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ABSTRACT

Chronic infection with the intracellular protozoan
parasite Toxoplasma gondii leads to tissue remodelling
in the brain and a continuous requirement for
peripheral leucocyte migration within the CNS (central
nervous system). In the present study, we investigate
the role of MMPs (matrix metalloproteinases) and their
inhibitors in T-cell migration into the infected brain.
Increased expression of two key molecules, MMP-8
and MMP-10, along with their inhibitor, TIMP-1 (tissue
inhibitor of metalloproteinases-1), was observed in the
CNS following infection. Analysis of infiltrating lympho-
cytes demonstrated MMP-8 and -10 production by
CD4+ and CD8+ T-cells. In addition, infiltrating T-cells
and CNS resident astrocytes increased their expression
of TIMP-1 following infection. TIMP-1-deficient mice
had a decrease in perivascular accumulation of
lymphocyte populations, yet an increase in the propor-
tion of CD4+ T-cells that had trafficked into the
CNS. This was accompanied by a reduction in parasite
burden in the brain. Taken together, these findings
demonstrate a role for MMPs and TIMP-1 in the
trafficking of lymphocytes into the CNS during chronic
infection in the brain.

Key words: astrocyte, cell migration, central nervous system
(CNS), T-cell, tissue inhibitor of metalloproteinases-1
(TIMP-1), Toxoplasma gondii.

INTRODUCTION

Key mediators of tissue remodelling following brain injury or
disease-mediated insult include the MMPs (matrix metallo-
proteinases). Increased expression of MMPs and proteolysis of
ECM (extracellular matrix) and non-matrix substrates has
been implicated in diverse processes during disease states
such as cancer, and neurological and infectious pathologies
(Ethell and Ethell, 2007). MMPs are inhibited systemically by
the general protease inhibitor o,-macroglobulin, and at sites
of their activity by local TIMPs (tissue inhibitors of
metalloproteinases). Although these molecules have been
implicated in a variety of cell processes including cell growth
and arrest (Stetler-Stevenson, 2008), they are primarily
associated with their ability to bind the active site of MMPs
preventing their protease activity. Among these, the inducible
inhibitor TIMP-1 can be produced in an autocrine fashion by
cell populations producing MMPs. It is therefore critical in the
regulation of cell migratory processes including tumour
progression, metastasis and the immune response to sites of
inflammation (Bloomston et al., 2002; Baratelli et al., 2004;
Burrage et al., 2007; Ramer and Hinz, 2008).

In the CNS (central nervous system), spatial and cell-
specific expression of MMPs/TIMPs is noted and is dependent
on inflammatory signals (Pagenstecher et al., 1998; Crocker
et al., 2006a, 2006b). The activity of MMP-2 and MMP-9 is of
particular significance in the brain with expression asso-
ciated with diverse CNS inflammatory conditions including
infection with Mycobacterium tuberculosis (Harris et al,
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Abbreviations: CNS, central nervous system; DAPI, 4’,6-diamidino-2-phenylindole; EAE, experimentally induced autoimmune encephalomyelitis; ECM, extracellular matrix;
GFAP, glial fibrillary acidic protein; HFF, human foreskin fibroblast; IFN-y, interferon-y; IL, interleukin; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1;
mfi, mean fluorescent intensity; MMP, matrix metalloproteinase; PECAM-1, platelet/endothelial cell adhesion molecule-1; PFA, paraformaldehyde; RT-PCR, reverse
transcription-PCR; sTAg, soluble Toxoplasma antigen; TIMP-1, tissue inhibitor of metalloproteinases-1; TNF, tumour necrosis factor; WT, wild-type.
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2007), severity of EAE (experimentally induced autoimmune
encephalomyelitis; Dubois et al., 1999) and focal ischaemia
(Asahi et al., 2000) and their activity contributes to
permeability of the blood-brain barrier (Thwaites et al,
2003). Possibly due to the vulnerability of the brain to
inflammatory processes and uncontrolled protease activity,
TIMP-1 is produced by both astrocytes and microglia under
non-inflammatory conditions and during inflammation
(Gardner and Ghorpade, 2003). The absence of TIMP-1 can
reduce pathogen load but also lead to increased severity of
CNS inflammation, pointing to a pivitol role of this molecule
in the balance of immune responses in the brain (Toft-Hansen
et al., 2004; Lee et al., 2005; Zhou et al., 2005; Crocker et al.,
2006a; Thorne et al., 2009; Althoff et al., 2010).

Toxoplasma gondii is among the most successful of
intracellular parasites, infecting virtually every warm-blooded
animal including an estimated one-third of the global human
population (Tenter et al., 2000; Dubey, 2008). Despite a robust
pro-inflammatory response that effectively clears fast-
replicating tachyzoites from the periphery, Toxoplasma
converts to a slow-growing bradyzoite form that encysts in
the brain parenchyma for the life of the host (Hunter et al.,
1993). Although the symptoms of infection are largely
subclinical in immune-competent individuals, acquired or
latent infection in the context of immune compromise leads
to focal intracerebral lesions caused by unchecked parasite
re-activation and replication. Throughout chronic infection,
parasite re-activation is suppressed by a well-orchestrated
immune response characterized by IFN-y (interferon-y)
producing CD4+ and CD8+ T lymphocytes (Gazzinelli et al.,
1992). Recent in vivo observations of T-cell behaviour in
Toxoplasma-infected brain tissue revealed that lymphocyte
infiltration is accompanied by substantial tissue remodelling
associated with migrating cells (Wilson et al., 2009). The
mechanism by which peripheral immune cells migrate within
inflamed tissue and specifically that of the brain remains
unknown.

To address the factors involved in this cell trafficking, we
investigated the role of MMP production during Toxoplasma
infection. In the present paper, we demonstrate the up-
regulation of MMP-8 and -10 in the brain that is
accompanied by a striking increase in transcription of their
inhibitor, TIMP-1. Using flow cytometry and immunohisto-
chemistry to analyse the source of MMP production ex vivo
we find that CD4+ and CD8+ T-cells produce MMP-8 and
MMP-10, and that these populations also contribute to the
induction of TIMP-1 during chronic brain infection. In
addition, CNS-resident astrocytes produce TIMP-1 in response
to direct infection by Toxoplasma tachyzoites. Finally,
parasite burden in TIMP-1-deficient mice is significantly
reduced, associated with efficient penetration of lymphocytes
into the brain parenchyma. These results demonstrate the
importance of the MMP/TIMP axis in the trafficking of
infiltrating populations into sites of infection and what
factors may contribute to the significant tissue remodelling
that has been observed in the context of T. gondii infection of

the CNS. Furthermore, regulation of metalloproteinases
necessary for the access of immune populations to infected
CNS tissues may be key to the balanced, non-pathological yet
persistent immune response that is the hallmark of chronic
infection with Toxoplasma.

MATERIALS AND METHODS

Parasite culture and infections

T. gondii parasites (Type I, Prugniaud strain) were cultured
in HFF (human foreskin fibroblast) cells at 37°C, 5% CO..
For infection, parasites were purified by needle passage of
infected HFFs, passed through a 5 um filter to remove cellular
debris, washed, centrifuged and resuspended in sterile PBS
at 5x 10* parasites/ml. C57BI/6J, B6.12954 and B6.12954-
Timp1™P9) (TIMP-1"/") mice were obtained from the
Jackson Laboratory and housed according to institutional
protocol. Animals aged 8-12 weeks were infected by
injecting 10* T. gondii tachyzoites in 200 pl sterile PBS
intraperitoneally. Animals sham injected with 200 pl sterile
PBS served as uninfected controls. All studies were carried
out in strict accordance with the recommendations in the
Guide for the Care and Use of Laboratory Animals of
the National Institutes for Health. The protocol was approved
by the IACUC Committee of the University of California
Riverside (IACUC number 2008002).

Quantitative RT-PCR (reverse transcription—PCR)
Immediately following killing, naive or T. gondii-infected
animals were transcardially perfused and whole brains were
collected. Total RNA from 3 week infected and naive mice was
extracted using TRIzol®/chloroform phase separation
(Invitrogen) according to the manufacturer's protocol.
Pooled RNA from three individual mice was reverse
transcribed using the oligo(dT) primer according to the First
Strand ¢cDNA Synthesis kit protocol (Fermentas Life Sciences),
and the resulting cDNA was used as a template in an RT-PCR
array of primers for ECM and ECM-associated molecules
including metalloproteinases and their inhibitors (SA
Biosciences). To focus on the kinetics of MMP-8, MMP-10
and TIMP-1 observed by array, kinetic analysis was conducted
over eight time points (3, 7, 14, 21, 28, 35, 42 and 60 days
post-infection) and compared with expression in uninfected
brains. Real-time PCR amplification was performed using
primer sequences as previously described (Hasebe et al., 2007)
for MMP-10, forward (5'-CCTGTGTTGTCTGTCTCTCCA-3'),
reverse (5'-CGTGCTGACTGAATCAAAGGA-3’); and designed
for MMP-8, forward (5'-ACGGAGTGAGAGGTGTGGAT-3’),
reverse (5'-TCTGCCTGGGAACTTATTGG-3'); and TIMP-1, for-
ward (5'-ATCTGGCATCCTCTTGTTGC-3'), reverse (5'-CATTT-
CCCACAGCCTTGAAT-3'). DNA was amplified using a Bio-Rad
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iCycler in the presence of SYBR Green. Reaction conditions
were as follows: denaturation at 95°C for 10 min, followed by
40 cycles consisting of 15 s denaturation at 95°C, 30 s
annealing at 60°C and 30 s extension at 72°C. Melting curve
analysis in 0.5°C increments from 95 to 60°C was conducted
to verify primer specificity. Threshold values were acquired
and analysed using Bio-Rad iQ5 2.0 optical-system software.
Fold induction was calculated using the comparative Cy
method described by Livak and Schmittgen (2001). Parasite
burden was measured by amplifying the T. gondii B1 gene
using the primer sequences: forward (5’-TCCCCTCTGCTGGC-
GAAAAGT-3'), reverse (5'-AGCGTTCGTGGTCAACTATCGATTG-
3’), followed by comparison with a DNA standard acquired
from known numbers of purified parasites (Noor et al.,
2010).

Immunohistochemistry

Brain, spleen and liver tissue were snap-frozen by immersion
in isopentane chilled to —70°C, and immediately mounted in
OCT medium (Sakura Finetek). Samples were stored at —80°C
until sectioned by Microm OMV cryostat to 6 pum (for
haematoxylin and eosin staining) or 10-15 um (for immuno-
fluorescence staining). Frozen tissue sections were fixed in
2% (w/v) PFA (paraformaldehyde) and permeabilized in 0.5%
Triton X-100 in PBS prior to incubation with purified
antibodies. Primary antibodies against metalloproteinases
and TIMP-1 are as listed previously and were used at a
concentration of 10 pg/ml. Purified rat-anti GFAP (10 pg/ml;
Invitrogen), PECAM-1 (platelet/endothelial cell adhesion
molecule-1;0 pg/ml; Abcam) or goat-anti-T. gondii (10 pg/
ml; Abcam) were incubated with tissue samples for 2 h at
room temperature or overnight at 4°C, and followed with
appropriate secondary antibodies conjugated to Alexa Fluor®
488, Alexa Fluor® 568 or Alexa Fluor® 647 at 2 pg/ml
(Invitrogen). Samples were mounted in Prolong Gold with
DAPI (4',6-diamidino-2-phenylindole; Invitrogen) for nuclear
counterstaining. Images were collected on a TCS/SP2 UV
confocal microscope (Leica) and analysed using Improvision
Volocity 5.0 (PerkinElmer).

Flow cytometry

Splenocytes were prepared from naive and infected mice.
Single-cell suspensions were generated by passing through a
40 pum filter mesh, and the resulting suspension washed and
incubated with 0.86% NH,CI in PBS to lyse erythrocytes. For
isolation of BMNC (brain mononuclear cells), whole brain
tissue was collected following transcardial perfusion with 40
ml of ice-cold PBS. Tissue was minced and then digested with
collagenase/dispase at 37°C for 45 min, followed by DNase
(Sigma-Aldrich) at 37°C for 45 min. Cell suspensions were
purified using a density gradient composed of 60 and 30%
solutions of Percoll (GE Healthcare). Following washing, cells
were counted and resuspended in FACS buffer (1% BSA, 0.1
mM EDTA in PBS) for incubation with FcBlock and antibodies

against cell surface markers. For tetramer staining, cells were
incubated with SIINFEKL tetramer for 15 min at room
temperature followed by 15 min at 4°C. For intracellular
staining, cells were then fixed in 4% PFA (EMS) in PBS,
permeabilized with 0.3% saponin in PBS, and incubated with
purified rabbit anti-mouse MMP-8, MMP-10 or TIMP-1
(Abcam). Secondary antibodies to rabbit IgG conjugated to
Alexa Fluor® 488 or Alexa Fluor® 647 (Invitrogen) were used
for detection. A FACSCanto Il (BD Biosciences) was used to
collect fluorescence signal, and data were analysed using
FlowJo version 8.8.6 (Tree Star).

Primary astrocyte cultures and ELISA

Cell culture supernatants were prepared from astrocytes
isolated from mixed glial cultures according to previously
published methods (Giulian and Baker, 1986). Briefly, whole
brains were collected from 1-3 day postnatal C57BI/6 mice,
and regions caudal to the midbrain were discarded to
exclude cerebellar tissue. The remaining forebrain tissues
were strained, washed and plated for 12 days with medium
changed every 3 days. On the 12th day, cultures were
shaken at 37°C for 2 h at 240 rpm, and the supernatant
aspirated to remove less adherent cells. The cultures were
then subjected to an additional 18 h shaking at 37°C, after
which the cells still adherent were enriched for astrocytes as
confirmed by staining for GFAP (glial fibrillary acidic
protein). Astrocytes were trypsinized, counted in the
presence of Trypan Blue dye, and replated in 12-well plates
at a density of 1x10° cellsfem? and left to adhere
overnight. Cultures were then stimulated with medium
alone [DMEM (Dulbecco's modified Eagle's medium), 10%
FCS, 2 mM glutamine, 1% non-essential amino acids, 10
mM Hepes, 100 IU (international units)/ml penicillin and
100 pg/ml streptomycin] or 25 pg/ml sTAg (soluble
Toxoplasma antigen) or 20 units/ml recombinant mouse
IFN-y (R&D Systems) or with 100 ng/ml LPS (lipopolysac-
charide) or were infected with the type | RH strain of T.
gondii at an MOI (multiplicity of infection) of five parasites
per cell. After 24 h, supernatants were collected and
centrifuged, and diluted 1:100 for use in ELISA. ELISA was
performed using the Quantikine Immunoassay kit for mouse
TIMP-1 (R&D Systems) according to the manufacturer's
protocol.

Cytokine measurement

Peripheral blood was collected from the tail vein of mice at
days 7 and 14 post-infection. Serum was diluted 10-fold for
pro-inflammatory CBA (cytokine bead assay; BD Pharmingen)
according to the manufacturer's protocol. Samples were
collected on a FACSCanto Il flow cytometer (BD Biosciences),
and concentrations of IFN-y, 1L-12p70 (interleukin-12p70),
IL-6, MCP-1 (monocyte chemoattractant protein-1), TNF
(tumour necrosis factor) and IL-10 were determined by
comparison with a standard curve.

© 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
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RESULTS

MMPs and TIMPs are up-requlated in the CNS
following T. gondii infection

To investigate which brain ECM proteins are altered by T.
gondii infection, whole brain mRNA was isolated from naive
and chronically infected mice. Quantitative RT-PCR was
conducted using a commercial array of primers for ECM
genes and associated molecules (SA Biosciences). Fold
induction over naive transcript levels of MMPs and their
inhibitors at 21 days post-infection are listed in Table 1.
Although post-infection up-regulation of the ubiquitous CNS
gelatinases MMP-2 (>2.0-fold) and MMP-9 (>4.0-fold) was
observed, the most notable increase in transcription was of
MMP-8 (~96-fold) and MMP-10 (~20-fold). This was
accompanied by a significant increase of their inhibitor
TIMP-1 (~165-fold). To determine the kinetics of these
molecules following infection, brain tissue was collected at
time points ranging from 3 days to 6 weeks post-infection for
real-time RT-PCR using specifically designed primers
(Figure 1a). An increase in MMP-8 transcript was detectable
as early as day 7, a time point representing the peak of acute
systemic infection and prior to infiltration of parasites and
immune cells in the brain. This expression peaked at >14-fold
over naive at day 28 post-infection, and remained increased
2-fold over naive at 6 weeks post-infection. Peak expression
of MMP-8 occurs during chronic infection when the parasite
exists predominantly as cysts in the brain and large numbers
of lymphocytes are required to traffic into the CNS to
maintain parasite latency. In contrast, MMP-10 increase was
observed earlier beginning at day 3 and peaking abruptly at
day 21 post-infection. Transcripts decreased rapidly to naive
levels by 6 weeks. The increase in TIMP-1 transcription was of
greatest magnitude, beginning at day 7 and increasing to
>190-fold over naive by 4 weeks post-infection, with levels

Table 1 Brain infection with T. gondii induces up-regulation of genes for
MMPs and their endogenous inhibitors

cDNA generated from whole brain mRNA collected at day 21 post-infection
was used as template in qRT-PCR reactions with an array of 80+ ECM-
associated gene primers. Fold induction shown is compared with transcript
from uninfected brain tissue. nNRNA were pooled from three animals per time
point.

Gene product Fold-induction

TIMP-1 164.78
MMP-8 95.93
MMP-10 19.86
MMP-14 5.75
MMP-9 4.02
TIMP-2 3.56
TIMP-3 3.44
MMP-2 2.76
MMP-7 2.34
MMP-11 2.20
MMP-15 1.96
MMP-3 1.29
MMP-13 1.07

remaining >20-fold over naive at 6 weeks. At late time
points after infection (=60 days) no change in RNA
expression of MMP-8, MMP-10 or TIMP-1 could be detected
in the brain over that of naive (Figure 1a). These results
suggest a need for MMP-8, MMP-10 and TIMP-1 during
chronic infection, specifically during a period associated with
lymphocyte influx into the brain.

To assess the location and distribution of these molecules
following infection immunohistochemistry was performed
on brain sections from chronically infected mice at 4
weeks post-infection, and compared with uninfected tissue
(Figure 1b). A strong MMP-10 signal was present on
purkinje neurons in the naive cerebellum (results not
shown), consistent with previously published reports (Toft-
Hansen et al., 2004; Cuadrado et al., 2009). However, the
distribution of T. gondii in the CNS is not equal and
parasites are found preferentially in the frontal cortex
(Dellacasa-Lindberg et al., 2007; Hermes et al., 2008). In this
area, no constitutive expression of MMP-8, MMP-10 or
TIMP-1 is noted; however, following infection, expression of
all three molecules is observed. Cytoplasmic MMP-8 is
clearly expressed by cells entering from the vasculature
with more diffuse staining within the brain parenchyma
(Figure 1, upper panels). MMP-10 is similarly observed in
the frontal cortex that is cytoplasmic in appearance.
Neither MMP-8 nor MMP-10 co-localize with the astrocyte
marker GFAP (Figure 1b, lower panels). Increased expression
of TIMP-1 is apparent closely associated with blood vessels,
pointing to expression by either astrocytes or cells in the
vasculature (Figure 1c). These results demonstrate that
MMP-8, MMP-10 and TIMP-1 are up-regulated in the
brain following Toxoplasma infection at temporal and
physical proximity to parasites and leucocyte infiltration.

MMPs and TIMP-1 are expressed by infiltrating
lymphocytes in the infected brain

Significant populations of infiltrating immune cells, including
CD4+ and CD8+ T-cells, macrophages and dendritic cells can
be detected in the brain of an infected animal by 3 weeks
post-infection. Our observation that MMPs and TIMP-1 peak
at 21-28 days post-infection would coincide with the
significant infection-induced presence of T-lymphocytes
infiltrating the CNS. We therefore examined the production
of MMPs and TIMP-1 from T-cell populations in the infected
brain to assess whether their up-regulation could be
attributed to immune cells that had extravasated into brain
parenchymal tissue.

At 4 weeks post-infection, cells were analysed for surface
markers and intracellular expression of MMP-8, MMP-10 and
TIMP-1 from the spleen and brain. MMP-8 is typically
associated with highly migratory and invasive cell types
including neutrophils and melanoma cells (Giambernardi
et al., 2001). Analysis of inflammatory monocyte populations
(Gr1™) found in the spleen and brain were almost uniformly
expressing MMP-8 consistent with its expression by neutrophils

© 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/oy-nc/2.5/)
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Figure 1 Expression of MMP-8, MMP-10 and TIMP-1 in the T. gondii-infected brain

(a) Quantitative real-time PCR of cDNA synthesized from mRNA harvested from forebrain tissue of C57BL/6 mice over a time course
from 3 to 60 days post-infection. Induction is measured as fold change from naive. (b) Immunohistochemistry (IHC) of cortical
regions of infected mice collected from naive and 4 weeks post-infection. Green MMP-8 or MMP-10; red, GFAP; blue, DAPI. Scale
bar, 50 um. (c) IHC of naive and infected brain sections for TIMP-1 counterstained with haematoxylin. Arrows pointing left indicate

vasculature and down arrows indicate infiltrating cells.

during migration into sites of inflammation (Figure 2a).
However, in addition to this classical expression, both CD4+
and CD8+ T-cells from the spleen produced MMP-8 following
infection (Figure 2b). Thus, although splenocytes from
naive mice showed low-level expression of MMP-8 over isotype
control values (~5.0), the mfi (mean fluorescent intensity)
of MMP-8 expression on CD4+ T-cells and CD8+ T-cells from
infected spleens was 28.1+4.0 and 33.9+4.0 respectively
(Figure 2b). In contrast, MMP-10 expression was only slightly
up-regulated in splenocytes from infected mice over those
of naive cells (Figure 2b). Analysis of TIMP-1 expression in the
spleen revealed constitutive expression by CD4+ T-cells;
however, little to no increase in expression following infection
(Figure 2b). A distinct pattern was observed in CD8+
T-cells with low constitutive expression in naive cells (mfi:
16.640.6) rising significantly (P=0.02) to (36.7 +5.0) follow-
ing infection.

In naive mice, there are no T-cells in the brain; however,
following Toxoplasma infection substantial populations of
CD4+ and CD8+ T-cells migrate into the CNS. Both CD4+ and

CD8+ T-cells that had migrated to this site had significant
expression of MMP-8 over isotype control, in a similar pattern
to cells in the spleen (Figure 2c). In contrast, despite seeing
no change in MMP-10 expression between naive and infected
splenocytes, MMP-10 expression was uniquely up-regulated
on CD4+ T-cells that were in the brain (mfi: isotype=
103.5+ 1.5; infected=229.74+15.2) (Figure 2c). Lastly, con-
sistent with the expression of TIMP-1 by CD4+ and CD8+ T-
cells in the spleen both these populations express TIMP-1
in the infected brain (Figure 2c). To confirm the disparate
production of MMPs by CD4+ and CD8+ T-cells immuno-
histochemistry was conducted on brains from infected mice.
MMP co-localization was found primarily with CD4 express-
ion (Figure 2d). In addition, it is apparent that the secretion
of MMP-8 and MMP-10 is by T-cells associated with the
vasculature with minimal co-localization observed in
the brain parenchyma. Therefore vascular-associated T-helper
and cytotoxic T-cell populations are a source of MMP-8 and
TIMP-1 during chronic Toxoplasma infection, but only CD4+
helper T-cells contribute to MMP-10 production.

© 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/)
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T-cell expression of MMPs and TIMP-1 in response to Toxoplasma infection

(a) Expression of MMP-8 in a population of high SSC, GR-1hi cells from infected spleens. (b and ¢) Intracellular flow cytometry of
MMP-8 and -10 and TIMP-1 in splenocytes and brain mononuclear cells at 4 weeks post-infection. Shaded area represents isotype
control for MMPs and TIMP; fine line, uninfected; bold line, infected. Results are representative of three independent experiments;
n=3-4 animals per group. (d) Immunohistochemistry of infected brain slices of MMP expression and perivascular T-cells. Green, CD4;
magenta, CD8; blue, DAPI; red, MMP-8 (left) and MMP-10 (right). Scale bar, 50 um. Results are representative of three independent
experiments; results are means +S.E.M. from n=3 mice per group for each experiment. Arrows pointing left indicate vasculature.

TIMP-1 is produced by CNS-resident cells in
response to infection

In addition to T-cell production of TIMP-1, it has been reported
that microglia and astrocytes can be sources of this inhibitor
during inflammation in the brain (Crocker et al., 2006a, 2006b;
Dhar et al., 2006). To determine if CNS-resident cells contri-
bute to TIMP-1 mediated control of MMPs during Toxo-
plasma infection microglial populations isolated from naive
and infected whole brain tissue were compared by flow
cytometry for TIMP-1 production. Modest production of TIMP-
1 by microglia was observed in uninfected brains; however,
there is no significant increase in production following
infection (Figure 3a). Astrocyte expression in naive brains
was not observed; however, following infection there was

significant, although not exclusive, co-localization of TIMP-1
with the astrocyte-specific structural protein GFAP (Figure 3b).
To further investigate the infection-associated stimulus for
astrocyte production of TIMP-1, primary astrocytes were
infected or stimulated with parasite antigen and TIMP-1
production measured by ELISA. Unstimulated astrocytes
demonstrated modest secretion of TIMP-1 (33.1+9.7 ng/ml),
consistent with its role under normal physiological conditions
(Dhar et al., 2006) (Figure 3c). Astrocytes exposed to IFN-y, a
cytokine that is not specific to but nonetheless necessary and
prevalent in Toxoplasma infection, as well as those incubated
with soluble parasite antigen (sTAg), demonstrate a trend for
increased production of TIMP-1 compared with unstimulated
cells. However, there was a significant (P=0.02) increase in

© 2011 The Author(s) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/oy-nc/2.5/)
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TIMP-1 production by astrocytes that had been directly
infected with Toxoplasma, an increase of nearly 5-fold over
unstimulated cells and similar to levels generated in response to
the positive control LPS. These results demonstrate that
although astrocytes boost production of TIMP-1 in response
to both non-specific and parasite-specific inflammatory
stimuli, up-regulation is greatest upon direct infection with T.
gondii. These results reveal that TIMP-1 is produced by CNS-
resident cells in response to direct parasite infection.

TIMP-1 inhibits parasite clearance during
Toxoplasma infection

Having demonstrated the up-regulation of TIMP-1 production
by infiltrating T-cells and CNS-resident astrocytes in response
to infection, experiments were conducted to examine the
significance of this expression during the maintenance of
chronic immune responses in the brain. TIMP-1-deficient mice
were infected and pathology, immune function and parasite
burden compared with that of WT (wild-type) infected mice. No
significant signs of systemic illness (hunching, fur ruffling) were
observed in either group during the 6-week observation period

a c 300+
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Figure 3 TIMP-1 is up-regulated by astrocytes in response to infection
with T. gondii )

(a) Flow cytometry of microglia (CD45™, CD11b+) isolated from brains of
uninfected mice (fine line) compared with those from mice at 4 weeks post-
infection (bold line) and isotype control (grey shaded area). Median
fluorescence intensity (mfi) of populations expressing TIMP-1 are compared.
(b) Immunohistochemistry of chronically infected C57BI/6 cortical tissue
section demonstrates co-localization (yellow) of TIMP-1 with astrocytes.
Green, TIMP-1; red, GFAP; blue, DAPI. Scale bar, 50 pm. (c) TIMP-1 production
by primary astrocyte cultures incubated for 24 h in medium alone, infected
with T. gondii, stimulated with Toxoplasma antigen (sTAg), or with IFN-y. LPS
served as a positive control. Results are from two replicates per sample, three
to five bioreplicates per condition, and three independent experiments.
*P<0.05.

following infection. Serum analysis of systemic cytokines
during the acute phase of infection revealed no defects in
pro- or anti-inflammatory responses (MCP-1, 1L-12p70, IL-6,
IFN-y, TNF-cc or IL-10) in TIMP-1 ~I~ animals at day 7 or day 14
post-infection (Figure 4a and results not shown). Analysis of
the early T-cell response generated by T. gondii infection
revealed no significant difference between the proportion of
antigen-specific CD8+ T-cells generated in the absence
of TIMP-1 or in their activation status (Figure 4b).

The production of MMPs by T-cells at the vasculature points
to a role in metalloproteinase mediated entry of infection
responding lymphocytes into the brain parenchyma. Thus, in
the absence of MMP inhibition by TIMP-1, lymphocyte entry
may be expected to increase. We examined histological sections
of brain tissue from control and TIMP-1"/" animals for
inflammation and cellular localization. As expected, naive
brains showed no cellular infiltrate or pathology. However, in
control (WT) mice that had been infected there was increased
cellular infiltrate and evidence of changes in tissue morphology
(Figure 5a). In contrast, sections from TIMP-1~'~ animals
showed little to no morphological changes in tissue structure.
Further analysis revealed increased GFAP expression in WT
infected brains, with long elongated dendrites confirming
astrocyte activation. In TIMP-1 =!I brains there was no sign of
activated astrocytes with less GFAP expression and no
polarization of dendrites (Figure 5b). Associated with areas of
activated astrocytes were large groups of cells. Astrocytes are
key components of the blood-brain barrier and therefore these
observations could represent areas of perivascular cuffing. To
confirm this, we used antibodies to PECAM-1, present on the
endothelial cells of blood vessels during inflammation. In WT
mice, there were several areas in which the majority of PECAM
staining had profound perivascular cuffing characteristic of
inflamed brain tissue during T. gondii infection (Figure 5¢). In
contrast, brain inflammation in infected TIMP-1-deficient
animals demonstrated reduced or absent perivascular cuffing
of brain vessels with cells more commonly observed in the
parenchyma (Figure 5c¢). This finding is indicative of increased
access of infiltrating cells to the brain, perhaps via uninhibited
metalloproteinase-mediated cleavage of basement membrane
proteins in the perivascular space (Agrawal et al., 2006).

To quantify the ability of cells to access the brain in the
absence of TIMP-1, we analysed the cellular infiltrate from
spleen and infected brains using flow cytometry. Analysis of T-
cell populations in the spleen revealed slight variations between
WT and TIMP-1"" mice, however, the ratio of CD4:CD8 T-cells
remained close to 1 (Figure 6a). In contrast, although the
proportion of CD8+ T-cells in infected brains was unchanged,
there was a significant increase in the proportion of CD4+ T-cells
in the absence of TIMP-1. Thus the ratio of CD4:CD8 changed
from 1.75 in WT mice to 3.6 in the absence of TIMP-1 (Figure 6a).

Furthermore, measurement of parasite burden revealed no
changes in peripheral burden in the absence of TIMP-1
(Figure 6b). However, in TIMP-1"'" mice parasite burden in
the brain was reduced more than 4-fold compared with WT
brains (Figure 6b). Taken together, these results suggest that
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Acute immune responses to Toxoplasma infection in the absence of TIMP-1

(a) Cytometric bead analysis of pro-inflammatory cytokines in serum from peripheral blood collected 7 days post-infection from WT
and TIMP-1"" animals. Markers represent results from individual animals; bars represent mean levels per condition. (b) Tetramer
staining of antigen-specific CD8+ T-cells and CD62L expression. Numbers represent proportion of cells in gate as a percentage of
total live CD8+ T-cells means+S.E.M. from n=3 mice/group.

activated CD4+ T-cells gain access to the CNS during chronic
Toxoplasma infection in a manner that is regulated by TIMP-1.

DISCUSSION

Although the events of lymphocyte rolling and adhesion
at the blood-brain barrier are well characterized, the molecules

that facilitate entry into and migration within the brain
parenchyma are not (Wilson et al., 2010). Here we describe T-
cell production of key MMPs, in conjunction with their
inhibitor TIMP-1, during Toxoplasma infection in
the brain. Previous studies have shown MMP production
is stimulated in the brain by several aspects of the immune
response known to be present during T. gondii infection,
including IL-1 (Szenasi et al., 2008); IL-23 (Langowski
et al., 2006); TNF-a (Szenasi et al., 2008) and COX-2
(Peng et al., 2008); thus it is perhaps not surprising that we
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Figure 5 Histological analysis of TIMP-1 infected brains

c..

ECA DAPI

(a) Haematoxylin and eosin histology at x 10 magnification of naive, infected WT and infected TIMP-1"'" mice at 4 weeks post-
infection. (b and ¢) Immunohistochemistry of tissue in (a); (b) GFAP signal (magenta) demarcates glia limitans; DAPI nuclear
counterstaining (blue) (c) PECAM-1 (green) and DAPI. Arrows indicate vasculature.

found increased expression of several MMPs and their
inhibitors in the brain throughout the course of Toxoplasma
infection. However, in contrast to the classic MMP signature of
CNS inflammation, that of increased MMP-2, MMP-3 and
MMP-9 expression (Candelario-Jalil et al., 2009), our studies
demonstrate a dominant increase in MMP-8 and MMP-10.
MMP-8 expression has been associated with fast-respond-
ing invasive cells including neutrophils (Giambernardi et al,,
2001); however, several imaging studies have demonstrated
that T-cells within the CNS can be highly migratory
(Kawakami et al., 2005; Kim et al., 2009; Wilson et al.,
2009). Our observations of MMP-8 and -10 production by T-
cells, localized predominantly to the vasculature, implies a
role for metalloproteinases in tissue penetration during
lymphocyte trafficking into the brain. MMP production by

migrating T-cells has been described in the context of Type |
diabetes (Savinov and Strongin, 2009) and leukaemia cell
infiltrative capacity (Ivanoff et al., 1999), but this is the first
indication that T-cells produce metalloproteinases to migrate
into or within brain tissue. Our observation that T-cells within
the spleen express very little MMP-8 and -10 compared with
those in the brain suggests that there is a secondary signal at
the site of inflammation that turns on MMP production. This
may be at the site of the blood-brain barrier where we know
several signalling events are required prior to extravasation
into the CNS (Wilson et al., 2010).

Lymphocyte-associated protease activity could be assoc-
iated with penetrating the blood-brain barrier, the induction
of a cell-trafficking network, or with other migratory
processes. However, although originally characterized for
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Figure 6 Parasite burden and T-cell infiltration in the absence of TIMP-1

(a) Flow cytometry of CD4 and CD8 T-cells in infected spleen and brain of WT and TIMP-1"/" mice. Numbers represent
means +S.E.M. of total live cells. (b) Quantitative real-time PCR of DNA isolated from whole spleen and brain tissue of WT and TIMP-
17" at 6 weeks post-infection amplified with primers for T. gondii. A number of parasites per milligram of tissue were determined by
comparison with a purified parasite DNA standard. Results are from two independent experiments, three animals per condition, three

replicates per sample.

their collective ability to degrade all proteins of the ECM, it
has been subsequently demonstrated that metalloprotei-
nases, and their inhibitors have diverse substrates related to
immunomodulatory function (for review see Stetler-
Stevenson, 2008). MMPs have been shown to activate and
degrade cytokines and chemokines (Webster and Crowe,
2006), for proteolytic cleavage of proteins to generate
autoimmunogenic peptides in EAE (Benson et al., 2010;
Shiryaev et al., 2009) and are frequently required for
cleavage activation of the secreted proenzyme forms of
other members of the metalloproteinase family. MMP-10
cleaves the zymogen precursor of MMP-8. Thus, although
results find MMP-8 and MMP-10 concentrated at vascular
areas, the implications for this study are that non-ECM
substrates of MMP-8 and -10 as well as matrix proteins may
be a target for metalloproteinase activity following T. gondii
infection.

The differences observed between CD4+ and CD8+ T-cell
expression of MMPs implies distinct mechanisms of cell entry
into the brain for these lymphocytes. Evidence that these
populations access the CNS differently is prevalent within the
literature (Kawakami et al., 2005; Kivisakk et al., 2006; Ploix
et al., 2010; Wilson et al., 2009, 2010) and although integrins,
chemokines and activation status probably play dominant
roles in this process, the MMP signature of lymphocytes may
provide a further level of control. Thus the addition of TIMP-1
may inhibit pathological CD4+ T-cell entry into the brain
during multiple sclerosis for example, while leaving effector
CD8+ T-cell trafficking intact for responses to pathogens.

Control of Toxoplasma infection in the CNS is achieved
through negative regulation of pro-inflammatory factors such
that parasite re-activation is suppressed with limited immuno-
pathology (Gazzinelli et al., 1992; Wilson et al., 2005; Stumhofer
et al,, 2006). Similarly, uncontrolled MMP production, while
facilitating access of infiltrating leucocytes, results in extensive
tissue damage (Cuzner and Opdenakker, 1999; Newman et al.,
2001). The TIMP family of molecules provides broad inhibition of
MMP activity. In the present paper, we demonstrate TIMP-1
production from invading T-cells and CNS-resident astrocytes
in response to infection. Although microglia, constitutively
express TIMP-1, infection-induced TIMP-1 was only apparent
in astrocytes possibly reflecting their role as the first line of
defense during T-cell infiltration at the blood-brain barrier (Boz
et al., 2006; Dhar et al., 2006). The significance that direct
infection by parasites, and not the pro-inflammatory cytokine
IFN-y or Toxoplasma antigen alone, induces TIMP-1 is supported
by previous studies observing the down-regulation of
MMP activity in human monocytes following infection
with Toxoplasma tachyzoites (Buache et al., 2007). Regulation
of MMP activity and TIMP-1 induction in astrocytes is through
the NF-xB (nuclear factor xB) signalling pathway
(Harris et al., 2007; Gomez-Nicola et al., 2010; Green et al.,
2010), a pathway that is transiently inhibited by direct infection
with Toxoplasma (Mason et al., 2004). Thus inhibition of MMP
via increased expression of TIMP-1 may point to an evasive
strategy by the parasite to limit access of immune cells or a host
response to minimize immune-mediated pathology. In support
of the former, despite the development of a normal systemic
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immune response and equivalent parasite burden in the
periphery, TIMP-1"/" mice have a significant decrease in
parasite burden in the brain compared to WT controls. This is not
accompanied by any substantial pathology in the brain- indeed
histology suggests less focal immune clusters and decreased
astrocyte activation. Previous studies have demonstrated a role
for TIMP-1 in limiting inflammation in the brain during models
of CNS autoimmunity (Althoff et al., 2010; Toft-Hansen et al.,
2004; Crocker et al., 2006a, 2006b; Thorne et al., 2009).
However, in support of our studies, during viral and bacterial
infection TIMP-1 is associated with inhibition of pathogen
clearance without development of adverse pathology in the
brain (Zhou et al., 2002, 2005; Lee et al., 2005).

Toxoplasma represents a life-long infection with no
treatment at present that targets the removal of latent
infection in the brain, making it a critical complication for
the immune compromised. Mechanisms that increase parasite
removal but do not lead to increased immune-mediated
pathology would be a justified focus of research. In summary,
these studies demonstrate Toxoplasma-induced up-regu-
lation of MMP-8 and -10 and the inhibitor TIMP-1 by
T-cells and CNS resident astrocytes. In the absence of TIMP-1
parasite removal is increased without adverse pathology in
the infected brain.
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