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Abstract

Physical aspects of cell and tissue elongation

by

Samhita P. Banavar

The morphogenesis of cells and tissues involves an intricate coordination of physical and

biological processes. In this thesis, we focus on the unidirectional elongation of cells

and tissues. We use budding yeast mating projection growth and the axis elongation of

zebrafish as our motivating examples of cell elongation and tissue elongation respectively.

Both require a fluid to solid transition in the growing structure for elongation to occur.

The mating projection growth of yeast cells display polarized, unidirectional growth.

It is unclear how information about the mechanical state of the wall is relayed to the

molecular processes building it, thereby enabling the coordination of cell wall expan-

sion and assembly during morphogenesis. Combining theoretical and experimental ap-

proaches, we show that a mechanical feedback coordinating cell wall assembly and expan-

sion is essential to sustain mating projection growth in budding yeast (Saccharomyces

cerevisiae). Our theoretical results indicate that the mechanical feedback provided by

the Cell Wall Integrity pathway, with cell wall stress sensors Wsc1 and Mid2 increasingly

activating membrane-localized cell wall synthases Fks1/2 upon faster cell wall expan-

sion, stabilizes mating projection growth without affecting cell shape. Experimental

viii



perturbation of the osmotic pressure and cell wall mechanics, as well as compromising

the mechanical feedback through genetic deletion of the stress sensors, leads to cellular

phenotypes that support the theoretical predictions.

The mechanisms that maintain continued polarization to the growth region during

mating projection formation, and the subsequent change in geometry from a spherical cell,

remain unknown. We theoretically show that a genetically-encoded mechanical feedback

relaying information about the cells geometry is sufficient to ensure that key polarity

molecules (e.g., Cdc42) remain localized to the site of growth. Interestingly, we find that

a common feedback mechanism, connecting the physics/geometry of the cell wall to the

cellular molecular machinery, can both stabilize cell growth and maintain polarity.

Tissue morphogenesis requires the successful translation of molecular information to

the physical fields that shape tissues into their functional morphologies. While regional

control of cellular forces or cell proliferation has been assumed to be the main contributor

to shaping tissues, it has been recently shown that the elongation of the body axis entails

a fluid-to-solid transition in the state of the tissue. Here we theoretically study how

the regional control of the fluid and solid states controls morphogenesis of the extending

body axis and how morphogenetic flows emerge from the underlying inhomogeneities

in physical fields. We theoretically describe from first principles the process of tissue

morphogenesis accounting for contact inhibition of proliferation, a mechanical feedback

preventing cell proliferation when tissue pressure is high, and show that both the existence

of a fluid-to-solid transition and the tissue surface tension determine the shape of the

ix



tissue and its ability to elongate unidirectionally. Our results indicate the existence

of counter-rotating vortices in the tissue that arise from the interplay between tissue

rigidification and growth. Posterior tissues are found to globally push on anterior tissues

to support elongation, but stresses in the tissue can display regions of both pulling and

pushing forces. These results help explain how the regional fluidization of the posterior

tissues drives posterior body elongation in vertebrates and the formation of complex

morphogenetic flows.
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Chapter 1

Introduction

Morphogenesis derives from the Greek words meaning the emergence (γενντση- gennisi)

of shape (µoρφη- morphi). Cells and tissues come in a variety of different shapes and

sizes with their shape being a key determinant of function. What determines the shapes

of cells and tissues? An unanswered question is how a cell acquires its physical form from

the blueprint of life, its DNA. However dependent a cell’s shape may be on the genetic

instructions, as D’Arcy Thompson aptly pointed out a century ago, living cells must grow

in accord with the laws of physics [1]. Here will use the machinery of mathematics and

physics to understand the morphology of cells and tissues.

The emergence of patterns in inert out-of-equilibrium systems has long been studied in

physics. In these systems, the patterns emerge through an instability of the homogeneous

state caused by noise, generally yielding defects in the patterns. The emergence of shape,

but not necessarily patterns, in living (out-of-equilibrium) systems, such as in cells or
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tissues, is far less understood. In this case, any errors (or defects) could be fatal for the

organism, suggesting that qualitatively different physical principles may be at play in

shaping living structures compared to inert systems. It is unclear to what extent physical

laws constrain the space of possible shapes and how the genetic/molecular information

controls the physical processes that shape biological structures. In this thesis, we explore

distinct cases of morphogenesis in search for answers to these questions.

1.1 Morphogenesis of cells and tissues

What do a human, a zebrafish, a yeast cell, and a bacterium have in common? DNA,

the molecular instructions for life! The genetic information encoded in DNA is extremely

important as it leads to the protein synthesis and biochemical signaling which organizes

the cells and tissues. Many studies have focused on the genetic and molecular aspects

of morphogenesis. Genetic screens are carried out to understand a genes influence on

shape. Biomolecular patterns are thought to influence cells in an embryo leading to

morphogenesis [2]. A famous modeling study of the biochemical phenomenon leading

to morphogenesis is Alan Turings The Chemical Basis of Morphogenesis. Turing showed

that non-trivial spatial patterns can arise from having two chemical agents, morphogens,

which diffuse and interact. Even though genes and the subsequent biochemical signaling

are extremely important for organizing the events underlying morphogenesis, the physical

processes sculpting cells and tissues are equally vital.
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1.2 Physical aspects of morphogenesis

Our aim is to study the physical aspects of growth. Morphogenesis in biological systems

share some features with the molding of clay into a beautiful sculpture in a reproducible

and robust manner. The artists hands sculpt the clay into the desired form by applying

forces, water is added judiciously to soften the clay, and the soft material is added at

the appropriate place and time to build the form. Similarly cells and tissues are shaped

by physical forces, the material properties need to be tuned just right to allow for the

correct growth dynamics, and the material needed for growth has to be supplied to

the right location at the right time. Morphogenesis necessarily involves the exquisite

spatiotemporal orchestration of these three processes, which, in turn, are directly linked

to biochemical processes within the cell.

1.2.1 Cellular morphogenesis

The shapes of eukaryotic (animal, plants, fungi) cells are largely determined by a structure

of meshed polymers that bears the load. These structures are highly dynamic to allow for

growth to occur. In animal cells, the shape is determined by the cytoskeleton (Fig. 1.1A).

The cytoskeleton is made up of microfilaments, intermediate filaments, and microtubules.

The cytoskeleton supports the cell membrane, provides a scaffold for organizing the

interior of the cell and provides tracks for intracellular transport. In plant and fungi

cells, the shape is determined by the cell wall (Fig. 1.1B). The cell wall is a rigid layer

providing structural support for the cell and is primarily made up of carbohydrates.
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Figure 1.1: Sketch of structure providing features of. A. Animal cells, B. Plant
and fungal cells, and C. Tissues adapted from [3].

Walled cells are under a high osmotic pressure. In our efforts to understand cellular

morphogenesis, we focus on tip growing walled cells because the shape is much easier to

define than in animal cells. The osmotic pressure is the driving force of growth and one

requires tuning of the local material properties of the cell wall and coordination of new

cell wall material addition.
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1.2.2 Tissue morphogenesis

Tissues are more complex and are a group of cells that share a common embryonic

origin. Although the control of the physical properties leading to morphogenesis occurs

at the cellular and subcellular levels, an emergent behavior at the supracellular scale

leads to morphogenetic events. The tissues shape is determined by various supracellular

factors such as cell-cell adhesion, the properties of the extracellular matrix (ECM), cell

rearrangements and cell divisions. Active cellular forces like actomyosin contractility

and changes in cell volume can drive tissue morphogenesis. The material properties

of the tissue can be controlled by cortical actomyosin contractility, by cell-cell or cell-

matrix adhesion, or by the ECM (Fig. 1.1C). Material can be added or removed by cell

proliferation, programmed cell death, cell volume changes, or ECM deposition. These are

the crucial processes that sculpt the tissue. In addition, mechanical forces can promote

the addition of new ECM and there can also be a rich interplay between the mechanical

forces and tissue material properties [3]. Understanding tissue morphogenesis is an

intricate problem combining many primary aspects of physical growth.

1.3 Unidirectional growth

We focus on understanding directed growth. Elongated objects have a high surface to

volume ratio which can be advantageous to absorb nutrients and transmit signals. The

mathematical description can often be simplified due to a symmetry about the direction of

elongation. Cells and tissues exhibit unidirectional growth which we use as a motivating
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example to better understand morphogenesis.

Figure 1.2: Elongating cells and tissues. A. Neuron [4] B. Microvilli [5] C. Budding
yeast with mating projection courtesy of Carlos Gomez of the Campàs lab D. Fungal
hypha [6] E. Kidney branches [7] F. Intestinal villi [8] G. Primitive streak of mouse
embryo [9] H. Zebrafish body axis elongation courtesy of Logan Roberts of the Campàs
lab.

1.3.1 Cellular morphogenesis

A cells shape is a key determinant of its function. Nerve cells have long thin branches,

called dendrites, extending from the neuronal cell body in order to transmit signals over

large distances (Fig. 1.2A) [10]. Cells lining the small intestine have long thin protrusions

called microvilli (Fig. 1.2B) which are important for absorbing nutrients. Tip growth is

a common mode of cellular expansion seen across walled celled species in fungal hyphae

(Fig. 1.2D), pollen tubes, and the mating projection of yeast cells (Fig. 1.2C) [11]. It

occurs due to a local expansion at the tip/apex thus greatly simplifying the mathematical
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and physical analysis of cell growth and it relies on the biochemical process of polarization

which localizes the necessary molecules to the site of growth. We seek to understand

polarization and tip growth using the yeast mating projection as our motivating example.

Previous studies of the mechanics of tip-growing walled cells of plant and fungal

species [12, 13, 14] have underscored the importance of two distinct features: the po-

larized assembly of new cell wall material at the tip and inhomogeneous mechanical

properties enabling its apical expansion. Earlier theoretical analyses of tip-growth fo-

cused on cell wall assembly [15, 16, 17] or cell wall mechanics [14, 18, 19] separately.

Since then both cell wall assembly and mechanics [20, 21, 22, 23] have been treated

simultaneously but as independent processes. We find that that this assumption leads

to an instability in cell wall expansion and causes cell lysis, at odds with experimental

observations. Our work is directly relevant to cell viability during cell wall remodeling

and morphogenesis and is the first to consider the coordination (coupling or feedback)

between cell wall mechanics and assembly in the morphogenesis of walled cells.

The triggering and maintenance (at the correct spatial location) of the molecular

polarization of a cell is of fundamental importance for tip growth. While many existing

models of cell polarization are able to reproduce the spontaneous symmetry breaking and

establishment of a polarization cap in a static, 1D or 2D spherical cell geometry [24, 25],

they do not explain the maintenance of cell polarization at the tip of mating projec-

tions [26], required for polarized growth. Unlike earlier theories, which either considered

the dynamics of polarization in fixed geometries or the mechanics of cell morphogenesis
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without accounting for polarization, we couple the dynamics of cell polarization and cell

wall mechanics during mating projection growth. Remarkably, the mechanical feedback

encoded in the CWI pathway coordinates both the dynamics of the polarization cap and

cell morphogenesis, maintaining the polarization cap at the tip of the mating projection

and sustaining mating projection growth.

1.3.2 Tissue morphogenesis

Similar to cells, tissues also develop into elongated structures. We see this in the branch-

ing of the lungs wherein the slender branches help increase the surface area to allow for

gas exchange with the uptake of oxygen and the release of carbon dioxide. Branching is

also seen in the kidney as seen in Fig. 1.2E. The tissue in the small intestine grow into

protrusions which are called the intestinal villi (Fig. 1.2F), which help with absorption in

the gut. The digits on our hands are also formed by tissue elongation. Tissue elongation

can also define the body axes of an organism (Fig. 1.2G) [27]. Here we use zebrafish

tailbud elongation as a motivating example to understand elongation at the tissue scale

as seen in Fig. 1.2H.

Recent quantitative measurements of the spatial variations in both mechanical stresses

and tissue material properties showed that a fluid-to-solid transition in the state of the tis-

sue played a role in guiding the posterior extension of the body axis in zebrafish embryos

[28]. Cell-based models are well suited to understanding tissue morphogenesis when cel-

lular resolution is necessary, but typically lead to a large number of parameters because
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the mechanical state for each cell needs to be accounted for [29, 30, 31, 32, 33, 34].

Tissue morphogenesis can also be described by coarse-grained continuum approaches

that only require information of physical fields at supra-cellular scales [35]. Previous

continuum descriptions [35, 36, 37] of tissue morphogenesis generally assumed spatially

uniform mechanical properties (i.e., constant tissue viscosity or constant stiffness de-

pending on the tissue) and considered only spatial variations in either cell proliferation

or forces because experimental studies have primarily considered spatial variations of

these quantities. In the specific case of body axis elongation, self-propelled particle de-

scriptions [38, 39, 40, 41] assumed set tissue shape (fixed tissue boundaries), allowing

the prediction of cell movement but not tissue morphogenesis since the boundaries are,

by construction, fixed. Importantly, most cases of tissue morphogenesis are examples of

so-called free boundary problems, in which tissue flows change the shape of the tissue and

these boundary changes affect the movements inside the tissue. Therefore, in tissues that

change shape during morphogenesis, it is important to consider the coupled dynamics of

the tissue shape and morphogenetic flows. Our studies explicitly incorporates the role

of spatial variations in tissue mechanical properties and, especially, the role of localized

transitions between the fluid and solid tissue states.

1.4 Outline

We carry out theoretical studies of the dynamics of growth of cells and tissues using a

coarse grained approach and basic physics first principles. Interestingly, we find that for
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both cell and tissue elongation, a fluid to solid transition of the growing material plays a

pivotal role. Our theoretical descriptions are based on experimental evidences and one of

our principal goals is to understand the interplay between the biochemical and physical

processes leading to morphogenesis.

In chapter 2, we discuss how the shaping of tip growing walled cells requires a tight

coordination of cell mechanics and growth. The cell wall undergoes a fluid to solid

transition in order for elongation to occur. Using the mating projection growth of budding

yeast (Saccharomyces cerevisiae) cells as a model system, we show that a genetically-

encoded mechanical feedback relays information about the mechanical state of the cell

wall to the intracellular processes assembling it, thereby coordinating cell wall expansion

and growth during cell morphogenesis. The mechanism of mechanical feedback predicted

in our work was later observed in fission yeast and there have been hints of a similar

feedback mechanism in a very different system of pollen tube growth in plants. This

underscores the likelihood of a system-independent universal mechanism that coordinates

the physical and molecular aspects of cell morphogenesis.

In chapter 3, we discuss the process by which budding yeast cells establish and main-

tain cell polarization, which is key to unidirectional cellular morphogenesis and mating

projection growth. We theoretically show that the same genetically-encoded mechani-

cal feedback is also sufficient to ensure that key polarity molecules (e.g., Cdc42) remain

localized to the site of growth. It is noteworthy that this same mechanical feedback mech-

anism is responsible for cell viability during growth, indicating that a common feedback
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mechanism, connecting the physics/geometry of the cell wall to the cellular molecular

machinery, can both stabilize cell growth and maintain polarity.

In chapter 4, we study theoretically how the regional control of the fluid and solid

states controls morphogenesis of the extending body axis in the zebrafish tailbud and

how morphogenetic flows emerge from the underlying inhomogeneities in physical fields.

We theoretically describe, from first principles, the process of tissue morphogenesis ac-

counting for contact inhibition of proliferation and a mechanical feedback preventing cell

proliferation when the tissue pressure is high. We show that both the existence of a

fluid-to-solid transition and the tissue surface tension determine the shape of the tissue

and its ability to elongate unidirectionally.

We conclude in Chapter 5 by summarizing our results and discussing future directions.
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Chapter 2

Budding yeast mating projection

growth

From cell division to polarization and growth, cells constantly change their shapes to

perform specific tasks [42, 43, 44]. These morphological changes are achieved through

remodeling of the structures that mechanically sustain the cell, such as the cytoskeleton

in animal cells and the cell wall in walled cells. Unlike animal cells, which can undergo

fast and complex cell shape changes, walled cells must take extra care during shape

changes, as the cell wall needs to mechanically sustain their high internal turgor pressure

throughout the cell wall remodeling process [45, 46, 47]. A lack of coordination between

cell wall expansion and assembly during cell growth can be fatal for the cell, as the

thinning of the cell wall in expanding regions may lead to cell lysis unless it is carefully

balanced by newly assembled wall material. While it is believed that the coordination of
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cell wall expansion and assembly is necessary to cell wall remodeling and morphogenesis,

the mechanisms behind this coordination remain largely unknown. This work was done in

close collaboration with Carlos Gomez, Michael Trogdon, Dr. Tau-Mu Yi and Professor

Linda Petzold. This chapter was published in PLOS Computational Biology [48].

2.1 Introduction

Cell shape changes are ultimately governed by the mechanical state of the cell wall [46,

49, 47]. Studies of the mechanics of walled cell morphogenesis have predominantly fo-

cused on tip-growing cells of plant and fungal species because of their large size, simpler

geometry and fast growth rates [12, 13, 14]. In this highly polarized growth mode, cells

adopt a tubular shape that extends only at the apical region (Fig. 2.1). During this

process, cells polarize their cytoskeleton and localize exocytosis to the growing region,

exactly where the cell wall needs to be assembled and remodeled. While the molecular

underpinnings of tip-growth differ across species, two basic features have been shown

to be necessary [49]: polarized assembly of new cell wall material at the tip, and in-

homogeneous mechanical properties enabling its apical expansion (Fig. 2.1F). Previous

theoretical descriptions of tip-growth focused on cell wall assembly [15, 16, 17] or cell

wall mechanics [14, 18, 19] separately. More recent descriptions accounted for both cell

wall assembly and mechanics [20, 21, 22, 23], but assumed these processes to be inde-

pendent of each other. As we show below by directly solving the dynamics of cell wall

assembly and expansion, assuming cell wall mechanics and assembly to be independent

13



of each other always leads to unstable cell wall expansion and cell lysis, in stark contrast

with experimental observations. Despite its relevance to cell viability during cell wall

remodeling and morphogenesis, no previous theoretical descriptions have addressed the

role of coordination (coupling or feedback) between cell wall mechanics and assembly in

the morphogenesis of walled cells.
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Figure 2.1: Schematic diagrams of relevant events and quantities in mating
projection growth. (A) Transmitted light image of a S. cerevisiae cell growing a
mating projection in the presence of α-factor. Scale bar, 2µm. (B-D) Sketch of molecular
events leading to the delivery and activation of cell wall synthases Fks1/2 at the apex.
See table 2.2.2 for definitions of parameters. (E) Geometry of the system and definition
of the relevant variables. (F) Sketch depicting the increasing cell wall viscosity and
decreasing cell wall assembly away from the apex. The inset depicts local normal force
balance at the cell wall. All variables are defined in the main text.

In addition to well-known model systems for tip-growth, such as pollen tubes in plants
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and hyphal growth in higher fungi [12, 13, 49], budding yeast displays tip-growth during

mating. Haploid cells secrete pheromone (α- and a-factors for mating types a and α,

respectively) that elicits the growth a tubular mating projection from the partner of the

opposite type [50, 51] (Fig. 2.1A). Since the molecular basis of cell polarization and cell

wall assembly and remodeling have been extensively studied in budding yeast, tip-growth

of mating projections provide a unique system to study the mechanism of coordination

between cell wall mechanics and assembly.

In a-cells, binding of α-factor to its cognate receptor activates the heterotrimeric

G-protein, leading to the activation and polarization of the small G-protein Cdc42, a

master regulator of cell polarization [52]. Cdc42-mediated polarization recruits various

molecular factors to an apical region of the plasma membrane known as the polarisome,

where the formin Bni1 drives the nucleation of actin cables, focusing exocytosis at the

apex [50, 44] (Fig. 2.1B). Secretory vesicles transporting Fks1/2 cell wall synthases and

cell wall remodeling enzymes (e.g., glucanases) move along actin cables to the exocyst,

eventually leading to the incorporation of Fks1/2 synthases to the plasma membrane

and the release of glucanases into the preexisting cell wall (Fig. 2.1B,C) [53, 54, 55, 56].

Together, these events molecularly and mechanically polarize the cell, causing a localized

expansion of the cell wall at the apex (Fig. 2.1B,F).

In general, the expansion of the cell wall is a dangerous situation that the cell needs

to carefully control. Since the cell wall sustains the high cell’s internal turgor pressure,

uncontrolled cell wall expansion can lead to cell wall piercing and cell lysis. In bud-
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ding yeast, the Cell Wall Integrity (CWI) pathway is known to help the cell prevent loss

of cell wall mechanical integrity in a variety of situations [57, 58, 59, 60], from mating

pheromone-induced growth to vegetative growth [59, 58, 61]. Five transmembrane pro-

teins, namely Wsc1, Wsc2, Wsc3, Mid2, and Mtl1, are thought to act as stress sensors

and relay information about the mechanical state of the cell wall to multiple intracellular

processes via the activation of Rho1 GTPases [59, 62, 63, 58, 64, 65, 66, 67]. Previ-

ous works have shown that Wsc1 and, especially, Mid2 play an important role during

mating pheromone induced growth, while the remaining stress sensors do not seem to

strongly affect projection growth [68, 69, 70, 67, 71]. While the specific mechanical quan-

tity that these stress sensors monitor in the cell wall remains unclear, activation of the

CWI pathway leads to the downstream Rho1-mediated activation of several key molec-

ular components, including cell wall synthases (Fks1/2), actin nucleators (Bni1) and

mediators of exocytosis (Sec3), and also induces a transcriptional response via a MAPK

cascade [59]. The activation of cell wall Fks1/2 synthases [59, 63, 51] provides the most

direct coupling between cell wall mechanics and assembly and could potentially stabilize

mating projection growth (Fig. 2.1D). However, it is unknown if such a simple, direct

mechanical feedback can stabilize morphogenesis of walled cells by itself.

Using mating projection growth in budding yeast as a model system, and combin-

ing experiments and theory, we show that coordination between cell wall mechanics and

assembly through direct Fks1/2 activation in the CWI pathway (mechanical feedback)

stabilizes mating projection growth without affecting its geometry. In what follows, the
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term ’mechanical feedback’ refers to the nature of the input signal that is sensed and re-

layed by stress sensors in the CWI pathway. We first derive a theoretical description that

connects the cell wall mechanics to the intracellular processes building the wall (Fks1/2

activation dynamics) via the CWI pathway, and show that stable projection growth can

only persist in the presence of mechanical feedback. In the absence of coordination be-

tween cell wall assembly and mechanics, cell wall expansion is always unstable, leading

to either progressive thickening or thinning of the cell wall depending on conditions. Our

experimental results indicate the compromising the mechanical feedback through genetic

deletions of the wall stress sensors Mid2 and Wsc1, and also through perturbations of

cell wall mechanics and increased turgor pressure, all lead to defects in mating projec-

tion growth and cell viability. Our experimental observations are in agreement with the

theoretical predictions, suggesting that the mechanical feedback provided by the CWI

pathway via direct activation of Fks1/2 synthases can stabilize projection growth with-

out altering cell geometry. In addition, by directly measuring the size of the exocytosis

region in wild-type (WT) and mutants with compromised mechanical feedback, we show

that the size of the mating projection is controlled by the size of the exocytosis region,

but is independent of the strength of the mechanical feedback, as predicted theoretically.

Altogether, our results show that a mechanical feedback between cell wall mechanics and

assembly is essential for stability of cell wall expansion and projection growth, but that

its geometry and size are insensitive to the mechanical feedback.
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2.2 Theoretical description

The expansion of the cell wall during morphogenesis is powered by the cell’s internal

turgor pressure, P . Such high pressure is mechanically sustained by the cell wall, which

provides mechanical integrity to the cell at all stages, including during mating projection

growth. Similarly to other organisms [13, 46, 49], the cell wall in budding yeast can

be considered a thin shell surrounding the cell, as the wall thickness (∼ 100 nm [72])

is much smaller than the radius of the projection (∼ 1µm [73]). Since the cell’s shape

is determined by the location of its cell wall, we describe the growth of the mating

projection as the expansion of an asymmetric thin shell, parameterized by the arclength

s from the projection apex and azimuthal angle φ (Fig. 2.1E). The shape of the projection

is characterized by its local radius, r(s, t), and the principal curvatures κs = ∂θ/∂s and

κφ = sin θ/r, respectively, where θ(s, t) is the angle between the local outward normal

and the axis of growth (Fig. 2.1E). The coordinates (r, φ, z) (Fig. 2.1E) are standard

cylindrical coordinates, and the angle θ and arclength s parameterize changes in normal

and tangential directions of the surface, n̂ and ŝ respectively [23, 74] (Fig. 2.1E). The

time evolution of the mating projection shape is governed by the mechanics and assembly

of the cell wall, as described below.

2.2.1 Cell wall mechanics and extension

Building on previous work combining cell wall mechanics and growth in tip-growing

cells [23], as well as on the expansion of thin viscous shells [74], we write the equations
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governing the dynamics of the growing cell wall. Local normal force balance at the cell

wall reads

σssκs + σφφκφ = P and σssκφ =
P

2
, (2.1)

where σss(s, t) and σφφ(s, t) are the tensions along s and φ in the wall (Fig. 2.1F). The

expansion of the cell wall during growth is caused by the tensions and depends on the

mechanical properties (rheology) of the cell wall, which govern the response of the cell wall

to applied stresses. Although the yeast cell wall behaves elastically at short time scales

(seconds [72]), it expands irreversibly on the characteristic timescales of mating projection

growth (minutes [20]), revealing a fluid-like behavior of the cell wall in growing regions.

The transition between fluid-like behavior at the growing apical region to an elastic

behavior far away from the apex has been studied in other systems and it is believed to be

controlled by an increasing concentration of cross-links between wall polymers away from

the tip [75, 76]. This is consistent with the higher concentration of cell wall degrading

enzymes (glucanases) in the apical region of the mating projection [77]. We therefore

assume the cell wall of the growing mating projection to behave as an inhomogeneous

viscous fluid, with spatially varying viscosity µ(s), minimal at the apex and increasing

away from it (Fig. 2.1F). The local tangential velocity u(s, t) of a cell wall with constant

density ρw, or its strain (expansion) rates ε̇s = ∂u/∂s and ε̇φ = (1/r)(dr/dt) equivalently,

can be minimally related to the tensions in the wall by [23, 74]

σss = 4µh [ε̇s + ε̇φ/2] and σφφ = 4µh [ε̇s/2 + ε̇φ] . (2.2)
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2.2.2 Dynamics of cell wall assembly

Sustained expansion of the cell wall during mating projection growth requires constant

assembly of new cell wall material in the expanding apical region (Fig. 2.1B-C,F). Cell

wall assembly occurs through synthesis of the primary component of the wall, 1,3-β glu-

can [72], by transmembrane 1,3-β glucan synthases Fks1/2, which localize at the apical,

growing region of the mating projection [78, 79]. While only inactive Fks1/2 molecules,

unable to synthesize glucans, are incorporated to the plasma membrane through exocy-

tosis, Fks1/2 can be activated by Rho1 once at the plasma membrane [80] (Fig. 2.1C,D).

The activated form of Fks1/2 synthases extrudes 1,3-β glucan chains into the extracel-

lular space, thereby assembling new cell wall onto the preexisting wall [45]. Accounting

for these events, mass conservation of cell wall material yields

∂t(rh) + ∂s(rhu) =
rmmkp

ρw

ρA(s, t) , (2.3)

where h(s, t) is the cell wall thickness (Fig. 2.1E), and mm and kp are the mass of a 1,3-β

glucan monomer and the 1,3-β glucan assembly rate by Fks1/2 synthases, respectively.

For simplicity, we assume that the assembly rate of new cell wall material is proportional

to the local surface density ρA of active Fks1/2. Given that Fks1/2 synthases are con-

stantly added and removed from the plasma membrane by exo- and endo-cytosis, it is

important to consider their dynamics.

Inactive Fks1/2 are transported to the apical region of the mating projection by the

cells exocytic machinery and incorporated to the plasma membrane via exocytosis [81]

(Fig. 2.1C). Once on the membrane, inactive Fks1/2 molecules, characterized by a local
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density ρI , can be activated at a rate kon. Due to the relatively fast exo- and endo-

cytosis Fks1/2 recycling (∼ 1s [82]) and very low diffusion constant D of proteins on

yeast membranes (D ∼ 0.01µm2/s [83]), the diffusive movement of inactive Fks1/2 on

the plasma membrane can be neglected. In the active state, Fks1/2 extrudes new 1,3-

β glucan chains into the wall, which get assembled into the preexisting 1,3-β glucan

network, effectively attaching active Fks1/2 to the wall and leading to a wall-driven

convective movement of active Fks1/2 with velocity u. Finally, active Fks1/2 synthases

become inactive at a rate koff (Fig. 2.1C). The dynamics for both inactive and active

Fks1/2 states can be written in the curved geometry of the cell as

∂t(ρIr) = r[koffρA − konρI] + r[kXρ0 − kDρI] ,
∂t(ρAr) + ∂s(ρAru) = r[konρI − koffρA] ,

(2.4)

where kX and kD are the exocytosis and endocytosis rates, respectively. Experimental

observations of the spatial distribution of both exocytic and endocytic events during mat-

ing projection growth indicate that these are maximal at the apex and decay away from

it [82]. These localized exo- and endo-cytosis profiles are characterized by a decay length

scale and can be written as kX(s, t) = k0
X exp(−s2/λ2

X) and kD(s, t) = k0
D exp(−s2/λ2

D),

where k0
X and k0

D are the apical rates of exocytosis and endocytosis, respectively, and λX

and λD are the length scales over which exocytosis and endocytosis decay, respectively.

Given that the enzymes that locally degrade the cell wall and control its mechanical

properties are secreted through exocytosis [84], we assume the length scale of viscos-

ity variation to be set by the exocytosis length scale and write the viscosity profile as

µ(s) = µ0 exp(s2/λ2
X).
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In order to simultaneously solve for the mechanics of cell wall expansion and the

dynamics of cell wall assembly described above, it is necessary to specify the activa-

tion and inactivation rates of membrane-localized Fks1/2 cell wall synthases, kon and

koff , respectively. Inactivation of active, membrane-localized Fks1/2 synthases has been

largely unexplored and assumed here to occur at a constant rate. The activation of in-

active Fks1/2 is mediated by the GTPase Rho1 through the CWI pathway [59, 63, 51]

(Fig. 2.1D), providing a direct coupling between the local mechanical state of the wall

and the local cell wall synthesis machinery via the Fks1/2 activation rate kon (Fig. 2.1D).

To account for this coupling, we write the Fks1/2 activation rate kon as dependent on

the cell wall mechanical state, namely

kon = Γ [ε̇s + ε̇φ] , (2.5)

where we assumed the stress sensors to perceive the expansion (strain) rate in the wall,

rather than strain or stress. Indeed, activation of cell wall synthases should not occur

in the absence of cell wall expansion, as it could otherwise lead to uncontrolled cell wall

thickening. Eqn. 2.5 constitutes a direct mechanical feedback of cell wall mechanics on

cell wall assembly, with the dimensionless parameter Γ establishing the strength of the

mechanical feedback: large values of Γ indicate that low levels of cell wall expansion

trigger large activation of Fks1/2 synthases, and vice versa.

Combining equations. 2.1-2.5 and the profiles of exocytosis, endocytosis and wall vis-

cosity described above, we solve the coupled dynamics of cell wall mechanical expansion

and assembly. Normalizing all variables, we find 5 dimensionless parameters that control
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Figure 2.2: Dynamical regimes Parameter space spanned by Γ and λX/λm (A-I) for
different values of the parameters k0

D/k
0
X and koff/k

0
X . The transition from unstable

growth (red) to stable growth (green) exists in all cases.

the dynamical regimes of the system (Table 2.2.2), namely koff/k
0
X, k0

D/k
0
X, λD/λX, Γ,

and the ratio (PρwλX)/(12µ0mwρ0kp), which corresponds to the ratio λX/λm of the ex-

ocytosis length scale λX and a length scale λm ≡ 12µ0mwρ0kp/Pρw set by the expansion
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mechanics of the cell wall.
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Figure 2.3: Dynamical regimes as the ratio of lengthscales of exocytosis and
endocytosis is varied Transition from unstable (red) growth to stable (green) growth
exists in all cases.

The parameters koff/k
0
X, k0

D/k
0
X, λD/λX have either been measured or estimated and

we use below their known values [85, 82] (Table B in Appendix A); variations in these

parameters do not qualitatively affect our results. We vary the parameters held constant

in the main text within a reasonable range and determine the dynamical regimes. Since

our theoretical predictions and experimental results indicate that the instability occurs

as the pressure is increased or the mechanical feedback decreased, we explore if this

behavior is robust as we vary all other parameters. Varying the parameters k0
D/k

0
X and

koff/k
0
X by two orders of magnitude (from 0.10 to 10) does not change our qualitative

results (Fig. 2.2): there is transition between stable and unstable states, and the critical

value of the mechanical feedback strength increases with λX/λm. Varying λX/λD leads

also to the same qualitative results (Fig. 2.3).

In contrast, the feedback strength Γ and the ratio (PρwλX)/(12µ0mwρ0kp) are un-

24



known and we explore below the dynamical regimes of the system when these parameters

are varied.

Dimensionless parameters

PρwλX

12µ0mwρ0kp
Γ koff

k0
X

k0
D

k0
X

λD

λX

Physical/Chemical parameters

Parameter Description Parameter Description
P Turgor pressure of

budding yeast
λX Exocytosis length-

scale
ρw Density of 1,3-β

glucans in cell wall
λD Endocytosis length-

scale
µ0 Apical viscosity of

cell wall
k0
X Apical rate of exo-

cytosis
mw Mass of 1,3-β glu-

can monomer
k0
D Apical rate of endo-

cytosis
ρ0 Density of Fks1/2

enzymes in vesicle
koff Inactivation rate of

Fks1/2

kp Extrusion rate
of 1,3-β glucan
monomers

Table 2.1: System physical parameters and relevant dimensionless parameters

Numerical integration of governing equations

The system of equations 2.1-2.5 was scaled and written in a manner such that r, h, ρA,

and ρI were described by equations evolving in time, and u, θ, κs by differential equations

in s. The latter equations were solved by the method of lines; s was discretized and the s-

derivatives were written as a differential matrix using fourth order central difference and

one sided finite differences at the boundary. The resulting system becomes a differential

algebraic system (DAE), which was solved using Sundials, a suite of nonlinear and DAE

solvers. Steady state solutions were obtained by ensuring that all time derivatives of

scaled variables were below 10−3.
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2.3 Stability of mating projection growth

In the absence of mechanical feedback (Γ = 0),the equation 2.4 cannot lead to projection

growth because Fks1/2 synthases cannot be activated and, consequently, there is no

cell wall assembly at all. To study the system in the absence of mechanical feedback

(Γ = 0), but in the presence of cell wall assembly, we only consider an active Fks1/2

state, with Fks1/2 molecules incorporated to the plasma membrane via exocytosis and

removed from it via endocytosis. As Fks1/2 molecules are always active in this limiting

case, they directly contribute to the assembly of the cell wall and their dynamics is fully

decoupled from the cell wall mechanics, namely

∂t(ρAr) + ∂s(ρAru) = r[kXρ0 − kDρA] . (2.6)

Eqns. 2.1-2.3 and Eq. 2.6, together with the profiles of exocytosis, endocytosis and wall

viscosity described in the main text, describe the coupled dynamics of cell wall mechanical

expansion and assembly in the absence of mechanical feedback. Normalizing all variables,

we obtain the relevant dimensionless parameters, namely k0
D/k

0
X, λX/λD, and the ratio

(PρwλX)/(12µ0mwρ0kp), which corresponds to the ratio λX/λm of the exocytosis length

scale λX and a length scale λm ≡ 12µ0mwρ0kp/Pρw set by the expansion mechanics of

the cell wall.

We numerically integrate the dynamics of the system in the absence of feedback

and find that no stable states exist for varying values of k0
D/k

0
X and λX/λm and fixed

λX/λD = 0.5 or for λX/λD and λX/λm fixed k0
D/k

0
X = 1.0 (Fig. 2.4A,B). No stable

states were found over a two order of magnitude variation of the parameters around their
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unit values. The instability is caused by either the progressive thinning or thickening of

the cell wall, depending on the region of the parameters space (Fig. 2.4A,B). Cell wall

thinning eventually leads to the piercing of the cell wall at the apex (h(s = 0, tp) = 0) at

a finite time tp (Fig. 2.4C). In other regions of the parameters space, the apical cell wall

progressively thickens without bound (Fig. 2.4D). The presence of a mechanical feedback

is therefore crucial for the stable growth of the mating projection. In the absence of

a mechanical feedback there is a lack of coordination between cell wall expansion and

wall assembly, making it impossible for the cell wall synthesis machinery (Fks1/2) to

appropriately balance cell wall expansion because it does not have information about its

mechanical state.

In the presence of mechanical feedback (Γ > 0), numerical integration of Eqns. 2.1-

2.5 (Methods) shows that stable states of mating projection growth can be sustained for

a large range of parameters (Fig. 2.5B and 2.5). In this context, stable states refer to
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Figure 2.4: Mating projection growth is always unstable in the absence of
mechanical feedback. (A) No stable solutions exist as k0

D/k
0
X and λX/λm are varied

and λX/λD = 0.5. (B) No stable solutions exist as λX/λD and λX/λm are varied and
k0
D/k

0
X = 1.0. (C) Progressive thinning of the apical cell wall (h(s = 0, t)), eventually

leading to the piercing of the cell wall at the apex. (D) Progressive, unbounded thickening
of the apical cell wall.
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Figure 2.5: Effect of mechanical feedback strength and turgor pressure on cell
viability. The strength of mechanical feedback, Γ, is experimentally varied by delet-
ing MID2 and WSC1. The dimensionless parameter (PρwλX)/(12µ0mwρ0kp) is varied
by changing the osmolarity of the external medium through dilution of the yeast growth
media, YPD, in deionized H2O, effectively increasing turgor pressure P in cells. Cell lysis
was measured using the PI staining viability assay (Methods). (A) Percent of lysed cells in
mid2 ∆ and wsc1 ∆ mutants, as well as the mid2 ∆wsc1 ∆ double mutant, when grown in
the presence of α-factor in YPD. (B) Theoretically predicted dynamical regimes for vary-
ing values of the mechanical feedback strength Γ and the ratio (PρwλX)/(12µ0mwρ0kp).
Decreasing osmolarity experimentally, corresponds to increasing P and, therefore, mov-
ing along horizontal lines in the positive direction. Addition of zymolyase, a cell wall
degrading enzyme, corresponds to decreasing the cell wall viscosity, moving also along
horizontal lines in the positive direction. (C) Images (DIC, PI staining and merge) show-
ing the moments before and after the piercing of the cell wall at the tip of a mating
projection and subsequent cell lysis of a mid2 ∆ cell after the addition of zymolyase.
Scale bar, 2µm. (D) Temporal increase in the fraction of pierced mating projections for
both mid2 ∆ (squares) and WT (circles) cells after addition of zymolyase.
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Figure 2.6: Effect of mechanical feedback strength and turgor pressure on cell
viability. The strength of mechanical feedback, Γ, is experimentally varied by deleting
MID2 and WSC1. The dimensionless parameter (PρwλX)/(12µ0mwρ0kp) is varied by
changing the osmolarity of the external medium through dilution of the yeast growth
media, YPD, in deionized H2O, effectively increasing turgor pressure P in cells. Cell lysis
was measured using the PI staining viability assay (Methods). (A) Percent of lysed cells in
the absence of α-factor for WT, mid2 ∆ and wsc1 ∆ mutants, as well as the mid2 ∆wsc1 ∆
double mutant. (B) Percent of WT lysed cells when grown in the presence of α-factor in
YPD medium with decreasing osmolarity. (C) Percent of mid2 ∆wsc1 ∆ lysed cells when
grown both in the presence and absence of α-factor in YPD, in osmotically supported
conditions (YPD + 1M sorbitol), as well as in hypo-osmotic conditions (100% H2O).
(D) Percent of mid2 ∆wsc1 ∆ lysed cells when grown in the presence of α-factor and
osmotically supported media (YPD + sorbitol), diluted for decreasing osmolarities.

sustained steady state growth of the mating projection at constant velocity. For any given

value of the ratio (PρwλX)/(12µ0mwρ0kp) there exists a critical value of the feedback

strength Γ below which mating projection growth is unstable. Similarly, for every value

of the feedback strength Γ, there is a maximal value of (PρwλX)/(12µ0mwρ0kp) above

which mating projection growth becomes unstable. This instability is caused by the

progressive thinning of the apical cell wall, eventually causing the piercing of the cell and

leading to cell lysis. The bifurcation between stable and unstable states characterizes the
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transition between stably growing mating projections and a situation in which this stable

growth cannot be sustained because of the progressive thinning of the cell wall and its

eventual piercing. This instability threshold (bifurcation) is equivalent to the existence

of a maximal turgor pressure (or a minimal viscosity), above (below) which the cell wall

progressively thins and eventually pierces at the tip of the projection, leading to cell

lysis. The predicted increase of the maximal turgor pressure or decrease in the minimal

wall viscosity for increasing feedback strength Γ indicates that cells with compromised

mechanical feedback should be more sensitive to both an increase in turgor pressure or

a decrease in wall viscosity than WT cells.

In order to experimentally explore the predicted dynamical regimes (Fig. 2.5B, Fig, 2.2,

Fig, 2.3), we systematically varied the mechanical feedback strength, as well as the turgor

pressure P and cell wall viscosity µ0. In contrast to previous works, here we examine

all three perturbations in the context of the stability of pheromone-induced projection

growth. We first varied the feedback strength Γ by compromising the ability of the

cell to sense the mechanical state of the wall. To this end, we genetically deleted the

two primary cell wall stress sensors present during mating projection growth, namely

Wsc1 and Mid2 [63] (Fig. 2.1D), and measured the resulting cell lysis (Methods). Only

in the presence of α-factor and mating projection growth, did the deletion of either of

the two sensors (Mid2, Wsc1) lead to increased levels of cell lysis compared to WT

(Fig. 2.5A,2.6A), as predicted theoretically (Fig. 2.5B), indicating that the ability to

sense the mechanical state of the wall is essential during growth. Moreover, the double
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mutant mid2∆wsc1∆ exhibited the highest level of cell lysis in α-factor and, even when

osmotically supported by 1M sorbitol, showed a substantial increase in lysis after the

addition of α-factor (Fig. 2.5E,2.6A,C). These observations show that the double mutant

has an enhanced sensitivity to the addition of mating pheromone, in agreement with

previous results obtained during vegetative growth [70]. To explore how changes in the

parameter (PρwλX)/(12µ0mwρ0kp) affected cell viability (Fig. 2.5B), we independently

changed the turgor pressure P and the cell wall viscosity µ0. To increase the cell’s turgor

pressure P , we progressively decreased the osmolarity of the external medium (Meth-

ods). We observed a monotonic increase in lysed cells for both WT and mid2∆wsc1∆

cells as media osmolarity was decreased in the presence of α-factor (Fig. 2.6B,D), con-

sistent with the theoretically predicted effect of increased turgor pressure P (Fig. 2.5B).

Finally, in order to decrease the cell wall viscosity µ0, thereby increasing the value of

the parameter (PρwλX)/(12µ0mwρ0kp) (Fig. 2.5B), we added zymolyase to the culture

media (Methods). Zymolyase enzymatic activity degrades 1,3-β glucans in the cell wall,

effectively lowering the cell wall viscosity. Addition of zymolyase led to the piercing of

the cell wall typically at the tip of the mating projection (Fig. 2.5C and Supplementary

Video), as expected theoretically (Fig. 2.5B). Since zymolyase will continuously degrade

the cell wall, leading to the eventual piercing and lysis of all cells, we studied the temporal

increase in pierced cells. Our results indicate that mid2 ∆ cells with reduced mechanical

feedback pierced faster than WT cells when grown at the same zymolyase concentration

(Fig. 2.5D), as theoretically expected (Fig. 2.5B). Overall, our experimental results are in
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agreement with our theoretical predictions (Fig. 2.5B) and are consistent with the CWI

pathway providing the necessary mechanical feedback to coordinate cell wall expansion

and assembly.

2.4 Characteristics of stably growing mating projec-

tions

Stable, steady-state solutions for mating projection growth show that the shape of the

mating projection is largely insensitive to variations in the feedback strength Γ and the

ratio (PρwλX)/(12µ0mwρ0kp) (Fig. 2.7A-B,E-F). The size (radius) R of the mating pro-

jection increases linearly with the size of the exocytosis region λX, but it is independent

from the feedback strength Γ (Fig. 2.7B). Beyond projection shape and size, the cell

wall expansion rate, ε̇s + ε̇φ, is always maximal at the projection apex (s = 0) and de-

creases away from it (Fig. 2.7C), eventually vanishing as no wall expansion occurs far

away from the growing apical region. The cell wall expansion rate at the projection apex,

(ε̇s+ε̇φ)|s=0, increases with increasing turgor pressure (or (PρwλX)/(12µ0mwρ0kp) equiva-

lently) and with decreasing mechanical feedback strength (Fig. 2.7C-D). In contrast, the

apical cell wall thickness displays the opposite behavior (Fig. 2.7G-H), decreasing for

increasing P or decreasing Γ. These results indicate that cells closer to the instability

threshold display stronger apical cell wall expansion rates and thinner cell wall (Fig. 2.5A

and Fig. 2.7D,H), suggesting the strong cell wall expansion and thinning at the apex as
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the cause of the loss in cell wall mechanical stability.
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Figure 2.7: Steady-state stable solutions for mating projection growth: Pro-
jection shape and cell wall expansion. (A,C,E,G) Mating projection shape (A), as
well as the spatial profiles of the cell wall expansion rate ε̇s + ε̇φ (C), curvature κs (E)
and cell wall thickness h (G), for different values of the mechanical feedback strength
Γ and the ratio λX/λm = (PρwλX)/(12µ0mwρ0kp). All insets show a different scaling
of each magnitude, with the arclength normalized by the projection radius R and each
quantity normalized by its value at the projection tip (s = 0), with the exception of the
wall thickness h(s) and the shape r(s), which are normalized by the limiting values far
away from the apical region, H and R respectively. The color code indicates the different
parameter values, shown as dots of the same color in the parameter space right to each
panel. Increasing orange and blue tones of the dots corresponds to decreasing Γ and
increasing (PρwλX)/(12µ0mwρ0kp), respectively (arrows in Fig. 2.5A). (B,D,F,H) The
variation of the apical value of each magnitude, namely ε̇0 ≡ ε̇s(s = 0) = ε̇φ(s = 0) (D)
and κ0 ≡ κs(s = 0) (F), is shown for the different values of the parameters for which sta-
ble states exist. The variation of the projection radius and wall thickness away from the
apical region, R (B) and H (H) respectively, are shown as a function of the parameters
as well.

Regarding cell wall assembly during stable, steady-state projection growth, our theo-

retical results indicate maximal cell wall assembly at the expanding apical region. Both
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Figure 2.8: Steady-state stable solutions for mating projection growth: Cell
wall assembly via Fks1/2. Cell wall assembly via Fks1/2. (A,C,E,G) Total Fks1/2
density ρA + ρI (A), fraction of active Fks1/2, ρA/(ρA + ρI) (C), active Fks1/2 density
(E) and inactive Fks1/2 density (E), for different values of the mechanical feedback
strength Γ and the ratio λX/λm = (PρwλX)/(12µ0mwρ0kp). All insets show a different
scaling of each magnitude, with the arclength normalized by the projection radius R
and each quantity normalized by its value at the projection tip (s = 0). The color code
indicates the different parameter values, shown as dots of the same color in the parameter
space right to each panel. Increasing orange and blue tones of the dots corresponds to
decreasing Γ and increasing (PρwλX)/(12µ0mwρ0kp), respectively (arrows in Fig. 2.5A).
(B,D,F,H) The variation of the apical value of each magnitude, namely (ρ0

A + ρ0
I)/ρ0

(B), ρ0
A/(ρ

0
A + ρ0

I) (D), ρ0
A/ρ0 (F) and ρ0

I/ρ0 (H), is shown for the different values of the
parameters for which stable states exist.

the total surface density of Fks1/2 synthases, ρA + ρI , and the surface density of only

active Fks1/2 synthases, ρA, are maximal at the apex and decrease away from it until

they vanish (Fig. 2.8A-B,E-F), as expected from the apically-localized exo- and endo-

cytosis profiles. The apical value of the total (or only active) Fks1/2 surface density,

namely ρ0
A + ρ0

I (or ρ0
A), can be either smaller or larger than the surface density ρ0 of
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Fks1/2 synthases secreted by exocytic vesicles (Fig. 2.8A-B,E-F). The reason why the to-

tal Fks1/2 surface density ρ0
A+ρ0

I can be larger than ρ0 at the apex is that active Fks1/2

is secreting 1,3-β glucans into the cell wall, a process that effectively anchors them to the

wall, holding secreted Fks1/2 synthases to the tip region and increasing its concentration

there. Beyond Fks1/2, anchoring transmembrane proteins to the cell wall can potentially

be used as a mechanism to locally increase the protein concentration on the membrane

to levels well-beyond secretion levels. The fraction of active Fks1/2, ρA/(ρA +ρI), is also

maximal at the apex and decreases away from it (Fig. 2.8C-D). This is because of me-

chanical feedback, which induces more Fks1/2 activation at the apex following the larger

cell wall expansion rate in this region (Fig. 2.7C). Finally, the surface concentration of

inactive Fks1/2 also decreases away from the expanding tip because of tip-localized exo-

and endo-cytosis (Fig. 2.8G-H). Non-monotonic profiles of inactive Fks1/2 occur because

high cell wall expansion rates at the tip lead to more Fks1/2 activation, leaving less

inactive Fks1/2 molecules in this region. Altogether, these results indicate that at the

instability threshold, the apical cell wall expansion rate becomes too large to be balanced

by cell wall assembly, leading to the progressive thinning of the cell wall and cell lysis.

Analytical expressions can be obtained for the values of all variables at the apex

(apical scales), but one. This is because the two principal directions defining the cell’s

surface become physically equivalent at the apex (as the apex is locally spherical) and,

as a consequence, there are not enough boundary conditions at the apex to determine

all apical scales. This can be seen from the analytical relations of the apical scales
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in Table 2.4, which are defined as: κ0 ≡ κs(s = 0) = κφ(s = 0), h0 ≡ h(s = 0),

ε̇0 ≡ ε̇s(s = 0) = ε̇φ(s = 0), ρ0
A ≡ ρA(s = 0) and ρ0

I ≡ ρI(s = 0).
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thickness, H, scaled with hsc = PλX/12µ0k

0
X , (B) apical strain rate, ε0 scaled with k0

X ,
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To fully determine all the scales, it is necessary to numerically integrate the equations

describing the dynamics of the system and impose boundary conditions away from the

apex. In this region, the projection radius reaches a constant distal value R ≡ r(s→∞)

and the cell wall thickness reaches a constant distal value H = h(s→∞).

Integrating numerically the equations describing the dynamics of the system in the
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Table 2.2: System physical parameters and relevant dimensionless parameters

steady-state (see main text), we find the solutions for all the variables (see main text).

We also obtain the values of all scales as the parameters Γ and the ratio λX/λm =

(PρwλX)/(12µ0mwρ0kp) are varied. The scaling relations defining the dependence of the

scales on the parameters Γ and λX/λm are shown in Fig. 2.9.

The theoretical results above predict that both the geometry and size of the growing

mating projection are independent from the mechanical feedback strength Γ, and that

the projection radius increases with the size of the exocytosis region (Fig. 2.10A,B and

Fig. 2.7A,B). To experimentally explore how exocytosis and the mechanical feedback

strength affect the mating projection size R (Fig. 2.10A), we employed a deletion mutant

for Spa2, a scaffold protein that localizes Bni1 and is recruited by Cdc42 [53], which

displays a very wide mating projection compared to WT (Fig. 2.10C,D). We visualized

the exocytosis region in both WT and spa2 ∆ cells by expressing GFP-tagged Sec3, a

component of the exocyst that marks exocytic sites [86]. The exocytosis length scale

λX (Fig. 2.10A), which we measured directly from confocal images (Fig. 2.10C,D and

Methods), is considerably larger in spa2 ∆ mutant cells than in WT cells (Fig. 2.10E),

indicating that a larger mating projection radius R is associated with a larger size of the

exocytosis region. In contrast, the size R of the mating projection was not observed to
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vary with changes in the strength of the mechanical feedback Γ (Fig. 2.10E), as shown

by deleting Mid2 or Wsc1 in both WT and spa2 ∆ backgrounds, while simultaneously

measuring the size of the mating projection R and the length of the exocytosis region

using Sec3-GFP. While deletion of Wsc1 and Mid2 strongly affects mating projection

stability (Fig. 2.5A), our measurements show that it does not affect the size of the mating

projection (Fig. 2.10E). These results indicate that the mechanical feedback is essential

to sustain stable mating projection growth, but it does not affect mating projection size,

which is controlled by the exocytosis profile, as predicted theoretically (Fig. 2.10B).
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Figure 2.10: Control of mating projection size. (A) Diagram of a growing mating
projection showing the mating projection radius R and length scale of the secretion region
(green), λX. (B) Theoretically predicted dependence of the projection radius R with the
length scale of the secretion region, λX, and the strength of mechanical feedback, Γ. (C-
D) Confocal images of WT (C) and spa2 ∆ (D) mutant cells growing mating projections.
The cell wall is labeled with calcofluor (white) and the exocytosis profile is defined by
Sec3-GFP (green). Scale bar, 1 µm. (E) Measured average cell radius, R, and exocytosis
length scale, λX, for mid2 ∆ and wsc1 ∆ mutants in both WT and spa2 ∆ backgrounds
(mid2 ∆, N=6; wsc1 ∆, N=9; spa2 ∆mid2 ∆, N=7; spa2 ∆wsc1 ∆, N=6), as well as for
WT (N=7) and spa2 ∆ (N=6) cells. Mean and standard deviation are shown.
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2.5 Discussion

In this work, we studied both theoretically and experimentally how the mechanics of

cell wall expansion and the molecular processes assembling the cell wall are coordinated

during cell morphogenesis, using budding yeast mating projection growth as a model sys-

tem. We first derived a theoretical description of mating projection growth that couples,

through a mechanical feedback encoded in the CWI pathway, the cell wall expansion and

geometry to the molecular processes building the cell wall. The theoretical predictions

were tested experimentally through genetic deletions affecting the feedback strength and

also through mechanical perturbations (hyposmotic shocks and cell wall degradation).

Our theoretical predictions are in good agreement with the experimental results and in-

dicate that the existence of mechanical feedback is essential to guarantee stability during

cell wall remodeling and cell morphogenesis.

This theoretical description of mating projection growth connects the mechanics of

the cell wall to the molecular events in charge of sensing its mechanical state and con-

trolling its assembly via well-established signaling pathways (CWI pathway), thus pro-

viding specific predictions on how mutations can affect cell morphogenesis. Various

previous models accounted for both the mechanics and assembly (remodeling) of the cell

wall [20, 21, 22, 23], as we have done above, but did not account for a connection to known

molecular feedback control (CWI pathway) coupling wall mechanics and assembly. These

models consider the cell wall to be either a elastic material undergoing remodeling [21, 22]

or an elastoplastic material [20], as opposed to our description of the cell wall as a viscous
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fluid, which has also been considered before [23]. Importantly, at long timescales over

which cell growth and cell wall remodeling occur, assuming the cell wall to be a viscous

fluid, a remodeled elastic material or an elastoplastic material is largely equivalent be-

cause all of them properly account for the observed irreversible expansion (flow) of the

cell wall at long timescales [20]. While previous descriptions assumed that irreversible cell

wall expansion only occurs when new cell wall material is inserted into the pre-existing

wall [21, 22], we allowed the possibility of cell wall expansion even in the absence of

cell wall assembly because the cell wall can be fluidized by the action of wall degrading

enzymes secreted via exocytosis. Indeed, addition of zymolyase leads to cell wall piercing

for cells with intact cell wall assembly (Fig. 2.5C). Such cell wall degrading enzymes are

known to play an important role in cell wall remodeling [87, 59] and the establishment

of inhomogeneous cell wall material properties in several organisms [75, 88], including

budding yeast [20]. Since these enzymes are secreted via exocytosis, we assumed the

length scale of viscosity variation away from the apex to be the same as the exocytosis

region. Finally, the combination of the observed inhomogeneous stiffness of the cell wall

during mating projection growth [20] (measured at short timescales; seconds) and cell

wall remodeling can be theoretically described as an effective inhomogeneous viscosity at

timescales longer than cell wall remodeling, as we assumed in our description above and

also done previously for other systems [23].

We theoretically find that in the absence of any mechanical feedback relaying informa-

tion about the mechanical state of the cell wall to the intracellular processes building it,
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cell wall expansion is unstable, leading to cell lysis. Previous works have shown that the

cell wall is prone to piercing in cell if the CWI is compromised [59], and our experimental

data indicates that degradation of the cell wall by zymolyase (effectively lowering the cell

wall viscosity in our description) also leads to cell wall piercing (Fig. 2.5C). Since cell

wall piercing involves changes in cell wall thickness, our theoretical description accounts

for the dynamics of cell wall thickness from first principles (mass conservation). This is

in contrast to previous models that also consider cell wall mechanics and assembly, which

assume the cell wall thickness to be constant, fixed by an unknown mechanism [20, 21, 22].

Considering a variable cell wall thickness was done before [23], but the cell wall mechanics

and assembly were considered independently (no mechanical feedback) and the dynamics

of cell growth was not studied. We theoretically show that accounting for the simplest

mechanical feedback encoded in the CWI pathway, which directly couples cell wall expan-

sion and assembly via direct activation of Fks1/2 synthases, stabilizes cell wall expansion

for a wide range of parameters. The agreement between our theoretical predictions and

experimental results suggests that the specific mechanical feedback studied herein, with

cell wall stress sensors Wsc1 and Mid2 locally sensing cell wall expansion and directly

activating Fks1/2 cell wall synthases, can stabilize cell wall remodeling during mating

projection growth by itself. Such mechanical feedback ensures that in regions where the

cell wall expands the fastest (at the projection apex) and could potentially rupture via

thinning, local activation of cell wall synthases increases assembly of cell wall material,

preventing cell wall rupture and stabilizing mating projection growth. However, our work
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does not rule out that other mechanical feedbacks encoded in the CWI pathway could

also play a role in the stabilization of projection growth. It also is likely that other stress

sensors [59, 58], expressed during different cell wall remodeling events in budding yeast,

coordinate cell wall expansion and assembly in other morphogenetic processes. While our

experimental observations qualitatively agree with our theoretical predictions regarding

the existence of an instability associated to the thinning of the cell wall and then need of a

mechanical feedback to coordinate cell wall extension and assembly, further experiments

will be needed to fully confirm this scenario.

Beyond budding yeast, many other organisms, including other fungi, plants and bacte-

ria, have walled cells that are constantly remodeled [13, 89, 46, 90]. The molecular control

of cell wall remodeling and morphogenesis differs across species, and it is therefore likely

that different mechanisms encode mechanical feedback in other species. Indeed, previous

observations have hinted at the existence of mechanical feedback [91], but the feedback

mechanisms remain elusive. The mechanical feedback described herein, or different feed-

back mechanisms to be discovered, may also play an important role in the coordination

of cell polarity and morphogenesis in both animal and walled cells [92, 91, 93, 94].

While essential to ensuring stability during cell wall expansion, our results show

that the strength of mechanical feedback does not affect mating projection shape or

size (Figs. 2.7 and 2.10). The observed decoupling in the control of cell geometry and

growth stability reported here may allow cells to maintain a functional shape under

different growth conditions. In addition, we find that projection size is controlled by
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the spatial extent of exocytosis. This is in agreement with recent observations in fission

yeast indicating that the size of the apical growth domain correlates best with the size

of the apical exocytosis region [21], and also with theoretical models of fission yeast that

predict the radius of the cell to be determined by the size of the apical cell wall assembly

region [22].

More generally, the need to coordinate growth processes and mechanics during mor-

phogenesis is important for individual cells, but also for tissues and organs. Identifying

the molecular mechanisms enabling this coordination at different scales and in different

organisms will substantially contribute to our understanding of morphogenetic processes.

2.6 Experimental methods

Experiments were done by Carloz Gomez and Dr. Tau-Mu Yi.

Yeast strains and culture conditions

All yeast strains were derivatives of W303-1A and contained the bar1∆ mutation that

prevents α-factor degradation by deletion of the Bar1 protease. Genetic techniques were

performed per standard methods [95]. Yeast strains used in this study are listed in Table

A in Appendix A. All strains were cultured in YPD (yeast extract-peptone-dextrose)

media supplemented with adenine. The wsc1∆mid2∆ strain was grown in YPD media

with 1M sorbitol to increase viability. Gene deletions and GFP-tagging were constructed

by genomic integration using vectors amplified and targeted by PCR primers [96].
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Cell viability measurements

Cell lysis was determined by propidium iodide (Molecular Probes) staining. Propidium

iodide (PI) was prepared in DMSO at a concentration of 20 mM and then diluted 1:1000

for use. Propidium iodide was added to cells after being exposed to α-factor (1 µM) for

2 hours. To observe the viability of cells after altering the osmotic pressure, we diluted

the YPD media with distilled water upon addition of propidium iodide. The cells were

imaged on slides after being exposed to propidium iodide for 10 minutes. Brightfield and

fluorescent (RFP filter set) images were acquired using an inverted Nikon Eclipse TE300

microscope with a 60x objective (NA = 1.4). Image analysis was manually performed

using ImageJ. Data from 3 samples for each condition was averaged and, for each sample,

150 cells or more were analyzed.

Cell lysis due to zymolyase

To decrease the viscosity of the cell wall, we utilized zymolyase, which contains β-1,3

glucanase, to hydrolyze the glucan linkages that strengthen the wall. Zymolyase (Zymo

Research, 1 µl (2 units) per 100 µl of cells) was added to cells exposed to alpha-factor

for 1.5 hours. Cells were treated additionally with concanavalin A to immobilize them

during the imaging process. The cells were imaged on slides for 7 minutes after being

exposed to zymolyase for 3 minutes. DIC images were acquired every 3 seconds. Data

from 5 samples for each condition was averaged and, for each sample, 15 cells or more

were analyzed. Image analysis was manually performed using ImageJ.
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Imaging and analyzing exocytosis

The length-scale of exocytosis was measured in strains that contained Sec3 fused to GFP.

Calcofluor White Stain (Sigma-Aldrich) was added to cells 10 minutes prior to imaging

(final concentration 0.1mg/ml) to distinguish the cell wall during image analysis. To

properly visualize the length-scale and reduce imaging noise, we averaged 30 consecutive

confocal images, taken at 2 second time intervals, for each cell, after incubation in 1

µM α-factor for 1 hour and 30 minutes. For spa2 ∆ cells, the 30 images were taken

at 13 second intervals to average over a longer time period to average out the stronger

fluctuations in polarization in this mutant. Images were acquired with a laser-scanning

confocal microscope (Zeiss LSM 710), using a 100x objective (NA = 1.4). The cells were

immobilized to a glass-bottom dish coated with concanavalin A. To horizontally orient

the mating projections, we layered a YPD (supplemented with 1 µM α-factor) agarose

pad on top of the cells. Image analysis was manually performed using ImageJ.
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Chapter 3

Maintaining polarization during

yeast mating projection growth

3.1 Introduction

Cell polarization is essential to a large number of cellular processes. From cell migration

in animal cells to the growth of walled cells from plants and fungi, cells need to spatially

polarize to perform key functions. In many cases, an external cue, such as a molecular

gradient, triggers the molecular polarization of the cell. Once polarity is established,

cells need to maintain polarization at specific spatial locations where cell shape changes

or cell movements occur, suggesting the existence of some coordination between these

processes. In animal cells, it has been proposed that membrane tension could help such

coordination [97, 98], but no specific coordination mechanisms are known. More generally,
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it remains unclear what mechanisms provide the molecular polarization machinery with

the necessary information about cell geometry and how such polarization machinery

coordinates with cell shape changes. This work was done in close collaboration with

Dr. Brian Drawert, Dr. Tau-Mu Yi, Professor Linda Petzold and Michael Trogdon who

performed the stochastic simulations in Section 3.4. These simulations are discussed in

Chapter 5 of Michael Trogdon’s dissertation [99].

During polarized (tip) growth in walled cells, from plants to fungi, cells must maintain

polarity at the apex as the cell grows. An example of this process is mating projection

growth in budding yeast, Saccharomyces cerevisiae. During mating, a-cells and α cells

secrete pheromones, a factor and α factor, respectively, to attract the opposite cell type.

G protein coupled receptors, Ste2, on the cell surface bind pheromone, which triggers a

cascade of reactions ultimately leading to the spatial localization of the polarity master

regulator, Cdc42. In turn, Cdc42 recruits Bni1, a formin, which initiates the nucleation

of actin cables from the polarization site. These actin cables focus transport to the

polarization site, bringing enzymes to synthesize and remodel the cell wall as well as

more Cdc42. This process induces the localized growth of the mating projection in

the direction of maximal pheromone gradient. While cell polarization and subsequent

mating projection growth do occur in the presence of pheromone gradients, a graded cue

is not necessary. If the distribution of α factor is uniform (no gradient), the molecular

polarization machinery has been shown to be able to spontaneously break the symmetry

and polarize the cell, albeit in a random spatial direction. Upon polarization, a mating
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projection emerges from the polarization cap and this polarization cap is maintained at

the tip of the growing projection as it extends. In the absence of a pheromone gradient

to externally coordinate spatial and temporal changes in cell polarization and cell shape,

the observation of sustained mating projection growth suggests the existence of a cell

autonomous coordination mechanism between cell polarity and cell shape. However, no

coordination mechanisms are known.

Figure 3.1: Schematic diagram of relevant events during cell polarization. A:
Transmitted light image of a S. cerevisiae cell growing a mating projection in the presence
of α-factor. Scale bar, 2µm. B-E: Sketch of molecular events leading to the polarization
of the cell during the growth of the mating projection. The key players are indicated in
the figure. F: Geometry of the system and definition of the relevant variables. G: Sketch
depicting the increasing cell wall viscosity and decreasing cell wall assembly away from
the apex. The inset depicts local normal force balance at the cell wall. All variables are
defined in the main text.

Many existing models of cell polarization in budding yeast are able to reproduce

the spontaneous symmetry breaking and establishment of a polarization cap in a static,

spherical cell geometry [25]. However, using 3D simulations of the polarization machinery

in non-spherical geometries, we have recently shown that these models cannot explain the

maintenance of cell polarization at the tip of mating projections [26]. A polarization cap

initially localized at the tip of the mating projection, quickly moves away from the tip

and localizes out of the mating projection, thereby precluding mating projection growth.
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These simulations contain a feedback between geometry and the polarization machinery:

the molecular gradients established inside the cell depend on the cell geometry and these

geometry-dependent gradients affect the reaction rates and spatial distribution of polar-

ization molecules at the cell surface. However, this polarization-cell geometry coupling

(or feedback) plays against the maintenance of the polarization at the mating projection

tip. A different coordination mechanisms between cell shape and polarization must then

exist to maintain polarization at the projection tip and sustain mating projection growth.

Cell shape and cell wall mechanics are directly related to each other and, therefore,

the mechanics of the cell wall contains information about the cell shape. We have recently

shown that the sustained growth of a mating projection requires a mechanical feedback

between the cell wall synthesis and cell wall mechanics [48]. This mechanical feedback

is genetically encoded through the Cell Wall Integrity (CWI) pathway and involves cell

wall ”stress” sensors (Wsc1, Wsc2 and Mid2) activating the rho GTPase Rho1, which in

turn activates cell wall synthesis (Fks1/2), thereby creating a feedback loop between cell

wall mechanics (cell shape) and cell wall assembly. However, Rho1 activation through the

CWI pathway also promotes actin cable formation via the local activation of the formin

Bni1. Since Cdc42 is transported on actin cables by vesicles, it is possible that the same

mechanical feedback shown to stabilize mating projection growth is simultaneously used

to maintain cell polarity at the mating projection tip, effectively providing the molecular

polarization machinery with the necessary information about cell shape.

Unlike previous theoretical descriptions, which either considered the dynamics of po-
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larization in fixed geometries or the mechanics of cell morphogenesis without accounting

for polarization, here we couple the dynamics of cell polarization and cell wall mechanics

during mating projection growth. Using both a coarse-grained theoretical description and

3D stochastic simulations of the coupled cell polarization dynamics and cell morphogen-

esis, we show that the mechanical feedback encoded in the CWI pathway coordinates the

dynamics of the polarization cap and cell morphogenesis, maintaining the polarization

cap at the tip of the mating projection and sustaining mating projection growth.

3.2 Theoretical Description

To study the relation between the dynamics of cell polarization and cell morphogenesis

during budding yeast mating projection growth, we employ two different methodologies.

First, we describe the mechanics and growth of the cell wall that govern cell shape

changes and, in particular, the extension of a mating projection. We then describe for the

dynamics of cell polarization using two methodologies: (1) a continuum minimal model

for the coupling between polarization and mechanics and, (2) 3D stochastic simulations

of the molecular polarization machinery in the growing cell. In both cases, we couple the

dynamics of polarization to the mechanics of the cell wall through the CWI pathway and

study whether cell polarization can be maintained at the tip of the extending mating

projection as well as whether mating projection growth can be sustained by the coupled

dynamics.
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3.2.1 Geometry and mechanics of cell wall expansion during

mating projection growth

As in any walled organism, the budding yeast cell is surrounded by a thin (∼ 100 nm [72])

cell wall, much smaller than the characteristic cell size or diameter of the mating projec-

tion (∼ 1µm [73]). The shape of the cell is defined by the location of the cell wall and,

during mating projection growth, the cell shape can be approximated to be axisymmetric

(Fig. 3.1A). The extension of the mating projection can thus be described as the expan-

sion of an axisymmetric thin shell caused by the large cell’s internal turgor pressure, P

(Fig. 3.1G). It is convenient to parametrize the geometry of the cell (cell wall) by the

arclength s from the projection apex and azimuthal angle φ (Fig. 3.1F). The shape of the

growing projection is characterized by its local radius of curvature, r(s, t), and the two

principal curvatures κs = ∂θ/∂s and κφ = sin θ/r, respectively, where θ(s, t) is the angle

between the local outward normal and the axis of growth (Fig. 3.1F). The coordinates

(r, φ, z) (Fig. 3.1F) are standard cylindrical coordinates, and the angle θ and arclength

s provide measures of changes in the normal and tangential directions of the surface, n̂

and ŝ respectively [23, 74] (Fig. 3.1F).

The description below of the cell wall mechanics and growth is analogous to our prior

work [48], which builds up on earlier work combining cell wall mechanics and growth in

tip-growing cells [23], as well as on the expansion of thin viscous shells [74]. The dynamics

of cell wall expansion during growth are governed by mass and momentum conservation.

Since inertia is irrelevant in this system, momentum conservation reduces to local force

51



balance on the cell wall, which reads

σssκs + σφφκφ = P and σssκφ =
P

2
, (3.1)

where σss(s, t) and σφφ(s, t) are the tensions along s and φ directions in the wall

(Fig. 3.1F). The rheology (mechanical properties) of the cell wall control its expansion

in response to the tensions in the wall. While the yeast cell wall in known to behave

elastically at short time scales (seconds [72]), plastic behavior manifested by irreversible

cell wall expansion occurs on timescales of mating projection growth (minutes [20]). En-

zymes that locally degrade the cell wall (glucanases) are brought to the polarization cap

by exocytic vesicles moving along the actin cables emanating from it [84]. Upon release

to the adjacent cell wall, a higher concentration of glucanases degrade more the cell wall

adjacent to the polarization cap, creating a gradient of cell wall degradation away from

it. This is consistent with the observation of a higher concentration of cell wall degrad-

ing enzymes (glucanases) near the apex of the mating projection [77]. Therefore, at the

timescales of growth, the cell wall can thus be approximated by a viscous fluid shell

with inhomogeneous viscosity, µ(s, t), minimal at the polarization cap and increasing

away from it (Fig. 3.1F). In this case, the local tangential velocity u(s, t) of a cell wall

with constant density ρw, or equivalently, its strain (expansion) rates ε̇s = ∂u/∂s and

ε̇φ = (1/r)(dr/dt) are related to the tensions in the wall by [23, 74]

σss = 4 µ(s, t) h [ε̇s + ε̇φ/2] and σφφ = 4 µ(s, t) h [ε̇s/2 + ε̇φ] . (3.2)

Beyond the expansion of the cell wall in response of the tensions in it, new cell wall
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needs to be assembled as the mating projection grows. The cell wall is assembled via

Fks1/2 synthases at the plasma membrane that extrude 1, 3−β glucans to the preexisting

wall. Since Fks1/2 synthases are also brought to the plasma membrane along actin

cables and inserted in it during the exocytosis process, their concentration is high at the

polarization cap and decreases away from it, generating a graded distribution G(s, t) of

the cell wall assembly rate that decreases away from the polarization cap. In this case,

mass conservation of the cell wall material during mating projection growth reads

∂t(rh) + ∂s(rhu) =
rG(s, t)

ρw

, (3.3)

where h(s, t) is the cell wall thickness (Fig. 3.1E) and ρw is the cell wall density (assumed

constant).

The functions µ(s, t) and G(s, t) depend directly on transport along actin cables and

exocytosis, which are controlled by the polarization machinery. We will relate these

functions to the dynamics of polarization below.

3.2.2 Dynamics of cell polarization: minimal coarse-grained

model

In order to form a mating projection, the cell must first polarize to specify the site

of cell wall growth and expansion. Many molecular players are involved in the cell

polarization process in response to mating pheromones. In our 3D stochastic simulations

(see below), we will consider the coupled dynamics of many of the key molecular players

in the polarization process. However, since the aim of this coarse-grained model is to
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study solely the coupling between the dynamics of polarization and the mechanics of cell

wall expansion during mating projection growth, we neglect much of the complexity of

the polarization molecular machinery. Since the formin Bni is directly activated through

the CWI pathway, leading to the assembly of actin cables and further recruitment of

the master polarity regulator Cdc42 via actin-mediated transport, we consider solely the

effective coupled dynamics of Cdc42 and Bni on the curved geometry of the cell.

Inactive Cdc42 can reach the plasma membrane either through direct binding from a

cytoplasmic pool [100, 101] or through actin cable-mediated transport, carried by secre-

tory vesicles [101]. Once at the membrane, Cdc42 diffuses (diffusion constant D µm2/s)

and also unbinds from the membrane at a rate kD. Once activated [100], the Cdc42 pop-

ulation at the plasma membrane acts as a central regular of many polarization factors.

In particular, it recruits Bni1, a formin that drives the nucleation of actin cables [102]

(Fig. 3.1)C. As mentioned above, these actin cable bring many different factors that are

essential for cell wall remodeling and growth, as well ad Cdc42 itself, creating a positive

feedback loop. Focusing on this feedback between Cdc42 and Bni1, we can write the

dynamics of Cdc42 on the plasma membrane of the mating projection as

∂t(rρC)−D∂s(r∂sρC) = r [kXρA − kDρC] , (3.4)

where ρC is the Cdc42 concentration on the plasma membrane, kX is the rate at which

Cdc42 is added to the plasma membrane through transport along actin filaments, which

are characterized by a local surface density ρA. Since actin cables are nucleated by

active Bni, we assume the local density of actin cables emanating from the membrane

54



to be proportional to the local active Bni1 concentration, ρB,a, at the plasma membrane,

namely ρA ∼ ρB,a. For simplicity, we assume a uniform pool of inactive Bni1 on the

plasma membrane with concentration ρB,i = ρ0 and write the dynamics of active Bni1 as

∂t(rρB,a) = r [kRρC + kCWIρ0 − kIρB,a] , (3.5)

where kR is the rate at with Cdc42 recruits (and activates) Bni1, kI is the inactivation rate

of Bni1 and kCWI is rate of activation of Bni1 through the CWI pathway (independently

of Cdc42) [103]. Activation of the CWI pathway depends on the local mechanical state of

the cell wall, leading to a direct coupling between the dynamics of Bni1 and the mechanics

of the cell wall. Since CWI activation correlates with locations of cell wall expansion, we

write the local activation rate of Bni1 via the CWI as being proportional to the local cell

wall expansion (strain) rates [48], namely

kCWI = ACWI[ε̇s + ε̇φ] , (3.6)

where ACWI is a dimensionless constant that measures the strength of the mechanical

feedback.

In order to fully connect the dynamics of Cdc42 and Bni1 to the mechanics of cell wall

expansion during morphogenesis, it is necessary to relate the cell wall viscosity µ(s, t) and

the rate of new cell wall assembly G(s, t) to polarity. Since cell wall synthases Fks1/2 are

carried to the plasma membrane through secretory vesicles along actin cables, we write

the rate of new cell wall assembly G(s, t) to be proportional to the local concentration

of actin cables, namely G(s, t) = ks ρA, with ks being the Fks1/2 rate of new wall

assembly. Similarly, the spatial variations in the cell wall viscosity reflect spatial changes
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in the concentration of glucanases, which are transported to the cell surface through actin

cables. Consequently, we assume the length scale of viscosity variations in the cell wall to

be determined by spatial variations in actin cable density, namely µ(s, t) = µ0 exp(s2/λ2
A),

where λA is the length scale of the decay in actin cable density from the tip of the mating

projection. This indicates that in regions with high concentration of actin cables, the

cell wall viscosity is lower, enabling cell wall expansion in that region.

Dimensionless parameters

P (D/kD)1/2ρw
12µ0ksρ0

ACWI kI/kD kR/kD kX/kD
Physical/Chemical parameters

Parameter Description Parameter Description
P Turgor pressure of

budding yeast
kD Apical rate of endo-

cytosis
ρw Cell wall density kX Apical rate of exo-

cytosis
µ0 Apical viscosity of

cell wall
kR Recruitment rate of

Bni1 by Cdc42

ks Rate of new wall
synthesis

kI Inactivation rate of
Bni1

ρ0 Membrane concen-
tration of Bni1

D Membrane diffusion
constant of Cdc42

Table 3.1: System physical parameters and relevant dimensionless parameters

Combining equations 3.1-3.5 and viscosity profile described above, we solved the cou-

pled dynamics of polarity and cell wall expansion during cell morphogenesis. Scaling

length and time with (D/kD)1/2 and kD, respectively, the stresses with P and the surface

densities of Cdc42 and active Bni1 with ρ0, we obtain the relevant dimensionless param-

eters in the system, as described in Table 3.2.2. The parameters kI/kD,kR/kD, kX/kD

have either been measured or estimated and we use their known values (Table 3.2.2). In

contrast, the feedback strength ACWI has not been directly measured. To explore the
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role of a potential mechanical feedback between cell wall mechanics and polarization, we

study the dynamics of the system upon changes in the feedback strength ACWI.

3.3 Mechanical feedback can maintain cell polariza-

tion at mating projection tip

This minimal coarse-grained model focuses only on a possible feedback loop between

cell wall mechanics and cell polarization that could maintain cell polarization at certain

regions of the cell surface upon cell growth. Because of the minimal nature of this

description, we do not account for several molecular interactions that are responsible

for the initial spontaneous symmetry breaking in the spherical cell. We therefore start

from the geometry of a mating projection and study the dynamics of polarization in the

elongated shape of the growing projection.

In the absence of mechanical feedback (ACWI = 0), an initially polarized cell loses

its polarization within the typical timescales of the dynamics of the cell polarization

machinery, as can be seen from the loss in polarization in Cdc42 (Fig. 3.1a). Since the

typical timescales of the molecular processes associated with polarization are shorter than

the timescales of physical mating projection growth, cell polarization is lost before any

cell shape changes occur. In contrast, if the strength of the mechanical feedback is large

enough, cells maintain cell polarization at the tip of the growing mating projection. Even

starting from a uniform distribution of Cdc42 in the mating projection (not polarized),
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Figure 3.2: Maintenance of cell polarization at the mating projection tip via
mechanical feedback A: Simulation of an initially polarized cell depolarizing without
mechanical feedback even at the short timescales of the molecular dynamics B: Cell
becomes polarized and grows stably with mechanical feedback over timescales of growth.
C: Phase diagram showing the state of the cell (polarized or not) as a function of the
mechanical feedback strength Steady state spatial profiles for D: cell wall expansion rate
ε̇s + ε̇φ E: Bni1 density F: Cdc42 density G: cell wall thickness h.

the mere presence of the mechanical feedback polarizes the cell at the tip of the mating

projection, enabling the sustained growth of the projection and the maintenance of po-

larization at the tip during growth (Fig. 3.1b). In between these two limiting regimes,

there is a critical value of the mechanical feedback strength below which the cell is unable

to maintain cell polarization (Fig. 3.1c), eventually leading to a uniform and very low

(vanishing) concentration of Cdc42 at the plasma membrane. Above the critical value,

stable solutions for the polarized state exist and the cell can maintain cell polarization

at the tip of the mating projection during growth (Fig. 3.1b).
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As expected for the tip growth of the mating projection, the stable solutions show

that the rate of cell surface (cell wall) expansion, namely ε̇s + ε̇φ, is maximal at the tip

and decays away from it over a characteristic lengthscale of the polarity machinery, λD,

to eventually vanish in the region where the cell wall becomes solid-like (Fig. 3.1d). The

presence of mechanical feedback (with cell wall expansion activating Bni1 through the

CWI pathway), leads to the localized activation of Bni1 at the tip (Fig. 3.1e) that, in

turn, generates a localized (polarized) density of actin cables emanating from the tip of

the growing mating projection. This higher density of actin cables at the tip generates

higher concentrations of Cdc42 in this region (Fig. 3.1f), maintaining cell polarization

during cell growth. Finally, the cell wall thickness is largely uniform along the mating

projection, albeit with a slight thinning at the tip.

This minimal description, which couples the mechanics and growth of the cell wall

with the polarization dynamics, shows that the mechanical feedback between cell wall

expansion and Bni1 dynamics encoded in the CWI pathway can maintain cell polar-

ization at regions of the cell surface where cell wall expansion occurs. Since cell wall

expansion and cell geometry are related to each other through mass and momentum con-

servation, this mechanical feedback effectively provides the cell polarization machinery

with information on the cell shape.
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3.4 Combined mechanical description with stochas-

tic simulations of cell polarization

The mechanics description inputs profiles of the concentration of actin and Cdc42, so

here we obtain them from stochastic simulations. Because the timescales of cell wall

expansion and growth (cell shape changes) are much longer than the timescales of the

molecular reactions involved in cell polarization, we perform stochastic simulations of

molecular polarization models while updating the shape of the cell using our mechanical

model. The stochastic simulations were performed by Michael Trogdon.

To perform 3D stochastic simulations of the polarization dynamics in this geometry,

we employ the PyURDME software [104], which can simulate spatial stochastic dynamics

on complex, 3D and time-dependent geometries. In this stochastic model, we consider

both the inactive (Cdc42-GDP) and active (Cdc42-GTP) states of Cdc42, the local den-

sity of actin cables on the membrane and actin monomers in the cytoplasm (Fig. 3.2A).

Inactive Cdc42 in the cytoplasm can directly bind to the membrane at a rate 0.28µms−1

[105] and has a membrane diffusion constant of 0.0053µm2s−1 [106]. It can also dissociate

from the plasma membrane at a rate 1s−1[105]. At the plasma membrane, inactive Cdc42

can be activated and inactivated at rates 0.266µm3s−1 [105] and 1s−1[105], respectively.

Local assembly of actin cables on the membrane is due to Bni1 activation, which can be

caused either by active Cdc42 at a rate 0.197µm3s−1 [106] or by Rho1 through the CWI

pathway at a rate that depends on the local cell wall expansion, namely ACWI[ε̇s + ε̇φ].

60



Actin filaments disassemble at a rate 1.57s−1 [106]. For a complete set of equations

describing this model, please see section 3.6.

We coupled the 3D stochastic simulations of cell polarization to the mechanics of the

expanding cell wall. This involves performing the 3D stochastic simulations of the polar-

ization machinery in a changing cell shape, governed by the mechanics of cell wall expan-

sion described above (Eqs. 3.1-3.3). To do so, we used an operator splitting methodology

similar to that described in our previous work [107], where the simulation can evolve over

time in a predetermined manner. Here we use the equations describing the mechanics of

the cell wall expansion during mating projection growth (Eqs. 3.1-3.3) to dictate how the

simulation domain (cell shape) evolves over time. The operator splitting methodology

takes advantage of the large separation of timescales between the fast molecular processes

that polarize the cell and slow physical cell wall expansion during cell growth.

Staring with a spherical geometry (sphere of radius r = 2µm) and random initial

distribution for each species (Fig. 3.3A), we simulate the polarization dynamics for

timescales smaller than any relevant change in cell shape. The cell polarization machinery

establishes a polarization cap within the spherical geometry, as observed experimentally

and recapitulated by many polarization models. This spontaneous symmetry breaking

reduces the symmetry of the problem from a sphere to a axisymmetric geometry. Taking

advantage of the axisymmetric geometry, we time and rotationally averaged the concen-

tration of active Cdc42 and actin cables to obtain their distributions along the arclength

s from the tip of the mating projection. Once these averaged distributions are known,
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they can be used as input fields for the equations describing the mechanics of cell wall

expansion. As described above for the coarse-grained model, we write the rate of new

cell wall assembly G(s, t) to be proportional to the local concentration of actin cables,

namely G(s, t) = ks ρA, and the cell wall viscosity µ(s, t) = µ0 exp(s2/λ2
A), with λA being

the length scale of the decay in actin cable density from the tip of the mating projec-

tion. In this specific simulations, the spatial profile of actin cable density ρA(s) and λA

correspond to the averaged distributions described above. Knowing G(s) and µ(s) from

the averaged actin cable density profile, we integrate the Eqs. 3.1-3.3 describing cell wall

expansion from the initial spherical geometry and for the same time period. Cell wall

expansion during the integration time leads to a small change in cell shape. We then

continue the 3D stochastic simulations of polarization in this new cell geometry, leading

to small changes in the spatial profile of Cdc42 and actin cables. The new averaged

spatial profile of actin cable density is then used to obtain the new G(s) and µ(s) and

we solve again the mechanics of cell wall expansion. Iteration of this process allows us

to simulate the couple (stochastic) dynamics of polarization in the evolving cell shape.

To understand whether the mechanical feedback encoded in the CWI pathway could

also stabilize the polarization cap during mating projection growth, we simulated their

coupled dynamics as described above. We found the polarization cap is maintained stable

at the tip of the mating projection during growth (Fig. 3.3A,B). Both the Cdc42 and

actin cables profiles are polarized at the tip, displaying a higher concentration in this

region and decaying away from it. In the absence of mechanical feedback, no mating

62



Figure 3.3: Coupled dynamics of cell polarization and cell wall expansion during
mating projection growth in the presence of mechanical feedback. Starting from
a uniform density of Cdc42 in a spherical geometry, the cell polarizes and grows a mating
projection. A: A 3D realization showing a uniform density of cdc42 at t=0s transiting to
a polarized state with the cdc42 cap co-localized to the tip of the mating projection B:
2D profiles of Cdc42 and actin becoming polarized over time.

projection grows from the initial spherical cell because it is not possible to maintain the

polarization cap stably located at the point where the mating projection starts to form.

3.5 Discussion

Here we theoretically explored how a mechanical feedback between the mechanics of

cell wall expansion and the dynamics of the polarization machinery can stabilize and

maintain cell polarization at the tip of a growing mating projection. Using both a coarse-

grained description and full 3D stochastic simulations of polarization, our results show

that a mechanical feedback encoded in the CWI pathway, which activates the formin
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Bni1 formation through mechanical input from the cell wall, is sufficient to maintain the

polarization cap at the tip of a growing mating projection.

We first derived a minimal coarse grained theoretical description of the dynamics

of the key polarity molecules Cdc42 and Bni1 and coupled it to the mechanical state

of the wall via the CWI pathway. We showed that mechanical feedback was able to

maintain the localization of the polarization cap to the tip of the mating projection. We

then coupled the equations describing the mechanics of the cell wall to a 3D stochastic

model of polarization. Despite the increased complexity of the stochastic simulations,

the 3D system also required mechanical feedback to maintain the polar cap at the tip of

the mating projection. The reaction diffusion equations were solved in 3D space, which

resulted in additional complexities. The output of the stochastic models of course depend

on the initial concentration and locations of the molecules.

Previous models of polarization [24, 108, 109, 110, 111] did not account for non-

spherical geometries. As the cell grows a mating projection, the shape of the cell changes

and thus the cell must coordinate the location of the polar cap to the site of growth.

Modeling the system with just Cdc42 does lead to the development of polar caps but

with no specific preference for location as seen in Fig 3.4A [108]. Further modeling

has shown that actin may be necessary to ensure that the cap does not wander [111].

However these results have been obtained in a spherical geometry. Experimentally, it

has been shown that the formation of constitutionally active Cdc42 clusters in a cell

with a mating projection does not occur at the tip [108]. It was further shown that the
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disruption of actin and components of the exocyst complex was necessary for the temporal

maintenance of the polar cap. However the question of the spatial maintenance of the

polar cap during mating projection growth has still not been experimentally tested. In

the cell with a mating projection, there must be a mechanism which provides a preference

for the polarization site. The cell wall integrity pathway sensing the location of expansion

and providing a feedback to recruit more actin cables and polarity machinery to the site

of growth seems to be a plausible mechanism for also ensuring the spatial maintenance

of the polar cap.

Beyond budding yeast, many other organisms, including other fungi, plants and bac-

teria, undergo polarized cell wall growth [13, 112, 113, 114]. The molecular control of

cell wall remodeling and morphogenesis differs across species, and it is therefore possible

and even likely that different mechanisms encode mechanical feedback in other species.

Fission yeast exhibits polarized growth and it has been recently shown that stable polar

caps are destabilized by the arrest of growth [115]. This effect is akin to the removal of the

mechanical feedback. Previous work [116] by the same group showed that a there exists a

cell wall integrity pathway in fission yeast, similar to our results in Chapter 2, that coor-

dinates wall growth. Likely similar to our findings, the same feedback mechanism ensures

the maintenance or lack thereof seen in their experimental results [115]. The mechanical

feedback described herein, or different feedback mechanisms yet to be discovered, may

also play an important role in the coordination of cell polarity and morphogenesis in both

animal and walled cells [117, 118, 119, 98].
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Figure 3.4: Schematic summary of the process of polarization. A: Unpolarized
budding yeast cells can spontaneously break the symmetry and establish a polarization
cap that is randomly located on the cell’s surface (all locations on the cell surface are
equally probable) or even create multiple polarization caps. B: The polarization cap
need not be maintained at the tip of the mating projection and this has been seen
experimentally [108]. However the site of polarization must be localized to the site of
growth C: The polarization cap can gain information about the geometry and site of
growth through the cell wall integrity pathway which provides a feedback between the
cell wall mechanics and polarization machinery of Bni1.

Polarization is a critical component for cell migration, growth, division, and signal

propagation. The mechanisms by which cells remain polarized while changing shape

due to migration and growth are not well understood. Results from this work and

our previous work [48] show that the same mechanical feedback mechanism is used in

seemingly different contexts to inform the molecular machinery of the physical state of

the cell here for sustaining polarization and ensuring cell wall stability. More generally,

the need to coordinate molecular processes with cell shape changes and growth is a

general problem beyond polarization. Identifying the molecular mechanisms enabling this
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coordination at different scales and in different organisms will substantially contribute

to our understanding of morphogenetic processes.

3.6 Computational methods

Numerical integration of coarse grained equations

The system of equations was scaled and written in a manner such that r, h, ρcdc42, and

ρactin were described by equations evolving in time, and u, θ, κs by differential equations

in s. The latter equations were solved by the method of lines; s was discretized and the s-

derivatives were written as a differential matrix using fourth order central difference and

one sided finite differences at the boundary. The resulting system becomes a differential

algebraic system (DAE), which was solved using Sundials [120], a suite of nonlinear and

DAE solvers. Steady state solutions were obtained by ensuring that all time derivatives

of scaled variables were below 10−3.

Numerical integration of coupled reaction diffusion simulations

The stochastic simulations were solved by Michael Trogdon. The mechanics equations

were coupled to the reaction diffusion equations. This was done assuming a separa-

tion of timescales of the physical growth governed by the mechanics equations and the

biochemical reactions governed by the stochastic reaction diffusion equations. The me-

chanics equations were solved using the same method presented above for the integration
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of the coarse grained equations. The stochastic reaction diffusion equations were built

and solved using PyURDME and MOLNs. Computational meshes for each geometry

consisted of a discretization of both the cytoplasm and the membrane (the surface of the

shape), allowing for diffusion both in the cytoplasm and on the membrane as required

by the models used in this study. All reactions took place in voxels on the membrane for

each geometry. These meshes were generated using Gmsh.

Model 1: Reactions for the coarse grained model of Cdc42 and actin polar-

ization presented in Figure 3.3.

Cdc42GDPc
β2−→ Cdc42GDPm

Cdc42GDPm
β3−→ Cdc42GDPc

Cdc42GDPc + Actinm
β1−→ Cdc42GTPm + Actinm

Cdc42GDPm + Actinm
β1−→ Cdc42GTPm + Actinm

Cdc42GTPm
α3−→ Cdc42GDPm

Actinc + Cdc42GTPm
Aon−−→ Actinm + Cdc42GTPm

Actinc
Sε̇−→ Actinm

Actinm
Aoff−−−→ Actinc
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Chapter 4

Zebrafish body axis elongation

4.1 Introduction

During embryonic development, tissues undergo major physical transformations to build

functional structures. As for inert materials, shaping embryonic tissues necessarily in-

volves the spatiotemporal control of several key physical quantities [3], namely its growth

(e.g., cell proliferation), material properties and/or active stresses. Unlike inert systems,

however, living tissues are active materials and can locally regulate the value of these

fields through local changes in cell behavior. However, it is unclear what physical fields

are spatiotemporally controlled to sculpt tissues and organs and their specific roles in mor-

phogenesis, mainly because measurements of spatiotemporal variations in these physical

quantities within developing embryos are still sparse. Since spatiotemporal variations in

multiple physical fields can contribute to the morphogenetic processes [3], it is important

to have information of all these fields in the same system to establish how the tissues are
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physically shaped. This work was done in close collaboration with Dr. Payam Rowgha-

nian, Emmet Carn, Dr. Georgina Stooke-Vaughan, who performed the experiments in

Section 4.5, and Dr. Sangwoo Kim who performed the data analysis.

Recently, quantitative measurements of the spatial variations in both mechanical

stresses and tissue material properties showed that a fluid-to-solid transition in the state

of the tissue guides the posterior extension of the body axis in zebrafish embryos [28]

(Fig. 4.1a). During zebrafish posterior body elongation, cells in dorsal-medial (DM)

posterior tissues continuously move ventrally to the mesodermal progenitor zone (MPZ),

providing the necessary material to build the body axis since, at the developmental stages

studied in those experiments, cell proliferation is negligible and does not substantially

contribute to the elongation of the body axis [121, 122].

The mesodermal progenitor cells in the MPZ progressively incorporate into the pre-

somitic mesoderm (PSM), a process that involves their maturation into mesodermal

cells and their gradual arrest [28, 123, 124, 39]. The observed fluid-to-solid transition

was found to be associated with cellular jamming along the anteroposterior (AP) axis

following an anterior decrease in extracellular spaces and in cell-cell contact active fluc-

tuations [28]. Regardless of the specific physical mechanism of this transition, the tissue

was found to transit from a fluid-like state in the posterior end of the body, namely the

MPZ, to a solid-like state in the PSM (Fig. 4.1a-b). Continuum mechanics simulations

showed that the existence of a fluid-to-solid transition in the tissue was sufficient to repro-

duce body axis elongation [28], but it remains unclear what tissue shapes (morphological
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phenotypes) can be achieved with the observed transition, how different physical param-

eters control the temporal evolution of tissue shape, and how different physical quantities

(stress, tissue pressure, velocity, etc.) vary spatially during body axis elongation.

Figure 4.1: a) Schematic view of the zebrafish embryo at 10-somite stage. Cells moving
along the anterior-posterior axis in the DM tissue enter the ventral tissue at the posterior
end, drive growth, and move anteriorly as they enter a more solid-like tissue. b) Spatial
profile of cell addition rate to the posterior end as a function of the distance from the
posterior end of the tissue. c) Spatial profile of tissue viscosity as a function of the
distance from the posterior end of the tissue.

Several methods exist to simulate tissue morphogenesis. Cell-based models are well

suited when cellular resolution is necessary, but typically lead to a large number of pa-

rameters because the mechanical state for each cell needs to be accounted for [29, 30,

31, 32, 33, 34]. The tissue material properties and stresses in cell-based models emerge
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from the collective behavior of cells, and the connection between mechanical parame-

ters at the cell scale and material properties at the tissue scale can be quite complex.

While cell-based approaches are necessary for small cell numbers or in theoretical de-

scriptions requiring cellular resolution, when studying tissue morphogenesis at length

and time scales characteristic of tissue dynamics (typically larger than those of cell dy-

namics), tissue morphogenesis can be properly described by coarse-grained continuum

approaches that only require information of physical fields at supracellular scales [35].

Previous continuum descriptions of tissue morphogenesis generally assumed spatially uni-

form mechanical properties (i.e., constant tissue viscosity or constant stiffness depending

on the tissue) and considered only spatial variations in either cell proliferation or forces

because experimental studies have been mostly focused on spatial variations of these

quantities [125, 126, 127]. The role of spatial variations in tissue mechanical properties

and, especially, the role of regional changes in fluid and solid tissue states has been largely

unexplored.

In the specific case of body axis elongation, self-propelled particle descriptions have

been to understand cellular movements in the tissue. These simulations assumed set

tissue shape (fixed tissue boundaries), allowing the prediction of cell movements but not

tissue morphogenesis since the boundaries are, by construction, fixed. Importantly, most

cases of tissue morphogenesis are examples of so-called free boundary problems, in which

tissue flows change the shape of the tissue and these boundary changes affect the move-

ments inside the tissue. Therefore, in tissues that change shape during morphogenesis,
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it is important to consider the coupled dynamics of the tissue shape and morphogenetic

flows.

Building on previous work [28], we theoretically explore the role of the tissue fluid-

to-solid transition on the elongation of the zebrafish body axis. We treat the system as

a free-boundary problem and perform 2D finite element numerical simulations of tissue

morphogenesis based solely on first principles (mass and momentum conservation) to

study how the characteristics of a spatially-restricted fluid-to-solid transition between

tissue states affect morphogenetic flows, tissue stresses and their morphological outcome.

Our results show that the mere presence of a fluid-to-solid transition along the AP axis

enables unidirectional tissue elongation. In the absence of the fluid-to-solid transition,

the tissue either expands isotropically when the tissue surface tension is not negligible.

In the presence of a fluid-to-solid transition, our results show that morphogenetic flows

can either smoothly transit from posterior-directed movements in the MPZ to anterior-

directed tissue flow in the PSM or alternatively display counter-rotating vortices as the

tissue transits from fluid-like to solid-like states. The predicted AP axial stresses indicate

that the MPZ tissues are pushed posteriorly, contributing to axis elongation, whereas

PSM tissues are pushed anteriorly, indicating that the PSM mechanically sustains the

extension of the body. In between, both posteriorly-directed and anteriorly-directed

AP stresses are found at the same distance from the extending body end, depending

on the distance from the embryo midline. Finally, for large enough tissue pressures

preventing cells from DM tissue to enter the MPZ, our simulations predict the arrest of
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body elongation.

4.2 Theoretical description

Since we are interested in tissue morphogenesis at supracellular length scales and devel-

opmental time scales, we describe the tissue as a coarse-grained continuum. Indeed, all

observed mechanical gradients in the tissue during body axis elongation occur at length

scales much larger than the cell size and are persistent over timescales longer that charac-

teristic timescales of cellular processes [28], indicating that a coarse-grained description

is apt, as previously emphasized in other systems [128, 129]. Moreover, since the ven-

tral tissue (including MPZ and PSM) is thin along the dorsal-ventral axis (DV, z axis)

compared to its medial-lateral (ML, y axis) and anterior-posterior (AP, x axis) exten-

sions [28, 124] (Fig. 4.1a-b), we approximate the tissue as a 2D system, neglecting the

DV tissue thickness, and simulate a 2D DV projection of the ventral tissues (Fig. 4.1b).

Finally, since the notochord has little ML extension and the extension of the body axis

has been shown to proceed in the absence of notochord [130], we neglect it here.

In order to sustain the continuous posterior extension of the body axis, it is necessary

to constantly add new material at the posterior end of the ventral tissues. Cell prolifer-

ation could potentially contribute to the addition of new tissue material, but it has been

previously shown that proliferation is minimal in the tissue and that its inhibition does

not preclude the formation of the body axis [122, 131], indicating that cell proliferation is

not driving tissue elongation in zebrafish at these developmental stages [121]. From the
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perspective of ventral tissues, the dorsal to ventral movement (ingression) of cells at the

posterior end of the tissue represents an addition of material to the MPZ region as body

elongation proceeds (Fig. 4.1b). However, cell ingression into the MPZ can only occur if

enough space can be made available for the ingressing cells, which depends directly on

the local tissue pressure (local volume changes are directly related to the local value of

the pressure): large tissue pressure in the MPZ will prevent ingression of cells from DM

tissues because these cannot generate enough force to push their way into the MPZ. Since

the ingression of cells to the MPZ from DM tissues has been shown to be restricted to a

region of limited size at the extending posterior leading edge of the tissue [39], we define

the rate of cell ingression from DM tissues into the MPZ, Q(x, p), with both explicit

spatial and pressure dependencies, namely

Q(x, P ) =
Q0

(
1− P

PC

)
Θ
(

1− P
PC

)
1 + exp

(
xP − λQ − x

a

) , (4.1)

where P is the tissue pressure, PC is the critical pressure over which cells cannot ingress

into the MPZ and Q0 is the maximal cell addition rate at the posterior-most end of the

body axis when tissue pressure is negligible. The function Θ(•) represents the Heaviside

step function and xp is the time-dependent position of the end of the body axis. In the

case that tissue pressure is small compared to pc, the cell addition rate Q(x, P ) decays

along the AP axis from a maximal value Q0 at the posterior-most end to vanishing values

at length scales larger than λQ, which sets the size of the ingression region (Fig. 4.1b,c).

In this case, Q transits from Q0 to zero over a spatial range of size a (with a� λQ). If
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the tissue pressure is not negligible compared to pc, cell ingression will be limited further

following to the spatial profile of the tissue pressure, and eventually halted for tissue

pressures above pc. From the reference frame of the extending posterior end, the profile

Q does not change over time at steady-state, but in the absolute reference frame it does

so through its dependence on the position xp(t) of the extending body end.

In order to simulate the physical growth of the tissue, it is necessary to know its

material properties and the way they change in space and time. As explained above,

direct measurements of tissue mechanics have revealed that ventral tissues undergo a

fluid-to-solid transition along the AP axis, with the fluid-like MPZ tissues rigidifying

into to a solid-like PSM [28]. The transition was found to be caused by cellular jamming

as cells mature and transit from the MPZ to the PSM. Within the broad classification

of jamming transitions [132], the observed transition corresponds more closely to a glass

transition, as the active cell-scale forces were shown to generate cell-cell contact fluctu-

ations that can be qualitatively thought of as an effective temperature. The observed

larger effective temperature (higher cell-cell contact fluctuations) of the MPZ was found

to be the main cause of fluidization of this posterior tissue region, with the PSM tissues

rigidifying mainly due to the anterior decrease in effective temperature (lower cell-cell

contact fluctuations). In glass transitions, the relaxation timescale of the system be-

comes arbitrarily large as the system in cooled below the glass transition temperature,

leading to arbitrarily large viscosities as the temperature is progressively lowered [32].

The fluid-like state of the extending posterior MPZ tissue can be thought of as the tissue
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having an effective temperature higher than the glass transition temperature, enabling

cellular rearrangements and tissue fluidization. In contrast, the solid-like PSM can be

thought of as a tissue with an effective temperature lower than the glass transition tem-

perature, leading to very large viscosities that barely allow any tissue reorganization at

the observation timescales, effectively rigidifying the PSM. To account for a fluid-to-solid

transition of this nature along the AP axis, we describe the tissue as a viscous fluid with

inhomogeneous viscosity µ(x), minimal at the posterior end of the body and sharply

transiting to a very high viscosity value at a defined distance λµ from the posterior end

of the body (Fig. 4.1b,d), namely

µ(x) = µp +
µa − µp

1 + exp

(
x− (xP − λµ)

a

) , (4.2)

where µp and µa are the values of the tissue viscosity in the MPZ and PSM, respectively.

The transition between low and high tissue viscosities occurs over a region of size a (with

a� λµ). Large values of µa/µp (µa/µp →∞) simulate the observed fluid-to-solid tissue

transition, but it is also possible to simulate a tissue with uniform viscosity (µp = µa)

and intermediate behaviors.

Knowing the spatial distribution cell ingression rate and tissue viscosity along the AP

axis, which we consider here as input fields, it is possible to simulate the dynamics of tissue

morphogenesis. Two fundamental equations govern the dynamics of the system, namely

mass conservation (or mass balance) and momentum conservation. In the presence of

spatially-dependent cell ingression, Q(x, P ), mass conservation reads

∂ρ

∂t
+∇ · (ρu) = Q(x, P ) , (4.3)
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where u and ρ are the velocity and density fields, respectively. Since the cell density

has been experimentally shown to be uniform along the AP axis [28], we assume ρ to be

constant in what follows, which reduces Eq. 4.3 to

∇ · u =
Q(x, P )

ρ
. (4.4)

At the length scales involved (∼ 100µm) and for the measured values of tissue viscosity

(∼ 105 Pa s [28, 133]), the dynamics can be safely assumed to be over-damped. In these

conditions, momentum conservation reduces to local force balance, which reads

∇ · σ = 0 , (4.5)

where σ is the stress tensor. For a viscous fluid with inhomogeneous viscosity µ(x) in

2D, the stress tensor reads

σ = −P I + µ(x)
((
∇u +∇uT

)
− (∇ · u) I

)
, (4.6)

where I and P are the identity tensor and pressure field in the tissue, respectively. This

pressure is not any hydrostatic pressure in the tissue but rather, the crowding pressure

between cells in the tissue, mirroring the osmotic pressure in an aqueous foam [134].

While the density in the tissue is constant, the divergence of the velocity field does not

generally vanish in Eq. 4.6 because of the addition of new material (see Eq. 4.4). The

tissue is assumed to be immersed in a fluid environment similar to water (Newtonian fluid)

with uniform viscosity several orders of magnitude smaller than that of the tissue. The

equations governing the dynamics of the surrounding fluid are also mass and momentum

conservation, but in this case, there are no sources of material.

Finally, to solve the equations above, it is necessary to specify the boundary condi-

78



tions. The shape of the tissue is not imposed in any way and depends on the physical

fields inside the tissue. In the same way, these physical fields depend on the location of

the boundary, i.e., the shape of the tissue. As for free-boundary problems related to the

dynamics of fluid-fluid interfaces [135], the boundary conditions are velocity continuity

and local normal force balance at the tissue boundary (or surface). Continuity of the

velocity field simply reads

uin = uout , (4.7)

where uin and uout are the velocities of the tissue and outer fluid surrounding it, respec-

tively, evaluated at the boundary (tissue surface). Local normal force balance (Laplace’s

Law) reads

∆P = γκ , (4.8)

where ∆P is the tissue pressure jump at the boundary, γ is the tissue surface tension and

κ is the curvature of the tissue surface. The interface between the tissue and surrounding

fluid is described with a single curvature κ along its arc-length because the simulations

are in 2D. Since the tissue pressure is not associated with any hydrostatic pressure,

but rather it is a pressure associated with cellular crowding, its value outside the tissue

vanishes. In this sense, the tissue pressure jump ∆P at the tissue surface is simply

∆P = PS, where PS is the tissue pressure at the tissue boundary and, in general, varies

on the tissue surface. The tissue surface tension γ considered here accounts for the tissue

surface tension known to exist in multicellular systems with adhering cells, such as in

tissues [136]. For simplicity, we assume here that at the relevant developmental time
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scales and supracellular scales the tissue surface tension is constant in time and does not

vary along the AP axis.

Since addition of material in the MPZ is essential to sustain body elongation, we scale

all lengths with the characteristic length scale λQ, time with the characteristic timescale

of cell ingression, τ ≡ ρ/Q0, and stresses with the critical pressure PC over which cell

ingression to the MPZ ceases. Scaling all variables and equations with the mentioned

scales, we obtain the relevant dimensionless parameters that govern the dynamics of the

system, which read

λµ
λQ
,
σC

PC

,
σA

PC

,
σP

PC

(4.9)

where λµ/λQ is the ratio of the length scale over which tissue viscosity varies to the

size of the region where cell ingression occurs (or tissue material is added, equivalently).

Beyond this ratio, the other dimensionless parameters are ratios of the four relevant stress

scales in the problem, namely the shear stress scale in the MPZ, σP, the shear stress scale

in the PSM, σA, the capillary stress associated to the tissue surface, σC ≡ γ/λQ, and the

critical tissue pressure PC over which cell ingression ceases. In analogy to fluid interfaces,

the capillary stress measures how much stress is needed to deform the tissue surface. The

ratio of shear stress scales directly relates to the ratio of tissue viscosities in each region,

such that σP/σA = µP/µA, with µP/µA = 1 for uniform viscosity and µP/µA → 0 for a

jamming transition at vanishing tissue effective temperature [29, 137].

In order to narrow the parameter space, we use known experimental values for some

parameters. Measurements of the size of the MPZ, λµ, and the size of the ingression
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region λQ indicate that the relevant parameter range for λµ/λQ is 0.5 < λµ/λQ < 2. The

range of σP/σA explored is 10−3 − 1, because we are interested in the limit of uniform

tissue viscosity and the limit of µA � µP representing the fluid-to-solid transition. We

considered the ratio of capillary to critical pressure controlling PC, σC/PC, to vary over a

range 0.01−10. We checked that the results show negligible dependence on the transition

zone size a as long as a is sufficiently small. Consequently, we fix a = λQ/4 in our

simulations.

4.3 Elongation regime

To understand the possible tissue shapes and the spatiotemporal variations in the differ-

ent physical fields, we numerically integrated Eqs. 4.4-4.5 and obtained the time evolution

of the system for different parameter values. Starting from an initial semicircular tis-

sue shape, we let the tissue shape evolve over time and identify the different dynamical

regimes of the system for different parameter values. For values of the capillary stress

larger than a threshold value in the critical pressure, namely σC/PC ' 4, the tissue can-

not extend in any way and remains arrested (Fig. 4.2). This is because tissue material

(cells) cannot enter the MPZ due to the high crowding pressure in the MPZ (Fig. 4.2C),

thus halting growth. This high pressure in the tissue is a direct consequence of the large

capillary stress (as compared to PC) that resists deformation and extension of the tissue

surface.

Below the threshold value causing growth arrest (i.e., σC/PC < 4), the tissue can
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Figure 4.2: Time evolution of tissue shapes for various values of the parameters, start-
ing from an initial semi-circular shape (gray). Four time snapshots are shown for each
parameter combination, namely, t/τ = 10, 25, 50, 75, all measured in material addition
units of τ = ρ/Q0. The dotted lines indicate a separation between two regimes of ar-
rested growth, due to the pressure of a cell’s surrounding being higher that the critical
pressure, and the growth phase which can be categorized into two regimes of unidirec-
tional extension for capillary stress small compared to the critical pressure (σC � PC),
and isotropic extension with flow along the ML axis for large relative capillary stress
(σC � σP). a) Increasing the ratio of anterior stress scale σA to the critical pressure PC

results in a larger capillary stress threshold for transitioning between unidirectional and
isotropic growth b) The shape of the tissue is dependent upon the capillary stress σC

c) The growth is arrested during unidirectional growth when the critical pressure over
which cells no longer ingress is decreased. The rate at which cells ingress into the MPZ
becomes zero.

extend, albeit differently for varying values of parameters. When the capillary stresses

are much larger than the shear stresses both in the MPZ and the PSM (σC � σP

and σC � σA), it is much more costly to deform the tissue surface than to induce

material flows within it. Consequently, in this regime, the tissue expands keeping a round

shape, as would a liquid drop with high interfacial tension with liquid being injected in

it (Fig. 4.2a,b). In contrast, when the capillary stresses are large compared to the shear

stresses in the MPZ (σP � σC), but small compared to the shear stresses in the PSM
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(σA � σC; i.e., if the viscosity µA is large enough), the MPZ tissue can easily flow

upon addition of new cells from dorsal tissues, but the PSM can barely flow within the

timescales of tissue growth. Since anterior PSM tissues do not flow due to their large

viscosity in this limit, they effectively behave as a solid at the timescales relevant to

tissue morphogenesis. In this case, it is much less costly to deform the tissue at the

posterior end that inducing any flow in the PSM and, as a result, the tissue extends

unidirectionally and progressively builds a tubular structure (Fig. 4.2a,b) that resembles,

both in shape and extension, body axis elongation in zebrafish [131, 122, 28]. Indeed,

this situation, in which the PSM effectively behaves like a solid and the MPZ behaves

like a fluid, corresponds to experimentally observed fluid-to-solid tissue transition from

MPZ to PSM [28]. Since unidirectional axis elongation can only be achieved when the

capillary stresses associated with the tissue surface tension are smaller than the shear

stresses in the PSM, our results suggest that tissue surface tension in zebrafish posterior

tissues is small compared to the other stress scales in the system.

In between these two limiting regimes (purely isotropic growth and unidirectional

elongation), there is an intermediate regime that displays some characteristics of both.

If the capillary stress scale becomes comparable to the shear stress scales (σC ∼ σA and

σC ∼ σP), then the tissue expands mostly isotropically but also displays a posterior

bump in the tissue shape due to the localized addition of cells in that region (Fig. 4.2a,

intermediate region (INT)). In this case, the viscosity in the PSM is not large enough

to support the posterior unidirectional extension of the tissue and prevent mediolateral
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tissue spreading over the timescales of tissue morphogenesis, but it is neither small enough

to fully prevent it. As a consequence, the tissue spreads mediolaterally at the anterior

end, leading to a blob-like anterior tissue expansion in this region, while displaying a

posteriorly extending bump at the posterior end.

Increasing the capillary stress above the critical value (σC/PC ' 4) as the tissue is

elongating causes the tissue to arrest growth (Fig. 4.2b). The timescale of fluidization

(τF = σC/µP) is much shorter than the timescale of growth and only over a large t/τF do

we see the tissue slightly retract due to the capillary stress being larger than the shear

stress as seen in the inset of Fig. 4.2b. As the cell is growing, cells ingress normally at

the posterior end. However, after the capillary stress is increased, cell ingression stops

(Fig. 4.2c). The crowding pressure in the MPZ is higher than the pressure during growth

due to the increase of capillary stress (Fig. 4.2c). During the growth phase, we see a high

velocity leading to elongation of the tissue. Interestingly, after the increase of capillary

stress, the velocity becomes negligible (Fig. 4.2c).

The different dynamical regimes of tissue expansion (Fig. 4.2a) will, in general, be

characterized by different morphogenetic flows. In the case of isotropic tissue expansion

with uniform tissue viscosity (σC > σA = σP), strong mediolateral flow is observed

to redistribute the tissue material added at the posterior end of the tissue (Fig. 4.3a).

Indeed, in this case the capillary stresses are larger than all shear stresses in the tissue,

forcing the material added at the posterior-most tissue end to redistribute mediolaterally

while preserving a nearly spherical tissue shape during expansion. Since the shear stresses
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are much smaller than the capillary stress, the tissue can easily flow and quickly reduce

pressure differences, leading to an almost uniform tissue pressure inside the isotropically

expanding tissue.

Figure 4.3: Tissue pressure and velocity of morphogenetic flows for three limiting regimes.
The left column shows the tissue viscosity normalized to posterior viscosity and normal-
ized growth rate. Pressure is normalized with the critical pressure, PC, and velocity with
v0 = λQ/τ . a) No fluid-to-solid transition between the posterior and anterior tissues,
with large capillary stress (σC & σA = σP). b) Large capillary stress in the presence
of fluid-to-solid transition between the posterior and anterior tissues (σA � σC = σP).
λµ = 2λQ c) Large capillary stress in the presence of fluid-to-solid transition between the
posterior and anterior tissues (σA � σC < σP). λµ = 2λQ.

In the regime where the tissue extends unidirectionally and posteriorly (Fig. 4.2a,

regime U and Fig. 4.3b,c), most of the newly added tissue material flows posteriorly,

contributing to the posterior tissue elongation, with the tissue just anterior of this region

reversing direction and flowing anteriorly to virtually arrest just further where the tissue
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viscosity sharply increases (solid-like PSM). As explained above, this is because it is less

costly to create new tissue surface and extend posteriorly than moving the PSM material

to accommodate the new material, as σA � σC ∼ σP. Far away from the extending end

of the tissue, in the PSM, the flow is arrested and the tissue is uniformly slightly com-

pressed (positive low pressure). In between these limiting posterior and anterior velocity

behaviors, the tissue morphogenetic flows can display different patterns that we discuss

below. For the specific cases shown in Fig. 4.3, the tissue displays posterior-directed

velocities at the posterior end that progressively turn to anterior directed velocities with

decaying magnitude towards the anterior end. Since in this limit the PSM is effectively

solid, no mediolateral flow is possible in the PSM. Essentially, the material added at

the posterior end flows posteriorly, elongating the tissue unidirectionally in the posterior

direction, with a small backflow away from the extending tip (due to momentum con-

servation). The pressure profile displays a negative pressure zone in the medial region,

just anterior of the region where new material is added, flanked mediolaterally by two

regions of high pressure. A negative pressure indicates that the tissue is being pulled in

all directions. The reason for this region of negative pressure in 2D is that the tissue at

the posterior-most end expands quickly posteriorly, whereas the solid-like anterior tis-

sues cannot flow fast. Since the tissue is considered to be a continuum incompressible

material, the tissue in between the solid-like PSM and the posteriorly expanding MPZ

needs to follow the posterior expansion at one end while keeping connection with the

PSM at the other, leading to an effective pull on the tissue and a negative pressure. It
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is important to note that this negative pressure region may be due to the 2D nature of

these simulations, as in the full 3D geometry the capillary stresses from the other spatial

direction would create higher pressures in the tissue, likely preventing the formation of

negative pressure regions. Yet, the reported spatial distribution of pressures would most

likely remain qualitatively the same, with a medial region of small pressure localized

anteriorly from where material is added. The high pressure regions flanking the low

pressure medial region are due to the fact that the flow in this region is anterior directed

and encounters a very large anterior resistance due to the increasing viscosity towards

the PSM, effectively compressing the tissue.

Finally, in the intermediate regime, the morphogenetic flows show characteristics of

both the isotropic growth with strong mediolateral and anterior directed flows and a

small bump with small posterior directed velocities in a small posterior region.

4.4 Topological transitions in the structure of mor-

phogenetic flows

In order to understand the types of morphogenetic flows that are involved in extending

the posterior body axis, we explore the parameter space in the regime where there is a

fluid-to-solid tissue transition (µA � µP) and the capillary stresses are less than or equal

to the shear stress in the PSM, leading to unidirectional body elongation.

Varying the ratio of capillary stress to shear stress in the PSM (σC/σA) shows that
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Figure 4.4: Morphogenetic flows near or anterior to the material addition zone for in-
creasing capillary stress. Counter-rotating vortices are present when capillary stress σc
is small compared to the MPZ shear stress σp, and when the fluid-to-solid and material
addition transition zones are sufficiently close.a) AP axial stress,σxx, showing streamlines
highlighting the morphogenetic flows b) ML axial stress, σyy, c) shear stress, σxy, and d)
a phase diagram showing that the disappearance of vortices occur as the capillary stress
increases.

morphogenetic flows transit from a source-type flow to displaying two counter-rotating

vortices as σC/σA decreases (Fig. 4.4a,b). This is a topological transition in the structure

of the flow field. The source-type flow has a topological charge of +1, whereas in the

presence of the two counter-rotating vortices (with topological charges +1) a stagnation

point with topological charge -1 appears in the PSM, thereby conserving the topological

charge through the transition (Fig. 4.4a). The counter-rotating vortices appear just

anterior from the location where the tissue viscosity sharply increases (location of the

fluid-to-solid tissue transition). This is because when capillary stresses are small com-

pared to even the smaller MPZ shear stress σP (limit of vanishing capillary stress), the

added material forced to move anteriorly eventually encounters the solid-like PSM and,

since extending the tissue posteriorly has little cost for vanishing tissue surface tension,

it progressively reverses its direction to medial, posterior-directed flows, generating the
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vortices. For larger capillary stress, this flow reversal cannot occur because it is too costly

to deform the tissue surface and extend the body axis.

Even if the tissue morphogenetic flows undergo a topological transition that consid-

erably affects their structure, the stress fields and tissue shape are remarkably similar

for the two flow structures (with or without counter-rotating vortices). For unidirection-

ally extending tissues, and regardless of the flow structure: (1) the axial stress σxx (Fig.

4.4d) shows strong uniaxial extension in the MPZ and weak compression in the PSM as

well as flanking lateral regions with increased uniaxial compression as the tissue transits

from fluid-like to solid-like behavior; (2) the mediolateral stresses σyy (Fig. 4.4f) display

uniaxial extension in the MPZ and weak compression in the PSM, with a medial com-

pressive region located anterior of the fluid-to-solid transition; (3) the shear stress (Fig.

4.4e) is large in the MPZ with two localized regions of high magnitude and it vanishes in

the PSM; (4) the tissue pressure shows the characteristics described above for unilateral

posterior tissue extension.

4.5 Comparing experiment and theory

Qualitatively, the theoretical results match some of the fields exhibited during zebrafish

axis elongation. The experiments were carried out by Dr. Georgina Stooke-Vaughan and

the experimental data analysis was performed by Dr. Sangwoo Kim.

Labeled nuclei, as seen in Fig 4.5a, were tracked and their positions and velocities

were obtained using Imaris as explained in section 4.7. From the experimental data,
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Figure 4.5: a) Experimental data showing lateral and dorsal views of the zebrafish embryo
at the 10 somite stage. On the right nuclei are shown in blue and tracks of the nuclei are
shaded with the mean track speed. Below, the velocity vectors and streamlines are shown
with the speed shaded and at the bottom the theoretical velocity vectors and streamlines
are shown with the speed shaded. b) Tracks of 30µm are shown with the maximal
track speed shaded, below are the points at which cells cross the interface between the
dorsal and ventral plane with the number of cells in a given bin of width 10µm on the
left, at the bottom is the cell ingression field obtained from theoretical simulations c)
The track are shown shading the anterior posterior velocity showing how cells move in
opposite directions for the different tissue regions highlighting the shape of the MPZ and
PSM, below in a red dashed line is the averaged shape over 5 samples and the black line
represents the shape of the tissue from theoretical simulations.

the velocities were averaged and binned (see section 4.7 for further details) to find the

speed and the vectoral components of the velocity at a given point. Counter rotating

vortices are seen, in front of which the cell moves posteriorly and behind the vortices

the tissue is seen to flow anteriorly. The streamlines show the morphogenetic flows 4.5a.

The presence of the notochord makes it difficult to visualize the stagnation point in the

90



flow seen in theoretical predictions. Nuclei moving distances greater than or equal to

30µm from the dorsal tissue into the MPZ are seen in 4.5b. The number of cells crossing

the dorsal ventral interface at a given location is counted and binned (bin width 10µm).

The cell ingression region seems to be more spherical than the cell ingression region used

in theory. Finally, the tailbud shape is obtained by looking at images obtained from

Imaris color coding the velocity along the anterior-posterior axis (Fig. 4.5c), the red hues

indicate a velocity in the posterior direction while the blue hues represent a velocity in

the anterior direction. This helps us trace the shape using ImageJ. The shapes from

5 embryos are averaged as given by the red dashed line in Fig. 4.5c. The black line

shows the shape obtained from the theory. The theoretical shape is influenced by the cell

ingression region which is different from experiments as we saw in Fig. 4.5b and would

perhaps more closely capture the shape if a similar rounded cell ingression region was

used in simulations. Qualitatively the morphogenetic flows which are crucial to shaping

the embryo is similar and it would be interesting to further explore the morphogenetic

flows of mutant zebrafish embryos.

4.6 Discussion

We have studied the role of spatially-localized fluid-to-solid tissue transitions in the con-

trol of tissue morphogenesis and specifically, in the elongation of the vertebrate body

axis. By using finite element simulations to physically describe tissue morphogenesis at

supracellular scales, we showed that unidirectional body elongation, with minimal lat-
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eral tissue spreading, occurs naturally in the presence of a fluid-to-solid tissue transition

in the AP axis. In the absence of this spatially-localized fluid-to-solid tissue transition,

posterior tissues expand isotropically or display considerable lateral spreading, but fail to

form body axis that extends unidirectionally at its posterior end. Moreover, in the case

of unidirectional body elongation, we predict the tissue morphogenetic flows and find a

topological transition.

Previous theoretical models have described the cell movements during axis elongation,

albeit for DM tissues. In those cases, the simulations were cell-based and assumed a

fixed geometry of the tissue (boundary) that did not evolve in time. Since the geometry

was fixed, those simulations could not describe morphogenesis and instead focused on

studying movements of cells in DM and PZ tissues. In contrast, our description focuses on

ventral tissues (PSM and MPZ), for which detailed mechanical information is available.

The tissue is characterized as a continuum that can undergo large shape changes (a

free-boundary problem). This continuum approach has been used to theoretically study

several instances of morphogenesis both for tissues and cells. In most cases though,

the spatiotemporal variations of key input physical fields in the simulations, such as the

tissue material properties, are unknown, limiting the predictive power of those theoretical

analyses. Instead, here we made use of recent experimental data for key physical fields

at play during posterior body axis elongation.

The sustained posterior elongation of the body axis requires a constant addition of

cells. The required tissue material to elongate the body axis posteriorly comes from
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the dorsal tissues, where cells display strong coherent posterior directed movements and

eventually move ventrally upon reaching the body end. Cell ingression into the MPZ can

only occur if enough space can be made available for the ingressing cells, which depends

directly on the local tissue pressure (local volume changes are directly related to the local

value of the pressure): large tissue pressure in the MPZ will prevent ingression of cells

from DM tissues because these cannot generate enough force to push their way into the

MPZ. This causes growth to arrest.

The predicted morphogenetic flows (velocity field) for simulated unidirectional body

elongation, indicates that two potential patterns exist depending on the relevance of tissue

tension. At low tissue tensions, two counter-rotating vortices are observed in the tissue,

just as it is transiting to a solid-like state. This predicted flow pattern is not obvious and

arises naturally from the dynamics of the system. Importantly, counter-rotating vortices

are observed in the extending body axis as seen in Fig. 4.5a.

It has been shown that zebrafish mutants lacking the notochord can properly extend

the posterior body axis. For this reason, and also for simplicity, we did not consider the

presence of the notochord in these simulations. While we believe that the presence of

the notochord does not change the obtained results qualitatively, it may impose slightly

different boundary conditions close to the midline that may slightly modify the tissue

flows in that region. However, the predicted tissue flows strongly resemble the observed

morphogenetic flows even in the absence of the notochord.

Overall, our results indicate that the presence of a fluid-to-solid transition as cells
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transit from the MPZ to the PSM is essential to mechanically sustain unidirectional pos-

terior elongation. In the absence of the transition, the tissue surface tension prevents

unidirectional extension and an isotropic tissue expansion is observed. It would be inter-

esting to explore whether a fluid-to-solid transition occurs in other developing embryos

as well.

4.7 Experimental and computational methods

Experiments were done by Dr. Georgina Stooke-Vaughan and data analysis was done by

Dr. Sangwoo Kim.

Zebrafish husbandry, lines and experimental manipulations.

Zebrafish (Danio rerio) were maintained under standard conditions [138]. Animal hus-

bandry and experiments were done according to protocols approved by the Institutional

Animal Care and Use Committee (IACUC) at the University of California Santa Barbara.

Nuclei were labeled to track cell movements by either using the Tg(h2afva:GFP)kca6

transgenic line [139] or by injection with 80-100pg H2B-RFP mRNA at 1-2 cell stage.

Microscopy

8-10 somite stage zebrafish embryos were mounted in 1% low-melting point agarose in

a glass bottom petri dish (MatTek Corporation) for a dorsal view of the tailbud and

imaged at 25C using an inverted Zeiss Laser Scanning Confocal (LSM 710, Carl Zeiss
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Inc.). Confocal stacks through the tailbud were acquired with a step size of 2 µm and

time interval of 2 minutes for 2 hours, using a 25x water immersion objective (LD LCI

Plan-Apochromat 25x/0.8 Imm Corr DIC M27, Carl Zeiss Inc.). Imaris (Bitplane) was

used to prepare figure panels showing embryonic data, detected nuclei and tracks.

Cell movement tracking

Data was processed using Imaris (Bitplane). First, data was smoothed using a 1-pixel

Gaussian filter, next to correct for photo-bleaching over time the normalize timepoints

function was used, then attenuation correction was applied to correct for z-attenuation.

If required, the free-rotate tool was used to align the data such that all samples had the

same alignment with respect to Cartesian coordinates. The Measurement Points tool was

used to identify scaling points for the data and define the plane of cell ingression. After

processing, nuclei were detected using the spots function, and tracked using the Brownian

motion algorithm. Nuclei positions and velocities were output for further analyses.

Velocity field analysis

Nucleus position data from Imaris is used to compute velocity field. For each cell trajec-

tory, B-spline curve is first computed to eliminate high frequency movements. Velocity

values are computed from the B-spline curve using central different formula. Velocity

values are further averaged spatially and temporally to obtain smooth velocity field. All

velocity values are projected on xy plane and binned in terms of x and y positions with
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a bin width 10µm.

Cell ingression analysis

To identify cell ingression rate, cells that exhibit displacement in dorsal-ventral axis larger

than 30µm are selected. For each cell trajectory, all time points that cell is located in

the dorsal-ventral boundary region (10µm thickness) are identified and x and y positions

are averaged over the identified time points. Cell ingression positions are measured over

5 distinct samples. To take binning cell ingress rate from different samples, body axes

are rescaled by a distance between tail end and posterior end of notochord and origin is

moved to tail end. Cell ingression rate is binned in terms of x and y positions.

Computational Methods

We solve Eqs. 4.3- 4.5 with the boundary conditions described above using Comsol Mul-

tiphysics 5.3, which employs Finite Element Methods. Laminar flow and moving mesh

models were used to simulate large deformations of the tissue material under growth.

The Comsol model consists of a box, with sides of length 50 times larger than the

tissue size, filled with a fluid of negligible viscosity, and the tissue initially contained in

a semicircular region with both ends fixed to one side of the box. The tissue satisfies the

source and viscosity profiles (Eqs. 4.1, 4.2). Fluid addition at the tip and the isotropic

term (∇·u) in Eq. 4.6 are directly inputted into the weak solution integration formulation

of Comsol. No tissue flow can go through the box and pressure is set to zero at far away
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walls. The system is meshed with the smallest element being 130 times smaller than the

radius of the initial semicircular area close to the tissue-fluid and tissue-box interfaces,

with the mesh updating as needed to accommodate large deformations resulting from

tissue growth.
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Chapter 5

Conclusions

Nature has made forms in a variety of shapes and sizes. More than 20 centuries ago,

Aristotle and other philosophers realized that that the egg of an animal contained the

information required for determining its final form, while not being a miniature version,

which simply expanded into an adult. In developmental biology, morphogenesis deals

with the organization of shape and is the result of spatial patterning (the setting up of

locations in space for future events) combined with temporal regulation (the control of

the relative timing of events). These processes are triggered by biochemical signaling

yielding changes in protein activity and gene expression. Mutations in the DNA can

result in morphological changes and determine the fitness of a species under selection

pressure. Morphogenesis is fundamentally important because it is ultimately responsible

for the physiology and even the behavior of an organism.

Understanding the physical aspects leads to more complete picture than the common
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approach of looking at gene expression and biological signatures. Even more important,

the laws of physics can impose important constraints on the shape of the growing bio-

logical form. Interestingly, our work has shown that this top down approach yields novel

insights on the key biochemical processes and genes underlying morphogenesis, in the

case of the yeast mating projection. Our theoretical description of yeast mating projec-

tion growth, in chapter 2, was based on the first principles of physics and showed the need

for coordination of the biological and physical processes underlying growth in order for

stable growth to occur. A genetically encoded mechanical feedback through the cell wall

integrity pathway is shown to be essential to ensure that the physical expansion of the

cell wall is coupled to the synthesis of new cell wall material. The mechanical feedback

not only stabilizes the growth but is also involved in another key process of the growth,

polarization, as we show in Chapter 3. In order for the cell to grow unidirectionally, the

cell must maintain its polarization cap at the site of growth. We showed that this can be

achieved by the cell obtaining information about its geometry also through the cell wall

integrity pathway. This was a new approach compared to previous studies, which ignored

the spatial context of polarization and focused merely on obtaining and maintaining a

single polar cap in a spherical geometry. Polarization is a critical component for cell

migration, growth, division, and signal propagation. Directed cell migration occurs when

cells polarize to have a front. This creates a leading edge of the cell, which extends in the

direction of motion and the back of the cell trails behind. Dictyostelium and leukocytes

exhibit this rapid process and have migration speeds of 10-25 µm/s [140]. These cells
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must rapidly. on the time scale of minutes, change their shape due to their polarized

state and it would be interesting to understand if they use a similar mechanical feedback

mechanism. Note that the mechanical feedback mechanism we found for growth is op-

erational on the time scale of hours. Looking at the physical aspects of growth led us

to a better understanding of the key biological processes such as the tuning of material

properties, which we show is not only relevant to the elongation of cells but also to the

elongation of tissues.

An important and surprising finding is that nature exploits the same physical mecha-

nism, localized fluid to solid transitions, in two entirely different contexts – the morpho-

genesis of individual cells and of multicellular structures. The recurrent use of the same

theme in seemingly dissimilar situations is a remarkable example of convergent evolution.

In Chapter 4, we show that the presence of a fluid-to-solid transition in the zebrafish tis-

sue is essential to explain the extension of the zebrafish body axis and the morphogenetic

flows in the tissue. It was relatively unknown that a fluid to solid transition could fa-

cilitate elongation in the tissue and most studies focused on elongation by convergent

extension [141]. These include notochord formation in the Xenopus laevis embryo [142]

and neural tube formation in the mouse embryo [143] and even zebrafish axis elongation

[144]. However convergent extension flow patterns are not what is seen in experiments.

Instead flows with counter rotating vortices, which is a distinct prediction of the flow

pattern in our theoretical description, are observed. Remarkably, in the absence of the

fluid to solid transition along the body axis, the tissue does not elongate. It would be
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interesting to assess whether any zebrafish mutants exhibit the source-type flow and its

relationship to an increase in surface tension. Further work is needed to understand the

interplay between the biological and physical processes underlying tissue morphogenesis.

Nature amazingly exploits the distinct physical phases of biological structures to con-

trol morphogenesis just as D’Arcy Thompson predicted a century ago. Our studies teach

us that emergence [145] (the whole being greater than the sum of the interacting parts)

provides the link between the molecular and genetic mechanisms and the system-wide de-

velopment of morphology. It is even more intriguing that nature uses the same tricks (in

our case, the mechanical feedback) to accomplish seemingly distinct tasks (stabilize cell

growth and maintain cell polarization). The robustness of morphogenesis underscores

the importance of the emergent orchestration in space and in time of the key players

within the cell.
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Appendix A

Experimental Details

Table A:

Strain Genotype Source
RJD863 MATa can1-100 leu2-3-112 his3-11-15 trp1-1 ura3-1 ade2-1 bar1::hisG Ray Deshaies
CGY003 RJD863 wsc1∆::KANR This study
CGY004 RJD863 mid2∆::KANR This study
CGY005 RJD863 wsc1∆::HIS5 mid2∆::KANR This study
CGY011 RJD863 sec3∆::SEC3-GFP-HIS5 This study
CGY012 RJD863 sec3∆::SEC3-GFP-HIS5 mid2∆::KANR This study
CGY013 RJD863 sec3∆::SEC3-GFP-HIS5 wsc1∆::LEU2Kl This study
CGY015 RJD863 sec3∆::SEC3-GFP-HIS5 spa2∆::LEU2Kl This study
CGY016 RJD863 sec3∆::SEC3-GFP-HIS5 spa2∆::LEU2Kl mid2∆::KANR This study
CGY017 RJD863 sec3∆::SEC3-GFP-HIS5 spa2∆::LEU2Kl wsc1∆::URA3Kl This study
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Table B:

Parameter Description Value

P Turgor pressure of budding yeast 0.6 ± 0.2 MPa [146]

ρw Density of 1,3-β glucans in cell wall –

µ0 Apical viscosity of cell wall –

mw Mass of 1,3-β glucan monomer –

ρ0 Density of Fks1/2 enzymes in vesicle –

kp Extrusion rate of 1,3-β glucan monomers –

λX Exocytosis length-scale 0.6± 0.1µm [48]

0.45± 0.10µm [82]

λD Endocytosis length-scale 1.05± 0.18µm [82]

k0
X Apical rate of exocytosis 0.045s−1 [85]

k0
D Apical rate of endocytosis 0.02± 0.02s−1 [82]

0.027s−1 [85]

koff Inactivation rate of Fks1/2 –
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[23] O. Campàs and L. Mahadevan. Shape and Dynamics of Tip-Growing Cells. Current
Biology, 19(24):2102–2107, 2009.

[24] A. Mogilner, J. Allard, and R. Wollman. Cell Polarity: Quantitative Modeling as
a Tool in Cell Biology. Science, 336(6078):175–179, 2012.

[25] S.J. Altschuler, S.B. Angenent, Y. Wang, and L.F. Wu. On the spontaneous emer-
gence of cell polarity. Nature, 454(7206):886–889, 2008.

105



[26] M. Trogdon, B. Drawert, C. Gomez, S.P. Banavar, T.M. Yi, O. Campàs, and
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