) and (v j,vk) is included in E ′ with probability at most

µ , and all the events are independent. Thus, Pr(t ′i, j ≥ κi) is less than or equal to the probability

that the number of successes in the binomial distribution B(d̃i,µ
∗) (µ∗ = µ in ARRFull△ and µ2

in ARROneNS△) is larger than or equal to κi.

Let Xn,p be a random variable representing the number of successes in the binomial

distribution B(n, p), and F(κi;n, p) = Pr(Xn,p ≤ κi); i.e., F is a cumulative distribution function
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of B(n, p). Since κi ≥ µ∗d̃i, we have

Pr(t ′i, j ≥ κi)

≤ Pr(Xd̃i,µ∗ ≥ κi)

= F(d̃i−κi; d̃i,1−µ
∗)

≤ exp
[
−d̃iD

(
d̃i−κi

d̃i
∥ 1−µ

∗
)]

(by Chernoff bound)

= exp
[
−d̃iD

(
κi

d̃i
∥ µ
∗
)]

,

which proves (2.12) and (2.13) (as Pr(ti, j > κi)≤ Pr(t ′i, j ≥ κi)).

Proof of (2.14). Assume that κi ≥ µ2d̃i in ARRTwoNS△. For each edge (vi,v j), we have

∑k ̸=i, j 1(i,k)∈E ≤ d̃i. In addition, each of the edges (vi,vk) and (v j,vk) are included in E ′ with

probability at most µ , and all the events are independent.

If (vi,v j) is included in E ′ (which happens with probability at most µ), Pr(t ′i, j ≥ κi) is

less than or equal to the probability that the number of successes in the binomial distribution

B(d̃i,µ
2) is larger than or equal to κi. Otherwise (i.e., if (vi,v j) is not included in E ′), then

t ′i, j = 0.

Thus, if κi ≥ µ2d̃i, we have

Pr(t ′i, j ≥ κi)

≤ µ Pr(Xd̃i,µ2 ≥ κi)

= µF(d̃i−κi; d̃i,1−µ
2)

≤ µ exp
[
−d̃iD

(
d̃i−κi

d̃i
∥ 1−µ

2
)]

(by Chernoff bound)

= µ exp
[
−d̃iD

(
κi

d̃i
∥ µ

2
)]

,

and therefore (2.14) holds (as Pr(ti, j > κi)≤ Pr(t ′i, j ≥ κi)).
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If µ3d̃i≤ κi < µ2d̃i, (2.14) can be written as: Pr(ti, j > κi)≤ µ exp
[
−d̃iD

(
µ2 ∥ µ2)]= µ .

This clearly holds because each edge (vi,v j) is included in E ′ with probability at most µ .
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Figure B.3. Relative errors of #triangles, #2-stars, and the clustering coefficient in ARROneNS△
with double clipping. CostDL is calculated by (2.10) (when µ∗ ≥ 0.1, CostDL can be 6 Gbits and
400 Gbits in Gplus and IMDB, respectively).
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Appendix C

C.1 Experiments of the Clustering Coefficient

In Section 3.7, we showed that our triangle counting algorithm WShuffle∗△ accurately

estimates the triangle count within one round. We also show that we can accurately estimate the

clustering coefficient within one round by using WShuffle∗△.

We calculated the clustering coefficient as follows. We used WShuffle∗△ (c = 1) for

triangle counting and the one-round local algorithm in [102] with edge clipping [104] for 2-

star counting. The 2-star algorithm works as follows. First, each user vi adds the Laplacian

noise Lap( 1
ε1
) and a non-negative constant η ∈ R≥0 to her degree di to obtain a noisy degree

d̃i = di+Lap( 1
ε1
)+η with ε1-edge LDP. If d̃i < di, then vi randomly removes di−⌊d̃i⌋ neighbors

from her neighbor list. This is called edge clipping in [104]. Then, vi calculates the number

ri ∈ Z≥0 of 2-stars of which she is a center. User vi adds Lap( d̃i
ε2
) to ri to obtain a noisy 2-star

count r̃i = ri+Lap( d̃i
ε2
). Because the sensitivity of the k-star count is

( d̃i
k−1

)
, the noisy 2-star count

r̃i provides ε2-edge LDP. User vi sends the noisy degree d̃i and the noisy 2-star count r̃i to the

data collector. Finally, the data collector estimates the 2-star count as ∑
n
i=1 r̃i. By composition,

this algorithm provides (ε1 + ε2)-edge LDP. As with [104], we set η = 150 and divided the total

privacy budget ε as ε1 =
ε

10 and ε1 =
9ε

10 .

Let f̂△(G) be the estimate of the triangle count by WShuffle∗△ and f̂ 2∗(G) be the estimate

of the 2-star count by the above algorithm. Then we estimated the clustering coefficient as 3 f̂△(G)

f̂ 2∗(G)
.
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Figure C.1. Relative errors of the triangle count, 2-star count, and clustering coefficient when
WShuffle∗△ and the one-round local 2-star algorithm in [102] with edge clipping are used
(n = 107614 in Gplus, n = 896308 in IMDB, c = 1).

Figure C.1 shows the relative errors of the triangle count, 2-star count, and clustering

coefficient in Gplus and IMDB. We observe that the relative error of the clustering coefficient

is almost the same as that of the triangle count. This is because the 2-star algorithm is very

accurate, as shown in Figure C.1. 2-stars are much easier to count than triangles in the local

model, as each user can count her 2-stars. As a result, the error in the clustering coefficient is

mainly caused by the error in f̂△(G), which explains the results in Figure C.1.

In Figure C.1, we use the privacy budget ε for both f̂△(G) and f̂ 2∗(G). In this case,

we need 2ε to calculate the clustering coefficient. However, as shown in Figure C.1, we can

accurately estimate the 2-star count with a very small ε; e.g., the relative error is around 10−2

when ε = 0.1. Therefore, we can accurately calculate the clustering coefficient with a very small

additional budget by using such a small ε for 2-stars.

In summary, our triangle algorithm WShuffle∗△ is useful for accurately calculating the

clustering coefficient within one round.

C.2 Comparison with Two-Round Local Algorithms

In this work, we focus on one-round algorithms because multi-rounds algorithms require

a lot of user effort and synchronization. However, it is interesting to see how our one-round

algorithms compare with the existing two-round local algorithms [102, 104] in terms of accuracy,
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as the existing two-round algorithms provide high accuracy. Since they focus on triangle counting,

we focus on this task.

We evaluate the two-round local algorithm in [104] because it outperforms [102] in terms

of both the accuracy and communication efficiency. The algorithm in [104] works as follows. At

the first round, each user vi obfuscates bits ai,1, . . . ,ai,i−1 for smaller user IDs in her neighbor

list ai (i.e., lower triangular part of A) by the ARR and sends the noisy neighbor list to the

data collector. The data collector constructs a noisy graph G′ = (V,E ′) from the noisy neighbor

lists. At the second round, each user vi downloads some noisy edges (v j,vk) ∈ E ′ from the data

collector and counts noisy triangles (vi,v j,vk) so that only one edge (v j,vk) is noisy. User vi

adds the Laplacian noise to the noisy triangle count and sends it to the data collector. Finally,

the data collector calculates an unbiased estimate of the triangle count. This algorithm provides

ε-edge LDP. The authors in [104] propose some strategies to select noisy edges to download at

the second round. We use a strategy to download noisy edges (v j,vk) ∈ E ′ such that a noisy edge

is connected from vk to vi (i.e., (vi,vk) ∈ E ′) because it provides the best performance.

The algorithm in [104] controls the trade-off between the accuracy and the download

cost (i.e., the size of noisy edges) at the second round by changing the sampling probability

p0 in the ARR. It is shown in [104] that when p0 = 1, the MSE is O(nd3
max) and the download

cost of each user is (n−1)(n−2)
2 bits. In contrast, when p0 = O(n−1/2), the MSE is O(n2d3

max) and

the download cost is O(n logn). We evaluated these two settings. For the latter setting, we set

p0 =
1

q
√

n where q = eε

eε+1 so that the download cost is n logn bits. We denote the two-round

algorithm with p0 = 1 and 1
q
√

n by 2R-Large△ and 2R-Small△, respectively. 2R-Large△ requires

a larger download cost.

Figure C.2 shows the results. We observe that our WShuffle∗△ is outperformed by 2R-

Large△. This is expected, as WShuffle∗△ and 2R-Large△ provide the MSE of O(n2) and O(n),

respectively (when we ignore dmax). However, 2R-Large△ is impractical because it requires a too

large download cost: 6G and 400G bits per user in Gplus and IMDB, respectively. 2R-Small△ is

much more efficient (1.8M and 18M bits in Gplus and IMDB, respectively), and our WShuffle∗△
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Figure C.2. Comparison with the two-round local algorithm in [104]. The download costs of
2R-Small△ and 2R-Large△ are n logn and (n−1)(n−2)

2 bits, respectively (n = 107614 in Gplus,
n = 896308 in IMDB, c = 1).

is comparable to or outperforms 2R-Small△1. This is also consistent with the theoretical results

because both WShuffle∗△ and 2R-Small△ provide the MSE of O(n2).

In summary, our WShuffle∗△ is comparable to the two-round local algorithm in [104]

(2R-Small△), which requires a lot of user effort and synchronization, in terms of accuracy.

C.3 Comparison between the Numerical Bound and the
Closed-form Bound

In Section 3.7, we used the numerical upper bound in [88] for calculating ε in the shuffle

model. Here, we compare the numerical bound with the closed-form bound in Theorem 12.

Figure C.3 shows the results for WShuffle∗△, WShuffle△, and WShuffle□. We observe

that the numerical bound provides a smaller relative error than the closed-form bound when ε is

small. However, when ε ≥ 1, the relative error is almost the same between the numerical bound

and the closed-form bound. This is because when ε ≥ 1, the corresponding εL is close to the

maximum value log( n
16log(2/δ )) (= 5.86 in Gplus and 7.98 in IMDB) in both cases. Thus, for a

large ε , the closed-form bound is sufficient. For a small ε , the numerical bound is preferable.

1As with ARR△, 2R-Large△ and 2R-Small△ provide ε-edge DP (rather than 2ε-edge DP) because it uses only
the lower-triangular part of A. However, our conclusion is the same even if we double ε for only WShuffle∗△.
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Table C.1. Statistics of Gplus and the BA graphs (n = 107614).

davg dmax #triangles #4-cycles
Gplus 227.4 20127 1.07×109 1.42×1012

BA (m = 100) 199.8 5361 1.56×107 5.31×109

BA (m = 200) 399.3 7428 9.86×107 6.21×1010

C.4 Experiments on the Barabási-Albert Graphs

In Section 3.7, we used Gplus and IMDB as datasets. We also evaluated our algorithms

using synthetic datasets based on the BA (Barabási-Albert) graph model [16], which has a

power-law degree distribution.

The BA graph model generates a graph by adding new nodes one at a time. Each new

node has m ∈ N new edges, and each new edge is randomly connected an existing node with

probability proportional to its degree. The average degree is almost davg = 2m, and most users’

degrees are m. We set m = 100 or 200 and used the NetworkX library [96] (barabasi albert graph

function) to generate a synthetic graph based on the BA model. For the number n of users, we set

n = 107614 (same as Gplus) to compare the results between Gplus and the BA graphs. Table C.1

shows some statistics of Gplus and the BA graphs. It is well known that the BA model has a low

clustering coefficient [101]. Thus, the BA graphs have much smaller triangles and 4-cycles than

Gplus.
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Figure C.4. Relative error in the BA graph data (n = 107614, c = 1). p0 is the sampling
probability in the ARR.

Figure C.4 shows the results in the BA graphs. We observe that the relative error is

smaller when m = 200. This is because the BA graph with m = 200 includes larger numbers of

true triangles and 4-cycles, as shown in Table C.1. In this case, the denominator in the relative

error is larger, and consequently the relative error becomes smaller. By Figures 3.6 and C.4,

the relative error in the BA graph with m = 100 is larger than the relative error in Gplus. The

reason for this is the same – Gplus includes larger numbers of triangles and 4-cycles, as shown in

Table C.1. These results show that the relative error tends to be smaller in a dense graph that

includes a larger number of subgraphs.

Figures C.4 shows that when ε = 1, the relative errors of WShuffle∗△ (m = 100), WShuf-
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Figure C.5. Box plots of counts/estimates in the BA graph data (n = 107614, c = 1). #Triangles
and #4-Cycles represent the true triangle and 4-cycle counts, respectively. The box plot of each
algorithm represents the median (red), lower/upper quartile, and outliers (circles) of 20 estimates.
The leftmost values are smaller than 1.

fle□ (m = 100), WShuffle∗△ (m = 200), and WShuffle□ (m = 200) are 1.36, 0.447, 0.323, and

0.0928, respectively. Although the relative error of WShuffle∗△ is about 1 when ε = 1 and

m = 100, we argue that it is still useful for calculating a rough estimate of the triangle count.

To explain this, we show box plots of counts or estimates in the BA graphs in Figure C.5. This

figure shows that the true triangle count is about 107 and that WShuffle∗△ (m = 100) successfully

calculates a rough estimate (106 ∼ 108) in most cases (15 out of 20 cases). WShuffle□ (m = 100),

WShuffle∗△ (m = 200), and WShuffle□ (m = 200) are much more accurate and successfully

calculate an estimate in all cases. In contrast, the local algorithms WLocal△ and WLocal□ fail to

calculate a rough estimate.

In summary, our shuffle algorithms significantly outperform the local algorithms and

calculate a (rough) estimate of the triangle/4-cycle count with a reasonable privacy budget (e.g.,

ε = 1) in the BA graph data.
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C.5 Experiments on the Bipartite Graphs

As described in Section 3.1, the 4-cycle count is useful for measuring the clustering

tendency in a bipartite graph where no triangles appear. Therefore, we also evaluated our 4-cycle

counting algorithms using bipartite graphs generated from Gplus and IMDB.

Specifically, for each dataset, we randomly divided all users into two groups with equal

number of users. The number of users in each group is 53807 in Gplus and 448154 in IMDB.

Then, we constructed a bipartite graph by removing edges within each group. We refer to the

bipartite versions of Gplus and IMDB as the bipartite Gplus and bipartite IMDB, respectively.

Using these datasets, we evaluated the relative errors of WShuffle□ and WLocal□. Note that we

did not evaluate the triangle counting algorithms, because there are no triangles in these graphs.

Figure C.6 shows the results. We observe that WShuffle□ significantly outperforms

WLocal□ in these datasets. Compared to Figure 3.6(b), the relative error of WShuffle□ is a bit

larger in the bipartite graph data. For example, when ε = 1, the relative error of WShuffle□

is 0.147, 0.308, 0.217, and 0.626 in Gplus, IMDB, the bipartite Gplus, and the bipartite IMDB,

respectively. This is because the 4-cycle count is reduced by removing edges within each group.

In Gplus, the 4-cycle count is reduced from 1.42×1012 to 1.77×1011. In IMDB, it is reduced

from 2.37×1012 to 2.96×1011. Consequently, the denominator in the relative error becomes

smaller, and the relative error becomes larger.

Although the relative error of WShuffle□ with ε = 1 is about 0.6 in the bipartite IMDB,

WShuffle□ still calculates a rough estimate of the 4-cycle count. Figure C.7 shows box plots of

counts or estimates in the bipartite graph data. This figure shows that WLocal□ fails to estimate

the 4-cycle count. In contrast, WShuffle□ successfully calculates a rough estimate of the 4-cycle

count in all cases.

In summary, our WShuffle□ significantly outperforms WLocal□ and accurately counts

4-cycles in the bipartite graphs as well.
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Figure C.6. Relative error in the bipartite graph data (n = 107614 in Gplus, n = 896308 in
IMDB, c = 1).
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Figure C.7. Box plots of counts/estimates in the bipartite graph data (n = 107614 in Gplus,
n = 896308 in IMDB, c = 1). #4-Cycles represents the true 4-cycle count. Each box plot
represents the median (red), lower/upper quartile, and outliers (circles) of 20 estimates. The
leftmost values are smaller than 1.

C.6 Standard Error of the Average Relative Error

In Section 3.7, we evaluated the average relative error over 20 runs for each algorithm.

In this appendix, we evaluate the standard error of the average relative error.

Figure C.8 shows the standard error of the average relative error in Figure 3.6. We

observe that the standard error is small. For example, as shown in Table 3.4 (a), the average

relative error of WShuffle∗△ is 0.298 (ε = 0.5) or 0.277 (ε = 1) in Gplus. Figure C.8 shows that

the corresponding standard error is 0.078 (ε = 0.5) or 0.053 (ε = 1). Thus, we conclude that 20

runs are sufficient in our experiments.
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Figure C.8. Standard error of the average relative error in Figure 3.6. Each error bar represents
± standard error.

C.7 MSE of the Existing One-Round Local Algorithms

Here, we show the MSE of the existing one-round local algorithms ARR△ [104] and

RR△ [102]. Specifically, we prove the MSE of ARR△ because ARR△ includes RR△ as a special

case; i.e., the MSE of RR△ is immediately derived from that of ARR△.

We also note that the MSE of RR△ is proved in [102] under the assumption that a graph

is generated from the Erdös-Rényi graph model [16]. However, this assumption does not hold

in practice, because the Erdös-Rényi graph does not have a power-law degree distribution. In

contrast, we prove the MSE of ARR△ (hence RR△) without making any assumption on graphs.

Algorithm. First, we briefly explain ARR△. In this algorithm, each user vi obfuscates her
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neighbor list ai ∈ {0,1}n using the ARR (Asymmetric Randomized Response) whose input

domain and output range are {0,1}. Specifically, the ARR has two parameters ε ∈ R≥0 and

µ ∈ [0, eε

eε+1 ]. Given 1 (resp. 0), the ARR outputs 1 with probability µ (resp. µe−ε ). This

mechanism is equivalent to ε-RR followed by edge sampling, which samples each 1 with

probability p0 satisfying µ = eε

eε+1 p0. User vi applies the ARR to bits ai,1, . . . ,ai,i−1 for smaller

user IDs in her neighbor list ai (i.e., lower triangular part of A) and sends the noisy bits to the

data collector. Then, the data collector constructs a noisy graph G∗ based on the noisy bits.

The data collector counts triangles, 2-edges (three nodes with two edges), 1-edge (three

nodes with one edge), and no-edges (three nodes with no edges) in the noisy graph G∗. Let

m∗3,m
∗
2,m

∗
1,m

∗
0 ∈Z≥0 be the numbers of triangles, 2-edges, 1-edge, and no-edges, respectively, in

G∗. Note that m∗3 +m∗2 +m∗1 +m∗0 =
(n

3

)
. Finally, the data collector estimates the number f△(G)

of triangles as follows:

f̂△(G) =
1

(eε −1)3 (e
3εm̂3− e2εm̂2 + eεm̂1− m̂0), (C.1)

where

m̂3 =
m∗3
p3

0
(C.2)

m̂2 =
m∗2
p2

0
−3(1− p0)m̂3 (C.3)

m̂1 =
m∗1
p0
−3(1− p0)

2m̂3−2(1− p0)m̂2 (C.4)

m̂0 =
(n

3

)
− m̂3− m̂2− m̂1. (C.5)

RR△ is a special case of ARR△ where µ = eε

eε+1 (p0 = 1), i.e. without edge sampling.

Privacy and Time Complexity. The ARR is equivalent to ε-RR followed by edge sampling, as

explained above. Therefore, ARR△ provides ε-edge LDP by the post-processing invariance [73].

The time complexity of ARR△ is dominated by counting the number m3 of triangles in

the noisy graph G∗. The expectation of m3 is upper bounded as E[µ∗3 ]≤ µ3n3, as each user-pair
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has an edge in G∗ with probability at most µ . Thus, the time complexity of ARR△ can be

expressed as O(µ3n3). This is O(n2) when µ3 = O(1
n).

MSE. Below, we analyze the MSE of ARR△. First, we show that ARR△ provides an unbiased

estimate2:

Theorem 25. In ARR△, E[ f̂△(G)] = f△(G).

Proof. Let m3,m2,m1,m0 ∈ Z≥0 be the numbers of triangles, 2-edges, 1-edge, and no-edges,

respectively, in the noisy graph G′ obtained by applying only ε-RR. Because the ARR indepen-

dently samples each edge with probability p0, we have:

E[m∗3] = p3
0m3 (C.6)

E[m∗2] = 3p2
0(1− p0)m3 + p2

0m2 (C.7)

E[m∗1] = 3p0(1− p0)
2m3 +2p0(1− p0)m2 + p0m1. (C.8)

By (C.1), we have:

E[ f̂△(G)]

=
1

(eε −1)3 (e
3εE[m̂3]− e2εE[m̂2]+ eεE[m̂1]−E[m̂0])

=
1

(eε −1)3 (e
3εE[m̂3]− e2εE[m̂2]+ eεE[m̂1]−E[m̂0]). (C.9)

By (C.2), (C.3), (C.4), (C.5), (C.6), (C.7), and (C.8), we have:

E[m̂3] =
E[m∗3]

p3
0

= E[m3]

E[m̂2] =
E[m∗2]

p2
0
−3(1− p0)E[m̂3]

= 3(1− p0)m3 +m2−3(1− p0)m3

= E[m2]

2It is informally explained in [104] that the estimate of ARR△ is unbiased. We formalize their claim.
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E[m̂1] =
E[m∗1]

p0
−3(1− p0)

2E[m̂3]−2(1− p0)E[m̂2]

= 3(1− p0)
2E[m3]+2(1− p0)E[m2]+E[m1]

−3(1− p0)
2E[m3]−2(1− p0)E[m2]

= E[m1]

E[m̂0] =
(n

3

)
−E[m̂3]−E[m̂2]−E[m̂1]

=
(n

3

)
−E[m3]−E[m2]−E[m1]

= E[m0].

Thus, the equality (C.9) can be written as follows:

E[ f̂△(G)]

=
1

(eε −1)3 (e
3εE[m3]− e2εE[m2]+ eεE[m1]−E[m0]). (C.10)

Finally, we use the following lemma:

Lemma 3. [Proposition 2 in [102]]

E
[

e3ε

(eε−1)3 m3− e2ε

(eε−1)3 m2+
eε

(eε−1)3 m1− 1
(eε−1)3 m0

]
= f△(G). (C.11)

See [102] for the proof of Lemma 3. By (C.10) and Lemma 3, we have E[ f̂△(G)] =

f△(G).

Next, we show the MSE (= variance) of ARR△:

Theorem 26. When we treat ε as a constant, ARR△ provides the following utility guarantee:

MSE( f̂△(G)) = V[ f̂△(G)] = O
(

n4

µ6

)
.

By Theorem 26, the MSE of ARR△ is O(n6) when we set µ3 = O(1
n) so that the time
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complexity is O(n2). The MSE of RR△ (µ = 1) is O(n4). Below, we prove Theorem 26.

Proof. Let d3 =
e3ε

(eε−1)3 , d2 = − e2ε

(eε−1)3 , d1 =
eε

(eε−1)3 , and d0 = − 1
(eε−1)3 . Then, by (C.1), we

have:

V[ f̂△(G)] = V[d3m̂3 +d2m̂2 +d1m̂1 +d0m̂0]

= d2
3V[m̂3]+d2

2V[m̂2]+d2
1V[m̂1]+d2

0V[m̂0]

+∑
i̸= j

did j Cov(m̂i, m̂ j). (C.12)

By the Cauchy-Schwarz inequality,

|Cov(m̂i, m̂ j)| ≤
√

V[m̂i]V[m̂ j]

≤max{V[m̂i],V[m̂ j]}

≤ V[m̂i]+V[m̂ j]. (C.13)

Therefore, we have:

V[ f̂△(G)] = O(V[m̂3]+V[m̂2]+V[m̂1]+V[m̂0]). (C.14)

Below, we upper bound V[ f̂△(G)] in (C.14) by bounding V[m∗3], . . . ,V[m∗0] and then

V[m̂3], . . . ,V[m̂0]. Let Ti, j,k ∈ {0,1} be a random variable that takes 1 if and only if vi, v j, and vk

form a triangle in the noisy graph G∗. Then we have:

V[m∗3] = V

[
∑
i, j,k

Ti, j,k

]

= ∑
i< j<k

∑
i′< j′<k′

Cov[Ti, j,k,Ti′, j′,k′].

If vi,v j,vk and vi′,v j′ ,vk′ intersect in zero or one node, then Ti, j,k and Ti′, j′,k′ are independent and

their covariance is 0. There are only O(n4) choices of vi,v j,vk and vi′,v j′,vk′ that intersect in
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two or more nodes, as there can only be 4 distinct nodes. Therefore, we have V[m∗3] = O(n4).

Similarly, we can prove V[m∗2] =V[m∗1] =V[m∗0] = O(n4) by regarding Ti, j,k as a random variable

that takes 1 if and only if vi, v j, and vk form a 2-edge, 1-edge, and no-edges, respectively. In

summary, we have:

V[m∗3] = V[m∗2] = V[m∗1] = V[m∗0] = O(n4). (C.15)

By (C.15) and µ = eε

eε+1 p0, we can upper bound the variance of m̂3 in (C.2) as follows:

V[m̂3] =
V[m∗3]

p6
0

= O
(

n4

µ6

)
.

As with (C.12), (C.13), and (C.14), we can upper bound the variance of m̂2 in (C.3) by using the

Cauchy-Schwarz inequality as follows:

V[m̂2]

= V
[

m∗2
p2

0
− 3(1−p0)

p3
0

m∗3
]

=
V[m∗2]

p4
0

+
9(1− p0)

2V[m∗3]
p6

0
− 6(1− p0)Cov(m∗2,m

∗
3)

p5
0

≤ V[m∗2]
p4

0
+

9(1− p0)
2V[m∗3]

p6
0

+
6(1− p0)(V[m∗2]+V[m∗3])

p5
0

= O
(

n4

µ6

)

Similarly, we have

V[m̂1]

= V
[

m∗1
p0

+ 3(1−p0)
2

p3
0

m∗3−
2(1−p0)

p2
0

m∗2
]
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= O
(

n4

µ6

)
V[m̂0]

= V[m̂3 + m̂2 + m̂1]

= V
[

m∗3
p3

0
+

m∗2
p2

0
− 3(1−p0)

p3
0

m∗3 +
m∗1
p0

+ 3(1−p0)
2

p3
0

m∗3−
2(1−p0)

p2
0

m∗2
]

= O
(

n4

µ6

)
.

In summary,

V[m̂3] = V[m̂2] = V[m̂1] = V[m̂0] = O
(

n4

µ6

)
. (C.16)

By (C.14) and (C.16), V[ f̂△(G)] = O
(

n4

µ6

)
.

C.8 Proofs of Statements in Section 5

For these proofs, we will write fi,σ (G) as a shorthand for fσ(i),σ(i+1) and f̂i,σ (G) as a

shorthand for f̂σ(i),σ(i+1).

C.8.1 Proof of Theorem 13

From (3.4), the quantity f̂△i, j(G) can be written as follows:

f̂△i, j(G) =
1
2
( f̂ (1)i, j (G)+ f̂ (2)i, j (G)), (C.17)

where

f̂ (1)i, j (G) =
(zi, j−q)∑k∈I−(i, j)(yk−qL)

(1−2q)(1−2qL)
(C.18)

f̂ (2)i, j (G)) =
(z j,i−q)∑k∈I−(i, j)(yk−qL)

(1−2q)(1−2qL)
, (C.19)
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and each variable yk represents the output of the RR for the existence of wedge wi−k− j (see

Algorithm 6). We call f̂ (1)i, j (G) and f̂ (2)i, j (G) the first and second estimates, respectively.

First Estimate. Since variables zi, j and yk in (C.18) are independent, we have

E[ f̂ (1)i, j (G)] =
E[zi, j−q]∑k∈I−(i, j)E[yk−qL]

(1−2q)(1−2qL)
.

First, suppose (vi,v j) /∈ E. Then, zi, j = 1 with probability q, and E[zi, j− q] = 0. This means

E[ f̂ (1)i, j (G)] = f△i, j(G) = 0. Second, suppose (vi,v j) ∈ E. We have zi, j = 1 with probability 1−q.

We have E[zi, j− q] = 1− 2q. For any k ∈ I−(i, j), if wi−k− j = 0, then we have E[yk− qL] = 0.

If wi−k− j = 1, then E[yk− qL] = 1− 2qL. Written concisely, we can say E[yk− qL] = (1−

2qL)wi−k− j. Putting this together, we have

E[ f̂ (1)i, j (G)] =
(1−2q)∑k∈I−(i, j)(1−2qL)wi−k− j

(1−2q)(1−2qL)

= ∑
k∈I−(i, j)

wi−k− j

= f△i, j(G).

Thus, E[ f̂ (1)i, j (G)] = f△i, j(G) holds for both cases.

Second and Average Estimates. Similarly, we can prove that E[ f̂ (2)i, j (G)] = f△i, j(G) holds. Then,

by (C.17), E[ f̂△i, j(G)] = f△i, j(G) holds.

C.8.2 Proof of Theorem 14

Recall that f̂△i, j(G) is an average of the first estimate f̂ (1)i, j (G) and second estimate f̂ (2)i, j (G);

see (C.17), (C.18), and (C.19). We bound the variance of the first estimate.

First Estimate. Let H = (zi, j−q)∑k∈I−(i, j)(yk−qL). Using the law of total variance, we have

V[ f̂ (1)i, j (G)]
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=
1

(1−2q)2(1−2qL)2

(
Ez[Vy[H|zi, j]]+Vz[Ey[H|zi, j]]

)
,

where Ez (resp. Ey) represents the expectation over zi, j (resp. yk). Vz (resp. Vy) represents the

variance over zi, j (resp. yk).

We upper bound Vz[Ey[H|zi, j]] first. Let Ey = Ey[∑k∈I−(i, j) yk−qL]. When zi, j = 0, we

have

Ey[H] =−qEy[∑k∈I−(i, j) yk−qL] =−qEy.

When zi, j = 1, we have

Ey[H] = (1−q)Ey[∑k∈I−(i, j) yk−qL] = (1−q)Ey.

The difference between these two quantities is Ey. Since zi, j is a Bernoulli random variable

with bias q on either 0 or 1, we have Vz[Ey[H|zi, j]] = E2
y q(1−q). Recalling that Ey[yk−qL] =

(1−2qL)wi−k− j (see the proof of Theorem 13), by linearity of expectation we have that

Ey = ∑
k∈I−(i, j)

(1−2qL)wi−k− j

≤ (1−2qL)dmax.

Thus,

Vz[Ey[H|zi, j]]≤ q(1−2qL)
2d2

max.

Now, we upper bound Ez[Vy[H|zi, j]]. When zi, j = 0, we have H =−q∑k∈I−(i, j)(yk−q),

which is a sum of n−2 Bernoulli random variables. Thus, Vy[H|zi, j] = q2(n−2)qL(1−qL)≤

q2qLn. When zi, j = 1, we have by a similar argument that Vy[H|zi, j]≤ (1−q)2qLn. Regardless
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of the value of zi, j, both values attainable by Vy[H|zi, j] are at most nqL. Thus,

Ez[Vy[H|zi, j]]≤ nqL.

Putting all this together, we have the following upper-bound:

V[ f̂ (1)i, j (G)]≤ nqL +q(1−2qL)
2d2

max
(1−2q)2(1−2qL)2 .

Second and Average Estimates. Similarly, we can prove the same upper-bound for the second

estimate f̂ (2)i, j (G). Using (C.17) and Lemma 4 at the end of Appendix C.8.2, we have V[ f̂△i, j(G)]≤

V[ f̂ (1)i, j (G)], and the result follows.

Effect of Shuffling. When ε and δ are constants and εL ≥ logn+O(1), we have nqL = n
eεL+1 =

O(1) and qL = O(1/n), and the bound becomes

V[ f̂△i, j(G)]≤ O(d2
max).

Lemma 4. Let X ,Y be two real-valued random variables. Then V[X +Y ]≤ 4max{V[X ],V[Y ]}.

Proof. We have V[X +Y ] = V[X ] +V[Y ] + 2Cov(X ,Y ). By the Cauchy-Schwarz inequality,

we have Cov(X ,Y )≤
√

V[X ]V[Y ]≤max{V[X ],V[Y ]}. Our result follows by observing V[X ]+

V[Y ]≤ 2max{V[X ],V[Y ]}.

C.8.3 Proof of Theorem 15

First, we show that WSLE meets the desired privacy requirements. Let xk = wi−k− j. In

step 1 of WSLE, for each k ∈ I−(i, j), user vk sends yk = RW
εL
(xk) to the shuffler. Then, the shuffler

sends {yπ(k)|k ∈ I−(i, j)} to the data collector. Thus, by Theorem 12, {xk|k ∈ I−(i, j)} is protected
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with (ε,δ )-DP, where ε = f (n−2,εL,δ ). Note that changing ak,i will change xk if and only if

ak, j = 1. Thus, for any k ∈ I−(i, j), ak,i and ak, j are protected with (ε,δ )-DP.

In step 1, user vi (resp. v j) sends zi, j = RW
ε (ai, j) (resp. z j,i = RW

ε (a j,i)) to the data

collector. Since RW
ε provides ε-DP, ai, j and a j,i are protected with ε-DP.

Putting all this together, each element of the i-th and j-th columns in the adjacency matrix

A is protected with (ε,δ )-DP. Thus, by Proposition 6, WSLE provides (ε,δ )-element-level DP

and (2ε,2δ )-edge DP.

WShuffle△ interacts with A by calling WSLE on

(vσ(1),vσ(2)), . . . ,(vσ(2t−1),vσ(2t)).

Each of these calls use disjoint elements of A, and thus each element of A is still protected by

(ε,δ )-level DP and by (2ε,2δ )-edge DP.

C.8.4 Proof of Theorem 16

Notice that the number of triangles in a graph can be computed as

6 f△(G) = ∑
1≤i, j≤n,i ̸= j

f△i, j(G)

= n(n−1)Eσ [ f
△
i,σ (G)], (C.20)

where i ∈ [n] is arbitrary and σ is a random permutation on [n]. The constant 6 appears because

each triangle appears six times when summing up f△i, j(G); e.g., a triangle (v1,v2,v3) appears in

f△1,2(G), f△2,1(G), f△1,3(G), f△3,1(G), f△2,3(G), and f△3,2(G).

Note that there are two kinds of randomness in f̂△(G): randomness in choosing a

permutation σ and randomness in Warner’s RR. By (3.7), the expectation can be written as
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follows:

Eσ ,RR[ f̂△(G)] =
n(n−1)

6t

2t−1

∑
i=1,3,...

Eσ ,RR[ f̂
△
i,σ (G)].

By the law of total expectation, we have

Eσ ,RR[ f̂
△
i,σ (G)] = Eσ [ERR[ f̂

△
i,σ (G)|σ ]]

= Eσ [ f
△
i,σ (G)] (by Theorem 13)

=
6

n(n−1)
f△(G) (by (C.20)).

Putting all together,

Eσ ,RR[ f̂△(G)] =
n(n−1)

6t

2t−1

∑
i=1,3,...

Eσ ,RR[ f̂
△
i,σ (G)]

=
n(n−1)

6t

2t−1

∑
i=1,3,...

6
n(n−1)

f△(G)

= f△(G).

C.8.5 Proof of Theorem 17

Because f̂△(G) is unbiased, MSE( f̂△(G)) = V[ f̂△(G)]. By (3.10), the variance can be

written as follows:

Vσ ,RR[ f̂△(G)]

=
n2(n−1)2

36t2 Vσ ,RR

[
2t−1

∑
i=1,3,...

f̂△i,σ (G)

]

=
n2(n−1)2

36t2 Vσ

[
2t−1

∑
i=1,3,...

ERR

[
f̂△i,σ (G)

∣∣∣σ]] (C.21)
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+
n2(n−1)2

36t2 Eσ

[
2t−1

∑
i=1,3,...

VRR

[
f̂△i,σ (G)

∣∣∣σ]] , (C.22)

where in the step we used the law of total variance and the independence of each f̂△i,σ (G) given a

fixed σ .

Bounding (C.21): We can write

Vσ

[
2t−1

∑
i=1,3,...

ERR

[
f̂△i,σ (G)

∣∣∣σ]]= Vσ

[
2t−1

∑
i=1,3,...

f△i,σ (G)

]
. (C.23)

Each random variable f△i,σ (G) represents a uniform draw from the set { f△i, j(G) : i, j ∈ [n], i ̸=

j} without replacement. Applying Lemma 5, the variance in (C.23) is upper bounded by

tVσ [ f1,σ (G)]. We can upper bound this final term in the following:

Vσ

[
f△1,σ (G),

]
≤ Eσ [( f△1,σ (G))2]

=
1

n(n−1) ∑
1≤i, j≤n,i ̸= j

( f△i, j(G))2

=
1

n(n−1) ∑
(i, j)∈E

( f△i, j(G))2 (because f△i, j(G) = 0 for (i, j) /∈ E)

≤ d3
max

n−1
(because |E| ≤ ndmax and f△i, j(G)≤ dmax). (C.24)

Plugging this into (C.23), we obtain

Vσ

[
2t−1

∑
i=1,3,...

ERR

[
f̂△i,σ (G)

∣∣∣σ]]≤ td3
max

n−1
.

Bounding (C.22): For any value of i and permutation σ , we have from Theorem 14 that

VRR[ f̂
△
i,σ (G)|σ ]≤ errWSLE(n,dmax,q,qL).
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Thus,

Eσ

[
2t−1

∑
i=1,3,...

VRR

[
f̂△i,σ (G)

∣∣∣σ]]≤ t · errWSLE(n,dmax,q,qL).

Putting it together: Plugging the upper bounds in, we obtain a final bound of

V[ f̂△(G)]≤ n4

36t
errWSLE(n,dmax,q,qL)+

n3

36t
d3

max.

Finally, when ε and δ are constants, εL = log(n)+O(1), and t = ⌊n
2⌋,

errWSLE(n,dmax,q,qL) = O(d2
max),

and we obtain

V[ f̂△(G)] = O(n3d2
max +n2d3

max).

We can verify that n3d2
max ≥ n2d3

max for all values of dmax between 1 and n, and thus the bound

simplifies to O(n3d2
max).

Lemma 5. Let X be a finite subset of real numbers of size n. Suppose X1,X2, . . . ,Xk for k ≤ n

are sampled uniformly from X without replacement. Then,

V[X1 + · · ·+Xk]≤ kV[X1].

Proof. We have

V[X1 + · · ·+Xk] =
k

∑
i, j=1

Cov(Xi,X j).

We are done by observing each Xi has the same distribution, and so V[Xi] = V[X1], and by

showing Cov(Xi,X j)≤ 0 when i ̸= j. To prove the latter statement, let X = {x1, . . . ,xn} with

x1 ≤ x2 ≤ ·· · ≤ xn. Notice that for any i ̸= j, the distribution Xi|X j is uniformly distributed

on X \ {X j}. This implies that E[Xi|X j = x1] ≥ E[Xi|X j = x2] ≥ ·· · ≥ E[Xi|X j = xn]. Let

yℓ = E[Xi|X j = xℓ] for i, j ∈ [n]. We have y1 ≥ y2 ≥ ·· · ≥ yn for any i ∈ [n].
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Because X j is uniformly distributed across X , we have E[X j] =
1
n ∑

n
ℓ=1 xi. Next, we can

observe E[Xi] = ∑
n
ℓ=1E[Xi|X j = xℓ]Pr[X j = xℓ] = 1

n ∑
n
ℓ=1 yℓ. Finally, we have E[XiX j] = ∑

n
ℓ=1 xℓ

E[Xi|X j = xℓ]Pr[X j = xℓ] = 1
n ∑

n
ℓ=1 xℓyℓ. Using Chebyshev’s sum inequality, we are able to

deduce that E[XiX j]≤ E[Xi]E[X j], implying Cov(Xi,X j)≤ 0.

C.8.6 Proof of Theorem 18

WShuffle∗△ interacts with A in the same way as WShuffle△, plus the additional degree

estimates d̃i. The first calculation is protected by (ε2,δ )-element DP by Theorem 15. The

noisy degrees are calculated with the Laplace mechanism, which provides a protection of (ε1,0)-

element DP. Using composition, the entire computation provides (ε1 + ε2,δ )-element DP, and

by Proposition 6, the computation also provides (2(ε1 + ε2),2δ )-edge DP.

C.8.7 Proof of Theorem 19

Let f△∗ be the estimator returned by WShuffle∗△ to distinguish it from that returned by

WShuffle△. Define V+ = {i : i ∈ [n], d̃i ≥ cd̃avg}, and let V− = [n] \V+. The randomness in

WShuffle∗△ comes from randomized response, from the choice of σ , and from the choice of D.

Note that i ∈ D if and only if 1σ(i)∈V+1σ(i+1)∈V+ . For any V+ and V−,

E[ f̂△∗ (G)|V+,V−]

= Eσ ,RR

[
n(n−1)

6t ∑
i∈D

f̂△i,σ (G)

∣∣∣∣∣V+,V−
]

= Eσ ,RR

[
n(n−1)

6t

2t−1

∑
i=1,3,...

1σ(i)∈V+1σ(i+1)∈V+ f̂△i,σ (G)

∣∣∣∣∣V+,V−
]

=
n(n−1)

6t

2t−1

∑
i=1,3,...

Eσ ,RR[1σ(i)∈V+1σ(i+1)∈V+ f̂△i,σ (G)|V+,V−]

=
n(n−1)

6t

2t−1

∑
i=1,3,...

Eσ [1σ(i)∈V+1σ(i+1)∈V+ f△i,σ (G)|V+,V−], (C.25)
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where the last line uses the fact that for a fixed i,σ , ERR[ f̂i,σ (G)] = fi,σ (G) (Theorem 13). Using

the inequality f△i,σ (G)≤min{dσ(i),dσ(i+1)}, and the fact that f△i,σ (G)= 0 unless (vσ(i),vσ(i+1))∈

E, we obtain

|Eσ [ f
△
i,σ (G)−1σ(i)∈V+1σ(i+1)∈V+ f△i,σ (G)|V+,V−]|

≤ Eσ [min{dσ(i),dσ(i+1)}1vσ(i),vσ(i+1)∈E1σ(i)∈V−∨σ(i+1)∈V−

|V+,V−].

Expanding the second equation, we obtain

1
n(n−1) ∑

1≤i, j≤n,i ̸= j
min{di,d j}1(i, j)∈E1i∈V−∨ j∈V−

=
1

n(n−1)

(
∑

j∈V−,(i, j)∈E
min{di,d j}

+ ∑
i∈V−, j∈V+,(i, j)∈E

min{di,d j}
)

≤ 1
n(n−1)

(
∑

j∈V−,(i, j)∈E
d j + ∑

i∈V−, j∈V+,(i, j)∈E
di

)

≤ 1
n(n−1)

(
∑

j∈V−
d2

j + ∑
i∈V−

d2
i

)

≤ 2
n(n−1)

d(2)
sum,−,

where d(2)
sum,− = ∑i∈V− d2

i .

Applying the triangle inequality,

∣∣∣∣∣ 2t−1

∑
i=1,3,...

Eσ [1σ(i)∈V 1σ(i+1)∈V f△i,σ (G)|V ]−
2t−1

∑
i=1,3,...

Eσ [ f
△
i,σ (G)]

∣∣∣∣∣
≤ 2t

n(n−1)
d(2)

sum,−
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Plugging in (C.25) and (C.20), we obtain

∣∣∣∣ 6t
n(n−1)

E[ f̂△∗ (G)|V+,V−]− 6t
n(n−1)

f△(G)

∣∣∣∣≤ 2t
n(n−1)

d(2)
sum,−∣∣∣E[ f̂△∗ (G)|V+,V−]− f△(G)

∣∣∣≤ 1
3

d(2)
sum,−. (C.26)

Marginalizing over all V+ and V−, and applying the triangle inequality again, we obtain

∣∣∣E[ f̂△∗ (G)]− f△(G)
∣∣∣≤ 1

3
E[d(2)

sum,−].

Now, we have

E[d(2)
sum,−] =

n

∑
i=1

d2
i Pr[i ∈V−]

≤ n(cdavg)
2 + ∑

i∈[n],di≥cdavg

d2
i Pr[i ∈V−].

In the second line, we split the sum into those nodes where di ≥ cdavg (of which there are only

nα , since c≥ λ ), and other nodes. In order for i to be in V− for a node such that di ≥ cdavg, we

must have that Lap( 1
ε1
) ≤ di− cdavg. The probability of this occuring is at most e−(di−cdavg)ε1 .

Using calculus, we can show the expression d2
i e−(di−cdavg)ε1 is maximized when di = cdavg (when

cdavg ≥ 2
ε1

), and when di =
2
ε1

(otherwise).

In the first case, we have

∑
i∈[n],di≥cdavg

d2
i Pr[i ∈V−]≤ nα(cdavg)

2.

In the second, we have

∑
i∈[n],di≥cdavg

d2
i Pr[i ∈V−]≤ nα

(
2
ε1

)2

e−2+cdavgε1 ≤ nα

(
2
ε1

)2

.
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Thus, our overall bound becomes

E[d(2)
sum,−] =

n

∑
i=1

d2
i Pr[i ∈V−]

≤ n(cdavg)
2 +nα

(
2
ε1

)2

,

and therefore ∣∣∣E[ f̂△∗ (G)]− f△(G)
∣∣∣≤ nc2d2

avg

3
+

4nα

3ε2
1
.

C.8.8 Proof of Theorem 20

Define f△∗ , V+, and V− be as they are defined in Appendix C.8.7. Using the law of total

variance, we have

V[ f̂△∗ (G)] = EV+,V−V[ f̂△∗ (G)|V+,V−]+VV+,V−E[ f̂△∗ (G)|V+,V−]. (C.27)

From (C.26), E[ f̂△∗ (G)|V+,V−] is always in the range [ f△(G)− d
3 , f△(G)+ d

3 ], where

d = maxV−⊆[n]∑i∈V− d2
i ≤ ∑

n
i=1 d2

i ≤ nd2
max. Because the maximum variance of a variable

bounded between [A,B] is (B−A)2

4 , the second term of (C.27) can be written as

VV+,V−E[ f̂△∗ (G)|V+,V−]≤ (∑n
i=1 d2

i )
2

9
≤ n2d4

max
9

.

Again using the law of total variance on V[ f̂△∗ (G)|V+,V−], we obtain, similar to (C.21)

and (C.22):

(
6t

n(n−1)

)2

V[ f̂△∗ (G)|V+,V−]

= Vσ ,RR

[
2t−1

∑
i=1,3,...

1σ(i)∈V+1σ(i+1)∈V+ f̂△i,σ (G)

∣∣∣∣∣V+,V−
]
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= Vσ

[
2t−1

∑
i=1,3,...

1σ(i)∈V+1σ(i+1)∈V+ERR

[
f̂△i,σ (G)

∣∣∣σ]∣∣∣∣∣V+,V−
]

(C.28)

+Eσ

[
2t−1

∑
i=1,3,...

1σ(i)∈V+1σ(i+1)∈V+VRR

[
f̂△i,σ (G)

∣∣∣σ]∣∣∣∣∣V+,V−
]

(C.29)

Bounding (C.28): Similar to the process for bounding (C.21), we have that ERR[ f̂
△
i,σ (G)|σ ] =

f△i,σ (G). The collection {1σ(i)∈V+1σ(i+1)∈V+ f△i,σ (G)} for i ∈ {1,3, . . . ,2t−1} consists of draws

without replacement from the set

T = {1i∈V+1 j∈V+ f△i, j(G) : i, j ∈ [n], i ̸= j},

We can then apply Lemma 5 for an upper bound of

tVσ [1σ(1)∈V+1σ(2)∈V+ f1,σ (G)].

Using the same line of reasoning as that to obtain (C.24), we obtain an upper bound of

Vσ [1σ(1)∈V+1σ(2)∈V+ f△1,σ (G)]

≤ Eσ [1σ(1)∈V+1σ(2)∈V+ f△1,σ (G)2]

≤ 1
n(n−1) ∑

(vi,v j)∈E,i∈V+, j∈V+

f△i, j(G)2

≤ 1
n(n−1)

|V+|d3
max,

with the last line holding because there are at most |V+|dmax edges within V+. Thus, (C.28) is at

most t|V+|d3
max

n(n−1) .

Bounding (C.29): Similar to the process for bounding (C.22), we use Theorem 14, along with

the fact that Eσ [1σ(i)∈V+1σ(i+1)∈V+] = |V+|(|V+|−1)
n(n−1) ≤ |V+|2

n2 , to obtain an upper bound of

t|V+|2
n2 errWSLE(n,dmax,q,qL).
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Putting it together: Summing together (C.28) and (C.29), manipulating constants, and taking

an expectation over V , we obtain

EV+,V−V[ f̂△∗ (G)|V+,V−]

≤ n2d3
maxE[|V+|]

36t
+

n2E[|V+|2]
36t

errWSLE(n,dmax,q,qL).

Plugging back into (C.27), we have

V[ f̂△∗ (G)]≤ n2d4
max

9
+

n2E[|V+|2]
36t

errWSLE(n,dmax,q,qL)+
n2d3

maxE[|V+|]
36t

.

We are given that there are just nα nodes with degrees higher than λdavg. Let Li be the Laplace

random variable added to di. We have Pr[Li ≥ T ]≤ e−T ε1 for T > 0. Observe

|V+| ≤ nα + ∑
i∈[n],di≤λdavg

1Li≥(c−λ )davg.

We have E[1Li≥(c−λ )davg ] = e−(c−λ )ε1davg , which by the condition on c, is at most nα−1. Thus,

E[|V+|]≤ nα +n ·nα−1 = 2nα . Similarly,

E[|V+|2]≤ n2α +2nαE[|V+|]

+2 ∑
i, j∈[n],i ̸= j,di,d j≤λdavg

n2(α−1)+ ∑
i∈[n],di≤λdavg

nα−1

≤ n2α +4n2α +2n2α +nα

≤ 8n2α .
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Plugging in, we obtain

V[ f̂△∗ (G)]≤ n2d4
max

9
+

2n2+2α

9t
errWSLE(n,dmax,q,qL)+

n2+αd3
max

36t
.

When ε and δ , are treated as constants, εL = logn+O(1), and t = ⌊n
2⌋, then

errWSLE(n,dmax,q,qL) = O(d2
max), and

V[ f̂△∗ (G)]≤ O(n2d4
max +n1+2αd2

max +n1+αd3
max)

= O(n2d4
max +n1+2αd2

max).

We can remove the third term because it is always smaller than the first term.

C.9 Proofs of Statements in Section 6

In the following, we define f∧i,σ (G) = f∧
σ(2i),σ(2i−1)(G) and f̂∧i,σ (G) = f̂∧

σ(2i),σ(2i−1)(G)

as a shorthand. Similarly, we do the same with f□i,σ , f̂□i,σ by replacing ∧ with □.

C.9.1 Proof of Theorem 21

WShuffle□ interacts with A in the same way as WShuffle△. The subsequent processes

(lines 7-10 in Algorithm 10) are post-processing on {yπi(k)|k ∈ I−(σ(i),σ(i+1))}. Thus, by the

post-processing invariance [73], WShuffle□ provides (ε,δ )-element DP and (2ε,2δ )-element

DP in the same way as WShuffle△ (see Appendix C.8.3 for the proof of DP for WShuffle△).

C.9.2 Proof of Theorem 22

Notice that the number of 4-cycles can be computed as

4 f□(G) = ∑
1≤i, j≤n,i ̸= j

f□i, j(G) (C.30)
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= n(n−1)Eσ [ f□i,σ (G)], (C.31)

where the 4 appears because for every 4-cycle, there are 4 choices for diagonally opposite nodes.

We will show that f̂∧i, j(G) = ∑k∈I−(i, j)
yk−qL
1−2qL

is an unbiased estimate of f∧i, j(G). Since we

use εL-RR in WS, we have

E[yk] = (1−qL)wi−k− j +qL(1−wi−k− j).

Thus, we have:

E
[

yk−qL

1−2qL

]
=

(1−qL)wi−k− j−qLwi−k− j

1−2qL

= wi−k− j.

The sum of these is clearly the number of wedges connected to users vi and v j. Therefore,

E[ f̂∧i, j(G)] = f∧i, j(G).

Furthermore, (1−2qL) f̂i, j(G) is a sum of (n−2) Bernoulli random variables shifted by

(n−2)qL. Each Bernoulli r.v. has variance qL(1−qL), and thus V[ f̂i, j(G)] = (n−2)qL(1−qL)
(1−2qL)2 . This

information is enough to verify that

E[ f̂∧i, j(G)2] = E[ f̂∧i, j(G)]2 +V[ f̂∧i, j(G)]

= f∧i, j(G)2 +
(n−2)qL(1−qL)

(1−2qL)2 .

Putting this together and plugging into (3.15), we obtain

ERR

[
f̂□i, j(G)

]
= ERR

[
f̂∧i, j(G)( f̂∧i, j(G)−1)

2
− n−2

2
qL(1−qL)

(1−2qL)2

]

=
f∧i, j(G)( f∧i, j(G)−1)

2
, (C.32)
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In the above equation, we emphasize that the randomness in the expectation is over the random-

ized response used by the estimator f̂ . From (C.32), the estimate f̂□(G) satisfies:

E[ f̂□(G)] = Eσ [ERR[ f̂□(G)|σ ]]

=
n(n−1)

4t

t

∑
i=1

Eσ

[
ERR

[
f̂i(G)( f̂i(G)−1)

2
− n−2

2
qL(1−qL)

(1−2qL)2

∣∣∣∣σ]]
=

n(n−1)
4t

t

∑
i=1

Eσ

[
f̂i,σ (G)( f̂i,σ (G)−1)

2

]
=

n(n−1)
4

Eσ

[
f□i,σ (G)

]
= f□(G).

C.9.3 Proof of Theorem 23

From (3.16), we have

V[ f̂□(G)] =

(
n(n−1)

4t

)2

V

[
t

∑
i=1

f̂□i,σ (G)

]
.

Using the law of total variance, along with the fact that the f̂□i,σ (G) are mutually independent

given σ , we write

Vσ ,RR

[
t

∑
i=1

f̂□i,σ (G)

]
= Eσ

[
t

∑
i=1

VRR

[
f̂□i,σ (G)

∣∣∣σ]] (C.33)

+Vσ

[
t

∑
i=1

ERR

[
f̂□i,σ (G)

∣∣∣σ]] . (C.34)

We will now shift our attention to upper bounding the terms on the left- and right-hand sides of

the above sum.

Upper bounding (C.33): Our analysis will apply to any fixed σ , and we will assume for the rest
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of the proof that σ is a fixed constant permutation. By (3.15), we have

VRR[ f̂□i,σ (G)|σ ] = VRR

[
f̂∧i,σ (G)( f̂∧i,σ (G)−1)

2

∣∣∣∣∣σ
]
.

Each term can be upper bounded using the fact that V[X +Z]≤ 4max{V[X ],V[Z]} for random

variables X ,Z. Thus, for any i, we have V[ f̂∧i,σ (G)( f̂∧i,σ (G)−1)
2 ]≤max{V[ f̂∧i,σ (G)2],V[ f̂∧i,σ (G)]}. In

Appendix C.9.2, we showed

V[ f̂∧i,σ (G)]≤ nqL(1−qL)

(1−2qL)2 . (C.35)

To bound V[ f̂∧i,σ (G)2], first we define I = I−(σ(2i),σ(2i−1)) as a shorthand and plug in (3.14):

V[ f̂∧i,σ (G)2] =
1

(1−2qL)4V

[
∑

k,ℓ∈I
ykyℓ

]
.

We can write

V

[
∑

k,ℓ∈I
ykyℓ

]
= ∑

k,ℓ,k′,ℓ′∈I
Cov(ykyℓ,yk′yℓ′)

= 4 ∑
k,ℓ,k′ distinct in I

Cov(ykyℓ,yk′yℓ)

+4 ∑
k,ℓ distinct in I

Cov(ykyℓ,y2
k)

+∑
k∈I

Cov(y2
k ,y

2
k),

where in the second equality we have canceled the covariances equal to 0 due to independence.

Note that the coefficient in the first term is 4 because Cov(ykyℓ,yk′yℓ) captures Cov(ykyℓ,yk′yℓ),

Cov(ykyℓ,yℓyk′), Cov(yℓyk,yk′yℓ), and Cov(yℓyk,yℓyk′). In other words, there are four possible

combinations depending on the positions of two yℓ’s. Similarly, the coefficient in the second

term is 4 because Cov(ykyℓ,y2
k) captures Cov(ykyℓ,y2

k), Cov(yℓyk,y2
k), Cov(y2

k ,ykyℓ), and Cov(y2
k ,

yℓyk).
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Now, we have that

Cov(ykyℓ,yk′yℓ) = E[ykyℓyk′yℓ]−E[ykyℓ]E[yk′yℓ]

= E[y2
ℓ ]E[yk]E[yk′]−E[yℓ]2E[yk]E[yk′]

= E[yk]E[yk′]V[yℓ].

We unconditionally have that V[yℓ]≤ qL, and there are at most dmax choices for k such

that E[yk] = 1−qL, and the remaining choices satisfy E[yk] = qL. Finally, there are at most n

choices for ℓ in I. Thus,

∑
k,ℓ,k′ distinct in I

Cov(ykyℓ,yk′yℓ)

≤ ∑
k,ℓ,k′ distinct in I

E[yk]E[yk′]V[yℓ]

≤ nqL(d2
max(1−qL)

2 +2dmax(n−dmax)(1−qL)qL

+(n−dmax)
2q2

L)

≤ nqL(d2
max +2ndmaxqL +n2q2

L)

≤ nqL(dmax +nqL)
2.

Now, using the fact that yk is zero-one valued, we have

Cov(ykyℓ,y2
k) =Cov(ykyℓ,yk) = E[yℓ]V(yk).

There are at most n choices for k, and there are at most dmax choices such that E[yℓ] = 1−qL,

and the remaining choices satisfy E[yℓ] = qL. Thus,

∑
k,ℓ distinct in I

Cov(ykyℓ,y2
k)
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≤ ∑
k,ℓ distinct in I

E[yℓ]V[yk]

≤ nqL(dmax(1−qL)+(n−dmax)qL)

≤ nqL(dmax +nqL).

Finally, V[y2
k ] = V[yk]≤ qL, and so ∑k∈I Cov(y2

k ,y
2
k)≤ nqL. Thus,

V

[
∑

k,ℓ∈I
ykyℓ

]
≤
(
4nqL(dmax +nqL)

2

+4nqL(dmax +nqL)+nqL
)

≤ 9nqL(dmax +nqL)
2.

This implies

V[ f̂∧i,σ (G)2]≤ 9nqL(dmax +nqL)
2

(1−2qL)4 . (C.36)

We clearly have that (C.36) is bigger than (C.35), and thus (C.36) is an upper bound for

VRR[ f̂□i,σ (G)|σ ]. Thus, (C.33) is upper bounded by 9ntqL(dmax+nqL)
2

(1−2qL)4 .

Upper bounding (C.34): By (3.16), we can write

Vσ

[
t

∑
i=1

ERR

[
f̂□i,σ (G)

∣∣∣σ]]= Vσ

[
t

∑
i=1

f□i,σ (G)

]
.

When σ is chosen randomly, the random variables fi,σ (G) for 1≤ i≤ t are a uniform sampling

without replacement from the set

F =
{

f□i, j(G) : i, j ∈ [n], i ̸= j
}
.
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Applying Lemma 5, we have

Vσ

[
t

∑
i=1

f□i,σ (G)

]
≤ tVσ [ f□1,σ (G)].

Now, we have

Vσ [ f□1,σ (G)]≤ Eσ [ f□1,σ (G)2]

=
1
4
Eσ

[
( f∧i,σ (G)( f∧i,σ (G)−1))2]

≤ 1
4
Eσ

[
f∧i,σ (G)4]

=
1

4n(n−1) ∑
1≤i, j≤n,i ̸= j

f∧i, j(G)4.

Let E2 be the set of node pairs for which there exists a 2-hop path between them in G. We have

|E2| ≤ nd2
max. Now, we can write

1
4n(n−1) ∑

1≤i, j≤n,i̸= j
f∧i, j(G)4 =

1
4n(n−1) ∑

(i, j)∈E2

f∧i, j(G)4

≤ 1
4n(n−1) ∑

(i, j)∈E2

d4
max

≤ d6
max

4(n−1)
.

This allows to conclude that the variance of (C.34) is at most td6
max

4(n−1) .

Putting it together: Substituting in (C.33) and (C.34), we obtain

V[ f̂□(G)]≤ n2(n−1)2

16t2

(
td6

max
4(n−1)

+
9ntqL(dmax +nqL)

2

(1−2qL)4

)
≤ 9n5qL(dmax +nqL)

2

16t(1−2qL)4 +
n3d6

max
64t

.
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Appendix D

D.1 Background Cntd.

Data: l ∈ {0,1}n - True adjacency list
Result: q ∈ {0,1}n - Reported (noisy) adjacency list

1 ρ = 1
1+eε ;

2 for i ∈ [n] do
3 q[i] = RRρ(l[i]);
4 end
5 return q

Algorithm 18: Definition of randomized response RRρ : {0,1}n 7→ {0,1}n

D.2 Proofs

First, we introduce notation and preliminary results used in our proofs.

D.2.1 Notation

In this section, for a graph G with vertices [n], we let di(S) for S⊆ [n] denote the number

of neighbors of node i in the set S. We will often abuse notation for a set S of users by also

letting S be the indices of the users in the set. Thus, we may let i ∈S be the index of some

user in S . Finally, we sometimes refer to user Ui simply as user i.
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D.2.2 Preliminary Results

We will heavily make use of the following concentration result:

Lemma 6. Let X1, . . . ,Xn denote independent random variables such that Xi ∼ Bernoulli(pi).

Let v = ∑
n
i=1 pi(1− pi), and X = ∑

n
i=1 Xi. Then,

Pr[|X−E[X ]| ≥max{1.5ln
2
δ
,

√
2v ln

2
δ
}]≤ δ .

Proof. Center the random variables so that Zi = Xi− pi; the variance v does not change. We

know by Bernstein’s inequality that for all t ≥ 0,

Pr[Z ≥ t]≤ exp
( −t2

2(v+ t/3)

)
≤ exp

(
−max

{
t2

2v
,
3t
2

})
.

Thus, if t ≥max{3
2 ln 2

δ
,
√

2v ln 2
δ
}, then Pr[Z ≥ t]≤ δ

2 . Applying the argument to−Z, we obtain

the two-sized bound.

Next, we observe the following facts about randomized response.

Fact 2. If user i ∈H , then E[qi[ j]] = ρ +(1−2ρ)di( j).

Fact 3. If users i, j ∈H , then E[qi[ j]q j[i]] = ρ2 +(1−2ρ)di( j).

D.2.3 Proof of Theorem 1

Recall that in the Laplace mechanism, a user’s degree estimate d̂i is simply di+Li, where

Li ∼ Lap(1
ε
) is a Laplace random variable generated by the user.

Correctness. The correctness guarantee follows from the concentration of Laplace distribution:

Each Laplace random variable Li satisfies |Pr[|Li| ≥ t]≤ e−tε . Setting t = 1
ε

ln n
δ

and applying

the union bound, each of the n Laplace variables will satisfy |Li| ≤ 1
ε

ln δ

n with probability 1−δ ,

268



and if this holds, then |di− d̂i| ≤ 1
ε

ln δ

n for honest users.

Tight Soundness. Consider the empty graph. A malicious user Ui may report n− 1, the

maximum possible degree, and thus d̂i = n−1 while di = 0.

D.2.4 Proof of Theorem 2

Correctness.

As defined in SimpleRR, the estimator count1
i is given by

count1
i = (∑

j<i
q j[i]+∑

i< j
qi[ j]) (D.1)

We may alternatively split the above sum into honest bits and malicious bits as count1
i =

honi +mali. Here,

honi = ∑
j<i, j∈H

q j[i]+∑
i< j

qi[ j]

mali = ∑
j<i, j∈M

q j[i].

Since all bits in the sum honi are honest, by Fact 2 we have E[honi] = ρ|Hi|+(1−2ρ)di(Hi),

where Hi = H ∪{1,2, . . . , i−1}.

Furthermore, 0≤mali ≤ |Mi|, where Mi = [n]\Hi. This implies |mali−Emal,i| ≤ |Mi|,

where Emal,i = ρ|Mi|+(1−2ρ)di(Mi). By Lemma 6 and a union bound, with probability 1−δ ,

we have for all i ∈Hi that

∣∣honi−E[honi]+mali−Emal,i
∣∣≤√2ρn ln

2n
δ

+ |Mi|

=⇒
∣∣count1

i −ρn− (1−2ρ)di
∣∣≤√2ρn ln

2n
δ

+m

=⇒ |d̂i−di| ≤
1

1−2ρ

√
2ρn ln

2n
δ

+
m

1−2ρ
.
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Tight Soundness. Consider the empty graph, and suppose that user n is malicious. Since this

user reports all his edges, he may report qi[ j] = 1 for all j < 1. Thus, d̂n ≥ n− 1, but dn = 0,

showing n−1-tight soundness.

D.2.5 Proof of Theorem 3

Recall the key quantities defined in RRCheck (Algorithm 12):

count11
i = ∑

j∈[n]\i
qi[ j]q j[i] (D.2)

count01
i = ∑

j∈[n]\i
(1−qi[ j])q j[i]. (D.3)

We now prove correctness.

Correctness. It will be helpful to split count11
i = hon11

i +mal11
i , where hon11

i =∑ j∈H \i qi[ j]q j[i]

and mal11
i = ∑ j∈M \i qi jq ji. We define hon01

i and mal01
i similarly such that they satisfy count01

i =

hon01
i +mal01

i . We break the proof into two claims: showing that honest users receive an accurate

estimate and that they are not disqualified.

Claim 1. We have

Pr[∀Ui ∈H . |d̂i−di| ≥
m+2

√
ρn ln 4n

δ

1−2ρ
]≤ δ

2
.

Proof. Let Ui ∈H . Then, hon11
i is a sum of h−1 Bernoulli random variables with p = ρ2 or

(1−ρ)2. By Fact 3, we have

E[hon11
i ] = ρ

2(h−1)+(1−2ρ)di(H )

Now, v defined in Lemma 6 satisfies (h−1)ρ2≤ v≤ (h−1)(1−(1−ρ)2)≤ 2(h−1)ρ . Applying

the Lemma and a union bound, we have with probability at least 1− δ

2 that for all i ∈H ,

|hon11
i −E[hon11

i ]| ≤ 2
√

(h−1)ρ ln 4n
δ
. (D.4)
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On the other hand, we have that 0 ≤ mal11
i ≤ m, so if we let E11

mal,i = ρ2m + (1−

2ρ)di(M ) (defined for convenience later), then |mal11
i −E11

mal,i| ≤ m.

Applying the triangle inequality, the following holds over all i ∈H :

|hon11
i −E[hon11

i ]+mal11
i −E11

mal,i| ≤ m+2
√

ρn ln 4n
δ

=⇒ |count11
i −ρ

2(n−1)− (1−2ρ)di| ≤ m+2
√

ρn ln 4n
δ

=⇒ |d̂i−di| ≤
m+2

√
ρn ln 4n

δ

1−2ρ

This proves the claim.

Next, we show that honest users are not likely to be disqualified.

Claim 2. We have

Pr[∀Ui ∈H . |count01
i −ρ(1−ρ)(n−1)| ≥ τ]≤ δ

2
,

where τ = m+
√

2ρn ln 4n
δ

Proof. Let Ui be honest. Then, the quantity hon01
i consists of h−1 Bernoulli random variables

drawn from ρ(1−ρ). We have

E[hon01
i ] = ρ(1−ρ)(h−1).

As defined in Lemma 6, v satisfies 1
2(h−1)ρ ≤ P≤ (h−1)ρ . Applying the Lemma and a union

bound, we have with probability 1− δ

2 that for all i ∈H ,

|hon01
i −E[hon01

i ]| ≤
√

2ρ(h−1) ln 4n
δ

(D.5)
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Noticing that |mal01
i −mρ(1−ρ)| ≤ m, we have by the triangle inequality that

|count01
i −ρ(1−ρ)(n−1)| ≥ m+

√
2ρn ln 4n

δ
.

This concludes the proof.

Putting it together,

(
m(eε+1

eε−1)+
√

n
2
√
(eε+1) ln 4n

δ

eε−1 ,δ

)
-correctness follows.

Soundness.

When player i is a malicious player, we can still prove a tight bound on count11
i +count01

i ,

and this combined with the check in SimpleRR means that his degree estimate will be accurate.

Claim 3. We have

Pr[∀i ∈M . |count11
i + count01

i

− (1−2ρ)di−ρ(n−1)| ≤ τ]≥ 1−δ ,

where τ = m+
√

2ρn ln 4n
δ

.

Proof. Observe that count11
i + count01

i = ∑
n
j=1, j ̸=i q j[i]. Let hon1

i denote the sum of the q j[i]

where j is honest, and mal1
i denote the sum of the malicious players. By Fact 2, we have

E[hon1
i ] = di(H )(1−2ρ)+hρ . Applying a union bound over Lemma 6, for all i ∈M , we have

with probability at most δ that

|hon1
i −E[hon1

i ]| ≥
√

2ρn ln 2m
δ

(D.6)

Because |mal1
i − (1−2ρ)di(M )−ρ(m−1)| ≤m, the claim follows from the triangle inequality.

To conclude the proof, consider any malicious user i ∈M is not disqualified (d̂i ̸=⊥),

as if he is then the soundness event trivially happens. Thus, it must be true that |count01
i − (n−
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1)ρ(1−ρ)| ≤ τ . However, given this and the event in Claim 3 holds, it follows by the triangle

inequality that

|count11
i − (1−2ρ)di−ρ

2(n−1)| ≤ 2τ

|d̂i−di| ≤
2τ

1−2ρ

This establishes

(
2m(eε+1

eε−1)+4
√

n

√
(eε+1) ln 4n

δ

eε−1 ,δ

)
-soundness.

D.2.6 Proof of Theorem 4

Correctness. Let honest Ui share an edge with all malicious users in M . Now, all the

malicious users can lie and report 0 for Ui, i.e., set q j[i] = 0∀ j ∈M . This deflates Ui’s degree

by m.

Soundness. Let malicious Ui share an edge with all users in the graph. Consider the attack where

Ui and U j, j ∈M \ i report 0 for their edges, and additionally Ui reports 0 for min{m−1,n−m}

additional honest users. In this way, Ui can deflate its degree estimate by min(2m−1,n).

D.2.7 Proof of Theorem 5

Correctness. By Claim 2, the first check in Hybrid will not set d̂i =⊥ for any honest user

with probability at least 1− δ

4 . The variables d̂rr
i in Hybrid behave identically to d̂i in RRCheck.

By Claim 1 we have for all users, |d̂rr
i −di| ≤

m+2
√

ρn ln 8n
δ

1−2ρ
, with probability at least 1− δ

4 .

By concentration of Laplace random variables, we have for all i ∈H that |d̂lap
i −di| ≤

1
ε

ln 2n
δ

with probability at least 1− δ

2 , and by the triangle inequality we have |d̂lap
i − d̂rr

i | ≤
m+2

√
ρn ln 8n

δ

1−2ρ
+ 1

ε
ln 2n

δ
. Thus, the second check will not set d̂i =⊥ assuming these events hold,

and the estimator d̂i satisfies the correctness bound of d̂lap
i .

Soundness. Following the same argument we saw in the soundness proof of Theorem 3,

we can have that, with probability at least 1− δ

2 , for all malicious users i ∈M , we have |d̃rr
i −

273



di| ≤ 2τ

1−2ρ
. Suppose that d̂i is not set to be ⊥. This implies that |d̃rr

i − d̃lap
i | ≤ 2τ

1−2ρ
+ 1

ε
log 2n

δ
.

By the triangle inequality, this implies

|d̃rr
i −di| ≤

4τ

1−2ρ
+

1
ε

log
2n
δ
.

This establishes ( 4τ

1−2ρ
+ 1

ε
log 2n

δ
,δ )-soundness.

D.2.8 Proof of Theorem 6

Correctness. The correctness guarantee follows in the same way as Theorem 1.

Soundness. Consider a malicious user Ui, and let mi be the malicious degree estimate sent by Ui,

with 0≤mi≤ n−1. The estimator is given by d̂i =mi+η ,η ∼ Lap(1
ε
). Thus, Pr[|di−mi−η | ≥

n−1]≤ Pr[η > 0]≤ 1
2 .

D.2.9 Proof of Theorem 7

Correctness. We follow the correctness proof of Theorem 2, with the following change. Observe

that mali consists of |Mi| Bernoulli random variables of mean either ρ or 1−ρ . Thus, with

probability 1− δ

2 , we have |mali−E[mali]| ≤
√

2m ln 4m
δ

for all i ∈M .

Thus, we can show |mali−Emal,i| ≤ (1−2ρ)|Mi|, where

Emal,i = ρ|Mi|+(1−2ρ)di(Mi). Finishing the proof, we can show

|d̂i−di| ≤
1

1−2ρ
(
√

2ρn ln 4n
δ
+
√

2m ln 4m
δ
)+m.

Soundness.

In order for |di− d̂i| = n− 1, it is necessary for |count1
i − ρ(n− 1)− (1− 2ρ)di| ≥

(1−2ρ)(n−1). We have count1
i is a sum of n−1 Bernoulli random variables of mean either ρ or

1−ρ , so it can be written as µ +Zi, where Zi is approximately a normal random variable of mean

0. Observe that, since µ and ρ(n−1)+(1−2ρ)di are in the interval [ρ(n−1),(1−ρ)(n−1)], it

is impossible for the difference µ−ρ(n−1)+(1−2ρ)di to exceed (1−2ρ)(n−1) unless Zi has

274



the correct sign, which happens with probability at most 1
2 . This establishes (n−1, 1

2)-soundness.

D.2.10 Proof of Theorem 8

Correctness. Our proof follows that of Theorem 3. We are able to prove stronger

versions of the claims.

Claim 4. We have

Pr[∀i ∈H . |d̂i−di| ≥ m+

√
8max{ρn,m} ln 8n

δ

1−2ρ
]≤ δ

2
.

Proof. We can control hon11
i in exactly the same way as in Claim 1, so (D.4) holds with

probability 1− δ

4 , for all i ∈H . On the other hand, we know that mal11
i is now a sum of di(M )

Bernoulli random variables with bias either (1−ρ)2 or (1−ρ)ρ , plus a sum of m− di(M )

Bernoulli random variables with bias either ρ(1−ρ) or ρ2. Thus,

ρ(1−2ρ)di(M )+ρ
2m≤ E[mal11

i ]

≤ (1−ρ)(1−2ρ)di(M )+ρ(1−ρ)m.

From this, we can show |E[mal11
i ]−E11

mal,i| ≤ (1−2ρ)m, where E11
mal,i = ρ2m+(1−2ρ)di(M ).

Applying Hoeffding’s inequality, we conclude that with probability at least 1− δ

4 , for all i ∈H ,

|mal11
i −E[mal11

i ]| ≥
√

2m ln 8n
δ

Thus, |mal11
i −E11

mal,i| ≤ (1−2ρ)m+
√

2m ln 8n
δ

. Applying the triangle inequality, we obtain

Pr[|hon11
i +mal11

i −E[hon11
i ]−E11

mal,i|

≥
√

2m ln 8n
δ
+(1−2ρ)m+2

√
ρn ln 8n

δ
]≤ δ

2 .
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The result follows in the same way as in Claim 1.

Claim 5. We have

Pr[∀i ∈H . |count01
i −ρ(1−ρ)(n−1)| ≥ τ]≤ δ

2 ,

where τ = m(1−2ρ)+
√

8max{ρn,m} ln 8n
δ

.

Proof. We can follow the same line of reasoning as Claim 2 and conclude that (D.5) holds.

Similar to Claim 4, we can show that |mal01
i − ρ(1− ρ)m| ≤ (1− 2ρ)m+

√
2m ln 8n

δ
with

probability at least δ

4 , and applying the triangle inequality, we see

Pr[|count01
i −ρ(1−ρ)n| ≥ m(1−2ρ)+ √

2m ln 8n
δ
+
√

2ρn ln 8n
δ
]≤ δ

2 .

The (2m+
4
√

2max{ρn,m} ln 8n
δ

1−2ρ
,δ )-correctness guarantee follows from the union bound

over the two claims.

Soundness. When player i is a malicious player, he is still subject to the following claim:

Claim 6. We have

Pr[∀i ∈M . |count11
i + count01

i

− (1−2ρ)di−ρ(n−1)| ≤ τ|]≥ 1−δ ,

where τ = m(1−2ρ)+
√

8max{ρn,m} ln 8n
δ

.

Proof. Observe that count11
i +count01

i = ∑
n
j=1, j ̸=i q j[i] = hon1

i +mal1
i . With the same argument

as in Claim 3, we know that (D.6) holds. Similarly, each random variable in mal1
i comes from
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either Bernoulli(ρ) or Bernoulli(1−ρ), and thus with probability at least 1− δ

2 , for all i ∈M

|mal1
i −E[mal1

i ]| ≤
√

2m ln 4m
δ

Since E[mal1
i ]∈ [ρm,(1−ρ)m], This implies that |mal1

i −ρm| ≤ (1−2ρ)m+
√

2m ln 4m
δ

. Thus,

the claim follows.

Having established this claim, we can prove (2m+4
√

2max{ρn,m} ln 8n
δ
,δ )-soundness

using an identical method as in the proof of soundness for Theorem 3.

D.2.11 Proof of Theorem 9

Correctness. As input manipulation attacks are a subset of response manipulation attacks,

the same correctness guarantee as Theorem 5 holds.

Soundness. The proof of this is similar to the soundness proof of Theorem 5, using

previous results in Theorem 8.

D.3 Evaluation Cntd.

In this section, we describe the specific implementations of the attacks we use for our

evaluation in Section 4.9.

D.3.1 Attacks Against RRCheck

Degree Inflation Attacks

Let Ut , t ∈M denote the target malicious user.

Input Poisoning. In this attack, the non-target malicious users set the bit for Ut to be 1. The

target malicious user constructs his input by setting 1 for all other malicious users. They also

report 1 for honest users to which they share an edge.

For honest users to which Ut does not share an edge, Ut flips some of the bits to 1 with

the hopes of artificially increasing his degree. He does this for a r1-fraction of these neighbors.
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Data: l ∈ {0,1}n - True adjacency list, t - Target honest user
Result: q ∈ {0,1}n - Reported adjacency list

1 Select r1 ∈ [0,1];
2 H1 = {i ∈H |l[i] = 1};
3 ▷ H1 is the set of honest users with a mutual edge;
4 H0 = H \H1;
5 ▷ H0 is the set of honest users without a mutual edge;
6 F ∈R H0, |F |= r1|H0|;
7 ▷ Randomly sample r1 fraction of the users in H0;
8 l′ = {0,0, · · · ,0};
9 for i ∈H1∪M ∪F do

10 l′[i] = 1 ;
11 end
12 for i ∈ [n] do
13 q[i] = RRρ(l′[i]);
14 end
15 return q

Algorithm 19: Definition of input poisoning attack Ainp
RRCheck : {0,1}n 7→ {0,1}n

See Algorithm 19 for the details; we term this attack Ainp
RRCheck. Note that if r1 = 0, then the

malicious user is being completely honest for these users and will not inflate his degree, and if

r1 = 1, then he lies about each of these users and will likely be caught. Thus, his strategy is to

pick a value in between 0 and 1, and in the experiments we found that r1 = 15% was a good

tradeoff point.

Response Poisoning. For response poisoning, the non-target malicious first find a plausible

response by applying RRρ to their data. They then set the bit for Ut to be 1, indicating they are

connected to this user.

The target malicious user constructs his response by first applying RRρ to his data to

compute a plausible response. Then, he flips his bits to malicious users to 1, and for honest

users, he takes a r1-fraction of the 0s in his response and flips them to 1. The quantity r1 is a

tradeoff parameter with the same intuition as for Ainp
RRCheck. The details of this attack appear in

Algorithm 20, and it is termed Aresp
RRCheck.

278



Data: l ∈ {0,1}n - True adjacency list
Result: q ∈ {0,1}n - Reported adjacency list

1 Select r1 ∈ [0,1];
2 q = RRρ(l);
3 I1 = {i ∈H |q[i] = 1};
4 ▷ H1 is the set of honest users with an edge in q;
5 I0 = H \I1;
6 F ∈R I0, |F |= r1|I0|;
7 ▷ Randomly sample r1 fraction of the users in I0;
8 for i ∈I1∪M ∪F do
9 q[i] = 1;

10 end
11 return q

Algorithm 20: Definition of response poisoning attack Aresp
RRCheck : {0,1}n 7→ {0,1}n

Degree Deflation Attacks

Let Ut , t ∈H denote the target honest user.

Input Poisoning. Here, every malicious user constructs his input acting honestly for non-target

users and setting a 0 for Ut .

Response Poisoning. Every malicious user acts honestly for non-target users by applying

randomized response to their input. They finally send a 0 for their connection to Ut .

D.3.2 Attacks Against Hybrid

Degree Inflation Attacks

Let Ut , t ∈M be the target malicious user.

Input Poisoning. The non-target malicious users flip their edge to Ut to a 1 as they do in

Ainp
RRCheck. They send an honest estimate of their degree d̃Lap as this does not affect the target.

The target malicious user crafts his input adjacency list q as he did in Ainp
RRCheck. For his

estimate d̃Lap
t , he computes the expected value of d̃rr

t given that he submitted q while the other

users either submit RRρ(li) or RRρ(1), depending if they are honest or malicious. Specifically,
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Data: l ∈ {0,1}n - True adjacency list
Result: q ∈ {0,1}n - Reported adjacency list, d̃lap - Reported noisy degree estimate

1 Select r2 ∈ [0,1];
2 ρ = 1

1+ecε ;
3 ▷ c is the constant used in Alg. 14 to divide the budget between the RR and Laplace

steps;
4 q← Ainp

RRCheck(l,cε);
5 ˜count11← m(1−ρ)2 +E[∑i∈H qiRRρ(li)];

6 err,inp =
˜count11−ρ2n

1−2ρ
;

7 d̂Lap = err,inp + r2
τ

1−2ρ
+η where η ∼ Lap( 1

(1−c)ε );

8 return q, d̃Lap

Algorithm 21: Definition of input poisoning attack Ainp
Hybrid : {0,1}n 7→ {0,1}n

the expected value is given by

err,inp =
m(1−ρ)2 +E[∑i∈H qiRRρ(li)]−ρ2n

1−2ρ
.

He finally sets d̃rr
t = err,inp

t + r2
τ

1−2ρ
where r2 ∈ [0,1], which again trades off between how much

cheating is possible and getting flagged. During the trials, we used q2 = 0.1 as this did not

significantly increase the target’s chance of being rejected as ⊥. This attack, termed Ainp
Hybrid,

appears in Algorithm 21.

Response Poisoning. The non-target malicious users flip their edge to Ut to a 1 as they do in

Ainp
RRCheck. They send an honest estimate of their degree d̃Lap as this does not affect the target.

The target malicious user crafts his response adjacency list q as he did in Aresp
RRCheck. For

his estimate d̃Lap
t , he computes the expected value of d̃rr

t given that he submitted q while the

other users either submit RRρ(li) or 1, depending if they are honest or malicious. This expected

value is given by

err,resp =
m+E[∑i∈H qiRRρ(li)−ρ2n]

1−2ρ
.

He finally sets d̃rr
t = err,resp + r2

τ

1−2ρ
where r2 ∈ [0,1] serves a similar tradeoff purpose as for

Ainp
Hybrid.
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Data: l ∈ {0,1}n - True adjacency list
Result: q ∈ {0,1}n - Reported adjacency list, d̃lap - Reported noisy degree estimate

1 Select r2 ∈ [0,1];
2 q = Aresp

RRCheck(l,ε);
3 ρ = 1

1+ecε ;
4 ▷ c determines how the privacy budget is divided between the two types of response as in

Alg. 14;
5 ˜count11← m+E[∑i∈H qiRRρ(li)];

6 err,resp = m+ ˜count11−ρ2n
1−2ρ

;
7 d̃Lap = err,resp + r2

τ

1−2ρ
;

8 return q, d̃Lap

Algorithm 22: Definition of response poisoning attack Aresp
Hybrid : {0,1}n 7→ {0,1}n.

Degree Deflation Attacks

Let Ut , t ∈H represent the honest target.

Input Poisoning. For the adjacency list, all the malicious users follow the same protocol as for

RRCheck. For the degree, all the malicious users follow the Laplace mechanism truthfully as

these values are immaterial for estimating the degree of the target honest user.

Response Poisoning. For the adjacency list, all the malicious users follow the same protocol as

for RRCheck(·). For the degree, all the malicious users follow the Laplace mechanism truthfully

as these values are immaterial for estimating the degree of the target honest user.

D.3.3 Configurations Ctnd.

Our theoretical results suggested setting τ = m+C
√

ρn, where C is a constant that is

obtained from Chernoff’s bounds, for the different input and response manipulation attacks. The

constant C is not tight, and for the practical interest of using as small a threshold as possible, we

sought to set τ as small as possible so as not to falsely flag any honest user. Note that lower the

threshold, lower is the permissible skew (α1 and α2 for correctness and soundness, respectively)

introduced by poisoning, thereby improving the robustness of our protocols. We ran preliminary

experiments using 50 runs of each protocol on both graphs, and we found that at all values of ε ,

setting τ = m+0.4
√

ρn (for m = 40) and τ = m+0.1
√

ρn (for m = 1500) did not result in any
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false positives. Thus, we used these smaller thresholds in our experiments, and throughout the

experiments there were no false positives.
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Appendix E

E.1 Related Work

Differential Privacy

Differential privacy [72] has recently become the gold standard of privacy used by

institutions such as the US census [71] and large tech companies [83]. In a nutshell, DP

algorithms provide plausible deniability for the input data of any user. There is a vast literature

on DP algorithms for a disparate range of problems and many different models for differential

privacy [72, 145, 39, 173, 137, 71] (we refer to [73] for a survey).

Among this rapidly growing literature, our work builds on multiple work on differentially

privacy, namely DP PCA algorithms [75], DP Johnson Lindenstrauss projections [31], DP cut

sparsification in graphs [79] as well as DP stochastic block model reconstruction (reviewed

later).

Private graph algorithms

Especially relevant to this work is the area of differential privacy in graphs. DP has been

declined in graph problems both as the edge-level [80, 79] and node-level model [122]. The

most related work in this area is that on graph cut approximation [79, 10], as well as that of

graph clustering with DP in correlation clustering model [32, 52].
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Hierarchical Clustering

As we discussed in the introduction, hierarchical clustering has been studied for decades

in multiple fields. For this reason, a significant number of algorithms for hierarchical clustering

have been introduced [157]. Up until recently [57], most work on hierarchical clustering has

been heuristic in nature, defining algorithms based on procedures without specific theoreti-

cal guarantees in terms of approximation. Most well-known among such algorithms are the

linkage-based ones [106, 20]. [57] introduced for the first time a combinatorial approximation

objective for hierarchical clustering which is the one studied in this paper. Since this work, many

authors have designed algorithms for variants of the problem [53, 54, 37, 154, 4, 38] exploring

maximization/minimization versions of the problem on dissimilarity/similarity graphs.

Limited work has been devoted to DP hierarchical clustering algorithms. One paper [214]

initiates private clustering via MCMC methods, which are not guaranteed to be polynomial time.

Follow-up work [125] shows that sampling from the Boltzmann distribution (essentially the

exponential mechanism [145] in DP) produces an approximation to the maximization version

of Dasgupta’s function, which is a different problem formulation. Again, this algorithm is not

provably polynomial time.

Private flat clustering

Contrary to hierarchical clustering, the area of private flat clustering on metric spaces has

received large attention. Most work in this area has focus on improving the privacy-approximation

trade-off [91, 14] and on efficiency [99, 51, 50].

Stochastic block models

The Stochastic Block Model (SBM) is a classic model for random graphs with planted

partitions which has received significant attention in the literature. Most work in this area has

focus on providing exact or approximate recovery of communities for increasingly more difficult

regimes of the model [95, 150, 149, 87, 63, 135]. Specifically for our work, we focus on a variant

of the model which has nested ground-truth communities arranged in a hierarchical fashion. This
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model has received attention for hierarchical clustering [53].

The study of private algorithms for SBMs is instead very recent and no work has

addressed private recovery for hierarchical SBMS. One of the only results known for private

(non-hierarchical) SBMs is the work of [179] which provides a quasi-polynomial time algorithm

for some regimes of the model. This paper require either non-poly time or ε ∈ Ω(log(|V |)).

Finally, very recently and currently to our work, the manuscript of [40] has been published. This

work provides strong approximation guarantees using semi-definite programming for recovering

SBM communities. None of these papers can be used directly to approximate hierarchical

clustering on HSBMs. For this reason in Section 5.6 we design a hierarchical clustering

algorithm (Algorithm 15) which uses as subroutine a DP SBM community detection algorithm.

Moreover, we show a novel algorithm for SBMs (Algorithm 16) (independent to that of [40])

which is of practical interest as it does not require procedure with large polynomial dependency

on the size of the input, such solving a complex semi-definite program.

E.2 Omitted proofs from Section 5.4

E.2.1 Proof of Lemma 2

We start with the following lemma:

Lemma 4. Let G1,G2 be two graphs drawn uniformly at random from P(n,5). Let α = 1
100 .

The probability that there exists a balanced cut (A,B) which misses at most α

5 n of the cycles for

both G1,G2 is at most 2−0.4n.

Proof. Let (A,B) be any balanced cut with |A|= βn, for 1
3 ≤ β ≤ 2

3 . Let E1(A,B) be the event

that (A,B) misses at most α

X n cycles in G1, and define E2(A,B) similarly for G2. We observe the

desired probability can be upper bounded by

∑
(A,B) a balanced cut

Pr[E1(A,B)]Pr[E2(A,B)]. (E.1)
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In the above sum, the balanced cuts (A,B) are fixed, and the graphs G1,G2 are generated

independently. We consider an equivalent random process, where G1 ∈P(n,5) is fixed, and

then (A,B) is generated by picking a uniformly random string S ∈ {0,1}n with βn 1s. There

are
( n

βn

)
possible strings. We will now upper bound the number of strings for which E1(A,B)

holds. When E1(A,B) holds, we can choose c cycles which are monochromatic 1s, where c is a

non-negative integer such that 5c < n, plus αn
5 cycles which are not necessarily monochromatic.

Within these αn
5 cycles, there are αn vertices from which we can choose d ≤ αn remaining 1s.

The total number of 1s is 5c+d, and thus 5c+d = βn. Thus, the total number of admissible

strings is at most

∑
5c+d=βn,d≤αn

(
n/5

c

)(
n/5

αn/5

)(
αn
d

)
.

We make the simple observation that
(

αn
d

)
≤ 2αn. Furthermore, we observe that there are αn

5

admissible choices of c,d. In the following, we use the fact that 2H2(β )n−lnn ≤
( n

βn

)
≤ 2H2(β )n,

where H2(p) is the binary entropy function. We upper bound the number of admissible strings

with

αn
5

max
(β−α)n≤5c≤βn

(
n/5

c

)(
n/5

αn/5

)
2αn ≤ αn

5
max

(β−α)n≤5c≤βn
2H2(5c/n)n/52H2(α)n/52αn

≤ n2H2(β )n/52H2(α)n/52αn.

Dividing this number by
( n

βn

)
, the total possible number of strings, we obtain

Pr[E1(A,B)]≤
n2(H2(β )+H2(α))n/5+αn

2H2(β )n−lnn

≤ 2
(

H2(β )+H2(α)
5 +α−H2(β )

)
n+lnn

≤ 2−0.7n,

where the last line follows from the fact that 1
3 ≤ β ≤ 2

3 and that α = 1
100 so that H2(α)≤ 0.081.

By a similar argument, we have Pr[A2(B)]≤ 2−0.7n.
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Thus, (E.1) can be upper bounded by

2n Pr[E1(A,B)]Pr[E2(A,B)]≤ 2n2−2×0.7n ≤ 2−0.4n.

Having shown the result for two random graphs, we apply the union bound to show that

for exponentially many random graphs, it is unlikely that any tree can cluster more than one

graph in the family well. We now prove Lemma 2.

Proof. Let F consist of 20.2n graphs generated uniformly at random P(n,5). For each pair of

graphs G1,G2, we have by Lemma 4 every balanced cut will miss at least α

5 n cycles in either

G1 or G2 with probability 1−2−0.4n. By the union bound applied 1
220.4n times for each pair of

graphs, we have with probability 1
2 that every balanced cut will miss at least α

5 n cycles in all but

at most one graph in F .

Every tree can be mapped to a balanced cut, so by Lemma 1, any tree will cost at least

4α

15 n2 ≥ n2

400 on all but at most one member of F . This allows us to conclude that the sets B(G,r)

are disjoint for all G ∈F .

E.3 Omitted proofs from Section 5.5

E.3.1 Proof of Theorem 16

First, we state a theorem about private graph sparsification.

Theorem 16. There is a polynomial-time, (ε,δ )-edge differentially private algorithm which,

on input graph G = (V,E,w), outputs a graph G′ which with probability 0.9 is a (z,O(nz))-

approximation to cut queries in G, where z = O(
log2 1

δ

ε

logn√
n ).
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Proof. We apply an edge sparsification algorithm of [10], which given a graph with Laplacian L,

outputs a graph with Laplacian L′ with O( n
γ2 ) edges such that

(1− γ)((1− z)L+ zLn)⪯ L′ ⪯ (1+ γ)((1− z)L+ zLn),

where Ln is the Laplacian of an unweighted Kn. The value of the cut w(S,S) is given by by

1T
S L1S; therefore, we have

(1− γ)((1− z)w(S,(S))− z|S|(n−|S|))≤ w′(S,S)≤ (1+ γ)((1− z)w(S,S)+ z|S|(n−|S|))

Using the fact that |S|(n−|S|)≤ nmin{|S|,n−|S|} and letting γ → 0, we estabish that

G′ is a (z,nz) approximation to cut queries in G.

Next, we reduce the cost to a sum of cuts. This idea appeared in [4].

Lemma 5. Suppose G′ is an (αn,βn)-approximation to cut queries in G for some α < 1. Let T ′

be any tree which satisfies ωG′(T ′)≤ anω∗G′ . Then,

ωG(T ′)≤ (1+2αn)anω
∗
G +(4an +2)βnn2.

For the revenue objective, let T ′ be any tree which satisfies ωMW
G′ (T ′)≥ anωMW∗

G′ . Then,

ω
MW
G (T ′)≥ (1−2αn)anω

MW∗
G −2(an +1)βnn2−2(an +1)αnn3.

A proof of this lemma appears in the next section.

Finally, we are ready to prove the theorem.

Proof. (Of Theorem 16): First, release a private graph G′ using Theorem 16, which is a (z,nz)-

cut approximation with probability at least 0.9, where z = O(
log2 1

δ

ε

logn√
n ). We use the black box

hierarchical clustering algorithm, which finds a tree such that E[ωG(T ′)] ≤ anω∗G. Then, we

288



apply Lemma 5, obtaining

E[ωG(T ′)]≤ (1+2z)anω
∗
G +(4an +2)zn3.

For the revenue objective, our black box hierarchical clustering finds a tree T ′ such that

E[ωMW
G (G′)]≥ anωMW∗

G . We apply Lemma 5, obtaining

ω
MW
G (T ′)≥ (1−2z)anω

MW∗
G −4(an +1)zn3.

E.3.2 Proof of Lemma 5

We start with the well-known representation of ωG(T ) [57]:

ωG(T ) = ∑
S→(S1,S2) in T

|S|w(S1,S2),

where the sum is indexed by internal splits of T , which splits a set S of leaves into two parts

S1,S2. Using the identity w(S1,S2) =
1
2w(S1,S1)+

1
2w(S2,S2)− 1

2w(S,S), we substitute:

ωG(T ) =
1
2 ∑

S→(S1,S2) in T
|S|w(S1,S1)+ |S|w(S2,S2)−|S|w(S,S)

In the above sum, if we assign cuts to their respective nodes, then we obtain the following: The

root node is assigned −|S|w(S,S) = 0. Each internal node S1 which is not a leaf node or the root

is assigned |S|w(S1,S1)−|S1|w(S1,S1) = |S2|w(S1,S1), where S→ (S1,S2) is the parent split of

S1. Finally, each leaf node S1 is assigned |S|w(S1,S1) = |S2|w(S1,S1)+w(S1,S1), using the fact
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that |S1|= 1. This brings us to the following decomposition [4]:

ωG(T ) = ∑
S→(S1,S2) in T

|S2|w(S1,S1)+ |S1|w(S2,S2)︸ ︷︷ ︸
ω1

G(T )

+
n

∑
i=1

w(v,v)︸ ︷︷ ︸
ω2

G

.

We refer to the leftmost term of the above as ω1
G(T ), and the rightmost term as ω2

G. Observe the

second quantity does not depend on T . Now, for any tree T , we have

ω
1
G′(T )≤ ∑

S→(S1,S2) in T

(
|S2|((1+αn)wG(S1,S1)+βn min{|S1|,n−|S1|})

+ |S1|((1+αn)wG(S2,S2)+βn min{|S2|,n−|S2|})
)

≤ (1+αn)ω
1
G(T )+βn ∑

S→(S1,S2) in T
|S2|min{|S1|,n−|S1|}+ |S1|min{|S2|,n−|S2|}

≤ (1+αn)ω
1
G(T )+βn ∑

S→(S1,S2) in T
2|S1||S2|

≤ (1+αn)ω
1
G(T )+βnn2,

where the final line comes from an induction argument: if f (n) ≤ max1≤i≤n f (i) f (n− i) +

2β i(n− i), then we can show via induction that f (n)≤ n2β

2 . By a similar process, we can show

the following inequalities

(1−αn)ω
1
G(T )−βnn2 ≤ ω

1
G′(T )≤ (1+αn)w1

G(T )+βnn2 (E.2)

(1−αn)ω
2
G−βnn≤ ω

2
G′ ≤ (1+αn)ω

2
G +βnn (E.3)

This implies that

(1−αn)ωG(T )−2βnn2 ≤ ωG′(T )≤ (1+αn)ωG(T )+2βnn2.
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This allows us to derive that

ωG(T ′)≤ (1+αn)ωG′(T
′)+2βnn2

≤ (1+αn)anωG′(T
∗)+2βnn2

≤ (1+αn)an((1+αn)ω
∗
G +2βnn2)+2βnn2

≤ (1+2αn)anω
∗
G +(4an +2)βnn2

Plugging T ∗, the optimal tree for G, into the above, we obtain that ω∗G′ ≤ (1+αn)ω
∗
G +2βnn2,

and therefore,

ωG′(T
′)≤ an(1+αn)ω

∗
G +2anβnn2.

We also have that (1−αn)ωG(T ′)−2βnn2 ≤ ωG′(T ′), and we obtain our result by rearranging.

E.3.3 Proof of Lemma 3

Using a general lemma about the exponential mechanism [145], we are able to prove a

bound on the algorithm error.

Lemma 6. Let f (X ,Y ) be a function with sensitivity 1 in X. Suppose we run the exponential

mechanism M : X → Y with finite range Y using utility function uX(Y ) = f (X ,Y ). Let

OPT (X) = minY∈Y uX(Y ). If our privacy budget is ε , then for each X ∈X , we have

Pr[uX(M(X))≤ OPT (X)+2
log(|Y |)

ε
]≥ 1− 1

|Y | .

Proof. Let Z = {Y ∈ Y : uX(Y )≤ OPT (X)+2 log(|Y |)
ε
}. We are guaranteed that the optimal

element, Z∗, with uX(Z∗) = OPT (X), is in Z . We want to lower bound the quantity Pr[M(X) ∈

Z ]. Observe that

Pr[M(X) ∈Z ] =
∑Z∈Z e−εuX (Z)/2

∑Z∈Z e−εuX (Z)/2 +∑Y∈Y ,Y /∈Z e−εuX (Y )/2
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≥ e−εuX (Z∗)/2

e−εuX (Z∗)/2 +∑Y∈Y ,Y /∈Z e−εuX (Y )/2

=
e−εOPT (X)/2

e−εOPT (X)/2 +∑Y∈Y ,Y /∈Z e−εuX (Y )/2
.

The second line holds because the function g(z) = z
z+K for K > 0 is decreasing as z→ 0. The

bottom sum can be upper bounded with |Y |e−ε(OPT (X)+2log(|Y |)/ε)/2 ≤ 1
|Y |e

−εOPT (X)/2. Thus,

we are left with

Pr[M(X) ∈Z ]≥ 1
1+1/|Y | ≥ 1− 1

|Y | .

For hierarchical clustering, our algorithm is a corollary of the previous result:

Proof. We apply the exponential mechanism with utility function uG(T ) = −1
nωG(T ), which

has sensitivity 1. The range of the algorithm is the space of trees with n nodes; there are at most

nn trees of this size. By Lemma 6, the utility satisfies Pr[ω∗G
n ≤

ωG(M(G))
n +2n logn

ε
] ≥ 1−o(1),

and hence the algorithm is a (1,O(n2 logn
ε

))-approximation.

For the revenue objective, we apply the exponential mechanism with utility function

uG(T ) = 1
2nωMW

G (T ), which has sensitivity 1. By Lemma 3, the utility satisfies Pr[ωMW
G (M(G))

2n ≤
ωMW∗

G
2n +2n logn

ε
]≥ 1−o(1). This establishes (1,O(n2 logn

ε
))-approximation.

E.4 Omitted proofs from Section 5.6

E.4.1 Proof of Theorem 13

In order to prove this theorem, we will show that DPHCBlocks finds a (1 + o(1))-

approximate ground-truth tree, and then appeal to a result showing the such trees are approxi-

mately optimal with high probability [54]:

Lemma 7. (Lemma 5.10 from [54]) Let G be a graph drawn from HSBM(B,P, f ), where

pmin = mini∈B∪N f (i)≥ ω(
√

logn
n ). Let (B,P′, f ′) be a γ-approximate ground-truth tree. Then,
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with probability 1−2−n, we have

costG(P′)≤ γ(1+o(1))cost∗G,

We now show that DPHCBlocks outputs an approximate ground-truth tree. We introduce a

high-probability event and prove that if it happens, then the output is an approximate ground-truth

tree.

Our event E states that sim(Bi,B j) as used in DPHCBlocks is a good estimate for

f (LCAP(Bi,B j)). Intuitively, this makes sense, as if one had access to f (LCAP(Bi,B j)), then it

would be easy to construct P (or an equivalent tree) using single linkage. Formally, we let E

denote the event that there exists α such that for all Bi,B j,

∣∣sim(Bi,B j)− f (LCAP(Bi,B j))
∣∣≤ α f (LCAP(Bi,B j)). (E.4)

The following lemma shows that E occurs with high probability.

Lemma 8. If |Bi| ≥ n2/3 for all i, j, ε ≥ 1
n1/2 , and f (x) ≥ logn

n1/2 , then the event E occurs with

α = 8
n1/6 with probability at least 1− 2

n .

Proof. The values wG(Bi,B j) are distributed according to Binomial(Ni j, pi j), where Ni j =

|Bi||B j| and pi j = f (LCAP(Bi,B j)). By Hoeffding’s bound, we have that

Pr[|wG(Bi,B j)− pi jNi j| ≥ 2logn
√

Ni j]≤
1
n3 .

Furthermore, we have that Pr[|Li j| ≥ 6logn
ε

]≤ 1
n3 . Plugging in sim(Bi,B j) =

wG(Bi,B j)+Li j
Ni j

, we

obtain

Pr

[
|sim(Bi,B j)− pi j| ≥

2logn√
Ni j

+
6logn
εNi j

]
≤ 2

n3 .

Because Ni j ≥ n4/3 and ε ≥ 1
n1/2 , we have 2logn√

Ni j
+ 6logn

εNi j
≤ 8logn

n2/3 ≤ 8
n1/6 pi j. Thus, we obtain
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Pr[|sim(Bi,B j)− pi j| ≥ α pi j] ≤ 2
n3 , with α = 8

n1/6 . Taking a union bound over all
(k

2

)
≤ n2

choices of i, j, we obtain our result.

Finally, we show that when E occurs, then DPHCBlocks finds an approximate ground-

truth tree. A similar result was proved in [54], though our lemma statement is sufficiently

different that we include a proof here.

Lemma 9. Assume that event E occurs. Then, the tuple (B,T, f ′) returned by Algorithm 15 is a

(1+α)-approximate ground-truth tree for (B,P, f ).

Proof. We want to show that for all Bi,B j ∈V , we have

(1−α) f (LCAP(Bi,B j))≤ f ′(LCAP′(Bi,B j))≤ (1+α) f (LCAP(Bi,B j)).

Let I = LCAT (Bi,B j) be the internal node in which Bi,B j are merged, and let Ci,C j be the

children of I such that Bi ⊆Ci and B j ⊆C j. We have that

f ′(LCAP′(Bi,B j)) = sim(Ci,C j) = max
B∈Ci,B′∈C j

sim(B,B′).

Thus, it holds that sim(Bi,B j)≤ f ′(LCAP′(Bi,B j)). As event E holds, we have that sim(Bi,B j)≥

(1−α) f (LCAP(Bi,B j)).

To finish, we show that sim(Ci,C j)≤ (1+α) f (LCAP(Bi,B j). Let J = LCAP(Bi,B j) be

the internal node in which Bi,B j are merged in P, and let Di,D j be the children of J such that

Bi ⊆ Di and B j ⊆ D j. We consider the following two cases.

Case 1:

Ci ⊆ Di and C j ⊆ D j. Then, we have

sim(Ci,C j)≤ max
B∈Di,B′∈D j

sim(B,B′)≤ (1+α) max
B∈Di,B′∈D j

f (LCAP(B,B′)).
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As Di,D j are nodes of the ground-truth tree, it holds that f (LCAP(B,B′)) is the same for any

choice of B ∈ Di,B′ ∈ D j. In particular, this is true for f (LCAP(Bi,B j)).

Case 2:

There exists Bℓ such that Bℓ ⊆Ci and Bℓ ⊈ Di (or the same holds for Ci,Di replaced by

C j,D j). WLOG, suppose the former case holds. Then, there exists a child N of I whose children

are NL,NR, such that NL ⊆ Di and NR∩Di = /0. It then follows that

sim(NL,NR)≤ (1+α) max
B∈NL,B′∈NR

f (LCAP(B,B′))≤ (1+α) f (LCAP(Bi,B j)),

where the second inequality holds because f is decreasing as we ascend P. However, we also

have that sim(NL,NR)≥ sim(Ci,C j), as sim also obeys this property (if the last inequality did not

hold, then NL,NR would not have been merged). This finishes the last case.

The proof follows by applying Lemma 8 and then Lemma 9.

E.4.2 Proof of Theorem 14

Overview

When running DPCommunity, fix Y,Z1,Z2, and let (Â1, Â2) and (Â′1, Â
′
2) be the splits

of Â and an adjacent database Â′. We will view the matrix F = P(Π(k)
Â1
(Â2)) as a vector, and

then show that releasing F plus appropriate Gaussian noise satisfies privacy via the Gaussian

mechanism. Our proof will bound the L2 sensitivity of F , given by

∆2(F) = ∥P(Π(k)
Â1
(Â2))−P(Π(k)

Â′1
(Â′2))∥F ,

in terms of the quantity Γ = σ1(Â2)

σk(Â1)−σk(Â2)
. Recall that P is a random m× n

2 projection matrix.

To control this sensitivity, we will need the fact that P preserves the distances in A via the

Johnson-Lindenstrauss projection theorem:
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Theorem 17. (Johnson-Lindenstrauss projection theorem [108]): Let 0≤ α < 1
2 and 0≤ β ≤ 1,

and m = 8
ln 2

β

α2 . If x ∈ Rn is a vector and P ∼ N (0, 1√
m)

m×n is a random matrix then with

probability 1−β , we have

(1−α)∥x∥2 ≤ ∥Px∥2 ≤ (1+α)∥x∥2

We use the above theorem to show that the matrix P does not increase the sensitivity

∆(F) with high probability.

Lemma 10. Let 0≤ δ < 1 and m = 64ln 2n
δ

. Then, if P∼N (0, 1√
m)

m×n/2 the following holds

with probability at least 1− δ

4 :

∆(F)≤ 3
2
∥Π(k)

Â1
(Â2)−Π

(k)
Â′1
(Â′2)∥F .

Proof. Let the columns of Π
(k)
Â1
(Â2) be {a1, . . . ,an/4} and the columns of Π

(k)
Â′1
(Â′2) be

{a′1, . . . ,an′/4}. By the union bound, Theorem 17 with α = 1
2 and β = δ

n applies to all vectors

ai−a′i with probability at least 1− δ

4 . Thus, we have

∆2(F)2 =
n/4

∑
i=1
∥P(ai)−P(a′i)∥2

2 ≤ (1+α)2
n/4

∑
i=1
∥ai−a′i∥2

2 = (1+α)2∥Π(k)
Â1
(Â2)−Π

(k)
Â′1
(Â′2)∥2

F .

The result follows.

Finally, we need a bound on the stability of the projection Π
(k)
Â1

when Â1 is perturbed.

This is the result of the Davis-Kahan Theorem [27].

Theorem 18. Let Â1, Â′1 be matrices where dk = σk(Â1)−σk+1(Â1)> 0. Then,

∥Π(k)
Â1
−Π

(k)
Â′1
∥F ≤

∥Â1− Â′1∥F

dk
.

Furthermore, the above holds replacing ∥ · ∥F with ∥ · ∥2.
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Having bounded the L2-sensitivity, we finally use the well-known Gaussian mecha-

nism [73]

Theorem 19. If x ∈ Rm has L2 sensitivity at most S, then releasing x+N, where

N ∼ S
ε

√
2ln 1.25

δ
N (0,1)m satisfies (ε,δ )-DP.

Proof

Let Â and Â′ be two adjacent inputs, and consider two runs of DPCommunity with fixed

Y,Z1,Z2, and P; we will show that the outputs satisfy (ε,δ )-DP. Let Â′1 and Â′2 be the values of

Â1 and Â2 when Â′ is used instead of Â. DPCommunity can be viewed as a post-processing of

the private release of values dk = σk(Â1)−σk+1(Â1), σ1(Â2), and F; thus, we will show that

releasing each of these values satisfies privacy.

Using Lindskii’s inequality [27], each rank i singular value of Â1, Â2 can only change

by 1 when Â is changed to Â′. Thus, the sensitivity of dk is 2, of σ1 is 1, and thus the release of

d̃k = dk +
8
ε

ln 4
δ
+Lap(8

ε
) and σ̃1 = σ1 +

4
ε

ln 4
δ
+Lap(4

ε
) both satisfy ( ε

4 ,0)-DP. Thus, we will

show that releasing F̃ satisfies ( ε

2 ,δ )-DP, and privacy will follow by composition.

By Lemma 10 with probability at least 1− δ

4 , we have

∆2(F)≤ 3
2∥Π

(k)
Â1
(Â2)−Π

(k)
Â′1
(Â′2)∥F

We have either Â1 = Â′1 or Â2 = Â′2. We analyze the cases separately.

Case Â1 = Â′1:

Then, Â2 and Â′2 differ in one bit, so Â2 = Â′2 +E, where E is a matrix that is ±1 in one

entry and 0 everywhere else. Then,

3
2∥Π

(k)
Â1
(Â2)−Π

(k)
Â1
(Â′2)∥F = 3

2∥Π
(k)
Â1
(E)∥F ≤ 3

2∥E∥F ≤ 3
2 ,
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where the inequality holds because projecting vectors onto a subspace cannot increase their

magnitude.

Case Â2 = Â′2:

Then, Â1 and Â′1 differ in one bit, so ∥Â1− Â′1∥F ≤ 1. We have

∥Π(k)
Â1
(Â2)−Π

(k)
Â′1
(Â′2)∥F ≤ 2k∥(Π(k)

Â1
−Π

(k)
Â′1
)(Â2)∥2 ≤ 2k∥Π(k)

Â1
−Π

(k)
Â′1
∥2∥Â2∥2,

where the first inequality holds because each term has rank at most k, so the entire quantity has

rank at most 2k, and the second holds by sub-multiplicativity of ∥ · ∥2. By Theorem 18, we have

∥Π(k)
Â1
−Π

(k)
Â′1
∥2 ≤ 1

dk
. Thus, we have

3
2
∥Π(k)

Â1
(Â2)−Π

(k)
Â′1
(Â′2)∥F ≤

3k∥Â2∥2

dk
= 3kΓ.

By concentration of Laplace variables, we have d̃k ≤ dk and σ̃1 ≥ σ1, so Γ ≤ σ̃1
d̃k

= Γ̃ with

probability at least 1− δ

2 . Thus, the sensitivity ∆(F) is at most 3kΓ̃, and ( ε

2 ,
δ

4 )-DP follows via

Theorem 19. Factoring in the aformentioned failure probabilities, the entire release of F̃ satisfies

( ε

2 ,δ )-DP.

E.4.3 Proof of Corollary 15

Overview

Recall that DPCommunity sees a matrix Â drawn from HSBM(B,P, f ), with expectation

matrix A. We define τ2 = max f (x), s = mink
i=1 |Bi|, and ∆ = minu∈Bi,v∈B j,i ̸= j ∥Au−Av∥2. We

will show that DPCommunity approximates Π
(k)
Â1
(Â2), which is guaranteed to cluster the original

communities via the following result [199]. We let the columns of Π
(k)
Â1
(Â2), which is indexed by

the set Z2, be {bi : i ∈ Z2}.

Theorem 20. ([199]): There exists a universal constant C such that if τ2 ≥C logn
n , s≥C logn,

and k < n1/4. ∆ > C(τ
√n

s + τ
√

k logn+ τ
√

nk
σk(A)

), with probability at least 1− n−1, then the
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columns {bi : i ∈ Z2} in Π
(k)
Â1
(Â2) satisfy:

∥bi−b j∥2 ≤
∆

4
if ∃u. i ∈ Bu, j ∈ Bu (i.e. i, j are in the same community)

∥bi−b j∥2 ≥ ∆ otherwise.

Thus, the clusters in Π
(k)
Â1
(Â2) cluster the original communities assuming ∆ is large

enough. We will show that F̃ clusters the original communities assuming some condition

on ∆. Since DPCommunity returns F̃ = P(Π(k)
Â1
(Â2)) +N, where N is Gaussian noise, our

proof involves showing that the distances in F̃ approximate those in Π
(k)
Â1

using the Johnson-

Lindenstrauss lemma and concentration of the Gaussian noise.

We formally restate Theorem 15:

Theorem 21. Let Â be drawn from HSBM(B,P, f ). There is a universal constant C > 2000 such

that if τ2 ≥C logn
n , s≥C

√
n logn, k < n1/4, δ < 1

n , σk(A)≥C max{τ√n, 1
ε

ln 4
δ
}, and

∆ >C max
{

k(ln 1
δ
)3/2

ε

σ1(A)
σk(A)

,τ
√

n
s + τ

√
k logn+ τ

√
nk

σk

}
,

then with probability at least 1−3n−1, DPCommunity returns a set of points F̃ = { fi : i ∈ Z2}

such that

∥ fi− f j∥2 ≤
2∆

5
if ∃u. i, j ∈ Bu

∥ fi− f j∥2 ≥
4∆

5
otherwise,

and thus the clusters in F̃ indicate the communities.

Proof of Theorem 21

Let the columns of F̃ be { fi : i ∈ Z2}. We have fi = P(bi)+ni, where

ni ∼ 3kΓ̃

ε

√
2ln 5

δ
N(0,1)m. By concentration bounds, we have with probability 1− 1

n that each ni
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satisfies

∥ni∥2 ≤
3kΓ̃

ε

√
2ln

5
δ

√
2m lnn ≜ K.

Next, applying Theorem 17 on the vectors bi−b j for i, j ∈ Z2, we have 0.9∥bi−b j∥2 ≤ ∥P(bi)−

P(b j)∥2 ≤ 1.1∥bi−b j∥2 with probability 1−δ > 1− 1
n . Thus, if ∃u. i ∈ Bu, j ∈ Bu, then

∥ fi− f j∥2 ≤ ∥P(bi)−P(b j)∥2 +∥ni∥2 +∥n j∥2

≤ 1.1∥bi−b j∥2 +2K

≤ 0.275∆+2K,

Otherwise, we have

∥ fi− f j∥2 ≥ ∥P(bi)−P(b j)∥2−∥ni∥2−∥n j∥2

≥ 0.9∥bi−b j∥2−2K

≥ 0.9∆−2K.

Finally, we show that K can be upper bounded by the singular values of the expectation

matrix A. This can be done with the following two lemmas which are proven implicitly in [199].

Lemma 11. Let A be an m× n (with m ≥ n) matrix of expectations in [0,1], and let Â be a

randomized rounding of A to {0,1}. Then, with probability at least 1− 1
n , we have for all

1≤ i≤ m, |σi(A)−σi(Â)| ≤ 4τ
√

n+4logn, where τ2 is the maximum probability in A.

Proof. Each σi+1(A) is equal to maxrank(Ai)=i ∥A−Ai∥2. Let A∗i , Â
∗
i be rank i matrices such

that σi+1(A) = ∥A−A∗i ∥2 and σi+1(Â) = ∥Â− Â∗i ∥2. We have that σi+1(A) ≤ ∥A− Â∗i ∥2 ≤

∥Â− Â∗i ∥2 +∥A− Â∥2.

Thus, it remains to bound ∥A− Â∥2. Let the columns in A− Â be a1, . . . ,an. Using

Lemma 7 from [200], we have that with probability at least 1− 1
n3 , the length of the projection of

ai onto a basis vector ei is at most 4(τ + logn√
n ). Thus, the total length ∥Aei∥2 is at most 4(τ + logn√

n ,
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and thus ∥A∥2 ≤
√

n4(τ + logn√
n ) establishing that σi+1(A)≤ σi+1(Â)+4

√
nτ +4logn. Likewise,

we can show that σi+1(A)≥ σi+1(Â)−4
√

nτ−4logn.

Lemma 12. Let A be an expectation matrix of HSBM(B,P, f ) with k blocks with minimum block

size s≥ 16
√

n logn, and let C be the submatrix of A with rows Y and columns Z, where |Y |= n
2

and |Z|= n
4 are chosen randomly from [n] such that Y ∩Z = /0. Then, with probability at least

1− 1
n , for all 1≤ i≤ k, we have

(1
8 −

√
n logn

s )σi(A1)≤ σi(A1)≤ (1
8 +

√
n logn

s )σi(A1)

Proof. Observe that the blocks in C are indexed in rows by B1∩Y, . . . ,Bk∩Y and in columns by

B1∩Z, . . . ,Bk∩Z. By Chernoff’s bound, with probability at least 1− 1
n2 , we have for all i that

1
2
−
√

n logn
|Bi|

≤ |Bi∩Y |
|Bi|

≤ 1
2
+

√
n logn
|Bi|

1
4
−
√

n logn
|Bi|

≤ |Bi∩Z|
|Bi|

≤ 1
4
+

√
n logn
|Bi|

.

We have σk(A) = minrank(Ak−1)=k−1 ∥A−Ak−1∥F and σk(C) = minrank(Ck−1)=k−1 ∥C−

Ck−1∥F ; let A∗k−1 and C∗k−1 be the maximizers of the previous expressions. Let A′ denote the

matrix C∗k−1 with rows and columns duplicated such that each element (A′)i j is equal to (C∗k−1)xy,

where x,y are any two points in the same block as i, j, respectively. Accounting for the duplication

factors of each block, we have

(
1
2
−
√

n logn
s

)(
1
4
−
√

n logn
s

)
∥A−A′∥F ≤ ∥C−C∗k−1∥F ,

and thus we see that (1
8 −

√
n logn

s )σk(A) ≤ σk(A1). By a similar sampling argument, we can

show that (1
8 +

√
n logn

s )σk(A) ≥ σk(A1). Repeating the argument for
√

σi(A)2 + · · ·σk(A)2 =

minrank(Ai−1)=i−1 ∥A−Ai−1∥F , we obtain the result for all 1≤ i≤ k.

Let A1,A2 be the expectation matrices of Â1, Â2 for fixed Y,Z2. Using Lemmas 11

and 12, we have that σ1(Â2)≤σ1(A2)+4τ
√

n+4logn≤ (1
8 +

√
n logn

s )σ1(A)+4τ
√

n+4logn≤
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3
32σ1(A)+4τ

√
n+4logn. Applying these again, we obtain

dk(Â1) = σk(Â1)−σk+1(Â1)

≥ σk(A1)−σk+1(A1)−8τ
√

n−8logn

≥ (
1
8
−
√

n logn
s

)(σk(A)−σk+1(A))−8τ
√

n−8logn

≥ 1
16

σk(A)−8τ
√

n−8logn

Finally, we have Γ̃ = σ̃1(Â2)

d̃k(Â1)
, which with probability at least δ , will satisfy

Γ̃≤ σ1(Â2)+
8
ε

ln 4
δ

dk(Â1)− 16
ε

ln 4
δ

≤
3

32σ1(A)+4τ
√

n+4logn+ 8
ε

ln 4
δ

1
16dk(A)−8τ

√
n−8logn− 16

ε
ln 4

δ

.

By our assumption that σk(A)≥ 1024max{τ√n, 1
ε

ln 4
δ
}, we obtain that Γ̂≤ 4σ1(A)

σk(A)
, This implies

that

K ≤
12k
√

m ln 5
δ

lnn

ε

σ1(A)
σk(A)

=
48k
√

2ln 2n
δ

ln 5
δ

lnn

ε

σ1(A)
σk(A)

≤ 96k(ln 5
δ
)3/2

ε

σ1(A)
σk(A)

,

where the last step follows because δ < 1
n . From our assumption, we have 2K ≤ 0.1∆, and the

result follows.

E.4.4 Proof of Corollary 1

In this special case, we can write A = P⊗1B, where P is a k× k matrix with p on the

diagonal and q everywhere else, 1s is a s× s matrix consisting of all 1s, and ⊗ denotes the

Kronecker product. It is easy to see that the eigenvalues of P are {p+q(k−1), p−q, . . . , p−q},

and the eigenvalues of 1s are {s,0, . . . ,0}. The eigenvalues of A are the product of the two sets

of eigenvalues of P and 1s. Thus, the top k largest eigenvalues are s(p+q(k−1)) and then k−1

copies of s(p−q).

Thus, the following properties of A hold: (1) σ1 = s(p+ q(k− 1))] ≤ sk(p+ q), (2)
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σk = s(p−q), (3) τ =
√

p, and (4) ∆ = (p−q)
√

s. We are able to apply Theorem 21 when

(p−q)
√

s≥ s(p+q)
s(p−q)

Ck(log 1
δ
)3/2

ε

(p−q)2

p+q
≥ C(k log 1

δ
)3/2

√
n

.

This establishes the result.
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